Sample records for habitat improvement projects

  1. Field Review of Fish Habitat Improvement Projects in Central Idaho.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beschta, Robert L.; Griffith, Jack; Wesche, Thomas A.

    1993-05-01

    The goal of this field review was to provide information to the Bonneville Power Administration (BPA) regarding previous and ongoing fish habitat improvement projects in central Idaho. On July 14, 1992, the review team met at the Sawtooth National Recreation Area office near Ketchum, Idaho, for a slide presentation illustrating several habitat projects during their construction phases. Following the slide presentation, the review team inspected fish habitat projects that have been implemented in the last several years in the Stanley Basin and adjacent valleys. At each site the habitat project was described to the field team and a brief periodmore » for project inspection followed. The review team visited approximately a dozen sites on the Challis, Sawtooth, and Boise National Forests over a period of approximately two and a half days. There are two objectives of this review namely to summarize observations for specific field sites and to provide overview commentary regarding the BPA habitat improvement program in central Idaho.« less

  2. Oak Grove Fork Habitat Improvement Project, 1988 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettin, Scott

    The Lower Oak Grove Fork of the Clackamas River is a fifth-order tributary of the Clackamas River drainage supporting depressed runs of coho and chinook salmon, and summer and winter steelhead. Habitat condition rating for the Lower Oak Grove is good, but smelt production estimates are below the average for Clackamas River tributaries. Limiting factors in the 3.8 miles of the Lower Oak Grove supporting anadromous fish include an overall lack of quality spawning and rearing habitat. Beginning in 1986. measures to improve fish habitat in the Lower Oak Grove were developed in coordination with the Oregon Department of Fishmore » and Wildlife (ODF&W) and Portland General Electric (PGE) fisheries biologists. Prior to 1986, no measures had been applied to the stream to mitigate for PGE's storage and regulation of flows in the Oak Grove Fork (Timothy Lake, Harriet Lake). Catchable rainbow trout are stocked by ODF&W two or three times a year during the trout fishing season in the lowermost portion of the Oak Grove Fork near two Forest Service campgrounds (Ripplebrook and Rainbow). The 1987 field season marked the third year of efforts to improve fish habitat of the Lower Oak Grove Fork and restore anadromous fish production. The efforts included the development of an implementation plan for habitat improvement activities in the Lower Oak Grove Fork. post-project monitoring. and maintenance of the 1986 improvement structures. No new structures were constructed or placed in 1987. Fiscal year 1988 brought a multitude of changes which delayed implementation of plans developed in 1987. The most prominent change was the withdrawal of the proposed Spotted Owl Habitat Area (SOHA) which overlapped the Oak Grove project implementation area. Another was the change in the Forest Service biologist responsible for implementation and design of this project.« less

  3. Rebuilding Habitat and Shoreline Resilience through Improved Flood Control Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Rebuilding Habitat and Shoreline Resilience through Improved Flood Control Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  4. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sears, Sheryl

    2004-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near themore » present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville

  5. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2001-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sears, Sheryl

    2003-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near themore » present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville

  6. Evaluating projects for improving fish and wildlife habitat on National Forests.

    Treesearch

    Fred H. Everest; Daniel R. Talhelm

    1982-01-01

    Recent legislation (PL. 93-452; P.L. 94-588) has emphasized improvement of fish and wildlife habitat on lands of the National Forest System. A sequential procedure has been developed for screening potential projects to identify those producing the greatest fishery benefits. The procedure—which includes program planning, project planning, and intensive benefit/cost...

  7. Wildlife habitat evaluation demonstration project. [Michigan

    NASA Technical Reports Server (NTRS)

    Burgoyne, G. E., Jr.; Visser, L. G.

    1981-01-01

    To support the deer range improvement project in Michigan, the capability of LANDSAT data in assessing deer habitat in terms of areas and mixes of species and age classes of vegetation is being examined to determine whether such data could substitute for traditional cover type information sources. A second goal of the demonstration project is to determine whether LANDSAT data can be used to supplement and improve the information normally used for making deer habitat management decisions, either by providing vegetative cover for private land or by providing information about the interspersion and juxtaposition of valuable vegetative cover types. The procedure to be used for evaluating in LANDSAT data of the Lake County test site is described.

  8. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoverson, Eric D.; Amonette, Alexandra

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meachammore » Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and

  9. Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yde, Chis

    1990-06-01

    The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer wintermore » and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.« less

  10. Umatilla River Subbasin Fish Habitat Improvement Program, 1996-2003 Summary Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Hilaire, Danny R.; Montgomery, Michael; Bailey, Timothy D.

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The last Annual Program Report was submitted in 1997, and described projects undertaken in 1995. This report describes Program activities carried out in 2003, along with a summary of projects undertaken during the years 1996 through 2002. The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestockmore » exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary table of past projects (1996-2002), along with a text description of more extensive habitat improvement projects, including: (1) Implementation of a four-phased project on the Lobato property (Birch Creek) beginning in 1996 and involving a demonstration bioengineering site and riparian improvements (fencing, planting), (2) Implementation of stable channel design/instream structure placement on the Houser property, East Birch Creek, beginning in 1998, an (3) Implementation of a joint, US Army Corps of Engineers/ODFW (cost share) project beginning in 2001 on the Brogoitti property, East Birch Creek, which involved implementation of stable channel design/construction and riparian improvement treatments.« less

  11. Umatilla River Basin Anadromous Fsh Habitat Enhancement Project : 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, R. Todd

    2001-12-31

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2000 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla River Basin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Habitat enhancement projects continued to be maintained on 44 private properties, four riparian easements and one in-stream enhancement agreement were secured, two new projects implemented and two existing projects improved to enhance anadromous fish habitat and natural fisheries production capabilitiesmore » in the Umatilla River Basin. New project locations included sites on the mid Umatilla River and Buckaroo Creek. Improvements were implemented at existing project sites on the upper Umatilla River and Wildhorse Creek. A stream bank stabilization project was implemented at approximately River Mile 37.4 Umatilla River to stabilize 760 feet of eroding stream bank and improve in-stream habitat diversity. Habitat enhancements at this site included construction of six rock barbs with one large conifer root wad incorporated into each barb, stinging approximately 10,000 native willow cuttings, planting 195 tubling willows and 1,800 basin wildrye grass plugs, and seeding 40 pounds of native grass seed. Staff time to assist in development of a subcontract and fence materials were provided to establish eight spring sites for off-stream watering and to protect wetlands within the Buckaroo Creek Watershed. A gravel bar was moved and incorporated into an adjacent point bar to reduce stream energy and stream channel confinement within the existing project area at River Mile 85 Umatilla River. Approximately 10,000 native willow cuttings were stung and trenched into the stream channel margins and stream banks, and

  12. The Habitat Project

    ERIC Educational Resources Information Center

    Hein, Annamae J.

    2011-01-01

    The Habitat Project is a multiday, differentiated, interdisciplinary environmental science lesson that incorporates skill-building and motivational strategies to internalize ecosystem vocabulary. Middle school students research an animal, display its physical characteristics on a poster, build a three-dimensional habitat and present their work…

  13. Schoolyard Habitat Project Guide.

    ERIC Educational Resources Information Center

    Mason, Rich

    This project aims to provide basic steps for students to restore and create wildlife habitats on school grounds. Four chapters are included in this guide, and each chapter is divided into teacher and student sections. Chapter 1 provides necessary information for starting a habitat project. Chapters 2, 3, and 4 discuss the details for the Forest…

  14. Umatilla River Subbasin Fish Habitat Improvement Program, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Hilaire, Danny R.

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and,more » more recently, to channel re-design and reconstruction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary of Program activities for the 2004 calendar year (January 1 through December 31, 2004), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance, and (4) Monitoring and Evaluation. This report also summarizes Program Administrative, Interagency Coordination, and Public Education activities.« less

  15. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek,more » Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a

  16. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, R. Todd; Sexton, Amy D.

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2001 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla Subbasin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Projects continued to be maintained on 49 private properties, one 25-year Non-Exclusive Bureau of Indian Affairs' Easement was secured, six new projects implemented and two existing project areas improved to enhance anadromous fish habitat. New project locations included sites on themore » mid Umatilla River, upper Umatilla River, Mission Creek, Cottonwood Creek and Buckaroo Creek. New enhancements included: (1) construction of 11,264 feet of fencing between River Mile 43.0 and 46.5 on the Umatilla River, (2) a stream bank stabilization project implemented at approximately River Mile 63.5 Umatilla River to stabilize 330 feet of eroding stream bank and improve instream habitat diversity, included construction of eight root wad revetments and three boulder J-vanes, (3) drilling a 358-foot well for off-stream livestock watering at approximately River Mile 46.0 Umatilla River, (4) installing a 50-foot bottomless arch replacement culvert at approximately River Mile 3.0 Mission Creek, (5) installing a Geoweb stream ford crossing on Mission Creek (6) installing a 22-foot bottomless arch culvert at approximately River Mile 0.5 Cottonwood Creek, and (7) providing fence materials for construction of 21,300 feet of livestock exclusion fencing in the Buckaroo Creek Drainage. An approximate total of 3,800 native willow cuttings and 350 pounds of native grass seed was planted at new upper Umatilla River, Mission Creek and Cottonwood Creek project sites. Habitat improvements implemented at existing project sites

  17. The Habitat Demonstration Unit Project Overview

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Grill, Tracy R.; Tri, Terry O.; Howe, Alan S.

    2010-01-01

    This paper will describe an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) Project. The HDU project is a "technology-pull" project that integrates technologies and innovations from numerous NASA centers. This project will be used to investigate and validate surface architectures, operations concepts, and requirements definition of various habitation concepts. The first habitation configuration this project will build and test is the Pressurized Excursion Module (PEM). This habitat configuration - the PEM - is based on the Constellation Architecture Scenario 12.1 concept of a vertically oriented habitat module. The HDU project will be tested as part of the 2010 Desert Research and Technologies Simulations (D-RATS) test objectives. The purpose of this project is to develop, integrate, test, and evaluate a habitat configuration in the context of the mission architectures and surface operation concepts. A multi-center approach will be leveraged to build, integrate, and test the PEM through a shared collaborative effort of multiple NASA centers. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Lunar Surface Systems Project Office (LSSPO) to test surface elements in a surface analog environment. The 2010 analog field test will include two Lunar Electric Rovers (LER) and the PEM among other surface demonstration elements. This paper will describe the overall objectives, its various habitat configurations, strategic plan, and technology integration as it pertains to the 2010 and 2011 field analog tests. To accomplish the development of the PEM from conception in June 2009 to rollout for operations in July 2010, the HDU project team is using a set of design standards to define the interfaces between the various systems of PEM and to the payloads, such as the Geology Lab, that those systems will support

  18. Napa River Sediment TMDL Implementation and Habitat Enhancement Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Napa River Sediment TMDL Implementation and Habitat Enhancement Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  19. Fifteenmile Basin Habitat Enhancement Project: Annual Report FY 1988.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Roger C.; Marx, Steven D.

    1989-04-01

    The goal of the Fifteenmile Creek Habitat Enhancement Project is to improve wild winter steelhead in the Fifteenmile Creek Basin under the Columbia River Basin Fish and Wildlife Program. The project is funded by through the Bonneville Power Administration. Cooperators in the habitat enhancement project include the USDA Forest Service, Wasco County Soil and Water Conservation District and the Confederated Tribes of the Warms Springs. Installation of instream fish habitat structures was completed on four miles of Ramsey Creek and on one mile of Fifteenmile Creek. One hundred thirty-five structures were installed in treatment areas. Construction materials included logs andmore » rock. Riparian protection fencing was completed on Dry Creek and Ramsey Creek worksites. Five and one-half miles of new fence was added to existing fence on Ramsey Creek to afford riparian protection to four miles of stream. Six miles of stream on Dry Creek will be afforded riparian protection by constructing 4.5 miles of fence to complement existing fence. 2 refs., 5 figs.« less

  20. White Lake AOC Habitat Restoration Project

    EPA Pesticide Factsheets

    The Muskegon Conservation District and the White Lake Public Advisory Council in 2012 completed the White Lake AOC Shoreline Habitat Restoration Project to address the loss of shoreline and nearshore habitat.

  1. Umatilla River Basin Anadromus Fish Habitat Enhancement Project : 1994 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, R. Todd

    1994-05-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, Section 7.6-7.8 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower l/4 mile of Boston Canyon Creek, the lower 4more » river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994-95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation. Four 15 year riparian easements and two right-of-way agreements were secured for enhancement of one river mile on Wildhorse Creek and l/2 river mile on Meacham Creek. Enhancements implemented between river mile (RM) 9.5 and RM 10.5 Wildhorse Creek included: (1) installation of 1.43 miles of smooth wire high tensile fence line and placement of 0.43 miles of fence posts and structures to restrict livestock from the riparian corridor, (2) construction of eighteen sediment retention structures in the stream channel to speed riparian recovery by elevating the stream grade, slowing water velocities and

  2. Clackamas/Hood River Habitat Enhancement Program, 1987 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Ken; Cain, Thomas C.; Heller, David A.

    1988-03-01

    Fisheries habitat improvement work is being done on priority drainages in the Clackamas and Rood River sub-basins under program measure 704(c), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program. This report describes the work completed in 1987 for Bonneville Power Administration (BPA) project number 84-11, the Clackamas/Hood River Habitat Enhancement Program. The program is composed of six projects: Collawash River Habitat Improvement Project; Collawash River Falls Passage Improvement Project, Oak Grove Fork Habitat Improvement Project; Lake Branch/West Fork Hood River Habitat Improvement Project; Fifteenmile Creek Habitat Improvement Project; and Abundance, Behavior, andmore » Habitat Utilization by Coho Salmon and Steelhead Trout in Fish Creek, Oregon, As Influenced by Habitat Enhancement. This ongoing program was initiated in 1984, although some of the projects were begun with BPA funding support as early as 1983. The projects are complemented by a variety of habitat improvement and management activities funded from a variety of Forest Service sources. This report describes the activities implemented for five of the six projects. A separate annual report on the 1987 habitat improvement and monitoring/evaluation efforts in the Fish Creek drainage has been prepared. Species for management emphasis include spring chinook and coho salmon, and summer and winter steelhead trout. Project work in 1987 primarily focused on increasing the quantity and quality of available rearing habitat, and improving access at passage barriers. The underlying theme of the improvement work has been to increase habitat diversity through the introduction of ''structure''. Structure provided by logs and boulders serves to deflect, pond, or otherwise disrupt flow patterns within a stream channel. This alteration of flow patterns results in formation of an increased number of habitat niches (i.e. pools, glides, alcoves, etc. ) in which

  3. Kingsbury Bay-Grassy Point habitat restoration project: A Health Impact Assessment-oral presentation

    EPA Science Inventory

    Undertaking large-scale aquatic habitat restoration projects in prominent waterfront locations, such as city parks, provides an opportunity to both improve ecological integrity and enhance community well-being. However, to consider both opportunities simultaneously, a community-b...

  4. John Day River Sub-Basin Fish Habitat Enhancement Project; 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Russ M.; Alley, Pamela D.; Goin Jr, Lonnie

    Work undertaken in 2008 included: (1) Seven new fence projects were completed thereby protecting approximately 10.97 miles of streams with 16.34 miles of riparian fence; (2) Renewal of one expired lease was completed thereby continuing to protect 0.75 miles of stream with 1.0 mile of riparian fence. (3) Maintenance of all active project fences (106.54 miles), watergaps (78), spring developments (33) were checked and repairs performed; (3) Planted 1000 willow/red osier on Fox Creek/Henslee property; (4) Planted 2000 willows/red osier on Middle Fork John Day River/Coleman property; (5) Planted 1000 willow/red osier cuttings on Fox Creek/Johns property; (6) Since themore » initiation of the Fish Habitat Project in 1984 we have 126.86 miles of stream protected using 211.72 miles of fence protecting 5658 acres. The purpose of the John Day Fish Habitat Enhancement Program is to enhance production of indigenous wild stocks of spring Chinook and summer steelhead within the sub basin through habitat protection, enhancement and fish passage improvement. The John Day River system supports the largest remaining wild runs of spring chinook salmon and summer steelhead in Northeast Oregon.« less

  5. Habitat Demonstration Unit Project Leadership and Management Strategies

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and

  6. Natural Propagation and Habitat Improvement, Volume 1, Oregon, 1986 Final and Annual Reports.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuart, Amy

    1987-01-01

    This report describes activities implemented for fisheries habitat improvement work on priority drainages in the Clackamas and Hood River sub-basins. Separate abstracts have been prepared for the reports on individual projects. (ACR)

  7. Habitat Evaluation Procedure (HEP) Report for the Pend Oreille Wetlands Wildlife Project, Technical Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, Darren

    to Bonneville Power Administration (BPA) for protection of habitats within the project area. The HSI models used were identical to those modified for use in 1991 (Attachment A). The objective of using HEP as an assessment tool is two-fold. First, it provides an unbiased and measured assessment of wildlife habitats within the mitigation parcel. This data is used to offset the Albeni Falls Dam HU loss ledger. That ledger accounts for the loss of wildlife habitat that resulted from the construction and inundation of Albeni Falls hydroelectric project and the extent to which those losses have been mitigated. Additionally, the baseline HEP evaluation describes existing habitat conditions on the property and will be used, along with other tools, to determine initial management, restoration, and enhancement activities. HEP analyses will be completed every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional HU crediting to BPA for enhanced habitat values.« less

  8. Habitat Demonstration Unit Project: Leadership and Management Strategies for a Rapid Prototyping Project

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project

  9. A Wildlife Habitat Improvement Plan.

    ERIC Educational Resources Information Center

    Rogers, S. Elaine

    The document presents an overview of Stony Acres, a "sanctuary" for wildlife as well as a place for recreation enjoyment and education undertakings. A review of the history of wildlife habitat management at Stony Acres and the need for continued and improved wildlife habitat management for the property are discussed in Chapter I. Chapter…

  10. Projected changes in wildlife habitats in Arctic natural areas of northwest Alaska

    USGS Publications Warehouse

    Marcot, Bruce G.; Jorgenson, M. Torre; Lawler, James P.; Handel, Colleen M.; DeGange, Anthony R.

    2015-01-01

    We project the effects of transitional changes among 60 vegetation and other land cover types (“ecotypes”) in northwest Alaska over the 21st century on habitats of 162 bird and 39 mammal species known or expected to occur regularly in the region. This analysis, encompassing a broad suite of arctic and boreal wildlife species, entailed building wildlife-habitat matrices denoting levels of use of each ecotype by each species, and projecting habitat changes under historic and expected accelerated future rates of change from increasing mean annual air temperature based on the average of 5 global climate models under the A1B emissions scenario, and from potential influence of a set of 23 biophysical drivers. Under historic rates of change, we project that 52 % of the 201 species will experience an increase in medium- and high-use habitats, 3 % no change, and 45 % a decrease, and that a greater proportion of mammal species (62 %) will experience habitat declines than will bird species (50 %). Outcomes become more dire (more species showing habitat loss) under projections made from effects of biophysical drivers and especially from increasing temperature, although species generally associated with increasing shrub and tree ecotypes will likely increase in distribution. Changes in wildlife habitats likely will also affect trophic cascades, ecosystem function, and ecosystem services; of particular significance are the projected declines in habitats of most small mammals that form the prey base for mesocarnivores and raptors, and habitat declines in 25 of the 50 bird and mammal species used for subsistence hunting and trapping.

  11. Habitat Evaluation Procedure (HEP) Report for the Pend Oreille Wetlands Wildlife II Project, Technical Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, Darren

    credited to Bonneville Power Administration (BPA) for protection of habitats within the project area. The HSI models used were identical to those modified for use in 1991 (Appendix 2). The objective of using HEP as an assessment tool is two-fold. First, it provides an unbiased and measured assessment of wildlife habitats within the mitigation parcel. This data is used to offset the Albeni Falls Dam HU loss ledger. That ledger accounts for the loss of wildlife habitat that resulted from the construction and inundation of Albeni Falls hydroelectric project and the extent to which those losses have been mitigated. Additionally, the baseline HEP evaluation describes existing habitat conditions on the property and will be used, along with other tools, to determine initial management, restoration, and enhancement activities. HEP analyses will be completed every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional HU crediting to BPA for enhanced habitat values.« less

  12. Grand Ronde Basin Fish Habitat Enhancement Project, 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance R.; Morton, Winston H.

    2009-07-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing the opportunities for natural fishmore » production within the basin. This project originally provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented under revisions of the Fish and Wild Program as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires considerable time be spent developing rapport with landowners to gain acceptance, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources, is the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway

  13. Land Use Compounds Habitat Losses under Projected Climate Change in a Threatened California Ecosystem

    PubMed Central

    Riordan, Erin Coulter; Rundel, Philip W.

    2014-01-01

    Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21st century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the

  14. Land use compounds habitat losses under projected climate change in a threatened California ecosystem.

    PubMed

    Riordan, Erin Coulter; Rundel, Philip W

    2014-01-01

    Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21(st) century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize

  15. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish productionmore » within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and

  16. Surface Habitat Systems

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  17. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunitiesmore » for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream and 22

  18. Climate Change Impacts to North Pacific Pelagic Habitat Are Projected to Lower Carrying Capacity

    NASA Astrophysics Data System (ADS)

    Woodworth-Jefcoats, P. A.; Polovina, J. J.; Drazen, J.

    2016-02-01

    We use output from a suite of CMIP5 earth system models to explore the impacts of climate change on marine fisheries over the 21st century. Ocean temperatures from both the historical and RCP 8.5 projections are integrated over the upper 200 m of the water column to characterize thermal habitat in the epipelagic realm. We find that across all models the projected temperature increases lead to a redistribution of thermal habitat: temperatures that currently represent the majority of North Pacific pelagic habitat are replaced by temperatures several degrees warmer. Additionally, all models project the emergence of new thermal habitat that exceeds present-day maximum temperatures. Spatially, present-day thermal habitat retreats northward and contracts eastward as warmer habitat in the southern and western North Pacific expands. In addition to these changes in thermal habitat, zooplankton densities are projected to decline across much of the North Pacific. Taken together, warming temperatures and declining zooplankton densities create the potential for mismatches in metabolic demand and supply through the 21st century. We find that carrying capacity for tropical tunas and other commercially valuable pelagic fish may be especially vulnerable to the impacts of climate change. The waters projected to see the greatest redistribution of thermal habitat and greatest declines in zooplankton densities are primarily those targeted by the Hawaii-based and international longline fleets. Fishery managers around the North Pacific will need to incorporate these impacts of climate change into future management strategies.

  19. Habitat for Humanity: La Grange, Georgia, 2003 Jimmy Carter Work Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-06-01

    The Troup-Chambers Habitat for Humanity built a Habitat house to ENERGY STAR standards in LaGrange, Georgia, in 2003. The project was so successfully that all Troup-Chambers houses will now be built to ENERGY STAR standards.

  20. Habitat Evaluation Procedures (HEP) Report; Iskuulpa Wildlife Mitigation and Watershed Project, Technical Report 1998-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaempts, Eric

    U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to evaluate lands acquired and leased in Eskuulpa Watershed, a Confederated Tribes of the Umatilla Indian Reservation watershed and wildlife mitigation project. The project is designed to partially credit habitat losses incurred by BPA for the construction of the John Day and McNary hydroelectric facilities on the Columbia River. Upland and riparian forest, upland and riparian shrub, and grasslands cover types were included in the evaluation. Indicator species included downy woodpecker (Picuides puhescens), black-capped chickadee (Pams atricopillus), blue grouse (Beadragapusmore » obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petschia), mink (Mustela vison), and Western meadowlark (Sturnello neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 55,500 feet of transects, 678 m2 plots, and 243 one-tenth-acre plots. Between 123.9 and f 0,794.4 acres were evaluated for each indicator species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total habitat units credited to BPA for the Iskuulpa Watershed Project and its seven indicator species is 4,567.8 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest, which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing or implementation of restoration grazing schemes, road de-commissioning, reforestation, large woody debris additions to floodplains, control of competing and unwanted vegetation, reestablishing displaced or reduced native vegetation

  1. Hungry Horse Dam Fisheries Mitigation : Fish Passage and Habitat Improvement in the Upper Flathead River Basin, 1991-1996 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knotek, W.Ladd; Deleray, Mark; Marotz, Brian L.

    1997-08-01

    In the past 50 years, dramatic changes have occurred in the Flathead Lake and River system. Degradation of fishery resources has been evident, in part due to deterioration of aquatic habitat and introduction of non-endemic fish and invertebrate species. Habitat loss has been attributed to many factors including the construction and operation of Hungry Horse Dam, unsound land use practices, urban development, and other anthropogenic and natural disturbances. Fish migration has also been limited by barriers such as dams and impassible culverts. Cumulatively, these factors have contributed to declines in the distribution and abundance of native fish populations. Recovery ofmore » fish populations requires that a watershed approach be developed that incorporates long-term aquatic habitat needs and promotes sound land use practices and cooperation among natural resource management agencies. In this document, the authors (1) describe completed and ongoing habitat improvement and fish passage activities under the Hungry Horse Fisheries Mitigation Program, (2) describe recently identified projects that are in the planning stage, and (3) develop a framework for identifying prioritizing, implementing, and evaluating future fish habitat improvement and passage projects.« less

  2. Hydrologic modification to improve habitat in riverine lakes: Management objectives, experimental approach, and initial conditions

    USGS Publications Warehouse

    Johnson, Barry L.; Barko, John W.; Gerasimov, Yuri; James, William F.; Litvinov, Alexander; Naimo, Teresa J.; Wiener, James G.; Gaugush, Robert F.; Rogala, James T.; Rogers, Sara J.; Schoettger, R.A.

    1996-01-01

    The Finger Lakes habitat-rehabilitation project is intended to improve physical and chemical conditions for fish in six connected back water lakes in Navigation Pool 5 of the upper Missouri River. The primary management objective is to improve water temperature, dissolved oxygen concentration and current velocity during winter for bluegills, Lepomis macrochirus, and black crappies, Pomoxis nigromaculatus, two of the primary sport fishes in the lakes. The lakes will be hydrologically altered by Installing culverts to Introduce controlled flows of oxygenated water into four lakes, and an existing unregulated culvert on a fifth lake will be equipped with a control gate to regulate inflow. These habitat modifications constitute a manipulative field experiment that will compare pre-project (1991 to summer 1993) and post-project (fall 1993 to 1996) conditions in the lakes, including hydrology, chemistry, rooted vegetation, and fish and macroinvertebrate communities. Initial data indicate that the Finger Lakes differ in water chemistry, hydrology, and macrophyte abundance. Macroinvertebrate communities also differed among lakes: species diversity was highest in lakes with dense aquatic macrophytes. The system seems to support a single fish community, although some species concentrated in individual lakes at different times. The introduction of similar flows into five of the lakes will probably reduce the existing physical and chemical differences among lakes. However, our ability to predict the effects of hydrologic modification on fish populations is limited by uncertainties concerning both the interactions of temperature, oxygen and current in winter and the biological responses of primary and secondary producers. Results from this study should provide guidance for similar habitat-rehabilitation projects in large rivers.

  3. Lower Klickitat Riparian and In-channel Habitat Restoration Project; Klickitat Watershed Enhancement, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conley, Will

    2004-01-01

    The overall goal of the Klickitat Watershed Enhancement Project (KWEP) is to restore watershed health to aid recovery of salmonid stocks in the Klickitat subbasin. An emphasis is placed on restoration and protection of stream reaches and watersheds supporting native anadromous fish production, particularly steelhead (Oncorhyncus mykiss; ESA- listed as 'Threatened' within the Mid-Columbia ESU) and spring Chinook (O. tshawytscha). Habitat restoration activities in the Klickitat subbasin augment goals and objectives of the Yakima Klickitat Fisheries Project (YKFP), NPPC Fish and Wildlife Program, Klickitat Subbasin Summary and the NMFS Biological Opinion (All-H paper). Work is conducted to enhance instream andmore » contributing upland habitat to facilitate increased natural production potential for native salmonid stocks. Efforts in the Klickitat Subbasin fall into two main categories: (1) identification and prioritization of sites for protection and restoration activities, (2) implementation of protection and restoration measures. KWEP personnel also assist monitoring efforts of the YKFP Monitoring & Evaluation Project. During the September 2002-August 2003 reporting period, KWEP personnel continued efforts to address feedback from the August 2000 Provincial Review that indicated a need for better information management and development of geographic priorities by: (1) Assisting development of the Strategic Habitat Plan for the Klickitat Lead Entity (Task A3.1) and Klickitat steelhead EDT model (Task A4.1); (2) Improving the functionality of reference point, habitat unit, and large woody debris modules of the habitat database as well as addition of a temperature module (Tasks A1.1-1.2); (3) Continuing development and acquisition of GIS data (Task A1.3); (4) Ongoing data collection efforts to fill information gaps including streamflow, habitat, and temperature (Objectives C1 and C2); and (5) Completion of planning, field work, and hydrologic modeling associated with

  4. Patterns and variability of projected bioclimatic habitat for Pinus albicaulis in the Greater Yellowstone Area.

    PubMed

    Chang, Tony; Hansen, Andrew J; Piekielek, Nathan

    2014-01-01

    Projected climate change at a regional level is expected to shift vegetation habitat distributions over the next century. For the sub-alpine species whitebark pine (Pinus albicaulis), warming temperatures may indirectly result in loss of suitable bioclimatic habitat, reducing its distribution within its historic range. This research focuses on understanding the patterns of spatiotemporal variability for future projected P.albicaulis suitable habitat in the Greater Yellowstone Area (GYA) through a bioclimatic envelope approach. Since intermodel variability from General Circulation Models (GCMs) lead to differing predictions regarding the magnitude and direction of modeled suitable habitat area, nine bias-corrected statistically down-scaled GCMs were utilized to understand the uncertainty associated with modeled projections. P.albicaulis was modeled using a Random Forests algorithm for the 1980-2010 climate period and showed strong presence/absence separations by summer maximum temperatures and springtime snowpack. Patterns of projected habitat change by the end of the century suggested a constant decrease in suitable climate area from the 2010 baseline for both Representative Concentration Pathways (RCPs) 8.5 and 4.5 climate forcing scenarios. Percent suitable climate area estimates ranged from 2-29% and 0.04-10% by 2099 for RCP 8.5 and 4.5 respectively. Habitat projections between GCMs displayed a decrease of variability over the 2010-2099 time period related to consistent warming above the 1910-2010 temperature normal after 2070 for all GCMs. A decreasing pattern of projected P.albicaulis suitable habitat area change was consistent across GCMs, despite strong differences in magnitude. Future ecological research in species distribution modeling should consider a full suite of GCM projections in the analysis to reduce extreme range contractions/expansions predictions. The results suggest that restoration strageties such as planting of seedlings and controlling

  5. Projected gains and losses of wildlife habitat from bioenergy-induced landscape change

    USGS Publications Warehouse

    Tarr, Nathan M.; Rubino, Matthew J.; Costanza, Jennifer K.; McKerrow, Alexa; Collazo, Jaime A.; Abt, Robert C.

    2016-01-01

    Domestic and foreign renewable energy targets and financial incentives have increased demand for woody biomass and bioenergy in the southeastern United States. This demand is expected to be met through purpose-grown agricultural bioenergy crops, short-rotation tree plantations, thinning and harvest of planted and natural forests, and forest harvest residues. With results from a forest economics model, spatially explicit state-and-transition simulation models, and species–habitat models, we projected change in habitat amount for 16 wildlife species caused by meeting a renewable fuel target and expected demand for wood pellets in North Carolina, USA. We projected changes over 40 years under a baseline ‘business-as-usual’ scenario without bioenergy production and five scenarios with unique feedstock portfolios. Bioenergy demand had potential to influence trends in habitat availability for some species in our study area. We found variation in impacts among species, and no scenario was the ‘best’ or ‘worst’ across all species. Our models projected that shrub-associated species would gain habitat under some scenarios because of increases in the amount of regenerating forests on the landscape, while species restricted to mature forests would lose habitat. Some forest species could also lose habitat from the conversion of forests on marginal soils to purpose-grown feedstocks. The conversion of agricultural lands on marginal soils to purpose-grown feedstocks increased habitat losses for one species with strong associations with pasture, which is being lost to urbanization in our study region. Our results indicate that landscape-scale impacts on wildlife habitat will vary among species and depend upon the bioenergy feedstock portfolio. Therefore, decisions about bioenergy and wildlife will likely involve trade-offs among wildlife species, and the choice of focal species is likely to affect the results of landscape-scale assessments. We offer general principals

  6. A concept for extraction of habitat features from laser scanning and hypersprectral imaging for evaluation of Natura 2000 sites - the ChangeHabitats2 project approach

    NASA Astrophysics Data System (ADS)

    Székely, B.; Kania, A.; Pfeifer, N.; Heilmeier, H.; Tamás, J.; Szöllősi, N.; Mücke, W.

    2012-04-01

    The goal of the ChangeHabitats2 project is the development of cost- and time-efficient habitat assessment strategies by employing effective field work techniques supported by modern airborne remote sensing methods, i.e. hyperspectral imagery and laser scanning (LiDAR). An essential task of the project is the design of a novel field work technique that on the one hand fulfills the reporting requirements of the Flora-Fauna-Habitat (FFH-) directive and on the other hand serves as a reference for the aerial data analysis. Correlations between parameters derived from remotely sensed data and terrestrial field measurements shall be exploited in order to create half- or fully-automated methods for the extraction of relevant Natura2000 habitat parameters. As a result of these efforts a comprehensive conceptual model has been developed for extraction and integration of Natura 2000 relevant geospatial data. This scheme is an attempt to integrate various activities within ChangeHabitats2 project defining pathways of development, as well as encompassing existing data processing chains, theoretical approaches and field work. The conceptual model includes definition of processing levels (similar to those existing in remote sensing), whereas these levels cover the range from the raw data to the extracted habitat feature. For instance, the amount of dead wood (standing or lying on the surface) is an important evaluation criterion for the habitat. The tree trunks lying on the ground surface typically can be extracted from the LiDAR point cloud, and the amount of wood can be estimated accordingly. The final result will be considered as a habitat feature derived from laser scanning data. Furthermore, we are also interested not only in the determination of the specific habitat feature, but also in the detection of its variations (especially in deterioration). In this approach the variation of this important habitat feature is considered to be a differential habitat feature, that can

  7. Patterns and Variability of Projected Bioclimatic Habitat for Pinus albicaulis in the Greater Yellowstone Area

    PubMed Central

    Chang, Tony; Hansen, Andrew J.; Piekielek, Nathan

    2014-01-01

    Projected climate change at a regional level is expected to shift vegetation habitat distributions over the next century. For the sub-alpine species whitebark pine (Pinus albicaulis), warming temperatures may indirectly result in loss of suitable bioclimatic habitat, reducing its distribution within its historic range. This research focuses on understanding the patterns of spatiotemporal variability for future projected P.albicaulis suitable habitat in the Greater Yellowstone Area (GYA) through a bioclimatic envelope approach. Since intermodel variability from General Circulation Models (GCMs) lead to differing predictions regarding the magnitude and direction of modeled suitable habitat area, nine bias-corrected statistically down-scaled GCMs were utilized to understand the uncertainty associated with modeled projections. P.albicaulis was modeled using a Random Forests algorithm for the 1980–2010 climate period and showed strong presence/absence separations by summer maximum temperatures and springtime snowpack. Patterns of projected habitat change by the end of the century suggested a constant decrease in suitable climate area from the 2010 baseline for both Representative Concentration Pathways (RCPs) 8.5 and 4.5 climate forcing scenarios. Percent suitable climate area estimates ranged from 2–29% and 0.04–10% by 2099 for RCP 8.5 and 4.5 respectively. Habitat projections between GCMs displayed a decrease of variability over the 2010–2099 time period related to consistent warming above the 1910–2010 temperature normal after 2070 for all GCMs. A decreasing pattern of projected P.albicaulis suitable habitat area change was consistent across GCMs, despite strong differences in magnitude. Future ecological research in species distribution modeling should consider a full suite of GCM projections in the analysis to reduce extreme range contractions/expansions predictions. The results suggest that restoration strageties such as planting of seedlings and

  8. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkman, Jed

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reportingmore » period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.« less

  9. Landscaping Habitat for Humanity Homes: A Community Outreach Project

    ERIC Educational Resources Information Center

    Ramsay, Jodie L.

    2008-01-01

    The purpose of this project is to incorporate a community service component into a Biology course at Northern State University (NSU) in Aberdeen, SD. Students in an upper-level botany course (Plant Structure and Function) provide landscaping services to homeowners who have purchased homes through Habitat for Humanity. Homeowner satisfaction with…

  10. Wildlife Habitat Impact Assessment, Chief Joseph Dam Project, Washington : Project Report 1992.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuehn, Douglas; Berger, Matthew

    1992-01-01

    Under the Pacific Northwest Electric Power Planning and Conservation Act of 1980, and the subsequent Northwest Power Planning Council`s Columbia River Basin Fish and Wildlife Program, a wildlife habitat impact assessment and identification of mitigation objectives have been developed for the US Army Corps of Engineer`s Chief Joseph Dam Project in north-central Washington. This study will form the basis for future mitigation planning and implementation.

  11. Dynamic habitat models: using telemetry data to project fisheries bycatch

    PubMed Central

    Žydelis, Ramūnas; Lewison, Rebecca L.; Shaffer, Scott A.; Moore, Jeffrey E.; Boustany, Andre M.; Roberts, Jason J.; Sims, Michelle; Dunn, Daniel C.; Best, Benjamin D.; Tremblay, Yann; Kappes, Michelle A.; Halpin, Patrick N.; Costa, Daniel P.; Crowder, Larry B.

    2011-01-01

    Fisheries bycatch is a recognized threat to marine megafauna. Addressing bycatch of pelagic species however is challenging owing to the dynamic nature of marine environments and vagility of these organisms. In order to assess the potential for species to overlap with fisheries, we propose applying dynamic habitat models to determine relative probabilities of species occurrence for specific oceanographic conditions. We demonstrate this approach by modelling habitats for Laysan (Phoebastria immutabilis) and black-footed albatrosses (Phoebastria nigripes) using telemetry data and relating their occurrence probabilities to observations of Hawaii-based longline fisheries in 1997–2000. We found that modelled habitat preference probabilities of black-footed albatrosses were high within some areas of the fishing range of the Hawaiian fleet and such preferences were important in explaining bycatch occurrence. Conversely, modelled habitats of Laysan albatrosses overlapped little with Hawaii-based longline fisheries and did little to explain the bycatch of this species. Estimated patterns of albatross habitat overlap with the Hawaiian fleet corresponded to bycatch observations: black-footed albatrosses were more frequently caught in this fishery despite being 10 times less abundant than Laysan albatrosses. This case study demonstrates that dynamic habitat models based on telemetry data may help to project interactions with pelagic animals relative to environmental features and that such an approach can serve as a tool to guide conservation and management decisions. PMID:21429921

  12. Habitat Evaluation Procedures (HEP) Report : Hellsgate Project, 1999-2000 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Matthew

    2000-05-01

    A Habitat Evaluation Procedure (HEP) study was conducted on lands acquired and/or managed (4,568 acres total) by the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate project) to mitigate some of the losses associated with the original construction and operation of Grand Coulee Dam and inundation of habitats behind the dams. Three separate properties, totaling 2,224 acres were purchased in 1998. One property composed of two separate parcels, mostly grassland lies southeast of the town of Nespelem in Okanogan County (770 acres) and was formerly called the Hinman property. The former Hinman property lies within an area the Tribesmore » have set aside for the protection and preservation of the sharp-tailed grouse (Agency Butte unit). This special management area minus the Hinman acquisition contains 2,388 acres in a long-term lease with the Tribes. The second property lies just south of the Silver Creek turnoff (Ferry County) and is bisected by the Hellsgate Road (part of the Friedlander unit). This parcel contains 60 acres of riparian and conifer forest cover. The third property (now named the Sand Hills unit) acquired for mitigation (1,394 acres) lies within the Hellsgate Reserve in Ferry County. This new acquisition links two existing mitigation parcels (the old Sand Hills parcels and the Lundstrum Flat parcel, all former Kuehne purchases) together forming one large unit. HEP team members included individuals from the Colville Confederated Tribes Fish and Wildlife Department (CTCR), Washington Department of Fish and Wildlife (WDFW), and Bureau of Land Management (BLM). The HEP team conducted a baseline habitat survey using the following HEP species models: mule deer (Odocoileus hemionus), mink (Mustela vison), downy woodpecker (Picoides pubescens), bobcat (Lynx rufus), yellow warbler (Dendroica petechia), and sharp-tailed grouse (Tympanuchus phasianellus columbianus). HEP analysis and results are discussed within the body of the text. The

  13. The Habitat Demonstration Unit Project: A Modular Instrumentation System for a Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Kennedy, Kriss J.; Yim, Hester; Williamsn, Robert M.; Hafermalz, Scott; Wagner, Raymond S.

    2011-01-01

    NASA is focused on developing human exploration capabilities in low Earth orbit (LEO), expanding to near Earth asteroids (NEA), and finally to Mars. Habitation is a crucial aspect of human exploration, and a current focus of NASA activities. The Habitation Demonstration Unit (HDU) is a project focused on developing an autonomous habitation system that enables human exploration of space by providing engineers and scientists with a test bed to develop, integrate, test, and evaluate habitation systems. A critical feature of the HDU is the instrumentation system, which monitors key subsystems within the habitat. The following paper will discuss the HDU instrumentation system performance and lessons learned during the 2010 Desert Research and Technology Studies (D-RaTS). In addition, this paper will discuss the evolution of the instrumentation system to support the 2011 Deep Space Habitat configuration, the challenges, and the lessons learned of implementing this configuration. In 2010, the HDU was implemented as a pressurized excursion module (PEM) and was tested at NASA s D-RaTS in Arizona [1]. For this initial configuration, the instrumentation system design used features that were successful in previous habitat instrumentation projects, while also considering challenges, and implementing lessons learned [2]. The main feature of the PEM instrumentation system was the use of a standards-based wireless sensor node (WSN), implementing an IEEE 802.15.4 protocol. Many of the instruments were connected to several WSNs, which wirelessly transmitted data to the command and data handling system via a mesh network. The PEM instrumentation system monitored the HDU during field tests at D-RaTS, and the WSN data was later analyzed to understand the performance of this system. In addition, several lessons learned were gained from the field test experience, which fed into the instrumentation design of the next generation of the HDU.

  14. Structural Concepts and Materials for Lunar Exploration Habitats

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Watson, Judith J.; Singhal, Surendra N.

    2006-01-01

    A new project within the Exploration Systems Mission Directorate s Technology Development Program at NASA involves development of lightweight structures and low temperature mechanisms for Lunar and Mars missions. The Structures and Mechanisms project is to develop advanced structure technology for the primary structure of various pressurized elements needed to implement the Vision for Space Exploration. The goals are to significantly enhance structural systems for man-rated pressurized structures by 1) lowering mass and/or improving efficient volume for reduced launch costs, 2) improving performance to reduce risk and extend life, and 3) improving manufacturing and processing to reduce costs. The targeted application of the technology is to provide for the primary structure of the pressurized elements of the lunar lander for both sortie and outpost missions, and surface habitats for the outpost missions. The paper presents concepts for habitats that support six month (and longer) lunar outpost missions. Both rigid and flexible habitat wall systems are discussed. The challenges of achieving a multi-functional habitat that provides micro-meteoroid, radiation, and thermal protection for explorers are identified.

  15. Inflatable Habitat Health Monitoring: Implementation, Lessons Learned, and Application to Lunar or Martian Habitat Health Monitoring

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Hong, Todd; Hafermalz, Scott; Hunkins, Robert; Valle, Gerald; Toups, Larry

    2009-01-01

    NASA's exploration mission is to send humans to the Moon and Mars, in which the purpose is to learn how to live and work safely in those harsh environments. A critical aspect of living in an extreme environment is habitation, and within that habitation element there are key systems which monitor the habitation environment to provide a safe and comfortable living and working space for humans. Expandable habitats are one of the options currently being considered due to their potential mass and volume efficiencies. This paper discusses a joint project between the National Science Foundation (NSF), ILC Dover, and NASA in which an expandable habitat was deployed in the extreme environment of Antarctica to better understand the performance and operations over a one-year period. This project was conducted through the Innovative Partnership Program (IPP) where the NSF provided the location at McMurdo Station in Antarctica and support at the location, ILC Dover provided the inflatable habitat, and NASA provided the instrumentation and data system for monitoring the habitat. The outcome of this project provided lessons learned in the implementation of an inflatable habitat and the systems that support that habitat. These lessons learned will be used to improve current habitation capabilities and systems to meet the objectives of exploration missions to the moon and Mars.

  16. Sediment cores and chemistry for the Kootenai River White Sturgeon Habitat Restoration Project, Boundary County, Idaho

    USGS Publications Warehouse

    Barton, Gary J.; Weakland, Rhonda J.; Fosness, Ryan L.; Cox, Stephen E.; Williams, Marshall L.

