Sample records for habitat alteration promotes

  1. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions

    PubMed Central

    Hufbauer, Ruth A; Facon, Benoît; Ravigné, Virginie; Turgeon, Julie; Foucaud, Julien; Lee, Carol E; Rey, Olivier; Estoup, Arnaud

    2012-01-01

    Adaptive evolution is currently accepted as playing a significant role in biological invasions. Adaptations relevant to invasions are typically thought to occur either recently within the introduced range, as an evolutionary response to novel selection regimes, or within the native range, because of long-term adaptation to the local environment. We propose that recent adaptation within the native range, in particular adaptations to human-altered habitat, could also contribute to the evolution of invasive populations. Populations adapted to human-altered habitats in the native range are likely to increase in abundance within areas frequented by humans and associated with human transport mechanisms, thus enhancing the likelihood of transport to a novel range. Given that habitats are altered by humans in similar ways worldwide, as evidenced by global environmental homogenization, propagules from populations adapted to human-altered habitats in the native range should perform well within similarly human-altered habitats in the novel range. We label this scenario ‘Anthropogenically Induced Adaptation to Invade’. We illustrate how it differs from other evolutionary processes that may occur during invasions, and how it can help explain accelerating rates of invasions. PMID:25568032

  2. RESEARCH IN SUPPORT OF CRITERIA FOR HABITAT ALTERATIONS

    EPA Science Inventory

    Many anthropogenic activities exert their influence on fish, shellfish and aquatic-dependent wildlife by affecting habitats. In fact, habitat alteration is one of the most important contributors to declines in ecological resources in North America. Habitat loss and degradation ar...

  3. ASSESSING THE EFFECT OF HABITAT ALTERATION ON SHELLFISH POPULATIONS

    EPA Science Inventory

    Habitat provides a variety of life support functions for many species, such as providing shelter, substrate, food, and nursery areas. Habitat alteration is one of the most important causes of declines in ecological resources in North America, and habitats essential to the well b...

  4. Altered mangrove wetlands as habitat for estuarine nekton: are dredged channels and tidal creeks equivalent?

    USGS Publications Warehouse

    Krebs, Justin M.; Brame, Adam B.; McIvor, Carole C.

    2007-01-01

    Hasty decisions are often made regarding the restoration of "altered" habitats, when in fact the ecological value of these habitats may be comparable to natural ones. To assess the "value" of altered mangrove-lined habitats for nekton, we sampled for 1 yr within three Tampa Bay wetlands. Species composition, abundance, and spatial distribution of nekton assemblages in permanent subtidal portions of natural tidal creeks and wetlands altered by construction of mosquito-control ditches and stormwater-drainage ditches were quantified through seasonal seine sampling. Results of repeated-measures analysis of variance and ordination of nekton community data suggested differences in species composition and abundance between natural and altered habitat, though not consistently among the three wetlands. In many cases, mosquito ditches were more similar in assemblage structure to tidal creeks than to stormwater ditches. In general, mosquito ditches and stormwater ditches were the most dissimilar in terms of nekton community structure. These dissimilarities were likely due to differences in design between the two types of ditches. Mosquito ditches tend to fill in over time and are thus more ephemeral features in the landscape. In contrast, stormwater ditches are a more permanent altered habitat that remain open due to periodic flushing from heavy runoff. Results indicate that environmental conditions (e.g., salinity, current velocity, vegetative structure) may provide a more useful indication of potential habitat "value" for nekton than whether the habitat has been altered. The type of ditching is therefore more important than ditching per se when judging the habitat quality of these altered channels for fishes, shrimps and crabs. Planning should entail careful consideration of environmental conditions rather than simply restoring for restoration's sake.

  5. Modeling the impact of hydromorphological alterations by dams and channelization on fish habitat.

    NASA Astrophysics Data System (ADS)

    Parasiewicz, Piotr; Suska, Katarzyna

    2017-04-01

    As a consequence of introduction of Water Framework Directive it has been discovered that hydromorphological pressures are one of the main causes of impact on aquatic fauna. However, the impact may vary depending on river type and fish community. To test this hypothesis, we modelled alterations of fish habitat on 6 river sections across Poland using MesoHABSIM approach. The original models of habitat for Target Fish Community were based on repeated field surveys in reference river sections, classified into four fish-ecological classes. Introducing to the models three hydromorphological modification types (damming, channelization and dredging) changed persistent habitat availability for the fish community. The change was measured with Habitat Stress Days Alteration index. Overall the modifications caused increase of habitat stress days, but impact varied depending on season, hydromorphologic river type and expected fish community.

  6. Comparison of species composition and richness of fish assemblages in altered and unaltered littoral habitats

    USGS Publications Warehouse

    Poe, T.P.; Hatcher, C.O.; Brown, C.L.; Schloesser, D.W.

    1986-01-01

    Species composition and richness of fish assemblages in altered and unaltered littoral habitats in Lake St. Clair, Michigan, differed between areas. A percid-cyprinid-cyprinodontid assemblage dominated in the unaltered area, Muscamoot Bay, which has a natural shoreline (with almost no alteration due to dredging or bulkheading), high water quality, and high species richness of aquatic macrophytes. A centrarchid assemblage dominated in the altered area, Belvidere Bay, which has a bulkheaded shoreline, many dredged areas, reduced water quality due to inputs of nutrients from a nearby river, and relatively low species richness of aquatic macrophytes. Habitat factors, species richness and abundance of aquatic macrophytes, had the most influence on fish community structure in both areas. The percid-cyprinid-cyprinodontid assemblage was significantly correlated with six species of macrophytes whereas the centrarchid assemblage was significantly correlated with only four. These patterns suggest that preference for diverse habitats was higher, and tolerance to habitat alteration lower, in percid-cyprinid-cyprinodontid assemblages than in centrarchid assemblages.

  7. Habitat alteration increases invasive fire ant abundance to the detriment of amphibians and reptiles

    USGS Publications Warehouse

    Todd, B.D.; Rothermel, B.B.; Reed, R.N.; Luhring, T.M.; Schlatter, K.; Trenkamp, L.; Gibbons, J.W.

    2008-01-01

    Altered habitats have been suggested to facilitate red imported fire ant (Solenopsis invicta) colonization and dispersal, possibly compounding effects of habitat alteration on native wildlife. In this study, we compared colonization intensity of wood cover boards by S. invicta among four forest management treatments in South Carolina, USA: an unharvested control (>30 years old); a partially thinned stand; a clearcut with coarse woody debris retained; and a clearcut with coarse woody debris removed. Additionally, we compared dehydration rates and survival of recently metamorphosed salamanders (marbled salamanders, Ambystoma opacum, and mole salamanders, A. talpoideum) among treatments. We found that the number of wood cover boards colonized by S. invicta differed significantly among treatments, being lowest in the unharvested forest treatments and increasing with the degree of habitat alteration. Salamanders that were maintained in experimental field enclosures to study water loss were unexpectedly subjected to high levels of S. invicta predation that differed among forest treatments. All known predation by S. invicta was restricted to salamanders in clearcuts. The amount of vegetative ground cover was inversely related to the likelihood of S. invicta predation of salamanders. Our results show that S. invicta abundance increases with habitat disturbance and that this increased abundance has negative consequences for amphibians that remain in altered habitats. Our findings also suggest that the presence of invasive S. invicta may compromise the utility of cover boards and other techniques commonly used in herpetological studies in the Southeast. ?? 2007 Springer Science+Business Media B.V.

  8. Great Gray Owl (Strix nebulosa) breeding habitat use within altered forest landscapes

    Treesearch

    Michael B. Whitfield; Maureen Gaffney

    1997-01-01

    We investigated Great Gray Owl (Strix nebulosa) habitat use in eastern Idaho and northwestern Wyoming. Great Gray Owls were not found in severely altered habitats, but young were fledged in areas where 17 to 26 percent of formerly continuous forest had been clearcut. Average clutch (2.7) and brood (2.3) sizes were comparable to other populations,...

  9. Landscape connectivity promotes plant biodiversity spillover into non-target habitats.

    PubMed

    Brudvig, Lars A; Damschen, Ellen I; Tewksbury, Joshua J; Haddad, Nick M; Levey, Douglas J

    2009-06-09

    Conservation efforts typically focus on maximizing biodiversity in protected areas. The space available for reserves is limited, however, and conservation efforts must increasingly consider how management of protected areas can promote biodiversity beyond reserve borders. Habitat corridors are considered an important feature of reserves because they facilitate movement of organisms between patches, thereby increasing species richness in those patches. Here we demonstrate that by increasing species richness inside target patches, corridors additionally benefit biodiversity in surrounding non-target habitat, a biodiversity "spillover" effect. Working in the world's largest corridor experiment, we show that increased richness extends for approximately 30% of the width of the 1-ha connected patches, resulting in 10-18% more vascular plant species around patches of target habitat connected by corridors than around unconnected but otherwise equivalent patches of habitat. Furthermore, corridor-enhanced spillover into non-target habitat can be predicted by a simple plant life-history trait: seed dispersal mode. Species richness of animal-dispersed plants in non-target habitat increased in response to connectivity provided by corridors, whereas species richness of wind-dispersed plants was unaffected by connectivity and increased in response to changes in patch shape--higher edge-to-interior ratio--created by corridors. Corridors promoted biodiversity spillover for native species of the threatened longleaf pine ecosystem being restored in our experiment, but not for exotic species. By extending economically driven spillover concepts from marine fisheries and crop pollination systems, we show how reconnecting landscapes amplifies biodiversity conservation both within and beyond reserve borders.

  10. Differential population responses of native and alien rodents to an invasive predator, habitat alteration and plant masting.

    PubMed

    Fukasawa, Keita; Miyashita, Tadashi; Hashimoto, Takuma; Tatara, Masaya; Abe, Shintaro

    2013-12-22

    Invasive species and anthropogenic habitat alteration are major drivers of biodiversity loss. When multiple invasive species occupy different trophic levels, removing an invasive predator might cause unexpected outcomes owing to complex interactions among native and non-native prey. Moreover, external factors such as habitat alteration and resource availability can affect such dynamics. We hypothesized that native and non-native prey respond differently to an invasive predator, habitat alteration and bottom-up effects. To test the hypothesis, we used Bayesian state-space modelling to analyse 8-year data on the spatio-temporal patterns of two endemic rat species and the non-native black rat in response to the continual removal of the invasive small Indian mongoose on Amami Island, Japan. Despite low reproductive potentials, the endemic rats recovered better after mongoose removal than did the black rat. The endemic species appeared to be vulnerable to predation by mongooses, whose eradication increased the abundances of the endemic rats, but not of the black rat. Habitat alteration increased the black rat's carrying capacity, but decreased those of the endemic species. We propose that spatio-temporal monitoring data from eradication programmes will clarify the underlying ecological impacts of land-use change and invasive species, and will be useful for future habitat management.

  11. Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats

    PubMed Central

    Scharsack, Joern P; Schweyen, Hannah; Schmidt, Alexander M; Dittmar, Janine; Reusch, Thorsten BH; Kurtz, Joachim

    2012-01-01

    In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences

  12. Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats.

    PubMed

    Scharsack, Joern P; Schweyen, Hannah; Schmidt, Alexander M; Dittmar, Janine; Reusch, Thorsten Bh; Kurtz, Joachim

    2012-06-01

    In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences.

  13. Impacts of forest herbicides on wildlife: Toxicity and habitat alteration

    USGS Publications Warehouse

    Morrison, M.L.; Meslow, E.C.

    1983-01-01

    This paper begins with a review of both laboratory and field studies on tbe possible direct toxic effects of herbicides on terrestrial vertebrates, primarily birds and mammals. Alteration of the palatability of forage and changes in reproductive success are also discussed. Emphasis is placed on the use of herbicides in forestry; studies dealing with agricultural systems are referenced where appropriate. The indirect effects of herbicides on wildlife-habitat are then conceptualized and quantified using data from a 3-year study on effects of phenoxy and glyphosate herbicides on bird and small mammal communities in western Oregon. Data on density and habitat use are presented and compared with data available from other geographic regions.

  14. Ocean acidification alters fish populations indirectly through habitat modification

    NASA Astrophysics Data System (ADS)

    Nagelkerken, Ivan; Russell, Bayden D.; Gillanders, Bronwyn M.; Connell, Sean D.

    2016-01-01

    Ocean ecosystems are predicted to lose biodiversity and productivity from increasing ocean acidification. Although laboratory experiments reveal negative effects of acidification on the behaviour and performance of species, more comprehensive predictions have been hampered by a lack of in situ studies that incorporate the complexity of interactions between species and their environment. We studied CO2 vents from both Northern and Southern hemispheres, using such natural laboratories to investigate the effect of ocean acidification on plant-animal associations embedded within all their natural complexity. Although we substantiate simple direct effects of reduced predator-avoidance behaviour by fishes, as observed in laboratory experiments, we here show that this negative effect is naturally dampened when fish reside in shelter-rich habitats. Importantly, elevated CO2 drove strong increases in the abundance of some fish species through major habitat shifts, associated increases in resources such as habitat and prey availability, and reduced predator abundances. The indirect effects of acidification via resource and predator alterations may have far-reaching consequences for population abundances, and its study provides a framework for a more comprehensive understanding of increasing CO2 emissions as a driver of ecological change.

  15. Vulnerable Habitats Alter African Meliponine Bee’s (Hymenoptera: Apidae) Assemblages in an Eastern Afromontane Biodiversity Hotspot

    PubMed Central

    Bobadoye, Bridget O; Ndegwa, Paul N; Irungu, Lucy; Fombong, Ayuka T

    2017-01-01

    Habitat degradation has over time formed synergy with other factors to contribute to dwindling populations of both fauna and flora by altering their habitats. The disturbance of natural habitats affects the diversity of both vertebrates and invertebrates by altering both feeding and nesting sites for which organisms are known to depend on for survival. Little is known of the extent to which vulnerable habitats could shape the diversity of most indigent pollinators such as African meliponine bee species in tropical ecosystems. This study was conducted to determine how disturbance could shape the natural occurrence of African meliponine bee species in different ecological habitats of Taita Hills, leading to changes in their diversity. A total of four species depicted by the Renyi diversity profile was recorded in five of the six main habitat types surveyed, and a further extrapolation with Shannon index (EH) also predicted the highest species richness of 4.24 in a deciduous habitat type. These meliponine bee species (Hypotrigona gribodoi, Hypotrigona ruspolii, Meliponula ferruginea (black), and Plebeina hildebrandti) were observed to be unevenly distributed across all habitats, further indicating that mixed deciduous habitat was more diverse than acacia-dominated bush lands, grasslands, and exotic forest patches. Geometric morphometrics categorized all four meliponine bee species into two major clusters—cluster 1 (H gribodoi, H ruspolii, M ferruginea (black)) and cluster 2 (P hildebrandti)—and further discriminated populations against the 4 potential habitats they are likely to persist or survive in. Each habitat appeared to consist of a cluster of subpopulations and may possibly reveal ecotypes within the four meliponine populations. This has revealed that unprecedented conversions of natural habitats to agroecosystems are a key driving factor causing increased habitat isolation and vulnerability in this Afromontane region which may potentially distort local

  16. Recovery of frog and lizard communities following primary habitat alteration in Mizoram, Northeast India.

    PubMed

    Pawar, Samraat S; Rawat, Gopal S; Choudhury, Binod C

    2004-08-06

    Community recovery following primary habitat alteration can provide tests for various hypotheses in ecology and conservation biology. Prominent among these are questions related to the manner and rate of community assembly after habitat perturbation. Here we use space-for-time substitution to analyse frog and lizard community assembly along two gradients of habitat recovery following slash and burn agriculture (jhum) in Mizoram, Northeast India. One recovery gradient undergoes natural succession to mature tropical rainforest, while the other involves plantation of jhum fallows with teak Tectona grandis monoculture. Frog and lizard communities accumulated species steadily during natural succession, attaining characteristics similar to those from mature forest after 30 years of regeneration. Lizards showed higher turnover and lower augmentation of species relative to frogs. Niche based classification identified a number of guilds, some of which contained both frogs and lizards. Successional change in species richness was due to increase in the number of guilds as well as the number of species per guild. Phylogenetic structure increased with succession for some guilds. Communities along the teak plantation gradient on the other hand, did not show any sign of change with chronosere age. Factor analysis revealed sets of habitat variables that independently determined changes in community and guild composition during habitat recovery. The timescale of frog and lizard community recovery was comparable with that reported by previous studies on different faunal groups in other tropical regions. Both communities converged on primary habitat attributes during natural vegetation succession, the recovery being driven by deterministic, nonlinear changes in habitat characteristics. On the other hand, very little faunal recovery was seen even in relatively old teak plantation. In general, tree monocultures are unlikely to support recovery of natural forest communities and the

  17. Recovery of frog and lizard communities following primary habitat alteration in Mizoram, Northeast India

    PubMed Central

    Pawar, Samraat S; Rawat, Gopal S; Choudhury, Binod C

    2004-01-01

    Background Community recovery following primary habitat alteration can provide tests for various hypotheses in ecology and conservation biology. Prominent among these are questions related to the manner and rate of community assembly after habitat perturbation. Here we use space-for-time substitution to analyse frog and lizard community assembly along two gradients of habitat recovery following slash and burn agriculture (jhum) in Mizoram, Northeast India. One recovery gradient undergoes natural succession to mature tropical rainforest, while the other involves plantation of jhum fallows with teak Tectona grandis monoculture. Results Frog and lizard communities accumulated species steadily during natural succession, attaining characteristics similar to those from mature forest after 30 years of regeneration. Lizards showed higher turnover and lower augmentation of species relative to frogs. Niche based classification identified a number of guilds, some of which contained both frogs and lizards. Successional change in species richness was due to increase in the number of guilds as well as the number of species per guild. Phylogenetic structure increased with succession for some guilds. Communities along the teak plantation gradient on the other hand, did not show any sign of change with chronosere age. Factor analysis revealed sets of habitat variables that independently determined changes in community and guild composition during habitat recovery. Conclusions The timescale of frog and lizard community recovery was comparable with that reported by previous studies on different faunal groups in other tropical regions. Both communities converged on primary habitat attributes during natural vegetation succession, the recovery being driven by deterministic, nonlinear changes in habitat characteristics. On the other hand, very little faunal recovery was seen even in relatively old teak plantation. In general, tree monocultures are unlikely to support recovery of natural

  18. Development and assessment of indices to determine stream fish vulnerability to climate change and habitat alteration

    USGS Publications Warehouse

    Sievert, Nicholas A.; Paukert, Craig P.; Tsang, Yin-Phan; Infante, Dana M.

    2016-01-01

    Understanding the future impacts of climate and land use change are critical for long-term biodiversity conservation. We developed and compared two indices to assess the vulnerability of stream fish in Missouri, USA based on species environmental tolerances, rarity, range size, dispersal ability and on the average connectivity of the streams occupied by each species. These two indices differed in how environmental tolerance was classified (i.e., vulnerability to habitat alteration, changes in stream temperature, and changes to flow regimes). Environmental tolerance was classified based on measured species responses to habitat alteration, and extremes in stream temperatures and flow conditions for one index, while environmental tolerance for the second index was based on species’ traits. The indices were compared to determine if vulnerability scores differed by index or state listing status. We also evaluated the spatial distribution of species classified as vulnerable to habitat alteration, changes in stream temperature, and change in flow regimes. Vulnerability scores were calculated for all 133 species with the trait association index, while only 101 species were evaluated using the species response index, because 32 species lacked data to analyze for a response. Scores from the trait association index were greater than the species response index. This is likely due to the species response index's inability to evaluate many rare species, which generally had high vulnerability scores for the trait association index. The indices were consistent in classifying vulnerability to habitat alteration, but varied in their classification of vulnerability due to increases in stream temperature and alterations to flow regimes, likely because extremes in current climate may not fully capture future conditions and their influence on stream fish communities. Both indices showed higher mean vulnerability scores for listed species than unlisted species, which provided a coarse

  19. Streamflow alteration and habitat ramifications for a threatened fish species in the Central United States

    USGS Publications Warehouse

    Juracek, Kyle E.; Eng, Kenny; Carlisle, Daren M.; Wolock, David M.

    2017-01-01

    In the Central United States, the Arkansas darter (Etheostoma cragini) is listed as a threatened fish species by the State of Kansas. Survival of the darter is threatened by loss of habitat caused by changing streamflow conditions, in particular flow depletion. Future management of darter populations and habitats requires an understanding of streamflow conditions and how those conditions may have changed over time in response to natural and anthropogenic factors. In Kansas, streamflow alteration was assessed at 9 U.S. Geological Survey streamgages in 6 priority basins with no pronounced long-term trends in precipitation. The assessment was based on a comparison of observed (O) and predicted expected (E) reference conditions for 29 flow metrics. The O/E results indicated a likely or possible diminished flow condition in 2 basins; the primary cause of which is groundwater-level declines resulting from groundwater pumping for irrigated agriculture. In these 2 basins, habitat characteristics adversely affected by flow depletion may include stream connectivity, pools, and water temperature. The other 4 basins were minimally affected, or unaffected, by flow depletion and therefore may provide the best opportunity for preservation of darter habitat. Through the O/E analysis, anthropogenic streamflow alteration was quantified and the results will enable better-informed decisions pertaining to the future management of darters in Kansas.

  20. Altered juvenile fish communities associated with invasive Halophila stipulacea seagrass habitats in the U.S. Virgin Islands.

    PubMed

    Olinger, Lauren K; Heidmann, Sarah L; Durdall, Allie N; Howe, Colin; Ramseyer, Tanya; Thomas, Sara G; Lasseigne, Danielle N; Brown, Elizabeth J; Cassell, John S; Donihe, Michele M; Duffing Romero, Mareike D; Duke, Mara A; Green, Damon; Hillbrand, Paul; Wilson Grimes, Kristin R; Nemeth, Richard S; Smith, Tyler B; Brandt, Marilyn

    2017-01-01

    Caribbean seagrass habitats provide food and protection for reef-associated juvenile fish. The invasive seagrass Halophila stipulacea is rapidly altering these seascapes. Since its arrival in the Caribbean in 2002, H. stipulacea has colonized and displaced native seagrasses, but the function of this invasive seagrass as a juvenile fish habitat remains unknown. To compare diversity, community structure, and abundance of juvenile fish between H. stipulacea and native seagrass beds, fish traps were deployed in four nearshore bays around St. Thomas, U.S. Virgin Islands. Traps were deployed in Frenchman, Lindbergh, and Sprat Bays for 24 h intervals in patches of bare sand, patches of H. stipulacea and patches of the native Caribbean seagrasses Thalassia testudinum and Syringodium filiforme. Traps were then deployed in Brewers Bay for 12 h intervals in stands of H. stipulacea and S. filiforme. Relative and total abundances of juvenile fish, identified at least to family, were compared across treatment habitats for each trap deployment period. The catch from H. stipulacea, compared to native seagrasses, comprised a greater abundance of nocturnal carnivores Lutjanus synagris (family Lutjanidae) and Haemulon flavolineatum (family Haemulidae). Additionally, the herbivore species Sparisoma aurofrenatum (family Labridae) and Acanthurus bahianus (family Acanthuridae) and the diurnal carnivore species Pseudopeneus maculatus (family Mullidae) were relatively scarce in H. stipulacea. The catch from sand was much smaller, compared to vegetated habitats, and comprised only L. synagris, H. flavolineatum, and H. aurolineatum. These results provide evidence of reduced family diversity and altered juvenile fish assemblages in H. stipulacea, driven by an abundance of some nocturnal carnivores and scarcity of herbivores and diurnal carnivores. The findings from the present work underpin the need for further investigation and mitigation of this invasion, particularly where H. stipulacea is

  1. Altered juvenile fish communities associated with invasive Halophila stipulacea seagrass habitats in the U.S. Virgin Islands

    PubMed Central

    Brown, Elizabeth J.; Cassell, John S.; Donihe, Michele M.; Duffing Romero, Mareike D.; Duke, Mara A.; Green, Damon; Hillbrand, Paul; Wilson Grimes, Kristin R.; Nemeth, Richard S.; Smith, Tyler B.; Brandt, Marilyn

    2017-01-01

    Caribbean seagrass habitats provide food and protection for reef-associated juvenile fish. The invasive seagrass Halophila stipulacea is rapidly altering these seascapes. Since its arrival in the Caribbean in 2002, H. stipulacea has colonized and displaced native seagrasses, but the function of this invasive seagrass as a juvenile fish habitat remains unknown. To compare diversity, community structure, and abundance of juvenile fish between H. stipulacea and native seagrass beds, fish traps were deployed in four nearshore bays around St. Thomas, U.S. Virgin Islands. Traps were deployed in Frenchman, Lindbergh, and Sprat Bays for 24 h intervals in patches of bare sand, patches of H. stipulacea and patches of the native Caribbean seagrasses Thalassia testudinum and Syringodium filiforme. Traps were then deployed in Brewers Bay for 12 h intervals in stands of H. stipulacea and S. filiforme. Relative and total abundances of juvenile fish, identified at least to family, were compared across treatment habitats for each trap deployment period. The catch from H. stipulacea, compared to native seagrasses, comprised a greater abundance of nocturnal carnivores Lutjanus synagris (family Lutjanidae) and Haemulon flavolineatum (family Haemulidae). Additionally, the herbivore species Sparisoma aurofrenatum (family Labridae) and Acanthurus bahianus (family Acanthuridae) and the diurnal carnivore species Pseudopeneus maculatus (family Mullidae) were relatively scarce in H. stipulacea. The catch from sand was much smaller, compared to vegetated habitats, and comprised only L. synagris, H. flavolineatum, and H. aurolineatum. These results provide evidence of reduced family diversity and altered juvenile fish assemblages in H. stipulacea, driven by an abundance of some nocturnal carnivores and scarcity of herbivores and diurnal carnivores. The findings from the present work underpin the need for further investigation and mitigation of this invasion, particularly where H. stipulacea is

  2. Invasive exotic shrub modifies a classic animal-habitat relationship and alters patterns of vertebrate seed predation.

    PubMed

    Guiden, Peter W; Orrock, John L

    2017-02-01

    Recent evidence suggests that invasive exotic plants can provide novel habitats that alter animal behavior. However, it remains unclear whether classic animal-habitat associations that influence the spatial distribution of plant-animal interactions, such as small mammal use of downed woody debris, persist in invaded habitats. We removed an invasive exotic shrub (buckthorn, Rhamnus cathartica) from 7 of 15 plots in Wisconsin. In each plot, we deployed 200 tagged Quercus rubra seeds in November 2014. After five months, tags were recovered to track spatial patterns of small mammal seed predation. Most recovered tags were associated with consumed seeds (95%); live-trapping, ancillary camera-trapping, and previous behavioral studies suggest that white-footed mice (Peromyscus leucopus) were responsible for most seed predation. In habitats without R. cathartica, most seed predation occurred near woody debris. In habitats with R. cathartica, small mammals rarely consumed seeds near woody debris, and seed predation occurred farther from the plot center and was less spatially clustered. Our results illustrate that invasive exotic shrubs can disrupt an otherwise common animal-habitat relationship. Failing to account for changes in habitat use may diminish our ability to predict animal distributions and outcomes of species interactions in novel habitats created by invasive exotic plants. © 2016 by the Ecological Society of America.

  3. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    PubMed

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  4. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra.

    PubMed

    Boelman, Natalie T; Gough, Laura; Wingfield, John; Goetz, Scott; Asmus, Ashley; Chmura, Helen E; Krause, Jesse S; Perez, Jonathan H; Sweet, Shannan K; Guay, Kevin C

    2015-04-01

    Climate warming is affecting the Arctic in multiple ways, including via increased dominance of deciduous shrubs. Although many studies have focused on how this vegetation shift is altering nutrient cycling and energy balance, few have explicitly considered effects on tundra fauna, such as the millions of migratory songbirds that breed in northern regions every year. To understand how increasing deciduous shrub dominance may alter breeding songbird habitat, we quantified vegetation and arthropod community characteristics in both graminoid and shrub dominated tundra. We combined measurements of preferred nest site characteristics for Lapland longspurs (Calcarius lapponicus) and Gambel's White-crowned sparrows (Zonotrichia leucophrys gambelii) with modeled predictions for the distribution of plant community types in the Alaskan arctic foothills region for the year 2050. Lapland longspur nests were found in sedge-dominated tussock tundra where shrub height does not exceed 20 cm, whereas White-crowned sparrows nested only under shrubs between 20 cm and 1 m in height, with no preference for shrub species. Shrub canopies had higher canopy-dwelling arthropod availability (i.e. small flies and spiders) but lower ground-dwelling arthropod availability (i.e. large spiders and beetles). Since flies are the birds' preferred prey, increasing shrubs may result in a net enhancement in preferred prey availability. Acknowledging the coarse resolution of existing tundra vegetation models, we predict that by 2050 there will be a northward shift in current White-crowned sparrow habitat range and a 20-60% increase in their preferred habitat extent, while Lapland longspur habitat extent will be equivalently reduced. Our findings can be used to make first approximations of future habitat change for species with similar nesting requirements. However, we contend that as exemplified by this study's findings, existing tundra modeling tools cannot yet simulate the fine-scale habitat

  5. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    PubMed

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  6. Physical habitat and its alteration: A common ground for exposure of amphibians to environmental stressors

    USGS Publications Warehouse

    Bishop, Christine A.; Cunnington, David C.; Fellers, Gary M.; Gibbs, James P.; Pauli, Bruce D.; Rothermel, Betsie B.; Linder, Greg L.; Krest, Sherry K.; Sparling, Donald W.

    2003-01-01

    Amphibians as a class of vertebrates have persisted for hundreds of millions of years (Stebbins and Cohen 1995), but they are currently threatened by a variety of stressors, many resulting from human-related alterations of the environment. Most species of amphibians live closely associated with moist environments throughout their life and have evolved specialized adaptations that conserve water and reduce desiccation (Stebbins and Cohen 1995; Henry 2000; Chapter 2A). Amphibians are ectotherms, so their body temperatures fluctuate with the local environment. Latitude, elevation, and habitat affect environmental temperature and have a strong influence on amphibian distributions. Despite these physiological and habitat constraints, the 4750 species of amphibians in the world today have exploited a wide variety of habitats that range from dry deserts to tropical rain forests and from sea level to elevations above 4000 m (McDairmid and Mitchell 2000).The direct loss of suitable habitat has had a profound effect on amphibian populations (Johnson 1992), as it has on nearly all species of wildlife. In the U.S., 53% of wetlands have been lost to human development in the last 200 years (Dahl 1990). Similar loss of wetlands has occurred throughout much of the world, especially in developing countries (Miller 1993). In many regions, deforestation has reduced or eliminated suitable terrestrial habitats, and this may prove to be the largest global threat to amphibian populations (Johnson 1992). Eight thousand years ago, forests covered approximately 40% of the world’s land (6 billion hectares), but by 1997, the world’s forests had been reduced to 3.5 billion hectares, a 42% loss worldwide (CIDA 2001). The effect of habitat loss is generally both obvious and predictable; with increasing restriction of suitable habitat, amphibian populations will probably not survive. The anthropogenic effects on the quality of the habitat that remains are often less obvious.

  7. Habitat-specific differences alter traditional biogeographic patterns of life history in a climate-change induced range expansion.

    PubMed

    Riley, Megan E; Griffen, Blaine D

    2017-01-01

    Range shifts and expansions resulting from global climate change have the potential to create novel communities with unique plant-animal interactions. Organisms expanding their range into novel biotic and abiotic environments may encounter selection pressures that alter traditional biogeographic patterns of life history traits. Here, we used field surveys to examine latitudinal patterns of life history traits in a broadly distributed ectotherm (mangrove tree crab Aratus pisonii) that has recently experienced a climate change-induced range expansion into a novel habitat type. Additionally, we conducted laboratory and field experiments to investigate characteristics associated with these life history traits (e.g. fecundity, offspring quality, and potential selection pressures). We compared these characteristics in native mangrove habitats in which the species has historically dwelled and novel salt marsh habitats into which the species has recently expanded its range. Consistent with traditional biogeographic concepts (i.e. Bergmann's clines), size at maturity and mean body size of reproductive females increased with latitude within the native habitat. However, they decreased significantly in novel habitats at the highest latitudes of the species' range, which was consistent with habitat-specific differences in both biotic (predation) and abiotic (temperature) selection pressures. Although initial maternal investment (egg volume and weight) did not differ between habitats, fecundity was lower in novel habitats as a result of differences in size at reproduction. Offspring quality, as measured by larval starvation resistance, was likewise diminished in novel habitats relative to native habitats. These differences in offspring quality may have enduring consequences for species success and persistence in novel habitats. Life history characteristics such as those investigated here are fundamental organismal traits; consequently, understanding the potential impacts of

  8. Predicting Risks to Wildlife Populations from Multriple Stressors: Mercury, Habitat Alteration and Common Loon Breeding in New Hampshire, USA

    EPA Science Inventory

    We applied a generic approach to estimate and test predictions of population risks of mercury (Hg) exposure and habitat alteration on common loons (Gavia immer) breeding in New Hampshire (NH), USA. We developed a publically-accessible data system, integrating environmental data ...

  9. MODELING PHYSICAL HABITAT PARAMETERS

    EPA Science Inventory

    Salmonid populations can be affected by alterations in stream physical habitat. Fish productivity is determined by the stream's physical habitat structure ( channel form, substrate distribution, riparian vegetation), water quality, flow regime and inputs from the watershed (sedim...

  10. Predictive models attribute effects on fish assemblages to toxicity and habitat alteration.

    PubMed

    de Zwart, Dick; Dyer, Scott D; Posthuma, Leo; Hawkins, Charles P

    2006-08-01

    Biological assessments should both estimate the condition of a biological resource (magnitude of alteration) and provide environmental managers with a diagnosis of the potential causes of impairment. Although methods of quantifying condition are well developed, identifying and proportionately attributing impairment to probable causes remain problematic. Furthermore, analyses of both condition and cause have often been difficult to communicate. We developed an approach that (1) links fish, habitat, and chemistry data collected from hundreds of sites in Ohio (USA) streams, (2) assesses the biological condition at each site, (3) attributes impairment to multiple probable causes, and (4) provides the results of the analyses in simple-to-interpret pie charts. The data set was managed using a geographic information system. Biological condition was assessed using a RIVPACS (river invertebrate prediction and classification system)-like predictive model. The model provided probabilities of capture for 117 fish species based on the geographic location of sites and local habitat descriptors. Impaired biological condition was defined as the proportion of those native species predicted to occur at a site that were observed. The potential toxic effects of exposure to mixtures of contaminants were estimated using species sensitivity distributions and mixture toxicity principles. Generalized linear regression models described species abundance as a function of habitat characteristics. Statistically linking biological condition, habitat characteristics including mixture risks, and species abundance allowed us to evaluate the losses of species with environmental conditions. Results were mapped as simple effect and probable-cause pie charts (EPC pie diagrams), with pie sizes corresponding to magnitude of local impairment, and slice sizes to the relative probable contributions of different stressors. The types of models we used have been successfully applied in ecology and

  11. Habitat use, but not gene flow, is influenced by human activities in two ecotypes of Egyptian fruit bat (Rousettus aegyptiacus).

    PubMed

    Centeno-Cuadros, A; Hulva, P; Romportl, D; Santoro, S; Stříbná, T; Shohami, D; Evin, A; Tsoar, A; Benda, P; Horáček, I; Nathan, R

    2017-11-01

    Understanding the ecological, behavioural and evolutionary response of organisms to changing environments is of primary importance in a human-altered world. It is crucial to elucidate how human activities alter gene flow and what are the consequences for the genetic structure of a species. We studied two lineages of the Egyptian fruit bat (Rousettus aegyptiacus) throughout the contact zone between mesic and arid Ecozones in the Middle East to evaluate the species' response to the growing proportion of human-altered habitats in the desert. We integrated population genetics, morphometrics and movement ecology to analyse population structure, morphological variation and habitat use from GPS- or radio-tagged individuals from both desert and Mediterranean areas. We classified the spatial distribution and environmental stratification by describing physical-geographical conditions and land cover. We analysed this information to estimate patch occupancy and used an isolation-by-resistance approach to model gene flow patterns. Our results suggest that lineages from desert and Mediterranean habitats, despite their admixture, are isolated by environment and by adaptation supporting their classification as ecotypes. We found a positive effect of human-altered habitats on patch occupancy and habitat use of fruit bats by increasing the availability of roosting and foraging areas. While this commensalism promotes the distribution of fruit bats throughout the Middle East, gene flow between colonies has not been altered by human activities. This discrepancy between habitat use and gene flow patterns may, therefore, be explained by the breeding system of the species and modifications of natal dispersal patterns. © 2017 John Wiley & Sons Ltd.

  12. Epigenomic Promoter Alterations Amplify Gene Isoform and Immunogenic Diversity in Gastric Adenocarcinoma.

    PubMed

    Qamra, Aditi; Xing, Manjie; Padmanabhan, Nisha; Kwok, Jeffrey Jun Ting; Zhang, Shenli; Xu, Chang; Leong, Yan Shan; Lee Lim, Ai Ping; Tang, Qianqao; Ooi, Wen Fong; Suling Lin, Joyce; Nandi, Tannistha; Yao, Xiaosai; Ong, Xuewen; Lee, Minghui; Tay, Su Ting; Keng, Angie Tan Lay; Gondo Santoso, Erna; Ng, Cedric Chuan Young; Ng, Alvin; Jusakul, Apinya; Smoot, Duane; Ashktorab, Hassan; Rha, Sun Young; Yeoh, Khay Guan; Peng Yong, Wei; Chow, Pierce K H; Chan, Weng Hoong; Ong, Hock Soo; Soo, Khee Chee; Kim, Kyoung-Mee; Wong, Wai Keong; Rozen, Steven G; Teh, Bin Tean; Kappei, Dennis; Lee, Jeeyun; Connolly, John; Tan, Patrick

    2017-06-01

    Promoter elements play important roles in isoform and cell type-specific expression. We surveyed the epigenomic promoter landscape of gastric adenocarcinoma, analyzing 110 chromatin profiles (H3K4me3, H3K4me1, H3K27ac) of primary gastric cancers, gastric cancer lines, and nonmalignant gastric tissues. We identified nearly 2,000 promoter alterations (somatic promoters), many deregulated in various epithelial malignancies and mapping frequently to alternative promoters within the same gene, generating potential pro-oncogenic isoforms ( RASA3 ). Somatic promoter-associated N-terminal peptides displaying relative depletion in tumors exhibited high-affinity MHC binding predictions and elicited potent T-cell responses in vitro , suggesting a mechanism for reducing tumor antigenicity. In multiple patient cohorts, gastric cancers with high somatic promoter usage also displayed reduced T-cell cytolytic marker expression. Somatic promoters are enriched in PRC2 occupancy, display sensitivity to EZH2 therapeutic inhibition, and are associated with novel cancer-associated transcripts. By generating tumor-specific isoforms and decreasing tumor antigenicity, epigenomic promoter alterations may thus drive intrinsic tumorigenesis and also allow nascent cancers to evade host immunity. Significance: We apply epigenomic profiling to demarcate the promoter landscape of gastric cancer. Many tumor-specific promoters activate different promoters in the same gene, some generating pro-oncogenic isoforms. Tumor-specific promoters also reduce tumor antigenicity by causing relative depletion of immunogenic peptides, contributing to cancer immunoediting and allowing tumors to evade host immune attack. Cancer Discov; 7(6); 630-51. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 539 . ©2017 American Association for Cancer Research.

  13. Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington

    USGS Publications Warehouse

    Reid, M.E.; Sisson, T.W.; Brien, D.L.

    2001-01-01

    Catastrophic collapses of steep volcano flanks threaten many populated regions, and understanding factors that promote collapse could save lives and property. Large collapses of hydrothermally altered parts of Mount Rainier have generated far-traveled debris flows; future flows would threaten densely populated parts of the Puget Sound region. We evaluate edifice collapse hazards at Mount Rainier using a new three-dimensional slope stability method incorporating detailed geologic mapping and subsurface geophysical imaging to determine distributions of strong (fresh) and weak (altered) rock. Quantitative three-dimensional slope stability calculations reveal that sizeable flank collapse (>0.1 km3) is promoted by voluminous, weak, hydrothermally altered rock situated high on steep slopes. These conditions exist only on Mount Rainier's upper west slope, consistent with the Holocene debris-flow history. Widespread alteration on lower flanks or concealed in regions of gentle slope high on the edifice does not greatly facilitate collapse. Our quantitative stability assessment method can also provide useful hazard predictions using reconnaissance geologic information and is a potentially rapid and inexpensive new tool for aiding volcano hazard assessments.

  14. JUVENILE BAY SCALLOP (ARGOPECTEN IRRADIANS) HABITAT PREFERENCES

    EPA Science Inventory

    Habitat quality and quantity are known to be important for maintaining populations of bay scallops (Argopecten irradians), but data linking habitat attributes to bay scallop populations are lacking. This information is essential to understand the role of habitat alteration in th...

  15. Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture.

    PubMed

    M'Gonigle, Leithen K; Ponisio, Lauren C; Cutler, Kerry; Kremen, Claire

    2015-09-01

    Widespread evidence of pollinator declines has led to policies supporting habitat restoration including in agricultural landscapes. Yet, little is yet known about the effectiveness of these restoration techniques for promoting stable populations and communities of pollinators, especially in intensively managed agricultural landscapes. Introducing floral resources, such as flowering hedgerows, to enhance intensively cultivated agricultural landscapes is known to increase the abundances of native insect pollinators in and around restored areas. Whether this is a result of local short-term concentration at flowers or indicative of true increases in the persistence and species richness of these communities remains unclear. It is also unknown whether this practice supports species of conservation concern (e.g., those with more specialized dietary requirements). Analyzing occupancies of native bees and syrphid flies from 330 surveys across 15 sites over eight years, we found that hedgerow restoration promotes rates of between-season persistence and colonization as compared with unrestored field edges. Enhanced persistence and colonization, in turn, led to the formation of more species-rich communities. We also find that hedgerows benefit floral resource specialists more than generalists, emphasizing the value of this restoration technique for conservation in agricultural landscapes.

  16. Community structure of age-0 fishes in paired mainstem and created shallow-water habitats in the Lower Missouri River

    USGS Publications Warehouse

    Starks, Trevor A.; Long, James M.; Dzialowski, Andrew R.

    2016-01-01

    Anthropogenic alterations to aquatic ecosystems have greatly reduced and homogenized riverine habitat, especially those used by larval and juvenile fishes. Creation of shallow-water habitats is used as a restoration technique in response to altered conditions in several studies globally, but only recently in the USA. In the summer of 2012, the U.S. Army Corps of Engineers sampled larval and juvenile fishes at six paired sites (mainstem and constructed chute shallow-water habitats) along a section of the Missouri River between Rulo, NE and St. Louis, MO, USA. From those samples, we enumerated and identified a total of 7622 fishes representing 12 families. Community responses of fishes to created shallow-water habitats were assessed by comparisons of species richness and diversity measures between paired sites and among sampling events. Shannon entropy measures were transformed, and gamma diversity (total diversity) was partitioned into two components, alpha (within community) and beta (between community) diversity using a multiplicative decomposition method. Mantel test results suggest site location, time of sampling event and habitat type were drivers of larval and juvenile community structure. Paired t-test results indicated little to no differences in beta diversity between habitat types; however, chute habitats had significantly higher alpha and gamma diversity as well as increased abundances of Asian carp larvae when compared with mainstem shallow-water habitat. Our results not only show the importance of created shallow-water habitat in promoting stream fish diversity but also highlight the role space and time may play in future restoration and management efforts. 

  17. Histone modification alteration coordinated with acquisition of promoter DNA methylation during Epstein-Barr virus infection.

    PubMed

    Funata, Sayaka; Matsusaka, Keisuke; Yamanaka, Ryota; Yamamoto, Shogo; Okabe, Atsushi; Fukuyo, Masaki; Aburatani, Hiroyuki; Fukayama, Masashi; Kaneda, Atsushi

    2017-08-15

    Aberrant DNA hypermethylation is a major epigenetic mechanism to inactivate tumor suppressor genes in cancer. Epstein-Barr virus positive gastric cancer is the most frequently hypermethylated tumor among human malignancies. Herein, we performed comprehensive analysis of epigenomic alteration during EBV infection, by Infinium HumanMethylation 450K BeadChip for DNA methylation and ChIP-sequencing for histone modification alteration during EBV infection into gastric cancer cell line MKN7. Among 7,775 genes with increased DNA methylation in promoter regions, roughly half were "DNA methylation-sensitive" genes, which acquired DNA methylation in the whole promoter regions and thus were repressed. These included anti-oncogenic genes, e.g. CDKN2A . The other half were "DNA methylation-resistant" genes, where DNA methylation is acquired in the surrounding of promoter regions, but unmethylated status is protected in the vicinity of transcription start site. These genes thereby retained gene expression, and included DNA repair genes. Histone modification was altered dynamically and coordinately with DNA methylation alteration. DNA methylation-sensitive genes significantly correlated with loss of H3K27me3 pre-marks or decrease of active histone marks, H3K4me3 and H3K27ac. Apoptosis-related genes were significantly enriched in these epigenetically repressed genes. Gain of active histone marks significantly correlated with DNA methylation-resistant genes. Genes related to mitotic cell cycle and DNA repair were significantly enriched in these epigenetically activated genes. Our data show that orchestrated epigenetic alterations are important in gene regulation during EBV infection, and histone modification status in promoter regions significantly associated with acquisition of de novo DNA methylation or protection of unmethylated status at transcription start site.

  18. Recordkeeping alters economic history by promoting reciprocity

    PubMed Central

    Basu, Sudipta; Dickhaut, John; Hecht, Gary; Towry, Kristy; Waymire, Gregory

    2009-01-01

    We experimentally demonstrate a causal link between recordkeeping and reciprocal exchange. Recordkeeping improves memory of past interactions in a complex exchange environment, which promotes reputation formation and decision coordination. Economies with recordkeeping exhibit a beneficially altered economic history where the risks of exchanging with strangers are substantially lessened. Our findings are consistent with prior assertions that complex and extensive reciprocity requires sophisticated memory to store information on past transactions. We offer insights on this research by scientifically demonstrating that reciprocity can be facilitated by information storage external to the brain. This is consistent with the archaeological record, which suggests that prehistoric transaction records and the invention of writing for recordkeeping were linked to increased complexity in human interaction. PMID:19147843

  19. Histone modification alteration coordinated with acquisition of promoter DNA methylation during Epstein-Barr virus infection

    PubMed Central

    Funata, Sayaka; Matsusaka, Keisuke; Yamanaka, Ryota; Yamamoto, Shogo; Okabe, Atsushi; Fukuyo, Masaki; Aburatani, Hiroyuki; Fukayama, Masashi; Kaneda, Atsushi

    2017-01-01

    Aberrant DNA hypermethylation is a major epigenetic mechanism to inactivate tumor suppressor genes in cancer. Epstein-Barr virus positive gastric cancer is the most frequently hypermethylated tumor among human malignancies. Herein, we performed comprehensive analysis of epigenomic alteration during EBV infection, by Infinium HumanMethylation 450K BeadChip for DNA methylation and ChIP-sequencing for histone modification alteration during EBV infection into gastric cancer cell line MKN7. Among 7,775 genes with increased DNA methylation in promoter regions, roughly half were “DNA methylation-sensitive” genes, which acquired DNA methylation in the whole promoter regions and thus were repressed. These included anti-oncogenic genes, e.g. CDKN2A. The other half were “DNA methylation-resistant” genes, where DNA methylation is acquired in the surrounding of promoter regions, but unmethylated status is protected in the vicinity of transcription start site. These genes thereby retained gene expression, and included DNA repair genes. Histone modification was altered dynamically and coordinately with DNA methylation alteration. DNA methylation-sensitive genes significantly correlated with loss of H3K27me3 pre-marks or decrease of active histone marks, H3K4me3 and H3K27ac. Apoptosis-related genes were significantly enriched in these epigenetically repressed genes. Gain of active histone marks significantly correlated with DNA methylation-resistant genes. Genes related to mitotic cell cycle and DNA repair were significantly enriched in these epigenetically activated genes. Our data show that orchestrated epigenetic alterations are important in gene regulation during EBV infection, and histone modification status in promoter regions significantly associated with acquisition of de novo DNA methylation or protection of unmethylated status at transcription start site. PMID:28903418

  20. Assessing patterns of fish demographics and habitat in stream networks

    EPA Science Inventory

    Effective habitat restoration planning requires correctly anticipating demographic responses to altered habitats. New applications of Passive Integrated Transponder (PIT) tag technology to fish-habitat research have provided critical insights into fish movement, growth, and surv...

  1. Promoter DNA methylation regulates progranulin expression and is altered in FTLD

    PubMed Central

    2013-01-01

    Background Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of neurodegenerative diseases associated with personality changes and progressive dementia. Loss-of-function mutations in the growth factor progranulin (GRN) cause autosomal dominant FTLD, but so far the pathomechanism of sporadic FTLD is unclear. Results We analyzed whether DNA methylation in the GRN core promoter restricts GRN expression and, thus, might promote FTLD in the absence of GRN mutations. GRN expression in human lymphoblast cell lines is negatively correlated with methylation at several CpG units within the GRN promoter. Chronic treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) strongly induces GRN mRNA and protein levels. In a reporter assay, CpG methylation blocks transcriptional activity of the GRN core promoter. In brains of FTLD patients several CpG units in the GRN promoter are significantly hypermethylated compared to age-matched healthy controls, Alzheimer and Parkinson patients. These CpG motifs are critical for GRN promoter activity in reporter assays. Furthermore, DNA methyltransferase 3a (DNMT3a) is upregulated in FTLD patients and overexpression of DNMT3a reduces GRN promoter activity and expression. Conclusion These data suggest that altered DNA methylation is a novel pathomechanism for FTLD that is potentially amenable to targeted pharmacotherapy. PMID:24252647

  2. Developing a multiscale fire treatment strategy for species habitat management

    Treesearch

    Steven P. Norman; Danny C. Lee; David A. Tallmon

    2008-01-01

    Reintroducing fire to manage vegetation and fuel may have poorly understood consequences for wildlife. Prescribed burning can reduce down wood and snags that provide critical habitat and mechanical thinning designed to reduce fire hazards may alter forest structures that are preferred by some species. Moreover, fine scale fuel treatments may alter wildlife and habitat...

  3. Landscape alterations influence differential habitat use of nesting buteos and ravens within sagebrush ecosystem: implications for transmission line development

    USGS Publications Warehouse

    Coates, Peter S.; Howe, Kristy B.; Casazza, Michael L.; Delehanty, David J.

    2014-01-01

    A goal in avian ecology is to understand factors that influence differences in nesting habitat and distribution among species, especially within changing landscapes. Over the past 2 decades, humans have altered sagebrush ecosystems as a result of expansion in energy production and transmission. Our primary study objective was to identify differences in the use of landscape characteristics and natural and anthropogenic features by nesting Common Ravens (Corvus corax) and 3 species of buteo (Swainson's Hawk [Buteo swainsoni], Red-tailed Hawk [B. jamaicensis], and Ferruginous Hawk [B. regalis]) within a sagebrush ecosystem in southeastern Idaho. During 2007–2009, we measured multiple environmental factors associated with 212 nest sites using data collected remotely and in the field. We then developed multinomial models to predict nesting probabilities by each species and predictive response curves based on model-averaged estimates. We found differences among species related to nesting substrate (natural vs. anthropogenic), agriculture, native grassland, and edge (interface of 2 cover types). Most important, ravens had a higher probability of nesting on anthropogenic features (0.80) than the other 3 species (Artemisia spp.), favoring increased numbers of nesting ravens and fewer nesting Ferruginous Hawks. Our results indicate that habitat alterations, fragmentation, and forthcoming disturbances anticipated with continued energy development in sagebrush steppe ecosystems can lead to predictable changes in raptor and raven communities.

  4. Complementary habitat use by wild bees in agro-natural landscapes.

    PubMed

    Mandelik, Yael; Winfree, Rachael; Neeson, Thomas; Kremen, Claire

    2012-07-01

    Human activity causes abrupt changes in resource availability across the landscape. In order to persist in human-altered landscapes organisms need to shift their habitat use accordingly. Little is known about the mechanisms by which whole communities persist in human-altered landscapes, including the role of complementary habitat use. We define complementary habitat use as the use of different habitats at different times by the same group of species during the course of their activity period. We hypothesize that complementary habitat use is a mechanism through which native bee species persist in human-altered landscapes. To test this idea, we studied wild bee communities in agro-natural landscapes and explored their community-level patterns of habitat and resource use over space and time. The study was conducted in six agro-natural landscapes in the eastern United States, each containing three main bee habitat types (natural habitat, agricultural fields, and old fields). Each of the three habitats exhibited a unique seasonal pattern in amount, diversity, and composition of floral resources, and together they created phenological complementarity in foraging resources for bees. Individual bee species as well as the bee community responded to these spatiotemporal patterns in floral availability and exhibited a parallel pattern of complementary habitat use. The majority of wild bee species, including all the main crop visitors, used fallow areas within crops early in the season, shifted to crops in mid-season, and used old-field habitats later in the season. The natural-forest habitat supported very limited number of bees, mostly visitors of non-crop plants. Old fields are thus an important feature in these arable landscapes for maintaining crop pollination services. Our study provides a detailed examination of how shifts in habitat and resource use may enable bees to persist in highly dynamic agro-natural landscapes, and points to the need for a broad cross-habitat

  5. Invasive plant species alters consumer behavior by providing refuge from predation.

    PubMed

    Dutra, Humberto P; Barnett, Kirk; Reinhardt, Jason R; Marquis, Robert J; Orrock, John L

    2011-07-01

    Understanding the effects of invasive plants on native consumers is important because consumer-mediated indirect effects have the potential to alter the dynamics of coexistence in native communities. Invasive plants may promote changes in consumer pressure due to changes in protective cover (i.e., the architectural complexity of the invaded habitat) and in food availability (i.e., subsidies of fruits and seeds). No experimental studies have evaluated the relative interplay of these two effects. In a factorial experiment, we manipulated cover and food provided by the invasive shrub Amur honeysuckle (Lonicera maackii) to evaluate whether this plant alters the foraging activity of native mammals. Using tracking plates to quantify mammalian foraging activity, we found that removal of honeysuckle cover, rather than changes in the fruit resources it provides, reduced the activity of important seed consumers, mice in the genus Peromyscus. Two mesopredators, Procyon lotor and Didelphis virginiana, were also affected. Moreover, we found rodents used L. maackii for cover only on cloudless nights, indicating that the effect of honeysuckle was weather-dependent. Our work provides experimental evidence that this invasive plant species changes habitat characteristics, and in so doing alters the behavior of small- and medium-sized mammals. Changes in seed predator behavior may lead to cascading effects on the seeds that mice consume.

  6. Ghosts of habitats past: Contribution of landscape change to current habitats used by shrubland birds

    USGS Publications Warehouse

    Knick, Steven T.; Rotenberry, J.T.

    2000-01-01

    Models of habitat associations for species often are developed with an implicit assumption that habitats are static, even though recent disturbance may have altered the landscape. We tested our hypothesis that trajectory and magnitude of habitat change influenced observed distribution and abundance of passerine birds breeding in shrubsteppe habitats of southwestern Idaho. Birds in this region live in dynamic landscapes undergoing predominantly large-scale, radical, and unidirectional habitat change because wildfires are converting shrublands into expanses of exotic annual grasslands. We used data from field surveys and satellite image analyses in a series of redundancy analyses to partition variances and to determine the relative contribution of habitat change and current landscapes. Although current habitats explained a greater proportion of total variation, changes in habitat and measures of habitat richness and texture also contributed to variation in abundance of Horned Larks (Eremophila alpestris), Brewera??s Sparrows (Spizella breweri), and Sage Sparrows (Amphispiza belli). Abundance of birds was insensitive to scale for nonspatial habitat variables. In contrast, spatial measures of habitat richness and texture in the landscape were significant only at large spatial scales. Abundance of Horned Larks, Western Meadowlarks (Sturnella neglecta), and Brewera??s Sparrows, but not Sage Thrashers (Oreoscoptes montanus) or Sage Sparrows, was positively correlated with changes toward stable habitats. Because dominant habitat changes were toward less stable conditions, regional declines of those birds in shrubsteppe habitats reflect current landscapes as well as the history, magnitude, and trajectory of habitat change.

  7. Too hot to trot? evaluating the effects of wildfire on patterns of occupancy and abundance for a climate-sensitive habitat-specialist

    USGS Publications Warehouse

    Varner, Johanna; Lambert, Mallory S.; Horns, Joshua J.; Laverty, Sean; Dizney, Laurie; Beever, Erik; Dearing, M. Denise

    2015-01-01

    Wildfires are increasing in frequency and severity as a result of climate change in many ecosystems; however, effects of altered disturbance regimes on wildlife remain poorly quantified. Here, we leverage an unexpected opportunity to investigate how fire affects the occupancy and abundance of a climate-sensitive habitat specialist, the American pika (Ochotona princeps). We determine the effects of a fire on microclimates within talus and explore habitat factors promoting persistence and abundance in fire-affected habitat. During the fire, temperatures in talus interstices remained below 19°C, suggesting that animals could have survived in situ. Within 2 years, pikas were widely distributed throughout burned areas and did not appear to be physiologically stressed at severely burned sites. Furthermore, pika densities were better predicted by topographic variables known to affect this species than by metrics of fire severity. This widespread distribution may reflect quick vegetation recovery and the fact that the fire did not alter the talus microclimates in the following years. Together, these results highlight the value of talus as a thermal refuge for small animals during and after fire. They also underscore the importance of further study in individual species’ responses to typical and altered disturbance regimes.

  8. Understanding the value of local ecological knowledge and practices for habitat restoration in human-altered floodplain systems: a case from Bangladesh.

    PubMed

    Mamun, Abdullah-Al

    2010-05-01

    Worldwide there is a declining trend in natural fish catch (FAO, The state of world fisheries and aquaculture. http://www.fao.org/documents/show_cdr.asp?url_file=/docrep/007/y5600e/y5600e00.htm , 2002) and Bangladesh is no exception. The vast inland fisheries of Bangladesh have been declining over the years, largely a result of human alteration of the aquatic habitats arising from human interventions in the floodplain systems such as the establishment of water control structures which favor agricultural production but reduce fish habitats. It can be assumed that conventional management measures are not adequate to conserve natural fisheries and exploring alternative knowledge systems to complement existing management is warranted. This paper focuses on local ecological knowledge and several other local practices held by fishers engaging directly with floodplain ecosystems. These knowledge systems and practices may be valuable tools for understanding ecosystems processes and related changes and developing local level responses to avert negative consequences of such changes. This may help in devising alternatives to ecosystem management and the conservation of floodplain fish habitats of Bangladesh and elsewhere in the world. This study was conducted in a natural depression (locally called beel) and its surrounding floodplain system located in north central Bangladesh which has become highly degraded. The results of the study indicate that the fishers and local users of the floodplain ecosystems are rich in local ecological knowledge concerning the hydrology of the floodplains and small lakes, the habitat preferences of fish, the role of agricultural crops on fish habitats, and the impact of habitat human interventions in aquatic ecosystems. Given the apparent inadequacy of the present management regime, this article argues for an inclusion of local knowledge and practices into habitat management as a more holistic approach to floodplain habitat restoration and

  9. Habitat characteristics promoting high density and condition of juvenile flatfish at nursery grounds on the west coast of Ireland

    NASA Astrophysics Data System (ADS)

    De Raedemaecker, F.; Brophy, D.; O'Connor, I.; Comerford, S.

    2012-10-01

    Coastal zones are essential nursery habitats for most juvenile flatfish species. Understanding the habitat requirements promoting high abundance and growth of juvenile flatfish is important for evaluating nursery habitat quality. The present study aimed to assess nursery ground quality for the most common flatfish species: dab (Limanda limanda) and plaice (Pleuronectes platessa), in Galway Bay, on the west coast of Ireland. Monthly surveys were carried out in the period after peak settlement over two years. Variability in flatfish density and Fulton's K condition was explained in relation to biotic and abiotic habitat characteristics, differing within and between distinct nursery grounds. Dab were concentrated in deeper waters, were negatively associated with shrimp densities and salinity and their abundance showed a decrease from June to September combined with interannual variation. Plaice densities were highly associated with shallower depths and high polychaete and shrimp densities and were negatively related with increased macroalgal cover and organic content. Most of the variability in Fulton's condition was explained by the same set of variables for both species; year and densities of crab and malacostracans. This analysis revealed important ecological mechanisms allowing the co-existence of two flatfish species in nursery grounds. However, high quality nursery grounds for dab and plaice differed and anthropogenic and climatic impacts on flatfish nurseries are likely to have a different impact on plaice and dab populations. Knowledge gained about the quality of nursery habitat for commercially important fish species provides a basis for mapping essential flatfish habitats to inform management plans for coastal areas.

  10. Flow and habitat effects on juvenile fish abundance in natural and altered flow regimes

    USGS Publications Warehouse

    Freeman, Mary C.; Bowen, Z.H.; Bovee, K.D.; Irwin, E.R.

    2001-01-01

    Conserving biological resources native to large river systems increasingly depends on how flow-regulated segments of these rivers are managed. Improving management will require a better understanding of linkages between river biota and temporal variability of flow and instream habitat. However, few studies have quantified responses of native fish populations to multiyear (>2 yr) patterns of hydrologic or habitat variability in flow-regulated systems. To provide these data, we quantified young-of-year (YOY) fish abundance during four years in relation to hydrologic and habitat variability in two segments of the Tallapoosa River in the southeastern United States. One segment had an unregulated flow regime, whereas the other was flow-regulated by a peak-load generating hydropower dam. We sampled fishes annually and explored how continuously recorded flow data and physical habitat simulation models (PHABSIM) for spring (April-June) and summer (July-August) preceding each sample explained fish abundances. Patterns of YOY abundance in relation to habitat availability (median area) and habitat persistence (longest period with habitat area continuously above the long-term median area) differed between unregulated and flow-regulated sites. At the unregulated site, YOY abundances were most frequently correlated with availability of shallow-slow habitat in summer (10 species) and persistence of shallow-slow and shallow-fast habitat in spring (nine species). Additionally, abundances were negatively correlated with 1-h maximum flow in summer (five species). At the flow-regulated site, YOY abundances were more frequently correlated with persistence of shallow-water habitats (four species in spring; six species in summer) than with habitat availability or magnitude of flow extremes. The associations of YOY with habitat persistence at the flow-regulated site corresponded to the effects of flow regulation on habitat patterns. Flow regulation reduced median flows during spring and

  11. Interactive effects of temperature and habitat complexity on freshwater communities.

    PubMed

    Scrine, Jennifer; Jochum, Malte; Ólafsson, Jón S; O'Gorman, Eoin J

    2017-11-01

    Warming can lead to increased growth of plants or algae at the base of the food web, which may increase the overall complexity of habitat available for other organisms. Temperature and habitat complexity have both been shown to alter the structure and functioning of communities, but they may also have interactive effects, for example, if the shade provided by additional habitat negates the positive effect of temperature on understory plant or algal growth. This study explored the interactive effects of these two major environmental factors in a manipulative field experiment, by assessing changes in ecosystem functioning (primary production and decomposition) and community structure in the presence and absence of artificial plants along a natural stream temperature gradient of 5-18°C. There was no effect of temperature or habitat complexity on benthic primary production, but epiphytic production increased with temperature in the more complex habitat. Cellulose decomposition rate increased with temperature, but was unaffected by habitat complexity. Macroinvertebrate communities were less similar to each other as temperature increased, while habitat complexity only altered community composition in the coldest streams. There was also an overall increase in macroinvertebrate abundance, body mass, and biomass in the warmest streams, driven by increasing dominance of snails and blackfly larvae. Presence of habitat complexity, however, dampened the strength of this temperature effect on the abundance of macroinvertebrates in the benthos. The interactive effects that were observed suggest that habitat complexity can modify the effects of temperature on important ecosystem functions and community structure, which may alter energy flow through the food web. Given that warming is likely to increase habitat complexity, particularly at higher latitudes, more studies should investigate these two major environmental factors in combination to improve our ability to predict the

  12. Quantifying spatial habitat loss from hydrocarbon development through assessing habitat selection patterns of mule deer.

    PubMed

    Northrup, Joseph M; Anderson, Charles R; Wittemyer, George

    2015-11-01

    Extraction of oil and natural gas (hydrocarbons) from shale is increasing rapidly in North America, with documented impacts to native species and ecosystems. With shale oil and gas resources on nearly every continent, this development is set to become a major driver of global land-use change. It is increasingly critical to quantify spatial habitat loss driven by this development to implement effective mitigation strategies and develop habitat offsets. Habitat selection is a fundamental ecological process, influencing both individual fitness and population-level distribution on the landscape. Examinations of habitat selection provide a natural means for understanding spatial impacts. We examined the impact of natural gas development on habitat selection patterns of mule deer on their winter range in Colorado. We fit resource selection functions in a Bayesian hierarchical framework, with habitat availability defined using a movement-based modeling approach. Energy development drove considerable alterations to deer habitat selection patterns, with the most substantial impacts manifested as avoidance of well pads with active drilling to a distance of at least 800 m. Deer displayed more nuanced responses to other infrastructure, avoiding pads with active production and roads to a greater degree during the day than night. In aggregate, these responses equate to alteration of behavior by human development in over 50% of the critical winter range in our study area during the day and over 25% at night. Compared to other regions, the topographic and vegetative diversity in the study area appear to provide refugia that allow deer to behaviorally mediate some of the impacts of development. This study, and the methods we employed, provides a template for quantifying spatial take by industrial activities in natural areas and the results offer guidance for policy makers, mangers, and industry when attempting to mitigate habitat loss due to energy development. © 2015 The Authors

  13. Habitat degradation disrupts neophobia in juvenile coral reef fish.

    PubMed

    McCormick, Mark I; Chivers, Douglas P; Allan, Bridie J M; Ferrari, Maud C O

    2017-02-01

    Habitat degradation not only disrupts habitat-forming species, but alters the sensory landscape within which most species must balance behavioural activities against predation risk. Rapidly developing a cautious behavioural phenotype, a condition known as neophobia, is advantageous when entering a novel risky habitat. Many aquatic organisms rely on damage-released conspecific cues (i.e. alarm cues) as an indicator of impending danger and use them to assess general risk and develop neophobia. This study tested whether settlement-stage damselfish associated with degraded coral reef habitats were able to use alarm cues as an indicator of risk and, in turn, develop a neophobic response at the end of their larval phase. Our results indicate that fish in live coral habitats that were exposed to alarm cues developed neophobia, and, in situ, were found to be more cautious, more closely associated with their coral shelters and survived four-times better than non-neophobic control fish. In contrast, fish that settled onto degraded coral habitats did not exhibit neophobia and consequently suffered much greater mortality on the reef, regardless of their history of exposure to alarm cues. Our results show that habitat degradation alters the efficacy of alarm cues with phenotypic and survival consequences for newly settled recruits. © 2016 John Wiley & Sons Ltd.

  14. INTERACTIVE HABITAT MODELS FOR MID-ATLANTIC HIGHLAND STREAM FISHES

    EPA Science Inventory

    In most wadeable streams of the Mid-Atlantic Highland region of the eastern United States, habitat alteration resulting from development in the watershed is the primary stressor for fish. Models that predict the presence of stream fish species based on habitat characteristics ca...

  15. Ord's kangaroo rats living in floodplain habitats: Factors contributing to habitat attraction

    USGS Publications Warehouse

    Miller, M.S.; Wilson, K.R.; Andersen, D.C.

    2003-01-01

    High densities of an aridland granivore, Ord's kangaroo rat (Dipodomys ordii), have been documented in floodplain habitats along the Yampa River in northwestern Colorado. Despite a high probability of inundation and attendant high mortality during the spring flood period, the habitat is consistently recolonized. To understand factors that potentially make riparian habitats attractive to D. ordii, we compared density and spatial pattern of seeds, density of a competitor (western harvester ant, Pogonomyrmex occidentalis), and digging energetics within floodplain habitats and between floodplain and adjacent upland habitats. Seed density within the floodplain was greatest in the topographically high (rarely flooded) floodplain and lowest immediately after a spring flood in the topographically low (frequently flooded) floodplain. Seed densities in adjacent upland habitat that never floods were higher than the lowest floodplain habitat. In the low floodplain prior to flooding, seeds had a clumped spatial pattern, which D. ordii is adept at exploiting; after spring flooding, a more random pattern resulted. Populations of the western harvester ant were low in the floodplain relative to the upland. Digging by D. ordii was energetically less expensive in floodplain areas than in upland areas. Despite the potential for mortality due to annual spring flooding, the combination of less competition from harvester ants and lower energetic costs of digging might promote the use of floodplain habitat by D. ordii.

  16. Ensemble forecasting of potential habitat for three invasive fishes

    USGS Publications Warehouse

    Poulos, Helen M.; Chernoff, Barry; Fuller, Pam L.; Butman, David

    2012-01-01

    Aquatic invasive species pose major ecological and economic threats to aquatic ecosystems worldwide via displacement, predation, or hybridization with native species and the alteration of aquatic habitats and hydrologic cycles. Modeling the habitat suitability of alien aquatic species through spatially explicit mapping is an increasingly important risk assessment tool. Habitat modeling also facilitates identification of key environmental variables influencing invasive species distributions. We compared four modeling methods to predict the potential continental United States distributions of northern snakehead Channa argus (Cantor, 1842), round goby Neogobius melanostomus (Pallas, 1814), and silver carp Hypophthalmichthys molitrix (Valenciennes, 1844) using maximum entropy (Maxent), the genetic algorithm for rule set production (GARP), DOMAIN, and support vector machines (SVM). We used inventory records from the USGS Nonindigenous Aquatic Species Database and a geographic information system of 20 climatic and environmental variables to generate individual and ensemble distribution maps for each species. The ensemble maps from our study performed as well as or better than all of the individual models except Maxent. The ensemble and Maxent models produced significantly higher accuracy individual maps than GARP, one-class SVMs, or DOMAIN. The key environmental predictor variables in the individual models were consistent with the tolerances of each species. Results from this study provide insights into which locations and environmental conditions may promote the future spread of invasive fish in the US.

  17. Endangered winter-run Chinook salmon rely on diverse rearing habitats in a highly altered landscape

    DOE PAGES

    Phillis, Corey C.; Sturrock, Anna M.; Johnson, Rachel C.; ...

    2017-11-24

    Protecting habitats for imperiled species is central to conservation efforts. However, for migratory species, identifying juvenile habitats that confer success requires tracking individuals to reproduction. Here in this paper, we used otolith strontium isotope ratios ( 87Sr/ 86Sr) to reconstruct juvenile habitat use by endangered Sacramento River winter-run Chinook salmon that survived to adulthood. The isotope data revealed that 44–65% of surviving adults reared in non-natal habitats, most of which is not designated as critical habitat under the Endangered Species Act. Juveniles entered these non-natal habitats at small sizes, yet left freshwater at a similar size to those that rearedmore » in the mainstem Sacramento River, suggesting these alternate rearing habitats provide suitable growth conditions. These findings indicate Sacramento River winter-run Chinook salmon rely on rearing habitats across a broader geographic region than previously known, potentially opening up greater restoration and conservation opportunities for species recovery.« less

  18. Endangered winter-run Chinook salmon rely on diverse rearing habitats in a highly altered landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillis, Corey C.; Sturrock, Anna M.; Johnson, Rachel C.

    Protecting habitats for imperiled species is central to conservation efforts. However, for migratory species, identifying juvenile habitats that confer success requires tracking individuals to reproduction. Here in this paper, we used otolith strontium isotope ratios ( 87Sr/ 86Sr) to reconstruct juvenile habitat use by endangered Sacramento River winter-run Chinook salmon that survived to adulthood. The isotope data revealed that 44–65% of surviving adults reared in non-natal habitats, most of which is not designated as critical habitat under the Endangered Species Act. Juveniles entered these non-natal habitats at small sizes, yet left freshwater at a similar size to those that rearedmore » in the mainstem Sacramento River, suggesting these alternate rearing habitats provide suitable growth conditions. These findings indicate Sacramento River winter-run Chinook salmon rely on rearing habitats across a broader geographic region than previously known, potentially opening up greater restoration and conservation opportunities for species recovery.« less

  19. Does learning or instinct shape habitat selection?

    PubMed

    Nielsen, Scott E; Shafer, Aaron B A; Boyce, Mark S; Stenhouse, Gordon B

    2013-01-01

    Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos) in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct) would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments.

  20. Geomorphic and habitat response to a large-dam removal in a Mediterranean river

    NASA Astrophysics Data System (ADS)

    Harrison, L.; East, A. E.; Smith, D. P.; Bond, R.; Logan, J. B.; Nicol, C.; Williams, T.; Boughton, D. A.; Chow, K.

    2017-12-01

    The presence of large dams has fundamentally altered physical and biological processes in riverine ecosystems, and dam removal is becoming more common as a river restoration strategy. We used a before-after-control-impact study design to investigate the geomorphic and habitat response to removal of 32-m-high San Clemente Dam on the Carmel River, CA. The project represents the first major dam removal in a Mediterranean river and is also unique among large dam removals in that most reservoir sediment was sequestered in place. We found that in the first year post-removal, a sediment pulse migrated 3.5 km downstream, filling pools and the interstitial pore spaces of gravels with sand. These sedimentary and topographic changes initially reduced the overall quality of steelhead (O. mykiss) spawning and rearing habitat in impacted reaches. Over the second winter after dam removal, a sequence of high flows flushed large volumes of sand from pools and mobilized the river bed throughout much of the active channel. The floods substantially altered fluvial evolution in the upper part of the reservoir, promoting new avulsion and the subsequent delivery of gravel and large wood to below dam reaches. These geomorphic processes increased the availability of spawning-sized gravel and enhanced channel complexity in reaches within several km of the former dam, which should improve habitat for multiple life stages of steelhead. Results indicate that when most reservoir sediment remains impounded, high flows become more important drivers of geomorphic and habitat change than dam removal alone. In such cases, the rates at which biophysical processes are reestablished will depend largely on post-dam removal flow sequencing and the upstream supply of sediment and large wood.

  1. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    PubMed

    Markle, Chantel E; Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  2. STREAM FISH HABITAT SUITABILITY AND THE RISK OF POPULATION DECLINE

    EPA Science Inventory

    Over half of the streams in the Mid-Atlantic Highlands have fish communities that are in fair or poor condition, and the EPA concluded that physical habitat alteration represents the greatest potential stressor across this region. A quantitative method for relating habitat quali...

  3. Habitat associations of species show consistent but weak responses to climate

    PubMed Central

    Suggitt, Andrew J.; Stefanescu, Constantí; Páramo, Ferran; Oliver, Tom; Anderson, Barbara J.; Hill, Jane K.; Roy, David B.; Brereton, Tom; Thomas, Chris D.

    2012-01-01

    Different vegetation types can generate variation in microclimates at local scales, potentially buffering species from adverse climates. To determine if species could respond to such microclimates under climatic warming, we evaluated whether ectothermic species (butterflies) can exploit favourable microclimates and alter their use of different habitats in response to year-to-year variation in climate. In both relatively cold (Britain) and warm (Catalonia) regions of their geographical ranges, most species shifted into cooler, closed habitats (e.g. woodland) in hot years, and into warmer, open habitats (e.g. grassland) in cooler years. Additionally, three-quarters of species occurred in closed habitats more frequently in the warm region than in the cool region. Thus, species shift their local distributions and alter their habitat associations to exploit favourable microclimates, although the magnitude of the shift (approx. 1.3% of individuals from open to shade, per degree Celsius) is unlikely to buffer species from impacts of regional climate warming. PMID:22491762

  4. Habitat restoration as a means of controlling non-native fish in a Mojave desert Oasis

    USGS Publications Warehouse

    Scoppettone, G.G.; Rissler, P.H.; Gourley, C.; Martinez, C.

    2005-01-01

    Non-native fish generally cause native fish decline, and once non-natives are established, control or elimination is usually problematic. Because non-native fish colonization has been greatest in anthropogenically altered habitats, restoring habitat similar to predisturbance conditions may offer a viable means of non-native fish control. In this investigation we identified habitats favoring native over non-native fish in a Mojave Desert oasis (Ash Meadows) and used this information to restore one of its major warm water spring systems (Kings Pool Spring). Prior to restoration, native fishes predominated in warm water (25-32??C) stream and spring-pool habitat, whereas non-natives predominated in cool water (???23??C) spring-pool and marsh/slack water habitat. Native Amargosa pupfish (Cyprinodon nevadensis) and Ash Meadows speckled dace (Rhinichthys osculus nevadensis) inhabited significantly faster mean water column velocities (MWCV) and greater total depth (TD) than non-native Sailfin molly (Poecilia latipinna) and Mosquitofish (Gambusia affinis) in warm water stream habitat, and Ash Meadows speckled dace inhabited significantly faster water than non-natives in cool water stream habitat. Modification of the outflow of Kings Pool Spring from marsh to warm water stream, with MWCV, TD, and temperature favoring native fish, changed the fish composition from predominantly non-native Sailfin molly and Mosquitofish to predominantly Ash Meadows pupfish. This result supports the hypothesis that restoring spring systems to a semblance of predisturbance conditions would promote recolonization of native fishes and deter non-native fish invasion and proliferation. ?? 2005 Society for Ecological Restoration International.

  5. Herbivores promote habitat specialization by trees in Amazonian forests.

    PubMed

    Fine, Paul V A; Mesones, Italo; Coley, Phyllis D

    2004-07-30

    In an edaphically heterogeneous area in the Peruvian Amazon, clay soils and nutrient-poor white sands each harbor distinctive plant communities. To determine whether a trade-off between growth and antiherbivore defense enforces habitat specialization on these two soil types, we conducted a reciprocal transplant study of seedlings of 20 species from six genera of phylogenetically independent pairs of edaphic specialist trees and manipulated the presence of herbivores. Clay specialist species grew significantly faster than white-sand specialists in both soil types when protected from herbivores. However, when unprotected, white-sand specialists dominated in white-sand forests and clay specialists dominated in clay forests. Therefore, habitat specialization in this system results from an interaction of herbivore pressure with soil type.

  6. No net loss of fish habitat: a review and analysis of habitat compensation in Canada.

    PubMed

    Harper, D J; Quigley, J T

    2005-09-01

    The achievement of No Net Loss (NNL) through habitat compensation has rarely been assessed in Canada. Files relating to 124 Fisheries Act Section 35(2) authorizations issued by Fisheries and Oceans Canada for the harmful alteration, disruption, and destruction of fish habitat (HADD) were collected and reviewed. Data extracted from these files were pooled and analyzed to provide an indication of the types of HADDs that have been authorized in Canada, what habitats have been affected, and what habitat management approaches have been used when compensating for HADDs and monitoring and ensuring the success of the compensation. Determinations regarding the effectiveness of habitat compensation in achieving NNL were made. Impacts to 419,562 m2 of fish habitat from the 124 authorized HADDs were offset by 1,020,388 m2 of compensatory habitat. Eighty percent of the authorizations had compensation ratios (compensation area:HADD area) of 2:1 or less, and 25% of the authorizations had a compensation ratio that was less than 1:1. In-channel and riparian habitat were the most frequently impacted habitats. Urban development and roads and highways resulted in the greatest areal loss of habitat. The compensation option that was most often selected was the creation of in-kind habitat. The mean duration of post-construction monitoring programs was 3.7 years. Determinations of NNL could only be made for 17 authorizations as a result of poor proponent compliance with monitoring requirements and the qualitative assessment procedures used by the monitoring programs. Adequate resources, proper training, and standardized approaches to data management and monitoring programs are required to ensure that the conservation goal of NNL can be achieved in Canada.

  7. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration

    PubMed Central

    Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada’s mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931–2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna. PMID:29444129

  8. Does Learning or Instinct Shape Habitat Selection?

    PubMed Central

    Nielsen, Scott E.; Shafer, Aaron B. A.; Boyce, Mark S.; Stenhouse, Gordon B.

    2013-01-01

    Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos) in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct) would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments. PMID:23341983

  9. Geomorphic Framework to assess changes to aquatic habitat due to flow regulation and channel and floodplain alteration, Cedar River, Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.; Konrad, Christopher P.; Little, Rand

    2010-01-01

    Flow regulation, bank armoring, and floodplain alteration since the early 20th century have contributed to significant changes in the hydrologic regime and geomorphic processes of the Cedar River in Washington State. The Cedar River originates in the Cascade Range, provides drinking water to the Seattle metropolitan area, and supports several populations of anadromous salmonids. Flow regulation currently has limited influence on the magnitude, duration, and timing of high-flow events, which affect the incubation of salmonids as well as the production and maintenance of their habitat. Unlike structural changes to the channel and floodplain, flow regulation may be modified in the short-term to improve the viability of salmon populations. An understanding of the effects of flow regulation on those populations must be discerned over a range of scales from individual floods that affect the size of individual year classes to decadal high flow regime that influences the amount and quality of channel and off-channel habitat available for spawning and rearing. We present estimates of reach-scale sediment budgets and changes to channel morphology derived from historical orthoimagery, specific gage analyses at four long-term streamflow-gaging stations to quantify trends in aggradation, and hydrologic statistics of the magnitude and duration of peak streamflows. These data suggest a gradient of channel types from unconfined, sediment-rich segments to confined, sediment-poor segments that are likely to have distinct responses to high flows. Particle-size distribution data and longitudinal water surface and streambed profiles for the 56 km downstream of Chester Morse Lake measured in 2010 show the spatial extent of preferred salmonid habitat along the Cedar River. These historical and current data constitute a geomorphic framework to help assess different river management scenarios for salmonid habitat and population viability. PDF version of a presentation on changes to aquatic

  10. Teaching animal habitat selection using wildlife tracking equipment

    USGS Publications Warehouse

    Laskowski, Jessica; Gillespie, Caitlyn R.; Corral, Lucia; Oden, Amy; Fricke, Kent A.; Fontaine, Joseph J.

    2016-01-01

    We present a hands-on outdoor activity coupled with classroom discussion to teach students about wildlife habitat selection, the process by which animals choose where to live. By selecting locations or habitats with many benefits (e.g., food, shelter, mates) and few costs (e.g., predators), animals improve their ability to survive and reproduce. Biologists track animal movement using radio telemetry technology to study habitat selection so they can better provide species with habitats that promote population growth. We present a curriculum in which students locate “animals” (transmitters) using radio telemetry equipment and apply math skills (use of fractions and percentages) to assess their “animal's” habitat selection by comparing the availability of habitat types with the proportion of “animals” they find in each habitat type.

  11. Habitat structure mediates biodiversity effects on ecosystem properties

    PubMed Central

    Godbold, J. A.; Bulling, M. T.; Solan, M.

    2011-01-01

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised. PMID:21227969

  12. Habitat structure mediates biodiversity effects on ecosystem properties.

    PubMed

    Godbold, J A; Bulling, M T; Solan, M

    2011-08-22

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.

  13. SLC12A7 alters adrenocortical carcinoma cell adhesion properties to promote an aggressive invasive behavior.

    PubMed

    Brown, Taylor C; Murtha, Timothy D; Rubinstein, Jill C; Korah, Reju; Carling, Tobias

    2018-06-08

    Altered expression of Solute Carrier Family 12 Member 7 (SLC12A7) is implicated to promote malignant behavior in multiple cancer types through an incompletely understood mechanism. Recent studies have shown recurrent gene amplifications and overexpression of SLC12A7 in adrenocortical carcinoma (ACC). The potential mechanistic effect(s) of SLC12A7 amplifications in portending an aggressive behavior in ACC has not been previously studied and is investigated here using two established ACC cell lines, SW-13 and NCI-H295R. SW-13 cells, which express negligible amounts of SLC12A7, were enforced to express SLC12A7 constitutively, while RNAi gene silencing was performed in NCI-H295R cells, which have robust endogenous expression of SLC12A7. In vitro studies tested the outcomes of experimental alterations in SLC12A7 expression on malignant characteristics, including cell viability, growth, colony formation potential, motility, invasive capacity, adhesion and detachment kinetics, and cell membrane organization. Further, potential alterations in transcription regulation downstream to induced SLC12A7 overexpression was explored using targeted transcription factor expression arrays. Enforced SLC12A7 overexpression in SW-13 cells robustly promoted motility and invasive characteristics (p < 0.05) without significantly altering cell viability, growth, or colony formation potential. SLC12A7 overexpression also significantly increased rates of cellular attachment and detachment turnover (p < 0.05), potentially propelled by increased filopodia formation and/or Ezrin interaction. In contrast, RNAi gene silencing of SLC12A7 stymied cell attachment strength as well as migration and invasion capacity in NCI-H295R cells. Transcription factor expression analysis identified multiple signally pathways potentially affected by SLC12A7 overexpression, including osmotic stress, bone morphogenetic protein, and Hippo signaling pathways. Amplification of SLC12A7 observed in ACCs is shown

  14. Freshwater Wetland Habitat Loss and Fragmentation: Implications for Aquatic Biodiversity Conservation

    NASA Astrophysics Data System (ADS)

    Wolaver, B. D.; Pierre, J. P.; Labay, B. J.; Ryberg, W. A.; Hibbits, T. J.; Prestridge, H. L.

    2015-12-01

    Anthropogenic land use changes have caused widespread wetland loss and fragmentation. This trend has important implications for aquatic biota conservation, including the semi-aquatic Western Chicken Turtle (Deirochelys reticularia miaria). This species inhabits seasonally inundated, ephemeral water bodies and adjacent uplands in the southeastern U.S. However, wetland conversion to agriculture and urbanization is thought to cause the species' decline, particularly in Texas, which includes the westernmost part of its range. Because the species moves only a few kilometers between wetlands, it particularly sensitive to habitat loss and fragmentation. Thus, as part of the only state-funded species research program, this study provides the U.S. Fish and Wildlife Service (FWS) with scientific data to determine if the species warrants protection under the Endangered Species Act (ESA). We use a species distribution model to map potentially suitable habitat for most of East Texas. We evaluate landscape-scale anthropogenic activities in this region which may be contributing to the species' decline. We identify areas of urbanization, agricultural expansion, forestry, and resulting wetland loss. We find that between 2001 and 2011 approximately 80 km2 of wetlands were lost in potentially suitable habitat, including the urbanizing Houston area. We use spatial geostatistics to quantify wetland habitat fragmentation. We also introduce the Habitat Alteration Index (HAI), which calculates total landscape alteration and mean probability of occurrence to identify high-quality habitat most at risk of recent anthropogenic alteration. Population surveys by biologists are targeting these areas and future management actions may focus on mitigating anthropogenic activities there. While this study focuses on D. r. miaria, this approach can evaluate wetland habitat of other aquatic organisms.

  15. Corridors promote fire via connectivity and edge effects.

    PubMed

    Brudvig, Lars A; Wagner, Stephanie A; Damschen, Ellen I

    2012-04-01

    Landscape corridors, strips of habitat that connect otherwise isolated habitat patches, are commonly employed during management of fragmented landscapes. To date, most reported effects of corridors have been positive; however, there are long-standing concerns that corridors may have unintended consequences. Here, we address concerns over whether corridors promote propagation of disturbances such as fire. We collected data during prescribed fires in the world's largest and best replicated corridor experiment (Savannah River Site, South Carolina, USA), six -50-ha landscapes of open (shrubby/herbaceous) habitat within a pine plantation matrix, to test several mechanisms for how corridors might influence fire. Corridors altered patterns of fire temperature through a direct connectivity effect and an indirect edge effect. The connectivity effect was independent of fuel levels and was consistent with a hypothesized wind-driven "bellows effect." Edges, a consequence of corridor implementation, elevated leaf litter (fuel) input from matrix pine trees, which in turn increased fire temperatures. We found no evidence for corridors or edges impacting patterns of fire spread: plots across all landscape positions burned with similar probability. Impacts of edges and connectivity on fire temperature led to changes in vegetation: hotter-burning plots supported higher bunch grass cover during the field season after burning, suggesting implications for woody/herbaceous species coexistence. To our knowledge, this represents the first experimental evidence that corridors can modify landscape-scale patterns of fire intensity. Corridor impacts on fire should be carefully considered during landscape management, both in the context of how corridors connect or break distributions of fuels and the desired role of fire as a disturbance, which may range from a management tool to an agent to be suppressed. In our focal ecosystem, longleaf pine woodland, corridors might provide a previously

  16. Anthropogenic areas as incidental substitutes for original habitat.

    PubMed

    Martínez-Abraín, Alejandro; Jiménez, Juan

    2016-06-01

    One speaks of ecological substitutes when an introduced species performs, to some extent, the ecosystem function of an extirpated native species. We suggest that a similar case exists for habitats. Species evolve within ecosystems, but habitats can be destroyed or modified by natural and human-made causes. Sometimes habitat alteration forces animals to move to or remain in a suboptimal habitat type. In that case, the habitat is considered a refuge, and the species is called a refugee. Typically refugee species have lower population growth rates than in their original habitats. Human action may lead to the unintended generation of artificial or semiartificial habitat types that functionally resemble the essential features of the original habitat and thus allow a population growth rate of the same magnitude or higher than in the original habitat. We call such areas substitution habitats and define them as human-made habitats within the focal species range that by chance are partial substitutes for the species' original habitat. We call species occupying a substitution habitat adopted species. These are 2 new terms in conservation biology. Examples of substitution habitats are dams for European otters, wheat and rice fields for many steppeland and aquatic birds, and urban areas for storks, falcons, and swifts. Although substitution habitats can bring about increased resilience against the agents of global change, the conservation of original habitat types remains a conservation priority. © 2016 Society for Conservation Biology.

  17. Antihypertensive drug Valsartan promotes dendritic spine density by altering AMPA receptor trafficking

    PubMed Central

    Sohn, Young In; Lee, Nathanael J.; Chung, Andrew; Saavedra, Juan M.; Turner, R. Scott; Pak, Daniel T. S.; Hoe, Hyang-Sook

    2013-01-01

    Recent studies demonstrated that the antihypertensive drug Valsartan improved spatial and episodic memory in mouse models of Alzheimer’s Disease (AD) and human subjects with hypertension. However, the molecular mechanism by which Valsartan can regulate cognitive function is still unknown. Here, we investigated the effect of Valsartan on dendritic spine formation in primary hippocampal neurons, which is correlated with learning and memory. Interestingly, we found that Valsartan promotes spinogenesis in developing and mature neurons. In addition, we found that Valsartan increases the puncta number of PSD-95 and trends toward an increase in the puncta number of synaptophysin. Moreover, Valsartan increased the cell surface levels of AMPA receptors and selectively altered the levels of spinogenesis-related proteins, including CaMKIIα and phospho-CDK5. These data suggest that Valsartan may promote spinogenesis by enhancing AMPA receptor trafficking and synaptic plasticity signaling. PMID:24012668

  18. Hibernal habitat selection by Wood Frogs (Lithobates sylvaticus) in a northern New England montane landscape

    USGS Publications Warehouse

    Groff, Luke A.; Calhoun, Aram J.K.; Loftin, Cynthia S.

    2016-01-01

    Poikilothermic species, such as amphibians, endure harsh winter conditions via freeze-tolerance or freeze-avoidance strategies. Freeze-tolerance requires a suite of complex, physiological mechanisms (e.g., cryoprotectant synthesis); however, behavioral strategies (e.g., hibernal habitat selection) may be used to regulate hibernaculum temperatures and promote overwintering survival. We investigated the hibernal ecology of the freeze-tolerant Wood Frog (Lithobates sylvaticus) in north-central Maine. Our objectives were to characterize the species hibernaculum microclimate (temperature, relative humidity), evaluate hibernal habitat selection, and describe the spatial arrangement of breeding, post-breeding, and hibernal habitats. We monitored 15 frogs during two winters (2011/12: N = 10; 2012/13: N = 5), measured hibernal habitat features at micro (2 m) and macro (10 m) spatial scales, and recorded microclimate hourly in three strata (hibernaculum, leaf litter, ambient air). We compared these data to that of 57 random locations with logistic regression models, Akaike Information Criterion, and Kolmogorov–Smirnov tests. Hibernaculum microclimate was significantly different and less variable than leaf litter, ambient air, and random location microclimate. Model averaging indicated that canopy cover (−), leaf litter depth (+), and number of logs and stumps (+; microhabitat only) were important predictors of Wood Frog hibernal habitat. These habitat features likely act to insulate hibernating frogs from extreme and variable air temperatures. For example, decreased canopy cover facilitates increased snowpack depth and earlier snowpack accumulation and melt. Altered winter temperature and precipitation patterns attributable to climate change may reduce snowpack insulation, facilitate greater temperature variation in the underlying hibernacula, and potentially compromise Wood Frog winter survival.

  19. Quantifying suitable habitat of the threatened western prairie fringed orchid

    Treesearch

    Paige M. Wolken; Carolyn Hull Sieg; Stephen E. Williams

    2001-01-01

    Land managers need accurate and quick techniques to identify suitable habitat of species of interest. For species protected by federal or state laws, identification of suitable habitat is critical for developing a conservation strategy that includes reestablishing populations and altering management to address this need. In this research, we quantified vegetative and...

  20. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    PubMed Central

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  1. EFFECTS OF ALTERED HABITATS ON COMMERCIALLY IMPORTANT SPECIES OF THE NORTHERN GULF OF MEXICO

    EPA Science Inventory

    This research emphasizes the role of critical estuarine habitats to species that provide an ecosystem service, namely those fish and shellfish of economic importance. Vegetated habitats are examined for their capacity to provide and sustain commercially important shrimp, oyster, ...

  2. Reef fishes can recognize bleached habitat during settlement: sea anemone bleaching alters anemonefish host selection.

    PubMed

    Scott, Anna; Dixson, Danielle L

    2016-05-25

    Understanding how bleaching impacts the settlement of symbiotic habitat specialists and whether there is flexibility in settlement choices with regard to habitat quality is essential given our changing climate. We used five anemonefishes (Amphiprion clarkii, Amphiprion latezonatus, Amphiprion ocellaris, Amphiprion percula and Premnas biaculeatus) and three host sea anemones (Entacmaea quadricolor, Heteractis crispa and Heteractis magnifica) in paired-choice flume experiments to determine whether habitat naive juveniles have the olfactory capabilities to distinguish between unbleached and bleached hosts, and how this may affect settlement decisions. All anemonefishes were able to distinguish between bleached and unbleached hosts, and responded only to chemical cues from species-specific host anemones irrespective of health status, indicating a lack of flexibility in host use. While bleached hosts were selected as habitat, this occurred only when unbleached options were unavailable, with the exception of A. latezonatus, which showed strong preferences for H. crispa regardless of health. This study highlights the potential deleterious indirect impacts of declining habitat quality during larval settlement in habitat specialists, which could be important in the field, given that bleaching events are becoming increasingly common. © 2016 The Author(s).

  3. Reef fishes can recognize bleached habitat during settlement: sea anemone bleaching alters anemonefish host selection

    PubMed Central

    Scott, Anna; Dixson, Danielle L.

    2016-01-01

    Understanding how bleaching impacts the settlement of symbiotic habitat specialists and whether there is flexibility in settlement choices with regard to habitat quality is essential given our changing climate. We used five anemonefishes (Amphiprion clarkii, Amphiprion latezonatus, Amphiprion ocellaris, Amphiprion percula and Premnas biaculeatus) and three host sea anemones (Entacmaea quadricolor, Heteractis crispa and Heteractis magnifica) in paired-choice flume experiments to determine whether habitat naive juveniles have the olfactory capabilities to distinguish between unbleached and bleached hosts, and how this may affect settlement decisions. All anemonefishes were able to distinguish between bleached and unbleached hosts, and responded only to chemical cues from species-specific host anemones irrespective of health status, indicating a lack of flexibility in host use. While bleached hosts were selected as habitat, this occurred only when unbleached options were unavailable, with the exception of A. latezonatus, which showed strong preferences for H. crispa regardless of health. This study highlights the potential deleterious indirect impacts of declining habitat quality during larval settlement in habitat specialists, which could be important in the field, given that bleaching events are becoming increasingly common. PMID:27226472

  4. Beaver dams maintain fish biodiversity by increasing habitat heterogeneity throughout a low-gradient stream network

    USGS Publications Warehouse

    Smith, Joseph M.; Mather, Martha E.

    2013-01-01

    In summary, within a stream network, beaver dams maintained fish biodiversity by altering in-stream habitat and increasing habitat heterogeneity. Understanding the relationship between habitat heterogeneity and biodiversity can advance basic freshwater ecology and provide science-based support for applied aquatic conservation

  5. Habitats of North American sea ducks.

    USGS Publications Warehouse

    Derksen, Dirk V.; Petersen, Margaret R.; Savard, Jean-Pierre L.

    2015-01-01

    Breeding, molting, fall and spring staging, and wintering habitats of the sea duck tribe Mergini are described based on geographic locations and distribution in North America, geomorphology, vegetation and soil types, and fresh water and marine characteristics. The dynamics of habitats are discussed in light of natural and anthropogenic events that shape areas important to sea ducks. Strategies for sea duck habitat management are outlined and recommendations for international collaboration to preserve key terrestrial and aquatic habitats are advanced. We follow the definition of habitat advanced by Odum (1971), which is the place or space where an organism lives. Weller (1999) emphasized that habitats for waterbirds required presence of sufficient resources (i.e., food, water, cover, space) for maintenance during a portion of their annual cycle. Habitats exploited by North American sea ducks are diverse, widespread across the continent and adjacent marine waters and until recently, most were only superficially known. A 15-year-long effort funded research on sea duck habitats through the Sea Duck Joint Venture and the Endangered or Threatened Species programs of the United States and Canada. Nevertheless, important gaps remain in our understanding of key elements required by some species during various life stages. Many significant habitats, especially staging and wintering sites, have been and continue to be destroyed or altered by anthropogenic activities. The goal of this chapter is to develop a comprehensive summary of marine, freshwater, and terrestrial habitats and their characteristics by considering sea duck species with similar needs as groups within the tribe Mergini. Additionally, we examine threats and changes to sea duck habitats from human-caused and natural events. Last, we evaluate conservation and management programs underway or available for maintenance and enhancement of habitats critical for sea ducks.

  6. Habitat selection by marine larvae in changing chemical environments.

    PubMed

    Lecchini, D; Dixson, D L; Lecellier, G; Roux, N; Frédérich, B; Besson, M; Tanaka, Y; Banaigs, B; Nakamura, Y

    2017-01-15

    The replenishment and persistence of marine species is contingent on dispersing larvae locating suitable habitat and surviving to a reproductive stage. Pelagic larvae rely on environmental cues to make behavioural decisions with chemical information being important for habitat selection at settlement. We explored the sensory world of crustaceans and fishes focusing on the impact anthropogenic alterations (ocean acidification, red soil, pesticide) have on conspecific chemical signals used by larvae for habitat selection. Crustacean (Stenopus hispidus) and fish (Chromis viridis) larvae recognized their conspecifics via chemical signals under control conditions. In the presence of acidified water, red soil or pesticide, the ability of larvae to chemically recognize conspecific cues was altered. Our study highlights that recruitment potential on coral reefs may decrease due to anthropogenic stressors. If so, populations of fishes and crustaceans will continue their rapid decline; larval recruitment will not replace and sustain the adult populations on degraded reefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Telemetry-Determined Habitat Use Informs Multi-Species Habitat Management in an Urban Harbour.

    PubMed

    Rous, Andrew M; Midwood, Jonathon D; Gutowsky, Lee F G; Lapointe, Nicolas W R; Portiss, Rick; Sciscione, Thomas; Wells, Mathew G; Doka, Susan E; Cooke, Steven J

    2017-01-01

    Widespread human development has led to impairment of freshwater coastal wetlands and embayments, which provide critical and unique habitat for many freshwater fish species. This is particularly evident in the Laurentian Great Lakes, where such habitats have been severely altered over the last century as a result of industrial activities, urbanization, dredging and infilling. In Toronto Harbour, extensive restoration efforts have been directed towards improving the amount and quality of aquatic habitat, especially for fishes. To evaluate the effectiveness of this restoration work, use of the restored area by both target species and the fish community as a whole must be assessed. Individuals from four species (Common Carp, Largemouth Bass, Northern Pike and Yellow Perch) were tagged and tracked continuously for 1 year using an acoustic telemetry array in Toronto Harbour area of Lake Ontario. Daily site fidelity was estimated using a mixed-effects logistic regression model. Daily site fidelity was influenced by habitat restoration and its interactions with species and body size, as well as season and its interactions with species and body size. Daily site fidelity was higher in restored sites compared to non-restored sites for Yellow Perch and Northern Pike, but lower for Largemouth Bass and Common Carp. For all species, daily site fidelity estimates were highest during the summer and lowest during autumn. The approach used here has merit for evaluating restoration success and informing future habitat management activities. Creating diverse habitats that serve multiple functions and species are more desirable than single-function-oriented or single-species-oriented designs.

  8. Telemetry-Determined Habitat Use Informs Multi-Species Habitat Management in an Urban Harbour

    NASA Astrophysics Data System (ADS)

    Rous, Andrew M.; Midwood, Jonathon D.; Gutowsky, Lee F. G.; Lapointe, Nicolas W. R.; Portiss, Rick; Sciscione, Thomas; Wells, Mathew G.; Doka, Susan E.; Cooke, Steven J.

    2017-01-01

    Widespread human development has led to impairment of freshwater coastal wetlands and embayments, which provide critical and unique habitat for many freshwater fish species. This is particularly evident in the Laurentian Great Lakes, where such habitats have been severely altered over the last century as a result of industrial activities, urbanization, dredging and infilling. In Toronto Harbour, extensive restoration efforts have been directed towards improving the amount and quality of aquatic habitat, especially for fishes. To evaluate the effectiveness of this restoration work, use of the restored area by both target species and the fish community as a whole must be assessed. Individuals from four species (Common Carp, Largemouth Bass, Northern Pike and Yellow Perch) were tagged and tracked continuously for 1 year using an acoustic telemetry array in Toronto Harbour area of Lake Ontario. Daily site fidelity was estimated using a mixed-effects logistic regression model. Daily site fidelity was influenced by habitat restoration and its interactions with species and body size, as well as season and its interactions with species and body size. Daily site fidelity was higher in restored sites compared to non-restored sites for Yellow Perch and Northern Pike, but lower for Largemouth Bass and Common Carp. For all species, daily site fidelity estimates were highest during the summer and lowest during autumn. The approach used here has merit for evaluating restoration success and informing future habitat management activities. Creating diverse habitats that serve multiple functions and species are more desirable than single-function-oriented or single-species-oriented designs.

  9. Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities

    NASA Astrophysics Data System (ADS)

    Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.

    2017-10-01

    Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of

  10. Habitat Selection and Risk of Predation: Re-colonization by Lynx had Limited Impact on Habitat Selection by Roe Deer

    PubMed Central

    Samelius, Gustaf; Andrén, Henrik; Kjellander, Petter; Liberg, Olof

    2013-01-01

    Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx – the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1) before and after lynx re-established in the study area and (2) in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection). Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations. PMID:24069419

  11. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    PubMed

    Samelius, Gustaf; Andrén, Henrik; Kjellander, Petter; Liberg, Olof

    2013-01-01

    Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1) before and after lynx re-established in the study area and (2) in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection). Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  12. Molecular alterations in endometrial and ovarian clear cell carcinomas: clinical impacts of telomerase reverse transcriptase promoter mutation.

    PubMed

    Huang, Hsien-Neng; Chiang, Ying-Cheng; Cheng, Wen-Fang; Chen, Chi-An; Lin, Ming-Chieh; Kuo, Kuan-Ting

    2015-02-01

    Recently, mutations of telomerase reverse transcriptase (TERT) promoter were found in several types of cancer. A few reports demonstrate TERT promoter mutations in ovarian clear cell carcinomas but endometrial clear cell carcinoma has not been studied. The aims of this study were to compare differences of molecular alterations and clinical factors, and identify their prognostic impact in endometrial and ovarian clear cell carcinomas. We evaluated mutations of the TERT promoter and PIK3CA, expression of ARID1A, and other clinicopathological factors in 56 ovarian and 14 endometrial clear cell carcinomas. We found that TERT promoter mutations were present in 21% (3/14) of endometrial clear cell carcinomas and 16% (9/56) of ovarian clear cell carcinomas. Compared with ovarian clear cell carcinomas, endometrial clear cell carcinomas showed older mean patient age (P<0.001), preserved ARID1A immunoreactivity (P=0.017) and infrequent PIK3CA mutation (P=0.025). In ovarian clear cell carcinomas, TERT promoter mutations were correlated with patient age >45 (P=0.045) and preserved ARID1A expression (P=0.003). In cases of endometrial clear cell carcinoma, TERT promoter mutations were not statistically associated with any other clinicopathological factors. In ovarian clear cell carcinoma patients with early FIGO stage (stages I and II), TERT promoter mutation was an independent prognostic factor and correlated with a shorter disease-free survival and overall survival (P=0.015 and 0.009, respectively). In recurrent ovarian clear cell carcinoma patients with early FIGO stage, TERT promoter mutations were associated with early relapse within 6 months (P=0.018). We concluded that TERT promoter mutations were present in endometrial and ovarian clear cell carcinomas. Distinct molecular alteration patterns in endometrial and ovarian clear cell carcinomas implied different processes of tumorigenesis in these morphologically similar tumors. In ovarian clear cell carcinoma of early FIGO

  13. Food-web models predict species abundances in response to habitat change.

    PubMed

    Gotelli, Nicholas J; Ellison, Aaron M

    2006-10-01

    Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss.

  14. Food-Web Models Predict Species Abundances in Response to Habitat Change

    PubMed Central

    Gotelli, Nicholas J; Ellison, Aaron M

    2006-01-01

    Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss. PMID:17002518

  15. Predator Diet and Trophic Position Modified with Altered Habitat Morphology

    PubMed Central

    Tewfik, Alexander; Bell, Susan S.; McCann, Kevin S.; Morrow, Kristina

    2016-01-01

    Empirical patterns that emerge from an examination of food webs over gradients of environmental variation can help to predict the implications of anthropogenic disturbance on ecosystems. This “dynamic food web approach” is rarely applied at the coastal margin where aquatic and terrestrial systems are coupled and human development activities are often concentrated. We propose a simple model of ghost crab (Ocypode quadrata) feeding that predicts changing dominant prey (Emerita talpoida, Talorchestia sp., Donax variablis) along a gradient of beach morphology and test this model using a suite of 16 beaches along the Florida, USA coast. Assessment of beaches included quantification of morphological features (width, sediments, slope), macrophyte wrack, macro-invertebrate prey and active ghost crab burrows. Stable isotope analysis of carbon (13C/12C) and nitrogen (15N/14N) and the SIAR mixing model were used to determine dietary composition of ghost crabs at each beach. The variation in habitat conditions displayed with increasing beach width was accompanied by quantifiable shifts in ghost crab diet and trophic position. Patterns of ghost crab diet were consistent with differences recorded across the beach width gradient with respect to the availability of preferred micro-habitats of principal macro-invertebrate prey. Values obtained for trophic position also suggests that the generalist ghost crab assembles and augments its diet in fundamentally different ways as habitat morphology varies across a highly dynamic ecosystem. Our results offer support for a functional response in the trophic architecture of a common food web compartment (ghost crabs, macro-invertebrate prey) across well-known beach morphologies. More importantly, our “dynamic food web approach” serves as a basis for evaluating how globally wide-spread sandy beach ecosystems should respond to a variety of anthropogenic impacts including beach grooming, beach re-nourishment, introduction of non

  16. Distribution, habitat and adaptability of the genus Tapirus.

    PubMed

    García, Manolo J; Medici, Emília Patrícia; Naranjo, Eduardo J; Novarino, Wilson; Leonardo, Raquel S

    2012-12-01

    In this manuscript, as a starting point, the ancient and current distribution of the genus Tapirus are summarized, from its origins, apparently in Europe, to current ranges. Subsequently, original and current tapir habitats are described, as well as changes in ancient habitats. As the manuscript goes on, we examine the ways in which tapir species interact with their habitats and the main aspects of habitat use, spatial ecology and adaptability. Having reviewed the historic and current distribution of tapirs, as well as their use and selection of habitats, we introduce the concept of adaptability, considering that some of the tapir physiological characteristics and behavioral strategies can reduce the negative impact of habitat alteration and climate change. Finally, we provide recommendations for future research priorities. The conservation community is still missing important pieces of information for the effective conservation of tapirs and their remaining habitats in Central and South America and Southeast Asia. Reconstructing how tapir species reached their current distribution ranges, interpreting how they interact with their habitats and gathering information regarding the strategies they use to cope with habitat changes will increase our understanding about these animals and contribute to the development of conservation strategies. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  17. ANIMAL-HABITAT ASSOCIATIONS IN PACIFIC NORTHWEST ESTUARIES

    EPA Science Inventory

    The mission of the Pacific Coastal Ecology Branch (EPA, Newport, OR) is to determine the effects of habitat alteration by stressors on ecological resources in Pacific Northwest (PNW) estuaries. Research being conducted in support of this mission includes identifying critical hab...

  18. Indicators of streamflow alteration, habitat fragmentation, impervious cover, and water quality for Massachusetts stream basins

    USGS Publications Warehouse

    Weiskel, Peter K.; Brandt, Sara L.; DeSimone, Leslie A.; Ostiguy, Lance J.; Archfield, Stacey A.

    2010-01-01

    Massachusetts streams and stream basins have been subjected to a wide variety of human alterations since colonial times. These alterations include water withdrawals, treated wastewater discharges, construction of onsite septic systems and dams, forest clearing, and urbanization—all of which have the potential to affect streamflow regimes, water quality, and habitat integrity for fish and other aquatic biota. Indicators were developed to characterize these types of potential alteration for subbasins and groundwater contributing areas in Massachusetts. The potential alteration of streamflow by the combined effects of withdrawals and discharges was assessed under two water-use scenarios. Water-use scenario 1 incorporated publicly reported groundwater withdrawals and discharges, direct withdrawals from and discharges to streams, and estimated domestic-well withdrawals and septic-system discharges. Surface-water-reservoir withdrawals were excluded from this scenario. Water-use scenario 2 incorporated all the types of withdrawal and discharge included in scenario 1 as well as withdrawals from surface-water reservoirs—all on a long-term, mean annual basis. All withdrawal and discharge data were previously reported to the State for the 2000–2004 period, except domestic-well withdrawals and septic-system discharges, which were estimated for this study. The majority of the state’s subbasins and groundwater contributing areas were estimated to have relatively minor (less than 10 percent) alteration of streamflow under water-use scenario 1 (seasonally varying water use; no surface-water-reservoir withdrawals). However, about 12 percent of subbasins and groundwater contributing areas were estimated to have extensive alteration of streamflows (greater than 40 percent) in August; most of these basins were concentrated in the outer metropolitan Boston region. Potential surcharging of streamflow in August was most commonly indicated for main-stem river subbasins, although

  19. Habitat and Recreational Fishing Opportunity in Tampa Bay: Linking Ecological and Ecosystem Services to Human Beneficiaries

    EPA Science Inventory

    Estimating value of estuarine habitat to human beneficiaries requires that we understand how habitat alteration impacts function through both production and delivery of ecosystem goods and services (EGS). Here we expand on the habitat valuation technique of Bell (1997) with an es...

  20. Effects of a landscape disturbance on the habitat use and behavior of the black racer

    Treesearch

    Christopher A. F. Howey; Matthew B. Dickinson; Willem M. Roosenburg

    2016-01-01

    The effects of disturbance, including prescribed fire, vary among species and their ability to adjust to the altered environment. Our objective was to link fire-caused habitat changes with shifts in habitat use and behavioral changes in the Southern Black Racer (Coluber constrictor priapus). We compared habitat availability between burned (...

  1. Fishery Resources and Threatened Coastal Habitats in the Northern Gulf of Mexico (Abstract)

    EPA Science Inventory

    We have explored relationships between selected fishery species of the northern Gulf of Mexico and important features of their habitats. The principal goal of our research is to predict the cumulative effects of habitat alterations on coastal resources and ecosystems. Pink shrimp...

  2. Non-random food-web assembly at habitat edges increases connectivity and functional redundancy

    USDA-ARS?s Scientific Manuscript database

    Habitat fragmentation dramatically alters the spatial configuration of landscapes, with the creation of artificial edges affecting community structure and species interactions. Despite this, it is not known how the different food-webs in adjacent habitats merge at their boundaries, and what the cons...

  3. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem

    PubMed Central

    Muposhi, Victor K.; Gandiwa, Edson; Chemura, Abel; Bartels, Paul; Makuza, Stanley M.; Madiri, Tinaapi H.

    2016-01-01

    An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i) surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii) habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii) spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana) for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats. PMID:27680673

  4. Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type.

    PubMed

    Marshall, Leon; Carvalheiro, Luísa G; Aguirre-Gutiérrez, Jesús; Bos, Merijn; de Groot, G Arjen; Kleijn, David; Potts, Simon G; Reemer, Menno; Roberts, Stuart; Scheper, Jeroen; Biesmeijer, Jacobus C

    2015-10-01

    Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs' usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and

  5. The Response of Fish Habitat to Environmental Flows in the Albemarle-Pamlico Watershed

    EPA Science Inventory

    The provision of habitat for fish is an important service provided by rivers. Future land development and climate change will likely alter several aspects of habitat, including flow. We have used hierarchical models to predict the presence of 25 fish species within the Albemarle-...

  6. Using forest inventory data to assess fisher resting habitat suitability in California.

    Treesearch

    William J. Zielinski; Richard L. Truex; Jeffrey R. Dunk; Tom Gaman

    2006-01-01

    The fisher (Martes pennanti) is a forest-dwelling carnivore whose current distribution and association with late-seral forest conditions make it vulnerable to stand-altering human activities or natural disturbances. Fishers select a variety of structures for daily resting bouts. These habitat elements, together with foraging and reproductive (denning) habitat,...

  7. Partitioning mechanisms of predator interference in different habitats.

    PubMed

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.

  8. Physical stream habitat dynamics in Lower Bear Creek, northern Arkansas

    USGS Publications Warehouse

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.

    2003-01-01

    We evaluated the roles of geomorphic and hydrologic dynamics in determining physical stream habitat in Bear Creek, a stream with a 239 km2 drainage basin in the Ozark Plateaus (Ozarks) in northern Arkansas. During a relatively wet 12-month monitoring period, the geomorphology of Bear Creek was altered by a series of floods, including at least four floods with peak discharges exceeding a 1-year recurrence interval and another flood with an estimated 2- to 4-year recurrence interval. These floods resulted in a net erosion of sediment from the study reach at Crane Bottom at rates far in excess of other sites previously studied in the Ozarks. The riffle-pool framework of the study reach at Crane Bottom was not substantially altered by these floods, but volumes of habitat in riffles and pools changed. The 2- to 4-year flood scoured gravel from pools and deposited it in riffles, increasing the diversity of available stream habitat. In contract, the smaller floods eroded gravel from the riffles and deposited it in pools, possibly flushing fine sediment from the substrate but also decreasing habitat diversity. Channel geometry measured at the beginning of the study was use to develop a two-dimensional, finite-element hydraulic model at assess how habitat varies with hydrologic dynamics. Distributions of depth and velocity simulated over the range of discharges observed during the study (0.1 to 556 cubic meters per second, cms) were classified into habitat units based on limiting depths and Froude number criteria. The results indicate that the areas of habitats are especially sensitive to change to low to medium flows. Races (areas of swift, relatively deep water downstream from riffles) disappear completely at the lowest flows, and riffles (areas of swift, relatively shallow water) contract substantially in area. Pools also contract in area during low flow, but deep scours associated with bedrock outcrops sustain some pool area even at the lowest modeled flows. Modeled

  9. Evolutionary consequences of habitat loss for Pacific anadromous salmonids

    PubMed Central

    McClure, Michelle M; Carlson, Stephanie M; Beechie, Timothy J; Pess, George R; Jorgensen, Jeffrey C; Sogard, Susan M; Sultan, Sonia E; Holzer, Damon M; Travis, Joseph; Sanderson, Beth L; Power, Mary E; Carmichael, Richard W

    2008-01-01

    Large portions of anadromous salmonid habitat in the western United States has been lost because of dams and other blockages. This loss has the potential to affect salmonid evolution through natural selection if the loss is biased, affecting certain types of habitat differentially, and if phenotypic traits correlated with those habitat types are heritable. Habitat loss can also affect salmonid evolution indirectly, by reducing genetic variation and changing its distribution within and among populations. In this paper, we compare the characteristics of lost habitats with currently accessible habitats and review the heritability of traits which show correlations with habitat/environmental gradients. We find that although there is some regional variation, inaccessible habitats tend to be higher in elevation, wetter and both warmer in the summer and colder in the winter than habitats currently available to anadromous salmonids. We present several case studies that demonstrate either a change in phenotypic or life history expression or an apparent reduction in genetic variation associated with habitat blockages. These results suggest that loss of habitat will alter evolutionary trajectories in salmonid populations and Evolutionarily Significant Units. Changes in both selective regime and standing genetic diversity might affect the ability of these taxa to respond to subsequent environmental perturbations. Both natural and anthropogenic and should be considered seriously in developing management and conservation strategies. PMID:25567633

  10. Habitat selection is unaltered after severe insect infestation: Concerns for forest-dependent species

    Treesearch

    Claire A. Zugmeyer; John L. Koprowski

    2009-01-01

    Severe disturbance may alter or eliminate important habitat structure that helps preserve food caches of foodhoarding species. Recent recolonization of an insect-damaged forest by the endangered Mt. Graham red squirrel (Tamiasciurus hudsonicus grahamensis) provided an opportunity to examine habitat selection for midden (cache) sites following...

  11. Effects of littoral habitat complexity and sunfish composition on fish production

    USGS Publications Warehouse

    Carey, Michael P.; Maloney, K.O.; Chipps, S.R.; Wahl, David H.

    2010-01-01

    Habitat complexity is a key driver of food web dynamics because physical structure dictates resource availability to a community. Changes in fish diversity can also alter trophic interactions and energy pathways in food webs. Few studies have examined the direct, indirect, and interactive effects of biodiversity and habitat complexity on fish production. We explored the effects of habitat complexity (simulated vegetation), sunfish diversity (intra‐ vs. inter‐specific sunfish), and their interaction using a mesocosm experiment. Total fish production was examined across two levels of habitat complexity (low: 161 strands m−2 and high: 714 strands m−2) and two sunfish diversity treatments: bluegill only (Lepomis macrochirus) and bluegill, redear sunfish (Lepomis microlophus), and green sunfish (Lepomis cyanellus) combination. We also measured changes in total phosphorus, phytoplankton, periphyton, and invertebrates to explain patterns in fish production. Bluegill and total fish production were unaffected by the sunfish treatments. Habitat complexity had a large influence on food web structure by shifting primary productivity from pelagic to a more littoral pathway in the high habitat treatments. Periphyton was higher with dense vegetation, leading to reductions in total phosphorus, phytoplankton, cladoceran abundance and fish biomass. In tanks with low vegetation, bluegill exhibited increased growth. Habitat complexity can alter energy flow through food webs ultimately influencing higher trophic levels. The lack of an effect of sunfish diversity on fish production does not imply that conserving biodiversity is unimportant; rather, we suggest that understanding the context in which biodiversity is important to food web dynamics is critical to conservation planning

  12. BENTHIC MACROFAUNA AND HABITAT RELATIONSHIPS IN TILLAMOOK BAY

    EPA Science Inventory

    Tillamook Bay is subject to natural and man-made stressors, such as increased nutrients and sediments, which can alter its habitats and, thereby, impact its productivity and ecological resources. The benthic macrofauna are small, sediment-dwelling invertebrates which have strong...

  13. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, Christopher D.; DeSteven, Diane; Kilgo, John C.

    Barton, Christopher, D., Diane DeSteven and John C. Kilgo. 2004. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina). Ecol. Rest. 22(4):291-292. Abstract: Carolina bays and smaller depression wetlands support diverse plant communities and provide critical habitat for semi-aquatic fauna throughout the Coastal Plain region of the southeastern United States. Historically, many depression wetlands were altered or destroyed by surface ditching, drainage, and agricultural or silviculture uses. These important habitats are now at further risk of alteration and loss following a U.S. Supreme Court decision in 2001 restricting federal regulation of isolated wetlands. Thus, there is increasedmore » attention towards protecting intact sites and developing methods to restore others. The U.S. Department of Energy's (DOE) 312-mi2 (800-km2) Savannah River Site (SRS) in west-central South Carolina includes about 350 Carolina bays and bay-like wetland depressions, of which about two-thirds were degraded or destroyed prior to federal acquisition of the land. Although some of the altered wetlands have recovered naturally, others still have active active drainage ditches and contain successional forests typical of drained sites. In 1997, DOE established a wetland mitigation bank to compensate for unavoidable wetland impacts on the SRS. This effort provided an opportunity fir a systematic research program to investigate wetland restoration techniques and ecological responses. Consequently, research and management staffs from the USDA Forest Service, Westinghouse Savannah River Corporation, the Savannah River Technology Center, the Savannah River Ecology Laboratory (SREL) and several universities developed a collaborative project to restore degraded depression wetlands on the SRS. The mitigation project seeks cost-effective methods to restore the hydrology and vegetation typical of natural depression wetlands, and so enhance habitats for

  14. Habitat selection of juvenile sole (Solea solea L.): Consequences for shoreface nourishment

    NASA Astrophysics Data System (ADS)

    Post, Marjolein H. M.; Blom, Ewout; Chen, Chun; Bolle, Loes J.; Baptist, Martin J.

    2017-04-01

    The shallow coastal zone is an essential nursery habitat for juvenile flatfish species such as sole (Solea solea L.). The increased frequency of shoreface nourishments along the coast is likely to affect this nursery function by altering important habitat conditions, including sediment grain size. Sediment preference of juvenile sole (41-91 mm) was studied in a circular preference chamber in order to understand the relationship between grain size and sole distribution. The preference tests were carried out at 11 °C and 20 °C to reflect seasonal influences. The juveniles showed a significant preference for finer sediments. This preference was not length dependent (within the length range tested) nor affected by either temperatures. Juvenile sole have a small home range and are not expected to move in response to unfavourable conditions. As a result, habitat alterations may have consequences for juvenile survival and subsequently for recruitment to adult populations. It is therefore important to carefully consider nourishment grain size characteristics to safeguard suitable nursery habitats for juvenile sole.

  15. CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function

    PubMed Central

    Guo, Ya; Xu, Quan; Canzio, Daniele; Shou, Jia; Li, Jinhuan; Gorkin, David U.; Jung, Inkyung; Wu, Haiyang; Zhai, Yanan; Tang, Yuanxiao; Lu, Yichao; Wu, Yonghu; Jia, Zhilian; Li, Wei; Zhang, Michael Q.; Ren, Bing; Krainer, Adrian R.; Maniatis, Tom; Wu, Qiang

    2015-01-01

    SUMMARY CTCF/cohesin play a central role in insulator function and higher-order chromatin organization of mammalian genomes. Recent studies identified a correlation between the orientation of CTCF-binding sites (CBSs) and chromatin loops. To test the functional significance of this observation, we combined CRISPR/Cas9-based genomic-DNA-fragment editing with chromosome-conformation-capture experiments to show that the location and relative orientations of CBSs determine the specificity of long-range chromatin looping in mammalian genomes, using protocadherin (Pcdh) and β-globin as model genes. Inversion of CBS elements within the Pcdh enhancer reconfigures the topology of chromatin loops between the distal enhancer and target promoters, and alters gene-expression patterns. Thus, although enhancers can function in an orientation-independent manner in reporter assays, in the native chromosome context the orientation of at least some enhancers carrying CBSs can determine both the architecture of topological chromatin domains and enhancer/promoter specificity. The findings reveal how 3D chromosome architecture can be encoded by genome sequence. PMID:26276636

  16. Effects of differential habitat warming on complex communities.

    PubMed

    Tunney, Tyler D; McCann, Kevin S; Lester, Nigel P; Shuter, Brian J

    2014-06-03

    Food webs unfold across a mosaic of micro and macro habitats, with each habitat coupled by mobile consumers that behave in response to local environmental conditions. Despite this fundamental characteristic of nature, research on how climate change will affect whole ecosystems has overlooked (i) that climate warming will generally affect habitats differently and (ii) that mobile consumers may respond to this differential change in a manner that may fundamentally alter the energy pathways that sustain ecosystems. This reasoning suggests a powerful, but largely unexplored, avenue for studying the impacts of climate change on ecosystem functioning. Here, we use lake ecosystems to show that predictable behavioral adjustments to local temperature differentials govern a fundamental structural shift across 54 food webs. Data show that the trophic pathways from basal resources to a cold-adapted predator shift toward greater reliance on a cold-water refuge habitat, and food chain length increases, as air temperatures rise. Notably, cold-adapted predator behavior may substantially drive this decoupling effect across the climatic range in our study independent of warmer-adapted species responses (for example, changes in near-shore species abundance and predator absence). Such modifications reflect a flexible food web architecture that requires more attention from climate change research. The trophic pathway restructuring documented here is expected to alter biomass accumulation, through the regulation of energy fluxes to predators, and thus potentially threatens ecosystem sustainability in times of rapid environmental change.

  17. A conservation paradox in the Great Basin—Altering sagebrush landscapes with fuel breaks to reduce habitat loss from wildfire

    USGS Publications Warehouse

    Shinneman, Douglas J.; Aldridge, Cameron L.; Coates, Peter S.; Germino, Matthew J.; Pilliod, David S.; Vaillant, Nicole M.

    2018-03-15

    Interactions between fire and nonnative, annual plant species (that is, “the grass/fire cycle”) represent one of the greatest threats to sagebrush (Artemisia spp.) ecosystems and associated wildlife, including the greater sage-grouse (Centrocercus urophasianus). In 2015, U.S. Department of the Interior called for a “science-based strategy to reduce the threat of large-scale rangeland fire to habitat for the greater sage-grouse and the sagebrush-steppe ecosystem.” An associated guidance document, the “Integrated Rangeland Fire Management Strategy Actionable Science Plan,” identified fuel breaks as high priority areas for scientific research. Fuel breaks are intended to reduce fire size and frequency, and potentially they can compartmentalize wildfire spatial distribution in a landscape. Fuel breaks are designed to reduce flame length, fireline intensity, and rates of fire spread in order to enhance firefighter access, improve response times, and provide safe and strategic anchor points for wildland fire-fighting activities. To accomplish these objectives, fuel breaks disrupt fuel continuity, reduce fuel accumulation, and (or) increase plants with high moisture content through the removal or modification of vegetation in strategically placed strips or blocks of land.Fuel breaks are being newly constructed, enhanced, or proposed across large areas of the Great Basin to reduce wildfire risk and to protect remaining sagebrush ecosystems (including greater sage-grouse habitat). These projects are likely to result in thousands of linear miles of fuel breaks that will have direct ecological effects across hundreds of thousands of acres through habitat loss and conversion. These projects may also affect millions of acres indirectly because of edge effects and habitat fragmentation created by networks of fuel breaks. Hence, land managers are often faced with a potentially paradoxical situation: the need to substantially alter sagebrush habitats with fuel breaks

  18. Pesticide alters oviposition site selection in gray treefrogs.

    PubMed

    Vonesh, James R; Buck, Julia C

    2007-11-01

    Understanding the impacts of pesticides on non-target organisms is an important issue for conservation biology. Research into the environmental consequences of pesticides has largely focused on pesticide toxicity. We have less understanding of the nonlethal effects of pesticides, and the consequences of nonlethal effects for species and communities. For example, we know very little about whether pesticides alter habitat selection behavior. Understanding whether pesticides alter habitat selection is important because pesticide-induced shifts in habitat selection could either magnify or reduce the toxic effects of contaminants by funneling organisms into or directing them away from contaminated sites. Here we present four field experiments that examine the effect of the commercial pesticide Sevin and its active ingredient, carbaryl, on oviposition site selection by the gray treefrog (Hyla chrysoscelis). Our results show that uncontaminated pools consistently received 2-3 times more eggs than contaminated pools; that treefrogs appeared to respond to Sevin directly, not indirectly via its effects on the aquatic food web, and that this preference persisted across a range of temporal and spatial scales. Both Sevin and carbaryl per se reduced oviposition, while other volatile chemicals (e.g., our solvent control, acetone) had no effect. These findings suggest that in order to understanding the consequences of contaminants in aquatic systems we will need to consider not only toxicity, but also how contaminant effects on habitat selection alter the way organisms distribute themselves in the environment.

  19. Estuarine Biotope Mosaics and Habitat Management Goals: An Application in Tampa Bay, Florida, USA

    EPA Science Inventory

    Many types of anthropogenic stress to estuaries lead to destruction and conversion of habitats, thus altering habitat landscapes and changing the “arena” in which the life history interactions of native fauna take place. This can lead to decreased populations of valued fauna, an...

  20. Estuarine Biotope Mosaics and Habitat Management Goals: An Application in Tampa Bay, Florida, USA

    EPA Science Inventory

    Many types of anthropogenic stress to estuaries lead to destruction and conversion of habitats, thus altering habitat landscapes and changing the “arena” in which the life history interactions of native fauna take place. This can lead to decreased populations of valued fauna, a...

  1. Enhancing and restoring habitat for the desert tortoise

    USGS Publications Warehouse

    Abella, Scott R.; Berry, Kristin H.

    2016-01-01

    Habitat has changed unfavorably during the past 150 y for the desert tortoise Gopherus agassizii, a federally threatened species with declining populations in the Mojave Desert and western Sonoran Desert. To support recovery efforts, we synthesized published information on relationships of desert tortoises with three habitat features (cover sites, forage, and soil) and candidate management practices for improving these features for tortoises. In addition to their role in soil health and facilitating recruitment of annual forage plants, shrubs are used by desert tortoises for cover and as sites for burrows. Outplanting greenhouse-grown seedlings, protected from herbivory, has successfully restored (>50% survival) a variety of shrubs on disturbed desert soils. Additionally, salvaging and reapplying topsoil using effective techniques is among the more ecologically beneficial ways to initiate plant recovery after severe disturbance. Through differences in biochemical composition and digestibility, some plant species provide better-quality forage than others. Desert tortoises selectively forage on particular annual and herbaceous perennial species (e.g., legumes), and forage selection shifts during the year as different plants grow or mature. Nonnative grasses provide low-quality forage and contribute fuel to spreading wildfires, which damage or kill shrubs that tortoises use for cover. Maintaining a diverse “menu” of native annual forbs and decreasing nonnative grasses are priorities for restoring most desert tortoise habitats. Reducing herbivory by nonnative animals, carefully timing herbicide applications, and strategically augmenting annual forage plants via seeding show promise for improving tortoise forage quality. Roads, another disturbance, negatively affect habitat in numerous ways (e.g., compacting soil, altering hydrology). Techniques such as recontouring road berms to reestablish drainage patterns, vertical mulching (“planting” dead plant material

  2. Wildlife Habitats in Managed Forests the Blue Mountains of Oregon and Washington

    Treesearch

    Jack Ward [Technical Editor] Thomas

    1979-01-01

    The Nation's forests are one of the last remaining natural habitats forterrestrial wildlife. Much of this vast forest resource has changed dramatically in the last 200 years and can no longer be considered wild. It is now managed for multiple use benefits, including timber production. Timber harvesting and roadbuilding now alter wildlife habitat more than any...

  3. Habitat Features Affecting Smallmouth Bass Micropterus dolomieu Nesting Success in Four Northern Wisconsin Lakes

    Treesearch

    Rory Saunders; Michael A. Bozek; Clayton J. Edwards; Martin J. Jennings; Steven P. Newman

    2002-01-01

    Evaluating spawning success in relation to habitat characteristics of nests sites provides critical information necessary to assess the effects riparian and littoral zone habitat alterations have on smallmouth bass Micropterus dolomieu survival and recruitment. The objective of this study was to quantitatively evaluate smallmouth bass nest site...

  4. Comparative habitat use in a juniper woodland bird community

    USGS Publications Warehouse

    Pavlacky, D.C.; Anderson, S.H.

    2004-01-01

    We compared vegetation structure used by 14 bird species during the 1998 and 1999 breeding seasons to determine what habitat features best accounted for habitat division and community organization in Utah juniper (Juniperus osteosperma) woodlands of southwestern Wyoming. Habitat use was quantified by measuring 24 habitat variables in 461 bird-centered quadrats, each 0.04 ha in size. Using discriminant function analysis, we differentiated between habitat used by 14 bird species along 3 habitat dimensions: (1) variation in shrub cover, overstory juniper cover, mature tree density, understory height, and decadent tree density; (2) a gradient composed of elevation and forb cover; and (3) variation in grass cover, tree height, seedling/sapling cover, and bare ground/rock cover. Of 14 species considered, 9 exhibited substantial habitat partitioning: Mourning Dove (Zenaida macroura), Bewick's Wren (Thryomanes bewickii), Blue-gray Gnatcatcher (Polioptila caerulea), Mountain Bluebird (Sialia currucoides), Plumbeous Vireo (Vireo plumbeus), Green-tailed Towhee (Pipilo chlorurus), Brewer's Sparrow (Spizella breweri), Dark-eyed Junco (Junco hyemalis), and Cassin's Finch (Carpodacus cassinii). Our results indicate juniper bird communities of southwestern Wyoming are organized along a 3-dimensional habitat gradient composed of woodland maturity, elevation, and juniper recruitment. Because juniper birds partition habitat along successional and altitudinal gradients, indiscriminate woodland clearing as well as continued fire suppression will alter species composition. Restoration efforts should ensure that all successional stages of juniper woodland are present on the landscape.

  5. The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes.

    PubMed

    Harborne, Alastair R; Mumby, Peter J; Micheli, Fiorenza; Perry, Christopher T; Dahlgren, Craig P; Holmes, Katherine E; Brumbaugh, Daniel R

    2006-01-01

    overall functional roles of different habitats. The resulting ordination suggests that each habitat has a unique suite of functional values and, potentially, a distinct role within the ecosystem. This review shows that further data are required for many habitat types and processes, particularly forereef and escarpment habitats on reefs and for seagrass beds and mangroves. Furthermore, many data were collected prior to the regional mass mortality of Diadema and Acropora, and subsequent changes to benthic communities have, in many cases, altered a habitat's functional value, hindering the use of these data for parameterising maps and models. Similarly, few data exist on how functional values change when environmental parameters, such as water clarity, are altered by natural or anthropogenic influences or the effects of a habitat's spatial context within the seascape. Despite these limitations, sufficient data are available to construct maps and models to better understand tropical marine ecosystem processes and assist more effective mitigation of threats that alter habitats and their functional values.

  6. ASSESSING THE EFFECTS OF HABITAT ALTERATION ON THE BAY SCALLOP, ARGOPECTEN IRRADIANS

    EPA Science Inventory

    The U.S. EPA's National Health and Environmental Effects Laboratory is evaluating approaches for protecting and restoring the ecological integrity of aquatic habitats, such as marine wetlands and coastal zones, from the impacts of multiple aquatic stressors. We are developing ha...

  7. Low-quality habitat corridors as movement conduits for two butterfly species.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddad, Nick, M.; Tewksbury, Joshua, J.