    2012-01-01

    The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. This project is oriented toward recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. Projects currently (2010) under consideration include modifying the channel and flood plain, installing in-stream structures, and creating wetlands to improve the physical and biological functions of the ecosystem. River restoration is a complex undertaking that requires a thorough understanding of the river. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey collected and analyzed the physical and chemical nature of sediment cores collected at 24 locations in the river. Core depths ranged from 4.6 to 15.2 meters; 21 cores reached a depth of 15.2 meters. The sediment was screened for the presence of chemical constituents that could have harmful effects if released during restoration activities. The analysis shows that concentrations of harmful chemical constituents do not exceed guideline limits that were published by the U.S. Army Corps of Engineers in 2006.

  17. Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type.

    PubMed

    Marshall, Leon; Carvalheiro, Luísa G; Aguirre-Gutiérrez, Jesús; Bos, Merijn; de Groot, G Arjen; Kleijn, David; Potts, Simon G; Reemer, Menno; Roberts, Stuart; Scheper, Jeroen; Biesmeijer, Jacobus C

    2015-10-01

    Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs' usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and

  18. Space Radiation Effects on Inflatable Habitat Materials Project

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Nichols, Charles

    2015-01-01

    The Space Radiation Effects on Inflatable Habitat Materials project provides much needed risk reduction data to assess space radiation damage of existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage will be quantified for materials used in inflatable structures (1st priority), as well as for habitable composite structures and space suits materials (2nd priority). The data acquired will have relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes. This project also will help to determine the service lifetimes for habitable inflatable, composite, and space suit materials.

  19. Idaho Habitat Evaluation for Off-Site Mitigation Record : Annual Report 1988.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idaho. Dept. of Fish and Game.

    1990-03-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating existing and proposed habitat improvement projects for steelhead and chinook in the Clearwater and Salmon subbasins since 1984. Projects included in the monitoring are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia Rivers. This monitoring project is also funded under the same authority. A mitigation record is being developed to use actual and potential increases in smolt production as the best measures of benefit frommore » a habitat improvement project. This project is divided into two subprojects: general and intensive monitoring. Primary objectives of the general monitoring subproject are to determine natural production increases due to habitat improvement projects in terms of parr production and to determine natural production status and trends in Idaho. The second objective is accomplished by combining parr density from monitoring and evaluation of BPA habitat projects and from other IDFG management and research activities. The primary objective of the intensive monitoring subproject is to determine the relationships between spawning escapement, parr production, and smolt production in two Idaho streams; the upper Salmon River and Crooked River. Results of the intensive monitoring will be used to estimate mitigation benefits in terms of smolt production and to interpret natural production monitoring in Idaho. 30 refs., 19 figs., 34 tabs.« less

  20. Wildlife and Wildlife Habitat Loss Assessment at Green Peter-Foster Project; Middle Fork Santiam River, Oregon, 1985 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noyes, J.H.

    1986-02-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Green Peter-Foster Dam and Reservoir Project on the Middle Fork Santiam River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types at the project site were mapped based on aerial photographs from 1955, 1972, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Eleven wildlife target species were selected to represent a cross-section of species groupsmore » affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Green Peter-Foster Project extensively altered or affected 7873 acres of land and river in the Santiam River drainage. Impacts to wildlife centered around the loss of 1429 acres of grass-forb vegetation, 768 acres of shrubland, and 717 acres of open conifer forest cover types. Impacts resulting from the Green Peter-Foster Project included the loss of critical winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, upland game birds, river otter, beaver, pileated woodpecker, and many other wildlife species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Green Peter-Foster Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.« less

  1. Alligator, Alligator mississippiensis, habitat suitability index model

    USGS Publications Warehouse

    Waddle, J. Hardin

    2017-01-01

    The 2012 Coastal Master Plan utilized Habitat Suitability Indices (HSIs) to evaluate potential project effects on wildlife species. Even though HSIs quantify habitat condition, which may not directly correlate to species abundance, they remain a practical and tractable way to assess changes in habitat quality from various restoration actions. As part of the legislatively mandated five year update to the 2012 plan, the wildlife habitat suitability indices were updated and revised using literature and existing field data where available. The outcome of these efforts resulted in improved, or in some cases entirely new suitability indices. This report describes the development of the habitat suitability indices for the American alligator, Alligator mississippiensis.

  2. L-325 Sagebrush Habitat Mitigation Project: FY2008 Compensation Area Monitoring Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, Robin E.; Sackschewsky, Michael R.

    2008-09-30

    This document provides a review and status of activities conducted in support of the Fluor Daniel Hanford Company (Fluor) Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades. It includes time-zero monitoring results for planting activities conducted in January 2008, annual survival monitoring for all planting years (2007 and 2008), and recommendations for the successful completion of DOE habitat mitigation commitments for this project.

  3. Integrating SAS and GIS software to improve habitat-use estimates from radiotelemetry data

    USGS Publications Warehouse

    Kenow, K.P.; Wright, R.G.; Samuel, M.D.; Rasmussen, P.W.

    2001-01-01

    Radiotelemetry has been used commonly to remotely determine habitat use by a variety of wildlife species. However, habitat misclassification can occur because the true location of a radiomarked animal can only be estimated. Analytical methods that provide improved estimates of habitat use from radiotelemetry location data using a subsampling approach have been proposed previously. We developed software, based on these methods, to conduct improved habitat-use analyses. A Statistical Analysis System (SAS)-executable file generates a random subsample of points from the error distribution of an estimated animal location and formats the output into ARC/INFO-compatible coordinate and attribute files. An associated ARC/INFO Arc Macro Language (AML) creates a coverage of the random points, determines the habitat type at each random point from an existing habitat coverage, sums the number of subsample points by habitat type for each location, and outputs tile results in ASCII format. The proportion and precision of habitat types used is calculated from the subsample of points generated for each radiotelemetry location. We illustrate the method and software by analysis of radiotelemetry data for a female wild turkey (Meleagris gallopavo).

  4. Projections of climate-driven changes in tuna vertical habitat based on species-specific differences in blood oxygen affinity.

    PubMed

    Mislan, K A S; Deutsch, Curtis A; Brill, Richard W; Dunne, John P; Sarmiento, Jorge L

    2017-10-01

    Oxygen concentrations are hypothesized to decrease in many areas of the ocean as a result of anthropogenically driven climate change, resulting in habitat compression for pelagic animals. The oxygen partial pressure, pO 2 , at which blood is 50% saturated (P 50 ) is a measure of blood oxygen affinity and a gauge of the tolerance of animals for low ambient oxygen. Tuna species display a wide range of blood oxygen affinities (i.e., P 50 values) and therefore may be differentially impacted by habitat compression as they make extensive vertical movements to forage on subdaily time scales. To project the effects of end-of-the-century climate change on tuna habitat, we calculate tuna P 50 depths (i.e., the vertical position in the water column at which ambient pO 2 is equal to species-specific blood P 50 values) from 21st century Earth System Model (ESM) projections included in the fifth phase of the Climate Model Intercomparison Project (CMIP5). Overall, we project P 50 depths to shoal, indicating likely habitat compression for tuna species due to climate change. Tunas that will be most impacted by shoaling are Pacific and southern bluefin tunas-habitat compression is projected for the entire geographic range of Pacific bluefin tuna and for the spawning region of southern bluefin tuna. Vertical shifts in P 50 depths will potentially influence resource partitioning among Pacific bluefin, bigeye, yellowfin, and skipjack tunas in the northern subtropical and eastern tropical Pacific Ocean, the Arabian Sea, and the Bay of Bengal. By establishing linkages between tuna physiology and environmental conditions, we provide a mechanistic basis to project the effects of anthropogenic climate change on tuna habitats. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  5. Enhancement and creation of secondary channel habitat: Review of project performance across a range of project types and settings

    NASA Astrophysics Data System (ADS)

    Epstein, J.; Lind, P.

    2017-12-01

    Secondary channels provide critical off-channel habitat for key life stages of aquatic species. In many systems, interruption of natural processes via anthropogenic influences have reduced the quantity of secondary channel habitat and have impaired the processes that help form and maintain them. Creation and enhancement of secondary channels is therefore a key component of stream rehabilitation, particularly in the Pacific Northwest where the focus has been on enhancement of habitat for ESA-listed salmonids. Secondary channel enhancement varies widely in scope, scale, and approach depending on species requirements, hydrology/hydraulics, geomorphologic setting, sediment dynamics, and human constraints. This presentation will review case studies from numerous secondary channel projects constructed over the last 20 years by different entities and in different settings. Lessons learned will be discussed that help to understand project performance and inform future project design. A variety of secondary channel project types will be reviewed, including mainstem flow splits, year-round flow through, seasonally activated, backwater alcove, natural groundwater-fed, and engineered groundwater-fed (i.e. groundwater collection galleries). Projects will be discussed that span a range of project construction intensities, such as full excavation of side channels, select excavation to increase flow, or utilizing mainstem structures to activate channels. Different configurations for connecting to the main channel, and their relative performance, will also be presented. A variety of connection types will be discussed including stabilized channel entrance, free-formed entrance, using bar apex jams to split flows, using `bleeder' jams to limit secondary channel flow, and obstructing the main channel to divert flows into secondary channels. The performance and longevity of projects will be discussed, particularly with respect to the response to sediment mobilizing events. Lessons

  6. 77 FR 71013 - Proposed Low-Effect Habitat Conservation Plan for the Spring Mountain Raceway Expansion Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ...-FXES11130800000-134] Proposed Low-Effect Habitat Conservation Plan for the Spring Mountain Raceway Expansion... (Service), have received an application from Spring Mountain Raceway, LLC (applicant), for an incidental... to the Low-Effect Habitat Conservation Plan for the Spring Mountain Raceway Expansion Project...

  7. Modeling Biota-Sediment Accumulation Factors in fish for AOC habitat restoration projects

    EPA Science Inventory

    We compiled contaminated sediment data for Dioxins and Dioxin Like PCBs for the St. Louis River Area of Concern as part of a health impact assessment for the proposed Kingsbury Bay Grassy Point Habitat Restoration project. To incorporate potential Biota-Sediment Accumulation Fac...

  8. John Day River Subbasin Fish Habitat Enhancement Project, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Russ M.; Jerome, James P.; Delano, Kenneth H.

    2003-03-01

    Work undertaken in 2002 included: (1) Seven new fence projects were completed thereby protecting 6.0 miles of stream (2) Completion of 0.7 miles of dredge tail leveling on Granite Creek. (3) New fence construction (300ft) plus one watergap on Indian Creek/ Kuhl property. (4) Maintenance of all active project fences (58.76 miles), watergaps (56), spring developments (32) and plantings were checked and repairs performed. (5) Restoration and Enhancement projects protected 3 miles of stream within the basin. (6) Since the initiation of the Fish Habitat Project in 1984 we have 67.21 miles of stream protected using 124.2 miles of fence.more » With the addition of the Restoration and Enhancement Projects we have 199.06 miles of fence protecting 124.57 miles of stream.« less

  9. John Day River Subbasin Fish Habitat Enhancement Project, 2005-2006 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Russ M.; Alley, Pamela D.; Delano, Kenneth H.

    2006-03-01

    Work undertaken in 2005 included: (1) Four new fence projects were completed thereby protecting 7.55 miles of stream with 9.1 miles of new riparian fence (2) Fence removal 1.7 miles of barbed wire. (3) Completed three spring developments (repair work on two BLM springs on Cottonwood Creek (Dayville), 1 solar on Rock Creek/ Collins property). (4) Dredge tail leveling completed on 0.9 miles of the Middle Fork of the John Day River (5) Cut, hauled and placed 30 junipers on Indian Creek/Kuhl property for bank stability. (6) Collected and planted 1500 willow cuttings on Mountain Creek/Jones property. (7) Conducted steelheadmore » redd counts on Lake Cr./Hoover property and Cottonwood Cr./Mascall properties (8) Seeded 200 lbs of native grass seed on projects where the sites were disturbed by fence construction activities. (9) Maintenance of all active project fences (72.74 miles), watergaps (60), spring developments (30) were checked and repairs performed. (10) Since the initiation of the Fish Habitat Program in 1984 we have installed 156.06 miles of riparian fence on leased property protecting 88.34 miles of anadromous fish bearing stream. With the addition of the Restoration and Enhancement Projects from 1996-2001, where the landowner received the materials, built and maintained the project we have a total of 230.92 miles of fence protecting 144.7 miles of stream and 3285 acres of riparian habitat.« less

  10. Monitoring habitat restoration projects: U.S. Fish and Wildlife Service Pacific Region Partners for Fish and Wildlife Program and Coastal Program Protocol

    USGS Publications Warehouse

    Woodward, Andrea; Hollar, Kathy

    2011-01-01

    Refuges, Contribute to the implementation of the State Comprehensive Wildlife Conservation Strategies, and Help achieve the objectives of the National Fish Habitat Partnerships and regionally based bird conservation plans (for example, North American Waterfowl Management Plan, U.S. Pacific Island Shorebird Conservation Plans, Intermountain West Regional Shorebird Plan, etc.). The Partners Program accomplishes these priorities by: Developing and maintaining strong partnerships, and delivering on-the-ground habitat restoration projects designed to reestablish habitat function and restore natural processes; Addressing key habitat limiting factors for declining species; Providing corridors for wildlife and decrease impediments to native fish and wildlife migration; and Enhancing native plant communities by reducing invasive species and improving native species composition. The Coastal Program is a voluntary fish and wildlife conservation program that focuses on watershed-scale, long-term collaborative resource planning and on-the-ground restoration projects in high-priority coastal areas. The Coastal Program conducts planning and restoration work on private, State, and Federal lands, and partnerships with other agencies-Native American Tribes, citizens, and organizations are emphasized. Coastal Program goals include restoring and protecting coastal habitat, providing technical and cost-sharing assistance where appropriate, supporting community-based restoration, collecting and developing information on the status of and threats to fish and wildlife, and using outreach to promote stewardship of coastal resources. The diversity of habitats and partners in Region 1 present many opportunities for conducting restoration projects. Faced with this abundance of opportunity, the Partners Program and Coastal Program must ensure that limited staffing and project dollars are allocated to benefit the highest priority resources and achieve the highest quality results for Federal trust

  11. Northwest Montana Wildlife Habitat Enhancement: Hungry Horse Elk Mitigation Project: Monitoring and Evaluation Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, Daniel; Malta, Patrick

    Portions of two important elk (Cervus elaphus) winter ranges totalling 8749 acres were lost due to the construction of the Hungry Horse Dam hydroelectric facility. This habitat loss decreased the carrying capacity of the both the elk and the mule deer (Odocoileus hemionus). In 1985, using funds from the Bonneville Power Administration (BPA) as authorized by the Northwest Power Act, the Montana Department of Fish, Wildlife and Parks (FWP) completed a wildlife mitigation plan for Hungry Horse Reservoir. This plan identified habitat enhancement of currently-occupied winter range as the most cost-efficient, easily implemented mitigation alternative available to address these large-scalemore » losses of winter range. The Columbia Basin Fish and Wildlife Program, as amended in 1987, authorized BPA to fund winter range enhancement to meet an adjusted goal of 133 additional elk. A 28-month advance design phase of the BPA-funded project was initiated in September 1987. Primary goals of this phase of the project included detailed literature review, identification of enhancement areas, baseline (elk population and habitat) data collection, and preparation of 3-year and 10-year implementation plans. This document will serve as a site-specific habitat and population monitoring plan which outlines our recommendations for evaluating the results of enhancement efforts against mitigation goals. 25 refs., 13 figs., 7 tabs.« less

  12. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    PubMed

    Matchett, Elliott L; Fleskes, Joseph P

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  13. Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes.

    PubMed

    Roberts, David R; Nielsen, Scott E; Stenhouse, Gordon B

    2014-07-01

    Climate change vulnerability assessments for species of conservation concern often use species distribution and ecological niche modeling to project changes in habitat. One of many assumptions of these approaches is that food web dependencies are consistent in time and environmental space. Species at higher trophic levels that rely on the availability of species at lower trophic levels as food may be sensitive to extinction cascades initiated by changes in the habitat of key food resources. Here we assess climate change vulnerability for Ursus arctos (grizzly bears) in the southern Canadian Rocky Mountains using projected changes to 17 of the most commonly consumed plant food items. We used presence-absence information from 7088 field plots to estimate ecological niches and to project changes in future distributions of each species. Model projections indicated idiosyncratic responses among food items. Many food items persisted or even increased, although several species were found to be vulnerable based on declines or geographic shifts in suitable habitat. These included Hedysarum alpinum (alpine sweet vetch), a critical spring and autumn root-digging resource when little else is available. Potential habitat loss was also identified for three fruiting species of lower importance to bears: Empetrum nigrum (crowberry), Vaccinium scoparium (grouseberry), and Fragaria virginiana (strawberry). A general trend towards uphill migration of bear foods may result in higher vulnerability to bear populations at low elevations, which are also those that are most likely to have human-bear conflict problems. Regardless, a wide diet breadth of grizzly bears, as well as wide environmental niches of most food items, make climate change a much lower threat to grizzly bears than other bear species such as polar bears and panda bears. We cannot exclude, however, future alterations in human behavior and land use resulting from climate change that may reduce survival rates.

  14. Combining correlative and mechanistic habitat suitability models to improve ecological compensation.

    PubMed

    Meineri, Eric; Deville, Anne-Sophie; Grémillet, David; Gauthier-Clerc, Michel; Béchet, Arnaud

    2015-02-01

    Only a few studies have shown positive impacts of ecological compensation on species dynamics affected by human activities. We argue that this is due to inappropriate methods used to forecast required compensation in environmental impact assessments. These assessments are mostly descriptive and only valid at limited spatial and temporal scales. However, habitat suitability models developed to predict the impacts of environmental changes on potential species' distributions should provide rigorous science-based tools for compensation planning. Here we describe the two main classes of predictive models: correlative models and individual-based mechanistic models. We show how these models can be used alone or synoptically to improve compensation planning. While correlative models are easier to implement, they tend to ignore underlying ecological processes and lack accuracy. On the contrary, individual-based mechanistic models can integrate biological interactions, dispersal ability and adaptation. Moreover, among mechanistic models, those considering animal energy balance are particularly efficient at predicting the impact of foraging habitat loss. However, mechanistic models require more field data compared to correlative models. Hence we present two approaches which combine both methods for compensation planning, especially in relation to the spatial scale considered. We show how the availability of biological databases and software enabling fast and accurate population projections could be advantageously used to assess ecological compensation requirement efficiently in environmental impact assessments. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  15. An annotated bibliography of selected guides for stream habitat improvement in the Pacific Northwest

    USGS Publications Warehouse

    Keim, R.F.; Price, A.B.; Hardin, T. S.; Skaugset, Arne E.; Bateman, D.S.; Gresswell, R.E.; Tesch, S. D.

    2004-01-01

    This annotated bibliography is a response to widespread interest in stream habitat improvement in the Pacific Northwest by land managers, governmental and nongovernmental organizations, and the lay public. Several guides to stream habitat improvement have been written in the past, but may not be easily accessible to people from diverse backgrounds. This annotated bibliography reviews 11 guides to stream habitat improvement so that readers can find literature appropriate to their needs. All reviews begin with summaries of the contents, stated audiences, and goals of each guide. Reviews also include subjective comments on the strengths and weaknesses of each guide. Finally, this bibliography includes recommendations of guides and combinations of guides judged most useful for a range of purposes. 

  16. Space Station Biological Research Project Habitat: Incubator

    NASA Technical Reports Server (NTRS)

    Nakamura, G. J.; Kirven-Brooks, M.; Scheller, N. M.

    2001-01-01

    Developed as part of the suite of Space Station Biological Research Project (SSBRP) hardware to support research aboard the International Space Station (ISS), the Incubator is a temperature-controlled chamber, for conducting life science research with small animal, plant and microbial specimens. The Incubator is designed for use only on the ISS and is transported to/from the ISS, unpowered and without specimens, in the Multi-Purpose Logistics Module (MPLM) of the Shuttle. The Incubator interfaces with the three SSBRP Host Systems; the Habitat Holding Racks (HHR), the Life Sciences Glovebox (LSG) and the 2.5 m Centrifuge Rotor (CR), providing investigators with the ability to conduct research in microgravity and at variable gravity levels of up to 2-g. The temperature within the Specimen Chamber can be controlled between 4 and 45 C. Cabin air is recirculated within the Specimen Chamber and can be exchanged with the ISS cabin at a rate of approximately equal 50 cc/min. The humidity of the Specimen Chamber is monitored. The Specimen Chamber has a usable volume of approximately equal 19 liters and contains two (2) connectors at 28v dc, (60W) for science equipment; 5 dedicated thermometers for science; ports to support analog and digital signals from experiment unique sensors or other equipment; an Ethernet port; and a video port. It is currently manifested for UF-3 and will be launched integrated within the first SSBRP Habitat Holding Rack.

  17. Predicting and Mapping Potential Whooping Crane Stopover Habitat to Guide Site Selection for Wind Energy Projects

    EPA Science Inventory

    Migration is one of the most poorly understood components of a bird’s life cycle. For that reason, migratory stopover habitats are often not part of conservation planning and may be overlooked when planning new development projects. This project highlights and addresses an overl...

  18. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmussen, Lynn

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nezmore » Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.« less

  19. Projected impacts of climate change on habitat availability for an endangered parakeet.

    PubMed

    Hermes, Claudia; Keller, Klaus; Nicholas, Robert E; Segelbacher, Gernot; Schaefer, H Martin

    2018-01-01

    In tropical montane cloud forests, climate change can cause upslope shifts in the distribution ranges of species, leading to reductions in distributional range. Endemic species with small ranges are particularly vulnerable to such decreases in range size, as the population size may be reduced significantly. To ensure the survival of cloud forest species in the long term, it is crucial to quantify potential future shifts in their distribution ranges and the related changes in habitat availability in order to assure the long-term effectiveness of conservation measures. In this study, we assessed the influence of climate change on the availability of forested habitat for the endemic El Oro parakeet. We investigated the future range shift by modelling the climatic niche of the El Oro parakeets and projecting it to four different climate change scenarios. Depending on the intensity of climate change, the El Oro parakeets shift their range between 500 and 1700 m uphill by the year 2100. On average, the shift is accompanied by a reduction in range size to 15% and a reduction in forested habitat to only 10% of the original extent. Additionally, the connectivity between populations in different areas is decreasing in higher altitudes. To prevent a population decline due to habitat loss following an upslope range shift, it will be necessary to restore habitat across a large elevational span in order to allow for movement of El Oro parakeets into higher altitudes.

  20. Projected impacts of climate change on habitat availability for an endangered parakeet

    PubMed Central

    Keller, Klaus; Nicholas, Robert E.; Segelbacher, Gernot; Schaefer, H. Martin

    2018-01-01

    In tropical montane cloud forests, climate change can cause upslope shifts in the distribution ranges of species, leading to reductions in distributional range. Endemic species with small ranges are particularly vulnerable to such decreases in range size, as the population size may be reduced significantly. To ensure the survival of cloud forest species in the long term, it is crucial to quantify potential future shifts in their distribution ranges and the related changes in habitat availability in order to assure the long-term effectiveness of conservation measures. In this study, we assessed the influence of climate change on the availability of forested habitat for the endemic El Oro parakeet. We investigated the future range shift by modelling the climatic niche of the El Oro parakeets and projecting it to four different climate change scenarios. Depending on the intensity of climate change, the El Oro parakeets shift their range between 500 and 1700 m uphill by the year 2100. On average, the shift is accompanied by a reduction in range size to 15% and a reduction in forested habitat to only 10% of the original extent. Additionally, the connectivity between populations in different areas is decreasing in higher altitudes. To prevent a population decline due to habitat loss following an upslope range shift, it will be necessary to restore habitat across a large elevational span in order to allow for movement of El Oro parakeets into higher altitudes. PMID:29364949

  1. Projected changes in wildlife habitats in Arctic natural areas of northwest Alaska

    Treesearch

    Bruce G. Marcot; M.Torre Jorgenson; James P. Lawler; Colleen M. Handel; Anthony R. DeGange

    2015-01-01

    We project the effects of transitional changes among 60 vegetation and other land cover types (Becotypes^) in northwest Alaska over the 21st century on habitats of 162 bird and 39 mammal species known or expected to occur regularly in the region. This analysis, encompassing a broad suite of arctic and boreal wildlife species, entailed building wildlifehabitat matrices...

  2. Natural Propagation and Habitat Improvement, Volume 2, Idaho, 1985 Annual and Final Reports.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hair, Don

    1986-09-01

    The individual reports in this volume have been separately abstracted for inclusion in the data base. The reports describe fish habitat enhancement projects on the Lochsa River, Eldorado and Camas Creeks, and the Clearwater River. (ACR)

  3. How climate, migration ability and habitat fragmentation affect the projected future distribution of European beech.

    PubMed

    Saltré, Frédérik; Duputié, Anne; Gaucherel, Cédric; Chuine, Isabelle

    2015-02-01

    Recent efforts to incorporate migration processes into species distribution models (SDMs) are allowing assessments of whether species are likely to be able to track their future climate optimum and the possible causes of failing to do so. Here, we projected the range shift of European beech over the 21st century using a process-based SDM coupled to a phenomenological migration model accounting for population dynamics, according to two climate change scenarios and one land use change scenario. Our model predicts that the climatically suitable habitat for European beech will shift north-eastward and upward mainly because (i) higher temperature and precipitation, at the northern range margins, will increase survival and fruit maturation success, while (ii) lower precipitations and higher winter temperature, at the southern range margins, will increase drought mortality and prevent bud dormancy breaking. Beech colonization rate of newly climatically suitable habitats in 2100 is projected to be very low (1-2% of the newly suitable habitats colonised). Unexpectedly, the projected realized contraction rate was higher than the projected potential contraction rate. As a result, the realized distribution of beech is projected to strongly contract by 2100 (by 36-61%) mainly due to a substantial increase in climate variability after 2050, which generates local extinctions, even at the core of the distribution, the frequency of which prevents beech recolonization during more favourable years. Although European beech will be able to persist in some parts of the trailing edge of its distribution, the combined effects of climate and land use changes, limited migration ability, and a slow life-history are likely to increase its threat status in the near future. © 2014 John Wiley & Sons Ltd.

  4. Physical habitat monitoring strategy (PHAMS) for reach-scale restoration effectiveness monitoring

    USGS Publications Warehouse

    Jones, Krista L.; O'Daniel, Scott J.; Beechie, Tim J.; Zakrajsek, John; Webster, John G.

    2015-04-14

    Habitat restoration efforts by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) have shifted from the site scale (1-10 meters) to the reach scale (100-1,000 meters). This shift was in response to the growing scientific emphasis on process-based restoration and to support from the 2007 Accords Agreement with the Bonneville Power Administration. With the increased size of restoration projects, the CTUIR and other agencies are in need of applicable monitoring methods for assessing large-scale changes in river and floodplain habitats following restoration. The goal of the Physical Habitat Monitoring Strategy is to outline methods that are useful for capturing reach-scale changes in surface and groundwater hydrology, geomorphology, hydrologic connectivity, and riparian vegetation at restoration projects. The Physical Habitat Monitoring Strategy aims to avoid duplication with existing regional effectiveness monitoring protocols by identifying complimentary reach-scale metrics and methods that may improve the ability of CTUIR and others to detect instream and riparian changes at large restoration projects.

  5. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California’s Central Valley

    PubMed Central

    Fleskes, Joseph P.

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  6. Projected impacts of climate, urbanization, water management, and wetland restoration on waterbird habitat in California’s Central Valley

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  7. Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Paul R.

    1997-01-01

    This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mulemore » deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.« less

  8. Idaho Habitat and Natural Production Monitoring Part I, 1993 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, Bruce A.; Petrosky, Charles E.

    The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating proposed and existing habitat improvement projects for rainbow-steelhead trout Oncorhynchus mykiss and chinook salmon O. tshawytscha in the Clearwater River and Salmon River drainages on a large scale for the past 8 years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. A mitigation record is being developed using increased carrying capacity and/or survival as the best measures ofmore » benefit from a habitat enhancement project. Determination of full benefit from a project depends on completion or maturation of the project and presence of adequate numbers of fish to document actual increases in fish production. The depressed status of upriver anadromous stocks has precluded measuring full benefits of any habitat project in Idaho. Partial benefit is credited to the mitigation record in the interim period of run restoration.« less

  9. Using Video to Communicate Scientific Findings -- Habitat Connections in Urban Streams

    NASA Astrophysics Data System (ADS)

    Harned, D. A.; Moorman, M.; Fitzpatrick, F. A.; McMahon, G.

    2011-12-01

    The U.S Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) provides information about (1) water-quality conditions and how those conditions vary locally, regionally, and nationally, (2) water-quality trends, and (3) factors that affect those conditions. As part of the NAWQA Program, the Effects of Urbanization on Stream Ecosystems (EUSE) study examined the vulnerability and resilience of streams to urbanization. Completion of the EUSE study has resulted in over 20 scientific publications. Video podcasts are being used in addition to these publications to communicate the relevance of these scientific findings to more general audiences such as resource managers, educational groups, public officials, and the general public. An example of one of the podcasts is a film examining effects of urbanization on stream habitat. "Habitat Connections in Urban Streams" explores how urbanization changes some of the physical features that provide in-stream habitat and examines examples of stream restoration projects designed to improve stream form and function. The "connections" theme is emphasized, including the connection of in-stream habitats from the headwaters to the stream mouth; connections between stream habitat and the surrounding floodplains, wetlands and basin; and connections between streams and people-- resource managers, public officials, scientists, and the general public. Examples of innovative stream restoration projects in Baltimore Maryland; Milwaukee, Wisconsin; and Portland Oregon are shown with interviews of managers, engineers, scientists, and others describing the projects. The film is combined with a website with links to extended film versions of the stream-restoration project interviews. The website and films are an example of USGS efforts aimed at improving science communication to a general audience. The film is available for access from the EUSE website: http://water.usgs.gov/nawqa/urban/html/podcasts.html. Additional films are

  10. Dataset of MIGRAME Project (Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains)

    PubMed Central

    Pérez-Luque, Antonio Jesús; Zamora, Regino; Bonet, Francisco Javier; Pérez-Pérez, Ramón

    2015-01-01

    Abstract In this data paper, we describe the dataset of the Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains (MIGRAME) project, which aims to assess the capacity of altitudinal migration and colonization of marginal habitats by Quercus pyrenaica Willd. forests in Sierra Nevada (southern Spain) considering two global-change drivers: temperature increase and land-use changes. The dataset includes information of the forest structure (diameter size, tree height, and abundance) of the Quercus pyrenaica ecosystem in Sierra Nevada obtained from 199 transects sampled at the treeline ecotone, mature forest, and marginal habitats (abandoned cropland and pine plantations). A total of 3839 occurrence records were collected and 5751 measurements recorded. The dataset is included in the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this mountain range. PMID:26491387

  11. Systems Modeling to Improve River, Riparian, and Wetland Habitat Quality and Area

    NASA Astrophysics Data System (ADS)

    Alafifi, A.

    2016-12-01

    The suitability of watershed habitat to support the livelihood of its biota primarily depends on managing flow. Ecological restoration requires finding opportunities to reallocate available water in a watershed to increase ecological benefits and maintain other beneficial uses. We present the Watershed Area of Suitable Habitat (WASH) systems model that recommends reservoir releases, streamflows, and water allocations throughout a watershed to maximize the ecosystem habitat quality. WASH embeds and aggregates area-weighted metrics for aquatic, floodplain, and wetland habitat components as an ecosystem objective to maximize, while maintaining water deliveries for domestic and agricultural uses, mass balance, and available budget for restoration actions. The metrics add spatial and temporal functionality and area coverage to traditional habitat quality indexes and can accommodate multiple species of concern. We apply the WASH model to the Utah portion of the Bear River watershed which includes 8 demand sites, 5 reservoirs and 37 nodes between the Utah-Idaho state line and the Great Salt Lake. We recommend water allocations to improve current conservation efforts and show tradeoffs between human and ecosystem uses of water. WASH results are displayed on an open-source web mapping application that allows stakeholders to access, visualize, and interact with the model data and results and compare current and model-recommended operations. Results show that the Bear River is largely developed and appropriated for human water uses. However, increasing reservoirs winter and early spring releases and minimizing late spring spill volumes can significantly improve habitat quality without harming agricultural or urban water users. The spatial and temporal reallocation of spring spills to environmental uses creates additional 70 thousand acres of suitable habitat in the watershed without harming human users. WASH also quantifies the potential environmental gains and losses from

  12. Projecting shifts in thermal habitat for 686 species on the North American continental shelf

    PubMed Central

    Selden, Rebecca L.; Latour, Robert J.; Frölicher, Thomas L.; Seagraves, Richard J.; Pinsky, Malin L.

    2018-01-01

    Recent shifts in the geographic distribution of marine species have been linked to shifts in preferred thermal habitats. These shifts in distribution have already posed challenges for living marine resource management, and there is a strong need for projections of how species might be impacted by future changes in ocean temperatures during the 21st century. We modeled thermal habitat for 686 marine species in the Atlantic and Pacific oceans using long-term ecological survey data from the North American continental shelves. These habitat models were coupled to output from sixteen general circulation models that were run under high (RCP 8.5) and low (RCP 2.6) future greenhouse gas emission scenarios over the 21st century to produce 32 possible future outcomes for each species. The models generally agreed on the magnitude and direction of future shifts for some species (448 or 429 under RCP 8.5 and RCP 2.6, respectively), but strongly disagreed for other species (116 or 120 respectively). This allowed us to identify species with more or less robust predictions. Future shifts in species distributions were generally poleward and followed the coastline, but also varied among regions and species. Species from the U.S. and Canadian west coast including the Gulf of Alaska had the highest projected magnitude shifts in distribution, and many species shifted more than 1000 km under the high greenhouse gas emissions scenario. Following a strong mitigation scenario consistent with the Paris Agreement would likely produce substantially smaller shifts and less disruption to marine management efforts. Our projections offer an important tool for identifying species, fisheries, and management efforts that are particularly vulnerable to climate change impacts. PMID:29768423

  13. Projecting shifts in thermal habitat for 686 species on the North American continental shelf.

    PubMed

    Morley, James W; Selden, Rebecca L; Latour, Robert J; Frölicher, Thomas L; Seagraves, Richard J; Pinsky, Malin L

    2018-01-01

    Recent shifts in the geographic distribution of marine species have been linked to shifts in preferred thermal habitats. These shifts in distribution have already posed challenges for living marine resource management, and there is a strong need for projections of how species might be impacted by future changes in ocean temperatures during the 21st century. We modeled thermal habitat for 686 marine species in the Atlantic and Pacific oceans using long-term ecological survey data from the North American continental shelves. These habitat models were coupled to output from sixteen general circulation models that were run under high (RCP 8.5) and low (RCP 2.6) future greenhouse gas emission scenarios over the 21st century to produce 32 possible future outcomes for each species. The models generally agreed on the magnitude and direction of future shifts for some species (448 or 429 under RCP 8.5 and RCP 2.6, respectively), but strongly disagreed for other species (116 or 120 respectively). This allowed us to identify species with more or less robust predictions. Future shifts in species distributions were generally poleward and followed the coastline, but also varied among regions and species. Species from the U.S. and Canadian west coast including the Gulf of Alaska had the highest projected magnitude shifts in distribution, and many species shifted more than 1000 km under the high greenhouse gas emissions scenario. Following a strong mitigation scenario consistent with the Paris Agreement would likely produce substantially smaller shifts and less disruption to marine management efforts. Our projections offer an important tool for identifying species, fisheries, and management efforts that are particularly vulnerable to climate change impacts.

  14. Ural-Tweed Bighorn Sheep Wildlife Mitigation Project, 1984-1990 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Lewis R.; Yde, Chris A.

    The results of habitat improvement project activities accomplished under contract No.84-38 for bighorn sheep mitigation along Koocanusa Reservoir from September 1, 1984, through June 30, 1990, are reported here. Habitat treatments were applied to ten areas and covered 1100 acres. Treatments used were prescribed fire, slashing combined with prescribed fire, and fertilization. Several variations in season or intensity were used within the slashing and prescribed fire treatments. This project was coordinated with and complemented concurrent Kootenai National Forest habitat improvement activities.

  15. Rainwater Wildlife Area Habitat Evaluation Procedures Report; A Columbia Basin Wildlife Mitigation Project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen B.

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland cover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens),more » black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglecta). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2}2 plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native

  16. Application of Habitat Equivalency Analysis to USACE Projects

    DTIC Science & Technology

    2009-04-01

    reef, open - water bay bottoms, and water column habitats. Of the four case studies, Craney Island is the only one where the logic behind the choice of...Act (NEPA) of 1969, the Federal Water Pollution Act (Clean Water Act) of 1972, and the Water Resources Development Act (WRDA) of 1986, as well as...mitigation. These habitats support a diverse assemblage of sponges, algae , and soft and hard corals, provide habitat for larval fish, and are considered

  17. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    PubMed

    Hamilton, Stephen G; Castro de la Guardia, Laura; Derocher, Andrew E; Sahanatien, Vicki; Tremblay, Bruno; Huard, David

    2014-01-01

    Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus) have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling. Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands. Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  18. Global screening for Critical Habitat in the terrestrial realm

    PubMed Central

    Blyth, Simon; Bennun, Leon; Butchart, Stuart H. M.; Hoffmann, Michael; Burgess, Neil D.; Cuttelod, Annabelle; Jones, Matt I.; Kapos, Val; Pilgrim, John; Tolley, Melissa J.; Underwood, Emma C.; Weatherdon, Lauren V.

    2018-01-01

    Critical Habitat has become an increasingly important concept used by the finance sector and businesses to identify areas of high biodiversity value. The International Finance Corporation (IFC) defines Critical Habitat in their highly influential Performance Standard 6 (PS6), requiring projects in Critical Habitat to achieve a net gain of biodiversity. Here we present a global screening layer of Critical Habitat in the terrestrial realm, derived from global spatial datasets covering the distributions of 12 biodiversity features aligned with guidance provided by the IFC. Each biodiversity feature is categorised as ‘likely’ or ‘potential’ Critical Habitat based on: 1. Alignment between the biodiversity feature and the IFC Critical Habitat definition; and 2. Suitability of the spatial resolution for indicating a feature’s presence on the ground. Following the initial screening process, Critical Habitat must then be assessed in-situ by a qualified assessor. This analysis indicates that a total of 10% and 5% of the global terrestrial environment can be considered as likely and potential Critical Habitat, respectively, while the remaining 85% did not overlap with any of the biodiversity features assessed and was classified as ‘unknown’. Likely Critical Habitat was determined principally by the occurrence of Key Biodiversity Areas and Protected Areas. Potential Critical Habitat was predominantly characterised by data representing highly threatened and unique ecosystems such as ever-wet tropical forests and tropical dry forests. The areas we identified as likely or potential Critical Habitat are based on the best available global-scale data for the terrestrial realm that is aligned with IFC’s Critical Habitat definition. Our results can help businesses screen potential development sites at the early project stage based on a range of biodiversity features. However, the study also demonstrates several important data gaps and highlights the need to incorporate

  19. Global screening for Critical Habitat in the terrestrial realm.

    PubMed

    Brauneder, Kerstin M; Montes, Chloe; Blyth, Simon; Bennun, Leon; Butchart, Stuart H M; Hoffmann, Michael; Burgess, Neil D; Cuttelod, Annabelle; Jones, Matt I; Kapos, Val; Pilgrim, John; Tolley, Melissa J; Underwood, Emma C; Weatherdon, Lauren V; Brooks, Sharon E

    2018-01-01

    Critical Habitat has become an increasingly important concept used by the finance sector and businesses to identify areas of high biodiversity value. The International Finance Corporation (IFC) defines Critical Habitat in their highly influential Performance Standard 6 (PS6), requiring projects in Critical Habitat to achieve a net gain of biodiversity. Here we present a global screening layer of Critical Habitat in the terrestrial realm, derived from global spatial datasets covering the distributions of 12 biodiversity features aligned with guidance provided by the IFC. Each biodiversity feature is categorised as 'likely' or 'potential' Critical Habitat based on: 1. Alignment between the biodiversity feature and the IFC Critical Habitat definition; and 2. Suitability of the spatial resolution for indicating a feature's presence on the ground. Following the initial screening process, Critical Habitat must then be assessed in-situ by a qualified assessor. This analysis indicates that a total of 10% and 5% of the global terrestrial environment can be considered as likely and potential Critical Habitat, respectively, while the remaining 85% did not overlap with any of the biodiversity features assessed and was classified as 'unknown'. Likely Critical Habitat was determined principally by the occurrence of Key Biodiversity Areas and Protected Areas. Potential Critical Habitat was predominantly characterised by data representing highly threatened and unique ecosystems such as ever-wet tropical forests and tropical dry forests. The areas we identified as likely or potential Critical Habitat are based on the best available global-scale data for the terrestrial realm that is aligned with IFC's Critical Habitat definition. Our results can help businesses screen potential development sites at the early project stage based on a range of biodiversity features. However, the study also demonstrates several important data gaps and highlights the need to incorporate new and

  20. L-325 Sagebrush Habitat Mitigation Project: FY2009 Compensation Area Monitoring Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, Robin E.; Sackschewsky, Michael R.

    2009-09-29

    Annual monitoring in support of the Fluor Daniel Hanford Company (Fluor) Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades was conducted in June 2009. MAP guidelines defined mitigation success for this project as 3000 established sagebrush transplants on a 4.5 ha mitigation site after five monitoring years. Annual monitoring results suggest that an estimated 2130 sagebrush transplants currently grow on the site. Additional activities in support of this project included gathering sagebrush seed and securing a local grower to produce between 2250 and 2500 10-in3 tublings for outplanting during the early winter months of FY2010. If the minimummore » number of seedlings grown for this planting meets quality specifications, and planting conditions are favorable, conservative survival estimates indicate the habitat mitigation goals outlined in the MAP will be met in FY2014.« less

  1. Predicting and mapping potential Whooping Crane stopover habitat to guide site selection for wind energy projects.

    PubMed

    Belaire, J Amy; Kreakie, Betty J; Keitt, Timothy; Minor, Emily

    2014-04-01

    Migratory stopover habitats are often not part of planning for conservation or new development projects. We identified potential stopover habitats within an avian migratory flyway and demonstrated how this information can guide the site-selection process for new development. We used the random forests modeling approach to map the distribution of predicted stopover habitat for the Whooping Crane (Grus americana), an endangered species whose migratory flyway overlaps with an area where wind energy development is expected to become increasingly important. We then used this information to identify areas for potential wind power development in a U.S. state within the flyway (Nebraska) that minimize conflicts between Whooping Crane stopover habitat and the development of clean, renewable energy sources. Up to 54% of our study area was predicted to be unsuitable as Whooping Crane stopover habitat and could be considered relatively low risk for conflicts between Whooping Cranes and wind energy development. We suggest that this type of analysis be incorporated into the habitat conservation planning process in areas where incidental take permits are being considered for Whooping Cranes or other species of concern. Field surveys should always be conducted prior to construction to verify model predictions and understand baseline conditions. © 2013 Society for Conservation Biology.

  2. Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2001-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaivoda, Alexis

    2003-11-01

    This report summarizes the project implementation and monitoring of all habitat activities that occurred over Fiscal Year 2002 (FY 02). Some of the objectives in the corresponding statement of work for this contract were not completed within FY 02. A description of the progress during FY 02 and reasoning for deviation from the original tasks and timeline are given. OBJECTIVE 1--Provide coordination of all activities, administrative oversight and assist in project implementation and monitoring activities. Administration oversight and coordination of the habitat statement of work, budget, subcontracts and personnel was provided. OBJECTIVE 2--Develop, coordinate, and implement the Hood River Fishmore » Habitat Protection, Restoration, and Monitoring Plan. The Hood River Fish Habitat Protection, Restoration, and Monitoring Plan was completed in 2000 (Coccoli et al., 2000). This document is utilized for many purposes including: drafting the Watershed Action Plan, ranking projects for funding, and prioritizing projects to target in the future. This document was updated and revised to reflect changes to fish habitat and needs in the Hood River basin based upon other documents and actions taken in the basin. OBJECTIVE 3--Assist Middle Fork Irrigation District in developing an alternative irrigation water source on Evans Creek (Hutson pond and Evans Creek diversion), eliminating the need for irrigation diversion dams which happen to be partial fish barriers. Upon completion, this project will restore 2.5 miles of access for winter steelhead, coho salmon, and resident trout habitat. This objective was revised and included in the FY 03 Statement of Work for Project No. 1998-021-00. During FY 02 the final engineering was completed on this project. However, due to a lengthy permitting process and NMFS consultation, this project was inadvertently delayed. Project completion is expected in July 2003. OBJECTIVE 4--Assist the Farmers Irrigation District (FID) in construction and

  3. Ecological Responses to Trout Habitat Rehabilitation in a Northern Michigan Stream

    NASA Astrophysics Data System (ADS)

    Rosi-Marshall, Emma J.; Moerke, Ashley H.; Lamberti, Gary A.