    2005-01-01

    Haddad, Nick, M, and Joshua J. Tewksbury. Low-quality habitat corridors as movement conduits for two butterfly species. Ecol. Apps. 15(1):250-257. Abstract. Corridors are a primary conservation tool to increase connectivity, promote individual movement, and increase gene flow among populations in fragmented landscapes. The establishment of effective conservation corridors will depend on constructing or pre-serving connecting habitat that attracts dispersing individuals. Yet, it remains unclear whether corridors must necessarily be composed of high-quality habitat to be effective and promote dispersal and gene flow. We address this issue with two mobile, open-habitat butterfly species, Junonia coenia HuÈbner and Euptoieta claudia Cramer. Usingmore » experimental landscapes created explicitly to examine the effects of corridors on dispersal rates, we show that open-habitat corridors can serve as dispersal conduits even when corridors do not support resident butterfly populations. Both butterfly species were rare near forest edges and equally rare in narrow corridors, yet both species dispersed more often between patches connected by these corridors than between isolated patches. At least for species that can traverse corridors within a generation, corridor habitat may be lower in quality than larger patches and still increase dispersal and gene flow. For these species, abundance surveys may not accurately represent the conservation value of corridors.« less

  8. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Physical Habitat

    EPA Pesticide Factsheets

    Introduction to physical habitat changes associated with urbanization, overview of how urbanization can lead to channel enlargement, summary of how road crossings can affect stream ecosystems, summary of how urbanization can alter streambed substrates.

  9. 3 CFR - Proposed Revised Habitat for the Spotted Owl: Minimizing Regulatory Burdens

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... “regulatory system must protect public health, welfare, safety, and our environment while promoting economic... habitat, consistent with applicable law and science; and (6) to the extent permitted by law, adopt the... habitat for the spotted owl, based on a full evaluation of all key criteria: the relevant science...

  10. Odorous House Ants (Tapinoma sessile) as Back-Seat Drivers of Localized Ant Decline in Urban Habitats

    PubMed Central

    Salyer, Adam; Bennett, Gary W.; Buczkowski, Grzegorz A.

    2014-01-01

    Invasive species and habitat disturbance threaten biodiversity worldwide by modifying ecosystem performance and displacing native organisms. Similar homogenization impacts manifest locally when urbanization forces native species to relocate or reinvade perpetually altered habitat. This study investigated correlations between ant richness and abundance in response to urbanization and the nearby presence of invasive ant species, odorous house ants (Tapinoma sessile), within its native region. Surveying localized ant composition within natural, semi-natural, and urban habitat supported efforts to determine whether T. sessile appear to be primary (drivers) threats as instigators or secondary (passengers) threats as inheritors of indigenous ant decline. Sampling 180 sites, evenly split between all habitats with and without T. sessile present, yielded 45 total species. Although urbanization and T. sessile presence factors were significantly linked to ant decline, their interaction correlated to the greatest reduction of total ant richness (74%) and abundance (81%). Total richness appeared to decrease from 27 species to 18 when natural habitat is urbanized and from 18 species to 7 with T. sessile present in urban plots. Odorous house ant presence minimally influenced ant communities within natural and semi-natural habitat, highlighting the importance of habitat alteration and T. sessile presence interactions. Results suggest urbanization releases T. sessile from unknown constraints by decreasing ant richness and competition. Within urban environment, T. sessile are pre-adapted to quickly exploit new resources and grow to supercolony strength wherein T. sessile drive adjacent biodiversity loss. Odorous house ants act as passengers and drivers of ecological change throughout different phases of urban ‘invasion’. This progression through surviving habitat alteration, exploiting new resources, thriving, and further reducing interspecific competition supports a

  11. Landscape Structure Shapes Habitat Finding Ability in a Butterfly

    PubMed Central

    Öckinger, Erik; Van Dyck, Hans

    2012-01-01

    Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L.) from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape. PMID:22870227

  12. CLASSIFYING OREGON ESTUARIES BY HABITAT: ANALYSIS OF EXISTING DATA AND A PROPOSAL FOR A PILOT STUDY

    EPA Science Inventory

    Because many estuarine resources are linked to benthic habitats, classification of estuaries by habitat types may prove a relevant approach for grouping estuaries with similar ecological values and vulnerability to landscape alterations. As a first step, we evaluated whether pub...

  13. Inbreeding avoidance in cunningham's skinks (Egernia cunninghami) in natural and fragmented habitat.

    PubMed

    Stow, A J; Sunnucks, P

    2004-02-01

    Habitat fragmentation/alteration has been proposed as a distinct process threatening the viability of populations of many organisms. One expression of its impact may be the disruption of core population processes such as inbreeding avoidance. Using the experimental design outlined in our companion paper, we report on the impact of habitat alteration (deforestation) on inbreeding in the rock-dwelling Australian lizard Egernia cunninghami. Ten microsatellite loci were used to calculate relatedness coefficients of potential and actual breeding pairs, and to examine mate-choice and heterozygosity. Despite significantly less dispersal and higher within-group relatedness between potential mates in deforested than in natural habitats, this did not result in significantly more inbred matings. Average relatedness amongst breeding pairs was low, with no significant difference between natural and fragmented populations in relatedness between breeding pairs, or individual heterozygosity. Active avoidance of close kin as mates was indicated by the substantially and significantly lower relatedness in actual breeding pairs than potential ones. These facts, and heterozygote excesses in all groups of immature lizards from both habitats, show that E. cunninghami maintained outbreeding in the face of increased accumulation of relatives.

  14. Altered gene expression patterns during the initiation and promotion stages of neonatally diethylstilbestrol-induced hyperplasia/dysplasia/neoplasia in the hamster uterus.

    PubMed

    Hendry, William J; Hariri, Hussam Y; Alwis, Imala D; Gunewardena, Sumedha S; Hendry, Isabel R

    2014-12-01

    Neonatal treatment of hamsters with diethylstilbestrol (DES) induces uterine hyperplasia/dysplasia/neoplasia (endometrial adenocarcinoma) in adult animals. We subsequently determined that the neonatal DES exposure event directly and permanently disrupts the developing hamster uterus (initiation stage) so that it responds abnormally when it is stimulated with estrogen in adulthood (promotion stage). To identify candidate molecular elements involved in progression of the disruption/neoplastic process, we performed: (1) immunoblot analyses and (2) microarray profiling (Affymetrix Gene Chip System) on sets of uterine protein and RNA extracts, respectively, and (3) immunohistochemical analysis on uterine sections; all from both initiation stage and promotion stage groups of animals. Here we report that: (1) progression of the neonatal DES-induced hyperplasia/dysplasia/neoplasia phenomenon in the hamster uterus involves a wide spectrum of specific gene expression alterations and (2) the gene products involved and their manner of altered expression differ dramatically during the initiation vs. promotion stages of the phenomenon. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Mycorrhizal preference promotes habitat invasion by a native Australian orchid: Microtis media

    PubMed Central

    De Long, Jonathan R.; Swarts, Nigel D.; Dixon, Kingsley W.; Egerton-Warburton, Louise M.

    2013-01-01

    Background and Aims Mycorrhizal specialization has been shown to limit recruitment capacity in orchids, but an increasing number of orchids are being documented as invasive or weed-like. The reasons for this proliferation were examined by investigating mycorrhizal fungi and edaphic correlates of Microtis media, an Australian terrestrial orchid that is an aggressive ecosystem and horticultural weed. Methods Molecular identification of fungi cultivated from M. media pelotons, symbiotic in vitro M. media seed germination assays, ex situ fungal baiting of M. media and co-occurring orchid taxa (Caladenia arenicola, Pterostylis sanguinea and Diuris magnifica) and soil physical and chemical analyses were undertaken. Key Results It was found that: (1) M. media associates with a broad taxonomic spectrum of mycobionts including Piriformospora indica, Sebacina vermifera, Tulasnella calospora and Ceratobasidium sp.; (2) germination efficacy of mycorrhizal isolates was greater for fungi isolated from plants in disturbed than in natural habitats; (3) a higher percentage of M. media seeds germinate than D. magnifica, P. sanguinea or C. arenicola seeds when incubated with soil from M. media roots; and (4) M. media–mycorrhizal fungal associations show an unusual breadth of habitat tolerance, especially for soil phosphorus (P) fertility. Conclusions The findings in M. media support the idea that invasive terrestrial orchids may associate with a diversity of fungi that are widespread and common, enhance seed germination in the host plant but not co-occurring orchid species and tolerate a range of habitats. These traits may provide the weedy orchid with a competitive advantage over co-occurring orchid species. If so, invasive orchids are likely to become more broadly distributed and increasingly colonize novel habitats. PMID:23275632

  16. Habitat mosaics and path analysis can improve biological conservation of aquatic biodiversity in ecosystems with low-head dams

    USGS Publications Warehouse

    Hitchman, Sean M.; Mather, Martha E.; Smith, Joseph M.; Fencl, Jane S.

    2018-01-01

    Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species

  17. Habitat mosaics and path analysis can improve biological conservation of aquatic biodiversity in ecosystems with low-head dams.

    PubMed

    Hitchman, Sean M; Mather, Martha E; Smith, Joseph M; Fencl, Jane S

    2018-04-01

    Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species richness

  18. Frugivore-Mediated Selection in A Habitat Transformation Scenario

    PubMed Central

    Fontúrbel, Francisco E.; Medel, Rodrigo

    2017-01-01

    Plant-animal interactions are strong drivers of phenotypic evolution. However, the extent to which anthropogenic habitat transformation creates new selective scenarios for plant-animal interactions is a little explored subject. We examined the effects of native forest replacement by exotic Eucalyptus trees on the frugivore-mediated phenotypic selection coefficients imposed by the relict marsupial Dromiciops gliroides upon traits involved in frugivore attraction and germination success of the mistletoe Tristerix corymbosus (Loranthaceae). We found significant gradients for seed weight and sugar content along the native - transformed habitat gradient. While selection for larger seed weight was more relevant in native habitats, fruits with intermediate sugar content were promoted in transformed habitats. The spatial habitat structure and microclimate features such as the degree of sunlight received influenced the natural selection processes, as they correlated with the phenotypic traits analysed. The response of this plant-frugivore interaction to human disturbance seemed to be context-dependent, in which extremely transformed habitats would offer new opportunities for natural selection on dispersal-related traits. Even in recent transformation events like this, human disturbance acts as a strong contemporary evolution driver. PMID:28349942

  19. Effects of a fire on a population of treefrogs (Scinax cf. alter, Lutz) in a restinga habitat in southern Brazil.

    PubMed

    Rocha, C F D; Ariani, C V; Menezes, V A; Vrcibradic, D

    2008-08-01

    The area of the Dunas da Joaquina, in Santa Catarina island, contains one of the most important remnants of restinga habitat in Santa Catarina State, southern Brazil. In December 2003, a fire occurred in a portion of this area, affecting most of the vegetation, including the bromeliad community. In this study, the density of individuals and the diet composition of the bromelicolous treefrog Scinax cf. alter were compared between the area affected by the fire and an adjacent unburned area. One-hundred-and-fifty-eight ground bromeliads (Vriesea friburguensis) were dissected and searched for the presence of treefrogs among their leaves. We found 30 frogs in 29.5% (23/78) of the bromeliads from the unburned site, with a mean of 1.3 frogs per rosette, and 15 frogs in 12.5% (10/80) of the bromeliads from the burned site, with a mean of 1.6 frogs per rosette. Eight (27%) of the frogs from the unburned site and eleven (73%) of those from the burned site had empty stomachs. Frogs from the burned site also contained less prey per stomach than those from the unburned site. The data suggest that the fire has negatively affected the local population of Scinax cf. alter, though it is possible that the population can recover.

  20. Habitat, topographical, and geographical components structuring shrubsteppe bird communities

    USGS Publications Warehouse

    Knick, S.T.; Rotenberry, J.T.; Leu, M.

    2008-01-01

    Landscapes available to birds to select for breeding locations are arrayed along multiple dimensions. Identifying the primary gradients structuring shrubsteppe bird communities in the western United States is important because widespread habitat loss and alteration are shifting the environmental template on which these birds depend. We integrated field habitat surveys, GIS coverages, and bird counts from 61 Breeding Bird Survey routes located in shrubsteppe habitats across a >800 000 km2 region to determine the gradients of habitat, topography, and geography underlying bird communities. A small set of habitat features dominated the primary environmental gradients in a canonical ordination; the 13 species in the shrubsteppe bird community were closely packed along the first two axes. Using hierarchical variance partitioning, we identified habitat as the most important pure (31% explained variation) or shared component. Topography (9%) and geography (4%) were minor components but each shared a larger contribution with habitat (habitat-topography 21%; habitat-geography 22%) in explaining the organization of the bird community. In a second tier partition of habitat structure, pure composition (% land cover) was more important (45%) than configuration (patch size and edge) (7%); the two components shared 27% of the explained variation in the bird community axes. Local (9%), community (14%), and landscape (10%) levels contributed equally. Adjacent organizational levels had a larger shared contribution (local-community 26%; community-landscape 27%) than more separated local-landscape levels (21%). Extensive conversion of shrubsteppe habitats to agriculture, exotic annual grasslands, or pinyon (Pinus spp.)-juniper (Juniperus spp.) woodlands is occurring along the primary axes of habitat structure. Because the shrubsteppe bird community was organized along short gradients dominated by habitat features, relatively small shifts in their available environment will exert a

  1. [Variation of the orchid bees community (Hymenoptera: Apidae) in three altered habitats of the Colombian "llano" piedmont].

    PubMed

    Parra-H, Alejandro; Nates-Parra, Guiomar

    2007-01-01

    Orchid bees subsist in vast tropical forest areas because they maintain close relationships with particular plant species in diverse micro-habitats. Based on the relationships among the environment and biological features (food preference, morphologic and ethologic diversity), it is possible to determine habitat quality using the euglossine array. This work proposes the use of this ecological information, in addition to diversity indices, for the evaluation of environmental quality. Fifteen localities in three landscape types (urban, rural and conserved) were sampled in the eastern llanos foothill (Meta, Colombia), between March and December of 2003 using entomological nets, and Cineol and Metil Salicylate as baits. Of the 26 species known to occur in the area, 17 were registered. Eulaema nigrita was the most frequent, while E. speciosa E. bombiformis, Euglossa magnipes, E. cybelia, E. heterosticta, E. singularis and Exaerete frontalis were mostly found in habitats rated "good to acceptable". The vegetation composition and proximity of forest fragments seem to favor some species in disturbed habitats. Relative diversity of bee body shapes and sizes is proportional to habitat quality.

  2. Ghost of habitat past: historic habitat affects the contemporary distribution of giant garter snakes in a modified landscape.

    USGS Publications Warehouse

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2014-01-01

    Historic habitat conditions can affect contemporary communities and populations, but most studies of historic habitat are based on the reduction in habitat extent or connectivity. Little is known about the effects of historic habitat on contemporary species distributions when historic habitat has been nearly completely removed, but species persist in a highly altered landscape. More than 93% of the historic wetlands in the Central Valley of California, USA, have been drained and converted to agricultural and other uses, but agricultural wetlands, such as rice and its supporting infrastructure of canals, allow some species to persist. Little is known about the distribution of giant garter snakes Thamnophis gigas, a rare aquatic snake species inhabiting this predominantly agricultural landscape, or the variables that affect where this species occurs. We used occupancy modeling to examine the distribution of giant garter snakes at the landscape scale in the Sacramento Valley (northern portion of the Central Valley) of California, with an emphasis on the relative strength of historic and contemporary variables (landscape-scale habitat, local microhabitat, vegetation composition and relative prey counts) for predicting giant garter snake occurrence. Proximity to historic marsh best explained variation in the probability of occurrence of giant garter snakes at the landscape scale, with greater probability of occurrence near historic marsh. We suspect that the importance of distance to historic marsh represents dispersal limitations of giant garter snakes. These results suggest that preserving and restoring areas near historic marsh, and minimizing activities that reduce the extent of marsh or marsh-like (e.g. rice agriculture, canal) habitats near historic marsh may be advantageous to giant garter snakes.

  3. Using urban forest assessment tools to model bird habitat potential

    USGS Publications Warehouse

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  4. Past and predicted future effects of housing growth on open space conservation opportunity areas and habitat connectivity around National Wildlife Refuges

    USGS Publications Warehouse

    Hamilton, Christopher M.; Baumann, Matthias; Pidgeon, Anna M.; Helmers, David P.; Thogmartin, Wayne E.; Heglund, Patricia J.; Radeloff, Volker C.

    2016-01-01

    ContextHousing growth can alter suitability of matrix habitats around protected areas, strongly affecting movements of organisms and, consequently, threatening connectivity of protected area networks.ObjectivesOur goal was to quantify distribution and growth of housing around the U.S. Fish and Wildlife Service National Wildlife Refuge System. This is important information for conservation planning, particularly given promotion of habitat connectivity as a climate change adaptation measure.MethodsWe quantified housing growth from 1940 to 2000 and projected future growth to 2030 within three distances from refuges, identifying very low housing density open space, “opportunity areas” (contiguous areas with <6.17 houses/km2), both nationally and by USFWS administrative region. Additionally, we quantified number and area of habitat corridors within these opportunity areas in 2000.ResultsOur results indicated that the number and area of open space opportunity areas generally decreased with increasing distance from refuges and with the passage of time. Furthermore, total area in habitat corridors was much lower than in opportunity areas. In addition, the number of corridors sometimes exceeded number of opportunity areas as a result of habitat fragmentation, indicating corridors are likely vulnerable to land use change. Finally, regional differences were strong and indicated some refuges may have experienced so much housing growth already that they are effectively too isolated to adapt to climate change, while others may require extensive habitat restoration work.ConclusionsWildlife refuges are increasingly isolated by residential housing development, potentially constraining the movement of wildlife and, therefore, their ability to adapt to a changing climate.

  5. Modeling mountain pine beetle habitat suitability within Sequoia National Park

    NASA Astrophysics Data System (ADS)

    Nguyen, Andrew

    Understanding significant changes in climate and their effects on timber resources can help forest managers make better decisions regarding the preservation of natural resources and land management. These changes may to alter natural ecosystems dependent on historical and current climate conditions. Increasing mountain pine beetle (MBP) outbreaks within the southern Sierra Nevada are the result of these alterations. This study better understands MPB behavior within Sequoia National Park (SNP) and model its current and future habitat distribution. Variables contributing to MPB spread are vegetation stress, soil moisture, temperature, precipitation, disturbance, and presence of Ponderosa (Pinus ponderosa) and Lodgepole (Pinus contorta) pine trees. These variables were obtained using various modeled, insitu, and remotely sensed sources. The generalized additive model (GAM) was used to calculate the statistical significance of each variable contributing to MPB spread and also created maps identifying habitat suitability. Results indicate vegetation stress and forest disturbance to be variables most indicative of MPB spread. Additionally, the model was able to detect habitat suitability of MPB with a 45% accuracy concluding that a geospatial driven modeling approach can be used to delineate potential MPB spread within SNP.

  6. Quantitative analysis of woodpecker habitat using high-resolution airborne LiDAR estimates of forest structure and composition

    Treesearch

    James E. Garabedian; Robert J. McGaughey; Stephen E. Reutebuch; Bernard R. Parresol; John C. Kilgo; Christopher E. Moorman; M. Nils. Peterson

    2014-01-01

    Light detection and ranging (LiDAR) technology has the potential to radically alter the way researchers and managers collect data on wildlife–habitat relationships. To date, the technology has fostered several novel approaches to characterizing avian habitat, but has been limited by the lack of detailed LiDAR-habitat attributes relevant to species across a continuum of...

  7. Confounding factors in the detection of species responses to habitat fragmentation.

    PubMed

    Ewers, Robert M; Didham, Raphael K

    2006-02-01

    Habitat loss has pervasive and disruptive impacts on biodiversity in habitat remnants. The magnitude of the ecological impacts of habitat loss can be exacerbated by the spatial arrangement -- or fragmentation -- of remaining habitat. Fragmentation per se is a landscape-level phenomenon in which species that survive in habitat remnants are confronted with a modified environment of reduced area, increased isolation and novel ecological boundaries. The implications of this for individual organisms are many and varied, because species with differing life history strategies are differentially affected by habitat fragmentation. Here, we review the extensive literature on species responses to habitat fragmentation, and detail the numerous ways in which confounding factors have either masked the detection, or prevented the manifestation, of predicted fragmentation effects. Large numbers of empirical studies continue to document changes in species richness with decreasing habitat area, with positive, negative and no relationships regularly reported. The debate surrounding such widely contrasting results is beginning to be resolved by findings that the expected positive species-area relationship can be masked by matrix-derived spatial subsidies of resources to fragment-dwelling species and by the invasion of matrix-dwelling species into habitat edges. Significant advances have been made recently in our understanding of how species interactions are altered at habitat edges as a result of these changes. Interestingly, changes in biotic and abiotic parameters at edges also make ecological processes more variable than in habitat interiors. Individuals are more likely to encounter habitat edges in fragments with convoluted shapes, leading to increased turnover and variability in population size than in fragments that are compact in shape. Habitat isolation in both space and time disrupts species distribution patterns, with consequent effects on metapopulation dynamics and the

  8. Using occupancy and population models to assess habitat conservation opportunities for an isolated carnivore population

    Treesearch

    Wayne Spencer; Heather Rustigian-Romsos; James Strittholt; Robert Scheller; William Zielinski; Richard Truex

    2011-01-01

    An isolated population of the fisher (Martes pennanti) in the southern Sierra Nevada, California, is threatened by small size and habitat alteration from wildfires, fuels management, and other factors. We assessed the population’s status and conservation options for its habitat using a spatially explicit population model coupled with a...

  9. Hydroclimatic alteration increases vulnerability of montane meadows in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Viers, J. H.; Peek, R.; Purdy, S. E.; Emmons, J. D.; Yarnell, S. M.

    2012-12-01

    Meadow ecosystems of the Sierra Nevada (California, USA) have been maintained by the interplay of biotic and abiotic forces, where hydrological functions bridge aquatic and terrestrial realms. Meadows are not only key habitat for fishes, amphibians, birds, and mammals alike, but also provide enumerable ecosystem services to humans, not limited to regulating services (eg, water filtration), provisioning services (eg, grazing), and aesthetics. Using hydroclimatic models and spatial distribution models of indicator species, a range wide assessment was conducted to assess and synthesize the vulnerability of meadow ecosystems to hydroclimatic alteration, a result of regional climate change. Atmospheric warming is expected to result in a greater fraction of total precipitation falling as winter rain (rather than snow) and earlier snowmelt. These predicted changes will likely cause more precipitation-driven runoff in winter and reduced snowmelt runoff in spring, leading to reduced annual runoff and a general shift in runoff timing to earlier in the year. These profound effects have consequences for hydrological cycling and meadow functioning, though such changes will not occur steadily through time or uniformly across the range, and each individual meadow will respond as a function of its composition and land use history. Most vulnerable is groundwater recharge, a fundamental component of meadow hydrology. As a result of shortened snow melt period and absence of diel snowmelt fluxes that would otherwise gradually refill meadow aquifers, recharge is expected to decline due to less infiltration. Diminished water tables will likely stress hydric and mesic vegetation, promoting more xeric conditions. Coupled with greater magnitude stream flows, these conditions promote channel incision and ultimate state shift to non-meadow conditions. The biological effects of hydroclimatic alteration, such as lower mean annual flow and earlier timing, will result in an overall decrease in

  10. Predator diversity reduces habitat colonization by mosquitoes and midges.

    PubMed

    Staats, Ethan G; Agosta, Salvatore J; Vonesh, James R

    2016-12-01

    Changes in predator diversity via extinction and invasion are increasingly widespread and can have important ecological and socio-economic consequences. Anticipating and managing these consequences requires understanding how predators shape ecological communities. Previous predator biodiversity research has focused on post-colonization processes. However, predators can also shape communities by altering patterns of prey habitat selection during colonization. The sensitivity of this non-consumptive top down mechanism to changes in predator diversity is largely unexamined. To address this gap, we examined patterns of dipteran oviposition habitat selection in experimental aquatic habitats in response to varied predator species richness while holding predator abundance constant. Caged predators were used in order to disentangle behavioural oviposition responses to predator cues from potential post-oviposition consumption of eggs and larvae. We hypothesized that because increases in predator richness often result in greater prey mortality than would be predicted from independent effects of predators, prey should avoid predator-rich habitats during colonization. Consistent with this hypothesis, predator-rich habitats received 48% fewer dipteran eggs than predicted, including 60% fewer mosquito eggs and 38% fewer midge eggs. Our findings highlight the potentially important links between predator biodiversity, prey habitat selection and the ecosystem service of pest regulation. © 2016 The Author(s).

  11. Transmission of infectious diseases en route to habitat hotspots.

    PubMed

    Benavides, Julio; Walsh, Peter D; Meyers, Lauren Ancel; Raymond, Michel; Caillaud, Damien

    2012-01-01

    The spread of infectious diseases in wildlife populations is influenced by patterns of between-host contacts. Habitat "hotspots"--places attracting a large numbers of individuals or social groups--can significantly alter contact patterns and, hence, disease propagation. Research on the importance of habitat hotspots in wildlife epidemiology has primarily focused on how inter-individual contacts occurring at the hotspot itself increase disease transmission. However, in territorial animals, epidemiologically important contacts may primarily occur as animals cross through territories of conspecifics en route to habitat hotspots. So far, the phenomenon has received little attention. Here, we investigate the importance of these contacts in the case where infectious individuals keep visiting the hotspots and in the case where these individuals are not able to travel to the hotspot any more. We developed a simulation epidemiological model to investigate both cases in a scenario when transmission at the hotspot does not occur. We find that (i) hotspots still exacerbate epidemics, (ii) when infectious individuals do not travel to the hotspot, the most vulnerable individuals are those residing at intermediate distances from the hotspot rather than nearby, and (iii) the epidemiological vulnerability of a population is the highest when the number of hotspots is intermediate. By altering animal movements in their vicinity, habitat hotspots can thus strongly increase the spread of infectious diseases, even when disease transmission does not occur at the hotspot itself. Interestingly, when animals only visit the nearest hotspot, creating additional artificial hotspots, rather than reducing their number, may be an efficient disease control measure.

  12. Thermal biology mediates responses of amphibians and reptiles to habitat modification.

    PubMed

    Nowakowski, A Justin; Watling, James I; Thompson, Michelle E; Brusch, George A; Catenazzi, Alessandro; Whitfield, Steven M; Kurz, David J; Suárez-Mayorga, Ángela; Aponte-Gutiérrez, Andrés; Donnelly, Maureen A; Todd, Brian D

    2018-03-01

    Human activities often replace native forests with warmer, modified habitats that represent novel thermal environments for biodiversity. Reducing biodiversity loss hinges upon identifying which species are most sensitive to the environmental conditions that result from habitat modification. Drawing on case studies and a meta-analysis, we examined whether observed and modelled thermal traits, including heat tolerances, variation in body temperatures, and evaporative water loss, explained variation in sensitivity of ectotherms to habitat modification. Low heat tolerances of lizards and amphibians and high evaporative water loss of amphibians were associated with increased sensitivity to habitat modification, often explaining more variation than non-thermal traits. Heat tolerances alone explained 24-66% (mean = 38%) of the variation in species responses, and these trends were largely consistent across geographic locations and spatial scales. As habitat modification alters local microclimates, the thermal biology of species will likely play a key role in the reassembly of terrestrial communities. © 2018 John Wiley & Sons Ltd/CNRS.

  13. Seed bank dynamics govern persistence of Brassica hybrids in crop and natural habitats

    PubMed Central

    Hooftman, Danny A. P.; Bullock, James M.; Morley, Kathryn; Lamb, Caroline; Hodgson, David J.; Bell, Philippa; Thomas, Jane; Hails, Rosemary S.

    2015-01-01

    Background and Aims Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species. Methods Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa × B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species. Key Results The demographic vital rates (i.e. for major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. rapa with B. napus. Conclusions Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. rapa, could indirectly reduce hybrid

  14. Does fragmentation of Urtica habitats affect phytophagous and predatory insects differentially?

    PubMed

    Zabel, Jörg; Tscharntke, Teja

    1998-09-01

    Effects of habitat fragmentation on the insect community of stinging nettle (Urtica dioica L.) were studied, using 32 natural nettle patches of different area and degree of isolation in an agricultural landscape. Habitat fragmentation reduced the species richness of Heteroptera, Auchenorrhyncha, and Coleoptera, and the abundance of populations. Habitat isolation and area reduction did not affect all insect species equally. Monophagous herbivores had a higher probability of absence from small patches than all (monophagous and polyphagous) herbivore species, and the percentage of monophagous herbivores increased with habitat area. Abundance and population variability of species were negatively correlated and could both be used as a predictor of the percentage of occupied habitats. Species richness of herbivores correlated (positively) with habitat area, while species richness of predators correlated (negatively) with habitat isolation. In logistic regressions, the probability of absence of monophagous herbivores from habitat patches could only be explained by habitat area (in 4 out of 10 species) and predator absence probability only by habitat isolation (in 3 out of 14 species). Presumably because of the instability of higher-trophic-level populations and dispersal limitation, predators were more affected by habitat isolation than herbivores, while they did not differ from herbivore populations with respect to abundance or variability. Thus increasing habitat connectivity in the agricultural landscape should primarily promote predator populations.

  15. Beyond habitat structure: Landscape heterogeneity explains the monito del monte (Dromiciops gliroides) occurrence and behavior at habitats dominated by exotic trees.

    PubMed

    Salazar, Daniela A; Fontúrbel, Francisco E

    2016-09-01

    Habitat structure determines species occurrence and behavior. However, human activities are altering natural habitat structure, potentially hampering native species due to the loss of nesting cavities, shelter or movement pathways. The South American temperate rainforest is experiencing an accelerated loss and degradation, compromising the persistence of many native species, and particularly of the monito del monte (Dromiciops gliroides Thomas, 1894), an arboreal marsupial that plays a key role as seed disperser. Aiming to compare 2 contrasting habitats (a native forest and a transformed habitat composed of abandoned Eucalyptus plantations and native understory vegetation), we assessed D. gliroides' occurrence using camera traps and measured several structural features (e.g. shrub and bamboo cover, deadwood presence, moss abundance) at 100 camera locations. Complementarily, we used radio telemetry to assess its spatial ecology, aiming to depict a more complete scenario. Moss abundance was the only significant variable explaining D. gliroides occurrence between habitats, and no structural variable explained its occurrence at the transformed habitat. There were no differences in home range, core area or inter-individual overlapping. In the transformed habitats, tracked individuals used native and Eucalyptus-associated vegetation types according to their abundance. Diurnal locations (and, hence, nesting sites) were located exclusively in native vegetation. The landscape heterogeneity resulting from the vicinity of native and Eucalyptus-associated vegetation likely explains D. gliroides occurrence better than the habitat structure itself, as it may be use Eucalyptus-associated vegetation for feeding purposes but depend on native vegetation for nesting. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  16. Habitat Management to Suppress Pest Populations: Progress and Prospects.

    PubMed

    Gurr, Geoff M; Wratten, Steve D; Landis, Douglas A; You, Minsheng

    2017-01-31

    Habitat management involving manipulation of farmland vegetation can exert direct suppressive effects on pests and promote natural enemies. Advances in theory and practical techniques have allowed habitat management to become an important subdiscipline of pest management. Improved understanding of biodiversity-ecosystem function relationships means that researchers now have a firmer theoretical foundation on which to design habitat management strategies for pest suppression in agricultural systems, including landscape-scale effects. Supporting natural enemies with shelter, nectar, alternative prey/hosts, and pollen (SNAP) has emerged as a major research topic and applied tactic with field tests and adoption often preceded by rigorous laboratory experimentation. As a result, the promise of habitat management is increasingly being realized in the form of practical worldwide implementation. Uptake is facilitated by farmer participation in research and is made more likely by the simultaneous delivery of ecosystem services other than pest suppression.

  17. Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish

    PubMed Central

    Johnson, Ashley M.; Stanis, Shannon; Fuller, Rebecca C.

    2013-01-01

    Spatial variation in lighting environments frequently leads to population variation in colour patterns, colour preferences and visual systems. Yet lighting conditions also vary diurnally, and many aspects of visual systems and behaviour vary over this time scale. Here, we use the bluefin killifish (Lucania goodei) to compare how diurnal variation and habitat variation (clear versus tannin-stained water) affect opsin expression and the preference to peck at different-coloured objects. Opsin expression was generally lowest at midnight and dawn, and highest at midday and dusk, and this diurnal variation was many times greater than variation between habitats. Pecking preference was affected by both diurnal and habitat variation but did not correlate with opsin expression. Rather, pecking preference matched lighting conditions, with higher preferences for blue at noon and for red at dawn/dusk, when these wavelengths are comparatively scarce. Similarly, blue pecking preference was higher in tannin-stained water where blue wavelengths are reduced. In conclusion, L. goodei exhibits strong diurnal cycles of opsin expression, but these are not tightly correlated with light intensity or colour. Temporally variable pecking preferences probably result from lighting environment rather than from opsin production. These results may have implications for the colour pattern diversity observed in these fish. PMID:23698009

  18. Impacts of invasive plants on songbirds: Using song structure as an indicator of habitat quality

    Treesearch

    Yvette Ortega

    2007-01-01

    Invasive species can alter habitat quality over broad scales, so they pose a severe threat to songbird populations. Through our long-term research program supported by BEMRP, we have found that changes in habitat quality induced by exotic plants like spotted knapweed can lead to subtle yet profound changes in songbird populations. For example, in knapweed-invaded...

  19. Habitat assessment, Missouri River at Hermann, Missouri

    USGS Publications Warehouse

    Jacobson, Robert B.; Laustrup, Mark S.; Reuter, Joanna M.

    2002-01-01

    This report documents methods and results of aquatic habitat assessment in the Missouri River near Hermann, Missouri. The assessment is intended to improve understanding of spatial and temporal variability of aquatic habitat, including habitats thought to be critical for the endangered pallid sturgeon (Scaphirhynchus albus). Physical aquatic habitat - depth, velocity, and substrate - was assessed around 9 wing dikes and adjacent to the U.S. Route 19 bridge, at discharges varying from 44,000 cubic feet per second (cfs) to 146, 000 cfs during August 2000-May, 2001. For the river as a whole, velocities are bi-modally distributed with distinct peaks relating to navigation channel and wing-dike environments. Velocities predictably showed an increasing trend with increasing discharge. Substrate within wing dikes was dominated by mud at low discharges, whereas the navigation channel had patches of transporting sand, rippled sand, and coarse sand. Discharges that overtopped the wing dikes (about 93,000 cfs, March 2001) were associated with increases of patchy sand, rippled sand, and coarse sand within the wing dikes. When flows were substantially over the wing dikes (146,000 cfs, May 2001) substrates within most wing dikes showed substantial reorganization and coarsening. The habitat assessment provides a geospatial database that can be used to query wing dikes for distributions of depth, velocity, and substrate for comparison with fish samples collected by US Fish and Wildlife Service biologists (Grady and others, 2001). In addition, the assessment documented spatial and temporal variation in habitat within the Hermann reach and over a range of discharges. Measurable geomorphic change--alteration of substrate conditions plus substantial erosion and deposition--was associated with flows equaled or exceeded 12-40% of the time (40-140 days per year). Documented geomorphic change associated with high-frequency flows underscores the natural temporal variability of physical

  20. 18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...

  1. 18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Fish attractor, spawning... OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be constructed...

  2. 18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...

  3. 18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...

  4. 18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...

  5. The importance of fluvial hydraulics to fish-habitat restoration in low-gradient alluvial streams

    USGS Publications Warehouse

    Rabeni, Charles F.; Jacobson, Robert B.

    1993-01-01

    1. A major cause of degradation and loss of stream fish is alteration of physical habitat within and adjacent to the channel. We describe a potentially efficient approach to fish restoration based upon the relationship between fluvial hydraulics, geomorphology, and those habitats important to fish.2. The aquatic habitat in a low-gradient, alluvial stream in the Ozark Plateaus physiographical province was classified according to location in the channel, patterns of water flow, and structures that control flow. The resulting habitat types were ranked in terms of their temporal stability and ability to be manipulated.3. Delineation and quantification of discrete physical spaces in a stream, termed hydraulic habitat units, are shown to be useful in stream restoration programmes if the ecological importance of each habitat unit is known, and if habitats are defined by fluvial dynamics so that restoration is aided by natural forces.4. Examples, using different taxa, are given to illustrate management options.

  6. A Few Meters Matter: Local Habitats Drive Reproductive Cycles in a Tropical Lizard.

    PubMed

    Otero, Luisa M; Huey, Raymond B; Gorman, George C

    2015-09-01

    Reproductive phenology often varies geographically within species, driven by environmental gradients that alter growth and reproduction. However, environments can differ between adjacent habitats at single localities. In lowland Puerto Rico, both open (sunny, warm) and forested (shady, cool) habitats may be only meters apart. The lizard Anolis cristatellus lives in both habitats: it thermoregulates carefully in the open but is a thermoconformer in the forest. To determine whether reproduction differs between habitats, we compared reproductive cycles of females in open versus forest habitats at two localities for over 2 years. Open females were more likely than forest females to be reproductive throughout the year, probably because open females were able to bask and thereby achieve warmer body temperatures. These between-habitat differences in reproduction were especially marked in cool months and are equivalent in magnitude to those between populations separated by elevation. Thus, environmental differences (even on a microlandscape scale) matter to reproduction and probably to demography.

  7. HOW MUCH OF STREAM HABITAT IS PREDETERMINED BY NATURAL GEOMORPHIC CONTROLS?

    EPA Science Inventory

    Detailed pre- and post-disturbance research has demonstrated the ability of human activities to alter stream channel characteristics, including the amounts of deep pool habitat and fine substrate. However, it is often difficult to demonstrate consistent associations between the...

  8. Genetic alterations in seborrheic keratoses

    PubMed Central

    Heidenreich, Barbara; Denisova, Evygenia; Rachakonda, Sivaramakrishna; Sanmartin, Onofre; Dereani, Timo; Hosen, Ismail; Nagore, Eduardo; Kumar, Rajiv

    2017-01-01

    Seborrheic keratoses are common benign epidermal lesions that are associated with increased age and sun-exposure. Those lesions despite harboring multiple somatic alterations in contrast to malignant tumors appear to be genetically stable. In order to investigate and characterize the presence of recurrent mutations, we performed exome sequencing on DNA from one seborrheic keratosis lesion and corresponding blood cells from the same patients with follow up investigation of alterations identified by exome sequencing in 24 additional lesions from as many patients. In addition we investigated alterations in all lesions at specific genes loci that included FGFR3, PIK3CA, HRAS, BRAF, CDKN2A and TERT and DHPH3 promoters. The exome sequencing data indicated three mutations per Mb of the targeted sequence. The mutational pattern depicted typical UV signature with majority of alterations being C>T and CC>TT base changes at dipyrimidinic sites. The FGFR3 mutations were the most frequent, detected in 12 of 25 (48%) lesions, followed by the PIK3CA (32%), TERT promoter (24%) and DPH3 promoter mutations (24%). TERT promoter mutations associated with increased age and were present mainly in the lesions excised from head and neck. Three lesions also carried alterations in CDKN2A. FGFR3, TERT and DPH3 expression did not correlate with mutations in the respective genes and promoters; however, increased FGFR3 transcript levels were associated with increased FOXN1 levels, a suggested positive feedback loop that stalls malignant progression. Thus, in this study we report overall mutation rate through exome sequencing and show the most frequent mutations seborrheic keratosis. PMID:28410231

  9. Transmission of Infectious Diseases En Route to Habitat Hotspots

    PubMed Central

    Benavides, Julio; Walsh, Peter D.; Meyers, Lauren Ancel; Raymond, Michel; Caillaud, Damien

    2012-01-01

    Background The spread of infectious diseases in wildlife populations is influenced by patterns of between-host contacts. Habitat “hotspots” - places attracting a large numbers of individuals or social groups - can significantly alter contact patterns and, hence, disease propagation. Research on the importance of habitat hotspots in wildlife epidemiology has primarily focused on how inter-individual contacts occurring at the hotspot itself increase disease transmission. However, in territorial animals, epidemiologically important contacts may primarily occur as animals cross through territories of conspecifics en route to habitat hotspots. So far, the phenomenon has received little attention. Here, we investigate the importance of these contacts in the case where infectious individuals keep visiting the hotspots and in the case where these individuals are not able to travel to the hotspot any more. Methodology and Principal Findings We developed a simulation epidemiological model to investigate both cases in a scenario when transmission at the hotspot does not occur. We find that (i) hotspots still exacerbate epidemics, (ii) when infectious individuals do not travel to the hotspot, the most vulnerable individuals are those residing at intermediate distances from the hotspot rather than nearby, and (iii) the epidemiological vulnerability of a population is the highest when the number of hotspots is intermediate. Conclusions and Significance By altering animal movements in their vicinity, habitat hotspots can thus strongly increase the spread of infectious diseases, even when disease transmission does not occur at the hotspot itself. Interestingly, when animals only visit the nearest hotspot, creating additional artificial hotspots, rather than reducing their number, may be an efficient disease control measure. PMID:22363606

  10. Matrix quality and disturbance frequency drive evolution of species behavior at habitat boundaries.

    PubMed

    Martin, Amanda E; Fahrig, Lenore

    2015-12-01

    Previous theoretical studies suggest that a species' landscape should influence the evolution of its dispersal characteristics, because landscape structure affects the costs and benefits of dispersal. However, these studies have not considered the evolution of boundary crossing, that is, the tendency of animals to cross from habitat to nonhabitat ("matrix"). It is important to understand this dispersal behavior, because of its effects on the probability of population persistence. Boundary-crossing behavior drives the rate of interaction with matrix, and thus, it influences the rate of movement among populations and the risk of dispersal mortality. We used an individual-based, spatially explicit model to simulate the evolution of boundary crossing in response to landscape structure. Our simulations predict higher evolved probabilities of boundary crossing in landscapes with more habitat, less fragmented habitat, higher-quality matrix, and more frequent disturbances (i.e., fewer generations between local population extinction events). Unexpectedly, our simulations also suggest that matrix quality and disturbance frequency have much stronger effects on the evolution of boundary crossing than either habitat amount or habitat fragmentation. Our results suggest that boundary-crossing responses are most affected by the costs of dispersal through matrix and the benefits of escaping local extinction events. Evolution of optimal behavior at habitat boundaries in response to the landscape may have implications for species in human-altered landscapes, because this behavior may become suboptimal if the landscape changes faster than the species' evolutionary response to that change. Understanding how matrix quality and habitat disturbance drive evolution of behavior at boundaries, and how this in turn influences the extinction risk of species in human-altered landscapes should help us identify species of conservation concern and target them for management.

  11. APC alterations are frequently involved in the pathogenesis of acinar cell carcinoma of the pancreas, mainly through gene loss and promoter hypermethylation.

    PubMed

    Furlan, Daniela; Sahnane, Nora; Bernasconi, Barbara; Frattini, Milo; Tibiletti, Maria Grazia; Molinari, Francesca; Marando, Alessandro; Zhang, Lizhi; Vanoli, Alessandro; Casnedi, Selenia; Adsay, Volkan; Notohara, Kenji; Albarello, Luca; Asioli, Sofia; Sessa, Fausto; Capella, Carlo; La Rosa, Stefano

    2014-05-01

    Genetic and epigenetic alterations involved in the pathogenesis of pancreatic acinar cell carcinomas (ACCs) are poorly characterized, including the frequency and role of gene-specific hypermethylation, chromosome aberrations, and copy number alterations (CNAs). A subset of ACCs is known to show alterations in the APC/β-catenin pathway which includes mutations of APC gene. However, it is not known whether, in addition to mutation, loss of APC gene function can occur through alternative genetic and epigenetic mechanisms such as gene loss or promoter methylation. We investigated the global methylation profile of 34 tumor suppressor genes, CNAs of 52 chromosomal regions, and APC gene alterations (mutation, methylation, and loss) together with APC mRNA level in 45 ACCs and related peritumoral pancreatic tissues using methylation-specific multiplex ligation probe amplification (MS-MLPA), fluorescence in situ hybridization (FISH), mutation analysis, and reverse transcription-droplet digital PCR. ACCs did not show an extensive global gene hypermethylation profile. RASSF1 and APC were the only two genes frequently methylated. APC mutations were found in only 7 % of cases, while APC loss and methylation were more frequently observed (48 and 56 % of ACCs, respectively). APC mRNA low levels were found in 58 % of cases and correlated with CNAs. In conclusion, ACCs do not show extensive global gene hypermethylation. APC alterations are frequently involved in the pathogenesis of ACCs mainly through gene loss and promoter hypermethylation, along with reduction of APC mRNA levels.

  12. Survival in patchy landscapes: the interplay between dispersal, habitat loss and fragmentation

    PubMed Central

    Niebuhr, Bernardo B. S.; Wosniack, Marina E.; Santos, Marcos C.; Raposo, Ernesto P.; Viswanathan, Gandhimohan M.; da Luz, Marcos G. E.; Pie, Marcio R.

    2015-01-01

    Habitat loss and fragmentation are important factors determining animal population dynamics and spatial distribution. Such landscape changes can lead to the deleterious impact of a significant drop in the number of species, caused by critically reduced survival rates for organisms. In order to obtain a deeper understanding of the threeway interplay between habitat loss, fragmentation and survival rates, we propose here a spatially explicit multi-scaled movement model of individuals that search for habitat. By considering basic ecological processes, such as predation, starvation (outside the habitat area), and competition, together with dispersal movement as a link among habitat areas, we show that a higher survival rate is achieved in instances with a lower number of patches of larger areas. Our results demonstrate how movement may counterbalance the effects of habitat loss and fragmentation in altered landscapes. In particular, they have important implications for conservation planning and ecosystem management, including the design of specific features of conservation areas in order to enhance landscape connectivity and population viability. PMID:26148488

  13. Costs of landscape silviculture for fire and habitat management.

    Treesearch

    S. Hummel; D.E. Calkin

    2005-01-01

    In forest reserves of the U.S. Pacific Northwest, management objectives include protecting late-semi habitat structure by reducing the threat of large-scale disturbances like wildfire. We simulated how altering within- and among-stand structure with silvicultural treatments of differing intensity affected late-seral forest (LSF) structure and fire threat (FT) reduction...

  14. Making habitat connectivity a reality.

    PubMed

    Keeley, Annika T H; Basson, Galli; Cameron, D Richard; Heller, Nicole E; Huber, Patrick R; Schloss, Carrie A; Thorne, James H; Merenlender, Adina M

    2018-06-19

    For over 40 years, habitat corridors have been a solution for sustaining wildlife in fragmented landscapes, and now are often suggested as a climate adaptation strategy. However, while a plethora of connectivity plans exist, protecting and restoring habitat connectivity through on-the-ground action has been slow. We identified implementation challenges and opportunities through a literature review of project implementation, a science-practice workshop, and interviews with conservation professionals. Our research indicates that connectivity challenges and solutions tend to be context-specific, dependent on land ownership patterns, socioeconomic factors, and the policy framework. We found evidence that developing and promoting a common vision shared by a diverse set of stakeholders including nontraditional conservation actors, such as water districts and recreation departments, and through communication among and between partners and the public is key to successful implementation. Other factors that lead to successful implementation include undertaking empirical studies to prioritize and validate corridors and the identification of related co-benefits of corridor projects. Engaging partners involved in land management and planning, such as non-governmental conservation organizations, public agencies, and private landowners is critical to effective strategy implementation. A clear regulatory framework including unambiguous connectivity conservation mandates would increase public resource allocation, and incentive programs are needed to promote private sector engagement. We argue that connectivity conservation must more rapidly move from planning to implementation and provide an evidence-based solution made up of key elements for successful on-the-ground connectivity implementation. The components of this new framework constitute the social processes necessary to advance habitat connectivity for biodiversity conservation and resilient landscapes under climate change

  15. Modelling riverine habitat for robust redhorse: assessment for reintroduction of an imperilled species

    USGS Publications Warehouse

    Fisk, J. M.; Kwak, Thomas J.; Heise, R. J.

    2014-01-01

    A critical component of a species reintroduction is assessment of contemporary habitat suitability. The robust redhorse, Moxostoma robustum (Cope), is an imperilled catostomid that occupies a restricted range in the south-eastern USA. A remnant population persists downstream of Blewett Falls Dam, the terminal dam in the Pee Dee River, North Carolina. Reintroduction upstream of Blewett Falls Dam may promote long-term survival of this population. Tillery Dam is the next hydroelectric facility upstream, which includes a 30 rkm lotic reach. Habitat suitability indices developed in the Pee Dee River were applied to model suitable habitat for proposed minimum flows downstream of Tillery Dam. Modelling results indicate that the Tillery reach provides suitable robust redhorse habitat, with spawning habitat more abundant than non-spawning habitat. Sensitivity analyses suggested that suitable water depth and substrate were limiting physical habitat variables. These results can inform decisions on flow regulation and guide planning for reintroduction of the robust redhorse and other species.

  16. Stress physiology of migrant birds during stopover in natural and anthropogenic woodland habitats of the Northern Prairie region.

    PubMed

    Liu, Ming; Swanson, David L

    2014-01-01

    Anthropogenic alterations of woodland habitat may influence stopover biology, which in turn could alter the stress physiology of migratory landbirds. Woodland stopover habitats are scarce in the Northern Prairie region of North America and consist of native riparian corridor woodlands (corridors) and smaller, more isolated woodlots of anthropogenic origin around farmsteads (woodlots). Corridor habitats have been greatly reduced since the time of European settlement, but woodlot habitats have appeared over this same time period. In this study, we compared stopover biology and stress physiology of migratory landbirds using natural and anthropogenic woodland habitats. We first tested for differences between birds in the two habitats for baseline corticosterone (CORTB) and the magnitude of the stress response for individual species, taxonomic families and foraging guilds. Plasma corticosterone increased significantly for all bird groups in both habitats following 30 min of restraint stress (CORT30), and neither CORTB nor the magnitude of the stress response (CORT30 - CORTB) differed significantly between birds in the two habitats. Secondly, because CORTB levels are often elevated and CORT secretion following a stressor is often suppressed for birds in poor body condition, we hypothesized that woodland migrants with higher fattening rates would show reduced CORTB and a robust stress response. We tested this hypothesis by assessing the relationships between plasma corticosterone and plasma metabolites associated with refuelling. We found that CORTB was negatively associated and the magnitude of the stress response positively associated with plasma triglycerides (an indicator of fat deposition), with opposite patterns for corticosterone and plasma β-hydroxybutyrate (an indicator of fat catabolism). These data suggest that both corridor and woodlot habitats serve as effective stopover habitat and that the reduction of corridor habitat and increased reliance on

  17. Evaluating timber harvesting impacts on wildlife habitat suitability using FOREX

    Treesearch

    Chris B. LeDoux

    1997-01-01

    Precommercial, commercial, and final harvesting operations can impact wildlife habitat suitability by altering the vegetation composition on a given site. Harvesting operations remove trees and many times provide the necessary perturbation to trigger successional conditions different from those that existed prior to the harvest. Although these new successional changes...

  18. Terrestrial habitat selection and strong density-dependent mortality in recently metamorphosed amphibians.

    PubMed

    Patrick, David A; Harper, Elizabeth B; Hunter, Malcolm L; Calhoun, Aram J K

    2008-09-01

    To predict the effects of terrestrial habitat change on amphibian populations, we need to know how amphibians respond to habitat heterogeneity, and whether habitat choice remains consistent throughout the life-history cycle. We conducted four experiments to evaluate how the spatial distribution of juvenile wood frogs, Rana sylvatica (including both overall abundance and localized density), was influenced by habitat choice and habitat structure, and how this relationship changed with spatial scale and behavioral phase. The four experiments included (1) habitat manipulation on replicated 10-ha landscapes surrounding breeding pools; (2) short-term experiments with individual frogs emigrating through a manipulated landscape of 1 m wide hexagonal patches; and habitat manipulations in (3) small (4-m2); and (4) large (100-m2) enclosures with multiple individuals to compare behavior both during and following emigration. The spatial distribution of juvenile wood frogs following emigration resulted from differences in the scale at which juvenile amphibians responded to habitat heterogeneity during active vs. settled behavioral phases. During emigration, juvenile wood frogs responded to coarse-scale variation in habitat (selection between 2.2-ha forest treatments) but not to fine-scale variation. After settling, however, animals showed habitat selection at much smaller scales (2-4 m2). This resulted in high densities of animals in small patches of suitable habitat where they experienced rapid mortality. No evidence of density-dependent habitat selection was seen, with juveniles typically choosing to remain at extremely high densities in high-quality habitat, rather than occupying low-quality habitat. These experiments demonstrate how prediction of the terrestrial distribution of juvenile amphibians requires understanding of the complex behavioral responses to habitat heterogeneity. Understanding these patterns is important, given that human alterations to amphibian habitats

  19. Architectural considerations for lunar long duration habitat

    NASA Astrophysics Data System (ADS)

    Bahrami, Payam

    The future of space exploration science and technology is expected to move toward long duration missions. During this long duration missions the most important factor to success will be the habitation system, the place that crew will live and work. The broad range of future space exploration, new advances in technology and increasing demand for space travel and space tourism will create great opportunities for architects to use their special abilities and skills in the realm of space. The lunar habitat is defined as a multidisciplinary task and cannot be considered an independent project from the main module. Therefore, habitability will become the most important aspect of future human exploration. A successful design strategy should integrate architecture, structure and other disciplines and should bring in elements such as psychological and physiological factors, human interfaces, and privacy. The current research provides "Habitat Architectural Design System (HADS)" in order to evaluate lunar habitat concepts based on habitability, functional optimization, and human factors. HADS helps to promote parametric studied and evaluation of habitat concepts. It will provide a guideline dependent upon mission objectives to standardize architectural needs within the engineering applications and scientific demands. The significance of this research is the process of developing lunar habitat concepts using an architectural system to evaluate the quality of each concept via habitability aspects. This process can be employed during the early stage of design development and is flexible enough to be adjusted by different parameters according to the objectives of lunar mission, limitations, and cost. It also emphasizes the importance of architecture involvement in space projects, especially habitats.

  20. Quantifying habitat benefits of channel reconfigurations on a highly regulated river system, Lower Missouri River, USA

    USGS Publications Warehouse

    Erwin, Susannah O.; Jacobson, Robert B.; Elliott, Caroline M.

    2017-01-01

    We present a quantitative analysis of habitat availability in a highly regulated lowland river, comparing a restored reach with two reference reaches: an un-restored, channelized reach, and a least-altered reach. We evaluate the effects of channel modifications in terms of distributions of depth and velocity as well as distributions and availability of habitats thought to be supportive of an endangered fish, the pallid sturgeon (Scaphirhynchus albus). It has been hypothesized that hydraulic conditions that support food production and foraging may limit growth and survival of juvenile pallid sturgeon. To evaluate conditions that support these habitats, we constructed two-dimensional hydrodynamic models for the three study reaches, two located in the Lower Missouri River (channelized and restored reaches) and one in the Yellowstone River (least-altered reach). Comparability among the reaches was improved by scaling by bankfull discharge and bankfull channel area. The analysis shows that construction of side-channel chutes and increased floodplain connectivity increase the availability of foraging habitat, resulting in a system that is more similar to the reference reach on the Yellowstone River. The availability of food-producing habitat is low in all reaches at flows less than bankfull, but the two reaches in the Lower Missouri River – channelized and restored – display a threshold-like response as flows overtop channel banks, reflecting the persistent effects of channelization on hydraulics in the main channel. These high lateral gradients result in punctuated ecological events corresponding to flows in excess of bankfull discharge. This threshold effect in the restored reach remains distinct from that of the least-altered reference reach, where hydraulic changes are less abrupt and overbank flows more gradually inundate the adjacent floodplain. The habitat curves observed in the reference reach on the Yellowstone River may not be attainable within the

  1. Habitat degradation affects the summer activity of polar bears.

    PubMed

    Ware, Jasmine V; Rode, Karyn D; Bromaghin, Jeffrey F; Douglas, David C; Wilson, Ryan R; Regehr, Eric V; Amstrup, Steven C; Durner, George M; Pagano, Anthony M; Olson, Jay; Robbins, Charles T; Jansen, Heiko T

    2017-05-01

    Understanding behavioral responses of species to environmental change is critical to forecasting population-level effects. Although climate change is significantly impacting species' distributions, few studies have examined associated changes in behavior. Polar bear (Ursus maritimus) subpopulations have varied in their near-term responses to sea ice decline. We examined behavioral responses of two adjacent subpopulations to changes in habitat availability during the annual sea ice minimum using activity data. Location and activity sensor data collected from 1989 to 2014 for 202 adult female polar bears in the Southern Beaufort Sea (SB) and Chukchi Sea (CS) subpopulations were used to compare activity in three habitat types varying in prey availability: (1) land; (2) ice over shallow, biologically productive waters; and (3) ice over deeper, less productive waters. Bears varied activity across and within habitats with the highest activity at 50-75% sea ice concentration over shallow waters. On land, SB bears exhibited variable but relatively high activity associated with the use of subsistence-harvested bowhead whale carcasses, whereas CS bears exhibited low activity consistent with minimal feeding. Both subpopulations had fewer observations in their preferred shallow-water sea ice habitats in recent years, corresponding with declines in availability of this substrate. The substantially higher use of marginal habitats by SB bears is an additional mechanism potentially explaining why this subpopulation has experienced negative effects of sea ice loss compared to the still-productive CS subpopulation. Variability in activity among, and within, habitats suggests that bears alter their behavior in response to habitat conditions, presumably in an attempt to balance prey availability with energy costs.

  2. Macroalgal Composition Determines the Structure of Benthic Assemblages Colonizing Fragmented Habitats.

    PubMed

    Matias, Miguel G; Arenas, Francisco; Rubal, Marcos; Pinto, Isabel S

    2015-01-01

    Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats.

  3. Highly dynamic biological seabed alterations revealed by side scan sonar tracking of Lanice conchilega beds offshore the island of Sylt (German Bight)

    NASA Astrophysics Data System (ADS)

    Heinrich, C.; Feldens, P.; Schwarzer, K.

    2017-06-01

    Hydroacoustic surveys are common tools for habitat investigation and monitoring that aid in the realisation of the aims of the EU Marine Directives. However, the creation of habitat maps is difficult, especially when benthic organisms densely populate the seafloor. This study assesses the sensitivity of entropy and homogeneity image texture parameters derived from backscatter strength data to benthic habitats dominated by the tubeworm Lanice conchilega. Side scan sonar backscatter surveys were carried out in 2010 and 2011 in the German Bight (southern North Sea) at two sites approx. 20 km offshore of the island of Sylt. Abiotic and biotic seabed facies, such as sorted bedforms, areas of fine to medium sand and L. conchilega beds with different tube densities, were identified and characterised based on manual expert analysis and image texture analysis. Ground truthing was performed by grab sampling and underwater video observations. Compared to the manual expert analysis, the k- means classification of image textures proves to be a semi-automated method to investigate small-scale differences in a biologically altered seabed from backscatter data. The texture parameters entropy and homogeneity appear linearly interrelated with tube density, the former positively and the latter negatively. Reinvestigation of one site after 1 year showed an extensive change in the distribution of the L. conchilega-altered seabed. Such marked annual fluctuations in L. conchilega tube cover demonstrate the need for dense time series and high spatial coverage to meaningfully monitor ecological patterns on the seafloor with acoustic backscatter methods in the study region and similar settings worldwide, particularly because the sand mason plays a pivotal role in promoting biodiversity. In this context, image texture analysis provides a cost-effective and reproducible method to track biologically altered seabeds from side scan sonar backscatter signatures.

  4. Mining-caused changes to habitat structure affect amphibian and reptile population ecology more than metal pollution.

    PubMed

    Sasaki, Kiyoshi; Lesbarrères, David; Watson, Glen; Litzgus, Jacqueline

    2015-12-01

    Emissions from smelting not only contaminate water and soil with metals, but also induce extensive forest dieback and changes in resource availability and microclimate. The relative effects of such co-occurring stressors are often unknown, but this information is imperative in developing targeted restoration strategies. We assessed the role and relative effects of structural alterations of terrestrial habitat and metal pollution caused by century-long smelting operations on amphibian and reptile communities by collecting environmental and time- and area-standardized multivariate abundance data along three spatially replicated impact gradients. Overall, species richness, diversity, and abundance declined progressively with increasing levels of metals (As, Cu, and Ni) and soil temperature (T(s)) and decreasing canopy cover, amount of coarse woody debris (CWD), and relative humidity (RH). The composite habitat variable (which included canopy cover, CWD, T(s), and RH) was more strongly associated with most response metrics than the composite metal variable (As, Cu, and Ni), and canopy cover alone explained 19-74% of the variance. Moreover, species that use terrestrial habitat for specific behaviors (e.g., hibernation, dispersal), especially forest-dependent species, were more severely affected than largely aquatic species. These results suggest that structural alterations of terrestrial habitat and concomitant changes in the resource availability and microclimate have stronger effects than metal pollution per se. Furthermore, much of the variation in response metrics was explained by the joint action of several environmental variables, implying synergistic effects (e.g., exacerbation of metal toxicity by elevated temperatures in sites with reduced canopy cover). We thus argue that the restoration of terrestrial habitat conditions is a key to successful recovery of herpetofauna communities in smelting-altered landscapes.

  5. Seed bank dynamics govern persistence of Brassica hybrids in crop and natural habitats.

    PubMed

    Hooftman, Danny A P; Bullock, James M; Morley, Kathryn; Lamb, Caroline; Hodgson, David J; Bell, Philippa; Thomas, Jane; Hails, Rosemary S

    2015-01-01

    Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species. Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa × B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species. The demographic vital rates (i.e. for major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. rapa with B. napus. Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. rapa, could indirectly reduce hybrid populations by blocking hybrid replenishment. © The Author

  6. HABSEED: a Simple Spatially Explicit Meta-Populations Model Using Remote Sensing Derived Habitat Quality Data

    NASA Astrophysics Data System (ADS)

    Heumann, B. W.; Guichard, F.; Seaquist, J. W.

    2005-05-01

    The HABSEED model uses remote sensing derived NPP as a surrogate for habitat quality as the driving mechanism for population growth and local seed dispersal. The model has been applied to the Sahel region of Africa. Results show that the functional response of plants to habitat quality alters population distribution. Plants more tolerant of medium quality habitat have greater distributions to the North while plants requiring only the best habitat are limited to the South. For all functional response types, increased seed production results in diminishing returns. Functional response types have been related to life history tradeoffs and r-K strategies based on the results. Results are compared to remote sensing derived vegetation land cover.

  7. Habitat degradation may affect niche segregation patterns in lizards

    NASA Astrophysics Data System (ADS)

    Pelegrin, N.; Chani, J. M.; Echevarria, A. L.; Bucher, E. H.

    2013-08-01

    Lizards partition resources in three main niche dimensions: time, space and food. Activity time and microhabitat use are strongly influenced by thermal environment, and may differ between species according to thermal requirements and tolerance. As thermal characteristics are influenced by habitat structure, microhabitat use and activity of lizards can change in disturbed habitats. We compared activity and microhabitat use of two abundant lizard species of the Semi-arid Chaco of Argentina between a restored and a highly degraded Chaco forest, to determine how habitat degradation affects lizard segregation in time and space, hypothesizing that as activity and microhabitat use of lizards are related to habitat structure, activity and microhabitat use of individual species can be altered in degraded habitats, thus changing segregation patterns between them. Activity changed from an overlapped pattern in a restored forest to a segregated pattern in a degraded forest. A similar trend was observed for microhabitat use, although to a less extent. No correlation was found between air temperature and lizard activity, but lizard activity varied along the day and among sites. Contrary to what was believed, activity patterns of neotropical diurnal lizards are not fixed, but affected by multiple factors related to habitat structure and possibly to interspecific interactions. Changes in activity patterns and microhabitat use in degraded forests may have important implications when analyzing the effects of climate change on lizard species, due to synergistic effects.

  8. Climate-Driven Effects of Fire on Winter Habitat for Caribou in the Alaskan-Yukon Arctic

    PubMed Central

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas. PMID

  9. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    PubMed

    Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  10. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic

    USGS Publications Warehouse

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  11. Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats.

    PubMed

    McGregor, Hugh W; Legge, Sarah; Jones, Menna E; Johnson, Christopher N

    2014-01-01

    Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores.

  12. Landscape Management of Fire and Grazing Regimes Alters the Fine-Scale Habitat Utilisation by Feral Cats

    PubMed Central

    McGregor, Hugh W.; Legge, Sarah; Jones, Menna E.; Johnson, Christopher N.

    2014-01-01

    Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores. PMID:25329902

  13. Molecular gut-content analysis of a predator assemblage reveals the effect of habitat manipulation on biological control in the field

    USDA-ARS?s Scientific Manuscript database

    Despite growing evidence that habitat manipulation can alter predators’ impact on target prey consumption, few studies have directly examined the effect of habitat context on conservation biological control in the field. Because of contradictory evidence in the literature for the outcome of habita...

  14. Seasonal soil moisture patterns in contrasting habitats in the Willamette Valley, Oregon

    EPA Science Inventory

    Changing seasonal soil moisture regimes caused by global warming may alter plant community composition in sensitive habitats such as wetlands and oak savannas. To evaluate such changes, an understanding of typical seasonal soil moisture regimes is necessary. The primary objective...

  15. Assessing the Effects of Water Right Purchases on Stream Temperatures and Fish Habitat

    NASA Astrophysics Data System (ADS)

    Elmore, L.; Null, S. E.

    2012-12-01

    Warm stream temperature and low flow conditions are limiting factors for native trout species in Nevada's Walker River. Water rights purchases are being considered to increase instream flow and improve habitat conditions. However, the effect of water rights purchases on stream temperatures and fish habitat have yet to be assessed. Manipulating flow conditions affect stream temperatures by altering water depth, velocity, and thermal mass. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate flows and stream temperatures in the Walker River. The model is developed for two wet years (2010-2011). Study results highlight reaches with cold-water habitat that is suitable for native trout species. Previous research on the Walker River has evaluated instream flow changes with water rights purchases. This study incorporates stream temperatures as a proxy for trout habitat, and thus explicitly incorporates water quality and fish habitat into decision-making regarding water rights purchases. Walker River

  16. CUMULATIVE EFFECTS OF COASTAL HABITAT ALTERATIONS ON FISHERY RESOURCES: TOWARD PREDICTION AT REGIONAL SCALES

    EPA Science Inventory

    The integrity of aquatic ecosystems and habitats at the land-sea interface is challeneged by several forces, ranging from plot scale destruction and disturbance, to watershed scale perturbations, to global changes in climate and human demographis. The scientific challenge is to ...

  17. The influence of habitat on the evolution of plants: a case study across Saxifragales

    PubMed Central

    de Casas, Rafael Rubio; Mort, Mark E.; Soltis, Douglas E.

    2016-01-01

    Background and Aims Organismal evolution tends to be closely associated with ecological conditions. However, the extent to which this association constrains adaptation or diversification into new habitats remains unclear. We studied habitat evolution in the hyper-diverse angiosperm clade Saxifragales. Methods We used species-level phylogenies for approx. 950 species to analyse the evolution of habitat shifts as well as their influence on plant diversification. We combined habitat characterization based on floristic assignments and state-of-the art phylogenetic comparative methods to estimate within- and across-habitat diversification patterns. Key Results Our analyses showed that Saxifragales diversified into multiple habitats from a forest-inhabiting ancestor and that this diversification is governed by relatively rare habitat shifts. Lineages are likely to stay within inferred ancestral ecological conditions. Adaptation to some habitat types (e.g. aquatic, desert) may be canalizing events that lineages do not escape. Although associations between increased diversification rates and shifts in habitat preferences are occasionally observed, extreme macroevolutionary rates are closely associated with specific habitats. Lineages occurring in shrubland, and especially tundra and rock cliffs, exhibit comparatively high diversification, whereas forest, grassland, desert and aquatic habitats are associated with low diversification. Conclusions The likelihood of occupation of new habitats appears to be asymmetric. Shifts to aquatic and desert habitats may be canalizing events. Other habitats, such as tundra, might act as evolutionary sources, while forests provide the only habitat seemingly colonized easily by lineages originating elsewhere. However, habitat shifts are very rare, and any major environmental alteration is expected to have dramatic evolutionary consequences. PMID:27551029

  18. Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation.

    PubMed

    Gao, Lexuan; Geng, Yupeng; Li, Bo; Chen, Jiakuan; Yang, Ji

    2010-11-01

    Alternanthera philoxeroides (alligator weed) is an invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation in its introduced range. The mechanisms underpinning the wide range of phenotypic variation and rapid adaptation to novel and changing environments remain uncharacterized. In this study, we examined the epigenetic variation and its correlation with phenotypic variation in plants exposed to natural and manipulated environmental variability. Genome-wide methylation profiling using methylation-sensitive amplified fragment length polymorphism (MSAP) revealed considerable DNA methylation polymorphisms within and between natural populations. Plants of different source populations not only underwent significant morphological changes in common garden environments, but also underwent a genome-wide epigenetic reprogramming in response to different treatments. Methylation alterations associated with response to different water availability were detected in 78.2% (169/216) of common garden induced polymorphic sites, demonstrating the environmental sensitivity and flexibility of the epigenetic regulatory system. These data provide evidence of the correlation between epigenetic reprogramming and the reversible phenotypic response of alligator weed to particular environmental factors. © 2010 Blackwell Publishing Ltd.

  19. Using urban forest assessment tools to model bird habitat potential

    Treesearch

    Susannah B. Lerman; Keith H. Nislow; David J. Nowak; Stephen DeStefano; David I. King; D. Todd Jones-Farrand

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat...

  20. Landscape Conservation of Aquatic Habitats Promotes Watershed-scale Biological, Biogeochemical, and Hydrological Functions

    EPA Science Inventory

    Wetlands are exceptionally productive landscape features that provide critical habitat for endemic species, threatened/endangered and migratory animals, store floodwaters and maintain baseflows in stream systems, recharge groundwaters, and biogeochemically and physically affect n...

  1. Physical habitat and water quality correlates of crayfish distributions in a mined watershed

    USGS Publications Warehouse

    Welsh, Stuart A.; Loughman, Zachary J.

    2014-01-01

    In mined watersheds, water quality alters aquatic faunas, but few studies have focused on associations between stream habitat and crayfish distributions. We examined associations of water quality and physical habitat quality on presence/absence of six crayfish species in the upper Kanawha River drainage of southern West Virginia, USA, a region with a long history of surface and mountaintop removal mining of coal. Data supported an association of physical habitat quality with the presence of four species (Cambarus carinirostris, Cambarus robustus, Cambarus cf. sciotensis, and Orconectes sanbornii). Cambarus bartonii cavatus and the non-native Orconectes virilis were associated with lower quality physical habitat than that of the other four species. Relative to other species, C. b. cavatus was associated with the lowest conductivity values, whereas O. virilis was associated with the highest conductivity values. Secondary and tertiary burrowers were generally associated with relatively high-quality physical habitat. However, C. b. cavatus, a crayfish known to burrow extensively in headwater streams, was associated with the lowest quality physical habitat. Physical habitat quality was generally supported over stream conductivity as a variable influencing crayfish distributions. Our data demonstrate the importance of stream habitat quality when assessing crayfish assemblages within mined watersheds.

  2. Altered Gene Expression Patterns During the Initiation and Promotion Stages of Neonatally Diethylstilbestrol-Induced Hyperplasia/Dysplasia/Neoplasia in the Hamster Uterus

    PubMed Central

    Hendry, William J.; Hariri, Hussam Y.; Alwis, Imala D.; Gunewardena, Sumedha S.; Hendry, Isabel R.

    2014-01-01

    Neonatal treatment of hamsters with diethylstilbestrol (DES) induces uterine hyperplasia/dysplasia/neoplasia (endometrial adenocarcinoma) in adult animals. We subsequently determined that the neonatal DES exposure event directly and permanently disrupts the developing hamster uterus (initiation stage) so that it responds abnormally when it is stimulated with estrogen in adulthood (promotion stage). To identify candidate molecular elements involved in progression of the disruption/neoplastic process, we performed: 1) immunoblot analyses and 2) microarray profiling (Affymetrix Gene Chip System) on sets of uterine protein and RNA extracts, respectively, and 3) immunohistochemical analysis on uterine sections; all from both initiation stage and promotion stage groups of animals. Here we report that: 1) progression of the neonatal DES-induced hyperplasia/dysplasia/neoplasia phenomenon in the hamster uterus involves a wide spectrum of specific gene expression alterations and 2) the gene products involved and their manner of altered expression differ dramatically during the initiation vs. promotion stages of the phenomenon. Particularly interesting changes included members in the functional categories of nuclear receptors (progesterone receptor), cell-cell interactions (E-cadherin, connexins), cytokine action (IRF-1, Stat5A), growth factor action (IRS-1), extracellular matrix component (tenascin-C), transcription factors (Nrf2, Sp1), and multi-functional nuclear protein (SAFB1). PMID:25242112

  3. Habitat and American Families: A Social-Psychological Over-View

    ERIC Educational Resources Information Center

    Chilman, Catherine S.

    1978-01-01

    Improved housing fails to promote increased social interaction, educational achievement, lower delinquency rates, or better family relationships. Habitat aspirations and housing satisfactions vary among people, dependent on the values and norms of their social reference groups, as well as individual roles, family structure and stage in the life…

  4. Habitat degradation affects the summer activity of polar bears

    USGS Publications Warehouse

    Ware, Jasmine V.; Rode, Karyn D.; Bromaghin, Jeffrey F.; Douglas, David C.; Wilson, Ryan R.; Regehr, Eric V.; Amstrup, Steven C.; Durner, George M.; Pagano, Anthony M.; Olson, Jay; Robbins, Charles T.; Jansen, Heiko T

    2017-01-01

    Understanding behavioral responses of species to environmental change is critical to forecasting population-level effects. Although climate change is significantly impacting species’ distributions, few studies have examined associated changes in behavior. Polar bear (Ursus maritimus) subpopulations have varied in their near-term responses to sea ice decline. We examined behavioral responses of two adjacent subpopulations to changes in habitat availability during the annual sea ice minimum using activity data. Location and activity sensor data collected from 1989 to 2014 for 202 adult female polar bears in the Southern Beaufort Sea (SB) and Chukchi Sea (CS) subpopulations were used to compare activity in three habitat types varying in prey availability: (1) land; (2) ice over shallow, biologically productive waters; and (3) ice over deeper, less productive waters. Bears varied activity across and within habitats with the highest activity at 50–75% sea ice concentration over shallow waters. On land, SB bears exhibited variable but relatively high activity associated with the use of subsistence-harvested bowhead whale carcasses, whereas CS bears exhibited low activity consistent with minimal feeding. Both subpopulations had fewer observations in their preferred shallow-water sea ice habitats in recent years, corresponding with declines in availability of this substrate. The substantially higher use of marginal habitats by SB bears is an additional mechanism potentially explaining why this subpopulation has experienced negative effects of sea ice loss compared to the still-productive CS subpopulation. Variability in activity among, and within, habitats suggests that bears alter their behavior in response to habitat conditions, presumably in an attempt to balance prey availability with energy costs.

  5. Habitat complexity and sex-dependent predation of mosquito larvae in containers

    PubMed Central

    Griswold, Marcus W.; Lounibos, L. Philip

    2012-01-01

    Studies in aquatic systems have shown that habitat complexity may provide refuge or reduce the number of encounters prey have with actively searching predators. For ambush predators, habitat complexity may enhance or have no effect on predation rates because it conceals predators, reduces prey detection by predators, or visually impairs both predators and prey. We investigated the effects of habitat complexity and predation by the ambush predators Toxorhynchites rutilus and Corethrella appendiculata on their mosquito prey Aedes albopictus and Ochlerotatus triseriatus in container analogs of treeholes. As in other ambush predator-prey systems, habitat complexity did not alter the effects of T. rutilus or C. appendiculata whose presence decreased prey survivorship, shortened development time, and increased adult size compared to treatments where predators were absent. Faster growth and larger size were due to predator-mediated release from competition among surviving prey. Male and female prey survivorship were similar in the absence of predators, however when predators were present, survivorship of both prey species was skewed in favor of males. We conclude that habitat complexity is relatively unimportant in shaping predator-prey interactions in this treehole community, where predation risk differs between prey sexes. PMID:16041612

  6. Coral reef habitat response to climate change scenarios.

    PubMed

    Freeman, Lauren A; Kleypas, Joan A; Miller, Arthur J

    2013-01-01

    Coral reef ecosystems are threatened by both climate change and direct anthropogenic stress. Climate change will alter the physico-chemical environment that reefs currently occupy, leaving only limited regions that are conducive to reef habitation. Identifying these regions early may aid conservation efforts and inform decisions to transplant particular coral species or groups. Here a species distribution model (Maxent) is used to describe habitat suitable for coral reef growth. Two climate change scenarios (RCP4.5, RCP8.5) from the National Center for Atmospheric Research's Community Earth System Model were used with Maxent to determine environmental suitability for corals (order Scleractinia). Environmental input variables best at representing the limits of suitable reef growth regions were isolated using a principal component analysis. Climate-driven changes in suitable habitat depend strongly on the unique region of reefs used to train Maxent. Increased global habitat loss was predicted in both climate projections through the 21(st) century. A maximum habitat loss of 43% by 2100 was predicted in RCP4.5 and 82% in RCP8.5. When the model is trained solely with environmental data from the Caribbean/Atlantic, 83% of global habitat was lost by 2100 for RCP4.5 and 88% was lost for RCP8.5. Similarly, global runs trained only with Pacific Ocean reefs estimated that 60% of suitable habitat would be lost by 2100 in RCP4.5 and 90% in RCP8.5. When Maxent was trained solely with Indian Ocean reefs, suitable habitat worldwide increased by 38% in RCP4.5 by 2100 and 28% in RCP8.5 by 2050. Global habitat loss by 2100 was just 10% for RCP8.5. This projection suggests that shallow tropical sites in the Indian Ocean basin experience conditions today that are most similar to future projections of worldwide conditions. Indian Ocean reefs may thus be ideal candidate regions from which to select the best strands of coral for potential re-seeding efforts.

  7. Macroalgal Composition Determines the Structure of Benthic Assemblages Colonizing Fragmented Habitats

    PubMed Central

    Matias, Miguel G.; Arenas, Francisco; Rubal, Marcos; Pinto, Isabel S.

    2015-01-01

    Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats. PMID:26554924

  8. Managing a mosaic of habitats for avifauna of the East Asian Australasian Flyover

    EPA Science Inventory

    Non-native plant invasions which alter the existing habitat diversity of landscapes, challenge environmental managers to develop adaptive management approaches to best provide for global biodiversity in the Anthropocene. Invasive and non-native Spartina alterniflora has spread an...

  9. A review of fire effects on bats and bat habitat in the eastern oaks region

    Treesearch

    Roger W. Perry

    2012-01-01

    Fire is increasingly being used in oak forests to promote oak regeneration, improve wildlife habitat, and reduce hazardous fuel loads. Although recent research has begun to shed light on the relationships among fire, bats, and bat habitat, these interactions are not yet fully understood. Fire may affect bats directly through heat and smoke during the burning process or...

  10. A review of fire effects on bats and bat habitat in the eastern oak region

    Treesearch

    Roger W. Perry

    2012-01-01

    Fire is increasingly being used in oak forests to promote oak regeneration, improve wildlife habitat, and reduce hazardous fuel loads. Although recent research has begun to shed light on the relationships among fire, bats, and bat habitat, these interactions are not yet fully understood. Fire may affect bats directly through heat and smoke during the burning process or...

  11. The influence of habitat on the evolution of plants: a case study across Saxifragales.

    PubMed

    de Casas, Rafael Rubio; Mort, Mark E; Soltis, Douglas E

    2016-12-01

    Organismal evolution tends to be closely associated with ecological conditions. However, the extent to which this association constrains adaptation or diversification into new habitats remains unclear. We studied habitat evolution in the hyper-diverse angiosperm clade Saxifragales. We used species-level phylogenies for approx. 950 species to analyse the evolution of habitat shifts as well as their influence on plant diversification. We combined habitat characterization based on floristic assignments and state-of-the art phylogenetic comparative methods to estimate within- and across-habitat diversification patterns. Our analyses showed that Saxifragales diversified into multiple habitats from a forest-inhabiting ancestor and that this diversification is governed by relatively rare habitat shifts. Lineages are likely to stay within inferred ancestral ecological conditions. Adaptation to some habitat types (e.g. aquatic, desert) may be canalizing events that lineages do not escape. Although associations between increased diversification rates and shifts in habitat preferences are occasionally observed, extreme macroevolutionary rates are closely associated with specific habitats. Lineages occurring in shrubland, and especially tundra and rock cliffs, exhibit comparatively high diversification, whereas forest, grassland, desert and aquatic habitats are associated with low diversification. The likelihood of occupation of new habitats appears to be asymmetric. Shifts to aquatic and desert habitats may be canalizing events. Other habitats, such as tundra, might act as evolutionary sources, while forests provide the only habitat seemingly colonized easily by lineages originating elsewhere. However, habitat shifts are very rare, and any major environmental alteration is expected to have dramatic evolutionary consequences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  12. Temporal and Spatial Scales Matter: Circannual Habitat Selection by Bird Communities in Vineyards

    PubMed Central

    Arlettaz, Raphaël; Korner, Pius

    2017-01-01

    Vineyards are likely to be regionally important for wildlife, but we lack biodiversity studies in this agroecosystem which is undergoing a rapid management revolution. As vine cultivation is restricted to arid and warm climatic regions, biodiversity-friendly management would promote species typical of southern biomes. Vineyards are often intensively cultivated, mostly surrounded by few natural features and offering a fairly mineral appearance with little ground vegetation cover. Ground vegetation cover and composition may further strongly vary with respect to season, influencing patterns of habitat selection by ecological communities. We investigated season-specific bird-habitat associations to highlight the importance of semi-natural habitat features and vineyard ground vegetation cover throughout the year. Given that avian habitat selection varies according to taxa, guilds and spatial scale, we modelled bird-habitat associations in all months at two spatial scales using mixed effects regression models. At the landscape scale, birds were recorded along 10 1-km long transects in Southwestern Switzerland (February 2014 –January 2015). At the field scale, we compared the characteristics of visited and unvisited vineyard fields (hereafter called parcels). Bird abundance in vineyards tripled in winter compared to summer. Vineyards surrounded by a greater amount of hedges and small woods harboured higher bird abundance, species richness and diversity, especially during the winter season. Regarding ground vegetation, birds showed a season-specific habitat selection pattern, notably a marked preference for ground-vegetated parcels in winter and for intermediate vegetation cover in spring and summer. These season-specific preferences might be related to species-specific life histories: more insectivorous, ground-foraging species occur during the breeding season whereas granivores predominate in winter. These results highlight the importance of investigating habitat

  13. Mitigation bank promotes research on restoring coastal plain depression wetlands (South Carolina)

    Treesearch

    Christopher D. Barton; Diane De Steven; John C. Kilgo

    2004-01-01

    Carolina bays and smaller depression wetlands support diverse plant communities and provide critical habitat for semi-aquatic fauna throughout the Coastal Plain region of the southeastern United States. Historically, many depression wetlands were altered or destroyed by surface ditching, drainage, and agricultural or silviculture uses. These important habitats are now...

  14. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Treesearch

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  15. Ecosystem consequences of plant genetic divergence with colonization of new habitat

    Treesearch

    Liam O. Mueller; Lauren C. Breza; Mark A. Genung; Christian P. Giardina; Nathan E. Stone; Lindsay C. Sidak-Loftis; Joseph D. Busch; David M. Wagner; Joseph K. Bailey; Jennifer A. Schweitzer

    2017-01-01

    When plants colonize new habitats altered by natural or anthropogenic disturbances, those individuals may encounter biotic and abiotic conditions novel to the species, which can cause plant functional trait divergence. Over time, site-driven adaptation can give rise to population-level genetic variation, with consequences for plant community dynamics and...

  16. Breeding population density and habitat use of Swainson's warblers in a Georgia floodplain forest

    USGS Publications Warehouse

    Wright, E.A.

    2002-01-01

    I examined density and habitat use of a Swainson's Warbler (Limnothlypis swainsonii) breeding population in Georgia. This songbird species is inadequately monitored, and may be declining due to anthropogenic alteration of floodplain forest breeding habitats. I used distance sampling methods to estimate density, finding 9.4 singing males/ha (CV = 0.298). Individuals were encountered too infrequently to produce a Iow-variance estimate, and distance sampling thus may be impracticable for monitoring this relatively rare species. I developed a set of multivariate habitat models using binary logistic regression techniques, based on measurement of 22 variables in 56 plots occupied by Swainson's Warblers and 110 unoccupied plots. Occupied areas were characterized by high stem density of cane (Arundinaria gigantea) and other shrub layer vegetation, and presence of abundant and accessible leaf litter. I recommend two habitat models, which correctly classified 87-89% of plots in cross-validation runs, for potential use in habitat assessment at other locations.

  17. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan

    NASA Astrophysics Data System (ADS)

    Basheer, A. K.; Lu, H.; Omer, A.; Ali, A. B.; Abdelgader, A. M. S.

    2015-10-01

    The fate of seasonal rivers ecosystem habitats under climate change essentially depends on the changes in annual recharge, which related to alterations in precipitation and evaporation over the river basin. Therefore the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in Dinder River Basin (DRB), and infer its relative possible effects on the Dinder National Park (DNP) ecosystem habitats in the Sudan. Two global circulation models (GCMs) from Coupled Model Intercomparison Project Phase 5 and two statistical downscaling approaches combined with hydrological model (SWAT) were used to project the climate change conditions over the study periods 2020s, 2050s and 2080s. The results indicated that the climate over the DRB will become warmer and wetter under the most scenarios. The projected precipitation variability mainly depends on the selected GCM and downscaling approach. Moreover, the projected streamflow was more sensitive to rainfall and temperature variation, and will likely increase in this century. In contrast to drought periods during (1960s, 1970s and 1980s), the predicted climate change is likely to affect ecosystems in DNP positively and promote the ecological restoration of the flora and fauna habitats'.

  18. Clackamas/Hood River Habitat Enhancement Program, 1987 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Ken; Cain, Thomas C.; Heller, David A.

    1988-03-01

    Fisheries habitat improvement work is being done on priority drainages in the Clackamas and Rood River sub-basins under program measure 704(c), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program. This report describes the work completed in 1987 for Bonneville Power Administration (BPA) project number 84-11, the Clackamas/Hood River Habitat Enhancement Program. The program is composed of six projects: Collawash River Habitat Improvement Project; Collawash River Falls Passage Improvement Project, Oak Grove Fork Habitat Improvement Project; Lake Branch/West Fork Hood River Habitat Improvement Project; Fifteenmile Creek Habitat Improvement Project; and Abundance, Behavior, andmore » Habitat Utilization by Coho Salmon and Steelhead Trout in Fish Creek, Oregon, As Influenced by Habitat Enhancement. This ongoing program was initiated in 1984, although some of the projects were begun with BPA funding support as early as 1983. The projects are complemented by a variety of habitat improvement and management activities funded from a variety of Forest Service sources. This report describes the activities implemented for five of the six projects. A separate annual report on the 1987 habitat improvement and monitoring/evaluation efforts in the Fish Creek drainage has been prepared. Species for management emphasis include spring chinook and coho salmon, and summer and winter steelhead trout. Project work in 1987 primarily focused on increasing the quantity and quality of available rearing habitat, and improving access at passage barriers. The underlying theme of the improvement work has been to increase habitat diversity through the introduction of ''structure''. Structure provided by logs and boulders serves to deflect, pond, or otherwise disrupt flow patterns within a stream channel. This alteration of flow patterns results in formation of an increased number of habitat niches (i.e. pools, glides, alcoves, etc. ) in which

  19. Shallow-water habitats as sources of fallback foods for hominins.

    PubMed

    Wrangham, Richard; Cheney, Dorothy; Seyfarth, Robert; Sarmiento, Esteban

    2009-12-01

    Underground storage organs (USOs) have been proposed as critical fallback foods for early hominins in savanna, but there has been little discussion as to which habitats would have been important sources of USOs. USOs consumed by hominins could have included both underwater and underground storage organs, i.e., from both aquatic and terrestrial habitats. Shallow aquatic habitats tend to offer high plant growth rates, high USO densities, and relatively continuous USO availability throughout the year. Baboons in the Okavango delta use aquatic USOs as a fallback food, and aquatic or semiaquatic USOs support high-density human populations in various parts of the world. As expected given fossilization requisites, the African early- to mid-Pleistocene shows an association of Homo and Paranthropus fossils with shallow-water and flooded habitats where high densities of plant-bearing USOs are likely to have occurred. Given that early hominins in the tropics lived in relatively dry habitats, while others occupied temperate latitudes, ripe, fleshy fruits of the type preferred by African apes would not normally have been available year round. We therefore suggest that water-associated USOs were likely to have been key fallback foods, and that dry-season access to aquatic habitats would have been an important predictor of hominin home range quality. This study differs from traditional savanna chimpanzee models of hominin origins by proposing that access to aquatic habitats was a necessary condition for adaptation to savanna habitats. It also raises the possibility that harvesting efficiency in shallow water promoted adaptations for habitual bipedality in early hominins.

  20. Relationships between nesting populations of wading birds and habitat features along the Atlantic Coast

    USGS Publications Warehouse

    Erwin, R.M.; Spendelow, J.A.; Geissler, P.H.; Williams, B.K.; Whitman, William R.; Meredith, William H.

    1987-01-01

    Using previously published atlas data for 122 mixed-species wading bird colonies on islands along the Atlantic coast (Maine to Florida, 1976-77), we examined relationships between population sizes of 11 species of egrets, herons, ibises, and wood storks (Mycteria americana) and nine habitat variables. On nautical charts, we measured four island characteristics (area, length, width, shape), three isolation factors (distances to nearest island, mainland, and a water barrier),, and two variables related to potential feeding habitat within 5 km of the center of the colony (wetland area and land-water interface, i.e., the linear distance between the marsh/upland and all water bodies within the same 5-km radius). One univariable and five multivariable .procedures were used to determine which habitat features were best related to population size .(all species combined). Multicollinearity problems among the variables limited interpretation for most procedures. Both univariable and the multivariable procedures indicated that land-water interface was the most important of the nine variables, but for all models, less than 10% of the total variance was explained (rz is less than 0.10). The size of the colony was not related to the amount of wetland area (within 5-km).per se. Colony data showed better 'structure' when examined on the basis of geographic and disturbance gradients. Population sizes of colonies near man-altered habitats were compared with those surrounded by relatively natural habitats in three geographic zones: north, middle, and south. Significant differences were found in colony size among the three zones (south largest) and between disturbance types. Surprisingly, in all three zones, colonies near man-altered areas were larger on average than those near more natural habitats in this region. A possible reason for this difference is suggested.

  1. Larval habitat for the avian malaria vector culex quinquefasciatus (Diptera: Culicidae) in altered mid-elevation mesic-dry forests in Hawai'i

    USGS Publications Warehouse

    Reiter, M.E.; Lapointe, D.A.

    2009-01-01

    Effective management of avian malaria (Plasmodium relictum) in Hawai'i's endemic honeycreepers (Drepanidinae) requires the identification and subsequent reduction or treatment of larval habitat for the mosquito vector, Culex quinquefasciatus (Diptera: Culicidae). We conducted ground surveys, treehole surveys, and helicopter aerial surveys from 20012003 to identify all potential larval mosquito habitat within two 100+ ha mesic-dry forest study sites in Hawai'i Volcanoes National Park, Hawai'i; 'Ainahou Ranch and Mauna Loa Strip Road. At 'Ainahou Ranch, anthropogenic sites (43%) were more likely to contain mosquitoes than naturally occurring (8%) sites. Larvae of Cx. quinquefasciatus were predominately found in anthropogenic sites while Aedes albopictus larvae occurred less frequently in both anthropogenic sites and naturally-occurring sites. Additionally, moderate-size (???20-22,000 liters) anthropogenic potential larval habitat had >50% probability of mosquito presence compared to larger- and smaller-volume habitat (<50%). Less than 20% of trees surveyed at ' Ainahou Ranch had treeholes and few mosquito larvae were detected. Aerial surveys at 'Ainahou Ranch detected 56% (95% CI: 42-68%) of the potential larval habitat identified in ground surveys. At Mauna Loa Strip Road, Cx. quinquefasciatus larvae were only found in the rock holes of small intermittent stream drainages that made up 20% (5 of 25) of the total potential larval habitat. The volume of the potential larval habitat did not influence the probability of mosquito occurrence at Mauna Loa Strip Road. Our results suggest that Cx. quinquefasciatus abundance, and subsequently avian malaria, may be controlled by larval habitat reduction in the mesic-dry landscapes of Hawai'i where anthropogenic sources predominate.

  2. Large herbivores promote habitat specialization and beta diversity of African savanna trees.

    PubMed

    Pringle, Robert M; Prior, Kirsten M; Palmer, Todd M; Young, Truman P; Goheen, Jacob R

    2016-10-01

    Edaphic variation in plant community composition is widespread, yet its underlying mechanisms are rarely understood and often assumed to be physiological. In East African savannas, Acacia tree species segregate sharply across soils of differing parent material: the ant-defended whistling thorn, A. drepanolobium (ACDR), is monodominant on cracking clay vertisols that are nutrient rich but physically stressful, whereas poorly defended species such as A. brevispica (ACBR) dominate on nutrient-poor but otherwise less-stressful sandy loams. Using a series of field experiments, we show that large-mammal herbivory interacts with soil properties to maintain this pattern. In the absence of large herbivores, transplanted saplings of both species established on both soil types. Browsers strongly suppressed survival and growth of ACDR saplings on sandy soil, where resource limitation constrained defensive investment. On clay soil, ACBR saplings established regardless of herbivory regime, but elephants prevented recruitment to maturity, apparently because trees could not tolerate the combination of biotic and abiotic stressors. Hence, each tree species was filtered out of one habitat by browsing in conjunction with different edaphic factors and at different ontogenetic stages. Browser abundance was greater on sandy soil, where trees were less defended, consistent with predicted feedbacks between plant community assembly and herbivore distributions. By exploring two inversely related axes of soil "quality" (abiotic stress and nutrient content), our study extends the range of mechanisms by which herbivores are known to promote edaphic specialization, illustrates how the high cost of a protection mutualism can constrain the realized niche of host trees, and shows that large-scale properties of savanna ecosystems are shaped by species interactions in cryptic ways that mimic simple abiotic determinism. These results suggest that ongoing declines in large-herbivore populations may

  3. Drawdown Effects on Lake and Reservoir Physical Habitat - a National Picture

    EPA Science Inventory

    Structural complexity at the land-water interface of lakes promotes interchange of water, nutrients and energy; and provides diverse habitat for aquatic and terrestrial organisms. Shoreline zones are hot-spots for both biological diversity and human activity. Lake level fluctuat...

  4. Invariant polar bear habitat selection during a period of sea ice loss

    USGS Publications Warehouse

    Wilson, Ryan R.; Regehr, Eric V.; Rode, Karyn D.; St Martin, Michelle

    2016-01-01

    Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears.

  5. Invariant polar bear habitat selection during a period of sea ice loss.

    PubMed

    Wilson, Ryan R; Regehr, Eric V; Rode, Karyn D; St Martin, Michelle

    2016-08-17

    Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears. © 2016 The Author(s).

  6. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska.

    PubMed

    Sloat, Matthew R; Reeves, Gordon H; Christiansen, Kelly R

    2017-02-01

    In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach-scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9-10% and 13-16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher-gradient streams that provide only moderate-quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach-scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream

  7. Periodic habitat loss alters the competitive coexistence between brown trout and bullheads in a small stream over 34 years.

    PubMed

    Elliott, J M

    2006-01-01

    1. Changes in the population density of juvenile sea trout Salmo trutta L. and bullheads Cottus gobio L. were compared in a small stream over 34 years. Both species have a similar diet and obviously live in the same general habitat. Habitat loss was most marked in seven summer droughts: severest in 1976, 1983, 1984, 1995, and less severe but followed by autumn droughts in 1969, 1989 and 1993. The contrasting effects of habitat loss on the two species were examined. 2. For both species, the Ricker curvilinear model significantly fit (P < 0.001) the relationship between initial egg density and survivor density for successive life stages, even though egg densities were much lower for bullheads than trout. These analyses provided evidence for density-dependent population regulation and also identified extreme outliers, most being for year-classes affected by summer droughts. 3. The variable effects of changes in habitable area (= % wettable area in sampling section) were quantified by using the residuals, each residual being the absolute value expressed as a percentage of the expected value from the Ricker curve. Significant relationships between the residuals and habitable area showed that habitat loss had a marked effect on survivor density, this being negative for 0+ and 1+ trout, and positive for 0+, 1+ and 2+/3+ bullheads. 4. Therefore, during periods of habitat loss in the summer months, bullhead density increased at the expense of trout density. Low flows and a decrease in wettable area were associated with a marked reduction in habitat quality for drift-feeding trout and an increase in habitat quality, and perhaps also quantity, for benthic-feeding bullheads. This case study shows that, during a major perturbation, the relationship between the densities of two species can change markedly in favour of the less numerous species. The competitive coexistence between the two species is therefore a dynamic process that changes through time with periodic changes in

  8. The integration of climate change, spatial dynamics, and habitat fragmentation: A conceptual overview.

    PubMed

    Holyoak, Marcel; Heath, Sacha K

    2016-01-01

    A growing number of studies have looked at how climate change alters the effects of habitat fragmentation and degradation on both single and multiple species; some raise concern that biodiversity loss and its effects will be exacerbated. The published literature on spatial dynamics (such as dispersal and metapopulation dynamics), habitat fragmentation and climate change requires synthesis and a conceptual framework to simplify thinking. We propose a framework that integrates how climate change affects spatial population dynamics and the effects of habitat fragmentation in terms of: (i) habitat quality, quantity and distribution; (ii) habitat connectivity; and (iii) the dynamics of habitat itself. We use the framework to categorize existing autecological studies and investigate how each is affected by anthropogenic climate change. It is clear that a changing climate produces changes in the geographic distribution of climatic conditions, and the amount and quality of habitat. The most thorough published studies show how such changes impact metapopulation persistence, source-sink dynamics, changes in species' geographic range and community composition. Climate-related changes in movement behavior and quantity, quality and distribution of habitat have also produced empirical changes in habitat connectivity for some species. An underexplored area is how habitat dynamics that are driven by climatic processes will affect species that live in dynamic habitats. We end our discussion by suggesting ways to improve current attempts to integrate climate change, spatial population dynamics and habitat fragmentation effects, and suggest distinct areas of study that might provide opportunities for more fully integrative work. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  9. Information to support to monitoring and habitat restoration on Ash Meadows National Wildlife Refuge

    USGS Publications Warehouse

    Scoppettone, G. Gary

    2013-01-01

    The Ash Meadows National Wildlife Refuge staff focuses on improving habitat for the highest incidence of endemic species for an area of its size in the continental United States. Attempts are being made to restore habitat to some semblance of its pre-anthropogenic undisturbed condition, and to provide habitat conditions to which native plant and animal species have evolved. Unfortunately, restoring the Ash Meadows’ Oases to its pre-anthropogenic undisturbed condition is almost impossible. First, there are constraints on water manipulation because there are private holdings within the refuge boundary; second, there has been at least one species extinction—the Ash Meadows pool fish (Empetrichthys merriami). It is also quite possible that thermal endemic invertebrate species were lost before ever being described. Perhaps the primary obstacle to restoring Ash Meadows to its pre-anthropogenic undisturbed conditions is the presence of invasive species. However, invasive species, such as red swamp crayfish (Procambarus clarki) and western mosquitofish (Gambusia affinis), are a primary driving force in restoring Ash Meadows’ spring systems, because under certain habitat conditions they can all but replace native species. Returning Ash Meadows’ physical landscape to some semblance of its pre-anthropogenic undisturbed condition through natural processes may take decades. Meanwhile, the natural dissolution of concrete and earthen irrigation channels threatens to allow cattail marshes to flourish instead of spring-brooks immediately downstream of spring discharge. This successional stage favors non-native crayfish and mosquitofish over the native Amargosa pupfish (Cyprinodon nevadensis). Thus, restoration is needed to control non-natives and to promote native species, and without such intervention the probability of native fish reduction or loss, is anticipated. The four studies in this report are intended to provide information for restoring native fish habitat and

  10. Can orchards help connect Mediterranean ecosystems? Animal movement data alter conservation priorities

    USGS Publications Warehouse

    Nogeire, Theresa M.; Davis, Frank W.; Crooks, Kevin R.; McRae, Brad H.; Lyren, Lisa M.; Boydston, Erin E.

    2015-01-01

    As natural habitats become fragmented by human activities, animals must increasingly move through human-dominated systems, particularly agricultural landscapes. Mapping areas important for animal movement has therefore become a key part of conservation planning. Models of landscape connectivity are often parameterized using expert opinion and seldom distinguish between the risks and barriers presented by different crop types. Recent research, however, suggests different crop types, such as row crops and orchards, differ in the degree to which they facilitate or impede species movements. Like many mammalian carnivores, bobcats (Lynx rufus) are sensitive to fragmentation and loss of connectivity between habitat patches. We investigated how distinguishing between different agricultural land covers might change conclusions about the relative conservation importance of different land uses in a Mediterranean ecosystem. Bobcats moved relatively quickly in row crops but relatively slowly in orchards, at rates similar to those in natural habitats of woodlands and scrub. We found that parameterizing a connectivity model using empirical data on bobcat movements in agricultural lands and other land covers, instead of parameterizing the model using habitat suitability indices based on expert opinion, altered locations of predicted animal movement routes. These results emphasize that differentiating between types of agriculture can alter conservation planning outcomes.

  11. Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness.

    PubMed

    Albert, James S; Carvalho, Tiago P; Petry, Paulo; Holder, Meghan A; Maxime, Emmanuel L; Espino, Jessica; Corahua, Isabel; Quispe, Roberto; Rengifo, Blanca; Ortega, Hernan; Reis, Roberto E

    2011-04-29

    The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world's land surface area, and less than 0.002% of the world's total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200-500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient, predating the Late Miocene-Pliocene (c. 4 Ma) uplift that isolated its several headwater basins. The results also suggest that habitat specialization (phylogenetic niche conservatism) and geographic isolation (dispersal limitation) have contributed to the maintenance of high species richness in this region of the Amazon Basin.

  12. Emergence of a novel prey life history promotes contemporary sympatric diversification in a top predator.

    PubMed

    Brodersen, Jakob; Howeth, Jennifer G; Post, David M

    2015-09-14

    Intraspecific phenotypic variation can strongly impact community and ecosystem dynamics. Effects of intraspecific variation in keystone species have been shown to propagate down through the food web by altering the adaptive landscape for other species and creating a cascade of ecological and evolutionary change. However, similar bottom-up eco-evolutionary effects are poorly described. Here we show that life history diversification in a keystone prey species, the alewife (Alosa pseudoharengus), propagates up through the food web to promote phenotypic diversification in its native top predator, the chain pickerel (Esox niger), on contemporary timescales. The landlocking of alewife by human dam construction has repeatedly created a stable open water prey resource, novel to coastal lakes, that has promoted the parallel emergence of a habitat polymorphism in chain pickerel. Understanding how strong interactions propagate through food webs to influence diversification across multiple trophic levels is critical to understand eco-evolutionary interactions in complex natural ecosystems.

  13. Natural shorelines promote the stability of fish communities in an urbanized coastal system.

    PubMed

    Scyphers, Steven B; Gouhier, Tarik C; Grabowski, Jonathan H; Beck, Michael W; Mareska, John; Powers, Sean P

    2015-01-01

    Habitat loss and fragmentation are leading causes of species extinctions in terrestrial, aquatic and marine systems. Along coastlines, natural habitats support high biodiversity and valuable ecosystem services but are often replaced with engineered structures for coastal protection or erosion control. We coupled high-resolution shoreline condition data with an eleven-year time series of fish community structure to examine how coastal protection structures impact community stability. Our analyses revealed that the most stable fish communities were nearest natural shorelines. Structurally complex engineered shorelines appeared to promote greater stability than simpler alternatives as communities nearest vertical walls, which are among the most prevalent structures, were most dissimilar from natural shorelines and had the lowest stability. We conclude that conserving and restoring natural habitats is essential for promoting ecological stability. However, in scenarios when natural habitats are not viable, engineered landscapes designed to mimic the complexity of natural habitats may provide similar ecological functions.

  14. Natural Shorelines Promote the Stability of Fish Communities in an Urbanized Coastal System

    PubMed Central

    Scyphers, Steven B.; Gouhier, Tarik C.; Grabowski, Jonathan H.; Beck, Michael W.; Mareska, John; Powers, Sean P.

    2015-01-01

    Habitat loss and fragmentation are leading causes of species extinctions in terrestrial, aquatic and marine systems. Along coastlines, natural habitats support high biodiversity and valuable ecosystem services but are often replaced with engineered structures for coastal protection or erosion control. We coupled high-resolution shoreline condition data with an eleven-year time series of fish community structure to examine how coastal protection structures impact community stability. Our analyses revealed that the most stable fish communities were nearest natural shorelines. Structurally complex engineered shorelines appeared to promote greater stability than simpler alternatives as communities nearest vertical walls, which are among the most prevalent structures, were most dissimilar from natural shorelines and had the lowest stability. We conclude that conserving and restoring natural habitats is essential for promoting ecological stability. However, in scenarios when natural habitats are not viable, engineered landscapes designed to mimic the complexity of natural habitats may provide similar ecological functions. PMID:26039407

  15. The impacts of mobile fishing gear on seafloor habitats in the gulf of maine (Northwest Atlantic): Implications for conservation of fish populations

    USGS Publications Warehouse

    Auster, P.J.; Malatesta, R.J.; Langton, R.W.; Watling, Les; Valentine, P.C.; Donaldson, C.L.S.; Langton, E.W.; Shepard, A.N.; Babb, Ivar G.

    1996-01-01

    Fishing gear alters seafloor habitats, but the extent of these alterations, and their effects, have not been quantified extensively in the northwest Atlantic. Understanding the extent of these impacts, and their effects on populations of living marine resources, is needed to properly manage current and future levels of fishing effort and fishing power. For example, the entire U.S. side of the Gulf of Maine was impacted annually by mobile fishing gear between 1984 and 1990, based on calculations of area swept by trawl and dredge gear. Georges Bank was impacted three to nearly four times annually during the same period. Studies at three sites in the Gulf of Maine (off Swans Island, Jeffreys Bank, and Stellwagen Bank) showed that mobile fishing gear altered the physical structure (=complexity) of benthic habitats. Complexity was reduced by direct removal of biogenic (e.g., sponges, hydrozoans, bryozoans, amphipod tubes, holothurians, shell aggregates) and sedimentary (e.g., sand waves, depressions) structures. Also, removal of organisms that create structures (e.g., crabs, scallops) indirectly reduced complexity. Reductions in habitat complexity may lead to increased predation on juveniles of harvested species and ultimately recruitment to the harvestable stock. Because of a lack of reference sites, where use of mobile fishing is prohibited, no empirical studies have yet been conducted on a scale that could demonstrate population level effects of habitat-management options. If marine fisheries management is to evolve toward an ecosystem or habitat management approach, experiments are required on the effects of habitat change, both anthropogenic and natural.

  16. Using dynamic population simulations to extend resource selection analyses and prioritize habitats for conservation

    USGS Publications Warehouse

    Heinrichs, Julie; Aldridge, Cameron L.; O'Donnell, Michael; Schumaker, Nathan

    2017-01-01

    Prioritizing habitats for conservation is a challenging task, particularly for species with fluctuating populations and seasonally dynamic habitat needs. Although the use of resource selection models to identify and prioritize habitat for conservation is increasingly common, their ability to characterize important long-term habitats for dynamic populations are variable. To examine how habitats might be prioritized differently if resource selection was directly and dynamically linked with population fluctuations and movement limitations among seasonal habitats, we constructed a spatially explicit individual-based model for a dramatically fluctuating population requiring temporally varying resources. Using greater sage-grouse (Centrocercus urophasianus) in Wyoming as a case study, we used resource selection function maps to guide seasonal movement and habitat selection, but emergent population dynamics and simulated movement limitations modified long-term habitat occupancy. We compared priority habitats in RSF maps to long-term simulated habitat use. We examined the circumstances under which the explicit consideration of movement limitations, in combination with population fluctuations and trends, are likely to alter predictions of important habitats. In doing so, we assessed the future occupancy of protected areas under alternative population and habitat conditions. Habitat prioritizations based on resource selection models alone predicted high use in isolated parcels of habitat and in areas with low connectivity among seasonal habitats. In contrast, results based on more biologically-informed simulations emphasized central and connected areas near high-density populations, sometimes predicted to be low selection value. Dynamic models of habitat use can provide additional biological realism that can extend, and in some cases, contradict habitat use predictions generated from short-term or static resource selection analyses. The explicit inclusion of population

  17. Carryover effects from natal habitat type upon competitive ability lead to trait divergence or source-sink dynamics.

    PubMed

    Kristensen, Nadiah Pardede; Johansson, Jacob; Chisholm, Ryan A; Smith, Henrik G; Kokko, Hanna

    2018-06-25

    Local adaptation to rare habitats is difficult due to gene flow, but can occur if the habitat has higher productivity. Differences in offspring phenotypes have attracted little attention in this context. We model a scenario where the rarer habitat improves offspring's later competitive ability - a carryover effect that operates on top of local adaptation to one or the other habitat type. Assuming localised dispersal, so the offspring tend to settle in similar habitat to the natal type, the superior competitive ability of offspring remaining in the rarer habitat hampers immigration from the majority habitat. This initiates a positive feedback between local adaptation and trait divergence, which can thereafter be reinforced by coevolution with dispersal traits that match ecotype to habitat type. Rarity strengthens selection on dispersal traits and promotes linkage disequilibrium between locally adapted traits and ecotype-habitat matching dispersal. We propose that carryover effects may initiate isolation by ecology. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  18. The fate of threatened coastal dune habitats in Italy under climate change scenarios.

    PubMed

    Prisco, Irene; Carboni, Marta; Acosta, Alicia T R

    2013-01-01

    Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an "indirect" plant-species-based one and a simple "direct" one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the "direct" approach was unsatisfactory, "indirect" models had a good predictive performance, highlighting the importance of using species' responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats' distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future.

  19. Earth is a Marine Habitat. Habitat Conservation Program.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This brochure is intended to educate the public about the need to conserve and preserve the earth's environment (man's habitat). It contains an introduction to the ocean world and threats to coastal habitat. Photos and narrative revolve around the theme "Earth is a Marine Habitat." Sections include: "The Web of…

  20. Structural habitat predicts functional dispersal habitat of a large carnivore: how leopards change spots.

    PubMed

    Fattebert, Julien; Robinson, Hugh S; Balme, Guy; Slotow, Rob; Hunter, Luke

    2015-10-01

    Natal dispersal promotes inter-population linkage, and is key to spatial distribution of populations. Degradation of suitable landscape structures beyond the specific threshold of an individual's ability to disperse can therefore lead to disruption of functional landscape connectivity and impact metapopulation function. Because it ignores behavioral responses of individuals, structural connectivity is easier to assess than functional connectivity and is often used as a surrogate for landscape connectivity modeling. However using structural resource selection models as surrogate for modeling functional connectivity through dispersal could be erroneous. We tested how well a second-order resource selection function (RSF) models (structural connectivity), based on GPS telemetry data from resident adult leopard (Panthera pardus L.), could predict subadult habitat use during dispersal (functional connectivity). We created eight non-exclusive subsets of the subadult data based on differing definitions of dispersal to assess the predictive ability of our adult-based RSF model extrapolated over a broader landscape. Dispersing leopards used habitats in accordance with adult selection patterns, regardless of the definition of dispersal considered. We demonstrate that, for a wide-ranging apex carnivore, functional connectivity through natal dispersal corresponds to structural connectivity as modeled by a second-order RSF. Mapping of the adult-based habitat classes provides direct visualization of the potential linkages between populations, without the need to model paths between a priori starting and destination points. The use of such landscape scale RSFs may provide insight into predicting suitable dispersal habitat peninsulas in human-dominated landscapes where mitigation of human-wildlife conflict should be focused. We recommend the use of second-order RSFs for landscape conservation planning and propose a similar approach to the conservation of other wide-ranging large

  1. Speciation: more likely through a genetic or through a learned habitat preference?

    PubMed Central

    Beltman, J.B; Metz, J.A.J

    2005-01-01

    A problem in understanding sympatric speciation is establishing how reproductive isolation can arise when there is disruptive selection on an ecological trait. One of the solutions that has been proposed is that a habitat preference evolves, and that mates are chosen within the preferred habitat. We present a model where the habitat preference can evolve either by means of a genetic mechanism or by means of learning. Employing an adaptive-dynamical analysis, we show that evolution proceeds either to a single population of specialists with a genetic preference for their optimal habitat, or to a population of generalists without a habitat preference. The generalist population subsequently experiences disruptive selection. Learning promotes speciation because it increases the intensity of disruptive selection. An individual-based version of the model shows that, when loci are completely unlinked and learning confers little cost, the presence of disruptive selection most probably leads to speciation via the simultaneous evolution of a learned habitat preference. For high costs of learning, speciation is most likely to occur via the evolution of a genetic habitat preference. However, the latter only happens when the effect of mutations is large, or when there is linkage between genes coding for the different traits. PMID:16011920

  2. Fire alters patterns of genetic diversity among 3 lizard species in Florida Scrub habitat.

    PubMed

    Schrey, Aaron W; Ashton, Kyle G; Heath, Stacy; McCoy, Earl D; Mushinsky, Henry R

    2011-01-01

    The Florida Sand Skink (Plestiodon reynoldsi), the Florida Scrub Lizard (Sceloporus woodi), and the Six-lined Racerunner (Aspidoscelis sexlineata) occur in the threatened and fire-maintained Florida scrub habitat. Fire may have different consequences to local genetic diversity of these species because they each have different microhabitat preference. We collected tissue samples of each species from 3 sites with different time-since-fire: Florida Sand Skink n = 73, Florida Scrub Lizard n = 70, and Six-lined Racerunner n = 66. We compared the effect of fire on genetic diversity at microsatellite loci for each species. We screened 8 loci for the Florida Sand Skink, 6 loci for the Florida Scrub Lizard, and 6 loci for the Six-lined Racerunner. We also tested 2 potential driving mechanisms for the observed change in genetic diversity, a metapopulation source/sink model and a local demographic model. Genetic diversity varied with fire history, and significant genetic differentiation occurred among sites. The Florida Scrub Lizard had highest genetic variation at more recently burned sites, whereas the Florida Sand Skink and the Six-lined Racerunner had highest genetic variation at less recently burned sites. Habitat preferences of the Florida Sand Skink and the Florida Scrub Lizard may explain their discordant results, and the Six-lined Racerunner may have a more complicated genetic response to fire or is acted on at a different geographic scale than we have investigated. Our results indicate that these species may respond to fire in a more complicated manner than predicted by our metapopulation model or local demographic model. Our results show that the population-level responses in genetic diversity to fire are species-specific mandating conservation management of habitat diversity through a mosaic of burn frequencies.

  3. Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions

    Treesearch

    K.M. Bergen; S.J. Goetz; R.O. Dubayah; G.M. Henebry; C.T. Hunsaker; M.L. Imhoff; R.F. Nelson; G.G. Parker; V.C. Radeloff

    2009-01-01

    Biodiversity and habitat face increasing pressures due to human and natural influences that alter vegetation structure. Because of the inherent difficulty of measuring forested vegetation three-dimensional (3-D) structure on the ground, this important component of biodiversity and habitat has been, until recently, largely restricted to local measurements, or at larger...

  4. Habitat fragmentation alters the properties of a host-parasite network: rodents and their helminths in South-East Asia.

    PubMed

    Bordes, Frédéric; Morand, Serge; Pilosof, Shai; Claude, Julien; Krasnov, Boris R; Cosson, Jean-François; Chaval, Yannick; Ribas, Alexis; Chaisiri, Kittipong; Blasdell, Kim; Herbreteau, Vincent; Dupuy, Stéphane; Tran, Annelise

    2015-09-01

    1. While the effects of deforestation and habitat fragmentation on parasite prevalence or richness are well investigated, host-parasite networks are still understudied despite their importance in understanding the mechanisms of these major disturbances. Because fragmentation may negatively impact species occupancy, abundance and co-occurrence, we predict a link between spatiotemporal changes in habitat and the architecture of host-parasite networks. 2. For this, we used an extensive data set on 16 rodent species and 29 helminth species from seven localities of South-East Asia. We analysed the effects of rapid deforestation on connectance and modularity of helminth-parasite networks. We estimated both the degree of fragmentation and the rate of deforestation through the development of land uses and their changes through the last 20 to 30 years in order to take into account the dynamics of habitat fragmentation in our statistical analyses. 3. We found that rapid fragmentation does not affect helminth species richness per se but impacts host-parasite interactions as the rodent-helminth network becomes less connected and more modular. 4. Our results suggest that parasite sharing among host species may become more difficult to maintain with the increase of habitat disturbance. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  5. Bird communities of natural and modified habitats in Panama

    USGS Publications Warehouse

    Petit, L.J.; Petit, D.R.; Christian, D.G.; Powell, Hugo D.W.

    1999-01-01

    Only a small proportion of land can realistically be protected as nature reserves and thus conservation efforts also must focus on the ecological value of agroecosystems and developed areas surrounding nature reserves. In this study, avian communities were surveyed in 11 habitat types in central Panama, across a gradient from extensive forest to intensive agricultural land uses, to examine patterns of species richness and abundance and community composition. Wooded habitats, including extensive and fragmented forests, shade coffee plantations, and residential areas supported the most species and individuals. Nearctic-Neotropical migratory species were most numerous in lowland forest fragments, shade coffee, and residential areas. Introduced Pinus caribbea and sugar cane plantations supported the fewest species compared to all other habitats. Cattle pastures left fallow for less than two years supported more than twice as many total species as actively grazed pastures, such that species richness in fallow pastures was similar to that found in wooded habitats. Community similarities were relatively low among all habitat types (none exceeding the observed 65% similarity between extensive and fragmented lowland forests), but communities in shade coffee and residential areas were 43% and 54% similar to lowland forest fragments, respectively. Fallow pastures and residential areas shared 60% of their species. Bird communities in shade coffee and residential areas were characterized by higher proportions of frugivorous and nectarivorous species than in native forests. These same guilds also were better represented in fallow than in grazed pastures. Raptors and piscivorous species were most prevalent in cattle pastures and rice fields. These results, though based upon only species richness and abundance, demonstrate that many human-altered habitats have potential ecological value for birds, and conservation efforts in tropical areas should focus greater attention on

  6. Trophic disruption: a meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems.

    PubMed

    Martinson, Holly M; Fagan, William F

    2014-09-01

    Habitat fragmentation is a complex process that affects ecological systems in diverse ways, altering everything from population persistence to ecosystem function. Despite widespread recognition that habitat fragmentation can influence food web interactions, consensus on the factors underlying variation in the impacts of fragmentation across systems remains elusive. In this study, we conduct a systematic review and meta-analysis to quantify the effects of habitat fragmentation and spatial habitat structure on resource consumption in terrestrial arthropod food webs. Across 419 studies, we found a negative overall effect of fragmentation on resource consumption. Variation in effect size was extensive but predictable. Specifically, resource consumption was reduced on small, isolated habitat fragments, higher at patch edges, and neutral with respect to landscape-scale spatial variables. In general, resource consumption increased in fragmented settings for habitat generalist consumers but decreased for specialist consumers. Our study demonstrates widespread disruption of trophic interactions in fragmented habitats and describes variation among studies that is largely predictable based on the ecological traits of the interacting species. We highlight future prospects for understanding how changes in spatial habitat structure may influence trophic modules and food webs. © 2014 John Wiley & Sons Ltd/CNRS.

  7. Investigating hydrologic alteration as a mechanism of fish assemblage shifts in urbanizing streams

    USGS Publications Warehouse

    Roy, A.H.; Freeman, Mary C.; Freeman, B.J.; Wenger, S.J.; Ensign, W.E.; Meyer, J.L.

    2005-01-01

    Stream biota in urban and suburban settings are thought to be impaired by altered hydrology; however, it is unknown what aspects of the hydrograph alter fish assemblage structure and which fishes are most vulnerable to hydrologic alterations in small streams. We quantified hydrologic variables and fish assemblages in 30 small streams and their subcatchments (area 8–20 km2) in the Etowah River Catchment (Georgia, USA). We stratified streams and their subcatchments into 3 landcover categories based on imperviousness (<10%, 10–20%, >20% of subcatchment), and then estimated the degree of hydrologic alteration based on synoptic measurements of baseflow yield. We derived hydrologic variables from stage gauges at each study site for 1 y (January 2003–2004). Increased imperviousness was positively correlated with the frequency of storm events and rates of the rising and falling limb of the hydrograph (i.e., storm “flashiness”) during most seasons. Increased duration of low flows associated with imperviousness only occurred during the autumn low-flow period, and this measure corresponded with increased richness of lentic tolerant species. Altered storm flows in summer and autumn were related to decreased richness of endemic, cosmopolitan, and sensitive fish species, and decreased abundance of lentic tolerant species. Species predicted to be sensitive to urbanization, based on specific life-history or habitat requirements, also were related to stormflow variables and % fine bed sediment in riffles. Overall, hydrologic variables explained 22 to 66% of the variation in fish assemblage richness and abundance. Linkages between hydrologic alteration and fish assemblages were potentially complicated by contrasting effects of elevated flows on sediment delivery and scour, and mediating effects of high stream gradient on sediment delivery from elevated flows. However, stormwater management practices promoting natural hydrologic regimes are likely to reduce the impacts of

  8. When perception reflects reality: Non-native grass invasion alters small mammal risk landscapes and survival

    USGS Publications Warehouse

    Ceradnini, Joseph P.; Chalfoun, Anna D.

    2017-01-01

    Modification of habitat structure due to invasive plants can alter the risk landscape for wildlife by, for example, changing the quality or availability of refuge habitat. Whether perceived risk corresponds with actual fitness outcomes, however, remains an important open question. We simultaneously measured how habitat changes due to a common invasive grass (cheatgrass, Bromus tectorum) affected the perceived risk, habitat selection, and apparent survival of a small mammal, enabling us to assess how well perceived risk influenced important behaviors and reflected actual risk. We measured perceived risk by nocturnal rodents using a giving-up density foraging experiment with paired shrub (safe) and open (risky) foraging trays in cheatgrass and native habitats. We also evaluated microhabitat selection across a cheatgrass gradient as an additional assay of perceived risk and behavioral responses for deer mice (Peromyscus maniculatus) at two spatial scales of habitat availability. Finally, we used mark-recapture analysis to quantify deer mouse apparent survival across a cheatgrass gradient while accounting for detection probability and other habitat features. In the foraging experiment, shrubs were more important as protective cover in cheatgrass-dominated habitats, suggesting that cheatgrass increased perceived predation risk. Additionally, deer mice avoided cheatgrass and selected shrubs, and marginally avoided native grass, at two spatial scales. Deer mouse apparent survival varied with a cheatgrass–shrub interaction, corresponding with our foraging experiment results, and providing a rare example of a native plant mediating the effects of an invasive plant on wildlife. By synthesizing the results of three individual lines of evidence (foraging behavior, habitat selection, and apparent survival), we provide a rare example of linkage between behavioral responses of animals indicative of perceived predation risk and actual fitness outcomes. Moreover, our results

  9. Surface Habitat Systems

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  10. The Fate of Threatened Coastal Dune Habitats in Italy under Climate Change Scenarios

    PubMed Central

    Prisco, Irene; Carboni, Marta; Acosta, Alicia T. R.

    2013-01-01

    Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an “indirect” plant-species-based one and a simple “direct” one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the “direct” approach was unsatisfactory, “indirect” models had a good predictive performance, highlighting the importance of using species’ responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats’ distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future. PMID:23874787

  11. Riverine habitat dynamics

    USGS Publications Warehouse

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  12. Prescribing habitat layouts: Analysis of optimal placement for landscape planning [Chapter 23

    Treesearch

    Curtis H. Flather; Michael Bevers; John Hof

    2002-01-01

    Physical restructuring of landscapes by humans is a prominent stress on ecological systems (Rapport et al. 1985). Landscape restructuring occurs primarily through land-use conversions or alteration of native habitats through natural resource management. A common faunal response to such land-use intensification is an increased dominance of opportunistic species leading...

  13. Thermal quality influences effectiveness of thermoregulation, habitat use, and behaviour in milk snakes.

    PubMed

    Row, Jeffrey R; Blouin-Demers, Gabriel

    2006-05-01

    We investigated the link between thermal quality and the effectiveness of thermoregulation in milk snakes in a thermally challenging environment. We defined thermoregulatory effectiveness as the extent to which an individual maintains its body temperature (Tb) closer to the preferred range (Tset) than allowed by the thermal quality of its environment. We defined thermal quality as the magnitude of the difference between operative environmental temperatures (Te) and Tset. Because ectotherms regulate body temperatures through choice of habitat and behavioural adjustments, we also examined the link between thermoregulation, habitat use and behaviour. During 2003-2004, we located 25 individuals 890 times, and recorded their Tb. Thermal quality was lower in the spring and fall than in the summer, and was lower in forests than in open habitats. Milk snakes thermoregulated more effectively in the spring than in the summer and fall, and more effectively in the forest than in open habitats. Milk snakes had a strong preference for open habitats in all seasons, which was likely to facilitate behavioural thermoregulation. The preference for open habitats was equally strong in all seasons and, therefore, the higher effectiveness of thermoregulation was not a result of altered habitat use. Instead, milk snakes modified their behaviour and were seen basking more and moved less in the spring than in the summer.

  14. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans.

    PubMed

    Papadaki, Christina; Soulis, Konstantinos; Muñoz-Mas, Rafael; Martinez-Capel, Francisco; Zogaris, Stamatis; Ntoanidis, Lazaros; Dimitriou, Elias

    2016-01-01

    The climate change in the Mediterranean area is expected to have significant impacts on the aquatic ecosystems and particular in the mountain rivers and streams that often host important species such as the Salmo farioides, Karaman 1938. These impacts will most possibly affect the habitat availability for various aquatic species resulting to an essential alteration of the water requirements, either for dams or other water abstractions, in order to maintain the essential levels of ecological flow for the rivers. The main scope of this study was to assess potential climate change impacts on the hydrological patterns and typical biota for a south-western Balkan mountain river, the Acheloos. The altered flow regimes under different emission scenarios of the Intergovernmental Panel on Climate Change (IPCC) were estimated using a hydrological model and based on regional climate simulations over the study area. The Indicators of Hydrologic Alteration (IHA) methodology was then used to assess the potential streamflow alterations in the studied river due to predicted climate change conditions. A fish habitat simulation method integrating univariate habitat suitability curves and hydraulic modeling techniques were used to assess the impacts on the relationships between the aquatic biota and hydrological status utilizing a sentinel species, the West Balkan trout. The most prominent effects of the climate change scenarios depict severe flow reductions that are likely to occur especially during the summer flows, changing the duration and depressing the magnitude of the natural low flow conditions. Weighted Usable Area-flow curves indicated the limitation of suitable habitat for the native trout. Finally, this preliminary application highlighted the potential of science-based hydrological and habitat simulation approaches that are relevant to both biological quality elements (fish) and current EU Water policy to serve as efficient tools for the estimation of possible climate

  15. A Synopsis of Global Mapping of Freshwater Habitats and Biodiversity: Implications for Conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Griffiths, Natalie A.; DeRolph, Christopher R.

    Accurately mapping freshwater habitats and biodiversity at high-resolutions across the globe is essential for assessing the vulnerability and threats to freshwater organisms and prioritizing conservation efforts. Since the 2000s, extensive efforts have been devoted to mapping global freshwater habitats (rivers, lakes, and wetlands), the spatial representation of which has changed dramatically over time with new geospatial data products and improved remote sensing technologies. Some of these mapping efforts, however, are still coarse representations of actual conditions. Likewise, the resolution and scope of global freshwater biodiversity compilation efforts have also increased, but are yet to mirror the spatial resolution and fidelitymore » of mapped freshwater environments. In our synopsis, we find that efforts to map freshwater habitats have been conducted independently of those for freshwater biodiversity; subsequently, there is little congruence in the spatial representation and resolution of the two efforts. We suggest that global species distribution models are needed to fill this information gap; however, limiting data on habitat characteristics at scales that complement freshwater habitats has prohibited global high-resolution biogeography efforts. Emerging research trends, such as mapping habitat alteration in freshwater ecosystems and trait biogeography, show great promise in mechanistically linking global anthropogenic stressors to freshwater biodiversity decline and extinction risk.« less

  16. Genome-culture coevolution promotes rapid divergence of killer whale ecotypes.

    PubMed

    Foote, Andrew D; Vijay, Nagarjun; Ávila-Arcos, María C; Baird, Robin W; Durban, John W; Fumagalli, Matteo; Gibbs, Richard A; Hanson, M Bradley; Korneliussen, Thorfinn S; Martin, Michael D; Robertson, Kelly M; Sousa, Vitor C; Vieira, Filipe G; Vinař, Tomáš; Wade, Paul; Worley, Kim C; Excoffier, Laurent; Morin, Phillip A; Gilbert, M Thomas P; Wolf, Jochen B W

    2016-05-31

    Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level.

  17. Genome-culture coevolution promotes rapid divergence of killer whale ecotypes

    PubMed Central

    Foote, Andrew D.; Vijay, Nagarjun; Ávila-Arcos, María C.; Baird, Robin W.; Durban, John W.; Fumagalli, Matteo; Gibbs, Richard A.; Hanson, M. Bradley; Korneliussen, Thorfinn S.; Martin, Michael D.; Robertson, Kelly M.; Sousa, Vitor C.; Vieira, Filipe G.; Vinař, Tomáš; Wade, Paul; Worley, Kim C.; Excoffier, Laurent; Morin, Phillip A.; Gilbert, M. Thomas P.; Wolf, Jochen B.W.

    2016-01-01

    Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level. PMID:27243207

  18. Populations and habitat relationships of Piute ground squirrels in southwest Idaho

    USGS Publications Warehouse

    Steenhof, Karen; Yensen, Eric; Kochert, Michael N.; Gage, K.

    2006-01-01

    Piute ground squirrels (Spermophilus mollis idahoensis) are normally above ground from late January until late June or early July in the Snake River Birds of Prey National Conservation Area in southwestern Idaho. In 2002 they were rarely seen above ground after early May. Because of the ecological importance of ground squirrels for nesting raptors and other species, we sought to determine the reasons for their early disappearance. We sampled 12 sites from January 2003 through March 2003 to determine if a population crash had occurred in 2002. Tests indicated that Piute ground squirrels had not been exposed to plague within the past year. The presence of yearlings in the population indicated that squirrels reproduced in 2002 and that at least some yearlings survived the winter. Both yearling and adult squirrels appeared to be reproducing at or above normal rates in 2003. The most plausible explanation for the early disappearance of Piute ground squirrels in 2002 is that squirrels entered seasonal torpor early in response to a late spring drought. In addition, the breeding chronology of squirrels may have shifted during the past 2 decades in response to climate change and/or habitat alteration. Shrub habitats provide a more favorable and stable environment for squirrels than grass habitats. Squirrel abundance was higher on live-trapping grids with sagebrush than on grids dominated by grass, and squirrel masses were higher at sites dominated by shrubs and Sandberg bluegrass (Poa secunda). Densities in big sagebrush (Artemisia tridentata) were within the ranges reported for earlier years, but densities in grass were lower than previously reported. Low densities at grassland sites in 2003 support other findings that drought affects squirrels in altered grass communities more than those in native shrub habitats. Long-term shifts in ground squirrel breeding chronology may have implications for raptors that depend on them for food.

  19. Restoring critical habitat for Hawaii's endangered pall la by reducing ungulate populations

    Treesearch

    Paul G. Scowcroft; C. Eugene. Conrad

    1988-01-01

    Drastically reducing populations of feral sheep (Ovis aries), mouflon sheep (Ovis musimon), feral-mouflon hybrids, and feral goats (Capra hircus) on Mauna Kea were key management actions done to promote recovery of critical habitat for palila Loxioides bailleui), an endangered Hawaiian...

  20. Protection alone may not promote natural recovery of biogenic habitats of high biodiversity damaged by mobile fishing gears.

    PubMed

    Fariñas-Franco, Jose M; Allcock, A Louise; Roberts, Dai

    2018-04-01

    The horse mussel Modiolus modiolus (L.) is a large marine bivalve that aggregates to create complex habitats of high biodiversity. As a keystone species, M. modiolus is of great importance for the functioning of marine benthic ecosystems, forming biogenic habitats used to designate Marine Protected Areas (MPAs). The present study investigates the condition of M. modiolus beds historically subjected to intense scallop fishing using mobile fishing gears. The study, conducted seven years after the introduction of legislation banning all forms of fishing, aimed to establish whether natural habitat recovery occurs after protection measures are put in place. Lower biodiversity and up to 80% decline in densities of M. modiolus were recorded across the current distributional range of the species in Strangford Lough, Northern Ireland. The decline in biodiversity in most areas surveyed was consistent with that observed in biogenic reefs impacted by mobile fishing gears elsewhere. Epifauna, including sponges, hydroids and tunicates, experienced the most substantial decline in biodiversity, with up to 64% fewer taxa recorded in 2010 compared with 2003. Higher variability in community composition and a shift towards faunal assemblages dominated by opportunistic infaunal species typical of softer substrata were also detected. Based on these observations we suggest that, for biogenic habitats, the designation of MPAs and the introduction of fishing bans alone may not be sufficient to reverse or halt the negative effects caused by past anthropogenic impacts. Direct intervention, including habitat restoration based on translocation of native keystone species, should be considered as part of management strategies for MPAs which host similar biogenic reef habitats where condition and natural recovery have been compromised. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. HYDROLOGIC AND STREAM TEMPERATURE MODELING FOR ANADROMOUS FISH HABITAT RESTORATION IN A WILDLAND WATERSHED

    EPA Science Inventory

    Reduction or removal of streamside vegetation by logging and grazing can alter stream temperatures by reducing riparian shading. In the Pacific Northwest of the United States and other parts of the world, elevated stream temperatures in summer are a major fish habitat degradatio...

  2. Habitat-related specialization of lateral-line system morphology in a habitat-generalist and a habitat-specialist New Zealand eleotrid.

    PubMed

    Vanderpham, J P; Nakagawa, S; Senior, A M; Closs, G P

    2016-04-01

    An investigation of intraspecific habitat-related patterns of variation in oculoscapular lateral-line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat-generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat-related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat-specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral-line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments. © 2016 The Fisheries Society of the British Isles.