    2006-07-01

    Monitoring of stream restoration projects is often limited and success often focuses on a single taxon (e.g., salmonids), even though other aspects of stream structure and function may also respond to restoration activities. The Ottawa National Forest (ONF), Michigan, conducted a site-specific trout habitat improvement to enhance the trout fishery in Cook’s Run, a 3rd-order stream that the ONF determined was negatively affected by past logging. Our objectives were to determine if the habitat improvement increased trout abundances and enhanced other ecological variables (overall habitat quality, organic matter retention, seston concentration, periphyton abundance, sediment organic matter content, and macroinvertebrate abundance and diversity) following rehabilitation. The addition of skybooms (underbank cover structures) and k-dams (pool-creating structures) increased the relative abundance of harvestable trout (>25 cm in total length) as intended but not overall trout abundances. Both rehabilitation techniques also increased maximum channel depth and organic matter retention, but only k-dams increased overall habitat quality. Neither approach significantly affected other ecological variables. The modest ecological response to this habitat improvement likely occurred because the system was not severely degraded beforehand, and thus small, local changes in habitat did not measurably affect most physical and ecological variables measured. However, increases in habitat volume and in organic matter retention may enhance stream biota in the long term.

  4. Habitat conditions of montane meadows associated with restored and unrestored stream channels of California

    Treesearch

    K. L. Pope; D. S. Montoya; J. N. Brownlee; J. Dierks; T. E. Lisle

    2015-01-01

    Mountain meadow habitats are valued for their ecological importance. They attenuate floods, improve water quality, and support high biodiversity. Many meadow habitats in the western US are degraded, and efforts are increasing to restore these montane meadow ecosystems. Rewatering projects such as pond-and-plug quickly raise the water table by blocking the existing...

  5. Use of a GIS-based model of habitat cores and landscape corridors for the Virginia Department of Transportation's project planning and environmental scoping.

    DOT National Transportation Integrated Search

    2006-01-01

    As important habitats are being lost to human development, transportation agencies are facing increased expectations that their road projects avoid or minimize further habitat destruction and adverse effects on wildlife populations. Wildlife linkage ...

  6. Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaivoda, Alexis

    2004-02-01

    This report summarizes the project implementation and monitoring of all habitat activities in the Hood River basin that occurred over the October 1, 2002 to September 30, 2003 period (FY 03). Some of the objectives in the corresponding statement of work for this contract were not completed within FY 03. A description of the progress during FY 03 and reasoning for deviation from the original tasks and timeline are provided. OBJECTIVE 1 - Provide coordination of all activities, administrative oversight and assist in project implementation and monitoring activities. Administrative oversight and coordination of the habitat statement of work, budget, subcontracts,more » personnel, implementation, and monitoring was provided. OBJECTIVE 2 - Continue to coordinate, implement, and revise, as needed, the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan. The Hood River Fish Habitat Protection, Restoration, and Monitoring Plan was completed in 2000 (Coccoli et al., 2000). This document was utilized for many purposes including: drafting the Watershed Action Plan (Coccoli, 2002), ranking projects for funding, and prioritizing projects to target in the future. This document has been reviewed by many, including stakeholders, agencies, and interested parties. The Hood River Watershed Group Coordinator and author of the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan, Holly Coccoli, has updated and revised the plan. Changes will be reflected in the Hood River Subbasin Plan, and after submission of the Subbasin Plan, a formally revised version of the Monitoring Plan will be put out for review. This will more specifically address changes in the Hood River subbasin since 2000, and reflect changes to fish habitat and needs in the Hood River subbasin regarding monitoring. OBJECTIVE 3 - Evaluate and monitor the habitat, accessibility, and presence of winter steelhead, coho salmon, and resident trout upstream of the Middle Fork Irrigation District

  7. Landscape history improves detection of marginal habitats on semi-natural grasslands.

    PubMed

    Pitkänen, Timo P; Kumpulainen, J; Lehtinen, J; Sihvonen, M; Käyhkö, N

    2016-01-01

    Semi-natural grassland habitats have markedly declined from their historical coverage, thus causing substantial losses for agricultural biodiversity and establishing a consequent need to spot the remaining habitat patches. These patches are generally remnants of once larger habitat areas, formed by uninterrupted and low-intensity management for centuries, but then later being isolated and fragmented into smaller pieces. In the light of this development, past landscape phases have a crucial role for the present existence of semi-natural grasslands. The importance of historical factors has been indicated in many studies but evaluation of their added value, or actual site-specific effects compared to observations of only the present landscape characteristics, is not generally provided. As data related to the past is often difficult to obtain, tedious to process and challenging to interpret, assessment of its advantages and related effects - or consequences of potential exclusion - would be needed. In this study, we used maximum entropy approach to model the distribution of Fumewort (Corydalis solida) which in the study area is a good indicator of valuable semi-natural habitats. We constructed three different models - one based on only the contemporary environment with expected indicators of habitat stability, one solely on the historical landscape phases and long-term dynamics, and one combining variables from the past and the present. Predictions of the three models were validated and compared with each other, followed by an analysis indicating the similarity of model results with known Fumewort occurrences. Our results indicate that present landscapes may provide workable surrogates to delineate larger core habitats, but utilization of historical data markedly improves the detection of small outlying patches. These conclusions emphasize the importance of previous landscape phases particularly in detecting marginal semi-natural grassland habitats, existing in

  8. Projected wetland densities under climate change: habitat loss but little geographic shift in conservation strategy.

    PubMed

    Sofaer, Helen R; Skagen, Susan K; Barsugli, Joseph J; Rashford, Benjamin S; Reese, Gordon C; Hoeting, Jennifer A; Wood, Andrew W; Noon, Barry R

    2016-09-01

    Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species' vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential for a trade-off in the value of conservation investments under current and future climatic conditions and consider the joint effects of climate and land use. We use an integrated set of hydrological and climatological projections that provide physically based measures of water balance under historical and projected future climatic conditions. In addition, we use historical projections derived from ten general circulation models (GCMs) as a baseline from which to assess climate change impacts, rather than historical climate data. This method isolates the impact of greenhouse gas emissions and ensures that modeling errors are incorporated into the baseline rather than attributed to climate change. Our work shows that, on average, densities of wetlands (here defined as wetland basins holding water) are projected to decline across the U.S. Prairie Pothole Region, but that GCMs differ in both the magnitude and the direction of projected impacts. However, we found little evidence for a shift in the locations expected to provide the highest wetland densities under current vs. projected climatic conditions. This result was robust to the inclusion of projected changes in land use under climate change. We suggest that targeting conservation towards wetland

  9. Projected wetland densities under climate change: Habitat loss but little geographic shift in conservation strategy

    USGS Publications Warehouse

    Sofaer, Helen R.; Skagen, Susan K.; Barsugli, Joseph J.; Rashford, Benjamin S.; Reese, Gordon C.; Hoeting, Jennifer A.; Wood, Andrew W.; Noon, Barry R.

    2016-01-01

    Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species’ vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential for a trade-off in the value of conservation investments under current and future climatic conditions and consider the joint effects of climate and land use. We use an integrated set of hydrological and climatological projections that provide physically based measures of water balance under historical and projected future climatic conditions. In addition, we use historical projections derived from ten general circulation models (GCMs) as a baseline from which to assess climate change impacts, rather than historical climate data. This method isolates the impact of greenhouse gas emissions and ensures that modeling errors are incorporated into the baseline rather than attributed to climate change. Our work shows that, on average, densities of wetlands (here defined as wetland basins holding water) are projected to decline across the U.S. Prairie Pothole Region, but that GCMs differ in both the magnitude and the direction of projected impacts. However, we found little evidence for a shift in the locations expected to provide the highest wetland densities under current vs. projected climatic conditions. This result was robust to the inclusion of projected changes in land use under climate change. We suggest that targeting conservation towards wetland

  10. Keeping Pace with Climate Change: Habitat Protection in the Face of Uncertainty

    NASA Astrophysics Data System (ADS)

    Flitcroft, R. L.; Burnett, K.; Giannico, G.

    2014-12-01

    Estuaries provide critical habitat for many economically and culturally important species. In the Pacific Northwest, intertidal and subtidal areas provide critical habitat for production of native and commercial oysters (Olympia oyster Ostrea lurida and Pacific oyster Crassostrea gigas, respectively) that in turn provide refuge and rearing habitat for Dungeness Crab, Metacarcinus magister. Environments ranging from subtidal through freshwater zones provide nursery areas for juvenile salmonids at different development stages in their life history. Most Oregon estuaries have been significantly altered by humans over the past century, reducing the quantity and diversity of available habitats. Management agencies have responded with projects to restore and enhance estuarine habitats. Unfortunately, future climate change and sea-level rise could render many current restoration projects ineffective over time. Planning for habitat restoration that keeps pace with climate change will be critical to the sustainable production of seafood and maintenance of ecosystem function. However, land managers and citizens lack the spatially-explicit data needed to incorporate the potential effects of climate change and sea-level rise into planning for habitat improvement projects in estuarine areas. To meet this need, we developed simple models using LiDAR to characterize the geomorphologies of multiple Oregon estuaries. We were able to map the margin of current mean high tide, and contour intervals associated with different potential increases in mean high tide. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting changes in estuary shape. For each estuary, we assessed changes in the amount and complexity of edge habitats. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance

  11. Understanding Existing Salmonid Habitat Availability and Connectivity to Improve River Management

    NASA Astrophysics Data System (ADS)

    Duffin, J.; Yager, E.; Tonina, D.; Benjankar, R. M.

    2017-12-01

    In the Pacific Northwest river restoration is common for salmon conservation. Mangers need methods to help target restoration to problem areas in rivers to create habitat that meets a species' needs. Hydraulic models and habitat suitability curves provide basic information on habitat availability and overall quality, but these analyses need to be expanded to address habitat quality based on the accessibility of habitats required for multiple life stages. Scientists are starting to use connectivity measurements to understand the longitudinal proximity of habitat patches, which can be used to address the habitat variability of a reach. By evaluating the availability and quality of habitat and calculating the connectivity between complementary habitats, such as spawning and rearing habitats, we aim to identify areas that should be targeted for restoration. To meet these goals, we assessed Chinook salmon habitat on the Lemhi River in Idaho. The depth and velocity outputs from a 2D hydraulic model are used in conjunction with locally created habitat suitability curves to evaluate the availability and quality of habitat for multiple Chinook salmon life stages. To assess the variability of the habitat, connectivity between habitat patches necessary for different life stages is calculated with a proximity index. A spatial representation of existing habitat quality and connectivity between complimentary habitats can be linked to river morphology by the evaluation of local geomorphic characteristics, including sinuosity and channel units. The understanding of the current habitat availability for multiple life stage needs, the connectivity between these habitat patches, and their relationship with channel morphology can help managers better identify restoration needs and direct their limited resources.

  12. Partridge Creek Diversion Project

    EPA Pesticide Factsheets

    Goal: prevent mercury contamination by keeping the creek from flowing through a mine pit. The project improved brook trout habitat, green infrastructure, the local economy, and decreased human health risks. Includes before-and-after photos.

  13. AN APPROACH FOR DETERMINING REGIONAL LAND COVER AND SPECIES HABITAT DISTRIBUTIONS IN THE AMERICAN SOUTHWEST: THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT

    EPA Science Inventory

    The Southwest Regional Gap Analysis Project (SWReGAP) is developing seamless digital coverages for land cover, vertebrate animal habitat, and land management status for the 5-state region of Nevada, Arizona, Utah, New Mexico, and Colorado. The project is a second generation effor...

  14. Thermal Habitat Index of Many Northwest Atlantic Temperate Species Stays Neutral under Warming Projected for 2030 but Changes Radically by 2060

    PubMed Central

    Shackell, Nancy L.; Ricard, Daniel; Stortini, Christine

    2014-01-01

    Global scale forecasts of range shifts in response to global warming have provided vital insight into predicted species redistribution. We build on that insight by examining whether local warming will affect habitat on spatiotemporal scales relevant to regional agencies. We used generalized additive models to quantify the realized habitat of 46 temperate/boreal marine species using 41+ years of survey data from 35°N–48°N in the Northwest Atlantic. We then estimated change in a “realized thermal habitat index” under short-term (2030) and long-term (2060) warming scenarios. Under the 2030 scenario, ∼10% of species will lose realized thermal habitat at the national scale (USA and Canada) but planktivores are expected to lose significantly in both countries which may result in indirect changes in their predators’ distribution. In contrast, by 2060 in Canada, the realized habitat of 76% of species will change (55% will lose, 21% will gain) while in the USA, the realized habitat of 85% of species will change (65% will lose, 20% will gain). If all else were held constant, the ecosystem is projected to change radically based on thermal habitat alone. The magnitude of the 2060 warming projection (∼1.5–3°C) was observed in 2012 affirming that research is needed on effects of extreme “weather” in addition to increasing mean temperature. Our approach can be used to aggregate at smaller spatial scales where temperate/boreal species are hypothesized to have a greater loss at ∼40°N. The uncertainty associated with climate change forecasts is large, yet resource management agencies still have to address climate change. How? Since many fishery agencies do not plan beyond 5 years, a logical way forward is to incorporate a “realized thermal habitat index” into the stock assessment process. Over time, decisions would be influenced by the amount of suitable thermal habitat, in concert with gradual or extreme warming. PMID:24599187

  15. Thermal habitat index of many northwest Atlantic temperate species stays neutral under warming projected for 2030 but changes radically by 2060.

    PubMed

    Shackell, Nancy L; Ricard, Daniel; Stortini, Christine

    2014-01-01

    Global scale forecasts of range shifts in response to global warming have provided vital insight into predicted species redistribution. We build on that insight by examining whether local warming will affect habitat on spatiotemporal scales relevant to regional agencies. We used generalized additive models to quantify the realized habitat of 46 temperate/boreal marine species using 41+ years of survey data from 35°N-48°N in the Northwest Atlantic. We then estimated change in a "realized thermal habitat index" under short-term (2030) and long-term (2060) warming scenarios. Under the 2030 scenario, ∼10% of species will lose realized thermal habitat at the national scale (USA and Canada) but planktivores are expected to lose significantly in both countries which may result in indirect changes in their predators' distribution. In contrast, by 2060 in Canada, the realized habitat of 76% of species will change (55% will lose, 21% will gain) while in the USA, the realized habitat of 85% of species will change (65% will lose, 20% will gain). If all else were held constant, the ecosystem is projected to change radically based on thermal habitat alone. The magnitude of the 2060 warming projection (∼1.5-3°C) was observed in 2012 affirming that research is needed on effects of extreme "weather" in addition to increasing mean temperature. Our approach can be used to aggregate at smaller spatial scales where temperate/boreal species are hypothesized to have a greater loss at ∼40°N. The uncertainty associated with climate change forecasts is large, yet resource management agencies still have to address climate change. How? Since many fishery agencies do not plan beyond 5 years, a logical way forward is to incorporate a "realized thermal habitat index" into the stock assessment process. Over time, decisions would be influenced by the amount of suitable thermal habitat, in concert with gradual or extreme warming.

  16. Habitat mosaics and path analysis can improve biological conservation of aquatic biodiversity in ecosystems with low-head dams

    USGS Publications Warehouse

    Hitchman, Sean M.; Mather, Martha E.; Smith, Joseph M.; Fencl, Jane S.

    2018-01-01

    Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species

  17. Habitat mosaics and path analysis can improve biological conservation of aquatic biodiversity in ecosystems with low-head dams.

    PubMed

    Hitchman, Sean M; Mather, Martha E; Smith, Joseph M; Fencl, Jane S

    2018-04-01

    Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species richness

  18. Yakima Tributary Access and Habitat Program, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myra, D.; Ready, C.

    2003-12-01

    The Yakima Tributary Access and Habitat Program (YTAHP) was organized to restore salmonid passage to Yakima tributaries that historically supported salmonids and to improve habitat in areas where access is restored. This program intends to (a) screen unscreened diversion structures to prevent fish entrainment into artificial waterways; (b) provide for fish passage at man-made barriers, such as diversion dams, culverts, siphons and bridges; and (c) provide information and assistance to landowners interested in to contributing to the improvement of water quality, water reliability and stream habitat. The YTAHP developed from a number of groups actively engaged in watershed management, and/ormore » habitat restoration within the Yakima River Basin. These groups include the Washington State Fish and Wildlife (WDFW), Kittitas County Conservation District (KCCD), North Yakima Conservation District (NYCD), Kittitas County Water Purveyors (KCWP), and Ahtanum Irrigation District (AID). The US Bureau of Reclamation (Reclamation) and Yakama Nation (YN) both participated in the development of the objectives of YTAHP. Other entities that will be involved during permitting or project review may include the YN, the federal Natural Resources Conservation Service (NRCS), the US Fish and Wildlife Service (USFWS), the National Marine Fisheries Service (NMFS), and US Army Corps of Engineers (COE). The objectives of YTAHP are listed below and also include subtasks detailed in the report: (1) Conduct Early Action Projects; (2) Review Strategic Plan; (3) Restore Access, including stream inventory, prioritization, implementation; and (4) Provide opportunities to improve habitat and conserve resources. The BPA YTAHP funding supported activities of the program which are described in this report. These activities are primarily related to objective 1 (conduct early action projects) and parts of objectives 2-4. The work supported by YTAHP funding will support a series of scheduled projects

  19. Pelagic habitat visualization: the need for a third (and fourth) dimension: HabitatSpace

    USGS Publications Warehouse

    Beegle-Krause, C; Vance, Tiffany; Reusser, Debbie; Stuebe, David; Howlett, Eoin

    2009-01-01

    Habitat in open water is not simply a 2-D to 2.5-D surface such as the ocean bottom or the air-water interface. Rather, pelagic habitat is a 3-D volume of water that can change over time, leading us to the term habitat space. Visualization and analysis in 2-D is well supported with GIS tools, but a new tool was needed for visualization and analysis in four dimensions. Observational data (cruise profiles (xo, yo, z, to)), numerical circulation model fields (x,y,z,t), and trajectories (larval fish, 4-D line) need to be merged together in a meaningful way for visualization and analysis. As a first step toward this new framework, UNIDATA’s Integrated Data Viewer (IDV) has been used to create a set of tools for habitat analysis in 4-D. IDV was designed for 3-D+time geospatial data in the meteorological community. NetCDF JavaTM libraries allow the tool to read many file formats including remotely located data (e.g. data available via OPeNDAP ). With this project, IDV has been adapted for use in delineating habitat space for multiple fish species in the ocean. The ability to define and visualize boundaries of a water mass, which meets specific biologically relevant criteria (e.g., volume, connectedness, and inter-annual variability) based on model results and observational data, will allow managers to investigate the survival of individual year classes of commercially important fisheries. Better understanding of the survival of these year classes will lead to improved forecasting of fisheries recruitment.

  20. Using urban forest assessment tools to model bird habitat potential

    USGS Publications Warehouse

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  1. Cover crops to improve soil health and pollinator habitat in nut orchards

    Treesearch

    Jerry Van Sambeek

    2017-01-01

    Recently several national programs have been initiated calling for improving soil health and creating pollinator habitat using cover crops. Opportunities exist for nut growers to do both with the use of cover crops in our nut orchards. Because we can include perennial ground covers as cover crops, we have even more choices than landowners managing cover crops during...

  2. Fine-scale habitat modeling of a top marine predator: do prey data improve predictive capacity?

    PubMed

    Torres, Leigh G; Read, Andrew J; Halpin, Patrick

    2008-10-01

    Predators and prey assort themselves relative to each other, the availability of resources and refuges, and the temporal and spatial scale of their interaction. Predictive models of predator distributions often rely on these relationships by incorporating data on environmental variability and prey availability to determine predator habitat selection patterns. This approach to predictive modeling holds true in marine systems where observations of predators are logistically difficult, emphasizing the need for accurate models. In this paper, we ask whether including prey distribution data in fine-scale predictive models of bottlenose dolphin (Tursiops truncatus) habitat selection in Florida Bay, Florida, U.S.A., improves predictive capacity. Environmental characteristics are often used as predictor variables in habitat models of top marine predators with the assumption that they act as proxies of prey distribution. We examine the validity of this assumption by comparing the response of dolphin distribution and fish catch rates to the same environmental variables. Next, the predictive capacities of four models, with and without prey distribution data, are tested to determine whether dolphin habitat selection can be predicted without recourse to describing the distribution of their prey. The final analysis determines the accuracy of predictive maps of dolphin distribution produced by modeling areas of high fish catch based on significant environmental characteristics. We use spatial analysis and independent data sets to train and test the models. Our results indicate that, due to high habitat heterogeneity and the spatial variability of prey patches, fine-scale models of dolphin habitat selection in coastal habitats will be more successful if environmental variables are used as predictor variables of predator distributions rather than relying on prey data as explanatory variables. However, predictive modeling of prey distribution as the response variable based on

  3. Wildlife Habitat Restoration: Chapter 12

    USGS Publications Warehouse

    Conway, Courtney J.; Borgmann, Kathi L.; Morrison, Michael L.; Mathewson, Heather A.

    2015-01-01

    As the preceding chapters point out, many wildlife species and the habitat they depend on are in peril. However, opportunities exist to restore habitat for many imperiled wildlife species. But what is wildlife habitat restoration? We begin this chapter by defining habitat restoration and then provide recommendations on how to maximize success of future habitat restoration efforts for wildlife. Finally, we evaluate whether we have been successful in restoring wildlife habitat and supply recommendations to advance habitat restoration. Successful restoration requires clear and explicit goals that are based on our best understanding of what the habitat was like prior to the disturbing event. Ideally, a restoration project would include: (1) a summary of prerestoration conditions that define the existing status of wildlife populations and their habitat; (2) a description of habitat features required by the focal or indicator species for persistence; (3) an a priori description of measurable, quantitative metrics that define restoration goals and measures of success; (4) a monitoring plan; (5) postrestoration comparisons of habitat features and wildlife populations with adjacent unmodified areas that are similar to the restoration site; and (6) expert review of the entire restoration plan (i.e., the five aforementioned components).

  4. Habitat modeling for biodiversity conservation.

    Treesearch

    Bruce G. Marcot

    2006-01-01

    Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...

  5. Trends and habitat associations of waterbirds using the South Bay Salt Pond Restoration Project, San Francisco Bay, California

    USGS Publications Warehouse

    De La Cruz, Susan E. W.; Smith, Lacy M.; Moskal, Stacy M.; Strong, Cheryl; Krause, John; Wang, Yiwei; Takekawa, John Y.

    2018-04-02

    Executive SummaryThe aim of the South Bay Salt Pond Restoration Project (hereinafter “Project”) is to restore 50–90 percent of former salt evaporation ponds to tidal marsh in San Francisco Bay (SFB). However, hundreds of thousands of waterbirds use these ponds over winter and during fall and spring migration. To ensure that existing waterbird populations are supported while tidal marsh is restored in the Project area, managers plan to enhance the habitat suitability of ponds by adding islands and berms to change pond topography, manipulating water salinity and depth, and selecting appropriate ponds to maintain for birds. To help inform these actions, we used 13 years of monthly (October–April) bird abundance data from Project ponds to (1) assess trends in waterbird abundance since the inception of the Project, and (2) evaluate which pond habitat characteristics were associated with highest abundances of different avian guilds and species. For comparison, we also evaluated waterbird abundance trends in active salt production ponds using 10 years of monthly survey data.We assessed bird guild and species abundance trends through time, and created separate trend curves for Project and salt production ponds using data from every pond that was counted in a year. We divided abundance data into three seasons—fall (October–November), winter (December–February), and spring (March–April). We used the resulting curves to assess which periods had the highest bird abundance and to identify increasing or decreasing trends for each guild and species.

  6. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling.

    PubMed

    Mainali, Kumar P; Warren, Dan L; Dhileepan, Kunjithapatham; McConnachie, Andrew; Strathie, Lorraine; Hassan, Gul; Karki, Debendra; Shrestha, Bharat B; Parmesan, Camille

    2015-12-01

    Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships for Parthenium hysterophorus L. (Asteraceae) with four modeling methods run with multiple scenarios of (i) sources of occurrences and geographically isolated background ranges for absences, (ii) approaches to drawing background (absence) points, and (iii) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved using a global dataset for model training, rather than restricting data input to the species' native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e., into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g., boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post hoc test conducted on a new Parthenium dataset from Nepal validated excellent predictive performance of our 'best' model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for parthenium

  7. Engaging Clinical Nurses in Quality Improvement Projects.

    PubMed

    Moore, Susan; Stichler, Jaynelle F

    2015-10-01

    Clinical nurses have the knowledge and expertise required to provide efficient and proficient patient care. Time and knowledge deficits can prevent nurses from developing and implementing quality improvement or evidence-based practice projects. This article reviews a process for professional development of clinical nurses that helped them to define, implement, and analyze quality improvement or evidence-based practice projects. The purpose of this project was to educate advanced clinical nurses to manage a change project from inception to completion, using the Six Sigma DMAIC (Define, Measure, Analyze, Improve, Control) Change Acceleration Process as a framework. One-to-one mentoring and didactic in-services advanced the knowledge, appreciation, and practice of advanced practice clinicians who completed multiple change projects. The projects facilitated clinical practice changes, with improved patient outcomes; a unit cultural shift, with appreciation of quality improvement and evidence-based projects; and engagement with colleagues. Project outcomes were displayed in poster presentations at a hospital exposition for knowledge dissemination. Copyright 2015, SLACK Incorporated.

  8. Effects of natural-channel-design restoration on habitat quality in Catskill Mountain streams, New York

    USGS Publications Warehouse

    Ernst, Anne G.; Baldigo, Barry P.; Mulvihill, Christiane; Vian, Mark

    2010-01-01

    Stream restoration has received much attention in recent years, yet there has been little effort to evaluate its impacts on physical habitat, stability, and biota. A popular but controversial stream restoration approach is natural channel design (NCD), which cannot be adequately evaluated without a long-term, independent assessment of its effects on stream habitat. Six reaches of five Catskill Mountain streams in southeastern New York were restored during 2000–2003 following NCD techniques to decrease bed and bank degradation, decrease sediment loads, and improve water quality. Habitat surveys were conducted during summer low flows from 2001 to 2007. The effects of the NCD projects on stream condition were assessed via a before–after–control–impact study design to quantify the net changes in stream and bank habitat variables relative to those in unaltered control reaches. Analysis of variance tests of three different measures of bank stability show that on average stream stability increased at treatment sites for 2–5 years after restoration. Mean channel depth, thalweg depth, and the pool–riffle ratio generally increased, whereas mean channel width, percent streambank coverage by trees, and shade decreased. Habitat suitability indices for local salmonid species increased at four of six reaches after restoration. The changes in channel dimensions rendered them generally more characteristic of stabler stream forms in the given valley settings. Although these studies were done relatively soon after project completion, our findings demonstrate that habitat conditions can be improved in degraded Catskill Mountain streams through NCD restoration.

  9. Effect of habitat-improvement thinnings on lumber products from coastal Douglas-fir

    Treesearch

    Dennis P. Dykstra; Patricia K. Lebow; Stephen Pilkerton; Jamie Barbour; Susan Hummel; Stuart R. Johnston

    2016-01-01

    We selected 66 sample trees from two thinning treatments, each of which was applied at three sites on the Siuslaw National Forest in Oregon. The first commercial thinnings, conducted in 1992 and 1993, had been designed to accelerate the development of large trees with large branches and other old-growth characteristics so as to improve habitat for bird species that...

  10. Principles of wildlife habitat management

    Treesearch

    Ernie P. Wiggers

    1989-01-01

    Simply stated, habitat is where an animal lives and must include all the resources an animal needs to survive and reproduce. An animal's habitat has to provide five essential factors: food, cover, water, space, and interspersion. Habitat management is identifying which factors are scarce enough to limit populations, and then improving the habitat to remove the...

  11. Present and Future Projections of Habitat Suitability of the Asian Tiger Mosquito, a Vector of Viral Pathogens, from Global Climate Simulations.

    NASA Astrophysics Data System (ADS)

    Proestos, Y.; Christophides, G.; Erguler, K.; Tanarhte, M.; Waldock, J.; Lelieveld, J.

    2014-12-01

    Climate change can influence the transmission of vector borne diseases (VBDs) through altering the habitat suitability of insect vectors. Here we present global climate model simulations and evaluate the associated uncertainties in view of the main meteorological factors that may affect the distribution of the Asian Tiger mosquito (Aedes albopictus), which can transmit pathogens that cause Chikungunya, Dengue fever, yellow fever and various encephalitides. Using a general circulation model (GCM) at 50 km horizontal resolution to simulate mosquito survival variables including temperature, precipitation and relative humidity, we present both global and regional projections of the habitat suitability up to the middle of the 21st century. The model resolution of 50 km allows evaluation against previous projections for Europe and provides a basis for comparative analyses with other regions. Model uncertainties and performance are addressed in light of the recent CMIP5 ensemble climate model simulations for the RCP8.5 concentration pathway and using meteorological re-analysis data (ERA-Interim/ECMWF) for the recent past. Uncertainty ranges associated with the thresholds of meteorological variables that may affect the distribution of Ae. albopictus are diagnosed using fuzzy-logic methodology, notably to assess the influence of selected meteorological criteria and combinations of criteria that influence mosquito habitat suitability. From the climate projections for 2050, and adopting a habitat suitability index larger than 70%, we estimate that about 2.4 billion individuals in a land area of nearly 20 million square kilometres will potentially be exposed to Ae. albopictus. The synthesis of fuzzy-logic based on mosquito biology and climate change analysis provides new insights into the regional and global spreading of VBDs to support disease control and policy making.

  12. Delta smelt habitat in the San Francisco Estuary: A reply to Manly, Fullerton, Hendrix, and Burnham’s “Comments on Feyrer et al. Modeling the effects of future outflow on the abiotic habitat of an imperiled estuarine fish"

    USGS Publications Warehouse

    Feyrer, Frederick V.; Newman, Ken B.; Nobriga, Matthew; Sommer, Ted

    2016-01-01

    Manly et al. (2015) commented on the approach we (Feyrer et al. 2011) used to calculate an index of the abiotic habitat of delta smelt Hypomesus transpacificus. The delta smelt is an annual fish species endemic to the San Francisco Estuary (SFE) in California, USA. Conserving the delta smelt population while providing reliability to California’s water supply with water diverted from the SFE ecosystem is a major management and policy issue. Feyrer et al. (2011) evaluated historic and projected future abiotic habitat conditions for delta smelt. Manly et al. (2015) specifically commented regarding the following: (1) use of an independent abundance estimate, (2) spatial bias in the habitat index, and (3) application of the habitat index to future climate change projections. Here, we provide our reply to these three topics. While we agree that some of the concepts raised by Manly et al. (2015) have the potential to improve habitat assessments and their application to climate change scenarios as knowledge is gained, we note that the Feyrer et al. (2011) delta smelt habitat index is essentially identical to one reconstructed using Manly et al.’s (2015) preferred approach (their model 8), as shown here in Fig. 1.

  13. 76 FR 19313 - Chequamegon-Nicolet National Forest, Wisconsin, Lakewood Southeast Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ... area. The project-specific needs include: Reintroduction of natural regimes, wildlife habitat and... for change in: (1) Loss of natural regimes (2) wildlife habitat (3) stream improvement (4) species age... is Township 31-32 North, Range 17 East. The Forest Service proposes to reintroduce natural regimes in...

  14. Science Base and Tools for Evaluating Stream Restoration Project Proposals.

    NASA Astrophysics Data System (ADS)

    Cluer, B.; Thorne, C.; Skidmore, P.; Castro, J.; Pess, G.; Beechie, T.; Shea, C.

    2008-12-01

    Stream restoration, stabilization, or enhancement projects typically employ site-specific designs and site- scale habitat improvement projects have become the default solution to many habitat problems and constraints. Such projects are often planned and implemented without thorough consideration of the broader scale problems that may be contributing to habitat degradation, attention to project resiliency to flood events, accounting for possible changes in climate or watershed land use, or ensuring the long term sustainability of the project. To address these issues, NOAA Fisheries and USFWS have collaboratively commissioned research to develop a science document and accompanying tools to support more consistent and comprehensive review of stream management and restoration projects proposals by Service staff responsible for permitting. The science document synthesizes the body of knowledge in fluvial geomorphology and presents it in a way that is accessible to the Services staff biologists, who are not trained experts in this field. Accompanying the science document are two electronic tools: a Project Information Checklist to assist in evaluating whether a proposal includes all the information necessary to allow critical and thorough project evaluation; and a Project Evaluation Tool (in flow chart format) that guides reviewers through the steps necessary to critically evaluate the quality of the information submitted, the goals and objectives of the project, project planning and development, project design, geomorphic-habitat-species relevance, and risks to listed species. Materials for training Services staff and others in the efficient use of the science document and tools have also been developed. The longer term goals of this effort include: enabling consistent and comprehensive reviews that are completed in a timely fashion by regulators; facilitating improved project planning and design by proponents; encouraging projects that are attuned to their watershed

  15. Columbia County Habitat for Humanity Passive Townhomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-03-01

    Columbia County Habitat for Humanity (CCHH) (New York, Climate Zone 5A) built a pair of townhomes to Passive House Institute U.S. (PHIUS+ 2015) criteria to explore approaches for achieving Passive House performance (specifically with respect to exterior wall, space-conditioning, and ventilation strategies) within the labor and budget context inherent in a Habitat for Humanity project. CCHH’s goal is to eventually develop a cost-justified Passive House prototype design for future projects.

  16. Toward Dynamic Ocean Management: Fisheries assessment and climate projections informed by community developed habitat models based on dynamic coastal oceanography

    NASA Astrophysics Data System (ADS)

    Kohut, J. T.; Manderson, J.; Palamara, L. J.; Saba, V. S.; Saba, G.; Hare, J. A.; Curchitser, E. N.; Moore, P.; Seibel, B.; DiDomenico, G.

    2016-12-01

    Through a multidisciplinary study group of experts in marine ecology, physical oceanography and stock assessment from the fishing industry, government and academia we developed a method to explicitly account for shifting habitat distributions in fish population assessments. We used data from field surveys throughout the Northwest Atlantic Ocean to develop a parametric thermal niche model for an important short-lived pelagic forage fish, Atlantic Butterfish. This niche model was coupled to a hindcast of daily bottom water temperature derived from a regional numerical ocean model in order to project daily thermal habitat suitability over the last 40 years. This ecological hindcast was used to estimate the proportion of thermal habitat suitability available on the U.S. Northeast Shelf that was sampled on fishery-independent surveys, accounting for the relative motions of thermal habitat and the trajectory of sampling on the survey. The method and habitat based estimates of availability was integrated into the catchability estimate used to scale population size in the butterfish stock assessment model accepted by the reviewers of the 59th NEFSC stock assessment review, as well as the mid-Atlantic Council's Scientific and Statistical Committee. The contribution of the availability estimate (along with an estimate of detectability) allowed for the development of fishery reference points, a change in stock status from unknown to known, and the establishment of a directed fishery with an allocation of 20,000 metric tons of quota. This presentation will describe how a community based workgroup utilized ocean observing technologies combined with ocean models to better understand the physical ocean that structures marine ecosystems. Using these approaches we will discuss opportunities to inform ecological hindcasts and climate projections with mechanistic models that link species-specific physiology to climate-based thermal scenarios.

  17. Toward Dynamic Ocean Management: Fisheries assessment and climate projections informed by community developed habitat models based on dynamic coastal oceanography

    NASA Astrophysics Data System (ADS)

    Kohut, J. T.; Manderson, J.; Palamara, L. J.; Saba, V. S.; Saba, G.; Hare, J. A.; Curchitser, E. N.; Moore, P.; Seibel, B.; DiDomenico, G.

    2016-02-01

    Through a multidisciplinary study group of experts in marine ecology, physical oceanography and stock assessment from the fishing industry, government and academia we developed a method to explicitly account for shifting habitat distributions in fish population assessments. We used data from field surveys throughout the Northwest Atlantic Ocean to develop a parametric thermal niche model for an important short-lived pelagic forage fish, Atlantic Butterfish. This niche model was coupled to a hindcast of daily bottom water temperature derived from a regional numerical ocean model in order to project daily thermal habitat suitability over the last 40 years. This ecological hindcast was used to estimate the proportion of thermal habitat suitability available on the U.S. Northeast Shelf that was sampled on fishery-independent surveys, accounting for the relative motions of thermal habitat and the trajectory of sampling on the survey. The method and habitat based estimates of availability was integrated into the catchability estimate used to scale population size in the butterfish stock assessment model accepted by the reviewers of the 59th NEFSC stock assessment review, as well as the mid-Atlantic Council's Scientific and Statistical Committee. The contribution of the availability estimate (along with an estimate of detectability) allowed for the development of fishery reference points, a change in stock status from unknown to known, and the establishment of a directed fishery with an allocation of 20,000 metric tons of quota. This presentation will describe how a community based workgroup utilized ocean observing technologies combined with ocean models to better understand the physical ocean that structures marine ecosystems. Using these approaches we will discuss opportunities to inform ecological hindcasts and climate projections with mechanistic models that link species-specific physiology to climate-based thermal scenarios.

  18. Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

    USGS Publications Warehouse

    Krstolic, Jennifer L.

    2015-01-01

    Time-series analyses were used to investigate changes in habitat availability with increased water withdrawals of 10, 20, and almost 50 percent (48.6 percent) up to the 2040 amounts projected by local water supply plans. Adult and sub-adult smallmouth bass frequently had habitat availability outside the normal range for habitat conditions during drought years, yet 10- or 20-percent increases in withdrawals did not contribute to a large reduction in habitat. When withdrawals were increased by 50 percent, there was an additional decrease in habitat. During 2002 drought scenarios, reduced habitat availability for sub-adult redbreast sunfish or river chub was only slightly evident with 50-percent increased withdrawal scenarios. Recreational habitat represented by canoeing decreased lower than normal during the 2002 drought. For a recent normal year, like 2012, increased water-withdrawal scenarios did not affect habitat availability for fish such as adult and sub-adult smallmouth bass, sub-adult redbreast sunfish, or river chub. Canoeing habitat availability was within the normal range most of 2012, and increased water-withdrawal scenarios showed almost no affect. For both ecological fish habitat and recreational canoeing habitat, the antecedent conditions (habitat within normal range of habitat or below normal) appear to govern whether additional water withdrawals will affect habitat availability. As human populations and water demands increase, many of the ecological or recreational stresses may be lessened by managing the timing of water withdrawals from the system.

  19. The effects of habitat restoration on endangered fishes in the Upper Klamath Basin

    NASA Astrophysics Data System (ADS)

    Vanderkooi, S.; Burdick, S.; Ellsworth, C.

    2009-12-01

    The Klamath Basin has been prominent in the debate over the use of water in the arid west for nearly a decade. Principle competing demands include threatened and endangered species, agriculture, recreation, and Tribal rights. In an effort to recover two endangered fish species, the Lost River sucker and the shortnose sucker, several large-scale restoration projects have recently been undertaken in the basin. These include restoration of 7000 acres of drained wetlands in the Williamson River Delta in 2007 and 2008 and the removal of Chiloquin Dam on the Sprague River in 2008. The objectives of these projects include increasing amounts of usable aquatic habitats, restoring watershed function, improving water quality, and improving access to and connectivity among habitats. The U.S. Geological Survey is involved in a series of collaborative, interdisciplinary research efforts to evaluate the effectiveness of these restoration projects. Effectiveness is being evaluated by physical, biological and ecological metrics. Our focus is on the biology and ecology of endangered suckers. In the Williamson River Delta, we’re collecting data on the distribution, habitat use, relative abundance, and health and condition of early life-history stages of endangered suckers. Results to date indicate larval as well as age-0 and age-1 juvenile suckers are using newly created habitats in the delta. Preliminary results from comparisons of age-0 suckers captured within and outside of the delta suggest those using the restored habitats are in better condition. In the Sprague River, we’re studying the behavior, run timing, and distribution of adult suckers during spawning migrations as well as the relative abundance, species composition, and timing of emigrating larval suckers. Preliminary results indicate adult suckers migrated into the reach previously impounded by Chiloquin Dam in greater numbers than in the past. While these results indicate a positive response to dam removal

  20. Supplement Analysis for the Watershed Management Program Final EIS (DOE EIS /SA-156) - Upper Salmon River Anadromous Fish Passage Improvement Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Carl J.

    2004-07-13

    BPA proposes to fund IDFG to plan and complete construction of fish passage improvements and water conservation activities that are contained within IDFG’s Statement of Work (SOW) for the period 7/1/04 to 6/30/05. The funding request contained in their SOW is part of an ongoing IDFG effort to fund anadromous fish passage projects that fall outside the scope of the Mitchell Act. The proposed SOW activities fall within the following four categories: Phase I-Planning and Design (gather data, perform investigations, and exchange information; perform surveys and assessments to be compliant; survey project sites and perform engineering designs; perform contract andmore » project management); Phase II-Construction and Implementation (procure materials and supplies, prepare contracts and solicit bids, plant native seedlings, complete capital improvements); Phase III-Operation and Maintenance (maintain office operations); and Phase IV- Monitoring and Evaluation (monitor and evaluate post-project effects, reporting). The SOW culminates with proposed construction of 18 capital improvement projects (Table 1 attached). The types of capital improvements include: screening gravity water diversions; consolidating and/or eliminating ditches; evaluating and screening pump diversions; evaluating and implementing water conservation activities; constructing screens along migration routes and rearing areas for hatchery and wild salmon; improving upstream and downstream passage for anadromous fish; and maximize benefits to aquatic habitat. Because each of the proposed projects in the SOW is still in the planning stages, the specifics of each still need to be completed.« less

  1. HABITAT DISTRIBUTION MODELS FOR 37 VERTEBRATE SPECIES ADDRESSED BY THE MULTI-SPECIES HABITAT CONSERVATION PLAN OF CLARK COUNTY, NEVADA

    EPA Science Inventory

    Thirty-seven species identified in the Clark County Multi-Species Habitat Conservation Plan were

    previously modeled through the Southwest Regional Gap Analysis Project. Existing SWReGAP habitat

    models and modeling databases were used to facilitate the revision of mo...

  2. Albeni Falls Wildlife Mitigation Project; Idaho Department of Fish and Game 2007 Final Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousins, Katherine

    The Idaho Department of Fish and Game maintained a total of about 2,743 acres of wildlife mitigation habitat in 2007, and protected another 921 acres. The total wildlife habitat mitigation debt has been reduced by approximately two percent (598.22 HU) through the Department's mitigation activities in 2007. Implementation of the vegetative monitoring and evaluation program continued across protected lands. For the next funding cycle, the IDFG is considering a package of restoration projects and habitat improvements, conservation easements, and land acquisitions in the project area.

  3. Wildlife habitat management on college and university campuses

    USGS Publications Warehouse

    Bosci, Tierney; Warren, Paige S.; Harper, Rick W.; DeStefano, Stephen

    2018-01-01

    With the increasing involvement of higher education institutions in sustainability movements, it remains unclear to what extent college and university campuses address wildlife habitat. Many campuses encompass significant areas of green space with potential to support diverse wildlife taxa. However, sustainability rating systems generally emphasize efforts like recycling and energy conservation over green landscaping and grounds maintenance. We sought to examine the types of wildlife habitat projects occurring at schools across the United States and whether or not factors like school type (public or private), size (number of students), urban vs. rural setting, and funding played roles in the implementation of such initiatives. Using case studies compiled by the National Wildlife Federation’s Campus Ecology program, we documented wildlife habitat-related projects at 60 campuses. Ten management actions derived from nationwide guidelines were used to describe the projects carried out by these institutions, and we recorded data about cost, funding, and outreach and education methods. We explored potential relationships among management actions and with school characteristics. We extracted themes in project types, along with challenges and responses to those challenges. Native plant species selection and sustainable lawn maintenance and landscaping were the most common management actions among the 60 campuses. According to the case studies we examined, we found that factors like school type, size, and location did not affect the engagement of a campus in wildlife habitat initiatives, nor did they influence the project expenditures or funding received by a campus. Our results suggest that many wildlife habitat initiatives are feasible for higher education institutions and may be successfully implemented at relatively low costs through simple, but deliberate management actions.

  4. A Multiple Watershed Approach to Assessing the Effects of Habitat Restoration Actions on Anadromous and Resident Fish Populations, Technical Report 2003-2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marmorek, David

    2004-03-01

    -watershed designs for future habitat restoration actions. Such designs are being developed concurrently with this project by several other groups in the Columbia Basin (RME Workgroup 2003, NMFS 2003, Hillman and Paulsen 2002, Hillman 2003). By addressing questions about habitat restoration and monitoring (in coordination with other related efforts), we hope that this project will catalyze a shift in the Basin's paradigm of habitat restoration, moving from implementation of individual watershed projects towards rigorously designed and monitored, multiwatershed, adaptive management experiments. The project involved three phases of work, which were closely integrated with various related and ongoing efforts in the region: (1) Scoping - We met with a Core Group of habitat experts and managers to scope out a set of testable habitat restoration hypotheses, identify candidate watersheds and recommend participants for a data evaluation workshop. (2) Data Assembly - We contacted over 80 scientists and managers to help evaluate the suitability of each candidate watershed's historical data for assessing the effectiveness of past restoration actions. We eventually settled on the Yakima, Wenatchee, Clearwater, and Salmon subbasins, and began gathering relevant data for these watersheds at a workshop with habitat experts and managers. Data assembly continued for several months after the workshop. (3) Data Analysis and Synthesis - We explored statistical approaches towards retrospectively analyzing the effects of restoration 'treatments' at nested spatial scales across multiple watersheds (Chapters 2-5 of this report). These analyses provided a foundation for identifying existing constraints to testing restoration hypotheses, and opportunities to overcome these constraints through improved experimental designs, monitoring protocols and project selection strategies (Chapters 6 and 7 of this report). Finally, we developed a set of recommendations to improve the design, implementation, and

  5. The value of carbon sequestration and storage in coastal habitats

    NASA Astrophysics Data System (ADS)

    Beaumont, N. J.; Jones, L.; Garbutt, A.; Hansom, J. D.; Toberman, M.

    2014-01-01

    Coastal margin habitats are globally significant in terms of their capacity to sequester and store carbon, but their continuing decline, due to environmental change and human land use decisions, is reducing their capacity to provide this ecosystem service. In this paper the UK is used as a case study area to develop methodologies to quantify and value the ecosystem service of blue carbon sequestration and storage in coastal margin habitats. Changes in UK coastal habitat area between 1900 and 2060 are documented, the long term stocks of carbon stored by these habitats are calculated, and the capacity of these habitats to sequester CO2 is detailed. Changes in value of the carbon sequestration service of coastal habitats are then projected for 2000-2060 under two scenarios, the maintenance of the current state of the habitat and the continuation of current trends of habitat loss. If coastal habitats are maintained at their current extent, their sequestration capacity over the period 2000-2060 is valued to be in the region of £1 billion UK sterling (3.5% discount rate). However, if current trends of habitat loss continue, the capacity of the coastal habitats both to sequester and store CO2 will be significantly reduced, with a reduction in value of around £0.25 billion UK sterling (2000-2060; 3.5% discount rate). If loss-trends due to sea level rise or land reclamation worsen, this loss in value will be greater. This case study provides valuable site specific information, but also highlights global issues regarding the quantification and valuation of carbon sequestration and storage. Whilst our ability to value ecosystem services is improving, considerable uncertainty remains. If such ecosystem valuations are to be incorporated with confidence into national and global policy and legislative frameworks, it is necessary to address this uncertainty. Recommendations to achieve this are outlined.

  6. Deep Space Habitat Concept Demonstrator

    NASA Technical Reports Server (NTRS)

    Bookout, Paul S.; Smitherman, David

    2015-01-01

    This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.

  7. A single activity with a practice quality improvement project for faculty and a quality improvement project for residents.

    PubMed

    Kim, Hyun; Malatesta, Theresa M; Simone, Nicole L; Den, Robert B; McAna, John; Dicker, Adam P; Bar Ad, Voichita

    2016-01-01

    The Next Accreditation System (NAS) requires radiation oncology residents to do a formal quality improvement project during their residency. The American Board of Radiology (ABR) Maintenance of Certification (MOC) program requires certified physicians to complete a Practice Quality Improvement (PQI) project approximately every 3 years. The purpose of our project was to develop a clinical transition of care policy via a process that resulted in quality improvement project credit for residents and PQI credit for participating faculty. Approval for project implementation was obtained from the ABR MOC committee. The PQI project consisted of an initial survey to assess resident perception on resident transition of care in our department, formal sign-out training, and 2 postintervention surveys after 1 and 11 months. The primary endpoint was the percentage of questions with ≤1 unfavorable responses. Sign-test was used to determine response difference from neutral. One hundred percent of surveyed residents completed the preintervention (n = 6), postintervention 1 (n = 7), and postintervention 2 (n = 8) surveys. In the preintervention, postintervention 1, and postintervention 2 surveys, 71.4%, 57.1%, and 57.1% of questions were answered with ≤1 unfavorable response, respectively. The number of questions with ≥75% favorable response was 7 (50%), 7 (50%), and 11 (78.5%) in the preintervention, postintervention 1, and postintervention 2 surveys, respectively (P = .13). A written sign-out template and monthly protected sign-out meetings were instituted. One resident and 3 attending physicians received credit for Accreditation Council of Graduate Medical Education NAS quality improvement and ABR MOC PQI projects, respectively. This project shows the feasibility of a combined attending and resident physician effort to improve patient care and fulfill his or her respective ABR MOC PQI and Accreditation Council of Graduate Medical Education NAS requirements. Attending and

  8. Ocean acidification limits temperature-induced poleward expansion of coral habitats around Japan

    NASA Astrophysics Data System (ADS)

    Yara, Y.; Vogt, M.; Fujii, M.; Yamano, H.; Hauri, C.; Steinacher, M.; Gruber, N.; Yamanaka, Y.

    2012-12-01

    Using results from four coupled global carbon cycle-climate models combined with in situ observations, we estimate the effects of future global warming and ocean acidification on potential habitats for tropical/subtropical and temperate coral communities in the seas around Japan. The suitability of coral habitats is classified on the basis of the currently observed regional ranges for temperature and saturation states with regard to aragonite (Ωarag). We find that, under the "business as usual" SRES A2 scenario, coral habitats are projected to expand northward by several hundred kilometers by the end of this century. At the same time, coral habitats are projected to become sandwiched between regions where the frequency of coral bleaching will increase, and regions where Ωarag will become too low to support sufficiently high calcification rates. As a result, the habitat suitable for tropical/subtropical corals around Japan may be reduced by half by the 2020s to 2030s, and is projected to disappear by the 2030s to 2040s. The habitat suitable for the temperate coral communities is also projected to decrease, although at a less pronounced rate, due to the higher tolerance of temperate corals for low Ωarag. Our study has two important caveats: first, it does not consider the potential adaptation of the coral communities, which would permit them to colonize habitats that are outside their current range. Second, it also does not consider whether or not coral communities can migrate quickly enough to actually occupy newly emerging habitats. As such, our results serve as a baseline for the assessment of the future evolution of coral habitats, but the consideration of important biological and ecological factors and feedbacks will be required to make more accurate projections.

  9. Predicting 21st-century polar bear habitat distribution from global climate models

    USGS Publications Warehouse

    Durner, George M.; Douglas, David C.; Nielson, R.M.; Amstrup, Steven C.; McDonald, T.L.; Stirling, I.; Mauritzen, Mette; Born, E.W.; Wiig, O.; Deweaver, E.; Serreze, Mark C.; Belikov, Stanislav; Holland, M.M.; Maslanik, J.; Aars, Jon; Bailey, D.A.; Derocher, A.E.

    2009-01-01

    Projections of polar bear (Ursus maritimus) sea ice habitat distribution in the polar basin during the 21st century were developed to understand the consequences of anticipated sea ice reductions on polar bear populations. We used location data from satellitecollared polar bears and environmental data (e.g., bathymetry, distance to coastlines, and sea ice) collected from 1985 to 1995 to build resource selection functions (RSFs). RSFs described habitats that polar bears preferred in summer, autumn, winter, and spring. When applied to independent data from 1996 to 2006, the RSFs consistently identified habitats most frequently used by polar bears. We applied the RSFs to monthly maps of 21st-century sea ice concentration projected by 10 general circulation models (GCMs) used in the Intergovernmental Panel of Climate Change Fourth Assessment Report, under the A1B greenhouse gas forcing scenario. Despite variation in their projections, all GCMs indicated habitat losses in the polar basin during the 21st century. Losses in the highest-valued RSF habitat (optimal habitat) were greatest in the southern seas of the polar basin, especially the Chukchi and Barents seas, and least along the Arctic Ocean shores of Banks Island to northern Greenland. Mean loss of optimal polar bear habitat was greatest during summer; from an observed 1.0 million km2 in 1985-1995 (baseline) to a projected multi-model mean of 0.32 million km2 in 2090-2099 (-68% change). Projected winter losses of polar bear habitat were less: from 1.7 million km2 in 1985-1995 to 1.4 million km2 in 2090-2099 (-17% change). Habitat losses based on GCM multi-model means may be conservative; simulated rates of habitat loss during 1985-2006 from many GCMs were less than the actual observed rates of loss. Although a reduction in the total amount of optimal habitat will likely reduce polar bear populations, exact relationships between habitat losses and population demographics remain unknown. Density and energetic

  10. An expert panel process to evaluate habitat restoration actions in the Columbia River estuary.

    PubMed

    Krueger, Kirk L; Bottom, Daniel L; Hood, W Gregory; Johnson, Gary E; Jones, Kim K; Thom, Ronald M

    2017-03-01

    We describe a process for evaluating proposed ecosystem restoration projects intended to improve survival of juvenile salmon in the Columbia River estuary (CRE). Changes in the Columbia River basin (northwestern USA), including hydropower development, have contributed to the listing of 13 salmon stocks as endangered or threatened under the U.S. Endangered Species Act. Habitat restoration in the CRE, from Bonneville Dam to the ocean, is part of a basin-wide, legally mandated effort to mitigate federal hydropower impacts on salmon survival. An Expert Regional Technical Group (ERTG) was established in 2009 to improve and implement a process for assessing and assigning "survival benefit units" (SBUs) to restoration actions. The SBU concept assumes site-specific restoration projects will increase juvenile salmon survival during migration through the 234 km CRE. Assigned SBUs are used to inform selection of restoration projects and gauge mitigation progress. The ERTG standardized the SBU assessment process to improve its scientific integrity, repeatability, and transparency. In lieu of experimental data to quantify the survival benefits of individual restoration actions, the ERTG adopted a conceptual model composed of three assessment criteria-certainty of success, fish opportunity improvements, and habitat capacity improvements-to evaluate restoration projects. Based on these criteria, an algorithm assigned SBUs by integrating potential fish density as an indicator of salmon performance. Between 2009 and 2014, the ERTG assessed SBUs for 55 proposed projects involving a total of 181 restoration actions located across 8 of 9 reaches of the CRE, largely relying on information provided in a project template based on the conceptual model, presentations, discussions with project sponsors, and site visits. Most projects restored tidal inundation to emergent wetlands, improved riparian function, and removed invasive vegetation. The scientific relationship of geomorphic and

  11. Duck Valley Habitat Enhancement and Protection, 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodson, Guy; Pero, Vincent

    The Duck Valley Indian Reservations' Habitat Enhancement project is an ongoing project designed to enhance and protect the critical riparian areas, natural springs, and native fish spawning areas on the Reservation. The project was begun in 1997 with the hiring of a fisheries biologist and the creation of a new department for the Tribes. The project's goals are to protect and enhance the springs, Owyhee River, its tributaries, and to develop a database that can be used by other fisheries professionals which includes information on water quality and fish composition, health, abundance, and genetic makeup. One habitat portion of themore » project is a focus on protection the numerous springs that provide clean, cool water to the Owyhee River. This will be accomplished through enclosure fences of the spring heads and water troughs to provide clean cool drinking water for wildlife and livestock. Another habitat portion of the project involves protecting headwater areas of streams with native fish populations. This is accomplished through enclosure fencing and riparian plantings on any eroded or degraded banks in the enclosure area. Finally, we monitor and evaluate the areas protected and enhanced. This is accomplished through biological sampling for temperature, Oxygen, sedimentation, and measurements of water depth, bank height and undercut, and width of stream. With the habitat and biological indices we will be able to evaluate how well protective measures are doing, and where to focus future efforts.« less

  12. Modelling future improvements in the St. Louis River fishery from sediment remediation and aquatic habitat restoration

    EPA Science Inventory

    The presence of fish consumption advisories has a negative impact on fishing. In the St. Louis River, an important natural resource management goal is to reduce or eliminate fish consumption advisories by remediating contaminant sediments and improving aquatic habitat. However, w...

  13. Adjusting for radiotelemetry error to improve estimates of habitat use.

    Treesearch

    Scott L. Findholt; Bruce K. Johnson; Lyman L. McDonald; John W. Kern; Alan Ager; Rosemary J. Stussy; Larry D. Bryant

    2002-01-01

    Animal locations estimated from radiotelemetry have traditionally been treated as error-free when analyzed in relation to habitat variables. Location error lowers the power of statistical tests of habitat selection. We describe a method that incorporates the error surrounding point estimates into measures of environmental variables determined from a geographic...

  14. Competitiveness Improvement Project Informational Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Karin C; Preus, Robert W; Dana, Scott

    This presentation was given at the Competitiveness Improvement Project (CIP) Informational Workshop on December 6, 2017. Topics covered during the workshop include an overview of the CIP, past projects, scoring criteria, technical support opportunities, certification body requirements, standards applicable to distributed wind generators, information on the National Electric Code, certification testing requirements, test site requirements, National Environmental Policy Act, design review, levelized cost of energy, procurement/contracting, project management/deliverables, and outreach materials.

  15. The Pelagics Habitat Analysis Module (PHAM): Decision Support Tools for Pelagic Fisheries

    NASA Astrophysics Data System (ADS)

    Armstrong, E. M.; Harrison, D. P.; Kiefer, D.; O'Brien, F.; Hinton, M.; Kohin, S.; Snyder, S.

    2009-12-01

    PHAM is a project funded by NASA to integrate satellite imagery and circulation models into the management of commercial and threatened pelagic species. Specifically, the project merges data from fishery surveys, and fisheries catch and effort data with satellite imagery and circulation models to define the habitat of each species. This new information on habitat will then be used to inform population distribution and models of population dynamics that are used for management. During the first year of the project, we created two prototype modules. One module, which was developed for the Inter-American Tropical Tuna Commission, is designed to help improve information available to manage the tuna fisheries of the eastern Pacific Ocean. The other module, which was developed for the Coastal Pelagics Division of the Southwest Fishery Science Center, assists management of by-catch of mako, blue, and thresher sharks along the Californian coast. Both modules were built with the EASy marine geographic information system, which provides a 4 dimensional (latitude, longitude, depth, and time) home for integration of the data. The projects currently provide tools for automated downloading and geo-referencing of satellite imagery of sea surface temperature, height, and chlorophyll concentrations; output from JPL’s ECCO2 global circulation model and its ROM California current model; and gridded data from fisheries and fishery surveys. It also provides statistical tools for defining species habitat from these and other types of environmental data. These tools include unbalanced ANOVA, EOF analysis of satellite imagery, and multivariate search routines for fitting fishery data to transforms of the environmental data. Output from the projects consists of dynamic maps of the distribution of the species that are driven by the time series of satellite imagery and output from the circulation models. It also includes relationships between environmental variables and recruitment. During

  16. HABITAT RELATIONS OF WATERFOWL WINTERING IN NARRAGANSETT BAY

    EPA Science Inventory

    As part of a project investigating the effect of changes in habitat quality brought about by habitat loss or impairment on resident wildlife in coastal ecosystems, we conducted periodic surveys of wintering waterfowl in Narragansett Bay. A total of 17 species of waterfowl were i...

  17. Developing statistical wildlife habitat relationships for assessing cumulative effects of fuels treatments: Final Report for Joint Fire Science Program Project

    Treesearch

    Samuel A. Cushman; Kevin S. McKelvey

    2006-01-01

    The primary weakness in our current ability to evaluate future landscapes in terms of wildlife lies in the lack of quantitative models linking wildlife to forest stand conditions, including fuels treatments. This project focuses on 1) developing statistical wildlife habitat relationships models (WHR) utilizing Forest Inventory and Analysis (FIA) and National Vegetation...

  18. The critical role of islands for waterbird breeding and foraging habitat in managed ponds of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California

    USGS Publications Warehouse

    Ackerman, Joshua T.; Hartman, C. Alex; Herzog, Mark P.; Smith, Lacy M.; Moskal, Stacy M.; De La Cruz, Susan E. W.; Yee, Julie L.; Takekawa, John Y.

    2014-01-01

    The South Bay Salt Pond Restoration Project aims to restore 50–90 percent of former salt evaporation ponds into tidal marsh in South San Francisco Bay, California. However, large numbers of waterbirds use these ponds annually as nesting and foraging habitat. Islands within ponds are particularly important habitat for nesting, foraging, and roosting waterbirds. To maintain current waterbird populations, the South Bay Salt Pond Restoration Project plans to create new islands within former salt ponds in South San Francisco Bay. In a series of studies, we investigated pond and individual island attributes that are most beneficial to nesting, foraging, and roosting waterbirds.

  19. Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borde, Amy B.; Kaufmann, Ronald M.; Cullinan, Valerie I.

    The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends inmore » habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.« less

  20. Coral reef habitat response to climate change scenarios.

    PubMed

    Freeman, Lauren A; Kleypas, Joan A; Miller, Arthur J

    2013-01-01

    Coral reef ecosystems are threatened by both climate change and direct anthropogenic stress. Climate change will alter the physico-chemical environment that reefs currently occupy, leaving only limited regions that are conducive to reef habitation. Identifying these regions early may aid conservation efforts and inform decisions to transplant particular coral species or groups. Here a species distribution model (Maxent) is used to describe habitat suitable for coral reef growth. Two climate change scenarios (RCP4.5, RCP8.5) from the National Center for Atmospheric Research's Community Earth System Model were used with Maxent to determine environmental suitability for corals (order Scleractinia). Environmental input variables best at representing the limits of suitable reef growth regions were isolated using a principal component analysis. Climate-driven changes in suitable habitat depend strongly on the unique region of reefs used to train Maxent. Increased global habitat loss was predicted in both climate projections through the 21(st) century. A maximum habitat loss of 43% by 2100 was predicted in RCP4.5 and 82% in RCP8.5. When the model is trained solely with environmental data from the Caribbean/Atlantic, 83% of global habitat was lost by 2100 for RCP4.5 and 88% was lost for RCP8.5. Similarly, global runs trained only with Pacific Ocean reefs estimated that 60% of suitable habitat would be lost by 2100 in RCP4.5 and 90% in RCP8.5. When Maxent was trained solely with Indian Ocean reefs, suitable habitat worldwide increased by 38% in RCP4.5 by 2100 and 28% in RCP8.5 by 2050. Global habitat loss by 2100 was just 10% for RCP8.5. This projection suggests that shallow tropical sites in the Indian Ocean basin experience conditions today that are most similar to future projections of worldwide conditions. Indian Ocean reefs may thus be ideal candidate regions from which to select the best strands of coral for potential re-seeding efforts.

  1. Salmon habitat assessment for conservation planning in the lower White Salmon River, Washington

    USGS Publications Warehouse

    Hardiman, Jill M.; Allen, M. Brady

    2015-01-01

    In 2011, Condit Dam was removed from the White Salmon River, Washington. Since dam removal, there has been interest among scientists (State and Federal), Tribes, non-profit organizations, and the general public in assessing Pacific salmon habitat and use in the White Salmon River for conservation planning and potential fishery management actions. The study area extended from the lower 6 miles of the White Salmon River to the confluence with the Columbia River, including the former reservoir area. The Mid-Columbia Fisheries Enhancement Group received a grant to initiate efforts to plan for salmon habitat protection in the lower 6 river miles of the White Salmon River. As part of efforts by the Mid-Columbia Fisheries Enhancement Group to conduct conservation planning, the U.S. Geological Survey (USGS) used current and historical habitat information to assist in the planning process. The USGS compiled existing georeferenced habitat data into a Geographic Information System to identify areas of high quality habitat for salmon, potential areas for restoration/improvement, and areas that could be threatened. The primary sources of georeferenced data for this project include a lidar flight contracted by PacifiCorp, bathymetry from USGS, and fall Chinook salmon redd surveys from the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife. Redd observations provided support that the study area is a migratory corridor for salmon and steelhead and that the lowest 2–3 miles had the highest concentration of documented fall Chinook salmon redds. The study area has potential for restoration/conservation areas to improve/conserve salmon habitat.

  2. Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn; Tohtz, Joel

    moderating water temperatures, stabilizing banks and protecting the integrity of channel dimension, improving woody debris recruitment for in-channel habitat features, producing terrestrial insects and leaf litter for recruitment to the stream, and helping to accommodate and attenuate flood flows. The purpose of this project is to work with willing landowners to protect the best remaining habitats in the Flathead subbasin as identified in the Flathead River Subbasin Plan. The target areas for land protection activities follow the priorities established in the Flathead subbasin plan and include: (1) Class 1 waters as identified in the Flathead River Subbasin Plan; (2) Class 2 watersheds as identified in the Flathead River Subbasin Plan; and (3) 'Offsite mitigation' defined as those Class 1 and Class 2 watersheds that lack connectivity to the mainstem Flathead River or Flathead Lake. This program focuses on conserving the highest quality or most important riparian or fisheries habitat areas consistent with program criteria. The success of our efforts is subject to a property's actual availability and individual landowner negotiations. The program is guided using biological and project-based criteria that reflect not only the priority needs established in the Flathead subbasin plan, but also such factors as cost, credits, threats, and partners. The implementation of this project requires both an expense and a capital budget to allow work to be completed. This report addresses accomplishments under both budgets during FY08 as the two budgets are interrelated. The expense budget provided pre-acquisition funding to conduct activities such as surveys, appraisals, staff support, etc. The capital budget was used to purchase the interest in each parcel including closing costs. Both the pre-acquisition contract funds and the capital funds used to purchase fee title or conservation easements were spent in accordance with the terms negotiated within the FY08 through FY09 MOA between the

  3. Elementary and middle school science improvement project

    NASA Technical Reports Server (NTRS)

    Mcguire, Saundra Yancy

    1987-01-01

    The Alabama A & M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted in response to a need to improve the ability of North Alabama teachers to teach science effectively using the experimental or hands-on approach. The major component of the project was a two-week workshop. Follow-up visits were made to the classrooms of many of the participating teachers to obtain information on how the program was being implemented in the classroom. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcomes are addressed.

  4. How to Begin a Quality Improvement Project.

    PubMed

    Silver, Samuel A; Harel, Ziv; McQuillan, Rory; Weizman, Adam V; Thomas, Alison; Chertow, Glenn M; Nesrallah, Gihad; Bell, Chaim M; Chan, Christopher T

    2016-05-06

    Quality improvement involves a combined effort among health care staff and stakeholders to diagnose and treat problems in the health care system. However, health care professionals often lack training in quality improvement methods, which makes it challenging to participate in improvement efforts. This article familiarizes health care professionals with how to begin a quality improvement project. The initial steps involve forming an improvement team that possesses expertise in the quality of care problem, leadership, and change management. Stakeholder mapping and analysis are useful tools at this stage, and these are reviewed to help identify individuals who might have a vested interest in the project. Physician engagement is a particularly important component of project success, and the knowledge that patients/caregivers can offer as members of a quality improvement team should not be overlooked. After a team is formed, an improvement framework helps to organize the scientific process of system change. Common quality improvement frameworks include Six Sigma, Lean, and the Model for Improvement. These models are contrasted, with a focus on the Model for Improvement, because it is widely used and applicable to a variety of quality of care problems without advanced training. It involves three steps: setting aims to focus improvement, choosing a balanced set of measures to determine if improvement occurs, and testing new ideas to change the current process. These new ideas are evaluated using Plan-Do-Study-Act cycles, where knowledge is gained by testing changes and reflecting on their effect. To show the real world utility of the quality improvement methods discussed, they are applied to a hypothetical quality improvement initiative that aims to promote home dialysis (home hemodialysis and peritoneal dialysis). This provides an example that kidney health care professionals can use to begin their own quality improvement projects. Copyright © 2016 by the American

  5. How to Begin a Quality Improvement Project

    PubMed Central

    Harel, Ziv; McQuillan, Rory; Weizman, Adam V.; Thomas, Alison; Chertow, Glenn M.; Nesrallah, Gihad; Bell, Chaim M.; Chan, Christopher T.

    2016-01-01

    Quality improvement involves a combined effort among health care staff and stakeholders to diagnose and treat problems in the health care system. However, health care professionals often lack training in quality improvement methods, which makes it challenging to participate in improvement efforts. This article familiarizes health care professionals with how to begin a quality improvement project. The initial steps involve forming an improvement team that possesses expertise in the quality of care problem, leadership, and change management. Stakeholder mapping and analysis are useful tools at this stage, and these are reviewed to help identify individuals who might have a vested interest in the project. Physician engagement is a particularly important component of project success, and the knowledge that patients/caregivers can offer as members of a quality improvement team should not be overlooked. After a team is formed, an improvement framework helps to organize the scientific process of system change. Common quality improvement frameworks include Six Sigma, Lean, and the Model for Improvement. These models are contrasted, with a focus on the Model for Improvement, because it is widely used and applicable to a variety of quality of care problems without advanced training. It involves three steps: setting aims to focus improvement, choosing a balanced set of measures to determine if improvement occurs, and testing new ideas to change the current process. These new ideas are evaluated using Plan-Do-Study-Act cycles, where knowledge is gained by testing changes and reflecting on their effect. To show the real world utility of the quality improvement methods discussed, they are applied to a hypothetical quality improvement initiative that aims to promote home dialysis (home hemodialysis and peritoneal dialysis). This provides an example that kidney health care professionals can use to begin their own quality improvement projects. PMID:27016497

  6. Watershed improvement using prescribed burns as a way to restore aquatic habitat for native fish

    Treesearch

    David F. Gori; Dana Backer

    2005-01-01

    The Nature Conservancy and Bureau of Land Management are testing a model that prescribed burns can be used to increase perennial grass cover, reduce shrubs in desert grassland, and improve watershed condition and aquatic habitat. Results of a prescribed burn in the Hot Springs Creek watershed on Muleshoe Ranch CMA demonstrated the predicted vegetation changes and...

  7. Projected loss of a salamander diversity hotspot as a consequence of projected global climate change.

    PubMed

    Milanovich, Joseph R; Peterman, William E; Nibbelink, Nathan P; Maerz, John C

    2010-08-16

    Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation. Many plethodontid species in southern Appalachia exist in high elevation habitats that may be at or near their thermal maxima, and may also have limited dispersal abilities across warmer valley bottoms. We used a maximum-entropy approach (program Maxent) to model the suitable climatic habitat of 41 plethodontid salamander species inhabiting the Appalachian Highlands region (33 individual species and eight species included within two species complexes). We evaluated the relative change in suitable climatic habitat for these species in the Appalachian Highlands from the current climate to the years 2020, 2050, and 2080, using both the HADCM3 and the CGCM3 models, each under low and high CO(2) scenarios, and using two-model thresholds levels (relative suitability thresholds for determining suitable/unsuitable range), for a total of 8 scenarios per species. While models differed slightly, every scenario projected significant declines in suitable habitat within the Appalachian Highlands as early as 2020. Species with more southern ranges and with smaller ranges had larger projected habitat loss. Despite significant differences in projected precipitation changes to the region, projections did not differ significantly between global circulation models. CO(2) emissions scenario and model threshold had small effects on projected habitat loss by 2020, but did not affect longer-term projections. Results of this study indicate that choice of model threshold and CO(2) emissions scenario affect short-term projected shifts in climatic distributions of species; however, these factors and choice of global circulation model have

  8. Distributed Wind Competitiveness Improvement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. Thismore » fact sheet describes the CIP and funding awarded as part of the project.ufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. This fact sheet describes the CIP and funding awarded as part of the project.« less

  9. Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat

    USGS Publications Warehouse

    Ruhl, H.; Rybicki, N.B.

    2010-01-01

    Great effort continues to focus on ecosystem restoration and reduction of nutrient inputs thought to be responsible, in part, for declines in estuary habitats worldwide. The ability of environmental policy to address restoration is limited, in part, by uncertainty in the relationships between costly restoration and benefits. Here, we present results from an 18-y field investigation (1990-2007) of submerged aquatic vegetation (SAV) community dynamics and water quality in the Potomac River, a major tributary of the Chesapeake Bay. River and anthropogenic discharges lower water clarity by introducing nutrients that stimulate phytoplankton and epiphyte growth as well as suspended sediments. Efforts to restore the Chesapeake Bay are often viewed as failing. Overall nutrient reduction and SAV restoration goals have not been met. In the Potomac River, however, reduced in situ nutrients, wastewater-treatment effluent nitrogen, and total suspended solids were significantly correlated to increased SAV abundance and diversity. Species composition and relative abundance also correlated with nutrient and water-quality conditions, indicating declining fitness of exotic species relative to native species during restoration. Our results suggest that environmental policies that reduce anthropogenic nutrient inputs do result in improved habitat quality, with increased diversity and native species abundances. The results also help elucidate why SAV cover has improved only in some areas of the Chesapeake Bay.

  10. HDU Deep Space Habitat (DSH) Overview

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project Deep Space Habitat (DSH) analog that will be field-tested during the 2011 Desert Research and Technologies Studies (D-RATS) field tests. The HDU project is a technology pull project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU Pressurized Excursion Module (PEM) that was field tested in the 2010 D-RATS, adding habitation functionality to the prototype unit. The 2010 configuration of the HDU-PEM consisted of a lunar surface laboratory module that was used to bring over 20 habitation-related technologies together in a single platform that could be tested as an advanced habitation analog in the context of mission architectures and surface operations. The 2011 HDU-DSH configuration will build upon the PEM work, and emphasize validity of crew operations (habitation and living, etc), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The HDU project consists of a multi-center team brought together in a skunkworks approach to quickly build and validate hardware in analog environments. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 analog field test will include Multi Mission Space Exploration Vehicles (MMSEV) and the DSH among other demonstration elements to be brought together in a mission architecture context. This paper will describe overall objectives, various habitat configurations, strategic plan, and technology integration as it pertains to the 2011 field tests.

  11. Architectural considerations for lunar long duration habitat

    NASA Astrophysics Data System (ADS)

    Bahrami, Payam

    The future of space exploration science and technology is expected to move toward long duration missions. During this long duration missions the most important factor to success will be the habitation system, the place that crew will live and work. The broad range of future space exploration, new advances in technology and increasing demand for space travel and space tourism will create great opportunities for architects to use their special abilities and skills in the realm of space. The lunar habitat is defined as a multidisciplinary task and cannot be considered an independent project from the main module. Therefore, habitability will become the most important aspect of future human exploration. A successful design strategy should integrate architecture, structure and other disciplines and should bring in elements such as psychological and physiological factors, human interfaces, and privacy. The current research provides "Habitat Architectural Design System (HADS)" in order to evaluate lunar habitat concepts based on habitability, functional optimization, and human factors. HADS helps to promote parametric studied and evaluation of habitat concepts. It will provide a guideline dependent upon mission objectives to standardize architectural needs within the engineering applications and scientific demands. The significance of this research is the process of developing lunar habitat concepts using an architectural system to evaluate the quality of each concept via habitability aspects. This process can be employed during the early stage of design development and is flexible enough to be adjusted by different parameters according to the objectives of lunar mission, limitations, and cost. It also emphasizes the importance of architecture involvement in space projects, especially habitats.

  12. Improving Climate Projections Using "Intelligent" Ensembles

    NASA Technical Reports Server (NTRS)

    Baker, Noel C.; Taylor, Patrick C.

    2015-01-01

    Recent changes in the climate system have led to growing concern, especially in communities which are highly vulnerable to resource shortages and weather extremes. There is an urgent need for better climate information to develop solutions and strategies for adapting to a changing climate. Climate models provide excellent tools for studying the current state of climate and making future projections. However, these models are subject to biases created by structural uncertainties. Performance metrics-or the systematic determination of model biases-succinctly quantify aspects of climate model behavior. Efforts to standardize climate model experiments and collect simulation data-such as the Coupled Model Intercomparison Project (CMIP)-provide the means to directly compare and assess model performance. Performance metrics have been used to show that some models reproduce present-day climate better than others. Simulation data from multiple models are often used to add value to projections by creating a consensus projection from the model ensemble, in which each model is given an equal weight. It has been shown that the ensemble mean generally outperforms any single model. It is possible to use unequal weights to produce ensemble means, in which models are weighted based on performance (called "intelligent" ensembles). Can performance metrics be used to improve climate projections? Previous work introduced a framework for comparing the utility of model performance metrics, showing that the best metrics are related to the variance of top-of-atmosphere outgoing longwave radiation. These metrics improve present-day climate simulations of Earth's energy budget using the "intelligent" ensemble method. The current project identifies several approaches for testing whether performance metrics can be applied to future simulations to create "intelligent" ensemble-mean climate projections. It is shown that certain performance metrics test key climate processes in the models, and

  13. Methodology of quality improvement projects for the Texas Medicare population.

    PubMed

    Pendergrass, P W; Abel, R L; Bing, M; Vaughn, R; McCauley, C

    1998-07-01

    The Texas Medical Foundation, the quality improvement organization for the state of Texas, develops local quality improvement projects for the Medicare population. These projects are developed as part of the Health Care Quality Improvement Program undertaken by the Health Care Financing Administration. The goal of a local quality improvement project is to collaborate with providers to identify and reduce the incidence of unintentional variations in the delivery of care that negatively impact outcomes. Two factors are critical to the success of a quality improvement project. First, as opposed to peer review that is based on implicit criteria, quality improvement must be based on explicit criteria. These criteria represent key steps in the delivery of care that have been shown to improve outcomes for a specific disease. Second, quality improvement must be performed in partnership with the health care community. As such, the health care community must play an integral role in the design and evaluation of a quality improvement project and in the design and implementation of the resulting quality improvement plan. Specifically, this article provides a historical perspective for the transition from peer review to quality improvement. It discusses key steps used in developing and implementing local quality improvement projects including topic selection, quality indicator development, collaborator recruitment, and measurement of performance/improvement. Two Texas Medical Foundation projects are described to highlight the current methodology and to illustrate the impact of quality improvement projects.

  14. Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A.

    USGS Publications Warehouse

    Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Olden, Julian D.; Peterson, Erin E.; Volk, Carol J.; Lawrence, David J.

    2012-01-01

    Climate change will likely have profound effects on cold-water species of freshwater fishes. As temperatures rise, cold-water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate-driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate-induced changes in summer thermal habitat for 3 cold-water fish species—juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.

  15. Keep forage low to improve deer habitat

    Treesearch

    Robert M. Blair

    1968-01-01

    Depending on their age and how they are managed, southern pine plantations can provide sizable amounts of forage for deer. Since millions of acres of upland deer habitat are already in plantations, and millions more are slated for planting, the browse they yield will become increasingly important to southern deer herds--and to the sportsmen who are interested in seeing...

  16. Habitat history improves prediction of biodiversity in rainforest fauna

    PubMed Central

    Graham, Catherine H.; Moritz, Craig; Williams, Stephen E.

    2006-01-01

    Patterns of biological diversity should be interpreted in light of both contemporary and historical influences; however, to date, most attempts to explain diversity patterns have largely ignored history or have been unable to quantify the influence of historical processes. The historical effects on patterns of diversity have been hypothesized to be most important for taxonomic groups with poor dispersal abilities. We quantified the relative stability of rainforests over the late Quaternary period by modeling rainforest expansion and contraction in 21 biogeographic subregions in northeast Australia across four time periods. We demonstrate that historical habitat stability can be as important, and in endemic low-dispersal taxa even more important, than current habitat area in explaining spatial patterns of species richness. In contrast, patterns of endemic species richness for taxa with high dispersal capacity are best predicted by using current environmental parameters. We also show that contemporary patterns of species turnover across the region are best explained by historical patterns of habitat connectivity. These results clearly demonstrate that spatially explicit analyses of the historical processes of persistence and colonization are both effective and necessary for understanding observed patterns of biodiversity. PMID:16407139

  17. An improvement project within urological care.

    PubMed

    Khatami, Annelie; Rosengren, Kristina

    2015-01-01

    The purpose of this paper is to describe staff experiences in an on-going improvement project regarding patients with ureteral stones. A qualitative descriptive study based on eight group interviews and 48 narratives, was performed. Data were analysed using qualitative content analysis. Trustworthiness was ensured by using a well-documented improvement process method during six months. The results formed three categories: an absent comprehensive view; complexity; and vulnerability within the organisation. A holistic perspective regarding urological care at the micro-, meso- and macro-levels is needed to improve planning and caring processes. This study includes one team (six members, different health professionals) within the same urology department. Results show that staff need information, such as guidelines and support throughout the improvement work to deliver high-quality care. Moreover, there is a need for evidence-based guidelines at national level to support improvement work. Healthcare staff need to pay attention to all team member needs to improve urological care. Organisational and managerial aspect are needed to support clear and common goals regarding healthcare improvement work. Urological improvement projects, generally, are lacking, which is why this study is important to improve nephrolithiasis patient care.

  18. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  19. Habitat-based conservation strategies cannot compensate for climate-change-induced range loss

    NASA Astrophysics Data System (ADS)

    Wessely, Johannes; Hülber, Karl; Gattringer, Andreas; Kuttner, Michael; Moser, Dietmar; Rabitsch, Wolfgang; Schindler, Stefan; Dullinger, Stefan; Essl, Franz

    2017-11-01

    Anthropogenic habitat fragmentation represents a major obstacle to species shifting their range in response to climate change. Conservation measures to increase the (meta-)population capacity and permeability of landscapes may help but the effectiveness of such measures in a warming climate has rarely been evaluated. Here, we simulate range dynamics of 51 species from three taxonomic groups (vascular plants, butterflies and grasshoppers) in Central Europe as driven by twenty-first-century climate scenarios and analyse how three habitat-based conservation strategies (establishing corridors, improving the landscape matrix, and protected area management) modify species' projected range size changes. These simulations suggest that the conservation strategies considered are unable to save species from regional extinction. For those persisting, they reduce the magnitude of range loss in lowland but not in alpine species. Protected area management and corridor establishment are more effective than matrix improvement. However, none of the conservation strategies evaluated could fully compensate the negative impact of climate change for vascular plants, butterflies or grasshoppers in central Europe.

  20. Predicting occurrence of juvenile shark habitat to improve conservation planning.

    PubMed

    Oh, Beverly Z L; Sequeira, Ana M M; Meekan, Mark G; Ruppert, Jonathan L W; Meeuwig, Jessica J

    2017-06-01

    Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark-monitoring data on large scales (100s-1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km 2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species-level models had higher accuracy (ĸ ≥ 0.69) and deviance explained (≥48%) than our order-level model (ĸ = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species-specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species-focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non-extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across

  1. Can Environmental Education Actions Change Public Attitudes? An Example Using the Pond Habitat and Associated Biodiversity

    PubMed Central

    Sousa, Eunice; Quintino, Victor; Palhas, Jael; Rodrigues, Ana Maria; Teixeira, José

    2016-01-01

    Ponds provide vital ecological services. They are biodiversity hotspots and important breading sites for rare and endangered species, including amphibians and dragonflies. Nevertheless, their number is decreasing due to habitat degradation caused by human activities. The “Ponds with Life” environmental education project was developed to raise public awareness and engagement in the study of ponds by promoting the direct contact between the public and nature, researchers and pedagogical hands-on exploration activities. A pre-post- project survey was set-up to assess the effects of the project on the environmental consciousness, knowledge and attitude changes towards ponds and the associated biodiversity of school students aged 15 to 18. The survey questions were based on Likert scales and their pre-post project comparisons used an innovative multivariate hypothesis testing approach. The results showed that the project improved the students’ knowledge and attitudes towards ponds and associated biodiversity, especially the amphibians. Ponds can be found or constructed in urban areas and despite small sized, they proved to be interesting model habitats and living laboratories to foster environmental education, by encompassing a high number of species and a fast ecological succession. PMID:27148879

  2. Can Environmental Education Actions Change Public Attitudes? An Example Using the Pond Habitat and Associated Biodiversity.

    PubMed

    Sousa, Eunice; Quintino, Victor; Palhas, Jael; Rodrigues, Ana Maria; Teixeira, José

    2016-01-01

    Ponds provide vital ecological services. They are biodiversity hotspots and important breading sites for rare and endangered species, including amphibians and dragonflies. Nevertheless, their number is decreasing due to habitat degradation caused by human activities. The "Ponds with Life" environmental education project was developed to raise public awareness and engagement in the study of ponds by promoting the direct contact between the public and nature, researchers and pedagogical hands-on exploration activities. A pre-post- project survey was set-up to assess the effects of the project on the environmental consciousness, knowledge and attitude changes towards ponds and the associated biodiversity of school students aged 15 to 18. The survey questions were based on Likert scales and their pre-post project comparisons used an innovative multivariate hypothesis testing approach. The results showed that the project improved the students' knowledge and attitudes towards ponds and associated biodiversity, especially the amphibians. Ponds can be found or constructed in urban areas and despite small sized, they proved to be interesting model habitats and living laboratories to foster environmental education, by encompassing a high number of species and a fast ecological succession.

  3. 1979-1981 Vocational Education Improvement Projects.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational Education.

    This brochure provides summaries of 23 exemplary, research, and curriculum projects known as the Vocational Improvement Program that share three concerns: meeting needs of underserved students, sex fairness, and excellence in vocational education. The 14 exemplary projects focus on vocational exploration and skill building in marine and related…

  4. Elementary and middle school science improvement project

    NASA Technical Reports Server (NTRS)

    Mcguire, Saundra Y.

    1989-01-01

    The Alabama A and M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted to improve the science knowledge of elementary and middle school teachers using the experimental or hands-on approach. Summer workshops were conducted during the summers of 1986, 1987, and 1988 in the areas of biology, chemistry, physics, and electricity, and magnetism. Additionally, a manual containing 43 lessons which included background information, experiments and activities for classroom and home use was provided to each teacher. During the course of the project activities, the teachers interacted with various university faculty members, scientists, and NASA staff. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcome are addressed.

  5. Back to the future: using historical climate variation to project near-term shifts in habitat suitable for coast redwood.

    PubMed

    Fernández, Miguel; Hamilton, Healy H; Kueppers, Lara M

    2015-11-01

    Studies that model the effect of climate change on terrestrial ecosystems often use climate projections from downscaled global climate models (GCMs). These simulations are generally too coarse to capture patterns of fine-scale climate variation, such as the sharp coastal energy and moisture gradients associated with wind-driven upwelling of cold water. Coastal upwelling may limit future increases in coastal temperatures, compromising GCMs' ability to provide realistic scenarios of future climate in these coastal ecosystems. Taking advantage of naturally occurring variability in the high-resolution historic climatic record, we developed multiple fine-scale scenarios of California climate that maintain coherent relationships between regional climate and coastal upwelling. We compared these scenarios against coarse resolution GCM projections at a regional scale to evaluate their temporal equivalency. We used these historically based scenarios to estimate potential suitable habitat for coast redwood (Sequoia sempervirens D. Don) under 'normal' combinations of temperature and precipitation, and under anomalous combinations representative of potential future climates. We found that a scenario of warmer temperature with historically normal precipitation is equivalent to climate projected by GCMs for California by 2020-2030 and that under these conditions, climatically suitable habitat for coast redwood significantly contracts at the southern end of its current range. Our results suggest that historical climate data provide a high-resolution alternative to downscaled GCM outputs for near-term ecological forecasts. This method may be particularly useful in other regions where local climate is strongly influenced by ocean-atmosphere dynamics that are not represented by coarse-scale GCMs. © 2015 John Wiley & Sons Ltd.

  6. Restoring forbs for sage grouse habitat: Fire, microsites, and establishment methods

    USGS Publications Warehouse

    Wirth, Troy A.; Pyke, David A.

    2003-01-01

    The decline and range reduction of sage grouse populations are primarily due to permanent loss and degradation of sagebrusha??grassland habitat. Several studies have shown that sage grouse productivity may be limited by the availability of certain preferred highly nutritious forb species that have also declined within sagebrush ecosystems of the Intermountain West, U.S.A. The purpose of this study was to determine the suitability of three species of forbs for revegetation projects where improving sage grouse habitat is a goal. Species suitability was determined by evaluating the emergence, survival, and reproduction of Crepis modocensis, C. occidentalis, and Astragalus purshii in response to method of establishment (seeding or transplanting), site preparation treatment (burned or unburned), and microsite (mound or interspace) in an Artemisia tridentata ssp. wyomingensis vegetation association in south central Oregon. For seeded plants A. purshii had the lowest emergence (8%) of all three species. Both seeded Crepis species had similar overall emergence (38%). Significantly more Crepis seedlings emerged from shrub mounds in unburned areas (50%) than in any other fire-by-microsite treatment (33 to 36%). Approximately 10% more Crepis seedlings survived in mounds compared with interspaces. Nearly twice as many emerging Crepis seedlings survived in the burned areas as opposed to unburned areas (p < 0.01). This resulted in more plant establishment in burned mounds despite higher emergence in unburned mounds. Astragalus purshii seedlings also survived better in burned areas (p = 0.06) but had no differential response to microsite. Fire enhanced survival of both Crepis and A. purshii transplants (p = 0.08 and p = 0.001). We believe additional research is needed to improve A. purshii emergence before it will become an effective plant for restoring sage grouse habitat. Conversely, we conclude that these Crepis species provide a viable revegetation option for improving sage

  7. Results of preliminary reconnaissance trip to determine the presence of wetlands in wet forest habitats on the Island of Hawaii as part of the Hawaii Geothermal Project, October 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakeley, J.S.; Sprecher, S.W.; Lichvar, R.