  3. Identifying keystone habitats with a mosaic approach can improve biodiversity conservation in disturbed ecosystems.

    PubMed

    Hitchman, Sean M; Mather, Martha E; Smith, Joseph M; Fencl, Jane S

    2018-01-01

    Conserving native biodiversity in the face of human- and climate-related impacts is a challenging and globally important ecological problem that requires an understanding of spatially connected, organismal-habitat relationships. Globally, a suite of disturbances (e.g., agriculture, urbanization, climate change) degrades habitats and threatens biodiversity. A mosaic approach (in which connected, interacting collections of juxtaposed habitat patches are examined) provides a scientific foundation for addressing many disturbance-related, ecologically based conservation problems. For example, if specific habitat types disproportionately increase biodiversity, these keystones should be incorporated into research and management plans. Our sampling of fish biodiversity and aquatic habitat along ten 3-km sites within the Upper Neosho River subdrainage, KS, from June-August 2013 yielded three generalizable ecological insights. First, specific types of mesohabitat patches (i.e., pool, riffle, run, and glide) were physically distinct and created unique mosaics of mesohabitats that varied across sites. Second, species richness was higher in riffle mesohabitats when mesohabitat size reflected field availability. Furthermore, habitat mosaics that included more riffles had greater habitat diversity and more fish species. Thus, riffles (<5% of sampled area) acted as keystone habitats. Third, additional conceptual development, which we initiate here, can broaden the identification of keystone habitats across ecosystems and further operationalize this concept for research and conservation. Thus, adopting a mosaic approach can increase scientific understanding of organismal-habitat relationships, maintain natural biodiversity, advance spatial ecology, and facilitate effective conservation of native biodiversity in human-altered ecosystems. © 2017 John Wiley & Sons Ltd.

  4. Native species behaviour mitigates the impact of habitat-forming invasive seaweed.

    PubMed

    Wright, Jeffrey T; Byers, James E; Koukoumaftsis, Loni P; Ralph, Peter J; Gribben, Paul E

    2010-06-01

    Habitat-forming invasive species cause large, novel changes to the abiotic environment. These changes may elicit important behavioural responses in native fauna, yet little is known about mechanisms driving this behaviour and how such trait-mediated responses influence the fitness of native species. Low dissolved oxygen is a key abiotic change created by the habitat-forming invasive seaweed, Caulerpa taxifolia, which influences an important behavioural response (burrowing depth) in the native infaunal bivalve Anadara trapezia. In Caulerpa-colonised areas, Anadara often emerged completely from the sediment, and we experimentally demonstrate that water column hypoxia beneath the Caulerpa canopy is the mechanism instigating this "pop-up" behaviour. Importantly, pop-up in Caulerpa allowed similar survivorship to that in unvegetated sediment; however, when we prevented Anadara from popping-up, they suffered >50% mortality in just 1 month. Our findings not only highlight the substantial environmental alteration by Caulerpa, but also an important role for the behaviour of native species in mitigating the effects of habitat-forming invasive species.

  5. An approach of habitat degradation assessment for characterization on coastal habitat conservation tendency.

    PubMed

    Zhou, Xi-Yin; Lei, Kun; Meng, Wei

    2017-09-01

    Coastal zones are population and economy highly intensity regions all over the world, and coastal habitat supports the sustainable development of human society. The accurate assessment of coastal habitat degradation is the essential prerequisite for coastal zone protection. In this study, an integrated framework of coastal habitat degradation assessment including landuse classification, habitat classifying and zoning, evaluation criterion of coastal habitat degradation and coastal habitat degradation index has been established for better regional coastal habitat assessment. Through establishment of detailed three-class landuse classification, the fine landscape change is revealed, the evaluation criterion of coastal habitat degradation through internal comparison based on the results of habitat classifying and zoning could indicate the levels of habitat degradation and distinguish the intensity of human disturbances in different habitat subareas under the same habitat classification. Finally, the results of coastal habitat degradation assessment could be achieved through coastal habitat degradation index (CHI). A case study of the framework is carried out in the Circum-Bohai-Sea-Coast, China, and the main results show the following: (1) The accuracy of all land use classes are above 90%, which indicates a satisfactory accuracy for the classification map. (2) The Circum-Bohai-Sea-Coast is divided into 3 kinds of habitats and 5 subareas. (3) In the five subareas of the Circum-Bohai-Sea-Coast, the levels of coastal habitat degradation own significant difference. The whole Circum-Bohai-Sea-Coast generally is in a worse state according to area weighting of each habitat subarea. This assessment framework of coastal habitat degradation would characterize the landuse change trend, realize better coastal habitat degradation assessment, reveal the habitat conservation tendency and distinguish intensity of human disturbances. Furthermore, it would support for accurate coastal

  6. Relative impacts of the fragmentation and spatial structure of habitats on freshwater fish distributions: application on French watersheds (Invited)

    NASA Astrophysics Data System (ADS)

    Le Pichon, C.; Belliard, J.; Talès, E.; Gorges, G.; Clément, F.

    2009-12-01

    Most of the rivers of the Ile de France region, intimately linked with the megalopolis of Paris, are severely altered and freshwater fishes are exposed to habitat alteration, reduced connectivity and pollution. Several species thus present fragmented distributions and decreasing densities. In this context, the European Water Framework Directive (2000) has goals of hydrosystems rehabilitation and no further damage. In particular, the preservation and restoration of ecological connectivity of river networks is a key element for fish populations. These goals require the identification of natural and anthropological factors which influence the spatial distribution of species. We have proposed a riverscape approach, based on landscape ecology concepts, combined with a set of spatial analysis methods to assess the multiscale relationships between the spatial pattern of fish habitats and processes depending on fish movements. In particular, we used this approach to test the relative roles of spatial arrangement of fish habitats and the presence of physical barriers in explaining fish spatial distributions in a small rural watershed (106 km2). We performed a spatially continuous analysis of fish-habitat relationships. Fish habitats and physical barriers were mapped along the river network (33 km) with a GPS and imported into a GIS. In parallel, a longitudinal electrofishing survey of the distribution and abundance of fishes was made using a point abundance sampling scheme. Longitudinal arrangement of fish habitats were evaluated using spatial analysis methods: patch/distance metrics and moving window analysis. Explanatory models were developed to test the relative contribution of local environmental variables and spatial context in explaining fish presence. We have recorded about 100 physical barriers, on average one every 330 meters; most artificial barriers were road pipe culverts, falls associated with ponds and sluice gates. Contrasted fish communities and densities

  7. Adaptation to Ephemeral Habitat May Overcome Natural Barriers and Severe Habitat Fragmentation in a Fire-Dependent Species, the Bachman's Sparrow (Peucaea aestivalis)

    PubMed Central

    Cerame, Blain; Cox, James A.; Brumfield, Robb T.; Tucker, James W.; Taylor, Sabrina S.

    2014-01-01

    Bachman's Sparrow (Peucaea aestivalis) is a fire-dependent species that has undergone range-wide population declines in recent decades. We examined genetic diversity in Bachman's Sparrows to determine whether natural barriers have led to distinct population units and to assess the effect of anthropogenic habitat loss and fragmentation. Genetic diversity was examined across the geographic range by genotyping 226 individuals at 18 microsatellite loci and sequencing 48 individuals at mitochondrial and nuclear genes. Multiple analyses consistently demonstrated little genetic structure and high levels of genetic variation, suggesting that populations are panmictic. Based on these genetic data, separate management units/subspecies designations or translocations to promote gene flow among fragmented populations do not appear to be necessary. Panmixia in Bachman's Sparrow may be a consequence of an historical range expansion and retraction. Alternatively, high vagility in Bachman's Sparrow may be an adaptation to the ephemeral, fire-mediated habitat that this species prefers. In recent times, high vagility also appears to have offset inbreeding and loss of genetic diversity in highly fragmented habitat. PMID:25180939

  8. Transcriptome Sequencing Revealed Significant Alteration of Cortical Promoter Usage and Splicing in Schizophrenia

    PubMed Central

    Wu, Jing Qin; Wang, Xi; Beveridge, Natalie J.; Tooney, Paul A.; Scott, Rodney J.; Carr, Vaughan J.; Cairns, Murray J.

    2012-01-01

    Background While hybridization based analysis of the cortical transcriptome has provided important insight into the neuropathology of schizophrenia, it represents a restricted view of disease-associated gene activity based on predetermined probes. By contrast, sequencing technology can provide un-biased analysis of transcription at nucleotide resolution. Here we use this approach to investigate schizophrenia-associated cortical gene expression. Methodology/Principal Findings The data was generated from 76 bp reads of RNA-Seq, aligned to the reference genome and assembled into transcripts for quantification of exons, splice variants and alternative promoters in postmortem superior temporal gyrus (STG/BA22) from 9 male subjects with schizophrenia and 9 matched non-psychiatric controls. Differentially expressed genes were then subjected to further sequence and functional group analysis. The output, amounting to more than 38 Gb of sequence, revealed significant alteration of gene expression including many previously shown to be associated with schizophrenia. Gene ontology enrichment analysis followed by functional map construction identified three functional clusters highly relevant to schizophrenia including neurotransmission related functions, synaptic vesicle trafficking, and neural development. Significantly, more than 2000 genes displayed schizophrenia-associated alternative promoter usage and more than 1000 genes showed differential splicing (FDR<0.05). Both types of transcriptional isoforms were exemplified by reads aligned to the neurodevelopmentally significant doublecortin-like kinase 1 (DCLK1) gene. Conclusions This study provided the first deep and un-biased analysis of schizophrenia-associated transcriptional diversity within the STG, and revealed variants with important implications for the complex pathophysiology of schizophrenia. PMID:22558445

  9. Keeping Pace with Climate Change: Habitat Protection in the Face of Uncertainty

    NASA Astrophysics Data System (ADS)

    Flitcroft, R. L.; Burnett, K.; Giannico, G.

    2014-12-01

    Estuaries provide critical habitat for many economically and culturally important species. In the Pacific Northwest, intertidal and subtidal areas provide critical habitat for production of native and commercial oysters (Olympia oyster Ostrea lurida and Pacific oyster Crassostrea gigas, respectively) that in turn provide refuge and rearing habitat for Dungeness Crab, Metacarcinus magister. Environments ranging from subtidal through freshwater zones provide nursery areas for juvenile salmonids at different development stages in their life history. Most Oregon estuaries have been significantly altered by humans over the past century, reducing the quantity and diversity of available habitats. Management agencies have responded with projects to restore and enhance estuarine habitats. Unfortunately, future climate change and sea-level rise could render many current restoration projects ineffective over time. Planning for habitat restoration that keeps pace with climate change will be critical to the sustainable production of seafood and maintenance of ecosystem function. However, land managers and citizens lack the spatially-explicit data needed to incorporate the potential effects of climate change and sea-level rise into planning for habitat improvement projects in estuarine areas. To meet this need, we developed simple models using LiDAR to characterize the geomorphologies of multiple Oregon estuaries. We were able to map the margin of current mean high tide, and contour intervals associated with different potential increases in mean high tide. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting changes in estuary shape. For each estuary, we assessed changes in the amount and complexity of edge habitats. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance

  10. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan

    NASA Astrophysics Data System (ADS)

    Basheer, Amir K.; Lu, Haishen; Omer, Abubaker; Ali, Abubaker B.; Abdelgader, Abdeldime M. S.

    2016-04-01

    The fate of seasonal river ecosystem habitats under climate change essentially depends on the changes in annual recharge of the river, which are related to alterations in precipitation and evaporation over the river basin. Therefore, the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in the Dinder River basin (DRB) and to infer its relative possible effects on the Dinder National Park (DNP) ecosystem habitats in Sudan. Four global circulation models (GCMs) from Coupled Model Intercomparison Project Phase 5 and two statistical downscaling approaches combined with a hydrological model (SWAT - the Soil and Water Assessment Tool) were used to project the climate change conditions over the study periods 2020s, 2050s, and 2080s. The results indicated that the climate over the DRB will become warmer and wetter under most scenarios. The projected precipitation variability mainly depends on the selected GCM and downscaling approach. Moreover, the projected streamflow is quite sensitive to rainfall and temperature variation, and will likely increase in this century. In contrast to drought periods during the 1960s, 1970s, and 1980s, the predicted climate change is likely to affect ecosystems in DNP positively and promote the ecological restoration for the habitats of flora and fauna.

  11. Effects of regulated river flows on habitat suitability for the robust redhorse

    USGS Publications Warehouse

    Fisk, J. M.; Kwak, Thomas J.; Heise, R. J.

    2015-01-01

    The Robust Redhorse Moxostoma robustum is a rare and imperiled fish, with wild populations occurring in three drainages from North Carolina to Georgia. Hydroelectric dams have altered the species’ habitat and restricted its range. An augmented minimum-flow regime that will affect Robust Redhorse habitat was recently prescribed for Blewett Falls Dam, a hydroelectric facility on the Pee Dee River, North Carolina. Our objective was to quantify suitable spawning and nonspawning habitat under current and proposed minimum-flow regimes. We implanted radio transmitters into 27 adult Robust Redhorses and relocated the fish from spring 2008 to summer 2009, and we described habitat at 15 spawning capture locations. Nonspawning habitat consisted of deep, slow-moving pools (mean depth D 2.3 m; mean velocity D 0.23 m/s), bedrock and sand substrates, and boulders or coarse woody debris as cover. Spawning habitat was characterized as shallower, faster-moving water (mean depth D 0.84 m; mean velocity D 0.61 m/s) with gravel and cobble as substrates and boulders as cover associated with shoals. Telemetry relocations revealed two behavioral subgroups: a resident subgroup (linear range [mean § SE] D 7.9 § 3.7 river kilometers [rkm]) that remained near spawning areas in the Piedmont region throughout the year; and a migratory subgroup (linear range D 64.3 § 8.4 rkm) that migrated extensively downstream into the Coastal Plain region. Spawning and nonspawning habitat suitability indices were developed based on field microhabitat measurements and were applied to model suitable available habitat (weighted usable area) for current and proposed augmented minimum flows. Suitable habitat (both spawning and nonspawning) increased for each proposed seasonal minimum flow relative to former minimum flows, with substantial increases for spawning sites. Our results contribute to an understanding of how regulated flows affect available habitats for imperiled species. Flow managers can use these

  12. Developing a top-down land-use management procedure for fish habitat enhancement

    NASA Astrophysics Data System (ADS)

    Chiang, Li-Chi; Lin, Yu-Pin; Wu, Chen-Huan

    2013-04-01

    Land-use change can influence stream ecosystem and alter instream physical, chemical and biological habitat. For example, urbanization usually contributes to increasing sediment loadings to streams and inappropriate agricultural management results in degradation of stream water quality. Watershed model is an effective way to forecast the watershed response to different land-use change scenarios. We developed a top-down approach from the watershed scale to the microscale by combining the habitat model, land-use change model and watershed hydrological model. This approach can assist land-use planner to make optimal decisions with fish habitat enhancement. The study was conducted in Datuan Stream, located in Tamsui District, New Taipei City and the target species is monk goby (Sicyopterus japonicus). The spatially explicit land-use change model, CLUE-s was first applied to project several future land-use scenarios and the Soil and Water Assessment Tool (SWAT) was then applied to simulate streamflow for different land-use scenarios. The simulated streamflow were used as input data for simulating river habitat, where Habitat Suitability Analysis is one of the most important processes. The relationship between target species and multiple environmental factors of habitat was first developed using the Habitat suitability index (HSI). In this study, we used fish presence probabilities for each velocity and water depth to establish different HSI functions under 4 flow conditions (slack, riffle, pool and run) using genetic programming (GP). The physical habitat model, River 2D, was then applied to simulate the river section and calculate weighted usable area (WUA). Based on the WUA results for different land-use scenarios, we further evaluated the relationships between WUA and land-use/landscape patterns using a spatial pattern analysis program, Fragstats. The results showed that by using the habitat model for classified flows, the habitat suitability curve which reflects

  13. Migratory connectivity magnifies the consequences of habitat loss from sea-level rise for shorebird populations.

    PubMed

    Iwamura, Takuya; Possingham, Hugh P; Chadès, Iadine; Minton, Clive; Murray, Nicholas J; Rogers, Danny I; Treml, Eric A; Fuller, Richard A

    2013-06-22

    Sea-level rise (SLR) will greatly alter littoral ecosystems, causing habitat change and loss for coastal species. Habitat loss is widely used as a measurement of the risk of extinction, but because many coastal species are migratory, the impact of habitat loss will depend not only on its extent, but also on where it occurs. Here, we develop a novel graph-theoretic approach to measure the vulnerability of a migratory network to the impact of habitat loss from SLR based on population flow through the network. We show that reductions in population flow far exceed the proportion of habitat lost for 10 long-distance migrant shorebirds using the East Asian-Australasian Flyway. We estimate that SLR will inundate 23-40% of intertidal habitat area along their migration routes, but cause a reduction in population flow of up to 72 per cent across the taxa. This magnifying effect was particularly strong for taxa whose migration routes contain bottlenecks-sites through which a large fraction of the population travels. We develop the bottleneck index, a new network metric that positively correlates with the predicted impacts of habitat loss on overall population flow. Our results indicate that migratory species are at greater risk than previously realized.

  14. Coastal habitat and biological community response to dam removal on the Elwha River

    USGS Publications Warehouse

    Foley, Melissa M.; Warrick, Jonathan A.; Ritchie, Andrew C.; Stevens, Andrew; Shafroth, Patrick B.; Duda, Jeff; Beirne, Matthew M.; Paradis, Rebecca; Gelfenbaum, Guy R.; McCoy, Randall; Cubley, Erin S.

    2017-01-01

    Habitat diversity and heterogeneity play a fundamental role in structuring ecological communities. Dam emplacement and removal can fundamentally alter habitat characteristics, which in turn can affect associated biological communities. Beginning in the early 1900s, the Elwha and Glines Canyon dams in Washington, USA, withheld an estimated 30 million tonnes of sediment from river, coastal, and nearshore habitats. During the staged removal of these dams—the largest dam removal project in history—over 14 million tonnes of sediment were released from the former reservoirs. Our interdisciplinary study in coastal habitats—the first of its kind—shows how the physical changes to the river delta and estuary habitats during dam removal were linked to responses in biological communities. Sediment released during dam removal resulted in over a meter of sedimentation in the estuary and over 400 m of expansion of the river mouth delta landform. These changes increased the amount of supratidal and intertidal habitat, but also reduced the influx of seawater into the pre-removal estuary complex. The effects of these geomorphic and hydrologic changes cascaded to biological systems, reducing the abundance of macroinvertebrates and fish in the estuary and shifting community composition from brackish to freshwater-dominated species. Vegetation did not significantly change on the delta, but pioneer vegetation increased during dam removal, coinciding with the addition of newly available habitat. Understanding how coastal habitats respond to large-scale human stressors—and in some cases the removal of those stressors—is increasingly important as human uses and restoration activities increase in these habitats.

  15. Effects of habitat availability on dispersion of a stream cyprinid

    USGS Publications Warehouse

    Freeman, Mary C.; Grossman, G.D.

    1993-01-01

    We analyzed temporal changes in the dispersion of the rosyside dace,Clinostomus funduloides, (family Cyprinidae) in a headwater stream, to assess the role of habitat availability in promoting fish aggregation. The dace foraged alone and in groups of up to about 25 individuals, and dispersion varied significantly among monthly censuses conducted from May through December. In two of three study pools, dace aggregated during July, October and/or December, but spread out during other months, especially during September when dispersion did not differ significantly from random. Dispersion was not significantly correlated with the total amount of suitable habitat available to foraging dace, but during summer, corresponded to the availability of depositional areas adjacent to rapid currents. Foragers aggregated in eddies or depositional areas during high stream discharge in July, and shifted out of depositional areas when current velocities declined from July to September. During late autumn, however, aggregations formed independently of changes in habitat conditions, and dace dispersion did not vary significantly among months in a third pool. The study suggests that dace dispersion cannot be predicted from the overall availability of suitable habitat as estimated from point measurements of depth and velocity; both the occurrence of a specific habitat feature (i.e., eddies adjacent to high velocity currents) and seasonal differences in behavior more strongly influenced the spatial distribution of foragers.

  16. Quantification of fish habitat in selected reaches of the Marmaton and Marais des Cygnes Rivers, Missouri

    USGS Publications Warehouse

    Heimann, David C.; Richards, Joseph M.; Brewer, Shannon K.; Norman, Richard D.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Conservation, undertook a study to quantify fish habitat by using relations between streamflow and the spatial and temporal distributions of fish habitat at five sites in the Marmaton and Marais des Cygnes Rivers in western Missouri. Twenty-six fish habitat categories were selected for nine species under varying seasonal (spring, summer, and fall), diel (summer day and night), and life-stage (spawning, juvenile, and adult) conditions. Physical habitat characteristics were determined for each category using depth, velocity, and channel substrate criteria. Continuous streamflow data were then combined with the habitat-streamflow relations to compile a habitat time series for each habitat category at each site. Fish habitat categories were assessed as to their vulnerability to habitat alteration based on critical life stages (spawning and juvenile rearing periods) and susceptibility to habitat limitations from dewatering or high flows. Species categories representing critical life stages with physical habitat limitations represent likely bottlenecks in fish populations. Categories with potential bottlenecks can serve as indicator categories and aid managers when determining the flows necessary for maintaining these habitats under altered flow regimes. The relation between the area of each habitat category and streamflow differed greatly between category, season, and stream reach. No single flow maximized selected habitat area for all categories or even for all species/category within a particular season at a site. However, some similarities were noted among habitat characteristics, including the streamflow range for which habitat availability is maximized and the range of streamflows for which a habitat category area is available at the Marmaton River sites. A monthly habitat time series was created for all 26 habitat categories at two Marmaton River sites. A daily habitat time series was

  17. The impacts of mobile fishing gear on seafloor habitats in the Gulf of Maine (Northwest Atlantic): implications for conservation of fish populations

    USGS Publications Warehouse

    Auster, Peter J.; Malatesta, Richard J.; Langton, Richard W.; Watting, Les; Valentine, Page C.; Donaldson, Carol Lee S.; Langton, Elizabeth W.; Shepard, Andrew N.; Babb, War G.

    1997-01-01

    Fishing gear alters seafloor habitats, but the extent of these alterations, and their effects, have not been quantified extensively in the northwest Atlantic. Understanding the extent of these impacts, and their effects on populations of living marine resources, is needed to properly manage current and future levels of fishing effort and fishing power. For example, the entire U.S. side of the Gulf of Maine was impacted annually by mobile fishing gear between 1984 and 1990, based on calculations of area swept by trawl and dredge gear. Georges Bank was imparted three to nearly four times annually during the same period. Studies at three sites in the Gulf of Maine (off Swans Island, Jeffreys Bank, and Stellwagen Bank) showed that mobile fishing gear altered the physical structure (=complexity) of benthic habitats. Complexity was reduced by direct removal of biogenic (e.g., sponges, hydrozoans, bryozoans, amphipod tubes, holothurians, shell aggregates) and‐ sedimentary (e.g., sand waves, depressions) structures. Also, removal of organisms that create.structures (e.g., crabs, scallops) indirectly reduced complexity. Reductions in habitat complexity may lead to increased predation on juveniles of harvested species and ultimately recruitment to the harvestable stock. Because of a lack of reference sites, where use of mobile fishing is prohibited, no empirical studies have yet been conducted on a scale that could demonstrate population level effects of habitat‐management options. If marine fisheries management is to evolve toward an ecosystem or habitat management approach, experiments are required on the effects of habitat change, both anthropogenic and natural.

  18. Effects of hurricanes Katrina and Rita on Louisiana black bear habitat

    USGS Publications Warehouse

    Clark, Joseph D.; Murrow, Jennifer L.

    2012-01-01

    The Louisiana black bear (Ursus americanus luteolus) is comprised of 3 subpopulations, each being small, geographically isolated, and vulnerable to extinction. Hurricanes Katrina and Rita struck the Louisiana and Mississippi coasts in 2005, potentially altering habitat occupied by this federally threatened subspecies. We used data collected on radio-telemetered bears from 1993 to 1995 and pre-hurricane landscape data to develop a habitat model based on the Mahalanobis distance (D2) statistic. We then applied that model to post-hurricane landscape data where the telemetry data were collected (i.e., occupied study area) and where bear range expansion might occur (i.e., unoccupied study area) to quantify habitat loss or gain. The D2 model indicated that quality bear habitat was associated with areas of high mast-producing forest density, low water body density, and moderate forest patchiness. Cross-validation and testing on an independent data set in central Louisiana indicated that prediction and transferability of the model were good. Suitable bear habitat decreased from 348 to 345 km2 (0.9%) within the occupied study area and decreased from 34,383 to 33,891 km2 (1.4%) in the unoccupied study area following the hurricanes. Our analysis indicated that bear habitat was not significantly degraded by the hurricanes, although changes that could have occurred on a microhabitat level would be more difficult to detect at the resolution we used. We suggest that managers continue to monitor the possible long-term effects of these hurricanes (e.g., vegetation changes from flooding, introduction of toxic chemicals, or water quality changes).

  19. Aquatic habitat modifications in La Plata River basin, Patagonia and associated marine areas.

    PubMed

    Mugetti, Ana Cristina; Calcagno, Alberto Tomás; Brieva, Carlos Alberto; Giangiobbe, María Silvia; Pagani, Andrea; Gonzalez, Silvia

    2004-02-01

    This paper describes the environmental characteristics and situation of aquatic habitats and communities in southern continental and maritime areas of southeastern South America (Patagonian Shelf GIWA Subregion), resulting from an overall assessment carried out within the framework of a GIWA project, mostly on the basis of publicly available data. The main focus of the analysis was on the current situation of transboundary water resources and anthropogenic impacts. In the inland waters, habitat and community modifications result, principally, from dams and reservoirs built in the main watercourses for hydroelectric power generation and other uses. The transformation of lotic environments into lentic ones have affected habitats and altered biotic communities. In the La Plata River basin, invasive exotic species have displaced native ones. Habitats in the ocean have been degraded, as their biodiversity becomes affected by overfishing and pollution. This article includes a discussion on the causal chain and the policy options elaborated for the Coastal Ecosystem of Buenos Aires province and the Argentinean-Uruguayan Common Fishing Zone, where fishing resources are shared by both countries.

  20. Climate change, estuaries and anadromous fish habitat in the northeastern United States: models, downscaling and uncertainty

    NASA Astrophysics Data System (ADS)

    Muhling, B.; Gaitan, C. F.; Tommasi, D.; Saba, V. S.; Stock, C. A.; Dixon, K. W.

    2016-02-01

    Estuaries of the northeastern United States provide essential habitat for many anadromous fishes, across a range of life stages. Climate change is likely to impact estuarine environments and habitats through multiple pathways. Increasing air temperatures will result in a warming water column, and potentially increased stratification. In addition, changes to precipitation patterns may alter freshwater inflow dynamics, leading to altered seasonal salinity regimes. However, the spatial resolution of global climate models is generally insufficient to resolve these processes at the scale of individual estuaries. Global models can be downscaled to a regional resolution using a variety of dynamical and statistical methods. In this study, we examined projections of estuarine conditions, and future habitat extent, for several anadromous fishes in the Chesapeake Bay using different statistical downscaling methods. Sources of error from physical and biological models were quantified, and key areas of uncertainty were highlighted. Results suggested that future projections of the distribution and recruitment of species most strongly linked to freshwater flow dynamics had the highest levels of uncertainty. The sensitivity of different life stages to environmental conditions, and the population-level responses of anadromous species to climate change, were identified as important areas for further research.

  1. Impacts of temperature on giant panda habitat in the north Minshan Mountains.

    PubMed

    Liu, Gang; Guan, Tianpei; Dai, Qiang; Li, Huixin; Gong, Minghao

    2016-02-01

    Understanding the impacts of meteorological factors on giant pandas is necessary for future conservation measures in response to global climate change. We integrated temperature data with three main habitat parameters (elevation, vegetation type, and bamboo species) to evaluate the influence of climate change on giant panda habitat in the northern Minshan Mountains using a habitat assessment model. Our study shows that temperature (relative importance = 25.1%) was the second most important variable influencing giant panda habitat excepting the elevation. There was a significant negative correlation between temperature and panda presence (ρ = -0.133, P < 0.05), and the temperature range preferred by giant pandas within the study area was 18-21°C, followed by 15-17°C and 22-24°C. The overall suitability of giant panda habitats will increase by 2.7%, however, it showed a opposite variation patterns between the eastern and northwestern region of the study area. Suitable and subsuitable habitats in the northwestern region of the study area, which is characterized by higher elevation and latitude, will increase by 18007.8 hm(2) (9.8% habitat suitability), while the eastern region will suffer a decrease of 9543.5 hm(2) (7.1% habitat suitability). Our results suggest that increasing areas of suitable giant panda habitat will support future giant panda expansion, and food shortage and insufficient living space will not arise as problems in the northwest Minshan Mountains, which means that giant pandas can adapt to climate change, and therefore may be resilient to climate change. Thus, for the safety and survival of giant pandas in the Baishuijiang Reserve, we propose strengthening the giant panda monitoring program in the west and improving the integrity of habitats to promote population dispersal with adjacent populations in the east.

  2. Response of Tropical Stream Fish Assemblages to Small Hydropower Induced Flow Alteration in the Western Ghats of Karnataka, India.

    NASA Astrophysics Data System (ADS)

    Rao, S. T.

    2016-12-01

    Alteration of natural flow regime is considered as one of the major threats to tropical stream fish assemblages as it alters the physio-chemical and micro-habitat features of the river. Flow alteration induced by Small hydro-power (SHP) plants disrupts the flow regime by flow diversion and regulation. The effects of flow alteration on tropical stream fish assemblages, especially in the Western Ghats of India is largely understudied. Such a knowledge is imperative to set limits on flow alteration as SHPs in the Western Ghats are being planned at an unprecedented rate with exemption from environment impact assessments and backing in the form of government subsidies and carbon credits. This study aimed to understand the response of fish assemblages to SHP induced flow alteration in a regulated and unregulated tributary of the Yettinahole River in the Western Ghats of Karnataka. The study intended to quantify the natural and altered flow regime using automated periodic depth measurements, its effect on micro-habitats and environmental variables and finally, understand how fish assemblages respond to such changes. The response of fish assemblage was measured in terms of catch-per-site, species-regime associations and ecological distance between the regimes. The study used a space for time substitution approach and found that the altered flow regime dampened the diurnal and seasonal patterns of natural flow regime. The altered flow regime influenced variations in water quality, micro-habitat heterogeneity and fish assemblage response, each characteristic of the type of flow alteration. The natural flow regime was found to have a higher catch-per-site and strong associations with endemic and niche-specific taxa. Compositional dissimilarities, in terms of ecological distance were observed between the altered and the natural flow regime. Dewatered or flow diverted regime contained species with lentic affinities while an overall low catch-per-site and weak species

  3. The effect of an industrial effluent on an urban stream benthic community: water quality vs habitat quality.

    PubMed

    Nedeau, Ethan J; Merritt, Richard W; Kaufman, Michael G

    2003-01-01

    We studied the effect of an industrial effluent on the water quality, habitat quality, and benthic macroinvertebrates of an urban stream in southwestern Michigan (USA). The effluent affected water quality by raising in-stream temperatures 13-18 degree C during colder months and carrying high amounts of iron (> 20 x higher than ambient) that covered the streambed. The effluent also affected habitat conditions by increasing total stream discharge by 50-150%, causing a significant change in substrate and flow conditions. We used three methods to collect benthic macroinvertebrates in depositional and erosional habitats and to understand the relative importance of habitat quality and water quality alterations. Macroinvertebrate response variables included taxonomic richness, abundance, and proportional abundance of sensitive taxonomic groups. Results indicated that the effluent had a positive effect on macroinvertebrate communities by increasing the quantity of riffle habitat, but a negative effect on macroinvertebrate communities by reducing water quality. Results illustrated the need for careful consideration of habitat quality and water quality in restoration or remediation programs.

  4. Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton.

    PubMed

    Irizarry, I; White, J F

    2017-04-01

    Cotton seeds are frequently treated with acid to remove fibres and reduce seed-transmitted diseases. This process also eliminates beneficial bacteria on the seed surface. The goal of this research was to seek and apply beneficial bacteria to acid delinted cotton seeds to evaluate their growth-promoting and salt stress alleviating effects in seedlings. Bacteria were isolated from non-cultivated plants in the Malvaceae. Seeds were collected from Portia tree (Thespesia populnea) and wild cotton (Gossypium hirsutum) from coastal and arid areas of Puerto Rico. Bacillus amyloliquefaciens, Curtobacterium oceanosedimentum and Pseudomonas oryzihabitans were inoculated onto acid delinted cotton seeds. Bacteria increased cotton seed germination and length of emerging seedling radicles. Cotton seeds were inoculated with B. amyloliquefaciens to evaluate growth and root architecture of non-stressed and salt stressed seedlings. Inoculating cotton seeds with B. amyloliquefaciens led to a greater percentage of seedlings with expanded cotyledons after 8 days, enhanced primary and lateral root growth, and altered root architecture. Similar results were obtained when okra seeds were inoculated with B. amyloliquefaciens. The data supported the hypothesis that non-cultivated plants in the Malvaceae growing in stressful environments possess bacteria that promote growth, alter root architecture and alleviate salt stress of cotton and okra seedlings. This study demonstrated the effects of applying beneficial bacteria on acid delinted cotton seeds. Inoculating seeds with salt stress alleviating bacteria could improve the growth of crop seedlings that are vulnerable to soil salinization. © 2017 The Society for Applied Microbiology.

  5. Naturally acidified habitat selects for ocean acidification–tolerant mussels

    PubMed Central

    Thomsen, Jörn; Stapp, Laura S.; Haynert, Kristin; Schade, Hanna; Danelli, Maria; Lannig, Gisela; Wegner, K. Mathias; Melzner, Frank

    2017-01-01

    Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae (Mytilus edulis) in a periodically CO2-enriched habitat. The larval fitness of the population originating from the CO2-enriched habitat was compared to the response of a population from a nonenriched habitat in a common garden experiment. The high CO2–adapted population showed higher fitness under elevated Pco2 (partial pressure of CO2) than the non-adapted cohort, demonstrating, for the first time, an evolutionary response of a natural mussel population to ocean acidification. To assess the rate of adaptation, we performed a selection experiment over three generations. CO2 tolerance differed substantially between the families within the F1 generation, and survival was drastically decreased in the highest, yet realistic, Pco2 treatment. Selection of CO2-tolerant F1 animals resulted in higher calcification performance of F2 larvae during early shell formation but did not improve overall survival. Our results thus reveal significant short-term selective responses of traits directly affected by ocean acidification and long-term adaptation potential in a key bivalve species. Because immediate response to selection did not directly translate into increased fitness, multigenerational studies need to take into consideration the multivariate nature of selection acting in natural habitats. Combinations of short-term selection with long-term adaptation in populations from CO2-enriched versus nonenriched natural habitats represent promising approaches for estimating adaptive potential of organisms facing global change. PMID:28508039

  6. Naturally acidified habitat selects for ocean acidification-tolerant mussels.

    PubMed

    Thomsen, Jörn; Stapp, Laura S; Haynert, Kristin; Schade, Hanna; Danelli, Maria; Lannig, Gisela; Wegner, K Mathias; Melzner, Frank

    2017-04-01

    Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae ( Mytilus edulis ) in a periodically CO 2 -enriched habitat. The larval fitness of the population originating from the CO 2 -enriched habitat was compared to the response of a population from a nonenriched habitat in a common garden experiment. The high CO 2 -adapted population showed higher fitness under elevated P co 2 (partial pressure of CO 2 ) than the non-adapted cohort, demonstrating, for the first time, an evolutionary response of a natural mussel population to ocean acidification. To assess the rate of adaptation, we performed a selection experiment over three generations. CO 2 tolerance differed substantially between the families within the F 1 generation, and survival was drastically decreased in the highest, yet realistic, P co 2 treatment. Selection of CO 2 -tolerant F 1 animals resulted in higher calcification performance of F 2 larvae during early shell formation but did not improve overall survival. Our results thus reveal significant short-term selective responses of traits directly affected by ocean acidification and long-term adaptation potential in a key bivalve species. Because immediate response to selection did not directly translate into increased fitness, multigenerational studies need to take into consideration the multivariate nature of selection acting in natural habitats. Combinations of short-term selection with long-term adaptation in populations from CO 2 -enriched versus nonenriched natural habitats represent promising approaches for estimating adaptive potential of organisms facing global change.

  7. Behavioral response of the coachwhip (Masticophis flagellum) to habitat fragment size and isolation in an urban landscape

    USGS Publications Warehouse

    Mitrovich, Milan J.; Diffendorfer, Jay E.; Fisher, Robert N.

    2009-01-01

    Habitat fragmentation is a significant threat to biodiversity worldwide. Habitat loss and the isolation of habitat fragments disrupt biological communities, accelerate the extinction of populations, and often lead to the alteration of behavioral patterns typical of individuals in large, contiguous natural areas. We used radio-telemetry to study the space-use behavior of the Coachwhip, a larger-bodied, wide-ranging snake species threatened by habitat fragmentation, in fragmented and contiguous areas of coastal southern California. We tracked 24 individuals at three sites over two years. Movement patterns of Coachwhips changed in habitat fragments. As area available to the snakes was reduced, individuals faced increased crowding, had smaller home-range sizes, tolerated greater home-range overlap, and showed more concentrated movement activity and convoluted movement pathways. The behavioral response shown by Coachwhips suggests, on a regional level, area-effects alone cannot explain observed extinctions on habitat fragments but, instead, suggests changes in habitat configuration are more likely to explain the decline of this species. Ultimately, if "edge-exposure" is a common cause of decline, then isolated fragments, appropriately buffered to reduce emigration and edge effects, may support viable populations of fragmentation-sensitive species.

  8. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification.

    PubMed

    Pacella, Stephen R; Brown, Cheryl A; Waldbusser, George G; Labiosa, Rochelle G; Hales, Burke

    2018-04-10

    The role of rising atmospheric CO 2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO 2 burden in the habitat was estimated for the years 1765-2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO 2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat's ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pH T , minimum Ω arag , and maximum pCO 2(s.w.) ] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO 2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO 2 driven by aerobic metabolism. This study provides estimates of how high-frequency pH T , Ω arag , and pCO 2(s.w.) dynamics are altered by rising atmospheric CO 2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  9. Indicators: Shallow Water Habitat/In-stream Fish Habitat

    EPA Pesticide Factsheets

    Shallow water habitat, also referred to as in-stream fish habitat, refers to areas that fish and other aquatic organisms need for concealment, breeding and feeding. This includes large woody snags, boulders, rock ledges, and undercut banks.

  10. The Habitat Connection.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  11. A SNP in the HTT promoter alters NF-κB binding and is a bidirectional genetic modifier of Huntington disease.

    PubMed

    Bečanović, Kristina; Nørremølle, Anne; Neal, Scott J; Kay, Chris; Collins, Jennifer A; Arenillas, David; Lilja, Tobias; Gaudenzi, Giulia; Manoharan, Shiana; Doty, Crystal N; Beck, Jessalyn; Lahiri, Nayana; Portales-Casamar, Elodie; Warby, Simon C; Connolly, Colúm; De Souza, Rebecca A G; Tabrizi, Sarah J; Hermanson, Ola; Langbehn, Douglas R; Hayden, Michael R; Wasserman, Wyeth W; Leavitt, Blair R

    2015-06-01

    Cis-regulatory variants that alter gene expression can modify disease expressivity, but none have previously been identified in Huntington disease (HD). Here we provide in vivo evidence in HD patients that cis-regulatory variants in the HTT promoter are bidirectional modifiers of HD age of onset. HTT promoter analysis identified a NF-κB binding site that regulates HTT promoter transcriptional activity. A non-coding SNP, rs13102260:G > A, in this binding site impaired NF-κB binding and reduced HTT transcriptional activity and HTT protein expression. The presence of the rs13102260 minor (A) variant on the HD disease allele was associated with delayed age of onset in familial cases, whereas the presence of the rs13102260 (A) variant on the wild-type HTT allele was associated with earlier age of onset in HD patients in an extreme case-based cohort. Our findings suggest a previously unknown mechanism linking allele-specific effects of rs13102260 on HTT expression to HD age of onset and have implications for HTT silencing treatments that are currently in development.

  12. Contrasting metabolic patterns among seagrass and sand-bottom habitats: relative roles of plankton and benthic metabolism

    EPA Science Inventory

    Human activities can alter the ecological function of estuaries, affecting the ecosystem metabolic balance, which in turn dictates the magnitude and mode of organic matter accumulation. Because human perturbations can cause a loss of seagrass habitat, seagrasses can be a sensitiv...

  13. What happens to near-shore habitat when lake and reservoir water levels decline?

    EPA Science Inventory

    Water management and drought can lead to increased fluctuation and declines in lake and reservoir water levels. These changes can affect near-shore physical habitat and the biotic assemblages that depend upon it. Structural complexity at the land-water interface of lakes promote...

  14. Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size

    PubMed Central

    Ragsdale, Alexandria K.; McCoy, Earl D.; Mushinsky, Henry R.

    2016-01-01

    Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub. PMID:26976940

  15. NASA Habitat Demonstration Unit (HDU) Deep Space Habitat Analog

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Kennedy, Kriss J.; Gill, Tracy

    2013-01-01

    The NASA Habitat Demonstration Unit (HDU) vertical cylinder habitat was established as a exploration habitat testbed platform for integration and testing of a variety of technologies and subsystems that will be required in a human-occupied planetary surface outpost or Deep Space Habitat (DSH). The HDU functioned as a medium-fidelity habitat prototype from 2010-2012 and allowed teams from all over NASA to collaborate on field analog missions, mission operations tests, and system integration tests to help shake out equipment and provide feedback for technology development cycles and crew training. This paper documents the final 2012 configuration of the HDU, and discusses some of the testing that took place. Though much of the higher-fidelity functionality has 'graduated' into other NASA programs, as of this writing the HDU, renamed Human Exploration Research Analog (HERA), will continue to be available as a volumetric and operational mockup for NASA Human Research Program (HRP) research from 2013 onward.

  16. California Spotted Owl (Strix occidentalis occidentalis) habitat use patterns in a burned landscape

    USGS Publications Warehouse

    Eyes, Stephanie; Roberts, Susan L.; Johnson, Matthew D.

    2017-01-01

    Fire is a dynamic ecosystem process of mixed-conifer forests of the Sierra Nevada, but there is limited scientific information addressing wildlife habitat use in burned landscapes. Recent studies have presented contradictory information regarding the effects of stand-replacing wildfires on Spotted Owls (Strix occidentalis) and their habitat. While fire promotes heterogeneous forest landscapes shown to be favored by owls, high severity fire may create large canopy gaps that can fragment the closed-canopy habitat preferred by Spotted Owls. We used radio-telemetry to determine whether foraging California Spotted Owls (S. o. occidentalis) in Yosemite National Park, California, USA, showed selection for particular fire severity patch types within their home ranges. Our results suggested that Spotted Owls exhibited strong habitat selection within their home ranges for locations near the roost and edge habitats, and weak selection for lower fire severity patch types. Although owls selected high contrast edges with greater relative probabilities than low contrast edges, we did not detect a statistical difference between these probabilities. Protecting forests from stand-replacing fires via mechanical thinning or prescribed fire is a priority for management agencies, and our results suggest that fires of low to moderate severity can create habitat conditions within California Spotted Owls' home ranges that are favored for foraging.

  17. Incubation success and habitat selection of shore-spawning kokanee Onchorhynchus nerka: effects of water level regulation and habitat characteristics.

    USGS Publications Warehouse

    Whitlock, Steven L.; Quist, Michael C.; Dux, Andrew M.

    2014-01-01

    Changes to water-level regimes have been known to restructure fish assemblages and interfere with the population dynamics of both littoral and pelagic species. The effect of altered water-level regimes on shore-spawning kokanee Oncorhynchus nerka incubation success was evaluated using a comprehensive in situ study in Lake Pend Oreille, ID, USA. Survival was not related to substrate size composition or depth, indicating that shore-spawning kokanee do not currently receive a substrate-mediated survival benefit from higher winter water levels. Substrate composition also did not differ among isobaths in the nearshore area. On average, the odds of an egg surviving to the preemergent stage were more than three times greater for sites in downwelling areas than those lacking downwelling. This study revealed that shoreline spawning habitat is not as limited as previously thought. Downwelling areas appear to contribute substantially to shore-spawning kokanee recruitment. This research illustrates the value of rigorous in situ studies both for testing potential mechanisms underlying population trends and providing insight into spawning habitat selection.

  18. Study of the Role of siRNA Mediated Promoter Methylation in DNMT3B Knockdown and Alteration of Promoter Methylation of CDH1, GSTP1 Genes in MDA-MB -453 Cell Line.

    PubMed

    Naghitorabi, Mojgan; Mir Mohammad Sadeghi, Hamid; Mohammadi Asl, Javad; Rabbani, Mohammad; Jafarian-Dehkordi, Abbas

    2017-01-01

    Promoter methylation is one of the main epigenetic mechanisms that leads to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifically knock down the DNMTs at mRNA level. Also many studies have focused on transcriptional gene silencing in mammalian cells via siRNA mediated promoter methylation. The present study was designed to assess the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of Cadherin-1 (CDH1), Glutathione S-Transferase Pi 1(GSTP1), and DNMT3B genes in MDA-MB-453 cell line. MDA-MB-453 cells were transfected with siDNMT targeting DNMT3B promoter and harvested at 24 and 48 h post transfection to monitor gene silencing and promoter methylation respectively. DNMT3B expression was monitored by quantitative RT-PCR method. Promoter methylation was quantitatively evaluated using differential high resolution melting analysis. A non-significant 20% reduction in DNMT3B mRNA level was shown only after first transfection with siDNMT, which was not reproducible. Promoter methylation levels of DNMT3B, CDH1, and GSTP1 were detected at about 15%, 70% and 10% respectively, in the MDA-MB-453 cell line, with no significant change after transfection. Our results indicated that siDNMT sequence were not able to affect promoter methylation and silencing of DNMT3B in MDA-MB-453 cells. However, quantitation of methylation confirmed a hypermethylated phenotype at CDH1 and GSTP1 promoters as well as a differential methylation pattern at DNMT3B promoter in breast cancer.

  19. Chapter 5. Using Habitat Models for Habitat Mapping and Monitoring

    Treesearch

    Samuel A. Cushman; Timothy J. Mersmann; Gretchen G. Moisen; Kevin S. McKelvey; Christina D. Vojta

    2013-01-01

    This chapter provides guidance for applying existing habitat models to map and monitor wildlife habitat. Chapter 2 addresses the use of conceptual models to create a solid foundation for selecting habitat attributes to monitor and to translate these attributes into quantifiable and reportable monitoring measures. Most wildlife species, however, require a complex suite...

  20. Habitat classification modeling with incomplete data: Pushing the habitat envelope

    USGS Publications Warehouse

    Zarnetske, P.L.; Edwards, T.C.; Moisen, Gretchen G.

    2007-01-01

    Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can be used. Traditional techniques generate pseudoabsence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, thresholdindependent receiver operating characteristic (ROC) plots, adjusted deviance (Dadj2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant, suggesting

  1. Synchronous flowering despite differences in snowmelt timing among habitats of Empetrum hermaphroditum

    NASA Astrophysics Data System (ADS)

    Bienau, Miriam J.; Kröncke, Michael; Eiserhardt, Wolf L.; Otte, Annette; Graae, Bente J.; Hagen, Dagmar; Milbau, Ann; Durka, Walter; Eckstein, R. Lutz

    2015-11-01

    The topography within arctic-alpine landscapes is very heterogeneous, resulting in diverse snow distribution patterns, with different snowmelt timing in spring. This may influence the phenological development of arctic and alpine plant species and asynchronous flowering may promote adaptation of plants to their local environments. We studied how flowering phenology of the dominant dwarf shrub Empetrum hermaphroditum varied among three habitats (exposed ridges, sheltered depressions and birch forest) differing in winter snow depth and thus snowmelt timing in spring, and whether the observed patterns were consistent across three different study areas. Despite significant differences in snowmelt timing between habitats, full flowering of E. hermaphroditum was nearly synchronous between the habitats, and implies a high flowering overlap. Our data show that exposed ridges, which had a long lag phase between snowmelt and flowering, experienced different temperature and light conditions than the two late melting habitats between snowmelt and flowering. Our study demonstrates that small scale variation seems matter less to flowering of Empetrum than interannual differences in snowmelt timing.

  2. An Ecohydraulic Model to Identify and Monitor Moapa Dace Habitat

    PubMed Central

    Hatten, James R.; Batt, Thomas R.; Scoppettone, Gary G.; Dixon, Christopher J.

    2013-01-01

    Moapa dace (Moapa coriacea) is a critically endangered thermophilic minnow native to the Muddy River ecosystem in southeastern Nevada, USA. Restricted to temperatures between 26.0 and 32.0°C, these fish are constrained to the upper two km of the Muddy River and several small tributaries fed by warm springs. Habitat alterations, nonnative species invasion, and water withdrawals during the 20th century resulted in a drastic decline in the dace population and in 1979 the Moapa Valley National Wildlife Refuge (Refuge) was created to protect them. The goal of our study was to determine the potential effects of reduced surface flows that might result from groundwater pumping or water diversions on Moapa dace habitat inside the Refuge. We accomplished our goal in several steps. First, we conducted snorkel surveys to determine the locations of Moapa dace on three warm-spring tributaries of the Muddy River. Second, we conducted hydraulic simulations over a range of flows with a two-dimensional hydrodynamic model. Third, we developed a set of Moapa dace habitat models with logistic regression and a geographic information system. Fourth, we estimated Moapa dace habitat over a range of flows (plus or minus 30% of base flow). Our spatially explicit habitat models achieved classification accuracies between 85% and 91%, depending on the snorkel survey and creek. Water depth was the most significant covariate in our models, followed by substrate, Froude number, velocity, and water temperature. Hydraulic simulations showed 2–11% gains in dace habitat when flows were increased by 30%, and 8–32% losses when flows were reduced by 30%. To ensure the health and survival of Moapa dace and the Muddy River ecosystem, groundwater and surface-water withdrawals and diversions need to be carefully monitored, while fully implementing a proactive conservation strategy. PMID:23408999

  3. An ecohydraulic model to identify and monitor moapa dace habitat

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.; Scoppettone, Gayton G.; Dixon, Christopher J.

    2013-01-01

    Moapa dace (Moapa coriacea) is a critically endangered thermophilic minnow native to the Muddy River ecosystem in southeastern Nevada, USA. Restricted to temperatures between 26.0 and 32.0°C, these fish are constrained to the upper two km of the Muddy River and several small tributaries fed by warm springs. Habitat alterations, nonnative species invasion, and water withdrawals during the 20th century resulted in a drastic decline in the dace population and in 1979 the Moapa Valley National Wildlife Refuge (Refuge) was created to protect them. The goal of our study was to determine the potential effects of reduced surface flows that might result from groundwater pumping or water diversions on Moapa dace habitat inside the Refuge. We accomplished our goal in several steps. First, we conducted snorkel surveys to determine the locations of Moapa dace on three warm-spring tributaries of the Muddy River. Second, we conducted hydraulic simulations over a range of flows with a two-dimensional hydrodynamic model. Third, we developed a set of Moapa dace habitat models with logistic regression and a geographic information system. Fourth, we estimated Moapa dace habitat over a range of flows (plus or minus 30% of base flow). Our spatially explicit habitat models achieved classification accuracies between 85% and 91%, depending on the snorkel survey and creek. Water depth was the most significant covariate in our models, followed by substrate, Froude number, velocity, and water temperature. Hydraulic simulations showed 2-11% gains in dace habitat when flows were increased by 30%, and 8-32% losses when flows were reduced by 30%. To ensure the health and survival of Moapa dace and the Muddy River ecosystem, groundwater and surface-water withdrawals and diversions need to be carefully monitored, while fully implementing a proactive conservation strategy.

  4. Feedbacks between community assembly and habitat selection shape variation in local colonization

    USGS Publications Warehouse

    Kraus, J.M.; Vonesh, J.R.

    2010-01-01

    1. Non-consumptive effects of predators are increasingly recognized as important drivers of community assembly and structure. Specifically, habitat selection responses to top predators during colonization and oviposition can lead to large differences in aquatic community structure, composition and diversity. 2. These differences among communities due to predators may develop as communities assemble, potentially altering the relative quality of predator vs. predator-free habitats through time. If so, community assembly would be expected to modify the subsequent behavioural responses of colonists to habitats containing top predators. Here, we test this hypothesis by manipulating community assembly and the presence of fish in experimental ponds and measuring their independent and combined effects on patterns of colonization by insects and amphibians. 3. Assembly modified habitat selection of dytscid beetles and hylid frogs by decreasing or even reversing avoidance of pools containing blue-spotted sunfish (Enneacanthus gloriosus). However, not all habitat selection responses to fish depended on assembly history. Hydrophilid beetles and mosquitoes avoided fish while chironomids were attracted to fish pools, regardless of assembly history. 4. Our results show that community assembly causes taxa-dependent feedbacks that can modify avoidance of habitats containing a top predator. Thus, non-consumptive effects of a top predator on community structure change as communities assemble and effects of competitors and other predators combine with the direct effects of top predators to shape colonization. 5. This work reinforces the importance of habitat selection for community assembly in aquatic systems, while illustrating the range of factors that may influence colonization rates and resulting community structure. Directly manipulating communities both during colonization and post-colonization is critical for elucidating how sequential processes interact to shape communities.

  5. Biodiversity: Habitat Suitability

    EPA Science Inventory

    Habitat suitability quantifies the relationship between species and habitat, and is evaluated according to the species’ fitness (i.e. proportion of birth rate to death rate). Even though it might maximize evolutionary success, species are not always in habitat that optimizes fit...

  6. Do physical habitat complexity and predator cues influence the baseline and stress-induced glucocorticoid levels of a mangrove-associated fish?

    PubMed

    Magel, Jennifer M T; Pleizier, Naomi; Wilson, Alexander D M; Shultz, Aaron D; Vera Chang, Marilyn N; Moon, Thomas W; Cooke, Steven J

    2017-01-01

    As human populations continue to expand, increases in coastal development have led to the alteration of much of the world's mangrove habitat, creating problems for the multitude of species that inhabit these unique ecosystems. Habitat alteration often leads to changes in habitat complexity and predation risk, which may serve as additional stressors for those species that rely on mangroves for protection from predators. However, few studies have been conducted to date to assess the effects of these specific stressors on glucocorticoid (GC) stress hormone levels in wild fish populations. Using the checkered puffer as a model, our study sought to examine the effects of physical habitat complexity and predator environment on baseline and acute stress-induced GC levels. This was accomplished by examining changes in glucose and cortisol concentrations of fish placed in artificial environments for short periods (several hours) where substrate type and the presence of mangrove roots and predator cues were manipulated. Our results suggest that baseline and stress-induced GC levels are not significantly influenced by changes in physical habitat complexity or the predator environment using the experimental protocol that we applied. Although more research is required, the current study suggests that checkered puffers may be capable of withstanding changes in habitat complexity and increases in predation risk without experiencing adverse GC-mediated physiological effects, possibly as a result of the puffers' unique morphological and chemical defenses that help them to avoid predation in the wild. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Birds and butterflies respond to soil-induced habitat heterogeneity in experimental plantings of tallgrass prairie species managed as agroenergy feedstocks in Iowa, USA

    USDA-ARS?s Scientific Manuscript database

    The positive association between habitat heterogeneity and species diversity has been well-documented for many taxa at various spatial and temporal scales, and the maintenance of habitat heterogeneity in agricultural landscapes has been promoted as a key strategy in efforts to conserve biodiversity....

  8. Habitat use and habitat overlap of riparian birds in three elevational zones

    Treesearch

    Deborah M. Finch

    1989-01-01

    I examined patterns of variance in habitat use and habitat overlap in 20 breeding bird species found along a riparian vegetational gradient in southeastern Wyoming to test whether habitat use in species differed (1) from availability of random habitat resources, (2) among elevational zones, and (3) between species that inhabited only one zone and species that occupied...

  9. HABITAT ASSESSMENT METHODS

    EPA Science Inventory

    This chapter summarizes and evaluated the habitat assessment protocols of five agencies, USEPA/EMAP/SW, USGS/NAWQA, USEPA/RBP, Ohio EPA, and MDNR/MBSS. It begins with a description of the origin of the habitat indices most widely used by these agencies. Then the habitat assessmen...

  10. Avian assemblages on altered grasslands

    USGS Publications Warehouse

    Knopf, Fritz L.

    1994-01-01

    Grasslands comprise 17% of the North American landscape but provide primary habitat for only 5% of native bird species. On the Great Plains, grasslands include an eastern component of tall grasses and a western component of short grasses, both of which have been regionally altered by removing native grazers, plowing sod, draining wetlands, and encouraging woody vegetation. As a group, populations of endemic bird species of the grasslands have declined more than others (including neotropical migrants) in the last quarter century. Individually, populations of the Upland Sandpiper and McCown’s Longspur have increased; the wetlands-associated Marbled Godwit and Wilson’s Phalarope appear stable; breeding ranges are shifting for the Ferruginous Hawk, Mississippi Kite, Short-eared Owl, Upland Sandpiper, Horned Lark, Vesper, Savannah, and Henslow’s sparrows, and Western Meadowlark; breeding habitats are disappearing locally for Franklin’s Gull, Dickcissel, Henslow’s and Grasshopper sparrows. Lark Bunting, and Eastern Meadowlark; and populations are declining throughout the breeding ranges for Mountain Plover, and Cassin’s and Clay-colored sparrows. Declines of these latter three species, and also the Franklin’s Gull, presumably are due to ecological phenomena on their respective wintering areas. Unlike forest species that winter in the neotropics, most birds that breed in the North American grasslands also winter on the continent and problems driving declines in grassland species are associated almost entirely with North American processes. Contemporary programs and initiatives hold promise for the conservation of breeding habitats for these birds. Ecological ignorance of wintering habits and habitats clouds the future of the endemic birds of grasslands, especially those currently experiencing widespread declines across breeding locales.

  11. Habitat use of non-native burbot in a western river

    USGS Publications Warehouse

    Klein, Zachary B.; Quist, Michael C.; Rhea, Darren T.; Senecal, Anna C.

    2015-01-01

    Burbot, Lota lota (Linnaeus), were illegally introduced into the Green River drainage, Wyoming in the 1990s. Burbot could potentially alter the food web in the Green River, thereby negatively influencing socially, economically, and ecologically important fish species. Therefore, managers of the Green River are interested in implementing a suppression program for burbot. Because of the cost associated with the removal of undesirable species, it is critical that suppression programs are as effective as possible. Unfortunately, relatively little is known about the habitat use of non-native burbot in lotic systems, severely limiting the effectiveness of any removal effort. We used hurdle models to identify habitat features influencing the presence and relative abundance of burbot. A total of 260 burbot was collected during 207 sampling events in the summer and autumn of 2013. Regardless of the season, large substrate (e.g., cobble, boulder) best predicted the presence and relative abundance of burbot. In addition, our models indicated that the occurrence of burbot was inversely related to mean current velocity. The efficient and effective removal of burbot from the Green River largely relies on an improved understanding of the influence of habitat on their distribution and relative abundance.

  12. Promotion of flowering in azaleas by manipulating photoperiod and temperature induces epigenetic alterations during floral transition.

    PubMed

    Meijón, Mónica; Feito, Isabel; Valledor, Luis; Rodríguez, Roberto; Cañal, María Jesús

    2011-09-01

    The ability to control the timing of flowering is a key strategy for planning production in ornamental species such as the azalea; however, this requires a thorough understanding of floral induction pathways. DNA methylation is one of the main mechanisms involved in controlling the functional state of chromatin and gene expression in response to environmental and developmental signals. This work investigated the promotion of flowering in azaleas by the manipulation of environmental factors, using DNA methylation levels as a marker of floral bud development. The results showed that the change of long-day (LD) to short-day (SD) photoperiod is the primary factor responsible for floral induction in azaleas, whereas the existence of the previous cold period as well as the physiological memory are factors which improve floral production. Furthermore, for blooming to take place, 1300 units of growing degree days under an LD were necessary. The promotion of flowering in azaleas by alterations of photoperiod and temperature induced DNA methylation changes. The demethylation observed after the change from LD to SD is linked to a change in cell fate which is necessary for floral transition to take place and seems to be associated with the floral signal. Copyright © Physiologia Plantarum 2011.

  13. Habitat-specific foraging of prothonotary warblers: Deducing habitat quality

    USGS Publications Warehouse

    Lyons, J.E.

    2005-01-01

    Foraging behavior often reflects food availability in predictable ways. For example, in habitats where food availability is high, predators should attack prey more often and move more slowly than in habitats where food availability is low. To assess relative food availability and habitat quality, I studied the foraging behavior of breeding Prothonotary Warblers (Protonotaria citrea) in two forest habitat types, cypress-gum swamp forest and coastal-plain levee forest. I quantified foraging behavior with focal animal sampling and continuous recording during foraging bouts. I measured two aspects of foraging behavior: 1) prey attack rate (attacks per minute), using four attack maneuvers (glean, sally, hover, strike), and 2) foraging speed (movements per minute), using three types of movement (hop, short flight [???1 m], long flight [>1 m]). Warblers attacked prey more often in cypress-gum swamp forest than in coastal-plain levee forest. Foraging speed, however, was not different between habitats. I also measured foraging effort (% time spent foraging) and relative frequency of attack maneuvers employed in each habitat; neither of these variables was influenced by forest type. I conclude that Prothonotary Warblers encounter more prey when foraging in cypress-gum swamps than in coastal-plain levee forest, and that greater food availability results in higher density and greater reproductive success for birds breeding in cypress-gum swamp.

  14. Transport Infrastructure Shapes Foraging Habitat in a Raptor Community

    PubMed Central

    Planillo, Aimara; Kramer-Schadt, Stephanie; Malo, Juan E.

    2015-01-01

    Transport infrastructure elements are widespread and increasing in size and length in many countries, with the subsequent alteration of landscapes and wildlife communities. Nonetheless, their effects on habitat selection by raptors are still poorly understood. In this paper, we analyzed raptors’ foraging habitat selection in response to conventional roads and high capacity motorways at the landscape scale, and compared their effects with those of other variables, such as habitat structure, food availability, and presence of potential interspecific competitors. We also analyzed whether the raptors’ response towards infrastructure depends on the spatial scale of observation, comparing the attraction or avoidance behavior of the species at the landscape scale with the response of individuals observed in the proximity of the infrastructure. Based on ecological hypotheses for foraging habitat selection, we built generalized linear mixed models, selected the best models according to Akaike Information Criterion and assessed variable importance by Akaike weights. At the community level, the traffic volume was the most relevant variable in the landscape for foraging habitat selection. Abundance, richness, and diversity values reached their maximum at medium traffic volumes and decreased at highest traffic volumes. Individual species showed different degrees of tolerance toward traffic, from higher abundance in areas with high traffic values to avoidance of it. Medium-sized opportunistic raptors increased their abundance near the traffic infrastructures, large scavenger raptors avoided areas with higher traffic values, and other species showed no direct response to traffic but to the presence of prey. Finally, our cross-scale analysis revealed that the effect of transport infrastructures on the behavior of some species might be detectable only at a broad scale. Also, food availability may attract raptor species to risky areas such as motorways. PMID:25786218

  15. Transport infrastructure shapes foraging habitat in a raptor community.

    PubMed

    Planillo, Aimara; Kramer-Schadt, Stephanie; Malo, Juan E

    2015-01-01

    Transport infrastructure elements are widespread and increasing in size and length in many countries, with the subsequent alteration of landscapes and wildlife communities. Nonetheless, their effects on habitat selection by raptors are still poorly understood. In this paper, we analyzed raptors' foraging habitat selection in response to conventional roads and high capacity motorways at the landscape scale, and compared their effects with those of other variables, such as habitat structure, food availability, and presence of potential interspecific competitors. We also analyzed whether the raptors' response towards infrastructure depends on the spatial scale of observation, comparing the attraction or avoidance behavior of the species at the landscape scale with the response of individuals observed in the proximity of the infrastructure. Based on ecological hypotheses for foraging habitat selection, we built generalized linear mixed models, selected the best models according to Akaike Information Criterion and assessed variable importance by Akaike weights. At the community level, the traffic volume was the most relevant variable in the landscape for foraging habitat selection. Abundance, richness, and diversity values reached their maximum at medium traffic volumes and decreased at highest traffic volumes. Individual species showed different degrees of tolerance toward traffic, from higher abundance in areas with high traffic values to avoidance of it. Medium-sized opportunistic raptors increased their abundance near the traffic infrastructures, large scavenger raptors avoided areas with higher traffic values, and other species showed no direct response to traffic but to the presence of prey. Finally, our cross-scale analysis revealed that the effect of transport infrastructures on the behavior of some species might be detectable only at a broad scale. Also, food availability may attract raptor species to risky areas such as motorways.

  16. Histone Deacetylase Inhibition Promotes Osteoblast Maturation by Altering the Histone H4 Epigenome and Reduces Akt Phosphorylation*

    PubMed Central

    Dudakovic, Amel; Evans, Jared M.; Li, Ying; Middha, Sumit; McGee-Lawrence, Meghan E.; van Wijnen, Andre J.; Westendorf, Jennifer J.

    2013-01-01

    Bone has remarkable regenerative capacity, but this ability diminishes during aging. Histone deacetylase inhibitors (HDIs) promote terminal osteoblast differentiation and extracellular matrix production in culture. The epigenetic events altered by HDIs in osteoblasts may hold clues for the development of new anabolic treatments for osteoporosis and other conditions of low bone mass. To assess how HDIs affect the epigenome of committed osteoblasts, MC3T3 cells were treated with suberoylanilide hydroxamic acid (SAHA) and subjected to microarray gene expression profiling and high-throughput ChIP-Seq analysis. As expected, SAHA induced differentiation and matrix calcification of osteoblasts in vitro. ChIP-Seq analysis revealed that SAHA increased histone H4 acetylation genome-wide and in differentially regulated genes, except for the 500 bp upstream of transcriptional start sites. Pathway analysis indicated that SAHA increased the expression of insulin signaling modulators, including Slc9a3r1. SAHA decreased phosphorylation of insulin receptor β, Akt, and the Akt substrate FoxO1, resulting in FoxO1 stabilization. Thus, SAHA induces genome-wide H4 acetylation and modulates the insulin/Akt/FoxO1 signaling axis, whereas it promotes terminal osteoblast differentiation in vitro. PMID:23940046

  17. Using remote sensing data to assess salmon habitat status in rivers and floodplains of Puget Sound, USA

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Pess, G. R.; Hall, J.; Timpane-Padgham, B.; Stefankiv, O.; Liermann, M. C.; Fresh, K.; Rowse, M.

    2015-12-01

    Natural processes create dynamic habitat features in large rivers and floodplains, and past land uses that restrict fluvial processes have altered habitat conditions in those environments in Puget Sound, USA. As a result, Chinook salmon and steelhead are listed as threatened species under the US Endangered Species Act (ESA). To help restore these salmon populations, restoration actions often focus on removing constraints on natural processes to restore fluvial dynamics and ultimately restore critical salmon habitats on floodplains. An important aspect of this restoration effort is monitoring whether habitat conditions are improving as anticipated, yet there are currently few protocols available for monitoring trends in large river and floodplain habitats. We identified several remote-sensing metrics that are indicators of salmon habitat condition, and developed repeatable protocols for measuring those metrics. We then tested their sensitivity to land use change by comparing habitat conditions among land cover classes (developed, agriculture, forested, and mixed). As expected, metrics of habitat complexity or condition such as side-channel length, node density, wood jam area, or riparian buffer widths were highest in forested sites and lowest in agriculture and urban sites. By contrast, percent disconnected floodplain and percent armored banks were highest in developed sites and lowest in forested sites. Our results indicate that remote sensing metrics are sensitive enough to detect differences in habitat status among land cover classes, and therefore help us understand the impact of various land uses on habitat conditions. However, detecting trends in habitat condition through time may be difficult because magnitudes of change through time are very small.

  18. Temporal overlaps of feral cats with prey and competitors in primary and human-altered habitats on Bohol Island, Philippines.

    PubMed

    Bogdan, Vlastimil; Jůnek, Tomáš; Jůnková Vymyslická, Pavla

    2016-01-01

    The vertebrate fauna of the Philippines, known for its diversity and high proportion of endemic species, comprises mainly small- to medium-sized forms with a few large exceptions. As with other tropical ecosystems, the major threats to wildlife are habitat loss, hunting and invasive species, of which the feral cat (Felis catus) is considered the most damaging. Our camera-trapping study focused on a terrestrial vertebrate species inventory on Bohol Island and tempo-spatial co-occurrences of feral cats with their prey and competitors. The survey took place in the Rajah Sikatuna Protected Landscape, and we examined the primary rainforest, its border with agricultural land, and rural areas in the vicinity of villages. Altogether, over 2,885 trap days we captured 30 species of vertebrates-10 mammals (including Sus philippensis), 19 birds and one reptile, Varanus cumingi. We trapped 81.8% of expected vertebrates. Based on the number of events, the most frequent native species was the barred rail (Gallirallus torquatus). The highest overlap in diel activity between cats and potential prey was recorded with rodents in rural areas (Δ = 0.62); the lowest was in the same habitat with ground-dwelling birds (Δ = 0.40). Cat activity was not recorded inside the rainforest; in other habitats their diel activity pattern differed. The cats' activity declined in daylight in the proximity of humans, while it peaked at the transition zone between rainforest and fields. Both rodents and ground-dwelling birds exhibited a shift in activity levels between sites where cats were present or absent. Rodents tend to become active by day in cat-free habitats. No cats' temporal response to co-occurrences of civets (Paradoxurus hermaphroditus and Viverra tangalunga) was found but cats in diel activity avoided domestic dogs (Canis lupus familiaris). Our first insight into the ecology of this invasive predator in the Philippines revealed an avoidance of homogeneous primary rainforest and a

  19. Habitat preferences of two sparrow species are modified by abundances of other birds in an urban environment

    PubMed Central

    Skórka, Piotr; Sierpowska, Katarzyna; Haidt, Andżelika; Myczko, Łukasz; Ekner-Grzyb, Anna; Rosin, Zuzanna M.; Kwieciński, Zbigniew; Suchodolska, Joanna; Takacs, Viktoria; Jankowiak, Łukasz; Wasielewski, Oskar; Graclik, Agnieszka; Krawczyk, Agata J.; Kasprzak, Adam; Szwajkowski, Przemysław; Wylegała, Przemysław; Malecha, Anna W.; Mizera, Tadeusz; Tryjanowski, Piotr

    2016-01-01

    Abstract Every species has certain habitat requirements, which may be altered by interactions with other co-occurring species. These interactions are mostly ignored in predictive models trying to identify key habitat variables correlated with species population abundance/occurrence. We investigated how the structure of the urban landscape, food resources, potential competitors, predators, and interaction between these factors influence the abundance of house sparrow Passer domesticus and the tree sparrow P. montanus in sixty 25 ha plots distributed randomly across residential areas of the city of Poznań (Poland). The abundance of the house sparrow was positively correlated with the abundance of pigeons but negatively correlated with human-related food resources. There were significant interaction terms between abundances of other urban species and habitat variables in statistical models. For example, the abundance of house sparrow was negatively correlated with the abundance of corvids and tree sparrows but only when food resources were low. The abundance of tree sparrows positively correlated with density of streets and the distance from the city center. The abundance of this species positively correlated with the abundance of corvids when food resources were low but negatively correlated at low covers of green area. Our study indicates that associations between food resources, habitat covers, and the relative abundance of two sparrow species are altered by the abundance of other urban species. Competition, niche separation and social facilitation may be responsible for these interactive effects. Thus, biotic interactions should be included not only as an additive effect but also as an interaction term between abundance and habitat variables in statistical models predicting species abundance and occurrence. PMID:29491924

  20. Not equal in the face of habitat change: closely related fishes differ in their ability to use predation-related information in degraded coral

    PubMed Central

    2017-01-01

    Coral reefs are biodiversity hotpots that are under significant threat due to the degradation and death of hard corals. When obligate coral-dwelling species die, the remaining species must either move or adjust to the altered conditions. Our goal was to investigate the effect of coral degradation on the ability of coral reef fishes to assess their risk of predation using alarm cues from injured conspecifics. Here, we tested the ability of six closely related species of juvenile damselfish (Pomacentridae) to respond to risk cues in both live coral or dead-degraded coral environments. Of those six species, two are exclusively associated with live coral habitats, two are found mostly on dead-degraded coral rubble, while the last two are found in both habitat types. We found that the two live coral associates failed to respond appropriately to the cues in water from degraded habitats. In contrast, the cue response of the two rubble associates was unaffected in the same degraded habitat. Interestingly, we observed a mixed response from the species found in both habitat types, with one species displaying an appropriate cue response while the other did not. Our second experiment suggested that the lack of responses stemmed from deactivation of the alarm cues, rather than the inability of the species to smell. Habitat preference (live coral versus dead coral associates) and phylogeny are good candidates for future work aimed at predicting which species are affected by coral degradation. Our results point towards a surprising level of variation in the ability of congeneric species to fare in altered habitats and hence underscores the difficulty of predicting community change in degraded habitats. PMID:28404773

  1. Not equal in the face of habitat change: closely related fishes differ in their ability to use predation-related information in degraded coral.

    PubMed

    Ferrari, Maud C O; McCormick, Mark I; Allan, Bridie J M; Chivers, Douglas P

    2017-04-12

    Coral reefs are biodiversity hotpots that are under significant threat due to the degradation and death of hard corals. When obligate coral-dwelling species die, the remaining species must either move or adjust to the altered conditions. Our goal was to investigate the effect of coral degradation on the ability of coral reef fishes to assess their risk of predation using alarm cues from injured conspecifics. Here, we tested the ability of six closely related species of juvenile damselfish (Pomacentridae) to respond to risk cues in both live coral or dead-degraded coral environments. Of those six species, two are exclusively associated with live coral habitats, two are found mostly on dead-degraded coral rubble, while the last two are found in both habitat types. We found that the two live coral associates failed to respond appropriately to the cues in water from degraded habitats. In contrast, the cue response of the two rubble associates was unaffected in the same degraded habitat. Interestingly, we observed a mixed response from the species found in both habitat types, with one species displaying an appropriate cue response while the other did not. Our second experiment suggested that the lack of responses stemmed from deactivation of the alarm cues, rather than the inability of the species to smell. Habitat preference (live coral versus dead coral associates) and phylogeny are good candidates for future work aimed at predicting which species are affected by coral degradation. Our results point towards a surprising level of variation in the ability of congeneric species to fare in altered habitats and hence underscores the difficulty of predicting community change in degraded habitats. © 2017 The Authors.

  2. Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness

    PubMed Central

    Albert, James S.; Carvalho, Tiago P.; Petry, Paulo; Holder, Meghan A.; Maxime, Emmanuel L.; Espino, Jessica; Corahua, Isabel; Quispe, Roberto; Rengifo, Blanca; Ortega, Hernan; Reis, Roberto E.

    2011-01-01

    Simple Summary The immense rainforest ecosystems of tropical America represent some of the greatest concentrations of biodiversity on the planet. Prominent among these are evolutionary radiations of freshwater fishes, including electric eels, piranhas, stingrays, and a myriad of small-bodied and colorful tetras, cichlids, and armored catfishes. In all, the many thousands of these forms account for nearly 10% of all the vertebrate species on Earth. This article explores the complimentary roles that ecological and geographic filters play in limiting dispersal in aquatic species, and how these factors contribute to the accumulation of species richness over broad geographic and evolutionary time scales. Abstract The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world's land surface area, and less than 0.002% of the world's total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200–500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient

  3. Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size.

    PubMed

    Schrey, Aaron W; Ragsdale, Alexandria K; McCoy, Earl D; Mushinsky, Henry R

    2016-07-01

    Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Biotic Responses of Headwater Streams to Geophysical Alteration and Disturbance Related to Climate Change

    NASA Astrophysics Data System (ADS)

    Gresswell, R. E.; Sedell, E. R.; Cannon, S.; Hostetler, S. W.; Williams, J. E.; Haak, A. L.; Kershner, J. L.

    2009-12-01

    Climate change will potentially alter physical habitat availability for trout species (both native and nonnative) in the western USA, and ultimately affect population distribution and abundance in watersheds across the region. To understand the biological consequences of habitat alteration associated with climate change, we have developed models linking contemporary patterns of occurrence and abundance to geomorphic variables (e.g., aspect, elevation, and slope) and stream conditions derived from the habitat (e.g., temperature, discharge, and flood regimes). Because headwater streams may be especially susceptible to catastrophic disturbances in the form of debris flow torrents that have the potential to radically alter the physical structure of channels and sometimes extirpate local fish populations, we are focusing fine-scale spatial analyses in the high elevation systems. Risks of such disturbances increase exponentially in landscapes that have experienced recent wildfires when high-intensity precipitation or runoff events occur. Although predicting the timing, extent, and severity of future wildfires or subsequent precipitation and runoff events is difficult, it is possible to identify channels within stream networks that may be prone to debris flows. These channels can be identified using models based on characteristic storm and burn scenarios and geographic information describing topographic, soil, and vegetation characteristics. At-risk channels are being mapped throughout the stream networks within the study areas in the headwaters of the Colorado River to provide information about the potential for catastrophic population disturbance in response to variety of wildfire and post-wildfire storm scenarios.

  5. Promoter Methylation in the Genesis of Gastrointestinal Cancer

    PubMed Central

    Shin, Sung Kwan; Goel, Ajay

    2009-01-01

    Colorectal cancers (CRC)-and probably all cancers-are caused by alterations in genes. This includes activation of oncogenes and inactivation of tumor suppressor genes (TSGs). There are many ways to achieve these alterations. Oncogenes are frequently activated by point mutation, gene amplification, or changes in the promoter (typically caused by chromosomal rearrangements). TSGs are typically inactivated by mutation, deletion, or promoter methylation, which silences gene expression. About 15% of CRC is associated with loss of the DNA mismatch repair system, and the resulting CRCs have a unique phenotype that is called microsatellite instability, or MSI. This paper reviews the types of genetic alterations that can be found in CRCs and hepatocellular carcinoma (HCC), and focuses upon the epigenetic alterations that result in promoter methylation and the CpG island methylator phenotype (CIMP). The challenge facing CRC research and clinical care at this time is to deal with the heterogeneity and complexity of these genetic and epigenetic alterations, and to use this information to direct rational prevention and treatment strategies. PMID:19568590

  6. Treeline proximity alters an alpine plant-herbivore interaction.

    PubMed

    Illerbrun, Kurt; Roland, Jens

    2011-05-01

    Rising treeline threatens the size and contiguity of alpine meadows worldwide. As trees encroach into previously open habitat, the movement and population dynamics of above-treeline alpine species may be disrupted. This process is well documented in studies of the Rocky Mountain apollo butterfly (Parnassius smintheus). However, subtler consequences of treeline rise remain poorly understood. In this study, we examine whether treeline proximity affects feeding behaviour of P. smintheus larvae, due to altered habitat affecting the distribution and availability of their host plant, lance-leaved stonecrop (Sedum lanceolatum). Understanding differential larval exploitation of food resources in relation to the treeline is an important step in predicting the consequences of continued treeline rise. Parnassius smintheus larvae feed more intensively on S. lanceolatum away from the treeline despite the relative paucity of hosts in these areas, and despite higher fitness penalties associated with the plant's herbivory-induced chemical defenses. Sedum lanceolatum growing near the treeline is less attractive, and therefore represents a less significant resource for P. smintheus larvae than its abundance might imply. If treeline rise continues, we suggest that this pattern of altered resource exploitation may represent a mechanism by which larvae are adversely affected even while adult movement among and within meadows appears sufficient for maintaining population health, and total host availability seems ample.

  7. Climate change winners: receding ice fields facilitate colony expansion and altered dynamics in an Adélie penguin metapopulation

    USGS Publications Warehouse

    LaRue, Michelle A.; Ainley, David G.; Swanson, Matt; Dugger, Katie M.; Lyber, Phil O'B.; Barton, Kerry; Ballard, Grant

    2013-01-01

    There will be winners and losers as climate change alters the habitats of polar organisms. For an Adélie penguin (Pygoscelis adeliae) colony on Beaufort Island (Beaufort), part of a cluster of colonies in the southern Ross Sea, we report a recent population increase in response to increased nesting habitat as glaciers have receded. Emigration rates of birds banded as chicks on Beaufort to colonies on nearby Ross Island decreased after 2005 as available habitat on Beaufort increased, leading to altered dynamics of the metapopulation. Using aerial photography beginning in 1958 and modern satellite imagery, we measured change in area of available nesting habitat and population size of the Beaufort colony. Population size varied with available habitat, and both increased rapidly since the 1990s. In accord with glacial retreat, summer temperatures at nearby McMurdo Station increased by ~0.50°C per decade since the mid-1980s. Although the Ross Sea is likely to be the last ocean with an intact ecosystem, the recent retreat of ice fields at Beaufort that resulted in increased breeding habitat exemplifies a process that has been underway in the Ross Sea during the entire Holocene. Furthermore, our results are in line with predictions that major ice shelves and glaciers will retreat rapidly elsewhere in the Antarctic, potentially leading to increased breeding habitat for Adélie penguins. Results further indicated that satellite imagery may be used to estimate large changes in Adélie penguin populations, facilitating our understanding of metapopulation dynamics and environmental factors that influence regional populations.

  8. Climate change winners: receding ice fields facilitate colony expansion and altered dynamics in an Adélie penguin metapopulation.

    PubMed

    LaRue, Michelle A; Ainley, David G; Swanson, Matt; Dugger, Katie M; Lyver, Phil O'B; Barton, Kerry; Ballard, Grant

    2013-01-01

    There will be winners and losers as climate change alters the habitats of polar organisms. For an Adélie penguin (Pygoscelis adeliae) colony on Beaufort Island (Beaufort), part of a cluster of colonies in the southern Ross Sea, we report a recent population increase in response to increased nesting habitat as glaciers have receded. Emigration rates of birds banded as chicks on Beaufort to colonies on nearby Ross Island decreased after 2005 as available habitat on Beaufort increased, leading to altered dynamics of the metapopulation. Using aerial photography beginning in 1958 and modern satellite imagery, we measured change in area of available nesting habitat and population size of the Beaufort colony. Population size varied with available habitat, and both increased rapidly since the 1990s. In accord with glacial retreat, summer temperatures at nearby McMurdo Station increased by ~0.50 °C per decade since the mid-1980s. Although the Ross Sea is likely to be the last ocean with an intact ecosystem, the recent retreat of ice fields at Beaufort that resulted in increased breeding habitat exemplifies a process that has been underway in the Ross Sea during the entire Holocene. Furthermore, our results are in line with predictions that major ice shelves and glaciers will retreat rapidly elsewhere in the Antarctic, potentially leading to increased breeding habitat for Adélie penguins. Results further indicated that satellite imagery may be used to estimate large changes in Adélie penguin populations, facilitating our understanding of metapopulation dynamics and environmental factors that influence regional populations.

  9. Site-scale disturbance and habitat development best predict an index of amphibian biotic integrity in Ohio shrub and forested wetlands

    USGS Publications Warehouse

    Micacchion, Mick; Stapanian, Martin A.; Adams, Jean V.

    2015-01-01

    We determined the best predictors of an index of amphibian biotic integrity calculated from 54 shrub and forested wetlands in Ohio, USA using a two-step sequential holdout validation procedure. We considered 13 variables as predictors: four metrics of wetland condition from the Ohio Rapid Assessment Method (ORAM), a wetland vegetation index of biotic integrity, and eight metrics from a landscape disturbance index. For all iterations, the best model included the single ORAM metric that assesses habitat alteration, substrate disturbance, and habitat development within a wetland. Our results align with results of similar studies that have associated high scores for wetland vegetation indices of biotic integrity with low habitat alteration and substrate disturbance within wetlands. Thus, implementing similar management practices (e.g., not removing downed woody debris, retaining natural morphological features, decreasing nutrient input from surrounding agricultural lands) could concurrently increase ecological integrity of both plant and amphibian communities in a wetland. Further, our results have the unexpected effect of making progress toward a more unifying theory of ecological indices.

  10. Life history comparison of two terrestrial isopods in relation to habitat specialization

    NASA Astrophysics Data System (ADS)

    Quadros, Aline Ferreira; Caubet, Yves; Araujo, Paula Beatriz

    2009-03-01

    For many animal species, there is a relationship between life history strategies, as predicted by the r- K-selection theory, degree of habitat specialization and response to habitat alteration and loss. Here we compare two sympatric woodlice species with contrasting patterns of habitat use and geographical distribution. We predict that Atlantoscia floridana (Philosciidae), considered a habitat generalist, would exhibit the r-selected traits, whereas Balloniscus glaber (Balloniscidae), considered a habitat specialist, should have the K-selected traits. We analyzed several life history traits as well as life and fecundity tables using 715 and 842 females of A. floridana and B. glaber, respectively, from populations living in syntopy in southern Brazil. As predicted, most evaluated traits allow A. floridana to be considered an r-strategist and B. glaber a K-strategist: A. floridana showed a shorter lifetime, faster development, earlier reproduction, a smaller parental investment, higher net reproductive rate ( R0), a higher growth rate ( r) and a shorter generation time ( T) in comparison to B. glaber. A. floridana seems to be a successful colonizer with a high reproductive output. These characteristics explain its local abundance, commonness and wide geographical distribution. On the contrary, B. glaber has a restricted geographical distribution that is mainly associated with Atlantic forest fragments, a biome threatened by deforestation and replacement by monocultures. Its narrow distribution combined with the K-selected traits may confer to this species an increased extinction risk.

  11. Nekton density patterns and hurricane recovery in submerged aquatic vegetation, and along non-vegetated natural and created edge habitats

    USGS Publications Warehouse

    La Peyre, M.K.; Gordon, J.

    2012-01-01

    We compared nekton habitat value of submerged aquatic vegetation, flooded non-vegetated natural and man-made edge habitats in mesohaline interior marsh areas in southwest Louisiana using a 1-m 2 throw trap and 3-mm bag seine. When present, SAV habitats supported close to 4 times greater densities and higher species richness of nekton as compared to either natural or man-made edge habitats, which supported similar densities to one another. Three species of concern (bayou killifish, diamond killifish, chain pipefish) were targeted in the analysis, and two of the three were collected almost entirely in SAV habitat. During the course of the study, Hurricanes Ike and Gustav passed directly over the study sites in September 2008. Subsequent analyses indicated significant reductions in resident nekton density 1-mo post hurricanes, and only limited recovery 13-mo post-hurricane. Possible alteration of environmental characteristics such as scouring of SAV habitat, deposition of sediment over SAV, edge erosion and marsh loss, and extended high salinities may explain these lasting impacts. ?? 2011.

  12. Species richness in natural and disturbed habitats: Asteraceae and Flower-head insects (Tephritidae: Diptera).

    PubMed

    Diniz, Soraia; Prado, Paulo I; Lewinsohn, Thomas M

    2010-01-01

    Anthropogenic changes in the landscape result in an environmental mosaic with serious consequences for biodiversity. The aim of the present study was to assess the effects of the anthropogenic changes on Asteraceae richness and abundance, and to evaluate the consequences for the richness of Tephritidae assemblages in five sampling sites, with three sampled habitats in each: cerrado (Brazilian savanna), eucalyptus stands and pasture. Sampling was carried out in 15 random transects (cerrados and one pasture) and in 30 transects (eucalyptus stands and the remaining pastures). Composition, species richness and insect abundance in each habitat type was estimated by sampling the flower heads for each species of host plant, collected by four people for 1h. Differences in mean abundance of plant population between habitats and sites were tested by two-way ANOVA. Differences in plant species richness between habitats and sites and effects of habitat, site and host plant richness on insect richness were tested using a generalized linear model with Poisson errors. Within each sampling site, cerrados showed higher species richness of Asteraceae than pastures and eucalyptus stands. There were also significant differences in plant richness among sites. Mean population abundance values were significantly different among habitats, but not among sites. Increased host plant richness led to significant insect species richness. There were no additional significant effects of habitat on insect richness. Therefore, anthropogenic alterations in landscape determined the impoverishment of plant assemblages and therefore of insect assemblages, because of the positive relationship between host plant richness and insect richness.

  13. Climate Change Expands the Spatial Extent and Duration of Preferred Thermal Habitat for Lake Superior Fishes

    PubMed Central

    Cline, Timothy J.; Bennington, Val; Kitchell, James F.

    2013-01-01

    Climate change is expected to alter species distributions and habitat suitability across the globe. Understanding these shifting distributions is critical for adaptive resource management. The role of temperature in fish habitat and energetics is well established and can be used to evaluate climate change effects on habitat distributions and food web interactions. Lake Superior water temperatures are rising rapidly in response to climate change and this is likely influencing species distributions and interactions. We use a three-dimensional hydrodynamic model that captures temperature changes in Lake Superior over the last 3 decades to investigate shifts in habitat size and duration of preferred temperatures for four different fishes. We evaluated habitat changes in two native lake trout (Salvelinus namaycush) ecotypes, siscowet and lean lake trout, Chinook salmon (Oncorhynchus tshawytscha), and walleye (Sander vitreus). Between 1979 and 2006, days with available preferred thermal habitat increased at a mean rate of 6, 7, and 5 days per decade for lean lake trout, Chinook salmon, and walleye, respectively. Siscowet lake trout lost 3 days per decade. Consequently, preferred habitat spatial extents increased at a rate of 579, 495 and 419 km2 per year for the lean lake trout, Chinook salmon, and walleye while siscowet lost 161 km2 per year during the modeled period. Habitat increases could lead to increased growth and production for three of the four fishes. Consequently, greater habitat overlap may intensify interguild competition and food web interactions. Loss of cold-water habitat for siscowet, having the coldest thermal preference, could forecast potential changes from continued warming. Additionally, continued warming may render more suitable conditions for some invasive species. PMID:23638023

  14. Habitat selection of black-and-white snub-nosed monkeys (Rhinopithecus bieti) in Tibet: implications for species conservation.

    PubMed

    Xiang, Zuo-Fu; Huo, Sheng; Xiao, Wen

    2011-04-01

    As anthropogenic habitat changes are often considered a threat to natural ecosystems and wildlife, a sound understanding of the effects of habitat alteration on endangered species is crucial when designing management strategies or performing conservation activities. Black-and-white snub-nosed monkeys (Rhinopithecus bieti) are categorized as endangered on the IUCN Red List and are endemic to the trans-Himalayas in China. At present, there are only 15 groups and 2,500 individuals remaining in the wild, and they are facing intense habitat degradation with selective logging for house building and firewood. Habitat deterioration through wood extraction is occurring at Xiaochangdu, Tibet, where one stable group of R. bieti lives in a marginal habitat in the northernmost part of the species' distribution. To understand the species' response to selective logging in an extremely marginal habitat, data on habitat preference and diet composition of a group of R. bieti were collected at Xiaochangdu from 2003 to 2005. The monkeys used different habitats nonrandomly during the year. The selection index for secondary conifer forest (SC), where selective logging has occurred, was the highest of all habitat types (>1), suggesting that the groups strongly preferred SC. The monkeys fed more on buds/leaves, more on flowers/fruit/seeds, and less on lichen in SC than in primary conifer forest (PC). Dietary diversity was significantly higher in SC than in PC. These results indicate that over the short term, low-intensity disturbances may result in increased foliage diversity that enable groups of R. bieti to survive in this marginal habitat. © 2010 Wiley-Liss, Inc.

  15. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines.

    PubMed

    Honda, Kentaro; Nakamura, Yohei; Nakaoka, Masahiro; Uy, Wilfredo H; Fortes, Miguel D

    2013-01-01

    Understanding the interconnectivity of organisms among different habitats is a key requirement for generating effective management plans in coastal ecosystems, particularly when determining component habitat structures in marine protected areas. To elucidate the patterns of habitat use by fishes among coral, seagrass, and mangrove habitats, and between natural and transplanted mangroves, visual censuses were conducted semiannually at two sites in the Philippines during September and March 2010-2012. In total, 265 species and 15,930 individuals were recorded. Species richness and abundance of fishes were significantly higher in coral reefs (234 species, 12,306 individuals) than in seagrass (38 species, 1,198 individuals) and mangrove (47 species, 2,426 individuals) habitats. Similarity tests revealed a highly significant difference among the three habitats. Fishes exhibited two different strategies for habitat use, inhabiting either a single (85.6% of recorded species) or several habitats (14.4%). Some fish that utilized multiple habitats, such as Lutjanus monostigma and Parupeneus barberinus, showed possible ontogenetic habitat shifts from mangroves and/or seagrass habitats to coral reefs. Moreover, over 20% of commercial fish species used multiple habitats, highlighting the importance of including different habitat types within marine protected areas to achieve efficient and effective resource management. Neither species richness nor abundance of fishes significantly differed between natural and transplanted mangroves. In addition, 14 fish species were recorded in a 20-year-old transplanted mangrove area, and over 90% of these species used multiple habitats, further demonstrating the key role of transplanted mangroves as a reef fish habitat in this region.

  16. Habitat Use by Fishes in Coral Reefs, Seagrass Beds and Mangrove Habitats in the Philippines

    PubMed Central

    Honda, Kentaro; Nakamura, Yohei; Nakaoka, Masahiro; Uy, Wilfredo H.; Fortes, Miguel D.

    2013-01-01

    Understanding the interconnectivity of organisms among different habitats is a key requirement for generating effective management plans in coastal ecosystems, particularly when determining component habitat structures in marine protected areas. To elucidate the patterns of habitat use by fishes among coral, seagrass, and mangrove habitats, and between natural and transplanted mangroves, visual censuses were conducted semiannually at two sites in the Philippines during September and March 2010–2012. In total, 265 species and 15,930 individuals were recorded. Species richness and abundance of fishes were significantly higher in coral reefs (234 species, 12,306 individuals) than in seagrass (38 species, 1,198 individuals) and mangrove (47 species, 2,426 individuals) habitats. Similarity tests revealed a highly significant difference among the three habitats. Fishes exhibited two different strategies for habitat use, inhabiting either a single (85.6% of recorded species) or several habitats (14.4%). Some fish that utilized multiple habitats, such as Lutjanus monostigma and Parupeneus barberinus, showed possible ontogenetic habitat shifts from mangroves and/or seagrass habitats to coral reefs. Moreover, over 20% of commercial fish species used multiple habitats, highlighting the importance of including different habitat types within marine protected areas to achieve efficient and effective resource management. Neither species richness nor abundance of fishes significantly differed between natural and transplanted mangroves. In addition, 14 fish species were recorded in a 20-year-old transplanted mangrove area, and over 90% of these species used multiple habitats, further demonstrating the key role of transplanted mangroves as a reef fish habitat in this region. PMID:23976940

  17. Long-term obesity promotes alterations in diastolic function induced by reduction of phospholamban phosphorylation at serine-16 without affecting calcium handling.

    PubMed

    Lima-Leopoldo, Ana Paula; Leopoldo, André S; da Silva, Danielle C T; do Nascimento, André F; de Campos, Dijon H S; Luvizotto, Renata A M; de Deus, Adriana F; Freire, Paula P; Medeiros, Alessandra; Okoshi, Katashi; Cicogna, Antonio C

    2014-09-15

    Few studies have evaluated the relationship between the duration of obesity, cardiac function, and the proteins involved in myocardial calcium (Ca(2+)) handling. We hypothesized that long-term obesity promotes cardiac dysfunction due to a reduction of expression and/or phosphorylation of myocardial Ca(2+)-handling proteins. Thirty-day-old male Wistar rats were distributed into two groups (n = 10 each): control (C; standard diet) and obese (Ob; high-fat diet) for 30 wk. Morphological and histological analyses were assessed. Left ventricular cardiac function was assessed in vivo by echocardiographic evaluation and in vitro by papillary muscle. Cardiac protein expression of sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a), calsequestrin, L-type Ca(2+) channel, and phospholamban (PLB), as well as PLB serine-16 phosphorylation (pPLB Ser(16)) and PLB threonine-17 phosphorylation (pPLB Thr(17)) were determined by Western blot. The adiposity index was higher (82%) in Ob rats than in C rats. Obesity promoted cardiac hypertrophy without alterations in interstitial collagen levels. Ob rats had increased endocardial and midwall fractional shortening, posterior wall shortening velocity, and A-wave compared with C rats. Cardiac index, early-to-late diastolic mitral inflow ratio, and isovolumetric relaxation time were lower in Ob than in C. The Ob muscles developed similar baseline data and myocardial responsiveness to increased extracellular Ca(2+). Obesity caused a reduction in cardiac pPLB Ser(16) and the pPLB Ser(16)/PLB ratio in Ob rats. Long-term obesity promotes alterations in diastolic function, most likely due to the reduction of pPLB Ser(16), but does not impair the myocardial Ca(2+) entry and recapture to SR. Copyright © 2014 the American Physiological Society.

  18. Grizzly bear habitat selection is scale dependent.

    PubMed

    Ciarniello, Lana M; Boyce, Mark S; Seip, Dale R; Heard, Douglas C

    2007-07-01

    The purpose of our study is to show how ecologists' interpretation of habitat selection by grizzly bears (Ursus arctos) is altered by the scale of observation and also how management questions would be best addressed using predetermined scales of analysis. Using resource selection functions (RSF) we examined how variation in the spatial extent of availability affected our interpretation of habitat selection by grizzly bears inhabiting mountain and plateau landscapes. We estimated separate models for females and males using three spatial extents: within the study area, within the home range, and within predetermined movement buffers. We employed two methods for evaluating the effects of scale on our RSF designs. First, we chose a priori six candidate models, estimated at each scale, and ranked them using Akaike Information Criteria. Using this method, results changed among scales for males but not for females. For female bears, models that included the full suite of covariates predicted habitat use best at each scale. For male bears that resided in the mountains, models based on forest successional stages ranked highest at the study-wide and home range extents, whereas models containing covariates based on terrain features ranked highest at the buffer extent. For male bears on the plateau, each scale estimated a different highest-ranked model. Second, we examined differences among model coefficients across the three scales for one candidate model. We found that both the magnitude and direction of coefficients were dependent upon the scale examined; results varied between landscapes, scales, and sexes. Greenness, reflecting lush green vegetation, was a strong predictor of the presence of female bears in both landscapes and males that resided in the mountains. Male bears on the plateau were the only animals to select areas that exposed them to a high risk of mortality by humans. Our results show that grizzly bear habitat selection is scale dependent. Further, the

  19. A GIS modeling method applied to predicting forest songbird habitat

    USGS Publications Warehouse

    Dettmers, Randy; Bart, Jonathan

    1999-01-01

    models was evaluated with an independent data set. Our tests showed that the models performed better than random at identifying where the birds occurred and provided useful information for predicting the amount and spatial distribution of good habitat for the birds we studied. In addition, we generally found positive correlations between the amount of habitat, as predicted by the models, and the number of territories within a given area. This added component provides the possibility, ultimately, of being able to estimate population sizes. Our models represent useful tools for resource managers who are interested in assessing the impacts of alternative management plans that could alter or remove habitat for these birds.

  20. Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

    USGS Publications Warehouse

    Krstolic, Jennifer L.

    2015-01-01

    Time-series analyses were used to investigate changes in habitat availability with increased water withdrawals of 10, 20, and almost 50 percent (48.6 percent) up to the 2040 amounts projected by local water supply plans. Adult and sub-adult smallmouth bass frequently had habitat availability outside the normal range for habitat conditions during drought years, yet 10- or 20-percent increases in withdrawals did not contribute to a large reduction in habitat. When withdrawals were increased by 50 percent, there was an additional decrease in habitat. During 2002 drought scenarios, reduced habitat availability for sub-adult redbreast sunfish or river chub was only slightly evident with 50-percent increased withdrawal scenarios. Recreational habitat represented by canoeing decreased lower than normal during the 2002 drought. For a recent normal year, like 2012, increased water-withdrawal scenarios did not affect habitat availability for fish such as adult and sub-adult smallmouth bass, sub-adult redbreast sunfish, or river chub. Canoeing habitat availability was within the normal range most of 2012, and increased water-withdrawal scenarios showed almost no affect. For both ecological fish habitat and recreational canoeing habitat, the antecedent conditions (habitat within normal range of habitat or below normal) appear to govern whether additional water withdrawals will affect habitat availability. As human populations and water demands increase, many of the ecological or recreational stresses may be lessened by managing the timing of water withdrawals from the system.

  1. Habitat use by a Midwestern U.S.A. riverine fish assemblage: effects of season, water temperature and river discharge

    USGS Publications Warehouse

    Gillette, D.P.; Tiemann, J.S.; Edds, D.R.; Wildhaber, M.L.

    2006-01-01

    The hypothesis that temperate stream fishes alter habitat use in response to changing water temperature and stream discharge was evaluated over a 1 year period in the Neosho River, Kansas, U.S.A. at two spatial scales. Winter patterns differed from those of all other seasons, with shallower water used less frequently, and low-flow habitat more frequently, than at other times. Non-random habitat use was more frequent at the point scale (4.5 m2) than at the larger reach scale (20-40 m), although patterns at both scales were similar. Relative to available habitats, assemblages used shallower, swifter-flowing water as temperature increased, and shallower, slower-flowing water as river discharge increased. River discharge had a stronger effect on assemblage habitat use than water temperature. Proportion of juveniles in the assemblage did not have a significant effect. This study suggests that many riverine fishes shift habitats in response to changing environmental conditions, and supports, at the assemblage level, the paradigm of lotic fishes switching from shallower, high-velocity habitats in summer to deeper, low-velocity habitats in winter, and of using shallower, low-velocity habitats during periods of high discharge. Results also indicate that different species within temperate river fish assemblages show similar habitat use patterns at multiple scales in response to environmental gradients, but that non-random use of available habitats is more frequent at small scales. ?? 2006 The Fisheries Society of the British Isles.

  2. Habitat fragmentation in coastal southern California disrupts genetic connectivity in the cactus wren (Campylorhynchus brunneicapillus)

    USGS Publications Warehouse

    Barr, Kelly R.; Kus, Barbara E.; Preston, Kristine; Howell, Scarlett; Perkins, Emily; Vandergast, Amy

    2015-01-01

    Achieving long-term persistence of species in urbanized landscapes requires characterizing population genetic structure to understand and manage the effects of anthropogenic disturbance on connectivity. Urbanization over the past century in coastal southern California has caused both precipitous loss of coastal sage scrub habitat and declines in populations of the cactus wren (Campylorhynchus brunneicapillus). Using 22 microsatellite loci, we found that remnant cactus wren aggregations in coastal southern California comprised 20 populations based on strict exact tests for population differentiation, and 12 genetic clusters with hierarchical Bayesian clustering analyses. Genetic structure patterns largely mirrored underlying habitat availability, with cluster and population boundaries coinciding with fragmentation caused primarily by urbanization. Using a habitat model we developed, we detected stronger associations between habitat-based distances and genetic distances than Euclidean geographic distance. Within populations, we detected a positive association between available local habitat and allelic richness and a negative association with relatedness. Isolation-by-distance patterns varied over the study area, which we attribute to temporal differences in anthropogenic landscape development. We also found that genetic bottleneck signals were associated with wildfire frequency. These results indicate that habitat fragmentation and alterations have reduced genetic connectivity and diversity of cactus wren populations in coastal southern California. Management efforts focused on improving connectivity among remaining populations may help to ensure population persistence.

  3. Gene flow connects coastal populations of a habitat specialist, the Clapper Rail Rallus crepitans

    USGS Publications Warehouse

    Coster, Stephanie S.; Welsh, Amy B.; Costanzo, Gary R.; Harding, Sergio R.; Anderson, James T.; Katzner, Todd

    2018-01-01

    Examining population genetic structure can reveal patterns of reproductive isolation or population mixing and inform conservation management. Some avian species are predicted to exhibit minimal genetic differentiation among populations as a result of the species high mobility, with habitat specialists tending to show greater fine‐scale genetic structure. To explore the relationship between habitat specialization and gene flow, we investigated the genetic structure of a saltmarsh specialist with high potential mobility across a wide geographic range of fragmented habitat. Little variation among mitochondrial sequences (620 bp from ND2) was observed among 149 individual Clapper Rails Rallus crepitans sampled along the Atlantic coast of North America, with the majority of individuals at all sampling sites sharing a single haplotype. Genotyping of nine microsatellite loci across 136 individuals revealed moderate genetic diversity, no evidence of bottlenecks, and a weak pattern of genetic differentiation that increased with geographic distance. Multivariate analyses, Bayesian clustering and an AMOVA all suggested a lack of genetic structuring across the North American Atlantic coast, with all individuals grouped into a single interbreeding population. Spatial autocorrelation analyses showed evidence of weak female philopatry and a lack of male philopatry. We conclude that high gene flow connecting populations of this habitat specialist may result from the interaction of ecological and behavioral factors that promote dispersal and limit natal philopatry and breeding‐site fidelity. As climate change threatens saltmarshes, the genetic diversity and population connectivity of Clapper Rails may promote resilience of their populations. This finding helps inform about potential fates of other similarly behaving saltmarsh specialists on the Atlantic coast.

  4. Wildlife Habitat Restoration: Chapter 12

    USGS Publications Warehouse

    Conway, Courtney J.; Borgmann, Kathi L.; Morrison, Michael L.; Mathewson, Heather A.

    2015-01-01

    As the preceding chapters point out, many wildlife species and the habitat they depend on are in peril. However, opportunities exist to restore habitat for many imperiled wildlife species. But what is wildlife habitat restoration? We begin this chapter by defining habitat restoration and then provide recommendations on how to maximize success of future habitat restoration efforts for wildlife. Finally, we evaluate whether we have been successful in restoring wildlife habitat and supply recommendations to advance habitat restoration. Successful restoration requires clear and explicit goals that are based on our best understanding of what the habitat was like prior to the disturbing event. Ideally, a restoration project would include: (1) a summary of prerestoration conditions that define the existing status of wildlife populations and their habitat; (2) a description of habitat features required by the focal or indicator species for persistence; (3) an a priori description of measurable, quantitative metrics that define restoration goals and measures of success; (4) a monitoring plan; (5) postrestoration comparisons of habitat features and wildlife populations with adjacent unmodified areas that are similar to the restoration site; and (6) expert review of the entire restoration plan (i.e., the five aforementioned components).

  5. Wildlife and Wildlife Habitat Loss Assessment at Green Peter-Foster Project; Middle Fork Santiam River, Oregon, 1985 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noyes, J.H.

    1986-02-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Green Peter-Foster Dam and Reservoir Project on the Middle Fork Santiam River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types at the project site were mapped based on aerial photographs from 1955, 1972, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Eleven wildlife target species were selected to represent a cross-section of species groupsmore » affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Green Peter-Foster Project extensively altered or affected 7873 acres of land and river in the Santiam River drainage. Impacts to wildlife centered around the loss of 1429 acres of grass-forb vegetation, 768 acres of shrubland, and 717 acres of open conifer forest cover types. Impacts resulting from the Green Peter-Foster Project included the loss of critical winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, upland game birds, river otter, beaver, pileated woodpecker, and many other wildlife species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Green Peter-Foster Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.« less

  6. Morphological differences between habitats are associated with physiological and behavioural trade-offs in stickleback (Gasterosteus aculeatus)

    PubMed Central

    Seebacher, Frank; Webster, Mike M.; James, Rob S.; Tallis, Jason; Ward, Ashley J. W.

    2016-01-01

    Local specialization can be advantageous for individuals and may increase the resilience of the species to environmental change. However, there may be trade-offs between morphological responses and physiological performance and behaviour. Our aim was to test whether habitat-specific morphology of stickleback (Gasterosteus aculeatus) interacts with physiological performance and behaviour at different salinities. We rejected the hypothesis that deeper body shape of fish from habitats with high predation pressure led to decreases in locomotor performance. However, there was a trade-off between deeper body shape and muscle quality. Muscle of deeper-bodied fish produced less force than that of shallow-bodied saltmarsh fish. Nonetheless, saltmarsh fish had lower swimming performance, presumably because of lower muscle mass overall coupled with smaller caudal peduncles and larger heads. Saltmarsh fish performed better in saline water (20 ppt) relative to freshwater and relative to fish from freshwater habitats. However, exposure to salinity affected shoaling behaviour of fish from all habitats and shoals moved faster and closer together compared with freshwater. We show that habitat modification can alter phenotypes of native species, but local morphological specialization is associated with trade-offs that may reduce its benefits. PMID:27429785

  7. Morphological differences between habitats are associated with physiological and behavioural trade-offs in stickleback (Gasterosteus aculeatus).

    PubMed

    Seebacher, Frank; Webster, Mike M; James, Rob S; Tallis, Jason; Ward, Ashley J W

    2016-06-01

    Local specialization can be advantageous for individuals and may increase the resilience of the species to environmental change. However, there may be trade-offs between morphological responses and physiological performance and behaviour. Our aim was to test whether habitat-specific morphology of stickleback (Gasterosteus aculeatus) interacts with physiological performance and behaviour at different salinities. We rejected the hypothesis that deeper body shape of fish from habitats with high predation pressure led to decreases in locomotor performance. However, there was a trade-off between deeper body shape and muscle quality. Muscle of deeper-bodied fish produced less force than that of shallow-bodied saltmarsh fish. Nonetheless, saltmarsh fish had lower swimming performance, presumably because of lower muscle mass overall coupled with smaller caudal peduncles and larger heads. Saltmarsh fish performed better in saline water (20 ppt) relative to freshwater and relative to fish from freshwater habitats. However, exposure to salinity affected shoaling behaviour of fish from all habitats and shoals moved faster and closer together compared with freshwater. We show that habitat modification can alter phenotypes of native species, but local morphological specialization is associated with trade-offs that may reduce its benefits.

  8. Created versus natural coastal islands: Atlantic waterbird populations, habitat choices, and management implications

    USGS Publications Warehouse

    Erwin, R.M.; Allen, D.H.; Jenkins, D.

    2003-01-01

    Nesting colonial waterbirds along the Atlantic Coast of the United States face a number of landscape-level threats including human disturbance, mammalian predator expansion, and habitat alteration. There have been changes from 1977 to the mid-1990s in use of nesting habitats and populations of a number of seabird species of concern in the region, including black skimmers Rynchops niger Linnaeaus, common terns Sterna hirundo Linnaeaus, gull-billed terns Sterna nilotica Linnaeaus, least terns Sterna antillarum Lesson, royal terns Sterna maxima Boddaert, and sandwich terns Sterna sandvicensis Cabot. These species form colonies primarily on the following habitat types: large, sandy barrier or shoal islands, natural estuarine or bay islands (mostly marsh), man-made islands of dredged deposition materials (from navigation channels), and the mainland. Significant changes in the use of the dredged material islands have occurred for these species in New Jersey and North Carolina, but not in Virginia. Population declines and changes in bird habitat use appear to be at least partially associated with the conditions and management of the existing dredged material islands, coastal policy changes associated with creating new dredged material islands, and competing demands for sand for beach augmentation by coastal communities. As these and other coastal habitats become less suitable for colonial waterbirds, other manmade sites, such as bridges and buildings have become increasingly more important. In regions with intense recreational demands, coastal wildlife managers need to take a more aggressive role in managing natural and man-made habitats areas and as stakeholders in the decision-making process involving dredged materials and beach sand allocation.

  9. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification

    NASA Astrophysics Data System (ADS)

    Pacella, Stephen R.; Brown, Cheryl A.; Waldbusser, George G.; Labiosa, Rochelle G.; Hales, Burke

    2018-04-01

    The role of rising atmospheric CO2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO2 burden in the habitat was estimated for the years 1765–2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat’s ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pHT, minimum Ωarag, and maximum pCO2(s.w.)] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO2 driven by aerobic metabolism. This study provides estimates of how high-frequency pHT, Ωarag, and pCO2(s.w.) dynamics are altered by rising atmospheric CO2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  10. Temporal overlaps of feral cats with prey and competitors in primary and human-altered habitats on Bohol Island, Philippines

    PubMed Central

    Bogdan, Vlastimil; Jůnková Vymyslická, Pavla

    2016-01-01

    The vertebrate fauna of the Philippines, known for its diversity and high proportion of endemic species, comprises mainly small- to medium-sized forms with a few large exceptions. As with other tropical ecosystems, the major threats to wildlife are habitat loss, hunting and invasive species, of which the feral cat (Felis catus) is considered the most damaging. Our camera-trapping study focused on a terrestrial vertebrate species inventory on Bohol Island and tempo-spatial co-occurrences of feral cats with their prey and competitors. The survey took place in the Rajah Sikatuna Protected Landscape, and we examined the primary rainforest, its border with agricultural land, and rural areas in the vicinity of villages. Altogether, over 2,885 trap days we captured 30 species of vertebrates–10 mammals (including Sus philippensis), 19 birds and one reptile, Varanus cumingi. We trapped 81.8% of expected vertebrates. Based on the number of events, the most frequent native species was the barred rail (Gallirallus torquatus). The highest overlap in diel activity between cats and potential prey was recorded with rodents in rural areas (Δ = 0.62); the lowest was in the same habitat with ground-dwelling birds (Δ = 0.40). Cat activity was not recorded inside the rainforest; in other habitats their diel activity pattern differed. The cats’ activity declined in daylight in the proximity of humans, while it peaked at the transition zone between rainforest and fields. Both rodents and ground-dwelling birds exhibited a shift in activity levels between sites where cats were present or absent. Rodents tend to become active by day in cat-free habitats. No cats’ temporal response to co-occurrences of civets (Paradoxurus hermaphroditus and Viverra tangalunga) was found but cats in diel activity avoided domestic dogs (Canis lupus familiaris). Our first insight into the ecology of this invasive predator in the Philippines revealed an avoidance of homogeneous primary rainforest and a

  11. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees.

    PubMed

    Felton, Adam; Sonesson, Johan; Nilsson, Urban; Lämås, Tomas; Lundmark, Tomas; Nordin, Annika; Ranius, Thomas; Roberge, Jean-Michel

    2017-04-01

    Because of the limited spatial extent and comprehensiveness of protected areas, an increasing emphasis is being placed on conserving habitats which promote biodiversity within production forest. For this reason, alternative silvicultural programs need to be evaluated with respect to their implications for forest biodiversity, especially if these programs are likely to be adopted. Here we simulated the effect of varied rotation length and associated thinning regimes on habitat availability in Scots pine and Norway spruce production forests, with high and low productivity. Shorter rotation lengths reduced the contribution made by production trees (trees grown for industrial use) to the availability of key habitat features, while concurrently increasing the contribution from retention trees. The contribution of production trees to habitat features was larger for high productivity sites, than for low productivity sites. We conclude that shortened rotation lengths result in losses of the availability of habitat features that are key for biodiversity conservation and that increased retention practices may only partially compensate for this. Ensuring that conservation efforts better reflect the inherent variation in stand rotation lengths would help improve the maintenance of key forest habitats in production forests.

  12. Improving ungulate habitat in a region undergoing rapid energy development: Consequences for songbirds and small mammals

    NASA Astrophysics Data System (ADS)

    Bombaci, Sara Petrita

    Habitat manipulation intended to mitigate the impact of energy development on game animals is well underway in the western U.S. Yet, the consequences of these actions for other species are not well understood. A habitat manipulation experiment was established in the Piceance Basin, a region of Colorado undergoing rapid energy development, to evaluate alternative methods (i.e. chaining, hydro-axe, and roller-chop treatments) for reducing pinyon-juniper woodlands to promote mule deer habitat. I use this experimental design to additionally test the initial effects of these treatments on birds and small mammals, and to evaluate selection of habitat components in treatments by birds and small mammals. I found lower bird species occupancy in all treatment plots compared to control plots; however the strength of this response varied by bird guild. I found a positive relationship between bird species occupancy and percent tree cover and a negative relationship between bird species occupancy and percent grass and forb cover. I found no evidence of differences in small mammal species occupancy or density between controls and treatments. I found a positive relationship between small mammal species occupancy and percent grass and forb cover. Species richness did not significantly differ between control and treatment plots for birds or small mammals. My approach and research findings can be used to inform habitat management and multiple-species conservation objectives in pinyon-juniper and sage-steppe ecosystems undergoing energy development. Specifically, I have identified that recently developed roller-chop and hydro-axe treatments have similar impacts to woodland bird guilds as traditional chaining treatments. I have also identified species that are sensitive to habitat mitigation treatments, and thus should be monitored if woodland reduction continues to be used as a habitat mitigation strategy. Since all bird guilds were positively associated with tree cover, woodland

  13. Dynamic hypoxic zones in Lake Erie compress fish habitat, altering vulnerability to fishing gears

    USGS Publications Warehouse

    Kraus, Richard T.; Knight, Carey T.; Farmer, Troy M.; Gorman, Ann Marie; Collingsworth, Paris D.; Warren, Glenn J.; Kocovsky, Patrick M.; Conroy, Joseph D.

    2015-01-01

    Seasonal degradation of aquatic habitats from hypoxia occurs in numerous freshwater and coastal marine systems and can result in direct mortality or displacement of fish. Yet, fishery landings from these systems are frequently unresponsive to changes in the severity and extent of hypoxia, and population-scale effects have been difficult to measure except in extreme hypoxic conditions with hypoxia-sensitive species. We investigated fine-scale temporal and spatial variability in dissolved oxygen in Lake Erie as it related to fish distribution and catch efficiencies of both active (bottom trawls) and passive (trap nets) fishing gears. Temperature and dissolved oxygen loggers placed near the edge of the hypolimnion exhibited much higher than expected variability. Hypoxic episodes of variable durations were frequently punctuated by periods of normoxia, consistent with high-frequency internal waves. High-resolution interpolations of water quality and hydroacoustic surveys suggest that fish habitat is compressed during hypoxic episodes, resulting in higher fish densities near the edges of hypoxia. At fixed locations with passive commercial fishing gear, catches with the highest values occurred when bottom waters were hypoxic for intermediate proportions of time. Proximity to hypoxia explained significant variation in bottom trawl catches, with higher catch rates near the edge of hypoxia. These results emphasize how hypoxia may elevate catch rates in various types of fishing gears, leading to a lack of association between indices of hypoxia and fishery landings. Increased catch rates of fish at the edges of hypoxia have important implications for stock assessment models that assume catchability is spatially homogeneous.

  14. Lunar base habitat designs: Characterizing the environment, and selecting habitat designs for future trade-offs

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Ferrall, Joseph; Seshan, P. K.

    1993-01-01

    A survey of distinct conceptual lunar habitat designs covering the pre- and post-Apollo era is presented. The impact of the significant lunar environmental challenges such as temperature, atmosphere, radiation, soil properties, meteorites, and seismic activity on the habitat design parameters are outlined. Over twenty habitat designs were identified and classified according to mission type, crew size; total duration of stay, modularity, environmental protection measures, and emplacement. Simple selection criteria of (1) post-Apollo design, (2) uniqueness of the habitat design, (3) level of thoroughness in design layout, (4) habitat dimensions are provided, and (5) materials of construction for the habitat shell are specified, are used to select five habitats for future trade studies. Habitat emplacement scenarios are created to examine the possible impact of emplacement of the habitat in different locations, such as lunar poles vs. equatorial, above ground vs. below ground, etc.

  15. The airspace is habitat

    USGS Publications Warehouse

    Diehl, Robert H.

    2013-01-01

    A preconception concerning habitat persists and has gone unrecognized since use of the term first entered the lexicon of ecological and evolutionary biology many decades ago. Specifically, land and water are considered habitats, while the airspace is not. This might at first seem a reasonable, if unintended, demarcation, since years of education and personal experience as well as limits to perception predispose a traditional view of habitat. Nevertheless, the airspace satisfies the definition and functional role of a habitat, and its recognition as habitat may have implications for policy where expanding anthropogenic development of airspace could impact the conservation of species and subject parts of the airspace to formalized legal protection.

  16. Teetering on the edge or too late? Conservation and research issues for avifauna of sagebrush habitats

    USGS Publications Warehouse

    Knick, Steven T.; Dobkin, David S.; Rotenberry, John T.; Schroeder, Michael A.; Vander Haegen, W. Matthew; van Riper, Charles

    2003-01-01

    Degradation, fragmentation, and loss of native sagebrush (Artemisia spp.) landscapes have imperiled these habitats and their associated avifauna. Historically, this vast piece of the Western landscape has been undervalued: even though more than 70% of all remaining sagebrush habitat in the United States is publicly owned, <3% of it is protected as federal reserves or national parks. We review the threats facing birds in sagebrush habitats to emphasize the urgency for conservation and research actions, and synthesize existing information that forms the foundation for recommended research directions. Management and conservation of birds in sagebrush habitats will require more research into four major topics: (1) identification of primary land-use practices and their influence on sagebrush habitats and birds, (2) better understanding of bird responses to habitat components and disturbance processes of sagebrush ecosystems, (3) improved hierarchical designs for surveying and monitoring programs, and (4) linking bird movements and population changes during migration and wintering periods to dynamics on the sagebrush breeding grounds. This research is essential because we already have seen that sagebrush habitats can be altered by land use, spread of invasive plants, and disrupted disturbance regimes beyond a threshold at which natural recovery is unlikely. Research on these issues should be instituted on lands managed by state or federal agencies because most lands still dominated by sagebrush are owned publicly. In addition to the challenge of understanding shrubsteppe bird-habitat dynamics, conservation of sagebrush landscapes depends on our ability to recognize and communicate their intrinsic value and on our resolve to conserve them.

  17. Habitat Suitability Index Models: Beaver

    USGS Publications Warehouse

    Allen, Arthur W.

    1982-01-01

    Habitat preferences of the beaver (Castor canadensis) are described in this publication, which is one of a series of Habitat Suitability Index (HSI) models. Habitat use information is presented in a synthesis of the literature on the species-habitat requirements of the beaver, followed by the development of the HSI model. The model is designed to provide information for use in impact assessment and habitat management activities, and should be used in conjunction with habitat evaluation procedures previously developed by the Fish and Wildlife Service. This revised model updates the original publication dated September 1982.

  18. Influence of forest and rangeland management on anadromous fish habitat in Western North America: forest chemicals.

    Treesearch

    L.A. Norris; H.W. Lorz; S.V. Gregory

    1983-01-01

    Herbicides, insecticides, fertilizers, and fire retardants are chemicals used to protect or enhance certain forest resources. Their use may directly affect anadromous fish by exposing them to toxic amounts of the chemical. Indirect effects are also possible through chemically induced alteration of habitat, including direct effects on fish-food organisms.Data...

  19. Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities.

    PubMed

    Petermann, Jana S; Farjalla, Vinicius F; Jocque, Merlijn; Kratina, Pavel; MacDonald, A Andrew M; Marino, Nicholas A C; De Omena, Paula M; Piccoli, Gustavo C O; Richardson, Barbara A; Richardson, Michael J; Romero, Gustavo Q; Videla, Martin; Srivastava, Diane S

    2015-02-01

    Local habitat size has been shown to influence colonization and extinction processes of species in patchy environments. However, species differ in body size, mobility, and trophic level, and may not respond in the same way to habitat size. Thus far, we have a limited understanding of how habitat size influences the structure of multitrophic communities and to what extent the effects may be generalizable over a broad geographic range. Here, we used water-filled bromeliads of different sizes as a natural model system to examine the effects of habitat size on the trophic structure of their inhabiting invertebrate communities. We collected composition and biomass data from 651 bromeliad communities from eight sites across Central and South America differing in environmental conditions, species pools, and the presence of large-bodied odonate predators. We found that trophic structure in the communities changed dramatically with changes in habitat (bromeliad) size. Detritivore : resource ratios showed a consistent negative relationship with habitat size across sites. In contrast, changes in predator: detritivore (prey) ratios depended on the presence of odonates as dominant predators in the regional pool. At sites without odonates, predator: detritivore biomass ratios decreased with increasing habitat size. At sites with odonates, we found odonates to be more frequently present in large than in small bromeliads, and predator: detritivore biomass ratios increased with increasing habitat size to the point where some trophic pyramids became inverted. Our results show that the distribution of biomass amongst food-web levels depends strongly on habitat size, largely irrespective of geographic differences in environmental conditions or detritivore species compositions. However, the presence of large-bodied predators in the regional species pool may fundamentally alter this relationship between habitat size and trophic structure. We conclude that taking into account the

  20. Movement is the glue connecting home ranges and habitat selection.

    PubMed

    Van Moorter, Bram; Rolandsen, Christer M; Basille, Mathieu; Gaillard, Jean-Michel

    2016-01-01

    selection). Our findings show how patterns of geographic and environmental space use correspond to the two sides of a coin, linked by movement responses of individuals to environmental heterogeneity. By demonstrating the potential to assess the consequences of altering RT or TtoR (e.g. through human disturbance or climatic changes) on home range size and habitat selection, our work sets the basis for new theoretical and methodological advances in movement ecology. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  1. Experimental food supplementation reveals habitat-dependent male reproductive investment in a migratory bird

    PubMed Central

    Kaiser, Sara A.; Sillett, T. Scott; Risk, Benjamin B.; Webster, Michael S.

    2015-01-01

    Environmental factors can shape reproductive investment strategies and influence the variance in male mating success. Environmental effects on extrapair paternity have traditionally been ascribed to aspects of the social environment, such as breeding density and synchrony. However, social factors are often confounded with habitat quality and are challenging to disentangle. We used both natural variation in habitat quality and a food supplementation experiment to separate the effects of food availability—one key aspect of habitat quality—on extrapair paternity (EPP) and reproductive success in the black-throated blue warbler, Setophaga caerulescens. High natural food availability was associated with higher within-pair paternity (WPP) and fledging two broods late in the breeding season, but lower EPP. Food-supplemented males had higher WPP leading to higher reproductive success relative to controls, and when in low-quality habitat, food-supplemented males were more likely to fledge two broods but less likely to gain EPP. Our results demonstrate that food availability affects trade-offs in reproductive activities. When food constraints are reduced, males invest in WPP at the expense of EPP. These findings imply that environmental change could alter how individuals allocate their resources and affect the selective environment that drives variation in male mating success. PMID:25673677

  2. Bovine fasciolosis: control strategies based on the location of Galba truncatula habitats on farms.

    PubMed

    Knubben-Schweizer, Gabriela; Torgerson, Paul R

    2015-02-28

    Infection of livestock with Fasciola hepatica is a worldwide, economically important and increasing problem. Even though, bovine fasciolosis can be a disease associated with particular regions, there are usually epidemiological issues on individual farms. For this reason, it is recommended to find the source of infection by examination of definite hosts and pastures on a farm. The following factors which promote the transmission of bovine fasciolosis are usually found: (A) Snail habitats are present on pastures used for young stock (prior to first calving) or dry cows only. Pastures for dairy cows are not affected. (B) Snail habitats are present on all pastures for dairy cows. (C) Snail habitats are present on single pastures used for dairy cows. (D) Snail habitats are present on hayfields. For each of these epidemiological situations an individual control strategy is advised. When a control strategy is tailored according to the specific epidemiology found on the individual farm, egg shedding and F. hepatica-seroprevalence can be reduced significantly. This approach can support the responsible use of the available flukicides. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Relation of urbanization to stream habitat and geomorphic characteristics in nine metropolitan areas of the United States

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Peppler, Marie C.

    2010-01-01

    The relation of urbanization to stream habitat and geomorphic characteristics was examined collectively and individually for nine metropolitan areas of the United States?Portland, Oregon; Salt Lake City, Utah; Denver, Colorado; Dallas?Forth Worth, Texas; Milwaukee?Green Bay, Wisconsin; Birmingham, Alabama; Atlanta, Georgia; Raleigh, North Carolina; and Boston, Massachusetts. The study was part of a larger study conducted by the U.S. Geological Survey from 1999 to 2004 to examine the effects of urbanization on the physical, chemical, and biological components of stream ecosystems. The objectives of the current study were to determine how stream habitat and geomorphic characteristics relate to different aspects of urbanization across a variety of diverse environmental settings and spatial scales. A space-for-time rural-to-urban land-cover gradient approach was used. Reach-scale habitat data and geomorphic characteristic data were collected once during low flow and included indicators of potential habitat degradation such as measures of channel geometry and hydraulics, streambed substrate, low-flow reach volume (an estimate of base-flow conditions), habitat complexity, and riparian/bank conditions. Hydrologic metrics included in the analyses were those expected to be altered by increases in impervious surfaces, such as high-flow frequency and duration, flashiness, and low-flow duration. Other natural and human features, such as reach-scale channel engineering, geologic setting, and slope, were quantified to identify their possible confounding influences on habitat relations with watershed-scale urbanization indicators. Habitat and geomorphic characteristics were compared to several watershed-scale indicators of urbanization, natural landscape characteristics, and hydrologic metrics by use of correlation analyses and stepwise linear regression. Habitat and geomorphic characteristics were related to percentages of impervious surfaces only in some metropolitan areas and

  4. Methylmercury production and accumulation in urban stormwater ponds and habitat wetlands.

    PubMed

    Strickman, R J; Mitchell, C P J

    2017-02-01

    Stormwater management ponds and created habitat wetlands effectively manage erosion, flooding, and pollutant loadings while providing biodiversity and aesthetic benefits, but these structures are also potential sources of methylmercury (MeHg), a bioaccumulative neurotoxin. While MeHg accumulation has been confirmed in habitat wetlands, the extent of MeHg production and accumulation in stormwater ponds is unknown. Additionally, the fine-scale spatial variation in MeHg in these wetlands has never been explored despite the possibility that cycles of wetting and drying, and the presence of aquatic plants may stimulate methylation at their margins. To address these knowledge gaps, we compared MeHg and inorganic mercury concentrations, the percent of total mercury present as MeHg (%MeHg), and potential mercury methylation rate constants (K meth ) in the sediments of terrestrial-aquatic transects through several stormwater and habitat wetlands. We present novel evidence confirming the in situ production of MeHg in both stormwater ponds and habitat wetlands, but observe no systematic differences across the terrestrial-aquatic gradient, suggesting that routine variations in water level do not alter MeHg production and accumulation. Stormwater ponds effectively trap mercury while converting relatively little to MeHg, as evidenced by lower MeHg concentrations, %-MeHg, and K meth values than habitat wetlands, but often greater inorganic Hg concentrations. The relationship of aquatic vegetation to MeHg accumulation is weak and ambiguous, suggesting plants are not strong drivers of MeHg biogeochemistry in these systems. Although the MeHg hazard associated with individual artificial wetlands is low, they may be important sources of MeHg at the landscape level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Habitat preferences of baleen whales in a mid-latitude habitat

    NASA Astrophysics Data System (ADS)

    Prieto, Rui; Tobeña, Marta; Silva, Mónica A.

    2017-07-01

    Understanding the dynamics of baleen whale distribution is essential to predict how environmental changes can affect their ecology and, in turn, ecosystem functioning. Recent work showed that mid-latitude habitats along migratory routes may play an important role on the feeding ecology of baleen whales. This study aimed to investigate the function of a mid-latitude habitat for blue (Balaenoptera musculus), fin (Balaenoptera physalus) and sei (Balaenoptera borealis) whales occurring in sympatry during spring and summer months and to what extent their environmental niches overlap. We addressed those questions by developing environmental niche models (ENM) for each species and then making pairwise comparisons of niche overlap and relative habitat patch importance among the three species. ENMs were created using sightings from the Azorean Fisheries Observer Program from May to November, between 2004 and 2009, and a set of 18 predictor environmental variables. We then assessed monthly (April-July) overlap among ENMs using a modified Hellinger's distance metric (I). Results show that the habitat niches of blue and fin whales are strongly influenced by primary productivity and sea surface temperature and are highly dynamic both spatially and temporally due to the oceanography of the region. Niche overlap analyses show that blue and fin whale environmental niches are similar and that the suitable habitats for the two species have high degree of spatial coincidence. These results in combination suggest that this habitat may function as a mid-latitude feeding ground to both species while conditions are adequate. The sei whale model, on the other hand, did not include variables considered to be proxies for prey distribution and little environmental niche overlap was found between this species and the other two. We argue that these results suggest that the region holds little importance as a foraging habitat for the sei whale.

  6. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.

    Treesearch

    Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson

    1979-01-01

    Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.

  7. Power to detect trends in Missouri River fish populations within the Habitat Assessment Monitoring Program

    USGS Publications Warehouse

    Bryan, Janice L.; Wildhaber, Mark L.; Gladish, Dan W.

    2010-01-01

    As with all large rivers in the United States, the Missouri River has been altered, with approximately one-third of the mainstem length impounded and one-third channelized. These physical alterations to the environment have affected the fish populations, but studies examining the effects of alterations have been localized and for short periods of time, thereby preventing generalization. In response to the U.S. Fish and Wildlife Service Biological Opinion, the U.S. Army Corps of Engineers (USACE) initiated monitoring of habitat improvements of the Missouri River in 2005. The goal of the Habitat Assessment Monitoring Program (HAMP) is to provide information on the response of target fish species to the USACE habitat creation on the Lower Missouri River. To determine the statistical power of the HAMP and in cooperation with USACE, a power analysis was conducted using a normal linear mixed model with variance component estimates based on the first complete year of data. At a level of 20/16 (20 bends with 16 subsamples in each bend), at least one species/month/gear model has the power to determine differences between treated and untreated bends. The trammel net in September had the most species models with adequate power at the 20/16 level and overall, the trammel net had the most species/month models with adequate power at the 20/16 level. However, using only one gear or gear/month combination would eliminate other species of interest, such as three chub species (Macrhybopsis meeki, Macrhybopsis aestivalis, and Macrhybopsis gelida), sand shiners (Notropis stramineus), pallid sturgeon (Scaphirhynchus albus), and juvenile sauger (Sander canadensis). Since gear types are selective in their species efficiency, the strength of the HAMP approach is using multiple gears that have statistical power to differentiate habitat treatment differences in different fish species within the Missouri River. As is often the case with sampling rare species like the pallid sturgeon, the

  8. Detroit River habitat inventory

    USGS Publications Warehouse

    Manny, Bruce A.

    2003-01-01

    This inventory complements a previous survey of habitat in Ontario waters of the Detroit River (OMNR,1993). It is a starting point for balanced and sustained use of the river for natural resource conservation and economic development. The objectives of the inventory were to: (1) locate candidate sites for protection and restoration of fish and wildlife habitat in Michigan waters of the Detroit River; (2) describe the ownership and size of each site, as well as its potential for habitat protection and restoration; and (3) subjectively assess the extent to which existing habitat along the river is productive of fish and wildlife and protected from land uses that have degraded or destroyed such habitat.

  9. A GIS-BASED MULTI-SCALE APPROACH TO HABITAT MODEL FOR THE COMMON LOON, GAVIA IMMER, IN NEW HAMPSHIRE, USA.

    EPA Science Inventory

    The U.S. EPA National Health and Environmental Effects Research Laboratory's (NHEERL) Wildlife Research Strategy was developed to provide methods, models and data to address concerns related to toxic chemicals and habitat alteration in the context of wildlife risk assessment and ...

  10. Habitat Suitability Index Models: Veery

    USGS Publications Warehouse

    Sousa, Patrick J.

    1982-01-01

    Habitat preferences and species characteristics of the veery (Catharus fuscesens) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available scientific data on the habitat requirements of the veery. Habitat use information is presented in a review of the literature, followed by the development of an HSI model. The model is presented in three formats: graphic; word; and mathematical. Suitability index graphs quantify the species-habitat relationship. These data are synthesized into a model designed to provide information for use in impact assessment and habitat management.

  11. Habitat Suitability Index Models: Pronghorn

    USGS Publications Warehouse

    Allen, Arthur W.; Cook, John G.; Armbruster, Michael J.

    1984-01-01

    This is one of a series of publications that provide information on the habitat requirements of selected fish and wildlife species. Literature describing the relationship between habitat variables related to life requisites and habitat suitability for the pronghorn (Antilocapra americana) are synthesized. These data are subsequently used to develop Habitat Suitability Index (HSI) models. The HSI models are designed to provide information that can be used in impact assessment and habitat management.