    1994-02-25

    In October 1993, the authors sampled soils, vegetation, and hydrology at eight sites representing a range of substrates, elevations, soil types, and plant community types within rainforest habitats on the Island of Hawaii. Their purpose was to determine whether any of these habitats were wetlands according to the 1987 Corps of Engineers Wetlands Delineation Manual. None of the rainforest habitats they sampled was wetland in its entirety. However, communities established on pahoehoe lava flows contained scattered wetlands in depressions and folds in the lava, where water could accumulate. Therefore, large construction projects, such as that associated with proposed geothermal energymore » development in the area, have the potential to impact a significant number and/or area of wetlands. To estimate those impacts more accurately, they present a supplementary scope of work and cost estimate for additional sampling in the proposed geothermal project area.« less

  8. Terrrestrialization of isolated habitats

    NASA Astrophysics Data System (ADS)

    Kolodziejczyk, Agata; Harasymczuk, Matt; Foing, Bernard

    2017-04-01

    One of the most prominent issue for habitability of the solar system and beyond is to adjust a habitat for human life. Since the human life adapted to terrestrial environment during millions of years of evolution, terrestrialization of the base should be a natural trend strictly applied in habitat design. We discuss basic concerns about introducing biomimetic backup safety solutions such modularity, circularity, autonomy and plasticity into life support systems. Particularly we describe critical life processes such briefing, drinking, eating, homeostatic regulation, activity and sleep, in relation to symbiosis and competition with other species living together. Finally, we analyze ecological tolerance and transformation factors, which seem to be crucial in future habitability projects.

  9. Identifying keystone habitats with a mosaic approach can improve biodiversity conservation in disturbed ecosystems.

    PubMed

    Hitchman, Sean M; Mather, Martha E; Smith, Joseph M; Fencl, Jane S

    2018-01-01

    Conserving native biodiversity in the face of human- and climate-related impacts is a challenging and globally important ecological problem that requires an understanding of spatially connected, organismal-habitat relationships. Globally, a suite of disturbances (e.g., agriculture, urbanization, climate change) degrades habitats and threatens biodiversity. A mosaic approach (in which connected, interacting collections of juxtaposed habitat patches are examined) provides a scientific foundation for addressing many disturbance-related, ecologically based conservation problems. For example, if specific habitat types disproportionately increase biodiversity, these keystones should be incorporated into research and management plans. Our sampling of fish biodiversity and aquatic habitat along ten 3-km sites within the Upper Neosho River subdrainage, KS, from June-August 2013 yielded three generalizable ecological insights. First, specific types of mesohabitat patches (i.e., pool, riffle, run, and glide) were physically distinct and created unique mosaics of mesohabitats that varied across sites. Second, species richness was higher in riffle mesohabitats when mesohabitat size reflected field availability. Furthermore, habitat mosaics that included more riffles had greater habitat diversity and more fish species. Thus, riffles (<5% of sampled area) acted as keystone habitats. Third, additional conceptual development, which we initiate here, can broaden the identification of keystone habitats across ecosystems and further operationalize this concept for research and conservation. Thus, adopting a mosaic approach can increase scientific understanding of organismal-habitat relationships, maintain natural biodiversity, advance spatial ecology, and facilitate effective conservation of native biodiversity in human-altered ecosystems. © 2017 John Wiley & Sons Ltd.

  10. Managing harvest and habitat as integrated components

    USGS Publications Warehouse

    Osnas, Erik; Runge, Michael C.; Mattsson, Brady J.; Austin, Jane E.; Boomer, G. S.; Clark, R. G.; Devers, P.; Eadie, J. M.; Lonsdorf, E. V.; Tavernia, Brian G.

    2014-01-01

    In 2007, several important initiatives in the North American waterfowl management community called for an integrated approach to habitat and harvest management. The essence of the call for integration is that harvest and habitat management affect the same resources, yet exist as separate endeavours with very different regulatory contexts. A common modelling framework could help these management streams to better understand their mutual effects. Particularly, how does successful habitat management increase harvest potential? Also, how do regional habitat programmes and large-scale harvest strategies affect continental population sizes (a metric used to express habitat goals)? In the ensuing five years, several projects took on different aspects of these challenges. While all of these projects are still on-going, and are not yet sufficiently developed to produce guidance for management decisions, they have been influential in expanding the dialogue and producing some important emerging lessons. The first lesson has been that one of the more difficult aspects of integration is not the integration across decision contexts, but the integration across spatial and temporal scales. Habitat management occurs at local and regional scales. Harvest management decisions are made at a continental scale. How do these actions, taken at different scales, combine to influence waterfowl population dynamics at all scales? The second lesson has been that consideration of the interface of habitat and harvest management can generate important insights into the objectives underlying the decision context. Often the objectives are very complex and trade-off against one another. The third lesson follows from the second – if an understanding of the fundamental objectives is paramount, there is no escaping the need for a better understanding of human dimensions, specifically the desires of hunters and nonhunters and the role they play in conservation. In the end, the compelling question is

  11. Construction Project Performance Improvement through Radio Frequency Identification Technology Application on a Project Supply Chain

    ERIC Educational Resources Information Center

    Wang, Heng

    2017-01-01

    Construction project productivity typically lags other industries and it has been the focus of numerous studies in order to improve the project performance. This research investigated the application of Radio Frequency Identification (RFID) technology on construction projects' supply chain and determined that RFID technology can improve the…

  12. Sediment Transport into the Swinomish Navigation Channel, Puget Sound—Habitat Restoration versus Navigation Maintenance Needs

    DOE PAGES

    Khangaonkar, Tarang; Nugraha, Adi; Hinton, Steve; ...

    2017-04-21

    The 11 mile (1.6 km) Swinomish Federal Navigation Channel provides a safe and short passage to fishing and recreational craft in and out of Northern Puget Sound by connecting Skagit and Padilla Bays, US State abbrev., USA. A network of dikes and jetties were constructed through the Swinomish corridor between 1893 and 1936 to improve navigation functionality. Over the years, these river training dikes and jetties designed to minimize sedimentation in the channel have deteriorated, resulting in reduced protection of the channel. The need to repair or modify dikes/jetties for channel maintenance, however, may conflict with salmon habitat restoration goalsmore » aimed at improving access, connectivity and brackish water habitat. Several restoration projects have been proposed in the Skagit delta involving breaching, lowering, or removal of dikes. To assess relative merits of the available alternatives, a hydrodynamic model of the Skagit River estuary was developed using the Finite Volume Community Ocean Model (FVCOM). Here, in this paper, we present the refinement and calibration of the model using oceanographic data collected from the years 2006 and 2009 with a focus on the sediment and brackish water transport from the river and Skagit Bay tide flats to the Swinomish Channel. The model was applied to assess the feasibility of achieving the desired dual outcome of (a) reducing sedimentation and shoaling in the Swinomish Channel and (b) providing a direct migration pathway and improved conveyance of freshwater into the Swinomish Channel. Finally, the potential reduction in shoaling through site-specific structure repairs is evaluated. Similarly, the potential to significantly improve of brackish water habitat through dike breach restoration actions using the McGlinn Causeway project example, along with its impacts on sediment deposition in the Swinomish Navigation Channel, is examined« less

  13. Sediment Transport into the Swinomish Navigation Channel, Puget Sound—Habitat Restoration versus Navigation Maintenance Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang; Nugraha, Adi; Hinton, Steve

    The 11 mile (1.6 km) Swinomish Federal Navigation Channel provides a safe and short passage to fishing and recreational craft in and out of Northern Puget Sound by connecting Skagit and Padilla Bays, US State abbrev., USA. A network of dikes and jetties were constructed through the Swinomish corridor between 1893 and 1936 to improve navigation functionality. Over the years, these river training dikes and jetties designed to minimize sedimentation in the channel have deteriorated, resulting in reduced protection of the channel. The need to repair or modify dikes/jetties for channel maintenance, however, may conflict with salmon habitat restoration goalsmore » aimed at improving access, connectivity and brackish water habitat. Several restoration projects have been proposed in the Skagit delta involving breaching, lowering, or removal of dikes. To assess relative merits of the available alternatives, a hydrodynamic model of the Skagit River estuary was developed using the Finite Volume Community Ocean Model (FVCOM). Here, in this paper, we present the refinement and calibration of the model using oceanographic data collected from the years 2006 and 2009 with a focus on the sediment and brackish water transport from the river and Skagit Bay tide flats to the Swinomish Channel. The model was applied to assess the feasibility of achieving the desired dual outcome of (a) reducing sedimentation and shoaling in the Swinomish Channel and (b) providing a direct migration pathway and improved conveyance of freshwater into the Swinomish Channel. Finally, the potential reduction in shoaling through site-specific structure repairs is evaluated. Similarly, the potential to significantly improve of brackish water habitat through dike breach restoration actions using the McGlinn Causeway project example, along with its impacts on sediment deposition in the Swinomish Navigation Channel, is examined« less

  14. Habitat improvement costs on state-owned wildlife management areas in New York

    Treesearch

    Ronald J. Glass

    1989-01-01

    Estimates of management costs on New York's wildlife management areas indicate that human management is more costly than habitat management. Agricultural agreements and timber sales make a major contribution to habitat inhancement, and a wide variety of wildlife species benefit.

  15. Habitat Restoration and Monitoring in Urban Streams: The Case of Tryon Creek in Portland, OR

    NASA Astrophysics Data System (ADS)

    Rios Touma, B. P.; Prescott, C.; Axtell, S.; Kondolf, G. M.

    2013-12-01

    Habitat enhancement in urban streams can be important for threatened species but challenging, because of altered catchment hydrology and urban encroachment on floodplains and channel banks. In Portland (OR) restoration actions have been undertaken at the watershed scale (e.g.: storm water management, protection of sites with high watershed value) to improve water quality, and at reach scale, when water quality and quantity are adequate, to increase habitat heterogeneity and stabilize banks. To evaluate reach-scale restoration projects in the Tryon Creek watershed, we sampled benthic macroinvertebrates and conducted habitat quality surveys pre-project and over 4 years post- project. Species sensitive to pollution and diversity of trophic groups increased after restoration. Although taxonomical diversity increased after restoration, but was still low compared to reference streams. We found no significant changes in trait proportions and functional diversity. Functional diversity, proportion of shredders and semivoltine invertebrates were significantly higher in reference streams than the restored stream reaches. We hypothesized that inputs of coarse particulate organic matter and land use at watershed scale may explain the differences in biodiversity between restored and reference stream reaches. Variables such as substrate composition, canopy cover or large wood pieces did not change from pre- to post-project, so could not explain the changes in the community. This may have been partly attributable to insensitivity of the visual estimate methods used, but likely also reflects an importance influence of watershed variables on aquatic biota - suggesting watershed actions may be more effective for the ecological recovery of streams. For future projects, we recommend multihabitat benthic sampling supported by studies of channel geomorphology to better understand stream response to restoration actions.

  16. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    PubMed

    Markle, Chantel E; Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  17. Habitat drives dispersal and survival of translocated juvenile desert tortoises

    USGS Publications Warehouse

    Nafus, Melia G.; Esque, Todd C.; Averill-Murray, Roy C.; Nussear, Kenneth E.; Swaisgood, Ronald R.

    2017-01-01

    5.Synthesis and applications. Resource managers using translocations as a conservation tool should prioritize acquiring data linking habitat to fitness. In particular, for species that depend on avoiding detection, refuges such as burrows and habitat that improved concealment had notable ability to improve survival and dispersal. Our study on juvenile Mojave desert tortoises showed that refuge availability or the distributions of habitat appropriate for concealment are important considerations for identifying translocation sites for species highly dependent on crypsis, camouflage, or other forms of habitat matching.

  18. Deep Space Habitat Configurations Based On International Space Station Systems

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples,Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  19. Deep Space Habitat Configurations Based on International Space Station Systems

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  20. Application of Wind Fetch and Wave Models for Habitat Rehabilitation and Enhancement Projects

    USGS Publications Warehouse

    Rohweder, Jason J.; Rogala, James T.; Johnson, Barry L.; Anderson, Dennis; Clark, Steve; Chamberlin, Ferris

    2012-01-01

    Models based upon coastal engineering equations have been developed to quantify wind fetch length and several physical wave characteristics including significant height, length, peak period, maximum orbital velocity, and shear stress. These models were used to quantify differences in proposed island construction designs for three Habitat Rehabilitation and Enhancement Projects (HREPs) in the U.S. Army Corps of Engineers St. Paul District (Capoli Slough and Harpers Slough) and St. Louis District (Swan Lake). Weighted wind fetch was calculated using land cover data supplied by the Long Term Resource Monitoring Program (LTRMP) for each island design scenario for all three HREPs. Figures and graphs were created to depict the results of this analysis. The difference in weighted wind fetch from existing conditions to each potential future island design was calculated for Capoli and Harpers Slough HREPs. A simplistic method for calculating sediment suspension probability was also applied to the HREPs in the St. Paul District. This analysis involved determining the percentage of days that maximum orbital wave velocity calculated over the growing seasons of 2002–2007 exceeded a threshold value taken from the literature where fine unconsolidated sediments may become suspended. This analysis also evaluated the difference in sediment suspension probability from existing conditions to the potential island designs. Bathymetric data used in the analysis were collected from the LTRMP and wind direction and magnitude data were collected from the National Oceanic and Atmospheric Administration, National Climatic Data Center. These models are scheduled to be updated to operate using the most current Environmental Systems Research Institute ArcGIS Geographic Information System platform, and have several improvements implemented to wave calculations, data processing, and functions of the toolbox.

  1. The effects of gypsy moth infestation on gray squirrel habitat and populations

    Treesearch

    David E. Samuel; Rob Silvester

    1991-01-01

    The overall objective of this project was to determine the effects of defoliation on gray squirrel habitat. We will evaluate the existing Habitat Suitability Index (HSI) Model for gray squirrels on the University Forest and determine the effects of thinning on HSI values computed for thinned and unthinned stands. Habitat variables used in the U. S. Fish and Wildlife...

  2. The use of process mapping in healthcare quality improvement projects.

    PubMed

    Antonacci, Grazia; Reed, Julie E; Lennox, Laura; Barlow, James

    2018-05-01

    Introduction Process mapping provides insight into systems and processes in which improvement interventions are introduced and is seen as useful in healthcare quality improvement projects. There is little empirical evidence on the use of process mapping in healthcare practice. This study advances understanding of the benefits and success factors of process mapping within quality improvement projects. Methods Eight quality improvement projects were purposively selected from different healthcare settings within the UK's National Health Service. Data were gathered from multiple data-sources, including interviews exploring participants' experience of using process mapping in their projects and perceptions of benefits and challenges related to its use. These were analysed using inductive analysis. Results Eight key benefits related to process mapping use were reported by participants (gathering a shared understanding of the reality; identifying improvement opportunities; engaging stakeholders in the project; defining project's objectives; monitoring project progress; learning; increased empathy; simplicity of the method) and five factors related to successful process mapping exercises (simple and appropriate visual representation, information gathered from multiple stakeholders, facilitator's experience and soft skills, basic training, iterative use of process mapping throughout the project). Conclusions Findings highlight benefits and versatility of process mapping and provide practical suggestions to improve its use in practice.

  3. USE OF SHALLOW WATER HABITATS BY ECONOMICALLY VALUABLE FISHES AND CRUSTACEANS

    EPA Science Inventory

    I investigated nekton use of bay-exposed fringing salt marsh habitats at the Goodwin Islands NERRS location (York River, Virginia) in two separate studies. In a 1995 project, depositional-edged salt marshes and the adjacent non-vegetated habitats were sampled with quantitative 1....

  4. Shoreline development and degradation of coastal fish reproduction habitats.

    PubMed

    Sundblad, Göran; Bergström, Ulf

    2014-12-01

    Coastal development has severely affected habitats and biodiversity during the last century, but quantitative estimates of the impacts are usually lacking. We utilize predictive habitat modeling and mapping of human pressures to estimate the cumulative long-term effects of coastal development in relation to fish habitats. Based on aerial photographs since the 1960s, shoreline development rates were estimated in the Stockholm archipelago in the Baltic Sea. By combining shoreline development rates with spatial predictions of fish reproduction habitats, we estimated annual habitat degradation rates for three of the most common coastal fish species, northern pike (Esox lucius), Eurasian perch (Perca fluviatilis) and roach (Rutilus rutilus). The results showed that shoreline constructions were concentrated to the reproduction habitats of these species. The estimated degradation rates, where a degraded habitat was defined as having ≥3 constructions per 100 m shoreline, were on average 0.5 % of available habitats per year and about 1 % in areas close to larger population centers. Approximately 40 % of available habitats were already degraded in 2005. These results provide an example of how many small construction projects over time may have a vast impact on coastal fish populations.

  5. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    ERIC Educational Resources Information Center

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  6. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration

    PubMed Central

    Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada’s mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931–2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna. PMID:29444129

  7. Distributed Wind Competitiveness Improvement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-05-01

    The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. This fact sheet describes the CIP and funding awarded as part of the project.

  8. A portfolio evaluation framework for air transportation improvement projects

    NASA Astrophysics Data System (ADS)

    Baik, Hyeoncheol

    This thesis explores the application of portfolio theory to the Air Transportation System (ATS) improvement. The ATS relies on complexly related resources and different stakeholder groups. Moreover, demand for air travel is significantly increasing relative to capacity of air transportation. In this environment, improving the ATS is challenging. Many projects, which are defined as technologies or initiatives, for improvement have been proposed and some have been demonstrated in practice. However, there is no clear understanding of how well these projects work in different conditions nor of how they interact with each other or with existing systems. These limitations make it difficult to develop good project combinations, or portfolios that maximize improvement. To help address this gap, a framework for identifying good portfolios is proposed. The framework can be applied to individual projects or portfolios of projects. Projects or portfolios are evaluated using four different groups of factors (effectiveness, time-to-implement, scope of applicability, and stakeholder impacts). Portfolios are also evaluated in terms of interaction-determining factors (prerequisites, co-requisites, limiting factors, and amplifying factors) because, while a given project might work well in isolation, interdependencies between projects or with existing systems could result in lower overall performance in combination. Ways to communicate a portfolio to decision makers are also introduced. The framework is unique because (1) it allows using a variety of available data, and (2) it covers diverse benefit metrics. For demonstrating the framework, an application to ground delay management projects serves as a case study. The portfolio evaluation approach introduced in this thesis can aid decision makers and researchers at universities and aviation agencies such as Federal Aviation Administration (FAA), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD), in

  9. A Conceptual Framework for the Evaluation of Coastal Habitats

    DTIC Science & Technology

    1994-02-01

    in lieu of oyster-bed habitat. Evaluating the environmental impact of habitat "trade-offs" involves com... project . This repetition results in a considerable amount of wasted time and effort. In addition, changes in personnel or simply the passage of time...assessing the character and environmental status of the system. For instance, knowledge of land-use patterns in upland areas

  10. Projected trends in forest habitat classes under climate and land-use change scenarios

    Treesearch

    Brian G. Tavernia; Mark D. Nelson; Brian F. Walters; Chris Toney

    2012-01-01

    Wildlife species have diverse and sometimes conflicting habitat requirements. To support diverse wildlife communities, natural resource managers need to manage for a variety of habitats across a large area and to create long-term management plans to ensure this variety is maintained. In these efforts, managers would benefit from assessments of potential climate and...

  11. Performance Evaluations of Prototype Houses: Minimum 40% Residential Building Energy Savings Level Habitat for Humanity of Greater Newburgh Liberty Street Project: April 2003--September 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guilbert, R.; Magee, A.

    Habitat for Humanity International (HfHI) is a nonprofit organization that engages volunteers and would-be homebuyers in programs that emphasize sweat-equity and self-help. Habitat is among the top-ten housing producers in the United States. In collaboration with the HfHI Department of Construction & Environmental Resources, Steven Winter Associates, Inc., (SWA) began working with the Habitat for Humanity of Greater Newburgh (HfHGN) affiliate in Newburgh, New York, in April 2003. Since October 1999, HfHGN has acquired and renovated abandoned houses for an average cost of $45,000 per home. The affiliate serves area families living in overcrowded, substandard housing and spending 50% tomore » 80% of their income on housing. In August 2003, HfHGN began their first new construction project, six row houses located on Liberty Street in Newburgh.« less

  12. Evaluation of nekton use and habitat characteristics of restored Louisiana marsh

    USGS Publications Warehouse

    Thom, C.S.B.; Peyre, M.K.G.L.; Nyman, J.A.

    2004-01-01

    Marsh terracing and coconut fiber mats are two wetland restoration techniques implemented at Sabine National Wildlife Refuge, Louisiana, USA. Using nekton as an indicator of habitat quality, nekton community assemblages were compared between terraced, coconut-matted, unmanaged marsh (restoration goal), and open water (pre-restoration) habitats. Using a throw trap and a 3 m ?? 2 m straight seine, 192 nekton samples were collected over four dates in 2001 and 2002 at all habitats. Nekton abundance was similar at unmanaged marsh (restoration goal), coconut mat, and terrace edge, and significantly higher than at open water (pre-restoration) sites (P < 0.05). Coconut-matted habitat and unmanaged marsh edges had significantly higher numbers of benthic dependent species than terrace edges (P < 0.05), potentially because of differences in substrate. Terraced sites had lower organic matter and siltier substrate as compared to unmanaged marsh sites. At Sabine NWR, terracing increased nekton use as compared to pre-restoration conditions (open water samples) by providing marsh edge habitat, but failed to support a nekton community similar to unmanaged marsh (restoration goals) or coconut-matted sites. Future restoration projects may evaluate the combined use of coconut mats with terracing projects in order to enhance habitat for benthic dependent nekton.

  13. Teaching animal habitat selection using wildlife tracking equipment

    USGS Publications Warehouse

    Laskowski, Jessica; Gillespie, Caitlyn R.; Corral, Lucia; Oden, Amy; Fricke, Kent A.; Fontaine, Joseph J.

    2016-01-01

    We present a hands-on outdoor activity coupled with classroom discussion to teach students about wildlife habitat selection, the process by which animals choose where to live. By selecting locations or habitats with many benefits (e.g., food, shelter, mates) and few costs (e.g., predators), animals improve their ability to survive and reproduce. Biologists track animal movement using radio telemetry technology to study habitat selection so they can better provide species with habitats that promote population growth. We present a curriculum in which students locate “animals” (transmitters) using radio telemetry equipment and apply math skills (use of fractions and percentages) to assess their “animal's” habitat selection by comparing the availability of habitat types with the proportion of “animals” they find in each habitat type.

  14. Evaluating the accotink creek restoration project for improving water quality, in-stream habitat, and bank stability

    USGS Publications Warehouse

    Struck, S.D.; Selvakumar, A.; Hyer, K.; O'Connor, T.

    2007-01-01

    Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy metals) to receiving waters. To improve water quality in urban and suburban areas, watershed managers often incorporate best management practices (BMPs) to reduce the quantity of runoff as well as to minimize pollutants and other stressors contained in stormwater runoff. It is well known that land-use practices directly impact urban streams. Stream flows in urbanized watersheds increase in magnitude as a function of impervious area and can result in degradation of the natural stream channel morphology affecting the physical, chemical, and biological integrity of the stream. Stream bank erosion, which also increases with increased stream flows, can lead to bank instability, property loss, infrastructure damage, and increased sediment loading to the stream. Increased sediment loads may lead to water quality degradation downstream and have negative impacts on fish, benthic invertebrates, and other aquatic life. Accotink Creek is in the greater Chesapeake Bay and Potomac watersheds, which have strict sediment criteria. The USEPA (United States Environmental Protection Agency) and USGS (United States Geological Survey) are investigating the effectiveness of stream restoration techniques as a BMP to decrease sediment load and improve bank stability, biological integrity, and in-stream water quality in an impaired urban watershed in Fairfax, Virginia. This multi-year project continuously monitors turbidity, specific conductance, pH, and water temperature, as well as biological and chemical water quality parameters. In addition, physical parameters (e.g., pebble counts, longitudinal and cross sectional stream surveys) were measured to assess geomorphic changes associated with the restoration. Data

  15. Wildlife Impact Assessment : Bonneville, McNary, The Dalles, and John Day Projects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmussen, Larry; Wright, Patrick

    1990-10-01

    The Habitat Evaluation Procedures (HEP) were used to evaluate pre- and post-construction habitat conditions of the US Army Corps of Engineers Bonneville project in Oregon and Washington. The project directly impacted 20,749 acres of wildlife habitat. Seven evaluation species were selected with losses and gains expressed in Habitat Units (HU's). One HU is equivalent to 1 acre of prime habitat. The evaluation estimated a gain of 2671 HU's of lesser scaup wintering habitat. Losses of 4300 HU's of great blue heron habitat, 2443 HU's of Canada goose habitat, 2767 HU's of spotted sandpiper habitat, 163 HU's of yellow warbler habitat,more » 1022 HU's black-capped chickadee habitat, and 1622 HU's of mink habitat occurred as a result of the project. This amounts to a total combined loss of 12,317 HU's. 18 refs., 1 fig., 4 tabs.« less

  16. Approaching the Practice Quality Improvement Project in Interventional Radiology.

    PubMed

    Reis, Stephen P; White, Benjamin; Sutphin, Patrick D; Pillai, Anil K; Kalva, Sanjeeva P; Toomay, Seth M

    2015-12-01

    An important component of maintenance of certification and quality improvement in radiology is the practice quality improvement (PQI) project. In this article, the authors describe several methodologies for initiating and completing PQI projects. Furthermore, the authors illustrate several tools that are vital in compiling, analyzing, and presenting data in an easily understandable and reproducible manner. Last, they describe two PQI projects performed in an interventional radiology division that have successfully improved the quality of care for patients. Using the DMAIC (define, measure, analyze, improve, control) quality improvement framework, interventional radiology throughput has been increased, to lessen mediport wait times from 43 to 8 days, and mediport infection rates have decreased from more than 2% to less than 0.4%. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  17. Sharp-tailed Grouse Restoration; Colville Tribes Restore Habitat for Sharp-tailed Grouse, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, Richard

    2004-01-01

    Columbian Sharp-Tailed Grouse (Tympanuchus phasianellus columbianus) (CSTG) are an important traditional and cultural species to the Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STOI), and other Tribes in the Region. They were once the most abundant upland bird in the Region. Currently, the largest remaining population in Washington State occurs on the CCT Reservation in Okanogan County. Increasing agricultural practices and other land uses has contributed to the decline of sharp-tail habitat and populations putting this species at risk. The decline of this species is not new (Yokum, 1952, Buss and Dziedzic, 1955, Zeigler, 1979, Meints 1991, and Crawfordmore » and Snyder 1994). The Tribes (CCT and STOI) are determined to protect, enhance and restore habitat for this species continued existence. When Grand Coulee and Chief Joseph Hydro-projects were constructed, inundated habitat used by this species was lost forever adding to overall decline. To compensate and prevent further habitat loss, the CCT proposed a project with Bonneville Power Administration (BPA) funding to address this species and their habitat requirements. The projects main focus is to address habitat utilized by the current CSTG population and determine ways to protect, restore, and enhance habitats for the conservation of this species over time. The project went through the NPPC Review Process and was funded through FY03 by BPA. This report addresses part of the current CCT effort to address the conservation of this species on the Colville Reservation.« less

  18. Evaluation of a habitat suitability index model

    USGS Publications Warehouse

    Farmer, A.H.; Cade, B.S.; Stauffer, D.F.

    2002-01-01

    We assisted with development of a model for maternity habitat of the Indiana bat (Myotis soda/is), for use in conducting assessments of projects potentially impacting this endangered species. We started with an existing model, modified that model in a workshop, and evaluated the revised model, using data previously collected by others. Our analyses showed that higher indices of habitat suitability were associated with sites where Indiana bats were present and, thus, the model may be useful for identifying suitable habitat. Utility of the model, however, was based on a single component-density of suitable roost trees. Percentage of landscape in forest did not allow differentiation between sites occupied and not occupied by Indiana bats. Moreover, in spite of a general opinion by participants in the workshop that bodies of water were highly productive feeding areas and that a diversity of feeding habitats was optimal, we found no evidence to support either hypothesis.

  19. A framework for modeling anthropogenic impacts on waterbird habitats: addressing future uncertainty in conservation planning

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph P.; Young, Charles A.; Purkey, David R.

    2015-01-01

    The amount and quality of natural resources available for terrestrial and aquatic wildlife habitats are expected to decrease throughout the world in areas that are intensively managed for urban and agricultural uses. Changes in climate and management of increasingly limited water supplies may further impact water resources essential for sustaining habitats. In this report, we document adapting a Water Evaluation and Planning (WEAP) system model for the Central Valley of California. We demonstrate using this adapted model (WEAP-CVwh) to evaluate impacts produced from plausible future scenarios on agricultural and wetland habitats used by waterbirds and other wildlife. Processed output from WEAP-CVwh indicated varying levels of impact caused by projected climate, urbanization, and water supply management in scenarios used to exemplify this approach. Among scenarios, the NCAR-CCSM3 A2 climate projection had a greater impact than the CNRM-CM3 B1 climate projection, whereas expansive urbanization had a greater impact than strategic urbanization, on annual availability of waterbird habitat. Scenarios including extensive rice-idling or substantial instream flow requirements on important water supply sources produced large impacts on annual availability of waterbird habitat. In the year corresponding with the greatest habitat reduction for each scenario, the scenario including instream flow requirements resulted in the greatest decrease in habitats throughout all months of the wintering period relative to other scenarios. This approach provides a new and useful tool for habitat conservation planning in the Central Valley and a model to guide similar research investigations aiming to inform conservation, management, and restoration of important wildlife habitats.

  20. WETLAND AND COASTAL HABITAT CONSERVATION AND RESTORATION MX 6475307

    EPA Science Inventory

    From the date of the project award to March 2009, the project team will coordinate the Wetland and Coastal Habitat Conservation and Restoration committee established by the Governors’ Action Plan of the Gulf of Mexico Alliance. A series of workshops will be held in the Gulf Stat...

  1. Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers

    NASA Astrophysics Data System (ADS)

    Ficklin, D. L.; Barnhart, B. L.; Knouft, J. H.; Stewart, I. T.; Maurer, E. P.; Letsinger, S. L.; Whittaker, G. W.

    2014-12-01

    Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in air temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitats in freshwater systems is critical for predicting aquatic species' responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled general circulation model outputs to explore the spatially and temporally varying changes in stream temperature for the late 21st century at the subbasin and ecological province scale for the Columbia River basin (CRB). On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil water flow, and groundwater inflow, are negatively correlated to increases in stream temperature depending on the ecological province and season. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically explicit modeling approach to

  2. Detailed seafloor habitat mapping to enhance marine-resource management

    USGS Publications Warehouse

    Zawada, David G.; Hart, Kristen M.

    2010-01-01

    Pictures of the seafloor capture important information about the sediments, exposed geologic features, submerged aquatic vegetation, and animals found in a given habitat. With the emergence of marine protected areas (MPAs) as a favored tactic for preserving coral reef resources, knowledge of essential habitat components is paramount to designing effective management strategies. Surprisingly, detailed information on seafloor habitat components is not available in many areas that are being considered for MPA designation or that are already designated as MPAs. A task of the U.S. Geological Survey Coral Reef Ecosystem STudies (USGS CREST) project is addressing this issue.

  3. Habitat Restoration on Mobile Bay

    NASA Astrophysics Data System (ADS)

    Murphy, B.

    2017-12-01

    Alabama has some of the most biodiversity found anywhere in our nation, however we are rapidly losing many of these species to habitat loss. Our marine science class realized our shoreline on our campus on Mobile Bay was disappearing and wanted to help. We collaborated with local scientists from Dauphin Island Sea Lab under the direction of Dr. Just Cebrian and our instructor, Dr. Megan McCall, to create a project to help restore the habitat. We had to first collect beach profile surveys and learn how to measure elevations. Next we installed plants that we measured and collected growth data. Our project went through a series of prototypes and corrective measures based on the type of wave energy we discovered on our shores. Finally we landed on a type of wave attenuator of crab traps filled with rock and staked into the sand. This coming year we will begin collecting data on any changes to the beach profile as well as fish counts to evaluate the effectiveness of our installation.

  4. Salmon River Habitat Enhancement. 1990 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  5. Conflation and aggregation of spatial data improve predictive models for species with limited habitats: a case of the threatened yellow-billed cuckoo in Arizona, USA

    USGS Publications Warehouse

    Villarreal, Miguel L.; van Riper, Charles; Petrakis, Roy E.

    2013-01-01

    Riparian vegetation provides important wildlife habitat in the Southwestern United States, but limited distributions and spatial complexity often leads to inaccurate representation in maps used to guide conservation. We test the use of data conflation and aggregation on multiple vegetation/land-cover maps to improve the accuracy of habitat models for the threatened western yellow-billed cuckoo (Coccyzus americanus occidentalis). We used species observations (n = 479) from a state-wide survey to develop habitat models from 1) three vegetation/land-cover maps produced at different geographic scales ranging from state to national, and 2) new aggregate maps defined by the spatial agreement of cover types, which were defined as high (agreement = all data sets), moderate (agreement ≥ 2), and low (no agreement required). Model accuracies, predicted habitat locations, and total area of predicted habitat varied considerably, illustrating the effects of input data quality on habitat predictions and resulting potential impacts on conservation planning. Habitat models based on aggregated and conflated data were more accurate and had higher model sensitivity than original vegetation/land-cover, but this accuracy came at the cost of reduced geographic extent of predicted habitat. Using the highest performing models, we assessed cuckoo habitat preference and distribution in Arizona and found that major watersheds containing high-probably habitat are fragmented by a wide swath of low-probability habitat. Focus on riparian restoration in these areas could provide more breeding habitat for the threatened cuckoo, offset potential future habitat losses in adjacent watershed, and increase regional connectivity for other threatened vertebrates that also use riparian corridors.

  6. Habitat Evaluation Procedures (HEP) Report : Grand Coulee Dam Mitigation, 1996-1999 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieffer, B.; Singer, Kelly; Abrahamson, Twa-le

    1999-07-01

    The purpose of this Habitat Evaluation Procedures (HEP) study was to determine baseline habitat units and to estimate future habitat units for Bonneville Power Administration (BPA) mitigation projects on the Spokane Indian Reservation. The mitigation between BPA and the Spokane Tribe of Indians (STOI) is for wildlife habitat losses on account of the construction of Grand Coulee Dam. Analysis of the HEP survey data will assist in mitigation crediting and appropriate management of the mitigation lands.

  7. Little River Project.

    ERIC Educational Resources Information Center

    Naisbitt, Ian

    1995-01-01

    Describes the adoption of an old riverside landfill by an elementary school as a Habitat 2000 community project. Contains a "how-to" checklist for such a project, information on building school-community community partnerships, and promotional ideas for stewardship projects. (LZ)

  8. EPA'S BENTHIC HABITAT DATA FOR YAQUINA ESTUARY

    EPA Science Inventory

    Scientists at EPA's National Health and Environmental Effects Research Laboratory, Western Ecology Division (WED) have been studying seafloor (benthic) habitats in Yaquina estuary for several years. Those studies were conducted as parts of several research projects, including: e...

  9. Habitat models to assist plant protection efforts in Shenandoah National Park, Virginia, USA

    USGS Publications Warehouse

    Van Manen, F.T.; Young, J.A.; Thatcher, C.A.; Cass, W.B.; Ulrey, C.

    2005-01-01

    During 2002, the National Park Service initiated a demonstration project to develop science-based law enforcement strategies for the protection of at-risk natural resources, including American ginseng (Panax quinquefolius L.), bloodroot (Sanguinaria canadensis L.), and black cohosh (Cimicifuga racemosa (L.) Nutt. [syn. Actaea racemosa L.]). Harvest pressure on these species is increasing because of the growing herbal remedy market. We developed habitat models for Shenandoah National Park and the northern portion of the Blue Ridge Parkway to determine the distribution of favorable habitats of these three plant species and to demonstrate the use of that information to support plant protection activities. We compiled locations for the three plant species to delineate favorable habitats with a geographic information system (GIS). We mapped potential habitat quality for each species by calculating a multivariate statistic, Mahalanobis distance, based on GIS layers that characterized the topography, land cover, and geology of the plant locations (10-m resolution). We tested model performance with an independent dataset of plant locations, which indicated a significant relationship between Mahalanobis distance values and species occurrence. We also generated null models by examining the distribution of the Mahalanobis distance values had plants been distributed randomly. For all species, the habitat models performed markedly better than their respective null models. We used our models to direct field searches to the most favorable habitats, resulting in a sizeable number of new plant locations (82 ginseng, 73 bloodroot, and 139 black cohosh locations). The odds of finding new plant locations based on the habitat models were 4.5 (black cohosh) to 12.3 (American ginseng) times greater than random searches; thus, the habitat models can be used to improve the efficiency of plant protection efforts, (e.g., marking of plants, law enforcement activities). The field searches also

  10. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    USGS Publications Warehouse

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  11. The fate of threatened coastal dune habitats in Italy under climate change scenarios.

    PubMed

    Prisco, Irene; Carboni, Marta; Acosta, Alicia T R

    2013-01-01

    Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an "indirect" plant-species-based one and a simple "direct" one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the "direct" approach was unsatisfactory, "indirect" models had a good predictive performance, highlighting the importance of using species' responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats' distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future.

  12. Realizing Improvement through Team Empowerment (RITE): A Team-based, Project-based Multidisciplinary Improvement Program.

    PubMed

    Larson, David B; Mickelsen, L Jake; Garcia, Kandice

    2016-01-01

    Performance improvement in a complex health care environment depends on the cooperation of diverse individuals and groups, allocation of time and resources, and use of effective improvement methods. To address this challenge, we developed an 18-week multidisciplinary training program that would also provide a vehicle for effecting needed improvements, by using a team- and project-based model. The program began in the radiology department and subsequently expanded to include projects from throughout the medical center. Participants were taught a specific method for team-based problem solving, which included (a) articulating the problem, (b) observing the process, (c) analyzing possible causes of problems, (d) identifying key drivers, (e) testing and refining interventions, and (f) providing for sustainment of results. Progress was formally reviewed on a weekly basis. A total of 14 teams consisting of 78 participants completed the course in two cohorts; one project was discontinued. All completed projects resulted in at least modest improvement. Mean skill scores increased from 2.5/6 to 4.5/6 (P < .01), and the mean satisfaction score was 4.7/5. Identified keys to success include (a) engagement of frontline staff, (b) teams given authority to make process changes, (c) capable improvement coaches, (d) a physician-director with improvement expertise and organizational authority, (e) capable administrative direction, (f) supportive organizational leaders, (g) weekly progress reviews, (h) timely educational material, (i) structured problem-solving methods, and ( j ) multiple projects working simultaneously. The purpose of this article is to review the program, including the methods and results, and discuss perceived keys to program success. © RSNA, 2016.

  13. A quality improvement project to improve admission temperatures in very low birth weight infants.

    PubMed

    Lee, H C; Ho, Q T; Rhine, W D

    2008-11-01

    To review the results of a quality improvement (QI) project to improve admission temperatures of very low birth weight inborn infants. The neonatal intensive care unit at Lucile Packard Children's Hospital underwent a QI project to address hypothermic preterm newborns by staff education and implementing processes such as polyethylene wraps and chemical warming mattresses. We performed retrospective chart review of all inborn infants with birth weight <1500 g during the 18 months prior to (n=134) and 15 months after (n=170) the implementation period. Temperatures were compared between periods. Multivariable logistic regression was used to account for potential confounding variables. We compared mortality rates and grade 3 or 4 intraventricular hemorrhage rates between periods. The mean temperature rose from 35.4 to 36.2 degrees C (P<0.0001) after the QI project. The improvement was consistent and persisted over a 15-month period. After risk adjustment, the strongest predictor of hypothermia was being born in the period before implementation of the QI project (odds ratio 8.12, 95% confidence interval 4.63, 14.22). Although cesarean delivery was a strong risk factor for hypothermia prior to the project, it was no longer significant after the project. There was no significant difference in death or intraventricular hemorrhage detected between periods. There was a significant improvement in admission temperatures after a QI project, which persisted beyond the initial implementation period. Although there was no difference in mortality or intraventricular hemorrhage rates, we did not have sufficient power to detect small differences in these outcomes.

  14. Current practices in the identification of critical habitat for threatened species.

    PubMed

    Camaclang, Abbey E; Maron, Martine; Martin, Tara G; Possingham, Hugh P

    2015-04-01

    The term critical habitat is used to describe the subset of habitat that is essential to the survival and recovery of species. Some countries legally require that critical habitat of listed threatened and endangered species be identified and protected. However, there is little evidence to suggest that the identification of critical habitat has had much impact on species recovery. We hypothesized that this may be due at least partly to a mismatch between the intent of critical habitat identification, which is to protect sufficient habitat for species persistence and recovery, and its practice. We used content analysis to systematically review critical habitat documents from the United States, Canada, and Australia. In particular, we identified the major trends in type of information used to identify critical habitat and in occupancy of habitat identified as critical. Information about population viability was used to identify critical habitat for only 1% of the species reviewed, and for most species, designated critical habitat did not include unoccupied habitat. Without reference to population viability, it is difficult to determine how much of a species' occupied and unoccupied habitat will be required for persistence. We therefore conclude that the identification of critical habitat remains inconsistent with the goal of protecting sufficient habitat to support persistence and recovery of the species. Ensuring that critical habitat identification aligns more closely with its intent will improve the accuracy of the designations and may therefore help improve the benefits to species recovery when combined with adequate implementation and enforcement of legal protections. © 2014 Society for Conservation Biology.

  15. How to conduct a clinical audit and quality improvement project.

    PubMed

    Limb, Christopher; Fowler, Alex; Gundogan, Buket; Koshy, Kiron; Agha, Riaz

    2017-07-01

    Audits and quality improvement projects are vital aspects of clinical governance and continual service improvement in medicine. In this article we describe the process of clinical audit and quality improvement project. Guidance is also provided on how to design an effective audit and bypass barriers encountered during the process.

  16. Using Risk Assessment and Habitat Suitability Models to Prioritise Invasive Species for Management in a Changing Climate.

    PubMed

    Chai, Shauna-Lee; Zhang, Jian; Nixon, Amy; Nielsen, Scott

    2016-01-01

    Accounting for climate change in invasive species risk assessments improves our understanding of potential future impacts and enhances our preparedness for the arrival of new non-native species. We combined traditional risk assessment for invasive species with habitat suitability modeling to assess risk to biodiversity based on climate change. We demonstrate our method by assessing the risk for 15 potentially new invasive plant species to Alberta, Canada, an area where climate change is expected to facilitate the poleward expansion of invasive species ranges. Of the 15 species assessed, the three terrestrial invasive plant species that could pose the greatest threat to Alberta's biodiversity are giant knotweed (Fallopia sachalinensis), tamarisk (Tamarix chinensis), and alkali swainsonpea (Sphaerophysa salsula). We characterise giant knotweed as 'extremely invasive', with 21 times the suitable habitat between baseline and future projected climate. Tamarisk is 'extremely invasive' with a 64% increase in suitable habitat, and alkali swainsonpea is 'highly invasive' with a 21% increase in suitable habitat. Our methodology can be used to predict and prioritise potentially new invasive species for their impact on biodiversity in the context of climate change.

  17. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies

    NASA Astrophysics Data System (ADS)

    Oliver, Tom H.; Marshall, Harry H.; Morecroft, Mike D.; Brereton, Tom; Prudhomme, Christel; Huntingford, Chris

    2015-10-01

    Climate change is expected to increase the frequency of some climatic extremes. These may have drastic impacts on biodiversity, particularly if meteorological thresholds are crossed, leading to population collapses. Should this occur repeatedly, populations may be unable to recover, resulting in local extinctions. Comprehensive time series data on butterflies in Great Britain provide a rare opportunity to quantify population responses to both past severe drought and the interaction with habitat area and fragmentation. Here, we combine this knowledge with future projections from multiple climate models, for different Representative Concentration Pathways (RCPs), and for simultaneous modelled responses to different landscape characteristics. Under RCP8.5, which is associated with `business as usual’ emissions, widespread drought-sensitive butterfly population extinctions could occur as early as 2050. However, by managing landscapes and particularly reducing habitat fragmentation, the probability of persistence until mid-century improves from around zero to between 6 and 42% (95% confidence interval). Achieving persistence with a greater than 50% chance and right through to 2100 is possible only under both low climate change (RCP2.6) and semi-natural habitat restoration. Our data show that, for these drought-sensitive butterflies, persistence is achieved more effectively by restoring semi-natural landscapes to reduce fragmentation, rather than simply focusing on increasing habitat area, but this will only be successful in combination with substantial emission reductions.

  18. Predicting impacts of climate change on habitat connectivity of Kalopanax septemlobus in South Korea

    NASA Astrophysics Data System (ADS)

    Kang, Wanmo; Minor, Emily S.; Lee, Dowon; Park, Chan-Ryul

    2016-02-01

    Understanding the drivers of habitat distribution patterns and assessing habitat connectivity are crucial for conservation in the face of climate change. In this study, we examined a sparsely distributed tree species, Kalopanax septemlobus (Araliaceae), which has been heavily disturbed by human use in temperate forests of South Korea. We used maximum entropy distribution modeling (MaxEnt) to identify the climatic and topographic factors driving the distribution of the species. Then, we constructed habitat models under current and projected climate conditions for the year 2050 and evaluated changes in the extent and connectivity of the K. septemlobus habitat. Annual mean temperature and terrain slope were the two most important predictors of species distribution. Our models predicted the range shift of K. septemlobus toward higher elevations under medium-low and high emissions scenarios for 2050, with dramatic reductions in suitable habitat (51% and 85%, respectively). In addition, connectivity analysis indicated that climate change is expected to reduce future levels of habitat connectivity. Even under the Representative Construction Pathway (RCP) 4.5 medium-low warming scenario, the projected climate conditions will decrease habitat connectivity by 78%. Overall, suitable habitats for K. septemlobus populations will likely become more isolated depending on the severity of global warming. The approach presented here can be used to efficiently assess species and habitat vulnerability to climate change.

  19. Improving critical care discharge summaries: a collaborative quality improvement project using PDSA

    PubMed Central

    Goulding, Lucy; Parke, Hannah; Maharaj, Ritesh; Loveridge, Robert; McLoone, Anne; Hadfield, Sophie; Helme, Eloise; Hopkins, Philip; Sandall, Jane

    2015-01-01

    Around 110,000 people spend time in critical care units in England and Wales each year. The transition of care from the intensive care unit to the general ward exposes patients to potential harms from changes in healthcare providers and environment. Nurses working on general wards report anxiety and uncertainty when receiving patients from critical care. An innovative form of enhanced capability critical care outreach called ‘iMobile’ is being provided at King's College Hospital (KCH). Part of the remit of iMobile is to review patients who have been transferred from critical care to general wards. The iMobile team wished to improve the quality of critical care discharge summaries. A collaborative evidence-based quality improvement project was therefore undertaken by the iMobile team at KCH in conjunction with researchers from King's Improvement Science (KIS). Plan, Do, Study, Act (PDSA) methodology was used. Three PDSA cycles were undertaken. Methods adopted comprised: a scoping literature review to identify relevant guidelines and research evidence to inform all aspects of the quality improvement project; a process mapping exercise; informal focus groups / interviews with staff; patient story-telling work with people who had experienced critical care and subsequent discharge to a general ward; and regular audits of the quality of both medical and nursing critical care discharge summaries. The following behaviour change interventions were adopted, taking into account evidence of effectiveness from published systematic reviews and considering the local context: regular audit and feedback of the quality of discharge summaries, feedback of patient experience, and championing and education delivered by local opinion leaders. The audit results were mixed across the trajectory of the project, demonstrating the difficulty of sustaining positive change. This was particularly important as critical care bed occupancy and through-put fluctuates which then impacts on work

  20. Informational open houses for the Caldecott Improvement Project.

    DOT National Transportation Integrated Search

    2005-06-01

    The Caldecott Improvement Project proposes to alleviate traffic congestion along State : Route 24 by adding a fourth bore to the Caldecott Tunnels. Environmental studies are : being conducted to identify long-term, permanent impacts of the project as...

  1. Improving Culture, One Quality Improvement Project at a Time.

    PubMed

    Vander Schaaf, Emily B; Cornett, Amanda C; Randolph, Greg D

    A culture of quality improvement (QI) values collaboration, transparency, and staff empowerment. Organizations exhibiting a culture of QI are more likely to engage in QI. We examined whether local health departments' (LHDs') participation in a longitudinal, experiential QI training program changes QI culture. Prior to and following participation in a QI training program, all employees of participating LHDs were asked to complete an 8-item survey assessing components of QI culture on a 5-point scale. From 2010 to 2015, multidisciplinary teams from North Carolina LHDs participated in sequential cohorts of a 6-month QI training program, during which the teams completed a QI project. We dichotomized culture survey responses, with 4 or 5 being "Supportive." We compared adjusted proportions, using linear regression, clustering at LHD, and controlling for cohort. Data from 42 LHDs were included. At baseline, 7.8% responded that their LHD had a supportive culture for all 8 components, compared with 12% at follow-up (P < .001), adjusted for cohort and clustering by LHD. At follow-up, the percentage of employees responding that their LHDs had supportive cultures increased for all components of culture including communication by 4.1% (95% CI: 2.0%-6.2%), problem solving by 2.9% (95% CI: 1.6%-5.5%), team work by 5.2% (95% CI: 2.5%-7.8%), vision by 4.3% (95% CI: 1.1%-7.5%), performance measures by 5.6% (95% CI: 1.6%-9.6%), recognition by 4.7% (95% CI: 1.4%-8.0%), for conflict by 5.5% (95% CI: 1.7%-9.4%), and alignment by 5.8% (95% CI: 2.3%-9.2%). Engagement with structured QI training programs-and perhaps simply completing QI projects-can cause small, but important changes in organizations' cultures, thus increasing engagement in future QI and improving overall care and services. The article demonstrates that when LHDs participate in a longitudinal, experiential QI training program, their cultures of QI improve. Local health departments participating in similar training

  2. Missouri River Emergent Sandbar Habitat Monitoring Plan - A Conceptual Framework for Adaptive Management

    USGS Publications Warehouse

    Sherfy, Mark H.; Stucker, Jennifer H.; Anteau, Michael J.

    2009-01-01

    Habitat conditions are one of the most important factors determining distribution and productivity of least terns (Sternula antillarum) and piping plovers (Charadrius melodus) in the upper Missouri River system (Ziewitz and others, 1992; Kruse and others, 2002). Habitat conditions are known to change within and among seasons in response to variation in river flows, weather conditions, and management actions targeted at providing for the needs of terns and plovers. Although these principles are generally agreed upon, there is little empirical information available on the quantity and quality of tern and plover habitats in this system, particularly with reference to the major life history events that must be supported (egg laying, incubation, and brood rearing). Habitat requirements for these events are composed of two major categories: nesting and foraging habitat. In the case of piping plovers, these two requirements must occur on the same area because plover chicks are constrained to foraging near nesting sites prior to fledging (Knetter and others, 2002; Haffner, 2005). In contrast, least terns chicks are fed by the adults, allowing food procurement for broods to occur outside the immediate nesting area; however, food resources must be close enough to nesting locations to minimize foraging time. The complexity and dynamics of the upper Missouri River system introduce considerable uncertainty into how best to manage tern and plover habitats, and how best to evaluate the effectiveness of this management. An extensive program of habitat monitoring will be needed to address this complexity and support the management of least terns and piping plovers under the Missouri River Recovery Program. These needs are being addressed, in part, through a program of habitat creation and management targeted at improving quality and quantity of habitats for terns and plovers. Given the momentum of these projects and their associated costs, it is imperative that the capacity be

  3. Payback as an investment criterion for sawmill improvement projects

    Treesearch

    G. B. Harpole

    1983-01-01

    Methods other than presented here should be used to assess projects for likely return on investment; but, payback is simple to calculate and can be used for calculations that will indicate the relative attractiveness of alternative improvement projects. This paper illustrates how payback ratios are calculated, how they can be used to rank alternative improvement...

  4. The Fate of Threatened Coastal Dune Habitats in Italy under Climate Change Scenarios

    PubMed Central

    Prisco, Irene; Carboni, Marta; Acosta, Alicia T. R.

    2013-01-01

    Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an “indirect” plant-species-based one and a simple “direct” one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the “direct” approach was unsatisfactory, “indirect” models had a good predictive performance, highlighting the importance of using species’ responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats’ distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future. PMID:23874787

  5. Deep Space Habitat Wireless Smart Plug

    NASA Technical Reports Server (NTRS)

    Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.

    2014-01-01

    NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.

  6. Fuels planning: science synthesis and integration; environmental consequences fact sheet 15: The Wildlife Habitat Response Model

    Treesearch

    David Pilliod

    2005-01-01

    The Wildlife Habitat Response Model (WHRM) is a Web-based computer tool for evaluating the potential effects of fuel-reduction projects on terrestrial wildlife habitats. It uses species-habitat associations in ponderosa pine (Pinus ponderosa), dry-type Douglas-fir (Pseudotsuga menziesii), lodgepole pine (Pinus...

  7. Microcomputer software for calculating the western Oregon elk habitat effectiveness index.

    Treesearch

    Alan Ager; Mark Hitchcock

    1992-01-01

    This paper describes the operation of the microcomputer program HEIWEST, which was developed to automate calculation of the western Oregon elk habitat effectiveness index (HEI). HEIWEST requires little or no training to operate and vastly simplifies the task of measuring HEI for either site-specific project analysis or long-term monitoring of elk habitat. It is...

  8. Hyperspectral analysis of columbia spotted frog habitat

    USGS Publications Warehouse

    Shive, J.P.; Pilliod, D.S.; Peterson, C.R.

    2010-01-01

    Wildlife managers increasingly are using remotely sensed imagery to improve habitat delineations and sampling strategies. Advances in remote sensing technology, such as hyperspectral imagery, provide more information than previously was available with multispectral sensors. We evaluated accuracy of high-resolution hyperspectral image classifications to identify wetlands and wetland habitat features important for Columbia spotted frogs (Rana luteiventris) and compared the results to multispectral image classification and United States Geological Survey topographic maps. The study area spanned 3 lake basins in the Salmon River Mountains, Idaho, USA. Hyperspectral data were collected with an airborne sensor on 30 June 2002 and on 8 July 2006. A 12-year comprehensive ground survey of the study area for Columbia spotted frog reproduction served as validation for image classifications. Hyperspectral image classification accuracy of wetlands was high, with a producer's accuracy of 96 (44 wetlands) correctly classified with the 2002 data and 89 (41 wetlands) correctly classified with the 2006 data. We applied habitat-based rules to delineate breeding habitat from other wetlands, and successfully predicted 74 (14 wetlands) of known breeding wetlands for the Columbia spotted frog. Emergent sedge microhabitat classification showed promise for directly predicting Columbia spotted frog egg mass locations within a wetland by correctly identifying 72 (23 of 32) of known locations. Our study indicates hyperspectral imagery can be an effective tool for mapping spotted frog breeding habitat in the selected mountain basins. We conclude that this technique has potential for improving site selection for inventory and monitoring programs conducted across similar wetland habitat and can be a useful tool for delineating wildlife habitats. ?? 2010 The Wildlife Society.

  9. Telemetry-Determined Habitat Use Informs Multi-Species Habitat Management in an Urban Harbour.

    PubMed

    Rous, Andrew M; Midwood, Jonathon D; Gutowsky, Lee F G; Lapointe, Nicolas W R; Portiss, Rick; Sciscione, Thomas; Wells, Mathew G; Doka, Susan E; Cooke, Steven J

    2017-01-01

    Widespread human development has led to impairment of freshwater coastal wetlands and embayments, which provide critical and unique habitat for many freshwater fish species. This is particularly evident in the Laurentian Great Lakes, where such habitats have been severely altered over the last century as a result of industrial activities, urbanization, dredging and infilling. In Toronto Harbour, extensive restoration efforts have been directed towards improving the amount and quality of aquatic habitat, especially for fishes. To evaluate the effectiveness of this restoration work, use of the restored area by both target species and the fish community as a whole must be assessed. Individuals from four species (Common Carp, Largemouth Bass, Northern Pike and Yellow Perch) were tagged and tracked continuously for 1 year using an acoustic telemetry array in Toronto Harbour area of Lake Ontario. Daily site fidelity was estimated using a mixed-effects logistic regression model. Daily site fidelity was influenced by habitat restoration and its interactions with species and body size, as well as season and its interactions with species and body size. Daily site fidelity was higher in restored sites compared to non-restored sites for Yellow Perch and Northern Pike, but lower for Largemouth Bass and Common Carp. For all species, daily site fidelity estimates were highest during the summer and lowest during autumn. The approach used here has merit for evaluating restoration success and informing future habitat management activities. Creating diverse habitats that serve multiple functions and species are more desirable than single-function-oriented or single-species-oriented designs.

  10. Telemetry-Determined Habitat Use Informs Multi-Species Habitat Management in an Urban Harbour

    NASA Astrophysics Data System (ADS)

    Rous, Andrew M.; Midwood, Jonathon D.; Gutowsky, Lee F. G.; Lapointe, Nicolas W. R.; Portiss, Rick; Sciscione, Thomas; Wells, Mathew G.; Doka, Susan E.; Cooke, Steven J.

    2017-01-01

    Widespread human development has led to impairment of freshwater coastal wetlands and embayments, which provide critical and unique habitat for many freshwater fish species. This is particularly evident in the Laurentian Great Lakes, where such habitats have been severely altered over the last century as a result of industrial activities, urbanization, dredging and infilling. In Toronto Harbour, extensive restoration efforts have been directed towards improving the amount and quality of aquatic habitat, especially for fishes. To evaluate the effectiveness of this restoration work, use of the restored area by both target species and the fish community as a whole must be assessed. Individuals from four species (Common Carp, Largemouth Bass, Northern Pike and Yellow Perch) were tagged and tracked continuously for 1 year using an acoustic telemetry array in Toronto Harbour area of Lake Ontario. Daily site fidelity was estimated using a mixed-effects logistic regression model. Daily site fidelity was influenced by habitat restoration and its interactions with species and body size, as well as season and its interactions with species and body size. Daily site fidelity was higher in restored sites compared to non-restored sites for Yellow Perch and Northern Pike, but lower for Largemouth Bass and Common Carp. For all species, daily site fidelity estimates were highest during the summer and lowest during autumn. The approach used here has merit for evaluating restoration success and informing future habitat management activities. Creating diverse habitats that serve multiple functions and species are more desirable than single-function-oriented or single-species-oriented designs.

  11. Ecology. Three-Gorges Dam--experiment in habitat fragmentation?

    PubMed

    Wu, Jianguo; Huang, Jianhui; Han, Xingguo; Xie, Zongqiang; Gao, Xianming

    2003-05-23

    Habitat fragmentation is the primary cause of the loss of biodiversity and ecosystem services, but its underlying processes and mechanisms remain poorly understood. Studies of islands and insular terrestrial habitats are essential for improving our understanding of habitat fragmentation. We argue that the Three-Gorges Dam, the largest that humans have ever created, presents a unique grand-scale natural experiment that allows ecologists to address a range of critical questions concerning the theory and practice of biodiversity conservation.

  12. Improving the completion of Quality Improvement projects amongst psychiatry core trainees.

    PubMed

    Ewins, Liz

    2015-01-01

    Quality Improvement (QI) projects are seen increasingly as more valuable and effective in developing services than traditional audit. However, the development of this methodology has been slower in the mental health field and QI projects are new to most psychiatrists. This project describes a way of engaging trainees across Avon and Wiltshire Mental Health Partnership (AWP) Trust and the Severn School of Psychiatry in QI projects, using QI methodology itself. Through the implementation and development of training sessions and simple, low cost and sustainable interventions over a 10 month period, two thirds of core trainees and over a half of the advanced psychiatry trainees in the School are now participating in 28 individual QI projects and QI project methodology is to become embedded in the core psychiatry training course. As an additional positive outcome, specialty doctors, consultants, foundation doctors, GP trainees, medical students, as well as the wider multidisciplinary team, have all become engaged in QI projects alongside trainees, working with service users and their families to identify problems to tackle and ideas to test.

  13. Stabilization of Landslides for the Improvement of Aquatic Habitat

    Treesearch

    Michael J. Furniss

    1989-01-01

    Chronic surface and mass erosion from recent landslides often prevents the recovery of productive stream habitats following initial mass failure events. Low-cost methods that can accelerate recovery and stabilization processes have been employed on numerous failed slopes in the Six Rivers National Forest in the northwest corner of California, with notable success. Two...

  14. Mapping Oyster Reef Habitats in Mobile Bay

    NASA Technical Reports Server (NTRS)

    Bolte, Danielle

    2011-01-01

    Oyster reefs around the world are declining rapidly, and although they haven t received as much attention as coral reefs, they are just as important to their local ecosystems and economies. Oyster reefs provide habitats for many species of fish, invertebrates, and crustaceans, as well as the next generations of oysters. Oysters are also harvested from many of these reefs and are an important segment of many local economies, including that of Mobile Bay, where oysters rank in the top five commercial marine species both by landed weight and by dollar value. Although the remaining Mobile Bay oyster reefs are some of the least degraded in the world, projected climate change could have dramatic effects on the health of these important ecosystems. The viability of oyster reefs depends on water depth and temperature, appropriate pH and salinity levels, and the amount of dissolved oxygen in the water. Projected increases in sea level, changes in precipitation and runoff patterns, and changes in pH resulting from increases in the amount of carbon dioxide dissolved in the oceans could all affect the viability of oyster reefs in the future. Human activities such as dredging and unsustainable harvesting practices are also adversely impacting the oyster reefs. Fortunately, several projects are already under way to help rebuild or support existing or previously existing oyster reefs. The success of these projects will depend on the local effects of climate change on the current and potential habitats and man s ability to recognize and halt unsustainable harvesting practices. As the extent and health of the reefs changes, it will have impacts on the Mobile Bay ecosystem and economy, changing the resources available to the people who live there and to the rest of the country, since Mobile Bay is an important national source of seafood. This project identified potential climate change impacts on the oyster reefs of Mobile Bay, including the possible addition of newly viable

  15. Persistence in a Two-Dimensional Moving-Habitat Model.

    PubMed

    Phillips, Austin; Kot, Mark

    2015-11-01

    Environmental changes are forcing many species to track suitable conditions or face extinction. In this study, we use a two-dimensional integrodifference equation to analyze whether a population can track a habitat that is moving due to climate change. We model habitat as a simple rectangle. Our model quickly leads to an eigenvalue problem that determines whether the population persists or declines. After surveying techniques to solve the eigenvalue problem, we highlight three findings that impact conservation efforts such as reserve design and species risk assessment. First, while other models focus on habitat length (parallel to the direction of habitat movement), we show that ignoring habitat width (perpendicular to habitat movement) can lead to overestimates of persistence. Dispersal barriers and hostile landscapes that constrain habitat width greatly decrease the population's ability to track its habitat. Second, for some long-distance dispersal kernels, increasing habitat length improves persistence without limit; for other kernels, increasing length is of limited help and has diminishing returns. Third, it is not always best to orient the long side of the habitat in the direction of climate change. Evidence suggests that the kurtosis of the dispersal kernel determines whether it is best to have a long, wide, or square habitat. In particular, populations with platykurtic dispersal benefit more from a wide habitat, while those with leptokurtic dispersal benefit more from a long habitat. We apply our model to the Rocky Mountain Apollo butterfly (Parnassius smintheus).

  16. Lighting Automation Flying an Earthlike Habitat

    NASA Technical Reports Server (NTRS)

    Clark, Toni A.; Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and

  17. Lighting Automation - Flying an Earthlike Habitat

    NASA Technical Reports Server (NTRS)

    Clark, Tori A. (Principal Investigator); Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and

  18. Estimating habitat carrying capacity for migrating and wintering waterfowl: Considerations, pitfalls and improvements

    USGS Publications Warehouse

    Williams, Christopher; Dugger, Bruce D.; Brasher, Michael G.; Coluccy, John M.; Cramer, Dane M.; Eadie, John M.; Gray, Matthew J.; Hagy, Heath M.; Livolsi, Mark; McWilliams, Scott R.; Petrie, Matthew; Soulliere, Gregory J.; Tirpak, John M.; Webb, Elisabeth B.

    2014-01-01

    Population-based habitat conservation planning for migrating and wintering waterfowl in North America is carried out by habitat Joint Venture (JV) initiatives and is based on the premise that food can limit demography (i.e. food limitation hypothesis). Consequently, planners use bioenergetic models to estimate food (energy) availability and population-level energy demands at appropriate spatial and temporal scales, and translate these values into regional habitat objectives. While simple in principle, there are both empirical and theoretical challenges associated with calculating energy supply and demand including: 1) estimating food availability, 2) estimating the energy content of specific foods, 3) extrapolating site-specific estimates of food availability to landscapes for focal species, 4) applicability of estimates from a single species to other species, 5) estimating resting metabolic rate, 6) estimating cost of daily behaviours, and 7) estimating costs of thermoregulation or tissue synthesis. Most models being used are daily ration models (DRMs) whose set of simplifying assumptions are well established and whose use is widely accepted and feasible given the empirical data available to populate such models. However, DRMs do not link habitat objectives to metrics of ultimate ecological importance such as individual body condition or survival, and largely only consider food-producing habitats. Agent-based models (ABMs) provide a possible alternative for creating more biologically realistic models under some conditions; however, ABMs require different types of empirical inputs, many of which have yet to be estimated for key North American waterfowl. Decisions about how JVs can best proceed with habitat conservation would benefit from the use of sensitivity analyses that could identify the empirical and theoretical uncertainties that have the greatest influence on efforts to estimate habitat carrying capacity. Development of ABMs at

  19. Robotic Technologies for Surveying Habitats and Seeking Evidence of Life: Results from the 2004 Field Experiments of the "Life in the Atacama" Project

    NASA Technical Reports Server (NTRS)

    Wettergreen, D.; Cabrol, N.; Whittaker, W.; Diaz, G. Chong; Calderon, F.; Heys, S.; Jonak, D.; Lueders, A.; Moersch, J.; Pane, D.

    2005-01-01

    The Chilean Atacama Desert is the most arid region on Earth and in several ways analogous to Mars. Evidence suggests that the interior of the Atacama is lifeless, yet where the desert meets the Pacific coastal range dessication-tolerant microorganisms are known to exist. The gradient of biodiversity and habitats in the Atacama's subregions remain unexplored and are the focus of the Life in the Atacama project. Our field investigation attempts to bring further scientific understanding of the Atacama as a habitat for life through the creation of robotic astrobiology. This involves capabilities for autonomously traversing hundreds of kilometers while deploying sensors to survey the varying geologic and biologic properties of the environment, Fig. 1. Our goal is to make genuine discoveries about the limits of life on Earth and to generate knowledge about life in extreme environments that can be applied to future planetary missions. Through these experiments we also hope to develop and practice the methods by which a rover might best be employed to survey desert terrain in search of the habitats in which life can survive, or may have in the past.

  20. Improvement of the cost-benefit analysis algorithm for high-rise construction projects

    NASA Astrophysics Data System (ADS)

    Gafurov, Andrey; Skotarenko, Oksana; Plotnikov, Vladimir

    2018-03-01

    The specific nature of high-rise investment projects entailing long-term construction, high risks, etc. implies a need to improve the standard algorithm of cost-benefit analysis. An improved algorithm is described in the article. For development of the improved algorithm of cost-benefit analysis for high-rise construction projects, the following methods were used: weighted average cost of capital, dynamic cost-benefit analysis of investment projects, risk mapping, scenario analysis, sensitivity analysis of critical ratios, etc. This comprehensive approach helped to adapt the original algorithm to feasibility objectives in high-rise construction. The authors put together the algorithm of cost-benefit analysis for high-rise construction projects on the basis of risk mapping and sensitivity analysis of critical ratios. The suggested project risk management algorithms greatly expand the standard algorithm of cost-benefit analysis in investment projects, namely: the "Project analysis scenario" flowchart, improving quality and reliability of forecasting reports in investment projects; the main stages of cash flow adjustment based on risk mapping for better cost-benefit project analysis provided the broad range of risks in high-rise construction; analysis of dynamic cost-benefit values considering project sensitivity to crucial variables, improving flexibility in implementation of high-rise projects.

  1. West Foster Creek 2007 Follow-up Habitat Evaluation Procedures (HEP) Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Paul R.

    A follow-up habitat evaluation procedures (HEP) analysis was conducted on the West Foster Creek (Smith acquisition) wildlife mitigation site in May 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance and maintain the project site as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The West Foster Creek 2007 follow-up HEP survey generated 2,981.96 habitat units (HU) or 1.51 HUs per acre for a 34% increase (+751.34 HUs) above baseline HU credit (the 1999 baseline HEP survey generated 2,230.62 habitat units or 1.13 HUs permore » acre). The 2007 follow-up HEP analysis yielded 1,380.26 sharp-tailed grouse (Tympanuchus phasianellus) habitat units, 879.40 mule deer (Odocoileus hemionus) HUs, and 722.29 western meadowlark (Sturnella neglecta) habitat units. Mule deer and sharp-tailed grouse habitat units increased by 346.42 HUs and 470.62 HUs respectively over baseline (1999) survey results due largely to cessation of livestock grazing and subsequent passive restoration. In contrast, the western meadowlark generated slightly fewer habitat units in 2007 (-67.31) than in 1999, because of increased shrub cover, which lowers habitat suitability for that species.« less

  2. Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat

    NASA Astrophysics Data System (ADS)

    Jackson, C. R.

    2002-12-01

    Small headwater streams in mountainous areas of the Pacific Northwest often do not harbor fish populations because of low water depth and high gradients. Rather, these streams provide habitat for dense assemblages of stream-dwelling amphibians. A variety of management goals have been suggested for such streams such as encouraging large woody debris recruitment to assist in sediment trapping and valley floor formation, encouraging large woody debris recruitment to provide downstream wood when debris flows occur, providing continuous linear stream buffers within forest harvest areas to provide shade and bank stability, etc. A basic problem with analying the geomorphic or biotic benefits of any of these strategies is the lack of explicit management goals for such streams. Should managers strive to optimize downstream fish habitat, local amphibian habitat, or both? Through observational data and theoretical considerations, it will be shown that these biotic goals will lead to very different geomorphic management recommendations. For instance, woody debris greater than 60 cm diameter may assist in valley floor development, but it is likely to create subsurface channel flow of unknown value to amphibians. Trapping and retention of fine sediments within headwater streams may improve downstream spawning gravels, but degrades stream-dwelling amphibian habitat. In response to the need for descriptive information on habitat and channel morphology specific to small, non-fish-bearing streams in the Pacific Northwest, morphologies and wood frequencies in forty-two first- and second-order forested streams less than four meters wide were surveyed. Frequencies and size distributions of woody debris were compared between small streams and larger fish-bearing streams as well as between second-growth and virgin timber streams. Statistical models were developed to explore dominant factors affecting channel morphology and habitat. Findings suggest geomorphological relationships

  3. Establishing a portfolio of quality-improvement projects in pediatric surgery through advanced improvement leadership systems.

    PubMed

    Gerrein, Betsy T; Williams, Christina E; Von Allmen, Daniel

    2013-01-01

    Formal quality-improvement (QI) projects require that participants are educated in QI methods to provide them with the capability to carry out successful, meaningful work. However, orchestrating a portfolio of projects that addresses the strategic mission of the institution requires an extension of basic QI training to provide the division or business unit with the capacity to successfully develop and manage the portfolio. Advanced Improvement Leadership Systems is a program to help units create a meaningful portfolio. This program, used by the Division of Pediatric General and Thoracic Surgery at Cincinnati Children's Hospital Medical Center, helped establish a portfolio of targeted QI projects designed to achieve outstanding outcomes at competitive costs in multiple clinical areas aligned with the institution's strategic goals (improve disease-based outcomes, patient safety, flow, and patient and family experience). These objectives are addressed in an institutional strategic plan built around 5 core areas: Safety, Productivity, Care Coordination and Outcomes, Patient and Family Experience, and Value. By combining the portfolio of QI projects with improvements in the divisional infrastructure, effective improvement efforts were realized throughout the division. In the 9 months following the program, divisional capability resulted in a 16.5% increase (5.7% to 22.2%) of formally trained staff working on 10 QI teams. Concurrently, a leadership team, designed to coordinate projects, remove barriers, and provide technical support, provided the capacity to pursue this ongoing effort. The Advanced Improvement Leadership Systems program increased the Division's efficiency and effectiveness in pursing the QI mission that is integral at our hospital.

  4. Establishing a Portfolio of Quality-Improvement Projects in Pediatric Surgery through Advanced Improvement Leadership Systems

    PubMed Central

    Gerrein, Betsy T; Williams, Christina E; von Allmen, Daniel

    2013-01-01

    Formal quality-improvement (QI) projects require that participants are educated in QI methods to provide them with the capability to carry out successful, meaningful work. However, orchestrating a portfolio of projects that addresses the strategic mission of the institution requires an extension of basic QI training to provide the division or business unit with the capacity to successfully develop and manage the portfolio. Advanced Improvement Leadership Systems is a program to help units create a meaningful portfolio. This program, used by the Division of Pediatric General and Thoracic Surgery at Cincinnati Children’s Hospital Medical Center, helped establish a portfolio of targeted QI projects designed to achieve outstanding outcomes at competitive costs in multiple clinical areas aligned with the institution’s strategic goals (improve disease-based outcomes, patient safety, flow, and patient and family experience). These objectives are addressed in an institutional strategic plan built around 5 core areas: Safety, Productivity, Care Coordination and Outcomes, Patient and Family Experience, and Value. By combining the portfolio of QI projects with improvements in the divisional infrastructure, effective improvement efforts were realized throughout the division. In the 9 months following the program, divisional capability resulted in a 16.5% increase (5.7% to 22.2%) of formally trained staff working on 10 QI teams. Concurrently, a leadership team, designed to coordinate projects, remove barriers, and provide technical support, provided the capacity to pursue this ongoing effort. The Advanced Improvement Leadership Systems program increased the Division’s efficiency and effectiveness in pursing the QI mission that is integral at our hospital. PMID:24361020

  5. Restoring High Priority Habitats for Birds: Aspen and Pine in the Interior West

    Treesearch

    Rex Sallabanks; Nils D. Christoffersen; Whitney W. Weatherford; Ralph Anderson

    2005-01-01

    This paper describes a long-term habitat restoration project in the Blue Mountains ecoregion, northeast Oregon, that we initiated in May 2000. We focused our restoration activities on two habitats previously identified as being high priority for birds: quaking aspen (Populus tremuloides) and ponderosa pine (Pinus ponderosa). In...

  6. Interstate Electrification Improvement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puckette, Margaret; Kim, Jeff

    The Interstate Electrification Improvement Project, publicly known as the Shorepower Truck Electrification Project (STEP), started in May 2011 and ended in March 2015. The project grant was awarded by the Department of Energy’s Vehicles Technology Office in the amount of $22.2 million. It had three overarching missions: 1. Reduce the idling of Class 8 tractors when parked at truck stops, to reduce diesel fuel consumption and thus U.S. dependence on foreign petroleum; 2. Stimulate job creation and economic activity as part of the American Reinvestment and Recovery Act of 2009; 3. Reduce greenhouse gas emissions (GHG) from diesel combustion andmore » the carbon footprint of the truck transportation industry. The project design was straightforward. First, build fifty Truck Stop Electrification (TSE) facilities in truck stop parking lots across the country so trucks could plug-in to 110V, 220V, or 480VAC, and shut down the engine instead of idling. These facilities were strategically located at fifty truck stops along major U.S. Interstates with heavy truck traffic. Approximately 1,350 connection points were installed, including 150 high-voltage electric standby Transport Refrigeration Unit (eTRU) plugs--eTRUs are capable of plugging in to shore power1 to cool the refrigerated trailer for loads such as produce, meats and ice cream. Second, the project provided financial incentives on idle reduction equipment to 5,000 trucks in the form of rebates, to install equipment compatible with shore power. This equipment enables drivers to shut down the main engine when parked, to heat or cool their cab, charge batteries, or use other household appliances without idling—a common practice that uses approximately 1 gallon of diesel per hour. The rebate recipients were intended to be the first fleets to plug into Shorepower to save diesel fuel and ensure there is significant population of shore power capable trucks. This two part project was designed to complement each other

  7. Improving Project Management Using Formal Models and Architectures

    NASA Technical Reports Server (NTRS)

    Kahn, Theodore; Sturken, Ian

    2011-01-01

    This talk discusses the advantages formal modeling and architecture brings to project management. These emerging technologies have both great potential and challenges for improving information available for decision-making. The presentation covers standards, tools and cultural issues needing consideration, and includes lessons learned from projects the presenters have worked on.

  8. Using implementation tools to design and conduct quality improvement projects for faster and more effective improvement.

    PubMed

    Ovretveit, John; Mittman, Brian; Rubenstein, Lisa; Ganz, David A

    2017-10-09

    Purpose The purpose of this paper is to enable improvers to use recent knowledge from implementation science to carry out improvement changes more effectively. It also highlights the importance of converting research findings into practical tools and guidance for improvers so as to make research easier to apply in practice. Design/methodology/approach This study provides an illustration of how a quality improvement (QI) team project can make use of recent findings from implementation research so as to make their improvement changes more effective and sustainable. The guidance is based on a review and synthesis of improvement and implementation methods. Findings The paper illustrates how research can help a quality project team in the phases of problem definition and preparation, in design and planning, in implementation, and in sustaining and spreading a QI. Examples of the use of different ideas and methods are cited where they exist. Research limitations/implications The example is illustrative and there is little limited experimental evidence of whether using all the steps and tools in the one approach proposed do enable a quality team to be more effective. Evidence supporting individual guidance proposals is cited where it exists. Practical implications If the steps proposed and illustrated in the paper were followed, it is possible that quality projects could avoid waste by ensuring the conditions they need for success are in place, and sustain and spread improvement changes more effectively. Social implications More patients could benefit more quickly from more effective implementation of proven interventions. Originality/value The paper is the first to describe how improvement and implementation science can be combined in a tangible way that practical improvers can use in their projects. It shows how QI project teams can take advantage of recent advances in improvement and implementation science to make their work more effective and sustainable.

  9. Modeling sensitive elasmobranch habitats

    NASA Astrophysics Data System (ADS)

    Pennino, M. Grazia; Muñoz, Facundo; Conesa, David; López-Quílez, Antonio; Bellido, José Marí; a

    2013-10-01

    Basic information on the distribution and habitat preferences of ecologically important species is essential for their management and protection. In the Mediterranean Sea there is increasing concern over elasmobranch species because their biological (ecological) characteristics make them highly vulnerable to fishing pressure. Their removal could affect the structure and function of marine ecosystems, inducing changes in trophic interactions at the community level due to the selective elimination of predators or prey species, competitors and species replacement. In this study Bayesian hierarchical spatial models are used to map the sensitive habitats of the three most caught elasmobranch species (Galeus melastomus, Scyliorhinus canicula, Etmopterus spinax) in the western Mediterranean Sea, based on fishery-dependent bottom trawl data. Results show that habitats associated with hard substrata and sandy beds, mainly in deep waters and with a high seabed gradient, have a greater probability registering the presence of the studied species than those associated with muddy shallow waters. Temperature and chlorophyll-α concentration show a negative relationship with S. canicula occurrence. Our results identify some of the sensitive habitats for elasmobranchs in the western Mediterranean Sea (GSA06 South), providing essential and easy-to-use interpretation tools, such as predictive distribution maps, with the final aim of improving management and conservation of these vulnerable species.

  10. I-25 truck safety improvements project : local evaluation report

    DOT National Transportation Integrated Search

    2004-12-29

    The I-25 Truck Safety Improvements project (I-25 TSIP) is the result of a FY98 congressionally designated earmark to support improvements in transportation efficiency, promote safety, increase traffic flow, reduce emissions, improve traveler informat...

  11. Teaching Animal Habitat Selection Using Wildlife Tracking Equipment

    ERIC Educational Resources Information Center

    Laskowski, Jessica; Gillespie, Caitlyn; Corral, Lucia; Oden, Amy; Fricke, Kent; Fontaine, Joseph J.

    2016-01-01

    We present a hands-on outdoor activity coupled with classroom discussion to teach students about wildlife habitat selection, the process by which animals choose where to live. By selecting locations or habitats with many benefits (e.g., food, shelter, mates) and few costs (e.g., predators), animals improve their ability to survive and reproduce.…

  12. Tamarix as habitat for birds: Implications for riparian restoration in the Southwestern United States

    USGS Publications Warehouse

    Sogge, M.K.; Sferra, S.J.; Paxton, E.H.

    2008-01-01

    Exotic vegetation has become a major habitat component in many ecosystems around the world, sometimes dramatically changing the vegetation community structure and composition. In the southwestern United States, riparian ecosystems are undergoing major changes in part due to the establishment and spread of the exotic Tamarix (saltcedar, tamarisk). There are concerns about the suitability of Tamarix as habitat for birds. Although Tamarix habitats tend to support fewer species and individuals than native habitats, Arizona Breeding Bird Atlas data and Birds of North America accounts show that 49 species use Tamarix as breeding habitat. Importantly, the relative use of Tamarix and its quality as habitat vary substantially by geographic location and bird species. Few studies have examined how breeding in Tamarix actually affects bird survivorship and productivity; recent research on Southwestern Willow Flycatchers has found no negative effects from breeding in Tamarix habitats. Therefore, the ecological benefits and costs of Tamarix control are difficult to predict and are likely to be species specific and site specific. Given the likelihood that high-quality native riparian vegetation will not develop at all Tamarix control sites, restoration projects that remove Tamarix but do not assure replacement by high-quality native habitat have the potential to reduce the net riparian habitat value for some local or regional bird populations. Therefore, an assessment of potential negative impacts is important in deciding if exotic control should be conducted. In addition, measurable project objectives, appropriate control and restoration techniques, and robust monitoring are all critical to effective restoration planning and execution. ?? 2008 Society for Ecological Restoration International.

  13. Using Risk Assessment and Habitat Suitability Models to Prioritise Invasive Species for Management in a Changing Climate

    PubMed Central

    Chai, Shauna-Lee; Zhang, Jian; Nixon, Amy; Nielsen, Scott

    2016-01-01

    Accounting for climate change in invasive species risk assessments improves our understanding of potential future impacts and enhances our preparedness for the arrival of new non-native species. We combined traditional risk assessment for invasive species with habitat suitability modeling to assess risk to biodiversity based on climate change. We demonstrate our method by assessing the risk for 15 potentially new invasive plant species to Alberta, Canada, an area where climate change is expected to facilitate the poleward expansion of invasive species ranges. Of the 15 species assessed, the three terrestrial invasive plant species that could pose the greatest threat to Alberta’s biodiversity are giant knotweed (Fallopia sachalinensis), tamarisk (Tamarix chinensis), and alkali swainsonpea (Sphaerophysa salsula). We characterise giant knotweed as ‘extremely invasive’, with 21 times the suitable habitat between baseline and future projected climate. Tamarisk is ‘extremely invasive’ with a 64% increase in suitable habitat, and alkali swainsonpea is ‘highly invasive’ with a 21% increase in suitable habitat. Our methodology can be used to predict and prioritise potentially new invasive species for their impact on biodiversity in the context of climate change. PMID:27768758

  14. Enhancing and restoring habitat for the desert tortoise

    USGS Publications Warehouse

    Abella, Scott R.; Berry, Kristin H.

    2016-01-01

    Habitat has changed unfavorably during the past 150 y for the desert tortoise Gopherus agassizii, a federally threatened species with declining populations in the Mojave Desert and western Sonoran Desert. To support recovery efforts, we synthesized published information on relationships of desert tortoises with three habitat features (cover sites, forage, and soil) and candidate management practices for improving these features for tortoises. In addition to their role in soil health and facilitating recruitment of annual forage plants, shrubs are used by desert tortoises for cover and as sites for burrows. Outplanting greenhouse-grown seedlings, protected from herbivory, has successfully restored (>50% survival) a variety of shrubs on disturbed desert soils. Additionally, salvaging and reapplying topsoil using effective techniques is among the more ecologically beneficial ways to initiate plant recovery after severe disturbance. Through differences in biochemical composition and digestibility, some plant species provide better-quality forage than others. Desert tortoises selectively forage on particular annual and herbaceous perennial species (e.g., legumes), and forage selection shifts during the year as different plants grow or mature. Nonnative grasses provide low-quality forage and contribute fuel to spreading wildfires, which damage or kill shrubs that tortoises use for cover. Maintaining a diverse “menu” of native annual forbs and decreasing nonnative grasses are priorities for restoring most desert tortoise habitats. Reducing herbivory by nonnative animals, carefully timing herbicide applications, and strategically augmenting annual forage plants via seeding show promise for improving tortoise forage quality. Roads, another disturbance, negatively affect habitat in numerous ways (e.g., compacting soil, altering hydrology). Techniques such as recontouring road berms to reestablish drainage patterns, vertical mulching (“planting” dead plant material

  15. Generic project definitions for improvement of health care delivery: a case-based approach.

    PubMed

    Niemeijer, Gerard C; Does, Ronald J M M; de Mast, Jeroen; Trip, Albert; van den Heuvel, Jaap

    2011-01-01

    The purpose of this article is to create actionable knowledge, making the definition of process improvement projects in health care delivery more effective. This study is a retrospective analysis of process improvement projects in hospitals, facilitating a case-based reasoning approach to project definition. Data sources were project documentation and hospital-performance statistics of 271 Lean Six Sigma health care projects from 2002 to 2009 of general, teaching, and academic hospitals in the Netherlands and Belgium. Objectives and operational definitions of improvement projects in the sample, analyzed and structured in a uniform format and terminology. Extraction of reusable elements of earlier project definitions, presented in the form of 9 templates called generic project definitions. These templates function as exemplars for future process improvement projects, making the selection, definition, and operationalization of similar projects more efficient. Each template includes an explicated rationale, an operationalization in the form of metrics, and a prototypical example. Thus, a process of incremental and sustained learning based on case-based reasoning is facilitated. The quality of project definitions is a crucial success factor in pursuits to improve health care delivery. We offer 9 tried and tested improvement themes related to patient safety, patient satisfaction, and business-economic performance of hospitals.

  16. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Treesearch

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  17. Sonoran pronghorn habitat use on landscapes disturbed by military activities

    USGS Publications Warehouse

    Krausman, P.R.; Harris, L.K.; Haas, S.K.; Koenen, Kiana K. G.; Devers, P.; Bunting, D.; Barb, M.

    2005-01-01

    The Sonoran pronghorn (Antilocapra americana sonoriensis) population in the United States declined to ???33 animals in January 2003. Low population numbers and unstable recruitment are concerns for biologists managing this subspecies. We examined habitat use by pronghorn from 1999 to 2002 on a portion of the Barry M. Goldwater Range (BMGR) used for military exercises. We overlaid locations of pronghorn (n= 1,203) on 377 1-km2 blocks within the North (NTAC) and South Tactical Ranges (STAC), BMGR; we classified vegetation associations and disturbance status (e.g., airfields, targets, roads) for each block. Locations of pronghorn were distributed in proportion to vegetation associations on NTAC and STAC. Sightings of pronghorns were biased toward disturbed blocks, with 73% of locations of pronghorn occurring in proximity to mock airfields, high-explosive hills (e.g., targets for live high-explosive bombs and rockets), other targets, and roads. Disturbed landscapes on the BMGR may attract Sonoran pronghorn by creating favorable forage. Habitat manipulations simulating the effects of military disturbances on the landscape (e.g., improved forage) may improve remaining Sonoran pronghorn habitat. Antilocapra americana sonoriensis, Barry M. Goldwater Air Force Range, disturbed habitat, habitat availability, habitat use, military activity, Sonoran pronghorn.

  18. Improving Project Management with Simulation and Completion Distribution Functions

    NASA Technical Reports Server (NTRS)

    Cates, Grant R.

    2004-01-01

    million per month is being spent on this project, which is scheduled to complete by 2010. NASA project stakeholders participated in determining and managing completion distribution functions produced from PAST. The first result was that project stakeholders improved project completion risk awareness. Secondly, using PAST, mitigation options were analyzed to improve project completion performance and reduce total project cost.

  19. Marine ecological habitat: a case study on projected thermal power plant around Dharamtar Creek, India.

    PubMed

    Kulkarni, Vikrant A; Naidu, Velamala S; Jagtap, Tanaji G

    2011-03-01

    Estuaries and tidal creeks, harboring mangroves particularly, face tremendous anthropogenic pressures. Expansion of mega cities and the thermal power plants are generally proposed in the vicinity of estuaries and creek, due to the feasibility of intake and discharge of water for cooling. Discharges from such developments remain constant threat of increasing thermal pollution and affecting the quality of environment. The baseline information on prevailing quality of aquatic environment comes handy for understanding alterations due to such activities. Principle component analysis (PCA) revealed that temperature, pH, salinity, suspended solids, DO, BOD and phaeophytins are major parameters influencing the creek system. Heated effluents may have direct and adverse impacts on these parameters, altering biotic constituents. Hence, periodic and detailed observations are necessary to estimate exact response of biotic communities to changing environment. The present paper is based on case study, projecting a power plant in the vicinity of major mangrove habitats of Dharamtar creek.

  20. Selecting habitat management strategies on refuges

    USGS Publications Warehouse

    Schroeder, Richard L.; King, Wayne J.; Cornely, John E.

    1998-01-01

    This report is a joint effort of the Biological Resources Division, U.S. Geological Survey and the U.S. Fish and Wildlife Service (FWS) to provide National Wildlife Refuge (NWR) managers guidance on the selection and evaluation of habitat management strategies to meet stated objectives. The FWS recently completed a handbook on writing refuge management goals and objectives (U.S. Fish and Wildlife Service 1996a). the National Wildlife Refuge System Improvement Act of 1997 requires that National Wildlife Refuge System (NWRS) lands be managed according to approved Comprehensive Conservation Plans to guide management decisions and devise strategies for achieving refuge unit purposes and meeting the NWRS mission. It is expected that over the next several years most refuges will develop new or revised refuge goals and objectives for directing their habitat management strategies. This paper outlines the steps we recommend in selecting and evaluating habitat management strategies to meet specific refuge habitat objectives. We selected two examples to illustrate the process. Although each refuge is unique and will require specific information and solutions, these two examples can be used as guidance when selecting and evaluating habitat management strategies for other refuge resources: Example 1. Management of floodplain woods habitat for forest interior birds. The biological recourse of concern is the quality and quantity of floodplain woods habitat for eastern forest interior birds in the Cypress Creek NWR (U.S. Fish and Wildlife Service 1996b). Example 2. Management of habitat for biodiversity: Historical landscape proportions. The biological resource of concern is the change in diversity associated with man-induced changes in the distribution and abundance of habitat types at the Minnesota Valley NWR (U.S. Fish and Wildlife Service 1996c).