  12. Habitat Suitability Index Models: Muskellunge

    USGS Publications Warehouse

    Cook, Mark F.; Solomon, R. Charles

    1987-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the muskellunge (Esox masquinongy Mitchell). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  13. Habitat relationships of reptiles in pine beetle disturbed forests of Alabama, U.S.A., with guidelines for a modified drift-fence sampling method

    Treesearch

    William B. Sutton; Yong Wang; Callie J. Schweitzer

    2010-01-01

    Understanding vertebrate habitat relationships is important to promote management strategies for the longterm conservation of many species. Using a modified drift fence method, we sampled reptiles and compared habitat variables within the William B. Bankhead National Forest (BNF) in Alabama, U.S.A from April 2005 to June 2006. We captured 226 individual reptiles...

  14. Consequences of extensive habitat fragmentation in landscape-level patterns of genetic diversity and structure in the Mediterranean esparto grasshopper

    PubMed Central

    Ortego, Joaquín; Aguirre, María P; Noguerales, Víctor; Cordero, Pedro J

    2015-01-01

    Anthropogenic habitat fragmentation has altered the distribution and population sizes in many organisms worldwide. For this reason, understanding the demographic and genetic consequences of this process is necessary to predict the fate of populations and establish management practices aimed to ensure their viability. In this study, we analyse whether the spatial configuration of remnant semi-natural habitat patches within a chronically fragmented landscape has shaped the patterns of genetic diversity and structure in the habitat-specialist esparto grasshopper (Ramburiella hispanica). In particular, we predict that agricultural lands constitute barriers to gene flow and hypothesize that fragmentation has restricted interpopulation dispersal and reduced local levels of genetic diversity. Our results confirmed the expectation that isolation and habitat fragmentation have reduced the genetic diversity of local populations. Landscape genetic analyses based on circuit theory showed that agricultural land offers ∽1000 times more resistance to gene flow than semi-natural habitats, indicating that patterns of dispersal are constrained by the spatial configuration of remnant patches of suitable habitat. Overall, this study shows that semi-natural habitat patches act as corridors for interpopulation gene flow and should be preserved due to the disproportionately large ecological function that they provide considering their insignificant area within these human-modified landscapes. PMID:26136826

  15. Habitat selection by postbreeding female diving ducks: Influence of habitat attributes and conspecifics

    USGS Publications Warehouse

    Austin, Jane E.; O'Neil, Shawn T.; Warren, Jeffrey M.

    2017-01-01

    Habitat selection studies of postbreeding waterfowl have rarely focused on within-wetland attributes such as water depth, escape cover, and food availability. Flightless waterfowl must balance habitat selection between avoiding predation risks and feeding. Reproductively successful female ducks face the greatest challenges because they begin the definitive prebasic molt at or near the end of brood rearing, when their body condition is at a low point. We assessed the relative importance of habitat attributes and group effects in habitat selection by postbreeding female lesser scaup Aythya affinis on a 2332-ha montane wetland complex during the peak flightless period (August) over seven years. Hypothesis-based habitat attributes included percent open water, open water:emergent edge density, water depth, percent flooded bare substrate, fetch (distance wind can travel unobstructed), group size, and several interactions representing functional responses to interannual variation in water levels. Surveys of uniquely marked females were conducted within randomly ordered survey blocks. We fitted two-part generalized linear mixed-effects models to counts of marked females within survey blocks, which allowed us to relate habitat attributes to relative probability of occurrence and, given the presence of a marked female, abundance of marked individuals. Postbreeding female scaup selected areas with water depths > 40 cm, large open areas, and intermediate edge densities but showed no relation to flooded bare substrate, suggesting their habitat preferences were more influenced by avoiding predation risks and disturbances than in meeting foraging needs. Grouping behavior by postbreeding scaup suggests habitat selection is influenced in part by behavioral components and/or social information, conferring energetic and survival benefits (predation and disturbance risks) but potentially also contributing to competition for food resources. This study demonstrates the importance of

  16. Small mammal communities and habitat selection in Northern Rocky Mountain bunchgrass: Implications for exotic plant invasions

    Treesearch

    Dean E. Pearson; Yvette K. Ortega; Kevin S. McKelvey; Leonard F. Ruggiero

    2001-01-01

    Agriculture and development have dramatically reduced the range of native bunchgrass habitats in the Northern Rocky Mountains, and the invasion of exotic plants threatens to greatly alter the remaining pristine prairie. Small mammals play many important roles in ecosystem functions, but little is known about small mammal community composition and structure in native...

  17. Habitat fragmentation in coastal southern California disrupts genetic connectivity in the cactus wren (Campylorhynchus brunneicapillus).

    PubMed

    Barr, Kelly R; Kus, Barbara E; Preston, Kristine L; Howell, Scarlett; Perkins, Emily; Vandergast, Amy G

    2015-05-01

    Achieving long-term persistence of species in urbanized landscapes requires characterizing population genetic structure to understand and manage the effects of anthropogenic disturbance on connectivity. Urbanization over the past century in coastal southern California has caused both precipitous loss of coastal sage scrub habitat and declines in populations of the cactus wren (Campylorhynchus brunneicapillus). Using 22 microsatellite loci, we found that remnant cactus wren aggregations in coastal southern California comprised 20 populations based on strict exact tests for population differentiation, and 12 genetic clusters with hierarchical Bayesian clustering analyses. Genetic structure patterns largely mirrored underlying habitat availability, with cluster and population boundaries coinciding with fragmentation caused primarily by urbanization. Using a habitat model we developed, we detected stronger associations between habitat-based distances and genetic distances than Euclidean geographic distance. Within populations, we detected a positive association between available local habitat and allelic richness and a negative association with relatedness. Isolation-by-distance patterns varied over the study area, which we attribute to temporal differences in anthropogenic landscape development. We also found that genetic bottleneck signals were associated with wildfire frequency. These results indicate that habitat fragmentation and alterations have reduced genetic connectivity and diversity of cactus wren populations in coastal southern California. Management efforts focused on improving connectivity among remaining populations may help to ensure population persistence. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  18. Climate effects on the distribution of wetland habitats and connectivity in networks of migratory waterbirds

    NASA Astrophysics Data System (ADS)

    Bellisario, Bruno; Cerfolli, Fulvio; Nascetti, Giuseppe

    2014-07-01

    The establishment and maintenance of conservation areas are among the most common measures to mitigate the loss of biodiversity. However, recent advances in conservation biology have challenged the reliability of such areas to cope with variation in climate conditions. Climate change can reshuffle the geographic distribution of species, but in many cases suitable habitats become scarce or unavailable, limiting the ability to migrate or adapt in response to modified environments. In this respect, the extent to which existing protected areas are able to compensate changes in habitat conditions to ensure the persistence of species still remains unclear. We used a spatially explicit model to measure the effects of climate change on the potential distribution of wetland habitats and connectivity of Natura 2000 sites in Italy. The effects of climate change were measured on the potential for water accumulation in a given site, as a surrogate measure for the persistence of aquatic ecosystems and their associated migratory waterbirds. Climate impacts followed a geographic trend, changing the distribution of suitable habitats for migrants and highlighting a latitudinal threshold beyond which the connectivity reaches a sudden collapse. Our findings show the relative poor reliability of most sites in dealing with changing habitat conditions and ensure the long-term connectivity, with possible consequences for the persistence of species. Although alterations of climate suitability and habitat destruction could impact critical areas for migratory waterbirds, more research is needed to evaluate all possible long-term effects on the connectivity of migratory networks.

  19. Plausible Martian Habitats

    NASA Image and Video Library

    2009-10-13

    Unfrozen brine in cryopegs and fracture networks provides habitats for the survival and growth of organisms both within and under frozen rocky materials on Earth and, by analogy, could provide habitats on Mars.

  20. Influences of human and livestock density on winter habitat selection of Mongolian gazelle (Procapra gutturosa).

    PubMed

    Luo, Zhenhua; Liu, Bingwan; Liu, Songtao; Jiang, Zhigang; Halbrook, Richard S

    2014-01-01

    Human and livestock related disturbances of habitat selection by ungulates are topics of global concern, as they have profound impacts on ungulate survival, population density, fitness, and management; however, differences in ungulate habitat use under different human and livestock densities are not fully understood. Mongolian gazelle (Procapra gutturosa), an endemic ungulate species on the Asia-European steppe, faces varying intensities of human and livestock disturbances in the area around Dalai Lake, China. To investigate how habitat selection strategies vary as disturbance intensity changes, we randomly set 20 transects containing 1486 plots, on which we conducted repeated surveys of 21 ecological factors during the winters in the period of 2005-2008. We aimed to: 1) determine the critical factors underlying habitat selection of the gazelles; 2) determine the gazelles' habitat preferences in this area; 3) determine how habitat selection varies with disturbance intensity and explore the primary underlying mechanism. We used binary-logistic regressions and information theoretic approaches to build best-fit habitat selection models, and calculated resource selection functions. Sixty-six herds, 522 individuals, and 499 tracks were recorded. Our results indicate that snow depth and aboveground biomass are the main factors affecting habitat selection by Mongolian gazelle throughout the district in winter. Thin snow cover and abundant aboveground biomass are preferred. Avoiding disturbance was the primary factor accounting for habitat selection in low disturbance areas, although with increasing human or live-stock-related disturbance, gazelle maintained a reduced distance to the source of the disturbance. Presumably owing to that shift, movement costs were more important as disturbance increased. In addition, Mongolian gazelle selected habitats based on topographical features promoting greater visibility where disturbance was lower. We suggest several management

  1. Species’ traits help predict small mammal responses to habitat homogenization by an invasive grass

    USGS Publications Warehouse

    Ceradini, Joseph P.; Chalfoun, Anna D.

    2017-01-01

    Invasive plants can negatively affect native species, however, the strength, direction, and shape of responses may vary depending on the type of habitat alteration and the natural history of native species. To prioritize conservation of vulnerable species, it is therefore critical to effectively predict species’ responses to invasive plants, which may be facilitated by a framework based on species’ traits. We studied the population and community responses of small mammals and changes in habitat heterogeneity across a gradient of cheatgrass (Bromus tectorum) cover, a widespread invasive plant in North America. We live-trapped small mammals over two summers and assessed the effect of cheatgrass on native small mammal abundance, richness, and species-specific and trait-based occupancy, while accounting for detection probability and other key habitat elements. Abundance was only estimated for the most common species, deer mice (Peromyscus maniculatus). All species were pooled for the trait-based occupancy analysis to quantify the ability of small mammal traits (habitat association, mode of locomotion, and diet) to predict responses to cheatgrass invasion. Habitat heterogeneity decreased with cheatgrass cover. Deer mouse abundance increased marginally with cheatgrass. Species richness did not vary with cheatgrass, however, pocket mouse (Perognathus spp.) and harvest mouse (Reithrodontomys spp.) occupancy tended to decrease and increase, respectively, with cheatgrass cover, suggesting a shift in community composition. Cheatgrass had little effect on occupancy for deer mice, 13-lined ground squirrels (Spermophilus tridecemlineatus), and Ord's kangaroo rat (Dipodomys ordii). Species’ responses to cheatgrass primarily corresponded with our a priori predictions based on species’ traits. The probability of occupancy varied significantly with a species’ habitat association but not with diet or mode of locomotion. When considered within the context of a rapid

  2. Habitat Suitability Index Models: Marten

    USGS Publications Warehouse

    Allen, Arthur W.

    1982-01-01

    Habitat preferences and species characteristics of the pine marten (Martes americana) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available scientific data on the species-habitat requirements of the pine marten. Habitat use information is presented in a review of the literature, followed by the development of a HSI model. The model is presented in three formats: graphic, word and mathematical. Suitability index graphs quantify the species-habitat relationship. These data are then synthesized into a model which is designed to provide information for use in impact assessment and habitat management activities.

  3. Landscape habitat suitability index software

    Treesearch

    William D. Dijak; Chadwick D. Rittenhouse; Michael A. Larson; Frank R. III Thompson; Joshua J. Millspaugh

    2007-01-01

    Habitat suitability index (HSI) models are traditionally used to evaluate habitat quality for wildlife at a local scale. Rarely have such models incorporated spatial relationships of habitat components. We introduce Landscape HSImodels, a new Microsoft Windowst (Microsoft, Redmond, WA)-based program that incorporates local habitat as well as landscape-scale attributes...

  4. Waterbird use of catfish ponds and migratory bird habitat initiative wetlands in Mississippi

    USGS Publications Warehouse

    Feaga, James S.; Vilella, Francisco; Kaminski, Richard M.; Davis, J. Brian

    2015-01-01

    Aquaculture can provide important surrogate habitats for waterbirds. In response to the 2010 Deepwater Horizon oil spill, the National Resource Conservation Service enacted the Migratory Bird Habitat Initiative through which incentivized landowners provided wetland habitats for migrating waterbirds. Diversity and abundance of waterbirds in six production and four idled aquaculture facilities in the Mississippi Alluvial Valley were estimated during the winters of 2011–2013. Wintering waterbirds exhibited similar densities on production (i.e., ∼22 birds/ha) and idled (i.e., ∼20 birds/ha) sites. A total of 42 species were found using both types of aquaculture wetlands combined, but there was considerable departure in bird guilds occupying the two wetland types. The primary users of production ponds were diving and dabbling ducks and American coots. However, idled ponds, with varying water depths (e.g., mudflats to 20 cm) and diverse emergent vegetation-water interspersion, attracted over 30 species of waterbirds and, on average, had more species of waterbirds from fall through early spring than catfish production ponds. Conservation through the Migratory Bird Habitat Initiative was likely responsible for this difference. Our results suggest production and idled Migratory Bird Habitat Initiative aquaculture impoundments produced suitable conditions for various waterbird species and highlight the importance of conservation programs on private lands that promote diversity in vegetation structure and water depths to enhance waterbird diversity.

  5. Local habitat and landscape influence predation of bird nests on afforested Mediterranean cropland

    NASA Astrophysics Data System (ADS)

    Sánchez-Oliver, J. S.; Rey Benayas, J. M.; Carrascal, L. M.

    2014-07-01

    Afforestation programs such as the one promoted by the EU Common Agrarian Policy have contributed to spread tree plantations on former cropland. Nevertheless these afforestations may cause severe damage to open habitat species, especially birds of high conservation value. We investigated predation of artificial bird nests at young tree plantations and at the open farmland habitat adjacent to the tree plantations in central Spain. Predation rates were very high at both tree plantations (95.6%) and open farmland habitat (94.2%) after two and three week exposure. Plantation edge/area ratio and development of the tree canopy decreased predation rates and plantation area and magpie (Pica pica) abundance increased predation rates within tree plantations, which were also affected by land use types around plantations. The area of nearby tree plantations (positive effect), distance to the tree plantation edge (negative effect), and habitat type (mainly attributable to the location of nests in vineyards) explained predation rates at open farmland habitat. We conclude that predation rates on artificial nests were particularly high and rapid at or nearby large plantations, with high numbers of magpies and low tree development, and located in homogenous landscapes dominated by herbaceous crops and pastures with no remnants of semi-natural woody vegetation. Landscape planning should not favour tree plantations as the ones studied here in Mediterranean agricultural areas that are highly valuable for ground-nesting bird species.

  6. Sustainable Cities Programme: a joint UN-HABITAT-UNEP facility on the urban environment with participation of the Dutch government.

    PubMed

    Gebre-Egziabher, Axumite

    2004-06-01

    The fundamental objective of the Sustainable Cities Programme is to promote environmentally sustainable local development to more fully realize the vital contributions that urban areas make to over-all social and economic development by: (1) enhancing efficiency in the use of local environmental resources, reducing environmental risks, and strengthening application of environmental conventions and agreements with growing regard to the Climate Change Protocol; (2) reducing poverty by promoting more equitable access to resources and environmental services; (3) mobilizing and strengthening local capacities to plan, co-ordinate, and manage sustainable local development in partnership; and (4) combining the complementary strengths of UN-HABITAT, UNEP, and other partners in support of Agenda 21, and the Habitat Agenda sustainable development commitments including improved local environmental governance.

  7. Restoration through eradication? Removal of an invasive bioengineer restores some habitat function for a native predator.

    PubMed

    Holsman, Kirstin K; McDonald, P Sean; Barreyro, Pablo A; Armstrong, David A

    2010-12-01

    Invasive aquatic macrophytes increase structural complexity in recipient systems and alter trophic and physical resources; thus, eradication programs that remove plant structure have potential to restore some impaired ecological functions. In this study we evaluate how an invasive ecosystem engineer, Atlantic smooth cordgrass (Spartina alterniflora), interferes with the movement and foraging activity of a mobile predator, Dungeness crab (Cancer magister), and whether removal of aboveground cordgrass structure rapidly reestablishes access to foraging habitats. By 2004, smooth cordgrass had invaded >25% of crab foraging habitat in Willapa Bay, Washington (USA), and transformed it into a highly structured landscape. However, by 2007 successful eradication efforts had eliminated most meadows of the cordgrass. In order to investigate the effect of smooth cordgrass on the habitat function of littoral areas for foraging crabs, we integrated field, laboratory, and statistical modeling approaches. We conducted trapping surveys at multiple sites and used a hierarchical model framework to examine patterns in catches prior to and following cordgrass removal (i.e., before-after control-impact design, BACI). Prior to eradication, catches of Dungeness crabs in unstructured habitats were 4-19 times higher than catches in adjacent patches of live cordgrass. In contrast, the results of post-eradication trapping in 2007 indicated similar catch rates of crabs in unstructured habitats and areas formerly invaded by the cordgrass. Subsequent laboratory experiments and video observations demonstrated that the rigid physical structure of smooth cordgrass shoots reduces the ability of Dungeness crabs to access prey resources and increases the risk of stranding. Taken together, these findings suggest that eliminating the structural complexity of invasive macrophytes may rapidly restore some ecological function (i.e., foraging area) for migratory predators like Dungeness crab. However

  8. Habitat selection and productivity of least terns on the lower Platte River, Nebraska

    USGS Publications Warehouse

    Kirsch, Eileen M.

    1996-01-01

    . Proportion of terns using each habitat was similar to proportion of available sand on each habitat. The distribution of nest initiation dates and rates of colony-site turnover also were similar on both habitats. Productivity did not differ between habitats but varied significantly among sites. Nest success, fledging success, and fledglings per pair averaged 0.54, 0.28, and 0.47, respectively. Key factor analysis revealed that chick survival had a greater influence on production of fledglings (on both sandbars and sandpits) than did failure to produce a maximum clutch size or egg mortality. Most egg mortality was caused by predation on sandpits and by flooding on sandbars. Predation was suspected as the major cause of loss for chicks on both habitats. Path analysis revealed no strong or consistent correlations among mortality, numbers of nests and chicks, track trails of intruders into colonies, and habitat variables at colonies on either habitat. Theoretically, terns should not prefer a habitat when habitats are equally suitable if terns have had time to respond to habitat changes. Although sandbars and sandpits appeared equally suitable and terns did not prefer either habitat, local productivity will not support this population unless annual postfledging survival is higher than current estimates for the species. Population trend estimated with fledglings per pair = 0.50 was negative for all but the highest (ca 0.90) rates of annual postfledging survival. Furthermore, deterministic models like the one used in this study overstimate trend. Productivity insufficient to support the local population, in spite of habitat use that reflects habitat suitability, could be due to increased predation caused by habitat alteration adjacent to the river that may have changed the predator community. Alternatively, terns in this area could persist in spite of prevailing low productivity because they are relatively long-lived birds, if highly productive years occasionally occur or if this

  9. CMV-promoter driven codon-optimized expression alters the assembly type and morphology of a reconstituted HERV-K(HML-2).

    PubMed

    Hohn, Oliver; Hanke, Kirsten; Lausch, Veronika; Zimmermann, Anja; Mostafa, Saeed; Bannert, Norbert

    2014-11-11

    The HERV-K(HML-2) family contains the most recently integrated and best preserved endogenized proviral sequences in the human genome. All known elements have nevertheless been subjected to mutations or deletions that render expressed particles non-infectious. Moreover, these post-insertional mutations hamper the analysis of the general biological properties of this ancient virus family. The expression of consensus sequences and sequences of elements with reverted post-insertional mutations has therefore been very instrumental in overcoming this limitation. We investigated the particle morphology of a recently reconstituted HERV-K113 element termed oriHERV-K113 using thin-section electron microscopy (EM) and could demonstrate that strong overexpression by substitution of the 5'LTR for a CMV promoter and partial codon optimization altered the virus assembly type and morphology. This included a conversion from the regular C-type to an A-type morphology with a mass of cytoplasmic immature cores tethered to the cell membrane and the membranes of vesicles. Overexpression permitted the release and maturation of virions but reduced the envelope content. A weaker boost of virus expression by Staufen-1 was not sufficient to induce these morphological alterations.

  10. CMV-Promoter Driven Codon-Optimized Expression Alters the Assembly Type and Morphology of a Reconstituted HERV-K(HML-2)

    PubMed Central

    Hohn, Oliver; Hanke, Kirsten; Lausch, Veronika; Zimmermann, Anja; Mostafa, Saeed; Bannert, Norbert

    2014-01-01

    The HERV-K(HML-2) family contains the most recently integrated and best preserved endogenized proviral sequences in the human genome. All known elements have nevertheless been subjected to mutations or deletions that render expressed particles non-infectious. Moreover, these post-insertional mutations hamper the analysis of the general biological properties of this ancient virus family. The expression of consensus sequences and sequences of elements with reverted post-insertional mutations has therefore been very instrumental in overcoming this limitation. We investigated the particle morphology of a recently reconstituted HERV-K113 element termed oriHERV-K113 using thin-section electron microscopy (EM) and could demonstrate that strong overexpression by substitution of the 5'LTR for a CMV promoter and partial codon optimization altered the virus assembly type and morphology. This included a conversion from the regular C-type to an A-type morphology with a mass of cytoplasmic immature cores tethered to the cell membrane and the membranes of vesicles. Overexpression permitted the release and maturation of virions but reduced the envelope content. A weaker boost of virus expression by Staufen-1 was not sufficient to induce these morphological alterations. PMID:25393897

  11. Habitat Suitability Index Models: Yellow perch

    USGS Publications Warehouse

    Krieger, Douglas A.; Terrell, James W.; Nelson, Patrick C.

    1983-01-01

    A review and synthesis of existing information were used to develop riverine and lacustrine habitat models for yellow perch (Perca flavescens). The models are scaled to produce an index of habitat suitability between 0 (unsuitable habitat) to 1 (optimally suitable habitat) for riverine, lacustrine, and palustrine habitat in the 48 contiguous United States. Habitat Suitability Indexes (HSI's) are designed for use with the Habitat Evaluation Procedures developed by the U.S. Fish and Wildlife Service. Also included are discussions of Suitability Index (SI) curves as used in the Instream Flow Incremental Methodology (IFIM) and SI curves available for an IFIM analysis of yellow perch habitat.

  12. CONTRASTING HABITAT ASSOCIATIONS OF SAGEBRUSH-STEPPE SONGBIRDS IN THE INTERMOUNTAIN WEST

    PubMed Central

    MILLER, ROBERT A.; BOND, LAURA; MIGAS, PATRICK N.; CARLISLE, JAY D.; KALTENECKER, GREGORY S.

    2017-01-01

    Sagebrush (Artemisia spp.) steppe is one of North America’s most imperiled ecosystems, as the result of many factors including grazing, development, fire, and invasion of exotic plants. Threats to sagebrush steppe are expected to increase because of climate change and further human development. Many songbirds use sagebrush steppe opportunistically, but a few obligate species are dependent on it. To quantify the habitat associations of three sagebrush obligates, the Sage Thrasher (Oreoscoptes montanus), Sagebrush Sparrow (Artemisiospiza nevadensis), and Brewer’s Sparrow (Spizella breweri), and nine other songbird species that use this habitat, we surveyed across a broad region of Idaho. At each of 104 sites, we selected three plots, one each in relatively poor, moderate, and good condition, defined qualitatively by the cover of native shrubs. We quantified bird abundance by point counts, described the habitat at these points by a line-intercept method, and at each plot calculated the fraction of a circle (radius 1 km) covered in shrubs or grassland. We compared two-scale occupancy models based on these data by the information-theoretic approach. According to the models, our qualitative assessment of habitat condition within a site distinguished birds’ use of relatively good habitat from their use of poor habitats only, not from those in moderate condition. Thus the sagebrush-obligate species may tolerate some local habitat degradation, at least up to some unidentified threshold. Occurrence of all three sagebrush obligates correlated well with one or more characteristics of sagebrush such as its cover, height, or heterogeneity in height. They differed in the Sage Thrasher being most sensitive to sagebrush cover, the Sagebrush Sparrow being found more often at lower elevations, and the Brewer’s Sparrow being less sensitive to ground cover. The nine other species evaluated were less or negatively associated with attributes of sagebrush. On the basis of these

  13. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Treesearch

    Rebecca L. Flitcroft; Jeffrey A. Falke; Gordon H. Reeves; Paul F. Hessburg; Kris M. McNyset; Lee E. Benda

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed...

  14. Habitat of birds in ponderosa pine and aspen/birch forest in the Black Hills, South Dakota

    Treesearch

    Todd R. Mills; Mark A. Rumble; Lester D. Flake

    2000-01-01

    Birds with both eastern and western distributions occur in the Black Hills of western South Dakota. This forest is mostly ponderosa pine (Pinus ponderosa) and is managed for timber. Logging alters forest characteristics and the bird community. We studied habitat relations of breeding songbirds at the stand- and site-level scales in ponderosa pine and...

  15. Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats.

    PubMed

    Waldbusser, George G; Salisbury, Joseph E

    2014-01-01

    Multiple natural and anthropogenic processes alter the carbonate chemistry of the coastal zone in ways that either exacerbate or mitigate ocean acidification effects. Freshwater inputs and multiple acid-base reactions change carbonate chemistry conditions, sometimes synergistically. The shallow nature of these systems results in strong benthic-pelagic coupling, and marine invertebrates at different life history stages rely on both benthic and pelagic habitats. Carbonate chemistry in coastal systems can be highly variable, responding to processes with temporal modes ranging from seconds to centuries. Identifying scales of variability relevant to levels of biological organization requires a fuller characterization of both the frequency and magnitude domains of processes contributing to or reducing acidification in pelagic and benthic habitats. We review the processes that contribute to coastal acidification with attention to timescales of variability and habitats relevant to marine bivalves.

  16. Habitat choice by juvenile cod ( Gadus morhua L.) on sandy soft bottoms with different vegetation types

    NASA Astrophysics Data System (ADS)

    Borg, Å.; Pihl, L.; Wennhage, H.

    1997-08-01

    Habitat choice by juvenile cod ( Gadus morhua L.) on sandy bottoms with different vegetation types was studied in laboratory. The experiment was conducted day and night in flow-through tanks on two different size-classes of cod (7-13 and 17-28 cm TL). Four habitats, typical of shallow soft bottoms on the Swedish west coast: Fucus vesiculosus, Zostera marina, Cladophora sp. and bare sand, were set up pair-wise in six combinations. The main difference between habitats in this study was vegetation structure, since all parameters except vegetation type was considered equal for both sides of the experimental tanks and natural prey was eliminated. The results showed a difference in habitat utilization by juvenile cod between day (light) and night (dark). During day time the fishes showed a significant preference for vegetation, while nocturnally no significant choice of habitat was made. Both size-classes preferred Fucus, considered the most complex habitat in this study, when this was available. The smaller size-class seemed to be able to utilize the other vegetation types as well, always preferring vegetation over sand. Larger juvenile cod, on the other hand, appeared to be restricted to Fucus. This difference in habitat choice by the two size-classes might be due to a greater dependence on shelter from predation by the smaller juveniles, causing them to associate more strongly with vegetation. The larger juveniles avoided Cladophora, since they might have difficulties in entering the compact structure of this filamentous algae. Availability of vegetation at day time, as a predation refuge, as well as of open sandy areas for feeding during night, thus seems to be important for juvenile cod. It is concluded that eutrophication-induced changes in habitat structure, such as increased dominance by filamentous algae, could alter the availability of predation refuges and foraging habitats for juvenile cod.

  17. Habitat suitability index models: Black crappie

    USGS Publications Warehouse

    Edwards, Elizabeth A.; Krieger, Douglas A.; Bacteller, Mary; Maughan, O. Eugene

    1982-01-01

    Characteristics and habitat requirements of the black crappie (Pomoxis nigromaculatus) are described in a review of Habitat Suitability Index models. This is one in a series of publications to provide information on the habitat requirements of selected fish and wildlife species. Numerous literature sources have been consulted in an effort to consolidate scientific data on species-habitat relationships. These data have subsequently been synthesized into explicit Habitat Suitability Index (HSI) models. The models are based on suitability indices indicating habitat preferences. Indices have been formulated for variables found to affect the life cycle and survival of each species. Habitat Suitability Index (HSI) models are designed to provide information for use in impact assessment and habitat management activities. The HSI technique is a corollary to the U.S. Fish and Wildlife Service's Habitat Evaluation Procedures.

  18. Effects of tide cycles on habitat selection and habitat partitioning by migrating shorebirds

    USGS Publications Warehouse

    Burger, J.; Howe, M.A.; Hahn, D.C.; Chase, J.

    1977-01-01

    We studied assemblages of feeding shorebirds in three intertidal habitats on the coast of New Jersey during August to document how species segregate spatially both among and within habitats and to determine the effects of tidal cycles on these patterns. The habitats were a sandy beach facing the ocean proper (outer beach), a sandy beach on the mainland side of a barrier island (inner beach), and a small mudflat adjacent to a Spartina alterniflora salt marsh. We were able to identify several microhabitats on the outer beach and mudflat. Most species fed in more than one habitat, but only two, Charadrius semipalmatus and Calidris canutus, used all three habitats regularly. Within habitats, most species exhibited strong preferences for the wettest areas, but we found differences among species in degrees of preference. The least amount of partitioning occurred on the inner beach, where birds crowded into a small zone near the water's edge and had frequent agonistic encounters suggesting intense competition. Shorebird feeding activity was partly a function of tide time: each habitat had a characteristic temporal pattern of use by shorebirds related to tide time rather than diel time; within habitats, we found species-characteristic feeding activity rhythms that were also a function of tide time. Feeding by most species peaked during the first 2 hours after low tide on the outer beach and mudflat. The results are discussed in terms of feeding strategies and interspecific competition.

  19. Urban Areas. Habitat Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of an overview, teaching guides and student data sheets for three activities, and a poster. The overview discusses the city as an ecosystem, changing urban habitats, urban wildlife habitats, values of wildlife, habitat management, and…

  20. Principles of wildlife habitat management

    Treesearch

    Ernie P. Wiggers

    1989-01-01

    Simply stated, habitat is where an animal lives and must include all the resources an animal needs to survive and reproduce. An animal's habitat has to provide five essential factors: food, cover, water, space, and interspersion. Habitat management is identifying which factors are scarce enough to limit populations, and then improving the habitat to remove the...

  1. Expandable Lunar Habitat (X-Hab)

    NASA Image and Video Library

    2010-09-23

    Expandable Lunar Habitat (X-Hab).ILC Dover, under contract by NASA Langley Research Center, and in cooperation with NASA Johnson Space Center has designed and manufactured an expandable lunar habitat. This cylindrical habitat, or Expandable Lunar Habitat (X-Hab) is a hybrid system with two hard end caps and a deployable softgoods section in the center.

  2. Fine scale movements and habitat use of black brant during the flightless Wing Molt in Arctic Alaska

    USGS Publications Warehouse

    Lewis, Tyler L.; Flint, Paul L.; Derksen, Dirk V.; Schmutz, Joel A.

    2011-01-01

    Thousands of Black Brant (Branta bernicla nigricans) migrate annually to the Teshekpuk Lake Special Area (TLSA), Alaska, to undergo the flightless wing molt on tundra lakes and wetlands. GPS transmitters were attached to Brant over two summers (2007–2008) to examine patterns of movement and habitat use of molting Brant, including variation by habitat type, year and body mass. Molting Brant were located an average of 31 ± 1 m (SE) from shore and this distance did not vary across any of the explanatory variables. Brant moved an average of 123 ± 3 m hr-1 while flightless. Movement rates varied by year, averaging 22 ± 12 m hr-1 faster in 2008, and across habitat types, averaging 22 ± 13 m hr-1 faster in inland versus coastal and estuarine habitats. Two kernel home ranges were estimated: entire home range, which encompassed the complete 95% probability contour, and shoreline home range, which included only shoreline areas used by molting Brant. Entire home range (x bar = 15.1 ± 2.2 km2) was negatively correlated with body mass, suggesting that heavier individuals have more body reserves to contribute to feather growth and thereby require less food and smaller home ranges. Conversely, shoreline home range (x bar = 4.3 ± 0.6 km2) did not vary by body mass, but rather by habitat type, being larger in estuarine habitats. The complex shorelines and numerous deltaic islands of estuarine habitats offer more shoreline per area than either coastal or inland habitats. Brant appear to have limited ability to adjust their home range size or forage further from shore in response to variable food resources across years or habitats, instead altering their movement rate. Given this apparent lack of behavioral flexibility, Brant may be sensitive to development-related disturbances or habitat losses at molt sites in the TLSA.

  3. ESTUARINE HABITAT RESTORATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thom, Ronald M.; Borde, Amy B.

    2015-09-01

    Restoring estuarine habitats generally means repairing damages caused by humans and natural forces. Because of the extensive human occupation, development, and use of coastal areas for centuries, the extensive estuarine habitats have been either destroyed or significantly impaired.

  4. Spatiotemporal patterns and habitat associations of smallmouth bass (Micropterus dolomieu) invading salmon-rearing habitat

    USGS Publications Warehouse

    Lawrence, David J.; Olden, Julian D.; Torgersen, Christian E.

    2012-01-01

    1. Smallmouth bass (Micropterus dolomieu) have been widely introduced to fresh waters throughout the world to promote recreational fishing opportunities. In the Pacific Northwest (U.S.A.), upstream range expansions of predatory bass, especially into subyearling salmon-rearing grounds, are of increasing conservation concern, yet have received little scientific inquiry. Understanding the habitat characteristics that influence bass distribution and the timing and extent of bass and salmon overlap will facilitate the development of management strategies that mitigate potential ecological impacts of bass.2. We employed a spatially continuous sampling design to determine the extent of bass and subyearling Chinook salmon (Oncorhynchus tshawytscha) sympatry in the North Fork John Day River (NFJDR), a free-flowing river system in the Columbia River Basin that contains an upstream expanding population of non-native bass. Extensive (i.e. 53 km) surveys were conducted over 2 years and during an early and late summer period of each year, because these seasons provide a strong contrast in the river’s water temperature and flow condition. Classification and regression trees were applied to determine the primary habitat correlates of bass abundance at reach and channel-unit scales.3. Our study revealed that bass seasonally occupy up to 22% of the length of the mainstem NFJDR where subyearling Chinook salmon occur, and the primary period of sympatry between these species was in the early summer and not during peak water temperatures in late summer. Where these species co-occurred, bass occupied 60–76% of channel units used by subyearling Chinook salmon in the early summer and 28–46% of the channel units they occupied in the late summer. Because these rearing salmon were well below the gape limitation of bass, this overlap could result in either direct predation or sublethal effects of bass on subyearling Chinook salmon. The upstream extent of bass increased 10–23

  5. Demonstrating That Habitat Structure Facilitates Coexistence of Prey & Predator: A Laboratory Investigation Using Goldfish & Invertebrates.

    ERIC Educational Resources Information Center

    Stewart, Timothy W.; Embrey, Tracey R.

    2003-01-01

    Presents a laboratory investigation to demonstrate that habitat structure promotes increased organism abundance and species diversity by reducing predator effects on prey abundance. Investigates the effects of goldfish (Carassius auratus) predators on Gammarus sp. (an amphipod) and Daphnia magna (a cladoceran) prey in the absence and presence of a…

  6. Use and interpretation of logistic regression in habitat-selection studies

    USGS Publications Warehouse

    Keating, Kim A.; Cherry, Steve

    2004-01-01

     Logistic regression is an important tool for wildlife habitat-selection studies, but the method frequently has been misapplied due to an inadequate understanding of the logistic model, its interpretation, and the influence of sampling design. To promote better use of this method, we review its application and interpretation under 3 sampling designs: random, case-control, and use-availability. Logistic regression is appropriate for habitat use-nonuse studies employing random sampling and can be used to directly model the conditional probability of use in such cases. Logistic regression also is appropriate for studies employing case-control sampling designs, but careful attention is required to interpret results correctly. Unless bias can be estimated or probability of use is small for all habitats, results of case-control studies should be interpreted as odds ratios, rather than probability of use or relative probability of use. When data are gathered under a use-availability design, logistic regression can be used to estimate approximate odds ratios if probability of use is small, at least on average. More generally, however, logistic regression is inappropriate for modeling habitat selection in use-availability studies. In particular, using logistic regression to fit the exponential model of Manly et al. (2002:100) does not guarantee maximum-likelihood estimates, valid probabilities, or valid likelihoods. We show that the resource selection function (RSF) commonly used for the exponential model is proportional to a logistic discriminant function. Thus, it may be used to rank habitats with respect to probability of use and to identify important habitat characteristics or their surrogates, but it is not guaranteed to be proportional to probability of use. Other problems associated with the exponential model also are discussed. We describe an alternative model based on Lancaster and Imbens (1996) that offers a method for estimating conditional probability of use in

  7. Wolves adapt territory size, not pack size to local habitat quality.

    PubMed

    Kittle, Andrew M; Anderson, Morgan; Avgar, Tal; Baker, James A; Brown, Glen S; Hagens, Jevon; Iwachewski, Ed; Moffatt, Scott; Mosser, Anna; Patterson, Brent R; Reid, Douglas E B; Rodgers, Arthur R; Shuter, Jen; Street, Garrett M; Thompson, Ian D; Vander Vennen, Lucas M; Fryxell, John M

    2015-09-01

    1. Although local variation in territorial predator density is often correlated with habitat quality, the causal mechanism underlying this frequently observed association is poorly understood and could stem from facultative adjustment in either group size or territory size. 2. To test between these alternative hypotheses, we used a novel statistical framework to construct a winter population-level utilization distribution for wolves (Canis lupus) in northern Ontario, which we then linked to a suite of environmental variables to determine factors influencing wolf space use. Next, we compared habitat quality metrics emerging from this analysis as well as an independent measure of prey abundance, with pack size and territory size to investigate which hypothesis was most supported by the data. 3. We show that wolf space use patterns were concentrated near deciduous, mixed deciduous/coniferous and disturbed forest stands favoured by moose (Alces alces), the predominant prey species in the diet of wolves in northern Ontario, and in proximity to linear corridors, including shorelines and road networks remaining from commercial forestry activities. 4. We then demonstrate that landscape metrics of wolf habitat quality - projected wolf use, probability of moose occupancy and proportion of preferred land cover classes - were inversely related to territory size but unrelated to pack size. 5. These results suggest that wolves in boreal ecosystems alter territory size, but not pack size, in response to local variation in habitat quality. This could be an adaptive strategy to balance trade-offs between territorial defence costs and energetic gains due to resource acquisition. That pack size was not responsive to habitat quality suggests that variation in group size is influenced by other factors such as intraspecific competition between wolf packs. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  8. Simulating the influences of various fire regimes on caribou winter habitat

    USGS Publications Warehouse

    Rupp, T. Scott; Olson, Mark; Adams, Layne G.; Dale, Bruce W.; Joly, Kyle; Henkelman, Jonathan; Collins, William B.; Starfield, Anthony M.

    2006-01-01

    Caribou are an integral component of high‐latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long‐term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5‐fold increase in the area burned annually and an associated 41% decrease in the amount of spruce–lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.

  9. 75 FR 34975 - Notice of Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration Strategy; Request... interagency Estuary Habitat Restoration Council, is providing notice of the Council's intent to revise the ''Estuary Habitat Restoration Strategy'' and requesting public comments to guide its revision. DATES...

  10. Vacant habitats in the Universe.

    PubMed

    Cockell, Charles S

    2011-02-01

    The search for life on other planets usually makes the assumption that where there is a habitat, it will contain life. On the present-day Earth, uninhabited habitats (or vacant habitats) are rare, but might occur, for example, in subsurface oils or impact craters that have been thermally sterilized in the past. Beyond Earth, vacant habitats might similarly exist on inhabited planets or on uninhabited planets, for example on a habitable planet where life never originated. The hypothesis that vacant habitats are abundant in the Universe is testable by studying other planets. In this review, I discuss how the study of vacant habitats might ultimately inform an understanding of how life has influenced geochemical conditions on Earth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska

    Treesearch

    Matthew R. Sloat; Gordon H. Reeves; Kelly R. Christiansen

    2016-01-01

    In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural...

  12. Use and selection of brood-rearing habitat by Sage Grouse in south central Washington

    USGS Publications Warehouse

    Sveum, C.M.; Crawford, J.A.; Edge, W.D.

    1998-01-01

    Sage Grouse (Centrocercus urophasianus) brood-habitat use was examined during 1992 and 1993 at the Yakima Training Center in Yakima and Kittitas counties, Washington. During the 2 yr we followed 38 broods, of which 12 persisted to 1 August (x?? = approximately 1.5 chicks/brood). Food forb cover was greater at all brood locations than at random locations. Hens with broods in big sagebrush/bunchgrass habitat (Artemisia tridentata/Agropyron spicatum) selected for greater food forb cover, total forb cover, and lower shrub heights; broods in altered big sagebrush/bunchgrass habitats selected greater tall grass cover and vertical cover height; broods in grassland showed no preference for any measured vegetation characteristics. During the early rearing period (post-hatching-6 wk) each year, broods selected sagebrush/bunchgrass. Broods in 1993 made greater use of grasslands than in 1992 and selected grassland during the late brood-rearing period (7-12 wk). Broods selected for sagebrush/bunchgrass during midday, but 52% of brood locations in the afternoon were in grassland. Tall grass cover was greater at morning (0500-1000 h) and afternoon (1501-2000 h) brood locations than at midday (1001-1500 h) and random locations. Midday brood locations had greater shrub cover and height than morning and afternoon locations. Selection of habitat components was similar to the results of other studies, but habitat conditions coupled with a possible lack of 'alternate brood-rearing cover types resulted in low survival of chicks.

  13. Hydropower Production and Fish Habitat Suitability: Impact and Effectiveness of Environmental Flow Prescriptions

    NASA Astrophysics Data System (ADS)

    Ceola, Serena; Pugliese, Alessio; Galeati, Giorgio; Castellarin, Attilio

    2017-04-01

    The anthropogenic alteration of the natural flow regime of a river for hydropower production can significantly modify the processes and functions associated with fluvial ecosystems. In order to preserve the fluvial habitat downstream of dams and diversion structures, environmental flows are commonly defined. Such environmental flows are generally computed from empirical methodologies, which are seldom based on site-specific studies, and may not be representative of local ecological and hydraulic conditions. Here we present the results of a quantitative analysis on the effectiveness of two alternative environmental flow scenarios prescribed in Central Italy (time-invariant experimental and empirically-based flow release versus time-variant hydrogeomorphologically-based flow release) and their impact on hydropower production and fish habitat suitability. The latter is examined by means of several models of habitat suitability curve, which is a well-known approach capable of analysing fluvial species preferences as a function of key eco-hydraulic features, such as water depth, flow velocity and river substrate. The results show an evident loss of hydropower production moving from the time-invariant experimental flow release to the hydrogeomorphological one (nearly 20% at the annual scale). Concerning the effects in terms of fish habitat suitability, our outcomes are less obvious, since they are species- and life stage-specific. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.

  14. Hydropower Production and Fish Habitat Suitability: Impact and Effectiveness of Environmental Flow Prescriptions

    NASA Astrophysics Data System (ADS)

    Castellarin, A.; Galeati, G.; Ceola, S.; Pugliese, A.; Ventura, M.; Montanari, A.

    2017-12-01

    The anthropogenic alteration of the natural flow regime of a river for hydropower production can significantly modify the processes and functions associated with fluvial ecosystems. In order to preserve the fluvial habitat downstream of dams and diversion structures, environmental flows are commonly defined. Such environmental flows are generally computed from empirical methodologies, which are seldom based on site-specific studies, and may not be representative of local ecological and hydraulic conditions. Here we present the results of a quantitative analysis on the effectiveness of two alternative environmental flow scenarios prescribed in Central Italy (time-invariant experimental and empirically-based flow release versus time-variant hydrogeomorphologically-based flow release) and their impact on hydropower production and fish habitat suitability. The latter is examined by means of several models of habitat suitability curve, which is a well-known approach capable of analysing fluvial species preferences as a function of key eco-hydraulic features, such as water depth, flow velocity and river substrate. The results show an evident loss of hydropower production moving from the time-invariant experimental flow release to the hydrogeomorphological one (nearly 20% at the annual scale). Concerning the effects in terms of fish habitat suitability, our outcomes are less obvious, since they are species- and life stage-specific. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.

  15. Habitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizes.

    PubMed

    Christie, Mark R; Knowles, L Lacey

    2015-06-01

    Corridors are frequently proposed to connect patches of habitat that have become isolated due to human-mediated alterations to the landscape. While it is understood that corridors can facilitate dispersal between patches, it remains unknown whether corridors can mitigate the negative genetic effects for entire communities modified by habitat fragmentation. These negative genetic effects, which include reduced genetic diversity, limit the potential for populations to respond to selective agents such as disease epidemics and global climate change. We provide clear evidence from a forward-time, agent-based model (ABM) that corridors can facilitate genetic resilience in fragmented habitats across a broad range of species dispersal abilities and population sizes. Our results demonstrate that even modest increases in corridor width decreased the genetic differentiation between patches and increased the genetic diversity and effective population size within patches. Furthermore, we document a trade-off between corridor quality and corridor design whereby populations connected by high-quality habitat (i.e., low corridor mortality) are more resilient to suboptimal corridor design (e.g., long and narrow corridors). The ABM also revealed that species interactions can play a greater role than corridor design in shaping the genetic responses of populations to corridors. These results demonstrate how corridors can provide long-term conservation benefits that extend beyond targeted taxa and scale up to entire communities irrespective of species dispersal abilities or population sizes.

  16. Habitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizes

    PubMed Central

    Christie, Mark R; Knowles, L Lacey

    2015-01-01

    Corridors are frequently proposed to connect patches of habitat that have become isolated due to human-mediated alterations to the landscape. While it is understood that corridors can facilitate dispersal between patches, it remains unknown whether corridors can mitigate the negative genetic effects for entire communities modified by habitat fragmentation. These negative genetic effects, which include reduced genetic diversity, limit the potential for populations to respond to selective agents such as disease epidemics and global climate change. We provide clear evidence from a forward-time, agent-based model (ABM) that corridors can facilitate genetic resilience in fragmented habitats across a broad range of species dispersal abilities and population sizes. Our results demonstrate that even modest increases in corridor width decreased the genetic differentiation between patches and increased the genetic diversity and effective population size within patches. Furthermore, we document a trade-off between corridor quality and corridor design whereby populations connected by high-quality habitat (i.e., low corridor mortality) are more resilient to suboptimal corridor design (e.g., long and narrow corridors). The ABM also revealed that species interactions can play a greater role than corridor design in shaping the genetic responses of populations to corridors. These results demonstrate how corridors can provide long-term conservation benefits that extend beyond targeted taxa and scale up to entire communities irrespective of species dispersal abilities or population sizes. PMID:26029259

  17. DEVELOPMENT OF INDICATORS OF EXPOSURE AND RESPONSE TO SEDIMENT AND HABITAT ALTERATION IN LAKE MICHIGAN COASTAL RIVERINE WETLANDS

    EPA Science Inventory

    Measures are being assessed to quantify the relationship of land-use in upstream watersheds to the habitat and biota in downstream coastal wetlands. Twenty-two sites were randomly drawn from a pool of 125 identified as riverine coastal wetlands along the shore of Lake Michigan. W...

  18. N-hexane inhalation during pregnancy alters DNA promoter methylation in the ovarian granulosa cells of rat offspring.

    PubMed

    Li, Hong; Liu, Jin; Sun, Yan; Wang, Wenxiang; Weng, Shaozheng; Xiao, Shihua; Huang, Huiling; Zhang, Wenchang

    2014-08-01

    The N-hexane-induced impact on the reproductive system of the offspring of animals exposed to n-hexane has caused great concern. Pregnant Wistar rats inhaled 500, 2 500 or 12 500 ppm n-hexane during gestational days 1-20. Clinical characteristics and developmental indices were observed. Ovarian granulosa cells were extracted from F1 rats, the number of follicles was determined in ovarian slices and promoter methylation was assessed using MeDIP-Chip. Several methods were used to analyze the scanned genes, including the Gene Ontology Consortium tools, the DAVID Functional Annotation Clustering Tool, hierarchical clustering and KEGG pathway analysis. The results indicated that the live pups/litter ratio was significantly lowest in the 12 500 ppm group. A significant decrease in secondary follicles and an increase in atresic follicles were observed in the 12 500 ppm group. The number of shared demethylated genes was higher than that of the methylated genes, and the differentially methylated genes were enriched in cell death and apoptosis, cell growth and hormone regulation. The methylation profiles of the offspring from the 500 ppm and control groups were different from those of the 2500 and 12 500 ppm groups. Furthermore, the methylation status of genes in the PI3K-Akt and NF-kappa B signaling pathways was changed after n-hexane exposure. The Cyp11a1, Cyp17a1, Hsd3b1, Cyp1a1 and Srd5a1 promoters were hypermethylated in the n-hexane-exposed groups. These results indicate that the developmental toxicity of n-hexane in F1 ovaries is accompanied by the altered methylation of promoters of genes associated with apoptotic processes and steroid hormone biosynthesis. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Desired future condition: Fish habitat in southwestern riparian-stream habitats

    Treesearch

    John N. Rinne

    1996-01-01

    Riparian ecosystems in the southwestern United States provide valuable habitats for many living organisms including native fishes. An analysis of habitat components important to native fishes was made based on the literature, case histories, and unpublished and observational data. Results suggest a natural, surface water hydrograph and lack of introduced species of...

  20. Assessing critical habitat: Evaluating the relative contribution of habitats to population

    EPA Science Inventory

    A principal challenge of species conservation is to identify the specific habitats that are essential for long-term persistence or recovery of imperiled species. However, many approaches to identifying important habitats do not provide direct insight into the contribution of hab...

  1. Pollinator diversity and reproductive success of Epipactis helleborine (L.) Crantz (Orchidaceae) in anthropogenic and natural habitats.

    PubMed

    Rewicz, Agnieszka; Jaskuła, Radomir; Rewicz, Tomasz; Tończyk, Grzegorz

    2017-01-01

    success of E. helleborine in the populations from anthropogenic habitats than in the populations from natural habitats may result from a higher number of visits by pollinators and their greater species diversity, but also from the larger size of plants growing in such habitats. Moreover, our data clearly show that E. helleborine is an opportunistic species with respect to pollinators, with a wide spectrum of pollinating insects. Summarising, E. helleborine is a rare example of orchid species whose current range is not declining. Its ability to make use of anthropogenically altered habitats has allowed its significant spatial range expansion, and even successful colonisation of North America.

  2. Pollinator diversity and reproductive success of Epipactis helleborine (L.) Crantz (Orchidaceae) in anthropogenic and natural habitats

    PubMed Central

    Jaskuła, Radomir; Rewicz, Tomasz; Tończyk, Grzegorz

    2017-01-01

    . Discussion We suggest that higher reproductive success of E. helleborine in the populations from anthropogenic habitats than in the populations from natural habitats may result from a higher number of visits by pollinators and their greater species diversity, but also from the larger size of plants growing in such habitats. Moreover, our data clearly show that E. helleborine is an opportunistic species with respect to pollinators, with a wide spectrum of pollinating insects. Summarising, E. helleborine is a rare example of orchid species whose current range is not declining. Its ability to make use of anthropogenically altered habitats has allowed its significant spatial range expansion, and even successful colonisation of North America. PMID:28439457

  3. Long-term historical analysis of benthic communities and physical habitat in an agricultural stream in California's San Joaquin River watershed.

    PubMed

    Hall, Lenwood W; Killen, William D; Alden, Raymond

    2009-05-01

    This study was designed to characterize long-term annual temporal and spatial trends (2001 to 2007) in physical habitat and benthic communities and to determine relationships of habitat and benthic communities during this 7-year period in an agricultural stream in the San Joaquin River watershed in California (Del Puerto Creek). The canonical discriminant analysis indicated that there were no overall significant temporal patterns for the habitat metrics although spatial patterns were prominent for nearly all the habitat metrics. Channel alteration, riparian vegetative zone, bank stability, vegetative protection and frequency of riffles/bends were the primary habitat metrics associated with these site effects. Approximately 3,700 to 4,500 individual macroinvertebrates were picked and identified from five Del Puerto Creek sites sampled annually from 2001 to 2007. The total number of taxa by year ranged from 81 in 2003 to 106 in 2007. These benthic assemblages were generally comprised of tolerant to moderately tolerant taxa such as blackflies, oligochaetes, snails and chironomids. The metrics % predators, % EPT index, % collectors/filterers and % shredders were the benthic metrics that were most associated with the temporal effects. Ephemeroptera taxa, trichoptera taxa, and % sensitive EPT index were the benthic metrics that were most associated with the site effects. The most upstream site in Del Puerto Creek had the most robust and healthy benthic communites. Strong statistical relationships were reported between certain benthic metrics and habitat metrics. Overall, samples taken from site-year combinations with sediments that were qualitatively less muddy (less fines) and that had higher habitat metric scores for embeddedness, riparian vegetative zone, and channel alteration tended to have benthic communities characterized by higher values of the benthic metrics such as EPT taxa, Ephemeroptera taxa, EPT index, abundance, and taxonomic richness, among others

  4. Hydrologic characteristics of freshwater mussel habitat: novel insights from modeled flows

    USGS Publications Warehouse

    Drew, C. Ashton; Eddy, Michele; Kwak, Thomas J.; Cope, W. Gregory; Augspurger, Tom

    2018-01-01

    The ability to model freshwater stream habitat and species distributions is limited by the spatially sparse flow data available from long-term gauging stations. Flow data beyond the immediate vicinity of gauging stations would enhance our ability to explore and characterize hydrologic habitat suitability. The southeastern USA supports high aquatic biodiversity, but threats, such as landuse alteration, climate change, conflicting water-resource demands, and pollution, have led to the imperilment and legal protection of many species. The ability to distinguish suitable from unsuitable habitat conditions, including hydrologic suitability, is a key criterion for successful conservation and restoration of aquatic species. We used the example of the critically endangered Tar River Spinymussel (Parvaspina steinstansana) and associated species to demonstrate the value of modeled flow data (WaterFALL™) to generate novel insights into population structure and testable hypotheses regarding hydrologic suitability. With ordination models, we: 1) identified all catchments with potentially suitable hydrology, 2) identified 2 distinct hydrologic environments occupied by the Tar River Spinymussel, and 3) estimated greater hydrological habitat niche breadth of assumed surrogate species associates at the catchment scale. Our findings provide the first demonstrated application of complete, continuous, regional modeled hydrologic data to freshwater mussel distribution and management. This research highlights the utility of modeling and data-mining methods to facilitate further exploration and application of such modeled environmental conditions to inform aquatic species management. We conclude that such an approach can support landscape-scale management decisions that require spatial information at fine resolution (e.g., enhanced National Hydrology Dataset catchments) and broad extent (e.g., multiple river basins).

  5. Predation cues rather than resource availability promote cryptic behaviour in a habitat-forming sea urchin.

    PubMed

    Spyksma, Arie J P; Taylor, Richard B; Shears, Nick T

    2017-03-01

    It is well known that predators often influence the foraging behaviour of prey through the so-called "fear effect". However, it is also possible that predators could change prey behaviour indirectly by altering the prey's food supply through a trophic cascade. The predator-sea urchin-kelp trophic cascade is widely assumed to be driven by the removal of sea urchins by predators, but changes in sea urchin behaviour in response to predators or increased food availability could also play an important role. We tested whether increased crevice occupancy by herbivorous sea urchins in the presence of abundant predatory fishes and lobsters is a response to the increased risk of predation, or an indirect response to higher kelp abundances. Inside two New Zealand marine reserves with abundant predators and kelp, individuals of the sea urchin Evechinus chloroticus were rarer and remained cryptic (i.e. found in crevices) to larger sizes than on adjacent fished coasts where predators and kelp are rare. In a mesocosm experiment, cryptic behaviour was induced by simulated predation (the addition of crushed conspecifics), but the addition of food in the form of drift kelp did not induce cryptic behaviour. These findings demonstrate that the 'fear' of predators is more important than food availability in promoting sea urchin cryptic behaviour and suggest that both density- and behaviourally mediated interactions are important in the predator-sea urchin-kelp trophic cascade.

  6. The Habitat Project

    ERIC Educational Resources Information Center

    Hein, Annamae J.

    2011-01-01

    The Habitat Project is a multiday, differentiated, interdisciplinary environmental science lesson that incorporates skill-building and motivational strategies to internalize ecosystem vocabulary. Middle school students research an animal, display its physical characteristics on a poster, build a three-dimensional habitat and present their work…

  7. When can stress facilitate divergence by altering time to flowering?

    PubMed

    Jordan, Crispin Y; Ally, Dilara; Hodgins, Kathryn A

    2015-12-01

    Stressors and heterogeneity are ubiquitous features of natural environments, and theory suggests that when environmental qualities alter flowering schedules through phenotypic plasticity, assortative mating can result that promotes evolutionary divergence. Therefore, it is important to determine whether common ecological stressors induce similar changes in flowering time. We review previous studies to determine whether two important stressors, water restriction and herbivory, induce consistent flowering time responses among species; for example, how often do water restriction and herbivory both delay flowering? We focus on the direction of change in flowering time, which affects the potential for divergence in heterogeneous environments. We also tested whether these stressors influenced time to flowering and nonphenology traits using Mimulus guttatus. The literature review suggests that water restriction has variable effects on flowering time, whereas herbivory delays flowering with exceptional consistency. In the Mimulus experiment, low water and herbivory advanced and delayed flowering, respectively. Overall, our results temper theoretical predictions for evolutionary divergence due to habitat-induced changes in flowering time; in particular, we discuss how accounting for variation in the direction of change in flowering time can either increase or decrease the potential for divergence. In addition, we caution against adaptive interpretations of stress-induced phenology shifts.

  8. Species' traits help predict small mammal responses to habitat homogenization by an invasive grass.

    PubMed

    Ceradini, Joseph P; Chalfoun, Anna D

    2017-07-01

    Invasive plants can negatively affect native species, however, the strength, direction, and shape of responses may vary depending on the type of habitat alteration and the natural history of native species. To prioritize conservation of vulnerable species, it is therefore critical to effectively predict species' responses to invasive plants, which may be facilitated by a framework based on species' traits. We studied the population and community responses of small mammals and changes in habitat heterogeneity across a gradient of cheatgrass (Bromus tectorum) cover, a widespread invasive plant in North America. We live-trapped small mammals over two summers and assessed the effect of cheatgrass on native small mammal abundance, richness, and species-specific and trait-based occupancy, while accounting for detection probability and other key habitat elements. Abundance was only estimated for the most common species, deer mice (Peromyscus maniculatus). All species were pooled for the trait-based occupancy analysis to quantify the ability of small mammal traits (habitat association, mode of locomotion, and diet) to predict responses to cheatgrass invasion. Habitat heterogeneity decreased with cheatgrass cover. Deer mouse abundance increased marginally with cheatgrass. Species richness did not vary with cheatgrass, however, pocket mouse (Perognathus spp.) and harvest mouse (Reithrodontomys spp.) occupancy tended to decrease and increase, respectively, with cheatgrass cover, suggesting a shift in community composition. Cheatgrass had little effect on occupancy for deer mice, 13-lined ground squirrels (Spermophilus tridecemlineatus), and Ord's kangaroo rat (Dipodomys ordii). Species' responses to cheatgrass primarily corresponded with our a priori predictions based on species' traits. The probability of occupancy varied significantly with a species' habitat association but not with diet or mode of locomotion. When considered within the context of a rapid habitat change

  9. Habitat Suitability Index Models: Laughing gull

    USGS Publications Warehouse

    Zale, Alexander V.; Mulholland, Rosemarie

    1985-01-01

    A review and synthesis of existing information were used to develop a habitat model for laughing gull (Larus atricilla). The model is scaled to produce an index of habitat suitability between 0 (unsuitable habitat) and 1.0 (optimally suitable habitat) for areas along the Gulf of Mexico coast. Habitat suitability indices are designed for use with the Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service. Guidelines for application of the model and techniques for measuring model variables are described.

  10. Determining habitat quality for species that demonstrate dynamic habitat selection

    USGS Publications Warehouse

    Beerens, James M.; Frederick, Peter C; Noonburg, Erik G; Gawlik, Dale E.

    2015-01-01

    Determining habitat quality for wildlife populations requires relating a species' habitat to its survival and reproduction. Within a season, species occurrence and density can be disconnected from measures of habitat quality when resources are highly seasonal, unpredictable over time, and patchy. Here we establish an explicit link among dynamic selection of changing resources, spatio-temporal species distributions, and fitness for predictive abundance and occurrence models that are used for short-term water management and long-term restoration planning. We used the wading bird distribution and evaluation models (WADEM) that estimate (1) daily changes in selection across resource gradients, (2) landscape abundance of flocks and individuals, (3) conspecific foraging aggregation, and (4) resource unit occurrence (at fixed 400 m cells) to quantify habitat quality and its consequences on reproduction for wetland indicator species. We linked maximum annual numbers of nests detected across the study area and nesting success of Great Egrets (Ardea alba), White Ibises (Eudocimus albus), and Wood Storks (Mycteria americana) over a 20-year period to estimated daily dynamics of food resources produced by WADEM over a 7490 km2 area. For all species, increases in predicted species abundance in March and high abundance in April were strongly linked to breeding responses. Great Egret nesting effort and success were higher when birds also showed greater conspecific foraging aggregation. Synthesis and applications: This study provides the first empirical evidence that dynamic habitat selection processes and distributions of wading birds over environmental gradients are linked with reproductive measures over periods of decades. Further, predictor variables at a variety of temporal (daily-multiannual) resolutions and spatial (400 m to regional) scales effectively explained variation in ecological processes that change habitat quality. The process used here allows managers to develop

  11. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation.

    PubMed

    Villéger, Sébastien; Ramos Miranda, Julia; Flores Hernández, Domingo; Mouillot, David

    2010-09-01

    Human activities have strong impacts on ecosystem functioning through their effect on abiotic factors and on biodiversity. There is also growing evidence that species functional traits link changes in species composition and shifts in ecosystem processes. Hence, it appears to be of utmost importance to quantify modifications in the functional structure of species communities after human disturbance in addition to changes in taxonomic structure. Despite this fact, there is still little consensus on the actual impacts of human-mediated habitat alteration on the components of biodiversity, which include species functional traits. Therefore, we studied changes in taxonomic diversity (richness and evenness), in functional diversity, and in functional specialization of estuarine fish communities facing drastic environmental and habitat alterations. The Terminos Lagoon (Gulf of Mexico) is a tropical estuary of primary concern for its biodiversity, its habitats, and its resource supply, which have been severely impacted by human activities. Fish communities were sampled in four zones of the Terminos Lagoon 18 years apart (1980 and 1998). Two functions performed by fish (food acquisition and locomotion) were studied through the measurement of 16 functional traits. Functional diversity of fish communities was quantified using three independent components: richness, evenness, and divergence. Additionally, we measured the degree of functional specialization in fish communities. We used a null model to compare the functional and the taxonomic structure of fish communities between 1980 and 1998. Among the four largest zones studied, three did not show strong functional changes. In the northern part of the lagoon, we found an increase in fish richness but a significant decrease of functional divergence and functional specialization. We explain this result by a decline of specialized species (i.e., those with particular combinations of traits), while newly occurring species are

  12. A study on the carrying capacity of the available habitat for the Rhinopithecus bieti population at Mt. Laojun in Yunnan, China.

    PubMed

    Li, Li; Yu, Shixiao; Ren, Baoping; Li, Ming; Wu, Ruidong; Long, Yongcheng

    2009-06-01

    strong tradition of hunting. Quite a few individual monkeys are still trapped accidentally due to the high density of traps. These problems are hard to mitigate because it is difficult to enforce laws due to the extremely rugged terrain. The results show that there is a great ecological capacity of the area for the monkey's survival and a great potential for an expansion of the monkey population at the site. Based on the current population and its geographical range, it can be estimated that the suitable habitat area defined by this study can support more monkeys, about many times the current population. Thus, at least in the Mt. Laojun Area, poaching pressure is the main factor to be responsible for the low density of Yunnan snub-nosed monkeys instead of habitat alteration. Based on these results, some suggestions relating to conservation can be made: Focus conservation efforts on the current distribution area of the monkeys and create a 20 km buffer zone; design a long-term plan for the suitable habitat outside the buffer zone to set up a wildlife corridor in the long run; establish an association for the local hunters exploiting, their knowledge on the animals to promote monkey conservation and stop poaching. Also, the map derived from the study helps managers to allocate conservation resources more efficiently and enhances the overall outcomes of conservation measures.

  13. How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats

    PubMed Central

    Damschen, Ellen I.; Baker, Dirk V.; Bohrer, Gil; Nathan, Ran; Orrock, John L.; Turner, Jay R.; Brudvig, Lars A.; Haddad, Nick M.; Levey, Douglas J.; Tewksbury, Joshua J.

    2014-01-01

    Determining how widespread human-induced changes such as habitat loss, landscape fragmentation, and climate instability affect populations, communities, and ecosystems is one of the most pressing environmental challenges. Critical to this challenge is understanding how these changes are affecting the movement abilities and dispersal trajectories of organisms and what role conservation planning can play in promoting movement among remaining fragments of suitable habitat. Whereas evidence is mounting for how conservation strategies such as corridors impact animal movement, virtually nothing is known for species dispersed by wind, which are often mistakenly assumed to not be limited by dispersal. Here, we combine mechanistic dispersal models, wind measurements, and seed releases in a large-scale experimental landscape to show that habitat corridors affect wind dynamics and seed dispersal by redirecting and bellowing airflow and by increasing the likelihood of seed uplift. Wind direction interacts with landscape orientation to determine when corridors provide connectivity. Our results predict positive impacts of connectivity and patch shape on species richness of wind-dispersed plants, which we empirically illustrate using 12 y of data from our experimental landscapes. We conclude that habitat fragmentation and corridors strongly impact the movement of wind-dispersed species, which has community-level consequences. PMID:24567398

  14. How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats.

    PubMed

    Damschen, Ellen I; Baker, Dirk V; Bohrer, Gil; Nathan, Ran; Orrock, John L; Turner, Jay R; Brudvig, Lars A; Haddad, Nick M; Levey, Douglas J; Tewksbury, Joshua J

    2014-03-04

    Determining how widespread human-induced changes such as habitat loss, landscape fragmentation, and climate instability affect populations, communities, and ecosystems is one of the most pressing environmental challenges. Critical to this challenge is understanding how these changes are affecting the movement abilities and dispersal trajectories of organisms and what role conservation planning can play in promoting movement among remaining fragments of suitable habitat. Whereas evidence is mounting for how conservation strategies such as corridors impact animal movement, virtually nothing is known for species dispersed by wind, which are often mistakenly assumed to not be limited by dispersal. Here, we combine mechanistic dispersal models, wind measurements, and seed releases in a large-scale experimental landscape to show that habitat corridors affect wind dynamics and seed dispersal by redirecting and bellowing airflow and by increasing the likelihood of seed uplift. Wind direction interacts with landscape orientation to determine when corridors provide connectivity. Our results predict positive impacts of connectivity and patch shape on species richness of wind-dispersed plants, which we empirically illustrate using 12 y of data from our experimental landscapes. We conclude that habitat fragmentation and corridors strongly impact the movement of wind-dispersed species, which has community-level consequences.