  1. Guidelines for evaluating performance of oyster habitat restoration

    USGS Publications Warehouse

    Baggett, Lesley P.; Powers, Sean P.; Brumbaugh, Robert D.; Coen, Loren D.; DeAngelis, Bryan M.; Greene, Jennifer K.; Hancock, Boze T.; Morlock, Summer M.; Allen, Brian L.; Breitburg, Denise L.; Bushek, David; Grabowski, Jonathan H.; Grizzle, Raymond E.; Grosholz, Edwin D.; LaPeyre, Megan K.; Luckenbach, Mark W.; McGraw, Kay A.; Piehler, Michael F.; Westby, Stephanie R.; zu Ermgassen, Philine S. E.

    2015-01-01

    Restoration of degraded ecosystems is an important societal goal, yet inadequate monitoring and the absence of clear performance metrics are common criticisms of many habitat restoration projects. Funding limitations can prevent adequate monitoring, but we suggest that the lack of accepted metrics to address the diversity of restoration objectives also presents a serious challenge to the monitoring of restoration projects. A working group with experience in designing and monitoring oyster reef projects was used to develop standardized monitoring metrics, units, and performance criteria that would allow for comparison among restoration sites and projects of various construction types. A set of four universal metrics (reef areal dimensions, reef height, oyster density, and oyster size–frequency distribution) and a set of three universal environmental variables (water temperature, salinity, and dissolved oxygen) are recommended to be monitored for all oyster habitat restoration projects regardless of their goal(s). In addition, restoration goal-based metrics specific to four commonly cited ecosystem service-based restoration goals are recommended, along with an optional set of seven supplemental ancillary metrics that could provide information useful to the interpretation of prerestoration and postrestoration monitoring data. Widespread adoption of a common set of metrics with standardized techniques and units to assess well-defined goals not only allows practitioners to gauge the performance of their own projects but also allows for comparison among projects, which is both essential to the advancement of the field of oyster restoration and can provide new knowledge about the structure and ecological function of oyster reef ecosystems.

  2. Using EUNIS habitat classification for benthic mapping in European seas: present concerns and future needs.

    PubMed

    Galparsoro, Ibon; Connor, David W; Borja, Angel; Aish, Annabelle; Amorim, Patricia; Bajjouk, Touria; Chambers, Caroline; Coggan, Roger; Dirberg, Guillaume; Ellwood, Helen; Evans, Douglas; Goodin, Kathleen L; Grehan, Anthony; Haldin, Jannica; Howell, Kerry; Jenkins, Chris; Michez, Noëmie; Mo, Giulia; Buhl-Mortensen, Pål; Pearce, Bryony; Populus, Jacques; Salomidi, Maria; Sánchez, Francisco; Serrano, Alberto; Shumchenia, Emily; Tempera, Fernando; Vasquez, Mickaël

    2012-12-01

    The EUNIS (European Union Nature Information System) habitat classification system aims to provide a common European reference set of habitat types within a hierarchical classification, and to cover all terrestrial, freshwater and marine habitats of Europe. The classification facilitates reporting of habitat data in a comparable manner, for use in nature conservation (e.g. inventories, monitoring and assessments), habitat mapping and environmental management. For the marine environment the importance of a univocal habitat classification system is confirmed by the fact that many European initiatives, aimed at marine mapping, assessment and reporting, are increasingly using EUNIS habitat categories and respective codes. For this reason substantial efforts have been made to include information on marine benthic habitats from different regions, aiming to provide a comprehensive geographical coverage of European seas. However, there still remain many concerns on its applicability as only a small fraction of Europe's seas are fully mapped and increasing knowledge and application raise further issues to be resolved. This paper presents an overview of the main discussion and conclusions of a workshop, organised by the MeshAtlantic project, focusing upon the experience in using the EUNIS habitats classification across different countries and seas, together with case studies. The aims of the meeting were to: (i) bring together scientists with experience in the use of the EUNIS marine classification and representatives from the European Environment Agency (EEA); (ii) agree on enhancements to EUNIS that ensure an improved representation of the European marine habitats; and (iii) establish practices that make marine habitat maps produced by scientists more consistent with the needs of managers and decision-makers. During the workshop challenges for the future development of EUNIS were identified, which have been classified into five categories: (1) structure and hierarchy; (2

  3. Improving patient care through student leadership in team quality improvement projects.

    PubMed

    Tschannen, Dana; Aebersold, Michelle; Kocan, Mary Jo; Lundy, Francene; Potempa, Kathleen

    2015-01-01

    In partnership with a major medical center, senior-level nursing students completed a root cause analysis and implementation plan to address a unit-specific quality issue. To evaluate the project, unit leaders were asked their perceptions of the value of the projects and impact on patient care, as well as to provide exemplars depicting how the student root cause analysis work resulted in improved patient outcome and/or unit processes. Liaisons noted benefits of having an RCA team, with positive impact on patient outcomes and care processes.

  4. Birds and Bird Habitat: What Are the Risks from Industrial Wind Turbine Exposure?

    ERIC Educational Resources Information Center

    Sprague, Terry; Harrington, M. Elizabeth; Krogh, Carmen M. E.

    2011-01-01

    Bird kill rate and disruption of habitat has been reported when industrial wind turbines are introduced into migratory bird paths or other environments. While the literature could be more complete regarding the documentation of negative effects on birds and bird habitats during the planning, construction, and operation of wind power projects,…

  5. Evaluation and prioritization of stream habitat monitoring in the Lower Columbia Salmon and Steelhead Recovery Domain as related to the habitat monitoring needs of ESA recovery plans

    USGS Publications Warehouse

    Puls, Amy L.; Anlauf Dunn, Kara; Graham Hudson, Bernadette

    2014-01-01

    The lower Columbia River and its tributaries once supported abundant runs of salmon and steelhead; however, there are five species currently listed under the federal Endangered Species Act (ESA). The National Marine Fisheries Service has completed, and is proposing for adoption, a comprehensive ESA Recovery Plan for the Lower Columbia Evolutionarily Significant Units (ESUs) based on the recovery plans developed by Oregon and Washington. One of the primary factors attributed to the decline of these species is habitat degradation. There are numerous entities conducting status and/or trends monitoring of instream habitat in the lower Columbia River Basin, but because the programs were developed for agency specific reasons, the existing monitoring efforts are not well coordinated, and often lack the spatial coverage, certainty, or species coverage necessary to answer questions related to status and trends of the ESA listed populations. The Pacific Northwest Aquatic Monitoring Partnership’s Integrated Status and Trends Monitoring (ISTM) project was initiated to improve integration of existing and new monitoring efforts by developing recommendations for sampling frames, protocols, and data sharing. In an effort to meet the ISTM project goals, five objectives were identified: (1) identify and prioritize decisions, questions, and monitoring objectives, (2) evaluate how existing programs align with these management decisions, questions, and objectives, (3) identify the most appropriate monitoring design to inform priority management decisions, questions, and objectives, (4) use trade-off analysis to develop specific recommendations for monitoring based on outcomes of Objectives 1-3 and (5) recommend implementation and reporting mechanisms. This report summarizes the effort to address Objectives 1 and 2, detailing the commonalities among the habitat characteristics that all entities measure and monitor, and how the metrics align with the priorities listed in the

  6. Parlin Creek large woody debris placement project

    Treesearch

    Barry W. Collins

    1999-01-01

    In August 1996 the Jackson Demonstration State Forest (JSDF) completed a fish habitat rehabilitation project in a 2.5 mile reach of Parlin Creek, a tributary to the Noyo River in Mendocino County, California. The purse of the project was to introduce large woody material to the stream channel to determine if higher quality habitat could be produced for anadromous...

  7. Potential climate change effects on the habitat of antarctic krill in the weddell quadrant of the southern ocean.

    PubMed

    Hill, Simeon L; Phillips, Tony; Atkinson, Angus

    2013-01-01

    Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0° and 90°W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2°C per decade, and projections suggest that further widespread warming of 0.27° to 1.08°C will occur by the late 21(st) century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat's ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services.

  8. Use of aerial photograph, channel-type interpretations to predict habitat availability in small streams. Restoration project 95505b. Exxon Valdez oil spill restoration project final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, R.A.

    1995-05-01

    In-stream habitats were quantified and qualified for nine stream channel-types. The channel types were identified using interpretations from stereo pairs of color and infrared aerial photographs. A total of 70 sites were sampled for streams located on the northwest portion of the Kenai Peninsula, in south-central Alaska. Channel-types were a significant predictor (P < 0.05) of the area (sq m) for 9 of 13 habitat types. Channel-types that had similar habitat composition, differed in size and depth of those habitats. Spawning habitat also appeared to be correlated to channel-type, however the within channel-type variability caused the differences to test non-significantmore » P < 0.05.« less

  9. A residency clinic chronic condition management quality improvement project.

    PubMed

    Halverson, Larry W; Sontheimer, Dan; Duvall, Sharon

    2007-02-01

    Quality improvement in chronic disease management is a major agenda for improving health and reducing health care costs. A six-component chronic disease management model can help guide this effort. Several characteristics of the "new model" of family medicine described by the Future of Family Medicine (FFM) Project Leadership Committee are promulgated to foster practice changes that improve quality. Our objective was to implement and assess a quality improvement project guided by the components of a chronic disease management model and FFM new model characteristics. Diabetes was selected as a model chronic disease focus. Multiple practice changes were implemented. A mature electronic medical record facilitated data collection and measurement of quality improvement progress. Data from the diabetes registry demonstrates that our efforts have been effective. Significant improvement occurred in five out of six quality indicators. Multidisciplinary teamwork in a model residency practice guided by chronic disease management principles and the FFM new model characteristics can produce significant management improvements in one important chronic disease.

  10. Regional Interstate Planning Project Program . . . Vol. IX. California Program Evaluation Improvement Project. Seminar Report.

    ERIC Educational Resources Information Center

    Dearmin, Evalyn, Ed.; And Others

    Program evaluation strategies and techniques based on materials developed by the California Evaluation Improvement Project were discussed at this meeting of the Regional Interstate Planning Project (RIPP). RIPP members represent the State Departments of Education of ten western states, and have met periodically over the past nine years to discuss…

  11. Advanced Plant Habitat

    NASA Image and Video Library

    2016-11-17

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. Inside a laboratory, Engineering Services Contract engineers set up test parameters on computers. From left, are Glenn Washington, ESC quality engineer; Claton Grosse, ESC mechanical engineer; and Jeff Richards, ESC project scientist. The APH is the largest plant chamber built for the agency. It will have 180 sensors and four times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.

  12. Ethnographic process evaluation of a quality improvement project to improve transitions of care for older people

    PubMed Central

    Sutton, Elizabeth; Dixon-Woods, Mary; Tarrant, Carolyn

    2016-01-01

    Objectives Quality improvement projects to address transitions of care across care boundaries are increasingly common but meet with mixed success for reasons that are poorly understood. We aimed to characterise challenges in a project to improve transitions for older people between hospital and care homes. Design Independent process evaluation, using ethnographic observations and interviews, of a quality improvement project. Setting and participants An English hospital and two residential care homes for older people. Data 32 hours of non-participant observations and 12 semistructured interviews with project members, hospital and care home staff. Results A hospital-based improvement team sought to reduce unplanned readmissions from residential care homes using interventions including a community-based geriatric team that could be accessed directly by care homes and a communication tool intended to facilitate transfer of information between homes and hospital. Only very modest (if any) impacts of these interventions on readmission rates could be detected. The process evaluation identified multiple challenges in implementing interventions and securing improvement. Many of these arose because of lack of consensus on the nature of the problem and the proper solutions: while the hospital team was keen to reduce readmissions and saw the problems as lying in poor communication and lack of community-based support for care homes, the care home staff had different priorities. Care home staff were unconvinced that the improvement interventions were aligned with their needs or addressed their concerns, resulting in compromised implementation. Conclusions Process evaluations have a valuable role in quality improvement. Our study suggests that a key task for quality improvement projects aimed at transitions of care is that of developing a shared view of the problem to be addressed. A more participatory approach could help to surface assumptions, interpretations and interests

  13. Integral habitat transport system

    NASA Technical Reports Server (NTRS)

    Elliott, Bill; Frazer, Scott; Higgs, Joey; Huff, Jason; Milam, Tigree

    1994-01-01

    In the 1993 Fall quarter, the ME 4182 design class was sponsored to study various scenarios that needed to be studied for Martian travel. The class was sponsored by NASA and there were several different design projects. The design that group three chose was an integral transport system for a Martian habitat. An integral transport system means the design had to be one that was attached to the habitat. There were several criteria that the design had to meet. Group three performed an in depth study of the Martian environment and looked at several different design ideas. The concept group three developed involved the use of kinematic linkages and the use of Martian gravity to move the habitat. The various design concepts, the criteria matrices and all other aspects that helped group three develop their design can be found in their 1993 ME 4182 design report. Now it is Winter quarter 1994 and group three is faced with another problem. The problem is building a working prototype of their Fall design. The limitations this quarter were the parts. The group had to make the prototype work with existing manufactured parts or make the parts themselves in a machine shop. The prototype was scaled down roughly about twelve times smaller than the original design. The following report describes the actions taken by group three to build a working model.

  14. Comparative habitat ecology of Texas and masked bobwhites

    USGS Publications Warehouse

    Guthery, F.S.; King, N.M.; Nolte, K.R.; Kuvlesky, W.P.; DeStefano, S.; Gall, S.A.; Silvy, N.J.

    2000-01-01

    The habitat ecology of masked bobwhites (Colinus virginianus ridgwayi) is poorly understood, which hampers recovery efforts for this endangered bird. During 1994-96, we analyzed the habitat ecology of masked bobwhites in Sonora, Mexico, and Arizona, and compared these findings with the habitat ecology of Texas bobwhites (C. v. texanus) in southern Texas. Mean values for the quantity of low screening cover (<50 cm aboveground), operative temperature (??C), and exposure to aerial predators were relatively constant across regions (CV <14.2%), indicating these variables are important in adaptive habitat-use decisions by bobwhites. Bobwhites exhibited preference in all regions for higher canopy coverage of woody vegetation, lower exposure to aerial predators, and lower operative temperatures in comparison with randomly available conditions. The major habitat deficiencies for masked bobwhites were lack of woody and herbaceous cover, which led to high exposure to aerial predators in Sonora and Arizona. High operative temperatures at quail level were associated with the loss of ???24% of potential habitat space-time in Texas, Sonora, and Arizona. Management to improve habitat for masked bobwhites includes any practice that increases canopy coverage of woody vegetation, and height and coverage of herbaceous vegetation.

  15. Earth is a Marine Habitat. Habitat Conservation Program.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This brochure is intended to educate the public about the need to conserve and preserve the earth's environment (man's habitat). It contains an introduction to the ocean world and threats to coastal habitat. Photos and narrative revolve around the theme "Earth is a Marine Habitat." Sections include: "The Web of…

  16. Linking habitat management and conservation biocontrol through gut-content analysis

    USDA-ARS?s Scientific Manuscript database

    Increasing the habitat diversity of agricultural fields can lead to more effective biocontrol of arthropod pests. Annual cropping systems are exposed to frequent disturbance and lack habitat diversity; therefore it is important to develop strategies that can improve ecosystem services such as bioco...

  17. Standards Improvement Project-Phase II. Final rule.

    PubMed

    2005-01-05

    The Occupational Safety and Health Administration (OSHA) through this final rule is continuing to remove and revise provisions of its standards that are outdated, duplicative, unnecessary, or inconsistent, or can be clarified or simplified by being written in plain language. The Agency completed Phase I of the Standards Improvement Project in June 1998. In this Phase II of the Standards Improvement Project, OSHA is again revising or removing a number of health provisions in its standards for general industry, shipyard employment, and construction. The Agency believes that the changes streamline and make more consistent the regulatory requirements in OSHA health and safety standards. In some cases, OSHA has made substantive revisions to requirements because they are outdated, duplicative, unnecessary, or inconsistent with more recently promulgated health standards. The Agency believes these revisions will reduce regulatory requirements for employers without reducing employee protection.

  18. Contrast of degraded and restored stream habitat using an individual-based salmon model

    Treesearch

    S. F. Railsback; M. Gard; Bret Harvey; Jason White; J.K.H. Zimmerman

    2013-01-01

    Stream habitat restoration projects are popular, but can be expensive and difficult to evaluate. We describe inSALMO, an individual-based model designed to predict habitat effects on freshwater life stages (spawning through juvenile out-migration) of salmon. We applied inSALMO to Clear Creek, California, simulating the production of total and large (>5 cm FL)...

  19. Mud Mountain Wildlife Inventory and Habitat Analysis.

    DTIC Science & Technology

    1979-01-01

    PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Intern Program AREA & WORK UNIT NUMBERS Western Interstate Commission for...RIPARIAN ZONE CHARACTERISTICS .... .......... .26 5 SNAG SUCCESSION CHARACTERISTICS .. .. . .... ... 29 6 THREE SISTERS- GRASS MOUNTAIN AREA ...recommendations appropriate with regard to their wildlife potential. Throughout the report, essential habitat areas have been noted. Management guidelines

  20. Making habitat connectivity a reality.

    PubMed

    Keeley, Annika T H; Basson, Galli; Cameron, D Richard; Heller, Nicole E; Huber, Patrick R; Schloss, Carrie A; Thorne, James H; Merenlender, Adina M

    2018-06-19

    For over 40 years, habitat corridors have been a solution for sustaining wildlife in fragmented landscapes, and now are often suggested as a climate adaptation strategy. However, while a plethora of connectivity plans exist, protecting and restoring habitat connectivity through on-the-ground action has been slow. We identified implementation challenges and opportunities through a literature review of project implementation, a science-practice workshop, and interviews with conservation professionals. Our research indicates that connectivity challenges and solutions tend to be context-specific, dependent on land ownership patterns, socioeconomic factors, and the policy framework. We found evidence that developing and promoting a common vision shared by a diverse set of stakeholders including nontraditional conservation actors, such as water districts and recreation departments, and through communication among and between partners and the public is key to successful implementation. Other factors that lead to successful implementation include undertaking empirical studies to prioritize and validate corridors and the identification of related co-benefits of corridor projects. Engaging partners involved in land management and planning, such as non-governmental conservation organizations, public agencies, and private landowners is critical to effective strategy implementation. A clear regulatory framework including unambiguous connectivity conservation mandates would increase public resource allocation, and incentive programs are needed to promote private sector engagement. We argue that connectivity conservation must more rapidly move from planning to implementation and provide an evidence-based solution made up of key elements for successful on-the-ground connectivity implementation. The components of this new framework constitute the social processes necessary to advance habitat connectivity for biodiversity conservation and resilient landscapes under climate change

  1. Wildlife Habitat Conditions in Mature Pine Hardwood Stands in the Ouachita/Ozark National Forests

    Treesearch

    Ronald E. Thill; Philip A. Tappe; Nancy E. Koerth

    1994-01-01

    A long-term, stand-level, interdisciplinsry research and demonstration project was initiated on the Ouachia (ONF) and Ozark-St. Francis National Forests in Arkansas in 1990 to compare the impacts of alternative reproduction cutting methods on commodity and noncommodity forest resources including wildlife habitat and populations. Habitat masurement procedures and...

  2. SF Bay Water Quality Improvement Fund: Projects and Accomplishments

    EPA Pesticide Factsheets

    San Francisco Bay Water Quality Improvement Fund (SFBWQIF) projects listed here are part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  3. Mapping and Monitoring Stream Aquatic Habitat With a Narrow-Beam Green Lidar

    NASA Astrophysics Data System (ADS)

    McKean, J.; Wright, W.; Kinzel, P.; Isaak, D.

    2006-12-01

    Stream environments are structured by complex biophysical processes that operate across multiple spatial and temporal scales. Disentangling these multiscalar and multicausal relationships is difficult, but fundamental to understanding, managing, and monitoring channel aquatic ecosystems. Standard field wading surveys of stream physical habitat are limited by cost and logistics to relatively small, isolated samples. Traditional remotely sensed surveys, including methods such as photogrammetry and near-infrared lidar, suffer from attenuation by water and do not directly map submerged channel topography. The Experimental Advanced Airborne Research Lidar (EAARL) is a full-waveform lidar with a unique ability to simultaneously map, with relatively high resolution, subaqueous and subaerial topography and the vegetation canopy. We have used the EAARL instrument to investigate two dissimilar stream ecosystems. We mapped 40km of low gradient, meandering, gravel-bed streams in central Idaho that are spawning habitat for threatened Chinook salmon. We are using the continuous three-dimensional channel maps to quantitatively explore how channel features affect the distribution of salmon spawning at multiple spatial scales and how modern stream and floodplain topography is related to post-glacial valley evolution. In contrast, the Platte River in central Nebraska is a wide and shallow, sand-bedded river that provides habitat for migratory water birds, including endangered species such as the whooping crane and least tern. Multi-temporal EAARL data are being used to map and monitor the physical response of the Platte River to habitat improvement projects that include in-channel and riparian vegetation removal and river flow augmentation to limit vegetation encroachment.

  4. Improve services project -- Republic of the Marshall Islands.

    PubMed

    Langidrik, J

    1995-01-01

    The Republic of the Marshall Islands has 60 dispensary sites, each staffed by 1 health assistant, to cover 80-800 people/site on 34 atolls. Until the spring of 1994, only curative services were available on a regular basis, and preventive services were provided by traveling health teams from the urban centers. In 1994, the health assistants in selected outer islands were trained to administer immunizations from vaccines which are sent regularly by air. Additional project sites are being selected. In 1993, 2 dispensaries initiated a project to 1) increase the number of women with access to prenatal care during the first trimester, 2) increase immunization levels, 3) improve access to preventive services, and 4) improve reporting and record-keeping systems. This project includes an important training component for the health assistant, the wife of the health assistant, the traditional birth attendant, the youth peer educator, community leaders, and a member of the local council. By 1994, this project was expanded to 13 dispensaries on 2 atolls. In 1995, 18 more dispensaries on 4 more atolls will be able to offer these additional services.

  5. A multiscaled model of southwestern willow flycatcher breeding habitat

    USGS Publications Warehouse

    Hatten, J.R.; Paradzick, C.E.

    2003-01-01

    The southwestern willow flycatcher (SWFL; Empidonax traillii extimus) is an endangered songbird whose habitat has declined dramatically over the last century. Understanding habitat selection patterns and the ability to identify potential breeding areas for the SWFL is crucial to the management and conservation of this species. We developed a multiscaled model of SWTL breeding habitat with a Geographic Information System (GIS), survey data, GIS variables, and multiple logistic regressions. We obtained presence and absence survey data from a riverine ecosystem and a reservoir delta in south-central Arizona, USA, in 1999. We extracted the GIS variables from satellite imagery and digital elevation models to characterize vegetation and floodplain within the project area. We used multiple logistic regressions within a cell-based (30 X 30 m) modeling environment to (1) determine associations between GIS variables and breeding-site occurrence at different spatial scales (0.09-72 ha), and (2) construct a predictive model. Our best model explained 54% of the variability in breeding-site occurrence with the following variables: vegetation density at the site (0.09 ha), proportion of dense vegetation and variability in vegetation density within a 4.5-ha neighborhood, and amount of floodplain or flat terrain within a 41-ha neighborhood. The density of breeding sites was highest in areas that the model predicted to be most suitable within the project area and at an external test site 200 km away. Conservation efforts must focus on protecting not only occupied patches, but also surrounding riparian forests and floodplain to ensure long-term viability of SWTL. We will use the multiscaled model to map SWTL breeding habitat in Arizona, prioritize future survey effort, and examine changes in habitat abundance and quality over time.

  6. Chapter 13. Incorporating wildlife habitat needs into restoration and rehabilitation projects

    Treesearch

    Richard Stevens

    2004-01-01

    Wildlife species richness, densities, and distribution are directly related to the quality and quantity of habitat (Autenrieth 1983; Autenrieth and others 1982; Bodurtha and others 1989; Call and Maser 1985; Caughley 1979; Kindschy and others 1982; Leckenby and others 1982; Reynolds 1980; Russo 1964; Thomas and others 1979a,c; Yoakum 1980). Productive big game ranges,...

  7. How can innovative project delivery systems improve the overall efficiency of GDOT in transportation project delivery?

    DOT National Transportation Integrated Search

    2013-04-01

    The USDOT and Federal Highway Administration (FHWA) recommend the smart use of innovative project : delivery systems, such as design-build, to improve efficiency and effectiveness of developing transportation : projects. Although design-build provide...

  8. Forestry herbicide influences on biodiversity and wildlife habitat in southern forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Karl V.; Miller, James H.

    In the southern United States, herbicide use continues to increase for timber management in commercial pine (Pinus spp.) plantations, for modifying wildlife habitats, and for invasive plant control. Several studies have reported that single applications of forestry herbicides at stand initiation have minor and temporary impacts on plant communities and wildlife habitat conditions, with some reports of enhanced habitat conditions for both game and nongame species. Due to the high resiliency of floral communities, plant species richness and diversity rebound rapidly after single herbicide treatments, with short- and long-term compositional shifts according to the selectivity and efficacy of the herbicidemore » used. Recently, however, a shift to the Southeast in North American timber supplies has resulted in increased forest management intensity. Current site-preparation techniques rely on herbicide combinations, often coupled with mechanical treatments and >1 years of post-planting applications to enhance the spectrum and duration of vegetation control. This near-total control of associated vegetation at establishment and more rapid pine canopy closure, coupled with shortened and repeated rotations, likely will affect plant diversity and wildlife habitat quality. Development of mitigation methods at the stand and landscape levels will be required to minimize vegetative and wildlife impacts while allowing continued improvement in pine productivity. More uncertain are long-term impacts of increasing invasive plant occupation and the projected increase in herbicide use that will be needed to reverse this worsening situation. In addition, the potential of herbicides to meet wildlife management objectives in areas where traditional techniques have high social costs (e.g., prescribed fire) should be fully explored.« less

  9. Restoring and rehabilitating sagebrush habitats

    USGS Publications Warehouse

    Pyke, David A.; Knick, S.T.; Connelly, J.W.

    2011-01-01

    Less than half of the original habitat of the Greater Sage-Grouse (Centrocercus uropha-sianus) currently exists. Some has been perma-nently lost to farms and urban areas, but the remaining varies in condition from high quality to no longer adequate. Restoration of sagebrush (Artemisia spp.) grassland ecosystems may be pos-sible for resilient lands. However, Greater Sage-Grouse require a wide variety of habitats over large areas to complete their life cycle. Effective restoration will require a regional approach for prioritizing and identifying appropriate options across the landscape. A landscape triage method is recommended for prioritizing lands for restora-tion. Spatial models can indicate where to protect and connect intact quality habitat with other simi-lar habitat via restoration. The ecological site con-cept of land classification is recommended for characterizing potential habitat across the region along with their accompanying state and transi-tion models of plant community dynamics. These models assist in identifying if passive, manage-ment-based or active, vegetation manipulation?based restoration might accomplish the goals of improved Greater Sage-Grouse habitat. A series of guidelines help formulate questions that manag-ers might consider when developing restoration plans: (1) site prioritization through a landscape triage; (2) soil verification and the implications of soil features on plant establishment success; (3) a comparison of the existing plant community to the potential for the site using ecological site descriptions; (4) a determination of the current successional status of the site using state and transition models to aid in predicting if passive or active restoration is necessary; and (5) implemen-tation of post-treatment monitoring to evaluate restoration effectiveness and post-treatment man-agement implications to restoration success.

  10. Riverine habitat dynamics

    USGS Publications Warehouse

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  11. Newly Discovered Orangutan Species Requires Urgent Habitat Protection.

    PubMed

    Sloan, Sean; Supriatna, Jatna; Campbell, Mason J; Alamgir, Mohammed; Laurance, William F

    2018-05-03

    Nater, et al.[1] recently identified a new orangutan species (Pongo tapanuliensis) in northern Sumatra, Indonesia-just the seventh described species of living great ape. The population of this critically-endangered species is perilously small, at only ∼800 individuals [1], ranking it among the planet's rarest fauna. We assert that P. tapanuliensis is highly vulnerable to extinction because its remaining habitat is small, fragmented, and poorly protected. While road incursions within its habitat are modest-road density is only one-eighth that of northern Sumatra-over one-fifth of its habitat is zoned for agricultural conversion or is comprised of mosaic agricultural and regrowth/degraded forest. Additionally, a further 8% will be affected by flooding and infrastructure development for a hydroelectric project. We recommend urgent steps to increase the chance that P. tapanuliensis will persist in the wild. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Eder Acquisition 2007 Habitat Evaluation Procedures Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Paul R.

    A habitat evaluation procedures (HEP) analysis was conducted on the Eder acquisition in July 2007 to determine how many protection habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the project site as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. Baseline HEP surveys generated 3,857.64 habitat units or 1.16 HUs per acre. HEP surveys also served to document general habitat conditions. Survey results indicated that the herbaceous plant community lacked forbs species, which may be due to both livestock grazing and the late timing of the surveys. Moreover,more » the herbaceous plant community lacked structure based on lower than expected visual obstruction readings (VOR); likely a direct result of livestock impacts. In addition, introduced herbaceous vegetation including cultivated pasture grasses, e.g. crested wheatgrass and/or invader species such as cheatgrass and mustard, were present on most areas surveyed. The shrub element within the shrubsteppe cover type was generally a mosaic of moderate to dense shrubby areas interspersed with open grassland communities while the 'steppe' component was almost entirely devoid of shrubs. Riparian shrub and forest areas were somewhat stressed by livestock. Moreover, shrub and tree communities along the lower reaches of Nine Mile Creek suffered from lack of water due to the previous landowners 'piping' water out of the stream channel.« less

  13. 76 FR 33589 - Standards Improvement Project-Phase III

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... rule: I. Background A. Introduction B. Regulatory History II. Legal Considerations III. Summary and... without diminishing worker protections. B. Regulatory History The Standards Improvement Project (SIP...

  14. Ninety to Nothing: a PDSA quality improvement project.

    PubMed

    Prybutok, Gayle Linda

    2018-05-14

    Purpose The purpose of this paper is to present a case study of a successful quality improvement project in an acute care hospital focused on reducing the time of the total patient visit in the emergency department. Design/methodology/approach A multidisciplinary quality improvement team, using the PDSA (Plan, Do, Study, Act) Cycle, analyzed the emergency department care delivery process and sequentially made process improvements that contributed to project success. Findings The average turnaround time goal of 90 minutes or less per visit was achieved in four months, and the organization enjoyed significant collateral benefits both internal to the organization and for its customers. Practical implications This successful PDSA process can be duplicated by healthcare organizations of all sizes seeking to improve a process related to timely, high-quality patient care delivery. Originality/value Extended wait time in hospital emergency departments is a universal problem in the USA that reduces the quality of the customer experience and that delays necessary patient care. This case study demonstrates that a structured quality improvement process implemented by a multidisciplinary team with the authority to make necessary process changes can successfully redefine the norm.

  15. An interpolation method for stream habitat assessments

    USGS Publications Warehouse

    Sheehan, Kenneth R.; Welsh, Stuart A.

    2015-01-01

    Interpolation of stream habitat can be very useful for habitat assessment. Using a small number of habitat samples to predict the habitat of larger areas can reduce time and labor costs as long as it provides accurate estimates of habitat. The spatial correlation of stream habitat variables such as substrate and depth improves the accuracy of interpolated data. Several geographical information system interpolation methods (natural neighbor, inverse distance weighted, ordinary kriging, spline, and universal kriging) were used to predict substrate and depth within a 210.7-m2 section of a second-order stream based on 2.5% and 5.0% sampling of the total area. Depth and substrate were recorded for the entire study site and compared with the interpolated values to determine the accuracy of the predictions. In all instances, the 5% interpolations were more accurate for both depth and substrate than the 2.5% interpolations, which achieved accuracies up to 95% and 92%, respectively. Interpolations of depth based on 2.5% sampling attained accuracies of 49–92%, whereas those based on 5% percent sampling attained accuracies of 57–95%. Natural neighbor interpolation was more accurate than that using the inverse distance weighted, ordinary kriging, spline, and universal kriging approaches. Our findings demonstrate the effective use of minimal amounts of small-scale data for the interpolation of habitat over large areas of a stream channel. Use of this method will provide time and cost savings in the assessment of large sections of rivers as well as functional maps to aid the habitat-based management of aquatic species.

  16. Avoiding failure: tools for successful and sustainable quality-improvement projects.

    PubMed

    Donnelly, Lane F

    2017-06-01

    Involvement in successful and sustained quality improvement can be a very rewarding experience. However, it can be very difficult work. Up to 70% of attempted organizational change is not sustained. There are many reasons why quality-improvement projects might not be successful. In this article, the author reviews items associated with an increased or decreased likelihood of success. Such items have been categorized as structural issues, human issues and environmental context. This paper is intended to serve those embarking on quality-improvement projects as a resource to help position them for success.

  17. Ecological Functions of Off-Channel Habitats of the Willamette River, Oregon, Database and Documentation (1997-2001)

    EPA Science Inventory

    The database from the Ecological Functions of Off-Channel Habitats of the Willamette River, Oregon project (OCH Project) contains data collected from 1997 through 2001 from multiple research areas of the project, and project documents such as the OCH Research Plan, Quality Assura...

  18. Improvements in Ice-Sheet Sea-Level Projections

    NASA Technical Reports Server (NTRS)

    Shepherd, Andrew; Nowicki, Sophie

    2017-01-01

    Ice losses from Antarctica and Greenland are the largest uncertainty in sea-level projections. Nevertheless, improvements in ice-sheet models over recent decades have led to closer agreement with satellite observations, keeping track with their increasing contribution to global sea-level rise.

  19. Impacts of fire on sage-grouse habitat and diet resources

    USDA-ARS?s Scientific Manuscript database

    Small (<40.5-ha) patch fires or mechanical manipulations to reduce big sagebrush (Artemisia tridentata) cover has been suggested as a management option to improve sage-grouse prenesting and brood rearing habitat and provide a diverse habitat mosaic. We evaluated the effects of prescribed fire and wi...

  20. Homeless Veterans: Management Improvements Could Help VA Better Identify Supportive Housing Projects

    DTIC Science & Technology

    2016-12-01

    HOMELESS VETERANS Management Improvements Could Help VA Better Identify Supportive-Housing Projects Report to...VETERANS Management Improvements Could Help VA Better Identify Supportive-Housing Projects What GAO Found As of September 2016, for veterans who...disabled veterans. These supportive-housing EULs receive project -based HUD-VASH vouchers, which provide housing subsidies, on-site case management

  1. Ethnographic process evaluation of a quality improvement project to improve transitions of care for older people.

    PubMed

    Sutton, Elizabeth; Dixon-Woods, Mary; Tarrant, Carolyn

    2016-08-04

    Quality improvement projects to address transitions of care across care boundaries are increasingly common but meet with mixed success for reasons that are poorly understood. We aimed to characterise challenges in a project to improve transitions for older people between hospital and care homes. Independent process evaluation, using ethnographic observations and interviews, of a quality improvement project. An English hospital and two residential care homes for older people. 32 hours of non-participant observations and 12 semistructured interviews with project members, hospital and care home staff. A hospital-based improvement team sought to reduce unplanned readmissions from residential care homes using interventions including a community-based geriatric team that could be accessed directly by care homes and a communication tool intended to facilitate transfer of information between homes and hospital. Only very modest (if any) impacts of these interventions on readmission rates could be detected. The process evaluation identified multiple challenges in implementing interventions and securing improvement. Many of these arose because of lack of consensus on the nature of the problem and the proper solutions: while the hospital team was keen to reduce readmissions and saw the problems as lying in poor communication and lack of community-based support for care homes, the care home staff had different priorities. Care home staff were unconvinced that the improvement interventions were aligned with their needs or addressed their concerns, resulting in compromised implementation. Process evaluations have a valuable role in quality improvement. Our study suggests that a key task for quality improvement projects aimed at transitions of care is that of developing a shared view of the problem to be addressed. A more participatory approach could help to surface assumptions, interpretations and interests and could facilitate the coproduction of solutions. This finding is

  2. Potential Climate Change Effects on the Habitat of Antarctic Krill in the Weddell Quadrant of the Southern Ocean

    PubMed Central

    Hill, Simeon L.; Phillips, Tony; Atkinson, Angus

    2013-01-01

    Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0° and 90°W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2°C per decade, and projections suggest that further widespread warming of 0.27° to 1.08°C will occur by the late 21st century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat’s ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services. PMID:23991072

  3. Management of the Atmosphere Resource Recovery and Environmental Monitoring Project

    NASA Technical Reports Server (NTRS)

    Roman, Monsi; Perry, Jay; Howard, David

    2013-01-01

    The Advanced Exploration Systems Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project is working to further optimize atmosphere revitalization and environmental monitoring system architectures. This paper discusses project management strategies that tap into skill sets across multiple engineering disciplines, projects, field centers, and industry to achieve the project success. It is the project's objective to contribute to system advances that will enable sustained exploration missions beyond Lower Earth Orbit (LEO) and improve affordability by focusing on the primary goals of achieving high reliability, improving efficiency, and reducing dependence on ground-based logistics resupply. Technology demonstrations are achieved by infusing new technologies and concepts with existing developmental hardware and operating in a controlled environment simulating various crewed habitat scenarios. The ARREM project's strengths include access to a vast array of existing developmental hardware that perform all the vital atmosphere revitalization functions, exceptional test facilities to fully evaluate system performance, and a well-coordinated partnering effort among the NASA field centers and industry partners to provide the innovative expertise necessary to succeed.

  4. Our use, misuse, and abandonment of a concept: Whither habitat?

    PubMed

    Kirk, David Anthony; Park, Allysia C; Smith, Adam C; Howes, Briar J; Prouse, Brigid K; Kyssa, Naschelly G; Fairhurst, Elizabeth N; Prior, Kent A

    2018-04-01

    The foundational concept of habitat lies at the very root of the entire science of ecology, but inaccurate use of the term compromises scientific rigor and communication among scientists and nonscientists. In 1997, Hall, Krausman & Morrison showed that 'habitat' was used correctly in only 55% of articles. We ask whether use of the term has been more accurate since their plea for standardization and whether use varies across the broader range of journals and taxa in the contemporary literature (1998-2012). We searched contemporary literature for 'habitat' and habitat-related terms, ranking usage as either correct or incorrect, following a simplified version of Hall et al.'s definitions. We used generalized linear models to compare use of the term in contemporary literature with the papers reviewed by Hall et al. and to test the effects of taxa, journal impact in the contemporary articles and effects due to authors that cited Hall et al. Use of the term 'habitat' has not improved; it was still only used correctly about 55% of the time in the contemporary data. Proportionately more correct uses occurred in articles that focused on animals compared to ones that included plants, and papers that cited Hall et al. did use the term correctly more often. However, journal impact had no effect. Some habitat terms are more likely to be misused than others, notably 'habitat type', usually used to refer to vegetation type, and 'suitable habitat' or 'unsuitable habitat', which are either redundant or nonsensical by definition. Inaccurate and inconsistent use of the term can lead to (1) misinterpretation of scientific findings; (2) inefficient use of conservation resources; (3) ineffective identification and prioritization of protected areas; (4) limited comparability among studies; and (5) miscommunication of science-based findings. Correct usage would improve communication with scientists and nonscientists, thereby benefiting conservation efforts, and ecology as a science.

  5. RESTORATION OF 100 SQUARE MILES OF SHELLFISH HABITAT IN LAKE PONTCHARTRAIN MX974852

    EPA Science Inventory

    The project will document the adverse effects of episodic hypoxia on the biotic integrity of Lake Pontchartrain and provide quantitative data on environmental benefits derived from the restoration of 100 square miles of clam habitat in Lake Pontchartrain. This project will prov...

  6. Habitat-related specialization of lateral-line system morphology in a habitat-generalist and a habitat-specialist New Zealand eleotrid.

    PubMed

    Vanderpham, J P; Nakagawa, S; Senior, A M; Closs, G P

    2016-04-01

    An investigation of intraspecific habitat-related patterns of variation in oculoscapular lateral-line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat-generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat-related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat-specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral-line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments. © 2016 The Fisheries Society of the British Isles.

  7. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: pronghorns.

    Treesearch

    Robert R. Kindschy; Charles S. Undstrom; James D. Yoakum

    1982-01-01

    The sagebrush steppe of the Great Basin in southeastern Oregon is peripheral habitat for pronghorns, but the quality of the habitat can be improved through rangeland management. The relationship between pronghorns and their habitat components—the availability of water, type of forage, barriers that restrict the movement of herds, and the effect of grazing by livestock-...

  8. Enhancements of the "eHabitat

    NASA Astrophysics Data System (ADS)

    Santoro, M.; Dubois, G.; Schulz, M.; Skøien, J. O.; Nativi, S.; Peedell, S.; Boldrini, E.

    2012-04-01

    The number of interoperable research infrastructures has increased significantly with the growing awareness of the efforts made by the Global Earth Observation System of Systems (GEOSS). One of the Social Benefit Areas (SBA) that is benefiting most from GEOSS is biodiversity, given the costs of monitoring the environment and managing complex information, from space observations to species records including their genetic characteristics. But GEOSS goes beyond the simple sharing of the data as it encourages the connectivity of models (the GEOSS Model Web), an approach easing the handling of often complex multi-disciplinary questions such as understanding the impact of environmental and climatological factors on ecosystems and habitats. In the context of GEOSS Architecture Implementation Pilot - Phase 3 (AIP-3), the EC-funded EuroGEOSS and GENESIS projects have developed and successfully demonstrated the "eHabitat" use scenario dealing with Climate Change and Biodiversity domains. Based on the EuroGEOSS multidisciplinary brokering infrastructure and on the DOPA (Digital Observatory for Protected Areas, see http://dopa.jrc.ec.europa.eu/), this scenario demonstrated how a GEOSS-based interoperability infrastructure can aid decision makers to assess and possibly forecast the irreplaceability of a given protected area, an essential indicator for assessing the criticality of threats this protected area is exposed to. The "eHabitat" use scenario was advanced in the GEOSS Sprint to Plenary activity; the advanced scenario will include the "EuroGEOSS Data Access Broker" and a new version of the eHabitat model in order to support the use of uncertain data. The multidisciplinary interoperability infrastructure which is used to demonstrate the "eHabitat" use scenario is composed of the following main components: a) A Discovery Broker: this component is able to discover resources from a plethora of different and heterogeneous geospatial services, presenting them on a single and

  9. Impact of a quality improvement project on deceased organ donor management

    PubMed Central

    Olmos, Andrea; Feiner, John; Hirose, Ryutaro; Swain, Sharon; Blasi, Annabel; Roberts, John P.; Niemann, Claus U.

    2017-01-01

    Context Donors showed poor glucose control in the period between declaration of brain death and organ recovery. The level of hyperglycemia in the donors was associated with a decline in terminal renal function. Objective To determine whether implementation of a quality improvement project improved glucose control and preserved renal function in deceased organ donors. Methods Data collected retrospectively included demographics, medical history, mechanism of death, laboratory values, and data from the United Network for Organ Sharing. Results After implementation of the quality improvement project, deceased donors had significantly lower mean glucose concentrations (mean [SD], 162 [44] vs 212 [42] mg/dL; P < .001) and prerecovery glucose concentration (143 [66] vs 241 [69] mg/dL; P < .001). When the donor cohorts from before and after the quality improvement project were analyzed together, mean glucose concentration remained a significant predictor of terminal creatinine level (P < .001). Multivariate analysis of delayed graft function in kidney recipients matched to donors indicated that higher terminal creatinine level was associated with delayed graft function in recipients (P < .001). Conclusion The quality improvement project improved donor glucose homeostasis, and the data confirm that poor glucose homeostasis is associated with worsening terminal renal function. PMID:26645930

  10. The Earth Observation Data for Habitat Monitoring (EODHaM) system

    NASA Astrophysics Data System (ADS)

    Lucas, Richard; Blonda, Palma; Bunting, Peter; Jones, Gwawr; Inglada, Jordi; Arias, Marcela; Kosmidou, Vasiliki; Petrou, Zisis I.; Manakos, Ioannis; Adamo, Maria; Charnock, Rebecca; Tarantino, Cristina; Mücher, Caspar A.; Jongman, Rob H. G.; Kramer, Henk; Arvor, Damien; Honrado, Joāo Pradinho; Mairota, Paola

    2015-05-01

    To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India.

  11. The Baselines Project: Establishing Reference Environmental Conditions for Marine Habitats in the Gulf of Mexico using Forecast Models and Satellite Data

    NASA Astrophysics Data System (ADS)

    Jolliff, J. K.; Gould, R. W.; deRada, S.; Teague, W. J.; Wijesekera, H. W.