  15. Indirect effects of species interactions on habitat provisioning.

    PubMed

    Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J

    2011-07-01

    Species that shelter in a biogenic habitat can influence their refugia and, in turn, play an essential role in shaping local patterns of biodiversity. Here we explore a positive feedback loop between the provisioning rate of habitat-forming branching corals and their associated fishes and show how interactions between two groups of fish--the planktivorous damselfish and predatory hawkfish--altered the feedback. A field experiment confirmed that skeletal growth of branching coral (genus Pocillopora) increased substantially with increasing numbers (biomass) of resident fishes, likely because they greatly increased the interstitial concentrations of nutrients. Because there is a positive relationship between colony size and number (biomass) of associated fishes (primarily damselfishes in the Family Pomacentridae), a structure-function feedback loop exists in which increasing numbers of damselfish enhance coral growth and larger corals host greater abundances (and species richness) of fish. However, interactions between damselfishes and arc-eye hawkfish, Paracirrhites arcatus, a largely solitary resident, can disrupt this positive feedback loop. Field surveys revealed a marked pattern of fish occupancy related to coral size: Pocillopora colonies of sufficient size to host fish (>40 cm circumference) had either groups of damselfish or an arc-eye hawkfish; only larger colonies (>75 cm) were occupied by both the damselfish and hawkfish. Subsequent short- and long-term experiments revealed that on intermediate-sized Pocillopora colonies, arc-eye hawkfish prevented the establishment of damselfish by suppressing their recruitment. The demographic consequences to the host coral were substantial; in a 1-year-long experiment, intermediate-size Pocillopora occupied by hawkfish grew at half the rate of corals that hosted groups of damselfish. These findings indicate that: (1) species which occupy a biogenic habitat can enhance the provisioning rate of their habitat; (2) such

  16. Benthic foraminifera as indicators of habitat change in anthropogenically impacted coastal wetlands of the Ebro Delta (NE Iberian Peninsula).

    PubMed

    Benito, Xavier; Trobajo, Rosa; Ibáñez, Carles; Cearreta, Alejandro; Brunet, Manola

    2015-12-15

    Present-day habitats of the Ebro Delta, NE Iberian Peninsula, have been ecologically altered as a consequence of intensive human impacts in the last two centuries (especially rice farming). Benthic foraminiferal palaeoassemblages and sediment characteristics of five short cores were used to reconstruct past wetland habitats, through application of multivariate DCA and CONISS techniques, and dissimilarity coefficients (SCD). The timing of environmental changes was compared to known natural and anthropogenic events in order to identify their possible relationships. In deltaic wetlands under altered hydrological conditions, we found a decrease in species diversity and calcareous-dominated assemblages, and a significant positive correlation between microfaunal changes and organic matter content. Modern analogues supported palaeoenvironmental interpretation of the recent evolution of the Delta wetlands. This research provides the first recent reconstruction of change in the Ebro Delta wetlands, and also illustrates the importance of benthic foraminifera for biomonitoring present and future conditions in Mediterranean deltas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore.

    PubMed

    Bjørneraas, Kari; Herfindal, Ivar; Solberg, Erling Johan; Sæther, Bernt-Erik; van Moorter, Bram; Rolandsen, Christer Moe

    2012-01-01

    Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.

  18. A Resource-Based Modelling Framework to Assess Habitat Suitability for Steppe Birds in Semiarid Mediterranean Agricultural Systems

    PubMed Central

    Cardador, Laura; De Cáceres, Miquel; Bota, Gerard; Giralt, David; Casas, Fabián; Arroyo, Beatriz; Mougeot, François; Cantero-Martínez, Carlos; Moncunill, Judit; Butler, Simon J.; Brotons, Lluís

    2014-01-01

    European agriculture is undergoing widespread changes that are likely to have profound impacts on farmland biodiversity. The development of tools that allow an assessment of the potential biodiversity effects of different land-use alternatives before changes occur is fundamental to guiding management decisions. In this study, we develop a resource-based model framework to estimate habitat suitability for target species, according to simple information on species’ key resource requirements (diet, foraging habitat and nesting site), and examine whether it can be used to link land-use and local species’ distribution. We take as a study case four steppe bird species in a lowland area of the north-eastern Iberian Peninsula. We also compare the performance of our resource-based approach to that obtained through habitat-based models relating species’ occurrence and land-cover variables. Further, we use our resource-based approach to predict the effects that change in farming systems can have on farmland bird habitat suitability and compare these predictions with those obtained using the habitat-based models. Habitat suitability estimates generated by our resource-based models performed similarly (and better for one study species) than habitat based-models when predicting current species distribution. Moderate prediction success was achieved for three out of four species considered by resource-based models and for two of four by habitat-based models. Although, there is potential for improving the performance of resource-based models, they provide a structure for using available knowledge of the functional links between agricultural practices, provision of key resources and the response of organisms to predict potential effects of changing land-uses in a variety of context or the impacts of changes such as altered management practices that are not easily incorporated into habitat-based models. PMID:24667825

  19. Mars extant-life campaign using an approach based on Earth-analog habitats

    NASA Technical Reports Server (NTRS)

    Palkovic, Lawrence A.; Wilson, Thomas J.

    2005-01-01

    The Mars Robotic Outpost group at JPL has identified sixteen potential momentous discoveries that if found on Mars would alter planning for the future Mars exploration program. This paper details one possible approach to the discovery of and response to the 'momentous discovery'' of extant life on Mars. The approach detailed in this paper, the Mars Extant-Life (MEL) campaign, is a comprehensive and flexible program to find living organisms on Mars by studying Earth-analog habitats of extremophile communities.

  20. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    PubMed Central

    2012-01-01

    Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of

  1. Relationship among fish assemblages and main-channel-border physical habitats in the unimpounded Upper Mississippi River

    USGS Publications Warehouse

    Barko, V.A.; Herzog, D.P.; Hrabik, R.A.; Scheibe, J.S.

    2004-01-01

    Large rivers worldwide have been altered by the construction and maintenance of navigation channels, which include extensive bank revetments, wing dikes, and levees. Using 7 years of Long-Term Resource Monitoring Program (LTRMP) data collected from the unimpounded upper Mississippi River, we investigated assemblages in two main-channel-border physical habitats-those with wing dikes and those without wing dikes. Fishes were captured using daytime electrofishing, mini-fyke netting, large hoop netting, and small hoop netting. Our objectives were to (1) assess associations among fish species richness, physical measurements, and main-channel-border physical habitats using stepwise multiple regression and indicator variables; (2) identify abundant adult and young-of-year (age-0) families in both physical habitats to further investigate assemblage composition; and (3) calculate standardized species richness estimates within each physical habitat for adult and age-0 fishes to provide additional information on community structure. We found species richness was greater at wing dikes for both adult and age-0 fishes when compared with main channel borders. Stepwise multiple regression revealed significant relationships between adult species richness and passive gear deployment (e.g,, hoop nets and mini-fyke nets), physical habitat type, and river elevation, as well as interactions between physical habitat and passive gears, and physical habitat and transparency (i.e., Secchi depth). This model explained 56% of the variance in adult species richness. Approximately 15% of the variation in age-0 species richness was explained by the sample period, sample date, transparency, physical habitat, and depth of gear deployment. Long-term impacts of river modifications on fishes have not been well documented in many large river systems and warrant further study. The findings from this study provide baseline ecological information on fish assemblages using main channel borders in the

  2. Invasion of a mined landscape: what habitat characteristics are influencing the occurrence of invasive plants?

    Treesearch

    D. Lemke; I.A. Tazisong; Y. Wang; J.A. Brown

    2012-01-01

    Throughout the world, the invasion of alien plants is an increasing threat to native biodiversity. Invasion is especially prevalent in areas affected by land transformation and anthropogenic disturbance. Surface mines are a major disturbance, and thus may promote the establishment and expansion of invasive plant communities. Environmental and habitat factors that may...

  3. Defining environmental flows requirements at regional scale by using meso-scale habitat models and catchments classification

    NASA Astrophysics Data System (ADS)

    Vezza, Paolo; Comoglio, Claudio; Rosso, Maurizio

    2010-05-01

    The alterations of the natural flow regime and in-stream channel modification due to abstraction from watercourses act on biota through an hydraulic template, which is mediated by channel morphology. Modeling channel hydro-morphology is needed in order to evaluate how much habitat is available for selected fauna under specific environmental conditions, and consequently to assist decision makers in planning options for regulated river management. Meso-scale habitat modeling methods (e.g., MesoHABSIM) offer advantages over the traditional physical habitat evaluation, involving a larger range of habitat variables, allowing longer length of surveyed rivers and enabling understanding of fish behavior at larger spatial scale. In this study we defined a bottom-up method for the ecological discharge evaluation at regional scale, focusing on catchments smaller than 50 km2, most of them located within mountainous areas of Apennines and Alps mountain range in Piedmont (NW Italy). Within the regional study domain we identified 30 representative catchments not affected by water abstractions in order to build up the habitat-flow relationship, to be used as reference when evaluating regulated watercourses or new projects. For each stream we chose a representative reach and obtained fish data by sampling every single functional habitat (i.e. meso-habitat) within the site, keeping separated each area by using nets. The target species were brown trout (Salmo trutta), marble trout (Salmo trutta marmoratus), bullhead (Cottus gobius), chub (Leuciscus cephalus), barbel (Barbus barbus), vairone (Leuciscus souffia) and other rheophilic Cyprinids. The fish habitat suitability criteria was obtained from the observation of habitat use by a selected organism described with a multivariate relationship between habitat characteristics and fish presence. Habitat type, mean slope, cover, biotic choriotop and substrate, stream depth and velocity, water pH, temperature and percentage of dissolved

  4. Biodiversity in intertidal rock pools: informing engineering criteria for artificial habitat enhancement in the built environment.

    PubMed

    Firth, Louise B; Schofield, Meredith; White, Freya J; Skov, Martin W; Hawkins, Stephen J

    2014-12-01

    Coastal defence structures are proliferating to counter rising and stormier seas. With increasing concern about the ecological value of built environments, efforts are being made to create novel habitat to increase biodiversity. Rock pools are infrequent on artificial structures. We compared biodiversity patterns between rock pools and emergent rock and assessed the role of pool depth and substratum incline in determining patterns of biodiversity. Rock pools were more taxon rich than emergent substrata. Patterns varied with depth and incline with algal groups being more positively associated with shallow than deeper habitats. Substratum incline had little influence on colonising epibiota, with the exception of canopy algae in deeper habitats where vertical surfaces supported greater taxon richness than horizontal surfaces. The creation of artificial rock pools in built environments will have a positive effect on biodiversity. Building pools of varying depths and inclines and shore heights will provide a range of habitats, increase environmental heterogeneity, therefore creating more possible ecological niches, promoting local biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    PubMed

    Kweka, Eliningaya J; Zhou, Guofa; Munga, Stephen; Lee, Ming-Chieh; Atieli, Harrysone E; Nyindo, Mramba; Githeko, Andrew K; Yan, Guiyun

    2012-01-01

    Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya. A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60%) and An.arabiensis (18.34%), the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024) and An. arabiensis (P = 0.002) larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001), grass cover (P≤0.001), while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001). The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001) when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002). When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines. These findings suggest that implementation of effective larval control programme should be targeted with larval habitats

  6. Hepatitis C virus envelope components alter localization of hepatocyte tight junction-associated proteins and promote occludin retention in the endoplasmic reticulum.

    PubMed

    Benedicto, Ignacio; Molina-Jiménez, Francisca; Barreiro, Olga; Maldonado-Rodríguez, Alejandra; Prieto, Jesús; Moreno-Otero, Ricardo; Aldabe, Rafael; López-Cabrera, Manuel; Majano, Pedro L

    2008-10-01

    Hepatocyte tight junctions (TJ) play key roles in characteristic liver functions, including bile formation and secretion. Infection by hepatitis C virus (HCV) may cause alterations of the liver architecture and disruption of the bile duct, which ultimately can lead to cholestasis. Herein, we employed the HCV replicon system to analyze the effect of HCV on TJ organization. TJ-associated proteins occludin, claudin-1, and Zonula Occludens protein-1 (ZO-1) disappeared from their normal localization at the border of adjacent cells in Huh7 clones harboring genomic but not subgenomic replicons expressing only the nonstructural proteins. Furthermore, cells containing genomic replicons showed a cytoplasmic accumulation of occludin in the endoplasmic reticulum (ER). TJ-associated function, measured as FITC-dextran paracellular permeability, of genomic replicon-containing cells, was also altered. Interestingly, clearance of the HCV replicon by interferon-alpha (IFN-alpha) treatment and by short hairpin RNA (shRNA) significantly restored the localization of TJ-associated proteins. Transient expression of all HCV structural proteins, but not core protein alone, altered the localization of TJ-associated proteins in Huh7 cells and in clones with subgenomic replicons. Confocal analysis showed that accumulation of occludin in the ER partially co-localized with HCV envelope glycoprotein E2. E2/occludin association was further confirmed by co-immunoprecipitation and pull-down assays. Additionally, using a cell culture model of HCV infection, we observed the cytoplasmic dot-like accumulation of occludin in infected Huh7 cells. We propose that HCV structural proteins, most likely those of the viral envelope, promote alterations of TJ-associated proteins, which may provide new insights for HCV-related pathogenesis.

  7. A comparison of avian communities and habitat characteristics in floodplain forests associated with valley plugs and unchannelized streams

    USGS Publications Warehouse

    Pierce, Aaron R.; King, Sammy L.

    2011-01-01

    Channelization of streams associated with floodplain forested wetlands has occurred extensively throughout the world and specifically in the southeastern United States. Channelization of fluvial systems alters the hydrologic and sedimentation processes that sustain these systems. In western Tennessee, channelization and past land-use practices have caused drastic geomorphic and hydrologic changes, resulting in altered habitat conditions that may affect avian communities. The objective of this study was to determine if there were differences in avian communities utilizing floodplain forests along unchannelized streams compared to channelized streams with valley plugs, areas where sediment has completely filled the channel. During point count surveys, 58 bird species were observed at unchannelized sites and 60 species were observed at valley plug sites. Species associated with baldcypress-tupelo (Taxodium-Nyssa) swamps (e.g. Great Egret (Ardea albus) and Black-crowned Night Heron (Nycticorax nycticorax)) and mature hardwood forests with open midstories (e.g. Eastern Wood-Pewee (Contopus virens), Yellow-throated Vireo (Vireo flavifrons), Cerulean Warbler (Dendroica cerulea) and Scarlet Tanager (Piranga olivacea)) were either only found at unchannelized sites or were more abundant at unchannelized sites. Conversely, species associated with open and early successional habitats (e.g. Tree Swallow (Tachycineta bicolor), Northern Mockingbird (Mimus polyglottos) and Blue Grosbeak (Passerina caerulea)) were either only found at valley plug sites or were more abundant at valley plug sites. Results of habitat modelling suggest that the habitat characteristics of floodplain forests at unchannelized sites are more suitable for Neotropical migrant bird species of conservation concern in the region than at valley plug sites. This study, in combination with previous research, demonstrates the ecological impacts of valley plugs span across abiotic and biotic processes and tropic

  8. High resolution critical habitat mapping and classification of tidal freshwater wetlands in the ACE Basin

    NASA Astrophysics Data System (ADS)

    Strickland, Melissa Anne

    In collaboration with the South Carolina Department of Natural Resources ACE Basin National Estuarine Research Reserve (ACE Basin NERR), the tidal freshwater ecosystems along the South Edisto River in the ACE Basin are being accurately mapped and classified using a LIDAR-Remote Sensing Fusion technique that integrates LAS LIDAR data into texture images and then merges the elevation textures and multispectral imagery for very high resolution mapping. This project discusses the development and refinement of an ArcGIS Toolbox capable of automating protocols and procedures for marsh delineation and microhabitat identification. The result is a high resolution habitat and land use map used for the identification of threatened habitat. Tidal freshwater wetlands are also a critical habitat for colonial wading birds and an accurate assessment of community diversity and acreage of this habitat type in the ACE Basin will support SCDNR's conservation and protection efforts. The maps developed by this study will be used to better monitor the freshwater/saltwater interface and establish a baseline for an ACE NERR monitoring program to track the rates and extent of alterations due to projected environmental stressors. Preliminary ground-truthing in the field will provide information about the accuracy of the mapping tool.

  9. Influence of riparian and watershed alterations on sandbars in a Great Plains river

    USGS Publications Warehouse

    Fischer, Jeffrey M.; Paukert, Craig P.; Daniels, M.L.

    2014-01-01

    Anthropogenic alterations have caused sandbar habitats in rivers and the biota dependent on them to decline. Restoring large river sandbars may be needed as these habitats are important components of river ecosystems and provide essential habitat to terrestrial and aquatic organisms. We quantified factors within the riparian zone of the Kansas River, USA, and within its tributaries that influenced sandbar size and density using aerial photographs and land use/land cover (LULC) data. We developed, a priori, 16 linear regression models focused on LULC at the local, adjacent upstream river bend, and the segment (18–44 km upstream) scales and used an information theoretic approach to determine what alterations best predicted the size and density of sandbars. Variation in sandbar density was best explained by the LULC within contributing tributaries at the segment scale, which indicated reduced sandbar density with increased forest cover within tributary watersheds. Similarly, LULC within contributing tributary watersheds at the segment scale best explained variation in sandbar size. These models indicated that sandbar size increased with agriculture and forest and decreased with urban cover within tributary watersheds. Our findings suggest that sediment supply and delivery from upstream tributary watersheds may be influential on sandbars within the Kansas River and that preserving natural grassland and reducing woody encroachment within tributary watersheds in Great Plains rivers may help improve sediment delivery to help restore natural river function.

  10. Modeling Habitat of the Desert Tortoise (Gopherus agassizii) in the Mojave and Parts of the Sonoran Deserts of California, Nevada, Utah, and Arizona

    USGS Publications Warehouse

    Nussear, Kenneth E.; Esque, Todd C.; Inman, Richard D.; Gass, Leila; Thomas, Kathryn A.; Wallace, Cynthia S.A.; Blainey, Joan B.; Miller, David M.; Webb, Robert H.

    2009-01-01

    Habitat modeling is an important tool used to simulate the potential distribution of a species for a variety of basic and applied questions. The desert tortoise (Gopherus agassizii) is a federally listed threatened species in the Mojave Desert and parts of the Sonoran Desert of California, Nevada, Utah, and Arizona. Land managers in this region require reliable information about the potential distribution of desert tortoise habitat to plan conservation efforts, guide monitoring activities, monitor changes in the amount and quality of habitat available, minimize and mitigate disturbances, and ultimately to assess the status of the tortoise and its habitat toward recovery of the species. By applying information from the literature and our knowledge or assumptions of environmental variables that could potentially explain variability in the quality of desert tortoise habitat, we developed a quantitative habitat model for the desert tortoise using an extensive set of field-collected presence data. Sixteen environmental data layers were converted into a grid covering the study area and merged with the desert tortoise presence data that we gathered for input into the Maxent habitat-modeling algorithm. This model provides output of the statistical probability of habitat potential that can be used to map potential areas of desert tortoise habitat. This type of analysis, while robust in its predictions of habitat, does not account for anthropogenic changes that may have altered habitat with relatively high potential into areas with lower potential.

  11. Habitat Suitability Index Models: Hairy woodpecker

    USGS Publications Warehouse

    Sousa, Patrick J.

    1987-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the hairy woodpecker (Picoides villosus). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  12. Habitat Suitability Index Models: Snapping turtle

    USGS Publications Warehouse

    Graves, Brent M.; Anderson, Stanley H.

    1987-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the snapping turtle (Chelydra serpentina). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) and 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  13. Habitat Suitability Index Models: Spotted owl

    USGS Publications Warehouse

    Laymon, Stephen A.; Salwasser, Hal; Barrett, Reginald H.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the spotted owl (Strix occidentalis). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  14. Clear Creek Watershed Flood Risk Management Habitat Assessments Using Habitat Evaluation Procedures (HEP): Analyses, Results and Documentation

    DTIC Science & Technology

    2013-07-01

    endangered species and their associated habitats as an important goal of ecosystem restoration and management. There is no doubt the determination of...accounting process developed to appraise habitat suitability for fish and wildlife species in response to potential change (USFWS 1980a-c). HEP is an... habitat to a species is likely to exhibit strong thresholds below which the habitat is usually unsuitable and above which further changes in habitat

  15. Characterization of instream hydraulic and riparian habitat conditions and stream temperatures of the Upper White River Basin, Washington, using multispectral imaging systems

    USGS Publications Warehouse

    Black, Robert W.; Haggland, Alan; Crosby, Greg

    2003-01-01

    Instream hydraulic and riparian habitat conditions and stream temperatures were characterized for selected stream segments in the Upper White River Basin, Washington. An aerial multispectral imaging system used digital cameras to photograph the stream segments across multiple wavelengths to characterize fish habitat and temperature conditions. All imageries were georeferenced. Fish habitat features were photographed at a resolution of 0.5 meter and temperature imageries were photographed at a 1.0-meter resolution. The digital multispectral imageries were classified using commercially available software. Aerial photographs were taken on September 21, 1999. Field habitat data were collected from August 23 to October 12, 1999, to evaluate the measurement accuracy and effectiveness of the multispectral imaging in determining the extent of the instream habitat variables. Fish habitat types assessed by this method were the abundance of instream hydraulic features such as pool and riffle habitats, turbulent and non-turbulent habitats, riparian composition, the abundance of large woody debris in the stream and riparian zone, and stream temperatures. Factors such as the abundance of instream woody debris, the location and frequency of pools, and stream temperatures generally are known to have a significant impact on salmon. Instream woody debris creates the habitat complexity necessary to maintain a diverse and healthy salmon population. The abundance of pools is indicative of a stream's ability to support fish and other aquatic organisms. Changes in water temperature can affect aquatic organisms by altering metabolic rates and oxygen requirements, altering their sensitivity to toxic materials and affecting their ability to avoid predators. The specific objectives of this project were to evaluate the use of an aerial multispectral imaging system to accurately identify instream hydraulic features and surface-water temperatures in the Upper White River Basin, to use the

  16. Routine Habitat Change: A Source of Unrecognized Transient Alteration of Intestinal Microbiota in Laboratory Mice

    PubMed Central

    Ma, Betty W.; Bokulich, Nicholas A.; Castillo, Patricia A.; Kananurak, Anchasa; Underwood, Mark A.; Mills, David A.; Bevins, Charles L.

    2012-01-01

    The mammalian intestine harbors a vast, complex and dynamic microbial population, which has profound effects on host nutrition, intestinal function and immune response, as well as influence on physiology outside of the alimentary tract. Imbalance in the composition of the dense colonizing bacterial population can increase susceptibility to various acute and chronic diseases. Valuable insights on the association of the microbiota with disease critically depend on investigation of mouse models. Like in humans, the microbial community in the mouse intestine is relatively stable and resilient, yet can be influenced by environmental factors. An often-overlooked variable in research is basic animal husbandry, which can potentially alter mouse physiology and experimental outcomes. This study examined the effects of common husbandry practices, including food and bedding alterations, as well as facility and cage changes, on the gut microbiota over a short time course of five days using three culture-independent techniques, quantitative PCR, terminal restriction fragment length polymorphism (TRFLP) and next generation sequencing (NGS). This study detected a substantial transient alteration in microbiota after the common practice of a short cross-campus facility transfer, but found no comparable alterations in microbiota within 5 days of switches in common laboratory food or bedding, or following an isolated cage change in mice acclimated to their housing facility. Our results highlight the importance of an acclimation period following even simple transfer of mice between campus facilities, and highlights that occult changes in microbiota should be considered when imposing husbandry variables on laboratory animals. PMID:23082164

  17. Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice.

    PubMed

    Ma, Betty W; Bokulich, Nicholas A; Castillo, Patricia A; Kananurak, Anchasa; Underwood, Mark A; Mills, David A; Bevins, Charles L

    2012-01-01

    The mammalian intestine harbors a vast, complex and dynamic microbial population, which has profound effects on host nutrition, intestinal function and immune response, as well as influence on physiology outside of the alimentary tract. Imbalance in the composition of the dense colonizing bacterial population can increase susceptibility to various acute and chronic diseases. Valuable insights on the association of the microbiota with disease critically depend on investigation of mouse models. Like in humans, the microbial community in the mouse intestine is relatively stable and resilient, yet can be influenced by environmental factors. An often-overlooked variable in research is basic animal husbandry, which can potentially alter mouse physiology and experimental outcomes. This study examined the effects of common husbandry practices, including food and bedding alterations, as well as facility and cage changes, on the gut microbiota over a short time course of five days using three culture-independent techniques, quantitative PCR, terminal restriction fragment length polymorphism (TRFLP) and next generation sequencing (NGS). This study detected a substantial transient alteration in microbiota after the common practice of a short cross-campus facility transfer, but found no comparable alterations in microbiota within 5 days of switches in common laboratory food or bedding, or following an isolated cage change in mice acclimated to their housing facility. Our results highlight the importance of an acclimation period following even simple transfer of mice between campus facilities, and highlights that occult changes in microbiota should be considered when imposing husbandry variables on laboratory animals.

  18. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review ofmore » the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood

  19. Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat

    NASA Technical Reports Server (NTRS)

    Howe, Alan; Kennedy, Kriss J.; Gill, Tracy R.; Tri, Terry O.; Toups, Larry; Howard, Robert I.; Spexarth, Gary R.; Cavanaugh, Stephen; Langford, William M.; Dorsey, John T.

    2014-01-01

    NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mobility that uses small, highly mobile pressurized rovers supported by portable habitat modules that can be carried between locations of interest on the lunar surface. A compact vertical cylinder characterizes the habitat concept, where the large diameter maximizes usable flat floor area optimized for a gravity environment and allows for efficient internal layout. The module was sized to fit into payload fairings for the Constellation Ares V launch vehicle, and optimized for surface transport carried by the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) mobility system. Launch and other loads are carried through the barrel to a top and bottom truss that interfaces with a structural support unit (SSU). The SSU contains self-leveling feet and docking interfaces for Tri-ATHLETE grasping and heavy lift. A pressurized module needed to be created that was appropriate for the lunar environment, could be easily relocated to new locations, and could be docked together in multiples for expanding pressurized volume in a lunar outpost. It was determined that horizontally oriented pressure vessels did not optimize floor area, which takes advantage of the gravity vector for full use. Hybrid hard-inflatable habitats added an unproven degree of complexity that may eventually be worked out. Other versions of vertically oriented pressure vessels were either too big, bulky, or did not optimize floor area. The purpose of the HDU vertical habitat module is to provide pressurized units that can be docked together in a modular way for lunar outpost pressurized volume expansion, and allow for other vehicles, rovers, and modules to be attached to the outpost to allow for IVA (intra-vehicular activity) transfer between them. The module is a vertically oriented cylinder with a large radius to allow for maximal floor area and use of volume. The modular, 5- m-diameter HDU vertical habitat

  20. Functional morphology of the bovid astragalus in relation to habitat: controlling phylogenetic signal in ecomorphology.

    PubMed

    Barr, W Andrew

    2014-11-01

    Bovid astragali are one of the most commonly preserved bones in the fossil record. Accordingly, astragali are an important target for studies seeking to predict the habitat preferences of fossil bovids based on bony anatomy. However, previous work has not tested functional hypotheses linking astragalar morphology with habitat while controlling for body size and phylogenetic signal. This article presents a functional framework relating the morphology of the bovid astragalus to habitat-specific locomotor ecology and tests four hypotheses emanating from this framework. Highly cursorial bovids living in structurally open habitats are hypothesized to differ from their less cursorial closed-habitat dwelling relatives in having (1) relatively short astragali to maintain rotational speed throughout the camming motion of the rotating astragalus, (2) a greater range of angular excursion at the hock, (3) relatively larger joint surface areas, and (4) a more pronounced "spline-and-groove" morphology promoting lateral joint stability. A diverse sample of 181 astragali from 50 extant species was scanned using a Next Engine laser scanner. Species were assigned to one of four habitat categories based on the published ecological literature. A series of 11 linear measurements and three joint surface areas were measured on each astragalus. A geometric mean body size proxy was used to size-correct the measurement data. Phylogenetic generalized least squares (PGLS) was used to test for differences between habitat categories while controlling for body size differences and phylogenetic signal. Statistically significant PGLS results support Hypotheses 1 and 2 (which are not mutually exclusive) as well as Hypothesis 3. No support was found for Hypothesis 4. These findings confirm that the morphology of the bovid astragalus is related to habitat-specific locomotor ecology, and that this relationship is statistically significant after controlling for body size and phylogeny. Thus, this study

  1. Habitat specialization through germination cueing: a comparative study of herbs from forests and open habitats.

    PubMed

    Ten Brink, Dirk-Jan; Hendriksma, Harmen Pieter; Bruun, Hans Henrik

    2013-02-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently accompanied by specialization in their regeneration niche; and (2) species are thereby adapted to utilize different windows of opportunity in time (season) and space (habitat). Seed germination response to temperature, light and stratification was tested for 17 congeneric pairs, each consisting of one forest species and one open-habitat species. A factorial design was used with temperature levels and diurnal temperature variation (10 °C constant, 15-5 °C fluctuating, 20 °C constant, 25-15 °C fluctuating), and two light levels (light and darkness) and a cold stratification treatment. The congeneric species pair design took phylogenetic dependence into account. Species from open habitats germinated better at high temperatures, whereas forest species performed equally well at low and high temperatures. Forest species tended to germinate only after a period of cold stratification that could break dormancy, while species from open habitats generally germinated without cold stratification. The empirically derived germination strategies correspond quite well with establishment opportunities for forest and open-habitat plant species in nature. Annual changes in temperature and light regime in temperate forest delimit windows of opportunity for germination and establishment. Germination strategies of forest plants are adaptations to utilize such narrow windows in time. Conversely, lack of fit between germination ecology and environment may explain why species of open habitats generally fail to establish in forests. Germination strategy should be considered an important mechanism for habitat specialization in temperate herbs to forest habitats. The findings strongly suggest that

  2. Links between plant and fungal diversity in habitat fragments of coastal shrubland

    DOE PAGES

    Maltz, Mia R.; Treseder, Kathleen K.; McGuire, Krista L.

    2017-09-19

    Habitat fragmentation is widespread across ecosystems, detrimentally affecting biodiversity. Although most habitat fragmentation studies have been conducted on macroscopic organisms, microbial communities and fungal processes may also be threatened by fragmentation. This study investigated whether fragmentation, and the effects of fragmentation on plants, altered fungal diversity and function within a fragmented shrubland in southern California. Using fluorimetric techniques, we assayed enzymes from plant litter collected from fragments of varying sizes to investigate enzymatic responses to fragmentation. To isolate the effects of plant richness from those of fragment size on fungi, we deployed litter bags containing different levels of plant littermore » diversity into the largest fragment and incubated in the field for one year. Following field incubation, we determined litter mass loss and conducted molecular analyses of fungal communities. We found that leaf-litter enzyme activity declined in smaller habitat fragments with less diverse vegetation. Moreover, we detected greater litter mass loss in litter bags containing more diverse plant litter. Additionally, bags with greater plant litter diversity harbored greater numbers of fungal taxa. These findings suggest that both plant litter resources and fungal function may be affected by habitat fragmentation's constraints on plants, possibly because plant species differ chemically, and may thus decompose at different rates. Diverse plant assemblages may produce a greater variety of litter resources and provide more ecological niche space, which may support greater numbers of fungal taxa. Thus, reduced plant diversity may constrain both fungal taxa richness and decomposition in fragmented coastal shrublands. Altogether, our findings provide evidence that even fungi may be affected by human-driven habitat fragmentation via direct effects of fragmentation on plants. Our findings underscore the importance of

  3. Links between plant and fungal diversity in habitat fragments of coastal shrubland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Mia R.; Treseder, Kathleen K.; McGuire, Krista L.

    Habitat fragmentation is widespread across ecosystems, detrimentally affecting biodiversity. Although most habitat fragmentation studies have been conducted on macroscopic organisms, microbial communities and fungal processes may also be threatened by fragmentation. This study investigated whether fragmentation, and the effects of fragmentation on plants, altered fungal diversity and function within a fragmented shrubland in southern California. Using fluorimetric techniques, we assayed enzymes from plant litter collected from fragments of varying sizes to investigate enzymatic responses to fragmentation. To isolate the effects of plant richness from those of fragment size on fungi, we deployed litter bags containing different levels of plant littermore » diversity into the largest fragment and incubated in the field for one year. Following field incubation, we determined litter mass loss and conducted molecular analyses of fungal communities. We found that leaf-litter enzyme activity declined in smaller habitat fragments with less diverse vegetation. Moreover, we detected greater litter mass loss in litter bags containing more diverse plant litter. Additionally, bags with greater plant litter diversity harbored greater numbers of fungal taxa. These findings suggest that both plant litter resources and fungal function may be affected by habitat fragmentation's constraints on plants, possibly because plant species differ chemically, and may thus decompose at different rates. Diverse plant assemblages may produce a greater variety of litter resources and provide more ecological niche space, which may support greater numbers of fungal taxa. Thus, reduced plant diversity may constrain both fungal taxa richness and decomposition in fragmented coastal shrublands. Altogether, our findings provide evidence that even fungi may be affected by human-driven habitat fragmentation via direct effects of fragmentation on plants. Our findings underscore the importance of

  4. MEGAEPIFAUNA-HABITAT RELATIONSHIPS IN YAQUINA BAY, OR

    EPA Science Inventory

    Habitat-based ecological risk assessments rely, in part, on estimates of the ecological value of the habitats at risk. As part of a larger programmatic effort to estimate estuarine habitat values, we determined megaepifauna-habitat relationships for four major intertidal habitat...

  5. Fish habitat regression under water scarcity scenarios in the Douro River basin

    NASA Astrophysics Data System (ADS)

    Segurado, Pedro; Jauch, Eduardo; Neves, Ramiro; Ferreira, Teresa

    2015-04-01

    Climate change will predictably alter hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goals of this study are to identify the stream reaches that will undergo more pronounced flow reduction under different climate change scenarios and to assess which fish species will be more affected by the consequent regression of suitable habitats. The interplay between changes in flow and temperature and the presence of transversal artificial obstacles (dams and weirs) is analysed. The results will contribute to river management and impact mitigation actions under climate change. This study was carried out in the Tâmega catchment of the Douro basin. A set of 29 Hydrological, climatic, and hydrogeomorphological variables were modelled using a water modelling system (MOHID), based on meteorological data recorded monthly between 2008 and 2014. The same variables were modelled considering future climate change scenarios. The resulting variables were used in empirical habitat models of a set of key species (brown trout Salmo trutta fario, barbell Barbus bocagei, and nase Pseudochondrostoma duriense) using boosted regression trees. The stream segments between tributaries were used as spatial sampling units. Models were developed for the whole Douro basin using 401 fish sampling sites, although the modelled probabilities of species occurrence for each stream segment were predicted only for the Tâmega catchment. These probabilities of occurrence were used to classify stream segments into suitable and unsuitable habitat for each fish species, considering the future climate change scenario. The stream reaches that were predicted to undergo longer flow interruptions were identified and crossed with the resulting predictive maps of habitat suitability to compute the total area of habitat loss per species. Among the target species, the brown trout was predicted to be the most sensitive to habitat regression due to the

  6. Wetlands in Changed Landscapes: The Influence of Habitat Transformation on the Physico-Chemistry of Temporary Depression Wetlands

    PubMed Central

    Bird, Matthew S.; Day, Jenny A.

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%), relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%). The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality. PMID:24533161

  7. Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat

    NASA Astrophysics Data System (ADS)

    Jackson, C. R.

    2002-12-01

    Small headwater streams in mountainous areas of the Pacific Northwest often do not harbor fish populations because of low water depth and high gradients. Rather, these streams provide habitat for dense assemblages of stream-dwelling amphibians. A variety of management goals have been suggested for such streams such as encouraging large woody debris recruitment to assist in sediment trapping and valley floor formation, encouraging large woody debris recruitment to provide downstream wood when debris flows occur, providing continuous linear stream buffers within forest harvest areas to provide shade and bank stability, etc. A basic problem with analying the geomorphic or biotic benefits of any of these strategies is the lack of explicit management goals for such streams. Should managers strive to optimize downstream fish habitat, local amphibian habitat, or both? Through observational data and theoretical considerations, it will be shown that these biotic goals will lead to very different geomorphic management recommendations. For instance, woody debris greater than 60 cm diameter may assist in valley floor development, but it is likely to create subsurface channel flow of unknown value to amphibians. Trapping and retention of fine sediments within headwater streams may improve downstream spawning gravels, but degrades stream-dwelling amphibian habitat. In response to the need for descriptive information on habitat and channel morphology specific to small, non-fish-bearing streams in the Pacific Northwest, morphologies and wood frequencies in forty-two first- and second-order forested streams less than four meters wide were surveyed. Frequencies and size distributions of woody debris were compared between small streams and larger fish-bearing streams as well as between second-growth and virgin timber streams. Statistical models were developed to explore dominant factors affecting channel morphology and habitat. Findings suggest geomorphological relationships

  8. Habitat Suitability Index Models: Eastern meadowlark

    USGS Publications Warehouse

    Schroeder, Richard L.; Sousa, Patrick J.

    1982-01-01

    Habitat preferences of the eastern meadowlark (Sturnella magna) are described in this publication, which is one of a series of Habitat Suitability Index (HSI) models. Habitat use information is presented in a synthesis of the literature on the species-habitat requirements of the eastern meadowlark, followed by the development of the HSI model. The model is presented in three formats: graphic, word, and mathematical, and is designed to provide information for use in impact assessment and habitat management activities.

  9. Habitat Suitability Index Models: Pine warbler

    USGS Publications Warehouse

    Schroeder, Richard L.

    1982-01-01

    Habitat preferences of the pine warbler (Dendroica pinus) are described in this publication, which is one of a series of Habitat Suitability Index (HSI) models. Habitat use information is presented in a synthesis of the literature on the species-habitat requirements of the pine warbler, followed by the development of the HSI model. The model is presented in three formats: graphic, word, and mathematical, and is designed to provide information for use in impact assessment and habitat management activities.

  10. Managing fish habitat for flow and temperature extremes ...

    EPA Pesticide Factsheets

    Summer low flows and stream temperature maxima are key drivers affecting the sustainability of fish populations. Thus, it is critical to understand both the natural templates of spatiotemporal variability, how these are shifting due to anthropogenic influences of development and climate change, and how these impacts can be moderated by natural and constructed green infrastructure. Low flow statistics of New England streams have been characterized using a combination of regression equations to describe long-term averages as a function of indicators of hydrologic regime (rain- versus snow-dominated), precipitation, evapotranspiration or temperature, surface water storage, baseflow recession rates, and impervious cover. Difference equations have been constructed to describe interannual variation in low flow as a function of changing air temperature, precipitation, and ocean-atmospheric teleconnection indices. Spatial statistical network models have been applied to explore fine-scale variability of thermal regimes along stream networks in New England as a function of variables describing natural and altered energy inputs, groundwater contributions, and retention time. Low flows exacerbate temperature impacts by reducing thermal inertia of streams to energy inputs. Based on these models, we can construct scenarios of fish habitat suitability using current and projected future climate and the potential for preservation and restoration of historic habitat regimes th

  11. Building a Habitat Conversion Model for San Francisco Bay Wetlands: A Multi-species Approach for Integrating GIS and Field Data

    Treesearch

    Diana Stralberg; Nils Warnock; Nadav Nur; Hildie Spautz; Gary W. Page

    2005-01-01

    More than 80 percent of San Francisco Bay's original tidal wetlands have been altered or displaced, reducing available habitat for a range of tidal marsh-dependent species, including the Federally listed California Clapper Rail (Rallus longirostris obsoletus) and three endemic Song Sparrow (Melospiza melodia) subspecies. In...

  12. Assessing the Effects of Water Rights Purchases on Dissolved Oxygen, Stream Temperatures, and Fish Habitat

    NASA Astrophysics Data System (ADS)

    Mouzon, N. R.; Null, S. E.

    2014-12-01

    Human impacts from land and water development have degraded water quality and altered the physical, chemical, and biological integrity of Nevada's Walker River. Reduced instream flows and increased nutrient concentrations affect native fish populations through warm daily stream temperatures and low nightly dissolved oxygen concentrations. Water rights purchases are being considered to maintain instream flows, improve water quality, and enhance habitat for native fish species, such as Lahontan cutthroat trout. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate streamflows, temperatures, and dissolved oxygen concentrations in the Walker River. We simulate thermal and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that water purchases most enhance native trout habitat. Stream temperatures and dissolved oxygen concentrations are proxies for trout habitat. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach currently acts as a water quality barrier for fish passage.

  13. Behavioural and physiological response of trout to winter habitat in tailwaters in Wyoming, USA

    USGS Publications Warehouse

    Annear, T.C.; Hubert, W.; Simpkins, D.; Hebdon, L.

    2002-01-01

    Fisheries managers have often suggested that survival of trout during the winter is a major factor affecting population densities in many stream ecosystems in the Rocky Mountains. In Wyoming, trout population reductions from fall to spring in excess of 90% have been documented in some reservoir tailwaters. Though biologists have surmised that these reductions were the result of either mortality or emigration from some river sections, the specific mechanisms have not been defined and the factors leading to the trout loss are unknown. This is a review of four studies that were conducted or funded between 1991 and 1998 by the Wyoming Game and Fish Department to understand the extent of overwinter losses, identify some of the mechanisms leading to those conditions and develop management strategies to help avoid those impacts. Winter studies were conducted on tailwater fisheries in the Green, North Platte, Bighorn and Shoshone rivers to document trout population dynamics, assess physical habitat availability, evaluate trout movement and habitat selection, and understand the relationships between food availability and bioenergetic relationships. Results indicate that winter trout losses are extreme in some years, that trout movement and habitat selection are affected by supercooled flows, and that mortality is probably not directly due to starvation. The combination of physiological impairment with frequently altered habitat availability probably leads to indirect mortality from predators and other factors. Copyright ?? 2002 John Wiley & Sons, Ltd.

  14. Refuge habitats for fishes during seasonal drying in an intermittent stream: movement, survival and abundance of three minnow species

    USGS Publications Warehouse

    Hodges, S.W.; Magoulick, Daniel D.

    2011-01-01

    Drought and summer drying can be important disturbance events in many small streams leading to intermittent or isolated habitats. We examined what habitats act as refuges for fishes during summer drying, hypothesizing that pools would act as refuge habitats. We predicted that during drying fish would show directional movement into pools from riffle habitats, survival rates would be greater in pools than in riffles, and fish abundance would increase in pool habitats. We examined movement, survival and abundance of three minnow species, bigeye shiner (Notropis boops), highland stoneroller (Campostoma spadiceum) and creek chub (Semotilus atromaculatus), during seasonal stream drying in an Ozark stream using a closed robust multi-strata mark-recapture sampling. Population parameters were estimated using plausible models within program MARK, where a priori models are ranked using Akaike's Information Criterion. Creek chub showed directional movement into pools and increased survival and abundance in pools during drying. Highland stonerollers showed strong directional movement into pools and abundance increased in pools during drying, but survival rates were not significantly greater in pools than riffles. Bigeye shiners showed high movement rates during drying, but the movement was non-directional, and survival rates were greater in riffles than pools. Therefore, creek chub supported our hypothesis and pools appear to act as refuge habitats for this species, whereas highland stonerollers partly supported the hypothesis and bigeye shiners did not support the pool refuge hypothesis. Refuge habitats during drying are species dependent. An urgent need exists to further understand refuge habitats in streams given projected changes in climate and continued alteration of hydrological regimes.

  15. New England wildlife: management forested habitats

    Treesearch

    Richard M. DeGraaf; Mariko Yamasaki; William B. Leak; John W. Lanier

    1992-01-01

    Presents silvicultural treatments for six major cover-type groups in New England to produce stand conditions that provide habitat opportunities for a wide range of wildlife species. Includes matrices for species occurrence and utilization by forested and nonforested habitats, habitat breadth and size class, and structural habitat features for the 338 wildlife species...

  16. Changes in Salmon Spawning Habitat Distributions Following Rapid and Gradual Channel Adjustments in the Cedar River, Washington

    NASA Astrophysics Data System (ADS)

    Timm, R. K.; Wissmar, R. C.; Berge, H.; Foley, S.

    2005-05-01

    Anthropogenic controls on rivers such as dams, hardened banks, and land uses limit the interactions between main river channel and floodplain ecosystems and contribute to decreased habitat diversity. These system controls dampen the frequency and magnitude of natural disturbances that contibute to physical habitat structure and variability. Under natural and altered disturbance regimes river systems are expected to exhibit resiliency. However, in some cases, disturbances cause fluctuations in the trajectory of the mean system state that can have implications for river recovery in the short- and long-term by changing the spatial and temporal dimensions of available habitat relative to specific biological requirements. Historic and contemporary salmon spawning data are analyzed in the context of changing disturbance regimes in the Cedar River, Washington. Historic data are presented for active channel conditions and spawning fish distributions. Contemporary data are presented for an intensively studied reach that received a landslide that deposited approximately 50,000 m3 of sediment in the main channel, temporarily damming the river. Biologically, the spatio-temporal spawning distributions of Chinook (Oncorhynchus tshawytcha) and sockeye (O. nerka) salmon responded to modifications of physical habitat.

  17. A three-dimensional model for analyzing the effects of salmon redds on hyporheic exchange and egg pocket habitat

    Treesearch

    Daniele Tonina; John M. Buffington

    2009-01-01

    A three-dimensional fluid dynamics model is developed to capture the spatial complexity of the effects of salmon redds on channel hydraulics, hyporheic exchange, and egg pocket habitat. We use the model to partition the relative influences of redd topography versus altered hydraulic conductivity (winnowing of fines during spawning) on egg pocket conditions for a...

  18. Challenges in rendering Coral Triangle habitat richness in remotely sensed habitat maps: The case of Bunaken Island (Indonesia).

    PubMed

    Ampou, Eghbert Elvan; Ouillon, Sylvain; Andréfouët, Serge

    2018-06-01

    The Coral Triangle is the epicenter of marine biodiversity, yet the numbers of habitats that can be found on coral reefs remain poorly described. First surveys for habitat mapping in Indonesia revealed a high number of habitats (>150) even for structurally simple reefs. To be able to represent all these habitats, typical habitat mapping procedures and performances are poorly effective even using very high resolution satellite images. Using Bunaken Island (North Sulawesi, Indonesia) as a case study, we devised a way to maintain all the in situ habitat information in remote sensing habitat map products without loss and with mapping procedures based on photo-interpretation. The result is a product which is consistent with a per-polygon fuzzy classification. As such, it is a complex product that meets our habitat representation goal, but its complexity can also limit its immediate use by managers and conservation planners when analyses per habitat are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Microbial Monitoring of Crewed Habitats in Space—Current Status and Future Perspectives

    PubMed Central

    Yamaguchi, Nobuyasu; Roberts, Michael; Castro, Sarah; Oubre, Cherie; Makimura, Koichi; Leys, Natalie; Grohmann, Elisabeth; Sugita, Takashi; Ichijo, Tomoaki; Nasu, Masao

    2014-01-01

    Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed. PMID:25130885

  20. Streamflow alteration at selected sites in Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.; Eng, Ken

    2017-06-26

    An understanding of streamflow alteration in response to various disturbances is necessary for the effective management of stream habitat for a variety of species in Kansas. Streamflow alteration can have negative ecological effects. Using a modeling approach, streamflow alteration was assessed for 129 selected U.S. Geological Survey streamgages in the State for which requisite streamflow and basin-characteristic information was available. The assessment involved a comparison of the observed condition from 1980 to 2015 with the predicted expected (least-disturbed) condition for 29 streamflow metrics. The metrics represent various characteristics of streamflow including average flow (annual, monthly) and low and high flow (frequency, duration, magnitude).Streamflow alteration in Kansas was indicated locally, regionally, and statewide. Given the absence of a pronounced trend in annual precipitation in Kansas, a precipitation-related explanation for streamflow alteration was not supported. Thus, the likely explanation for streamflow alteration was human activity. Locally, a flashier flow regime (typified by shorter lag times and more frequent and higher peak discharges) was indicated for three streamgages with urbanized basins that had higher percentages of impervious surfaces than other basins in the State. The combination of localized reservoir effects and regional groundwater pumping from the High Plains aquifer likely was responsible, in part, for diminished conditions indicated for multiple streamflow metrics in western and central Kansas. Statewide, the implementation of agricultural land-management practices to reduce runoff may have been responsible, in part, for a diminished duration and magnitude of high flows. In central and eastern Kansas, implemented agricultural land-management practices may have been partly responsible for an inflated magnitude of low flows at several sites.

  1. Wildlife habitat considerations

    Treesearch

    Helen Y. Smith

    2000-01-01

    Fire, insects, disease, harvesting, and precommercial thinning all create mosaics on Northern Rocky Mountain landscapes. These mosaics are important for faunal habitat. Consequently, changes such as created openings or an increase in heavily stocked areas affect the water, cover, and food of forest habitats. The “no action” alternative in ecosystem management of low...

  2. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunitiesmore » for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream and 22

  3. Functional non-coding polymorphism in an EPHA2 promoter PAX2 binding site modifies expression and alters the MAPK and AKT pathways.

    PubMed

    Ma, Xiaoyin; Ma, Zhiwei; Jiao, Xiaodong; Hejtmancik, J Fielding

    2017-08-30

    To identify possible genetic variants influencing expression of EPHA2 (Ephrin-receptor Type-A2), a tyrosine kinase receptor that has been shown to be important for lens development and to contribute to both congenital and age related cataract when mutated, the extended promoter region of EPHA2 was screened for variants. SNP rs6603883 lies in a PAX2 binding site in the EPHA2 promoter region. The C (minor) allele decreased EPHA2 transcriptional activity relative to the T allele by reducing the binding affinity of PAX2. Knockdown of PAX2 in human lens epithelial (HLE) cells decreased endogenous expression of EPHA2. Whole RNA sequencing showed that extracellular matrix (ECM), MAPK-AKT signaling pathways and cytoskeleton related genes were dysregulated in EPHA2 knockdown HLE cells. Taken together, these results indicate a functional non-coding SNP in EPHA2 promoter affects PAX2 binding and reduces EPHA2 expression. They further suggest that decreasing EPHA2 levels alters MAPK, AKT signaling pathways and ECM and cytoskeletal genes in lens cells that could contribute to cataract. These results demonstrate a direct role for PAX2 in EPHA2 expression and help delineate the role of EPHA2 in development and homeostasis required for lens transparency.

  4. Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response

    PubMed Central

    Guidi, Riccardo; Guerra, Lina; Levi, Laura; Stenerlöw, Bo; Fox, James G.; Josenhans, Christine; Masucci, Maria G.; Frisan, Teresa

    2014-01-01

    Summary Epidemiological evidence links chronic bacterial infections to the increased incidence of certain types of cancer but the molecular mechanisms by which bacteria contribute to tumour initiation and progression are still poorly characterized. Here we show that chronic exposure to the genotoxin cytolethal distending toxin (CDT) of Gram-negative bacteria promotes genomic instability and acquisition of phenotypic properties of malignancy in fibroblasts and colon epithelial cells. Cells grown for more than 30 weeks in the presence of sublethal doses of CDT showed increased mutation frequency, and accumulation of chromatin and chromosomal aberrations in the absence of significant alterations of cell cycle distribution, decreased viability or senescence. Cell survival was dependent on sustained activity of the p38 MAP kinase. The ongoing genomic instability was associated with impaired activation of the DNA damage response and failure to efficiently activate cell cycle checkpoints upon exposure to genotoxic stress. Independently selected sublines showed enhanced anchorage-independent growth as assessed by the formation of colonies in semisolid agarose. These findings support the notion that chronic infection by CDT-producing bacteria may promote malignant transformation, and point to the impairment of cellular control mechanisms associated with the detection and repair of DNA damage as critical events in the process. PMID:22998585

  5. Assessing critical habitat: Evaluating the relative contribution of habitats to population persistence

    EPA Science Inventory

    1. A principal challenge of species conservation is to identify the specific habitats that are essential for long-term persistence or recovery of species at risk. However, many commonly used approaches to identifying important habitats do not provide direct insight into the contr...

  6. Sound solutions for habitat monitoring

    Treesearch

    Mary M. Rowland; Lowell H. Suring; Christina D. Vojta

    2015-01-01

    For agencies and organizations to effectively manage wildlife, knowledge about the status and trend of wildlife habitat is critical. Traditional wildlife monitoring, however, has focused on populations rather than habitat, because ultimately population status drives long-term species viability. Still, habitat loss has contributed to the decline of nearly all at-risk...

  7. Salmonella in Wild Birds Utilizing Protected and Human Impacted Habitats, Uganda.

    PubMed

    Afema, Josephine Azikuru; Sischo, William M

    2016-09-01

    As human populations in Africa expand, humans encroach and modify wildlife habitats for farming, fishing, tourism, or settlement. Anthropogenic activities in shared environments may promote transmission of zoonotic pathogens between humans, domestic animals, and wildlife. Between July 2012 and February 2014, we evaluated Salmonella prevalence, serovars, genotypes, and antibiotic resistant phenotypes in resident and migratory birds utilizing human-impacted habitats in northwestern Lake Victoria and protected habitats in Queen Elisabeth National Park. Salmonella occurrence in the urban environment was assessed by sampling storm-water and wastewater from a channel that drains Kampala City into Lake Victoria. Salmonella was detected in 4.3% pooled bird fecal samples, and 57.1% of environmental samples. While birds in impacted and protected areas shared serovars, the genotypes were distinct. We found distinct strains in birds and the environment suggesting some strains in birds are host adapted, and strains circulating in the environment may not necessarily disseminate to birds. Conversely, birds in both impacted and protected areas shared strains with the urban environment, suggesting Salmonella disseminates between impacted environments and birds across sites. Overall, more strains were observed in the urban environment compared to birds, and poses risk of Salmonella reemergence in birds and transmission across species and space.

  8. Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks

    NASA Astrophysics Data System (ADS)

    Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-02-01

    Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.

  9. Modulation of Habitat-Based Conservation Plans by Fishery Opportunity Costs: A New Caledonia Case Study Using Fine-Scale Catch Data

    PubMed Central

    Deas, Marilyn; Andréfouët, Serge; Léopold, Marc; Guillemot, Nicolas

    2014-01-01

    Numerous threats impact coral reefs and conservation actions are urgently needed. Fast production of marine habitat maps promotes the use of habitat-only conservation plans, where a given percentage of the area of each habitat is set as conservation objectives. However, marine reserves can impact access to fishing grounds and generate opportunity costs for fishers that need to be minimized. In New Caledonia (Southwest Pacific), we used fine-scale fishery catch maps to define nineteen opportunity costs layers (expressed as biomass catch loss) considering i) total catches, ii) target fish families, iii) local marine tenure, and iv) gear type. The expected lower impacts on fishery catch when using the different cost constraints were ranked according to effectiveness in decreasing the costs generated by the habitat-only scenarios. The exercise was done for two habitat maps with different thematic richness. In most cases, habitat conservation objectives remained achievable, but effectiveness varied widely between scenarios and between habitat maps. The results provide practical guidelines for coral reef conservation and management. Habitat-only scenarios can be used to initiate conservation projects with stakeholders but the costs induced by such scenarios can be lowered by up to 50–60% when detailed exhaustive fishery data are used. When using partial data, the gain would be only in the 15–25% range. The best compromises are achieved when using local data. PMID:24835216

  10. Modulation of habitat-based conservation plans by fishery opportunity costs: a New Caledonia case study using fine-scale catch data.

    PubMed

    Deas, Marilyn; Andréfouët, Serge; Léopold, Marc; Guillemot, Nicolas

    2014-01-01

    Numerous threats impact coral reefs and conservation actions are urgently needed. Fast production of marine habitat maps promotes the use of habitat-only conservation plans, where a given percentage of the area of each habitat is set as conservation objectives. However, marine reserves can impact access to fishing grounds and generate opportunity costs for fishers that need to be minimized. In New Caledonia (Southwest Pacific), we used fine-scale fishery catch maps to define nineteen opportunity costs layers (expressed as biomass catch loss) considering i) total catches, ii) target fish families, iii) local marine tenure, and iv) gear type. The expected lower impacts on fishery catch when using the different cost constraints were ranked according to effectiveness in decreasing the costs generated by the habitat-only scenarios. The exercise was done for two habitat maps with different thematic richness. In most cases, habitat conservation objectives remained achievable, but effectiveness varied widely between scenarios and between habitat maps. The results provide practical guidelines for coral reef conservation and management. Habitat-only scenarios can be used to initiate conservation projects with stakeholders but the costs induced by such scenarios can be lowered by up to 50-60% when detailed exhaustive fishery data are used. When using partial data, the gain would be only in the 15-25% range. The best compromises are achieved when using local data.

  11. Habitat use by fishes of Lake Superior. II. Consequences of diel habitat use for habitat linkages and habitat coupling in nearshore and offshore waters

    USGS Publications Warehouse

    Gorman, Owen T.; Yule, Daniel L.; Stockwell, Jason D.

    2012-01-01

    Diel migration patterns of fishes in nearshore (15–80 m depth) and offshore (>80 m) waters of Lake Superior were examined to assess the potential for diel migration to link benthic and pelagic, and nearshore and offshore habitats. In our companion article, we described three types of diel migration: diel vertical migration (DVM), diel bank migration (DBM), and no diel migration. DVM was expressed by fishes migrating from benthopelagic to pelagic positions and DBM was expressed by fishes migrating horizontally from deep to shallow waters at night. Fishes not exhibiting diel migration typically showed increased activity by moving from benthic to benthopelagic positions within demersal habitat. The distribution and biomass of fishes in Lake Superior was characterized by examining 704 bottom trawl samples collected between 2001 and 2008 from four depth zones: ≤40, 41–80, 81–160, and >160 m. Diel migration behaviors of fishes described in our companion article were applied to estimates of areal biomass (kg ha−1) for each species by depth zone. The relative strength of diel migrations were assessed by applying lake area to areal biomass estimates for each species by depth zone to yield estimates of lake-wide biomass (metric tonnes). Overall, species expressing DVM accounted for 83%, DBM 6%, and non-migration 11% of the total lake-wide community biomass. In nearshore waters, species expressing DVM represented 74% of the biomass, DBM 25%, and non-migration 1%. In offshore waters, species expressing DVM represented 85%, DBM 1%, and non-migration 14% of the biomass. Of species expressing DVM, 83% of total biomass occurred in offshore waters. Similarly, 97% of biomass of non-migrators occurred in offshore waters while 83% of biomass of species expressing DBM occurred in nearshore waters. A high correlation (R2 = 0.996) between lake area and community biomass by depth zone resulted in 81% of the lake-wide biomass occurring in offshore waters. Accentuating this

  12. Regeneration in bottomland forest canopy gaps 6 years after variable retention harvests to enhance wildlife habitat

    Treesearch

    Daniel J. Twedt; Scott G. Somershoe

    2013-01-01

    To promote desired forest conditions that enhance wildlife habitat in bottomland forests, managers prescribed and implemented variable-retention harvest, a.k.a. wildlife forestry, in four stands on Tensas River National Wildlife Refuge, LA. These treatments created canopy openings (gaps) within which managers sought to regenerate shade-intolerant trees. Six years after...

  13. Is the microplastic selective according to the habitat? Records in amphioxus sands, Mäerl bed habitats and Cymodocea nodosa habitats.

    PubMed

    Renzi, Monia; Blašković, Andrea; Fastelli, Paolo; Marcelli, Massimiliano; Guerranti, Cristiana; Cannas, Susanna; Barone, Lorenzo; Massara, Francesca

    2018-05-01

    This study estimated for the first time the total loads of plastic litter (macro- meso- and micro-plastics) in sediments of different habitat types from the Northern Adriatic Sea. Samples were collected in March 2016. The sampling sites were settled in shoreline, on the C. nodosa bottoms, Amphioxus sands, and Mäerl bed habitats. Microplastics items were present in all sampling site and ranging within 137-703 items/kg d.w. from Mäerl bed habitat to the shoreline. In C. nodosa bottoms 170 items/kg d.w. were found, while in Amphioxus sands were recorded on average 194 items/kg d.w. Due to the absence of statistical associations among litter levels and abundance of B. lanceolatum in the study area, this research present the needs to develop a new method and more research to for the evaluation of how much the interrelation between sensible habitats and microplastic exist. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The effects of habitat fragmentation on the social kin structure and mating system of the agile antechinus, Antechinus agilis.

    PubMed

    Banks, S C; Ward, S J; Lindenmayer, D B; Finlayson, G R; Lawson, S J; Taylor, A C

    2005-05-01

    Habitat fragmentation is one of the major contributors to the loss of biodiversity worldwide. However, relatively little is known about its more immediate impacts on within-patch population processes such as social structure and mating systems, whose alteration may play an important role in extinction risk. We investigated the impacts of habitat fragmentation due to the establishment of an exotic softwood plantation on the social kin structure and breeding system of the Australian marsupial carnivore, Antechinus agilis. Restricted dispersal by males in fragmented habitat resulted in elevated relatedness among potential mates in populations in fragments, potentially increasing the risk of inbreeding. Antechinus agilis nests communally in tree hollows; these nests are important points for social contact between males and females in the mating season. In response to elevated relatedness among potential mates in fragmented habitat, A. agilis significantly avoided sharing nests with opposite-sex relatives in large fragment sites (but not in small ones, possibly due to limited nest locations and small population sizes). Because opposite-sex individuals shared nests randomly with respect to relatedness in unfragmented habitat, we interpreted the phenomenon in fragmented habitat as a precursor to inbreeding avoidance via mate choice. Despite evidence that female A. agilis at high inbreeding risk selected relatively unrelated mates, there was no overall increased avoidance of related mates by females in fragmented habitats compared to unfragmented habitats. Simulations indicated that only dispersal, and not nonrandom mating, contributed to inbreeding avoidance in either habitat context. However, habitat fragmentation did influence the mating system in that the degree of multiple paternity was reduced due to the reduction in population sizes and population connectivity. This, in turn, reduced the number of males available to females in the breeding season. This suggests that

  15. EXAMINATION OF HABITAT USE AND DISPERSAL OF EXOTIC BULLFROGS AND THEIR POTENTIAL IMPACT ON NATIVE AMPHIBIAN COMMUNITIES IN THE WILLAMETTE VALLEY, OREGON

    EPA Science Inventory

    Bullfrogs (Rana catesbeiana) are exotic in the west and have been implicated in the decline of western pond turtles and native ranids. Habitat alterations that favor bullfrogs have enhanced populations, particularly in agricultural areas such as the Willamette Valley. I will pres...

  16. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  17. Patterns of houses and habitat loss from 1937 to 1999 in northern Wisconsin, USA.

    PubMed

    Gonzalez-Abraham, Charlotte E; Radeloff, Volker C; Hawbaker, Todd J; Hammer, Roger B; Stewart, Susan I; Clayton, Murray K

    2007-10-01

    Rural America is witnessing widespread housing development, which is to the detriment of the environment. It has been suggested to cluster houses so that their disturbance zones overlap and thus cause less habitat loss than is the case for dispersed development. Clustering houses makes intuitive sense, but few empirical studies have quantified the spatial pattern of houses in real landscapes, assessed changes in their patterns over time, and quantified the resulting habitat loss. We addressed three basic questions: (1) What are the spatial patterns of houses and how do they change over time; (2) How much habitat is lost due to houses, and how is this affected by spatial pattern of houses; and (3) What type of habitat is most affected by housing development. We mapped 27 419 houses from aerial photos for five time periods in 17 townships in northern Wisconsin and calculated the terrestrial land area remaining after buffering each house using 100- and 500-m disturbance zones. The number of houses increased by 353% between 1937 and 1999. Ripley's K test showed that houses were significantly clustered at all time periods and at all scales. Due to the clustering, the rate at which habitat was lost (176% and 55% for 100- and 500-m buffers, respectively) was substantially lower than housing growth rates, and most land area was undisturbed (95% and 61% for 100-m and 500-m buffers, respectively). Houses were strongly clustered within 100 m of lakes. Habitat loss was lowest in wetlands but reached up to 60% in deciduous forests. Our results are encouraging in that clustered development is common in northern Wisconsin, and habitat loss is thus limited. However, the concentration of development along lakeshores causes concern, because these may be critical habitats for many species. Conservation goals can only be met if policies promote clustered development and simultaneously steer development away from sensitive ecosystems.

  18. HLA-B27 Alters the Response to TNFα and Promotes Osteoclastogenesis in Bone Marrow Monocytes from HLA-B27 Transgenic Rats

    PubMed Central

    Layh-Schmitt, Gerlinde; Yang, Eva Y.; Kwon, Grace; Colbert, Robert A.

    2013-01-01

    Objective To determine whether HLA-B27 expression alters the response of bone marrow monocytes (BMMo) from HLA-B27/human β2-microglobulin transgenic (B27-Tg) rats to tumor necrosis factor-α (TNFα), and whether this affects cells involved in bone homeostasis. Methods BMMo were treated with receptor activator of NF-κB ligand or TNFα to promote osteoclast formation. Osteoclasts were quantified by counting. Gene expression was measured using quantitative polymerase chain reaction, and protein was detected by enzyme-linked immunosorbent assay, immunoblotting, or immunofluorescence. Effects of endogenously produced cytokines on osteoclast formation were determined with neutralizing antibodies. Results TNFα enhanced osteoclast formation 2.5-fold in HLA-B27-expressing cells compared to either wild type or HLA-B7/human β2-microglobulin expressing monocytes. TNFα induced approximately 4-fold upregulation of HLA-B27, which was associated with accumulation of misfolded heavy chains, binding of the ER chaperone BiP, and activation of an ER stress response, which was not seen with HLA-B7. No differences were seen with RANKL-induced osteoclastogenesis. Enhanced interleukin-1α (IL-1α) production from ER stressed B27-Tg BMMo was found to be necessary and sufficient for enhanced osteoclast formation. However, B27-Tg BMMo also produced more interferon-β (IFNβ), which attenuated the effect of IL-1α on osteoclast formation. Conclusions HLA-B27-induced ER stress alters the response of BMMo from B27-Tg rats to TNFα, which is associated with enhanced production of IL-1α and IFNβ, cytokines that exhibit opposing effects on osteoclast formation. The altered response of cells expressing HLA-B27 to pro-inflammatory cytokines suggests that this MHC class I allele may contribute to the pathogenesis of spondyloarthritis and its unique phenotype through downstream effects involving alterations in bone homeostasis. PMID:23666508

  19. Abundance and distribution of immature mosquitoes in urban rivers proximate to their larval habitats.

    PubMed

    Ma, Minghai; Huang, Minsheng; Leng, Peien

    2016-11-01

    Whether ecological restoration of polluted urban rivers would provide suitable breeding habitats for some mosquitoes was not clear yet. It was therefore important to determine how altered river conditions influence mosquito ecology. Monthly data on water quality and larval density were obtained to determine the effects of river systems on the distribution and abundance of immature mosquitoes in two coastal cities in Eastern China. In total, 5 species within two genera of mosquitoes were collected and identified in habitat with vegetation from three positive rivers. Culex pipiens pallens was the most abundant and widely distributed species. A new species (Culex fuscanus) was reported in certain districts. Physico-chemical parameters of river water were important, but not the only, set of influences on immature mosquito breeding. Aquatic vegetation could increase the likelihood of mosquito breeding while artificial aeration might prevent the approach of mosquitoes. Slow-moving water might be a new potential marginal habitat type for some Culex and Aedes albopictus. Variation of river system with ecological restoration might influence the abundance and distribution of immature mosquitoes. Copyright © 2016. Published by Elsevier B.V.

  20. Indicators: Physical Habitat Complexity

    EPA Pesticide Factsheets

    Physical habitat complexity measures the amount and variety of all types of cove at the water’s edge in lakes. In general, dense and varied shoreline habitat is able to support more diverse communities of aquatic life.