    2012-12-01

    We provide an overview of the NASA-funded project, "High-Resolution Subsurface Physical and Optical Property Fields in the Gulf of Mexico: Establishing Baselines and Assessment Tools for Resource Managers." Data assimilative models, analysis fields, and multiple satellite data streams were used to construct temperature and photon flux climatologies for the Flower Garden Banks National Marine Sanctuary (FGBNMS) and similar habitats in the northwestern Gulf of Mexico where geologic features provide a platform for unique coral reef ecosystems. Comparison metrics of the products to in situ data collected during complimentary projects are also examined. Similarly, high-resolution satellite-data streams and advanced processing techniques were used to establish baseline suspended sediment load and turbidity conditions in selected northern Gulf of Mexico estuaries. The results demonstrate the feasibility of blending models and data into accessible web-based analysis products for resource managers, policy makers, and the public.

  12. An approach of habitat degradation assessment for characterization on coastal habitat conservation tendency.

    PubMed

    Zhou, Xi-Yin; Lei, Kun; Meng, Wei

    2017-09-01

    Coastal zones are population and economy highly intensity regions all over the world, and coastal habitat supports the sustainable development of human society. The accurate assessment of coastal habitat degradation is the essential prerequisite for coastal zone protection. In this study, an integrated framework of coastal habitat degradation assessment including landuse classification, habitat classifying and zoning, evaluation criterion of coastal habitat degradation and coastal habitat degradation index has been established for better regional coastal habitat assessment. Through establishment of detailed three-class landuse classification, the fine landscape change is revealed, the evaluation criterion of coastal habitat degradation through internal comparison based on the results of habitat classifying and zoning could indicate the levels of habitat degradation and distinguish the intensity of human disturbances in different habitat subareas under the same habitat classification. Finally, the results of coastal habitat degradation assessment could be achieved through coastal habitat degradation index (CHI). A case study of the framework is carried out in the Circum-Bohai-Sea-Coast, China, and the main results show the following: (1) The accuracy of all land use classes are above 90%, which indicates a satisfactory accuracy for the classification map. (2) The Circum-Bohai-Sea-Coast is divided into 3 kinds of habitats and 5 subareas. (3) In the five subareas of the Circum-Bohai-Sea-Coast, the levels of coastal habitat degradation own significant difference. The whole Circum-Bohai-Sea-Coast generally is in a worse state according to area weighting of each habitat subarea. This assessment framework of coastal habitat degradation would characterize the landuse change trend, realize better coastal habitat degradation assessment, reveal the habitat conservation tendency and distinguish intensity of human disturbances. Furthermore, it would support for accurate coastal

  13. Project Plan: The MEDARP Documentation Unit to the School Improvement and Local School Development Projects.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Educational Evaluation.

    The Metropolitan Educational Development and Research Project (MEDARP) Documentation Unit, located in the Office of Educational Evaluation (OEE) at the New York City Board of Education, is funded by the Ford Foundation to document, evaluate and provide technical assistance to the School Improvement and Local School Development Projects; these are…

  14. Duck Valley Habitat Enhancement and Protection, 2001-2002 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Mattie H.; Sellman, Jake

    The Duck Valley Indian Reservation's Habitat Enhancement project is an ongoing project designed to enhance and protect critical riparian areas, natural springs, the Owhyee River and its tributaries, and native fish spawning areas on the Reservation. The project commenced in 1997 and addresses the Northwest Power Planning Council's measures 10.8C.2, 10.8C.3, and 10.8C.5 of the 1994 Columbia River Basin Fish and Wildlife Program. The performance period covers dates from April 2001 through August 2002.

  15. Maintaining Perioperative Normothermia: Sustaining an Evidence-Based Practice Improvement Project.

    PubMed

    Levin, Rona F; Wright, Fay; Pecoraro, Kathleen; Kopec, Wendy

    2016-02-01

    Unintentional perioperative hypothermia has been shown to cause serious patient complications and, thus, to increase health care costs. In 2009, an evidence-based practice improvement project produced a significant decrease in unintentional perioperative hypothermia in colorectal surgical patients through monitoring of OR ambient room temperature. Project leaders engaged all interdisciplinary stakeholders in the original project, which facilitated the sustainability of the intervention method. An important aspect of sustainability is ongoing monitoring and evaluation of a new intervention method. Therefore, continued evaluation of outcomes of the protocol developed in 2009 was scheduled at specific time points after the initial small test of change with colorectal patients. This article focuses on how attention to sustainability factors during implementation of an improvement project led to the sustainability of a protocol for monitoring OR ambient room temperature with all types of surgical patients five years after the initial project. Copyright © 2016 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  16. West Foster Creek Expansion Project 2007 HEP Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Paul R.

    During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus),more » western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.« less

  17. Restoring Coastal Plants to Improve Global Carbon Storage: Reaping What We Sow

    PubMed Central

    Irving, Andrew D.; Connell, Sean D.; Russell, Bayden D.

    2011-01-01

    Long-term carbon capture and storage (CCS) is currently considered a viable strategy for mitigating rising levels of atmospheric CO2 and associated impacts of global climate change. Until recently, the significant below-ground CCS capacity of coastal vegetation such as seagrasses, salt marshes, and mangroves has largely gone unrecognized in models of global carbon transfer. However, this reservoir of natural, free, and sustainable carbon storage potential is increasingly jeopardized by alarming trends in coastal habitat loss, totalling 30–50% of global abundance over the last century alone. Human intervention to restore lost habitats is a potentially powerful solution to improve natural rates of global CCS, but data suggest this approach is unlikely to substantially improve long-term CCS unless current restoration efforts are increased to an industrial scale. Failure to do so raises the question of whether resources currently used for expensive and time-consuming restoration projects would be more wisely invested in arresting further habitat loss and encouraging natural recovery. PMID:21479244

  18. Restoring and Maintaining Riparian Habitat on Private Pastureland

    Treesearch

    Nancy Reichard

    1989-01-01

    Protecting riparian habitat from livestock grazing on private land is a complex task that requires paying attention to sociological and economic as well as physical and biological factors. Six livestock exclusion fencing projects on private property in northwestern California are described. The importance of long term maintenance and the need for landowner incentives...

  19. The TAME Project: Towards improvement-oriented software environments

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Rombach, H. Dieter

    1988-01-01

    Experience from a dozen years of analyzing software engineering processes and products is summarized as a set of software engineering and measurement principles that argue for software engineering process models that integrate sound planning and analysis into the construction process. In the TAME (Tailoring A Measurement Environment) project at the University of Maryland, such an improvement-oriented software engineering process model was developed that uses the goal/question/metric paradigm to integrate the constructive and analytic aspects of software development. The model provides a mechanism for formalizing the characterization and planning tasks, controlling and improving projects based on quantitative analysis, learning in a deeper and more systematic way about the software process and product, and feeding the appropriate experience back into the current and future projects. The TAME system is an instantiation of the TAME software engineering process model as an ISEE (integrated software engineering environment). The first in a series of TAME system prototypes has been developed. An assessment of experience with this first limited prototype is presented including a reassessment of its initial architecture.

  20. Advanced systems data for mapping Emperor Penguin habitats in Antarctica

    USGS Publications Warehouse

    Sanchez, Richard D.; Kooyman, Gerald L.

    2004-01-01

    Commercial orbital sensor systems combined with other resource data from the U.S. Geological Survey National Civil Applications Program (NCAP) may offer an effective way of mapping Emperor penguin habitats and their response to regional climate change in Antarctica. This project examined these resources to determine their applicability for mapping Emperor penguin habitats to support the National Science Foundation. This work is especially significant to investigate satellite-based imaging as an alternative to intrusive in-the-field enumeration of Emperor penguins and the potential of applying these procedures to support The National Map (TNP).

  1. Virtual Construction of Space Habitats: Connecting Building Information Models (BIM) and SysML

    NASA Technical Reports Server (NTRS)

    Polit-Casillas, Raul; Howe, A. Scott

    2013-01-01

    Current trends in design, construction and management of complex projects make use of Building Information Models (BIM) connecting different types of data to geometrical models. This information model allow different types of analysis beyond pure graphical representations. Space habitats, regardless their size, are also complex systems that require the synchronization of many types of information and disciplines beyond mass, volume, power or other basic volumetric parameters. For this, the state-of-the-art model based systems engineering languages and processes - for instance SysML - represent a solid way to tackle this problem from a programmatic point of view. Nevertheless integrating this with a powerful geometrical architectural design tool with BIM capabilities could represent a change in the workflow and paradigm of space habitats design applicable to other aerospace complex systems. This paper shows some general findings and overall conclusions based on the ongoing research to create a design protocol and method that practically connects a systems engineering approach with a BIM architectural and engineering design as a complete Model Based Engineering approach. Therefore, one hypothetical example is created and followed during the design process. In order to make it possible this research also tackles the application of IFC categories and parameters in the aerospace field starting with the application upon the space habitats design as way to understand the information flow between disciplines and tools. By building virtual space habitats we can potentially improve in the near future the way more complex designs are developed from very little detail from concept to manufacturing.

  2. Habitat Selection and Behaviour of a Reintroduced Passerine: Linking Experimental Restoration, Behaviour and Habitat Ecology

    PubMed Central

    Bennett, Victoria A.; Doerr, Veronica A. J.; Doerr, Erik D.; Manning, Adrian D.; Lindenmayer, David B.; Yoon, Hwan-Jin

    2013-01-01

    Habitat restoration can play an important role in recovering functioning ecosystems and improving biodiversity. Restoration may be particularly important in improving habitat prior to species reintroductions. We reintroduced seven brown treecreeper (Climacteris picumnus) social groups into two nature reserves in the Australian Capital Territory in south-eastern Australia. This study provided a unique opportunity to understand the interactions between restoration ecology, behavioural ecology and habitat ecology. We examined how experimental restoration treatments (addition of coarse woody debris, variations in ground vegetation cover and nest box installation) influenced the behaviour and microhabitat use of radio-tracked individuals to evaluate the success of restoration treatments. The addition of coarse woody debris benefited the brown treecreeper through increasing the probability of foraging on a log or on the ground. This demonstrated the value of using behaviour as a bio-indicator for restoration success. Based on previous research, we predicted that variations in levels of ground vegetation cover would influence behaviour and substrate use, particularly that brown treecreepers would choose sites with sparse ground cover because this allows better access to food and better vigilance for predators. However, there was little effect of this treatment, which was likely influenced by the limited overall use of the ground layer. There was also little effect of nest boxes on behaviour or substrate use. These results somewhat confound our understanding of the species based on research from extant populations. Our results also have a significant impact regarding using existing knowledge on a species to inform how it will respond to reintroduction and habitat restoration. This study also places great emphasis on the value of applying an experimental framework to ecological restoration, particularly when reintroductions produce unexpected outcomes. PMID:23349923

  3. 75 FR 5765 - NOAA Coastal and Marine Habitat Restoration Project Supplemental Funding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... the approximately 3 percent of funding that remains from the original allocation provided to NMFS... manage and mitigate risks to the original habitat restoration investments and ensure program goals are... awarded funds as a result of the original competition. There is the possibility that NMFS may also fund...

  4. The Habitat Demonstration Unit System Integration

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Kennedy, Kriss J.; Tri, Terry O.; Howe, Alan S.

    2010-01-01

    The Lunar Surface System Habitat Demonstration Unit (HDU) will require a project team to integrate a variety of contributions from National Aeronautics and Space Administration (NASA) centers and potential outside collaborators and poses a challenge in integrating these disparate efforts into a cohesive architecture. To accomplish the development of the first version of the HDU, the Pressurized Excursion Module (PEM), from conception in June 2009 to rollout for operations in July 2010, the HDU project team is using several strategies to mitigate risks and bring the separate efforts together. First, a set of design standards is being developed to define the interfaces between the various systems of PEM and to the payloads, such as the Geology Laboratory, that those systems will support. Scheduled activities such as early fit-checks and the utilization of a habitat avionics test bed prior to equipment installation into HDU PEM are planned to facilitate the integration process. A coordinated effort to establish simplified Computer Aided Design (CAD) standards and the utilization of a modeling and simulation systems will aid in design and integration concept development. Finally, decision processes on the shell development including the assembly sequence and the transportation have been fleshed out early on HDU design to maximize the efficiency of both integration and field operations.

  5. Beneficial use of dredged material for habitat creation, enhancement, and restoration in New York-New Jersey Harbor.

    PubMed

    Yozzo, David J; Wilber, Pace; Will, Robert J

    2004-10-01

    A comprehensive Dredged Material Management Plan (DMMP) has been developed by the US Army Corps of Engineers, New York District (USACE-NYD) and the Port Authority of New York and New Jersey (PANY/NJ). The primary objective of the DMMP is to identify cost-effective and environmentally acceptable alternatives for the placement of dredged material derived from ongoing and proposed navigation improvements within the PANY/NJ. A significant portion of this dredged material is classified as unsuitable for open-ocean disposal. One suite of alternatives presented within the DMMP is the beneficial use of dredged material for habitat creation, enhancement, and restoration within the NY/NJ Harbor Estuary. Proposed beneficial use/habitat development projects include the use of dredged material for construction of artificial reefs, oyster reef restoration, intertidal wetland and mudflat creation, bathymetric recontouring, filling dead-end canals/basins, creation of bird/wildlife islands, and landfill/brownfields reclamation. Preliminary screening of the proposed beneficial use alternatives identified advantages, disadvantages, potential volumes, and estimated costs associated with each project type. Continued study of the proposed beneficial use alternatives has identified areas of environmental research or technology development where further investigation is warranted.

  6. Climate-Driven Effects of Fire on Winter Habitat for Caribou in the Alaskan-Yukon Arctic

    PubMed Central

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas. PMID

  7. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    PubMed

    Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  8. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic

    USGS Publications Warehouse

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  9. Mapping habitat for multiple species in the Desert Southwest

    USGS Publications Warehouse

    Inman, Richard D.; Nussear, Kenneth E.; Esque, Todd C.; Vandergast, Amy G.; Hathaway, Stacie A.; Wood, Dustin A.; Barr, Kelly R.; Fisher, Robert N.

    2014-01-01

    Many utility scale renewable energy projects are currently proposed across the Mojave Ecoregion. Agencies that manage biological resources throughout this region need to understand the potential impacts of these renewable energy projects and their associated infrastructure (for example, transmission corridors, substations, access roads, etc.) on species movement, genetic exchange among populations, and species’ abilities to adapt to changing environmental conditions. Understanding these factors will help managers’ select appropriate project sites and possibly mitigate for anticipated effects of management activities. We used species distribution models to map habitat for 15 species across the Mojave Ecoregion to aid regional land-use management planning. Models were developed using a common 1 × 1 kilometer resolution with maximum entropy and generalized additive models. Occurrence data were compiled from multiple sources, including VertNet (http://vertnet.org/), HerpNET (http://www.herpnet.org), and MaNIS (http://manisnet.org), as well as from internal U.S. Geological Survey databases and other biologists. Background data included 20 environmental covariates representing terrain, vegetation, and climate covariates. This report summarizes these environmental covariates and species distribution models used to predict habitat for the 15 species across the Mojave Ecoregion.

  10. 78 FR 5830 - Draft Environmental Assessment and Proposed Habitat Conservation Plan for the Interim Operations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... Operations of PacifiCorp's Klamath Hydroelectric Project on the Klamath River, Klamath County, OR, and... Environmental Policy Act (NEPA) for the interim operations of the Klamath Hydroelectric Project in [[Page 5831... habitats upon which they depend, resulting from the interim operations of the Klamath Hydroelectric Project...

  11. Architecture for space habitats. Role of architectural design in planning artificial environment for long time manned space missions

    NASA Astrophysics Data System (ADS)

    Martinez, Vera

    2007-02-01

    The paper discusses concepts about the role of architecture in the design of space habitats and the development of a general evaluation criteria of architectural design contribution. Besides the existing feasibility studies, the general requisites, the development studies, and the critical design review which are mainly based on the experience of human space missions and the standards of the NASA-STD-3000 manual and which analyze and evaluate the relation between man and environment and between man and machine mainly in its functionality, there is very few material about design of comfort and wellbeing of man in space habitat. Architecture for space habitat means the design of an artificial environment with much comfort in an "atmosphere" of wellbeing. These are mainly psychological effects of human factors which are very important in the case of a long time space mission. How can the degree of comfort and "wellbeing atmosphere" in an artificial environment be measured? How can the quality of the architectural contribution in space design be quantified? Definition of a criteria catalogue to reach a larger objectivity in architectural design evaluation. Definition of constant parameters as a result of project necessities to quantify the quality of the design. Architectural design analysis due the application and verification within the parameters and consequently overlapping and evaluating results. Interdisciplinary work between architects, astronautics, engineers, psychologists, etc. All the disciplines needed for planning a high quality habitat for humans in space. Analysis of the principles of well designed artificial environment. Good quality design for space architecture is the result of the interaction and interrelation between many different project necessities (technological, environmental, human factors, transportation, costs, etc.). Each of this necessities is interrelated in the design project and cannot be evaluated on its own. Therefore, the design

  12. Habitat Concepts for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Griffin, Brand N.

    2014-01-01

    Future missions under consideration requiring human habitation beyond the International Space Station (ISS) include deep space habitats in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar missions, satellite servicing, and Mars vehicle servicing missions. Habitat designs are also under consideration for missions beyond the Earth-Moon system, including transfers to near-Earth asteroids and Mars orbital destinations. A variety of habitat layouts have been considered, including those derived from the existing ISS designs and those that could be fabricated from the Space Launch System (SLS) propellant tanks. This paper presents a comparison showing several options for asteroid, lunar, and Mars mission habitats using ISS derived and SLS derived modules and identifies some of the advantages and disadvantages inherent in each. Key findings indicate that the larger SLS diameter modules offer built-in compatibility with the launch vehicle, single launch capability without on-orbit assembly, improved radiation protection, lighter structures per unit volume, and sufficient volume to accommodate consumables for long duration missions without resupply. The information provided with the findings includes mass and volume comparison data that should be helpful to future exploration mission planning efforts.

  13. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Grisham, Blake A.; Timmer, Jennifer M.; Boal, Clint W.; Butler, Matthew; Pitman, James C.; Kyle, Sean; Klute, David; Beauprez, Grant M.; Janus, Allan; Van Pelt, William E.

    2016-01-01

    Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  14. Improving Student Teamwork in a Collaborative Project-Based Course

    ERIC Educational Resources Information Center

    Kapp, Edward

    2009-01-01

    While collaborative student projects can be effective in improving student learning, the failure of students to work together effectively remains a widely reported problem in collaborative learning. This article describes a team-building intervention designed to improve the students' abilities to work together in teams successfully. The…

  15. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification

    PubMed Central

    Couce, Elena; Ridgwell, Andy; Hendy, Erica J

    2013-01-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40–70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered ‘marginal’ for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on

  16. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification.

    PubMed

    Couce, Elena; Ridgwell, Andy; Hendy, Erica J

    2013-12-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40-70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered 'marginal' for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral

  17. 76 FR 58840 - Central Valley Project Improvement Act; Refuge Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act; Refuge Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: To meet the requirements of the Central Valley Project Improvement Act of 1992 (CVPIA) and subsequent...

  18. Prioritizing Tiger Conservation through Landscape Genetics and Habitat Linkages

    PubMed Central

    Yumnam, Bibek; Jhala, Yadvendradev V.; Qureshi, Qamar; Maldonado, Jesus E.; Gopal, Rajesh; Saini, Swati; Srinivas, Y.; Fleischer, Robert C.

    2014-01-01

    Even with global support for tiger (Panthera tigris) conservation their survival is threatened by poaching, habitat loss and isolation. Currently about 3,000 wild tigers persist in small fragmented populations within seven percent of their historic range. Identifying and securing habitat linkages that connect source populations for maintaining landscape-level gene flow is an important long-term conservation strategy for endangered carnivores. However, habitat corridors that link regional tiger populations are often lost to development projects due to lack of objective evidence on their importance. Here, we use individual based genetic analysis in combination with landscape permeability models to identify and prioritize movement corridors across seven tiger populations within the Central Indian Landscape. By using a panel of 11 microsatellites we identified 169 individual tigers from 587 scat and 17 tissue samples. We detected four genetic clusters within Central India with limited gene flow among three of them. Bayesian and likelihood analyses identified 17 tigers as having recent immigrant ancestry. Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km2 of forest habitat was found to be only 21,290 km2. After accounting for detection bias, the covariates that best explained tiger occupancy were large, remote, dense forest patches; large ungulate abundance, and low human footprint. We used tiger occupancy probability to parameterize habitat permeability for modeling habitat linkages using least-cost and circuit theory pathway analyses. Pairwise genetic differences (F ST) between populations were better explained by modeled linkage costs (r>0.5, p<0.05) compared to Euclidean distances, which was in consonance with observed habitat fragmentation. The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration. Conservation efforts should provide legal status to

  19. Prioritizing tiger conservation through landscape genetics and habitat linkages.

    PubMed

    Yumnam, Bibek; Jhala, Yadvendradev V; Qureshi, Qamar; Maldonado, Jesus E; Gopal, Rajesh; Saini, Swati; Srinivas, Y; Fleischer, Robert C

    2014-01-01

    Even with global support for tiger (Panthera tigris) conservation their survival is threatened by poaching, habitat loss and isolation. Currently about 3,000 wild tigers persist in small fragmented populations within seven percent of their historic range. Identifying and securing habitat linkages that connect source populations for maintaining landscape-level gene flow is an important long-term conservation strategy for endangered carnivores. However, habitat corridors that link regional tiger populations are often lost to development projects due to lack of objective evidence on their importance. Here, we use individual based genetic analysis in combination with landscape permeability models to identify and prioritize movement corridors across seven tiger populations within the Central Indian Landscape. By using a panel of 11 microsatellites we identified 169 individual tigers from 587 scat and 17 tissue samples. We detected four genetic clusters within Central India with limited gene flow among three of them. Bayesian and likelihood analyses identified 17 tigers as having recent immigrant ancestry. Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km(2) of forest habitat was found to be only 21,290 km(2). After accounting for detection bias, the covariates that best explained tiger occupancy were large, remote, dense forest patches; large ungulate abundance, and low human footprint. We used tiger occupancy probability to parameterize habitat permeability for modeling habitat linkages using least-cost and circuit theory pathway analyses. Pairwise genetic differences (FST) between populations were better explained by modeled linkage costs (r>0.5, p<0.05) compared to Euclidean distances, which was in consonance with observed habitat fragmentation. The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration. Conservation efforts should provide legal status

  20. Habitat Evaluation Procedures (HEP) Report : Malheur River Wildlife Mitigation, 2000-2002 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Daniel; Wenick, Jess

    Review Panel (ISRP). Program participants are responsible for creating management plans for each of the 52 subbasins. Upon approval by the Council, the management plan is then incorporated into the Program. In 1998, the Tribe submitted two land acquisition proposals for funding through Bonneville's Wildlife Mitigation Program, the Logan Valley and Malheur River Wildlife Mitigation Projects. After several months of rigorous scrutiny and defense of its project presentations, the Tribe was awarded both acquisitions. In February of 2000, the Tribe and BPA entered into a Memorandum of Agreement (MOA) to fund the acquisition and management of Logan Valley and the Malheur River Projects. In April and November of 2000, the Tribe acquired the Logan Valley property (Project) and the Malheur River Wildlife Mitigation Project, respectively. The MOA requires the Tribe to dedicate the Project to wildlife habitat protection. Project management must be consistent with the term and conditions of the MOA and a site-specific management plan (Plan) that is to be prepared by the Tribe. The Malheur River Wildlife Mitigation Project (Denny Jones Ranch) allows the Tribe to manage 6,385 acres of meadow, wetland, and sagebrush steppe habitats along the Malheur River. The deeded property includes seven miles of the Malheur River, the largest private landholding along this waterway between Riverside and Harper. The property came with approximately 938 acres of senior water rights and 38,377 acres of federal and state grazing allotments. The project will benefit a diverse population of fish, wildlife, and plant species. Objectives include reviving and improving critical habitat for fish and wildlife populations, controlling/ eradicating weed populations, improving water quality, maintaining Bureau of Land Management (BLM) allotments, and preserving cultural resources. Before the Tribe acquired the project site, a combination of high levels of cattle stocking rates, management strategy, and a

  1. What drives continuous improvement project success in healthcare?

    PubMed

    Stelson, Paul; Hille, Joshua; Eseonu, Chinweike; Doolen, Toni

    2017-02-13

    Purpose The purpose of this paper is to present findings from a study of factors that affect continuous improvement (CI) project success in hospitals. Design/methodology/approach Quantitative regression analysis was performed on Likert scale survey responses. Qualitative thematic analysis was performed on open-ended survey responses and written reports on CI projects. Findings The paper identifies managerial and employee factors that affect project success. These factors include managerial support, communication, and affective commitment. Affective commitment is the extent to which employees perceive the change as being needed or necessary. Practical implications The results highlight how managerial decisions, approaches to communication - including communication before, during and after CI projects affect project success. The results also show that success depends on the way employees perceive proposed changes. This suggests the need for a more individualized approach to CI, lean, and broader change initiatives. Originality/value This research is the first to fuse project success and sustainability theory to CI projects, beyond Kaizen events, in healthcare environments. The research is particularly important at a time when healthcare organizations are required to make rapid changes with limited resources as they work toward outcome-based assessment and reimbursement rules.

  2. Quality improvement primer part 1: Preparing for a quality improvement project in the emergency department.

    PubMed

    Chartier, Lucas B; Cheng, Amy H Y; Stang, Antonia S; Vaillancourt, Samuel

    2018-01-01

    Emergency medicine (EM) providers work in a fast-paced and often hectic environment that has a high risk for patient safety incidents and gaps in the quality of care. These challenges have resulted in opportunities for frontline EM providers to play a role in quality improvement (QI) projects. QI has developed into a mature field with methodologies that can dramatically improve the odds of having a successful project with a sustainable impact. However, this expertise is not yet commonly taught during professional training. In this first of three articles meant as a QI primer for EM clinicians, we will introduce QI methodology and strategic planning using a fictional case study as an example. We will review how to identify a QI problem, define components of an effective problem statement, and identify stakeholders and core change team members. We will also describe three techniques used to perform root cause analyses-Ishikawa diagrams, Pareto charts and process mapping-and how they relate to preparing for a QI project. The next two papers in this series will focus on the execution of the QI project itself using rapid-cycle testing and on the evaluation and sustainability of QI projects.

  3. Improving ungulate habitat in a region undergoing rapid energy development: Consequences for songbirds and small mammals

    NASA Astrophysics Data System (ADS)

    Bombaci, Sara Petrita

    Habitat manipulation intended to mitigate the impact of energy development on game animals is well underway in the western U.S. Yet, the consequences of these actions for other species are not well understood. A habitat manipulation experiment was established in the Piceance Basin, a region of Colorado undergoing rapid energy development, to evaluate alternative methods (i.e. chaining, hydro-axe, and roller-chop treatments) for reducing pinyon-juniper woodlands to promote mule deer habitat. I use this experimental design to additionally test the initial effects of these treatments on birds and small mammals, and to evaluate selection of habitat components in treatments by birds and small mammals. I found lower bird species occupancy in all treatment plots compared to control plots; however the strength of this response varied by bird guild. I found a positive relationship between bird species occupancy and percent tree cover and a negative relationship between bird species occupancy and percent grass and forb cover. I found no evidence of differences in small mammal species occupancy or density between controls and treatments. I found a positive relationship between small mammal species occupancy and percent grass and forb cover. Species richness did not significantly differ between control and treatment plots for birds or small mammals. My approach and research findings can be used to inform habitat management and multiple-species conservation objectives in pinyon-juniper and sage-steppe ecosystems undergoing energy development. Specifically, I have identified that recently developed roller-chop and hydro-axe treatments have similar impacts to woodland bird guilds as traditional chaining treatments. I have also identified species that are sensitive to habitat mitigation treatments, and thus should be monitored if woodland reduction continues to be used as a habitat mitigation strategy. Since all bird guilds were positively associated with tree cover, woodland

  4. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit Rivers of the Laurentian Great Lakes

    USGS Publications Warehouse

    Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne

    2015-01-01

    Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.

  5. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, T.P.

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physicalmore » characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River

  6. Hope for the Forests? Habitat Resiliency Illustrated in the Face of Climate Change Using Fine-Scale Modeling

    NASA Astrophysics Data System (ADS)

    Flint, L. E.; Flint, A. L.; Weiss, S. B.; Micheli, E. R.

    2010-12-01

    In the face of rapid climate change, fine-scale predictions of landscape change are of extreme interest to land managers that endeavor to develop long term adaptive strategies for maintaining biodiversity and ecosystem services. Global climate model (GCM) outputs, which generally focus on estimated increases in air temperature, are increasingly applied to species habitat distribution models. For sensitive species subject to climate change, habitat models predict significant migration (either northward or towards higher elevations), or complete extinction. Current studies typically rely on large spatial scale GCM projections (> 10 km) of changes in precipitation and air temperature: at this scale, these models necessarily neglect subtleties of topographic shading, geomorphic expression of the landscape, and fine-scale differences in soil properties - data that is readily available at meaningful local scales. Recent advances in modeling take advantage of available soils, geology, and topographic data to construct watershed-scale scenarios using GCM inputs and result in improved correlations of vegetation distribution with temperature. For this study, future climate projections were downscaled to 270-m and applied to a physically-based hydrologic model to calculate future changes in recharge, runoff, and climatic water deficit (CWD) for basins draining into the northern San Francisco Bay. CWD was analyzed for mapped vegetation types to evaluate the range of CWD for historic time periods in comparison to future time periods. For several forest communities (including blue oak woodlands, montane hardwoods, douglas-fir, and coast redwood) existing landscape area exhibiting suitable CWD diminishes by up 80 percent in the next century, with a trend towards increased CWD throughout the region. However, no forest community loses all suitable habitat, with islands of potential habitat primarily remaining on north facing slopes and deeper soils. Creation of new suitable habitat

  7. Presentation--HABITAT DISTRIBUTION MODELS FOR 37 VERTEBRATE SPECIES IN THE MOJAVE DESERT ECOREGION OF NEVADA, ARIZONA, AND UTAH

    EPA Science Inventory

    Thirty-seven terrestrial vertebrate species in the Clark County Multi-Species Habitat Conservation Plan (MSHCP) were previously modeled through the Southwest Regional Gap Analysis Project (SWReGAP), using a deductive approach. To increase the applicability of such habitat models ...

  8. Improved Methodology for Benefit Estimation of Preservation Projects

    DOT National Transportation Integrated Search

    2018-04-01

    This research report presents an improved process for evaluating the benefits and economic tradeoffs associated with a variety of highway preservation projects. It includes a summary of results from a comprehensive phone survey concerning the use and...

  9. 2D Hydrodynamic Based Logic Modeling Tool for River Restoration Decision Analysis: A Quantitative Approach to Project Prioritization

    NASA Astrophysics Data System (ADS)

    Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.

    2014-12-01

    essential for successful project implementation (Conroy and Peterson, 2013). Evaluating tradeoffs and examining alternatives to improve fish habitat through optimization modeling is not just a trend but rather the scientific strategy by which management needs embrace and apply in its decision framework.

  10. TEXAS DICKINSON BAY ISLANDS RESTORATION PROJECT MX964016

    EPA Science Inventory

    The Dickinson Bay Islands Restoration Project will restore approximately ten acres of intertidal marsh, three acres of oyster reef, and 18 acres of bird rookery habitat. The total acreage of restored habitat will be close to 30 acres.

  11. HABITAT DISTRIBUTION MODELS FOR 37 VERTEBRATE SPECIES IN T HE MOJAVE DESERT ECOREGION OF NEVADA, ARIZONA, AND UTAH

    EPA Science Inventory

    Thirty-seven covered species in the Clark County Multi-Species Habitat Conservation Plan (MSHCP) were previously modeled through the Southwest Regional Gap Analysis Project (SWReGAP), using a deductive approach. To increase the applicability of such habitat models in the region ...

  12. An educational approach to improve outcomes in acute kidney injury (AKI): report of a quality improvement project.

    PubMed

    Xu, Gang; Baines, Richard; Westacott, Rachel; Selby, Nick; Carr, Susan

    2014-03-20

    To assess the impact of a quality improvement project that used a multifaceted educational intervention on how to improve clinician's knowledge, confidence and awareness of acute kidney injury (AKI). 2 large acute teaching hospitals in England, serving a combined population of over 1.5 million people. All secondary care clinicians working in the clinical areas were targeted, with a specific focus on clinicians working in acute admission areas. A multifaceted educational intervention consisting of traditional didactic lectures, case-based teaching in small groups and an interactive web-based learning resource. We assessed clinicians' knowledge of AKI and their self-reported clinical behaviour using an interactive questionnaire before and after the educational intervention. Secondary outcome measures included clinical audit of patient notes before and after the intervention. 26% of clinicians reported that they were aware of local AKI guidelines in the preintervention questionnaire compared to 64% in the follow-up questionnaire (χ²=60.2, p<0.001). There was an improvement in the number of clinicians reporting satisfactory practice when diagnosing AKI, 50% vs 68% (χ²=12.1, p<0.001) and investigating patients with AKI, 48% vs 64% (χ²=9.5, p=0.002). Clinical audit makers showed a trend towards better clinical practice. This quality improvement project utilising a multifaceted educational intervention improved awareness of AKI as demonstrated by changes in the clinician's self-reported management of patients with AKI. Elements of the project have been sustained beyond the project period, and demonstrate the power of quality improvement projects to help initiate changes in practice. Our findings are limited by confounding factors and highlight the need to carry out formal randomised studies to determine the impact of educational initiatives in the clinical setting.

  13. Habitat associations of age-0 cutthroat trout in a spring stream improved for adult salmonids

    USGS Publications Warehouse

    Hubert, W.A.; Joyce, M.P.

    2005-01-01

    Native cutthroat trout (Oncorhynchus clarki) in the Snake River watershed use streams formed by large springs for spawning and nursery habitat. Several spring streams have been modified to enhance abundance of adult salmonids, but the habitat associations of age-0 cutthroat trout in these systems are undescribed. We assessed the frequency of collection of age-0 cutthroat trout in riffles, riffle margins, pool margins, and backwaters from late June to the middle of August 2000 in a spring stream with such modifications. The proportion of sites in which age-0 cutthroat trout were collected increased up to the middle of July and then decreased. We found substantially lower frequencies of collection of age-0 cutthroat trout in riffles compared to the three stream-margin habitat types. Age-0 cutthroat trout appeared to select shallow, low-velocity, stream-margin habitat with cover that provided protection from piscivorous adult salmonids and avian predators. Our observations suggest that modification of spring streams for production of cutthroat trout should include efforts to manage stream margins so they provide cover in the form of aquatic macrophytes or overhanging vegetation for age-0 fish.

  14. Indicators: Shallow Water Habitat/In-stream Fish Habitat

    EPA Pesticide Factsheets

    Shallow water habitat, also referred to as in-stream fish habitat, refers to areas that fish and other aquatic organisms need for concealment, breeding and feeding. This includes large woody snags, boulders, rock ledges, and undercut banks.

  15. The Habitat Connection.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  16. NASA Habitat Demonstration Unit (HDU) Deep Space Habitat Analog

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Kennedy, Kriss J.; Gill, Tracy

    2013-01-01

    The NASA Habitat Demonstration Unit (HDU) vertical cylinder habitat was established as a exploration habitat testbed platform for integration and testing of a variety of technologies and subsystems that will be required in a human-occupied planetary surface outpost or Deep Space Habitat (DSH). The HDU functioned as a medium-fidelity habitat prototype from 2010-2012 and allowed teams from all over NASA to collaborate on field analog missions, mission operations tests, and system integration tests to help shake out equipment and provide feedback for technology development cycles and crew training. This paper documents the final 2012 configuration of the HDU, and discusses some of the testing that took place. Though much of the higher-fidelity functionality has 'graduated' into other NASA programs, as of this writing the HDU, renamed Human Exploration Research Analog (HERA), will continue to be available as a volumetric and operational mockup for NASA Human Research Program (HRP) research from 2013 onward.

  17. Potential of modified flow-release rules for Kingsley Dam in meeting crane habitat requirements, Platte River, Nebraska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, H.W.; Hiew, K.L.; Loubser, E.

    1985-11-01

    The Whooping Crane, an endangered species, uses the Platte River downstream from Overton, Nebraska in its migratory route. Maintenance of favorable habitat conditions required by law may mean restrictions on development and management of Colorado's entitled water in the South Platte River. The project investigated meeting crane habitat flow requirements by alternative plans for flow releases through Kingsley Dam (North Platte River) and Narrows Dam (a proposed project on the South Platte River). The analysis is based on mean monthly flow of the past 39 years. Irrigation releases were held firm, hydroelectric power production was maximized, and flows available tomore » meet habitat requirements were determined. A simulation model was developed to model the operation of the North Platte and South Platte Rivers.« less

  18. [Evaluation on a demonstration project of ecological restoration of ditches at Qianwei Village of Chongming County, Shanghai].

    PubMed

    Zhou, Xiang-Xiang; Zhang, Li-Quan; Yuan, Lian-Qi

    2008-02-01

    By using biological slope-protection techniques, oxidation pond system, and zeolite treatment system, a demonstration project of ecological restoration of ditches at the Qianwei Village of Chongming County in Shanghai was implemented, and an evaluation on the project was made via a runoff simulation experiment and the measurements of the parameters soil shear strength, biodiversity, and ditch water quality. The results showed that covering the dich slopes with shrub could significantly increase soil shear strength, compactness and moisture content, and the formed vegetation had significant effects on retarding runoff and removing TSS (P < 0.05). Applying live fascines could significantly increase soil shear strength and TSS removal rate (P < 0.05), but its effects on increasing soil compactness and moisture content and retaining runoff were not significant. After the implement of the demonstration project, the total N and P concentrations in ditch water decreased significantly, habitat quality and aesthetic value of ditch slope improved, and biodiversity enhanced greatly. The integration of the biological techniques with other ecological restoration measures could stabilize ditch slope, improve ditch habitat quality, and restore the ecological environment of the ditches.

  19. Teaching a Systems Approach: An Innovative Quality Improvement Project.

    PubMed

    Hamrin, Vanya; Vick, Rose; Brame, Cynthia; Simmons, Megan; Smith, Letizia; Vanderhoef, Dawn

    2016-04-01

    Nurse practitioners are required to navigate complex health care systems. Quality improvement (QI) projects provide the opportunity for nurse practitioner students to learn systems knowledge and improve health care outcomes in patient populations. A gap in the literature exists around how to systematically teach, apply, and measure QI curricular objectives at the master's level. Six faculty evaluated the QI project for the psychiatric nurse practitioner master's program by identifying the most challenging QI concepts for students to apply, revising their teaching strategies to address gaps, and retrospectively evaluating the outcomes of these curriculum changes by comparing student outcomes before and after the curricular changes. A significant difference was noted on QI project performance between students in the 2014 and 2015 graduating classes, measured by the scores earned on students' final papers (t[92] = 1.66, p = .05, d = .34, r(2) = .0289). Theoretical principles of adult and cooperative learning were used to inform curricular changes to enhance student's acquisition of QI skills. Copyright 2016, SLACK Incorporated.

  20. Wildlife Habitat Improvement Guide for Minnesota Youth.

    ERIC Educational Resources Information Center

    Halsey, Clifton

    This publication outlines projects to increase wildlife, primarily fowl and deer, and to help rural youth better understand wildlife requirements. The publication outlines six basic steps that are involved in initiating a wildlife project. These are: (1) Determine the types of wild animals for which the land is best suited; (2) Study the life…

  1. California Freshwater Shrimp Project: An Eco-Action Project with Real Life Learning.

    ERIC Educational Resources Information Center

    Rogers, Laurette H.

    The California Freshwater Shrimp Project is an example of a student-initiated, eco-action project. Students, from a fourth grade class in the Ross Valley School District in San Rafael, California, were linked to their community and environment through their work in rehabilitating habitat and educating the public. The paper gives an overview of a…

  2. Intraspecific variation buffers projected climate change impacts on Pinus contorta

    PubMed Central

    Oney, Brian; Reineking, Björn; O'Neill, Gregory; Kreyling, Juergen

    2013-01-01

    Species distribution modeling (SDM) is an important tool to assess the impact of global environmental change. Many species exhibit ecologically relevant intraspecific variation, and few studies have analyzed its relevance for SDM. Here, we compared three SDM techniques for the highly variable species Pinus contorta. First, applying a conventional SDM approach, we used MaxEnt to model the subject as a single species (species model), based on presence–absence observations. Second, we used MaxEnt to model each of the three most prevalent subspecies independently and combined their projected distributions (subspecies model). Finally, we used a universal growth transfer function (UTF), an approach to incorporate intraspecific variation utilizing provenance trial tree growth data. Different model approaches performed similarly when predicting current distributions. MaxEnt model discrimination was greater (AUC – species model: 0.94, subspecies model: 0.95, UTF: 0.89), but the UTF was better calibrated (slope and bias – species model: 1.31 and −0.58, subspecies model: 1.44 and −0.43, UTF: 1.01 and 0.04, respectively). Contrastingly, for future climatic conditions, projections of lodgepole pine habitat suitability diverged. In particular, when the species' intraspecific variability was acknowledged, the species was projected to better tolerate climatic change as related to suitable habitat without migration (subspecies model: 26% habitat loss or UTF: 24% habitat loss vs. species model: 60% habitat loss), and given unlimited migration may increase amount of suitable habitat (subspecies model: 8% habitat gain or UTF: 12% habitat gain vs. species model: 51% habitat loss) in the climatic period 2070–2100 (SRES A2 scenario, HADCM3). We conclude that models derived from within-species data produce different and better projections, and coincide with ecological theory. Furthermore, we conclude that intraspecific variation may buffer against adverse effects of climate

  3. Chapter 5. Using Habitat Models for Habitat Mapping and Monitoring

    Treesearch

    Samuel A. Cushman; Timothy J. Mersmann; Gretchen G. Moisen; Kevin S. McKelvey; Christina D. Vojta

    2013-01-01

    This chapter provides guidance for applying existing habitat models to map and monitor wildlife habitat. Chapter 2 addresses the use of conceptual models to create a solid foundation for selecting habitat attributes to monitor and to translate these attributes into quantifiable and reportable monitoring measures. Most wildlife species, however, require a complex suite...

  4. CisLunar Habitat Internal Architecture Design Criteria

    NASA Technical Reports Server (NTRS)

    Jones, R.; Kennedy, K.; Howard, R.; Whitmore, M.; Martin, C.; Garate, J.

    2017-01-01

    BACKGROUND: In preparation for human exploration to Mars, there is a need to define the development and test program that will validate deep space operations and systems. In that context, a Proving Grounds CisLunar habitat spacecraft is being defined as the next step towards this goal. This spacecraft will operate differently from the ISS or other spacecraft in human history. The performance envelope of this spacecraft (mass, volume, power, specifications, etc.) is being defined by the Future Capabilities Study Team. This team has recognized the need for a human-centered approach for the internal architecture of this spacecraft and has commissioned a CisLunar Phase-1 Habitat Internal Architecture Study Team to develop a NASA reference configuration, providing the Agency with a "smart buyer" approach for future acquisition. THE CISLUNAR HABITAT INTERNAL ARCHITECTURE STUDY: Overall, the CisLunar Habitat Internal Architecture study will address the most significant questions and risks in the current CisLunar architecture, habitation, and operations concept development. This effort is achieved through definition of design criteria, evaluation criteria and process, design of the CisLunar Habitat Phase-1 internal architecture, and the development and fabrication of internal architecture concepts combined with rigorous and methodical Human-in-the-Loop (HITL) evaluations and testing of the conceptual innovations in a controlled test environment. The vision of the CisLunar Habitat Internal Architecture Study is to design, build, and test a CisLunar Phase-1 Habitat Internal Architecture that will be used for habitation (e.g. habitability and human factors) evaluations. The evaluations will mature CisLunar habitat evaluation tools, guidelines, and standards, and will interface with other projects such as the Advanced Exploration Systems (AES) Program integrated Power, Avionics, Software (iPAS), and Logistics for integrated human-in-the-loop testing. The mission of the Cis

  5. Habitat classification modeling with incomplete data: Pushing the habitat envelope

    USGS Publications Warehouse

    Zarnetske, P.L.; Edwards, T.C.; Moisen, Gretchen G.

    2007-01-01

    Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can be used. Traditional techniques generate pseudoabsence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, thresholdindependent receiver operating characteristic (ROC) plots, adjusted deviance (Dadj2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant, suggesting

  6. 77 FR 43350 - Draft Environmental Assessment and Proposed Habitat Conservation Plan for the San Diego Unified...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ...) restoration and enhancement of vernal pools occupied by San Diego fairy shrimp on the McAuliffe Park and... would permanently remove all San Diego fairy shrimp and its vernal pool habitat from the project site. To mitigate impacts to the San Diego fairy shrimp and its vernal pool habitat, the applicant would...

  7. Biodiversity: Habitat Suitability

    EPA Science Inventory

    Habitat suitability quantifies the relationship between species and habitat, and is evaluated according to the species’ fitness (i.e. proportion of birth rate to death rate). Even though it might maximize evolutionary success, species are not always in habitat that optimizes fit...

  8. The NEEMO Project: A Report on how NASA Utilizes the "Aquarius" Undersea Habitat as an Analog for Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Reagan, Marc; Todd, William

    2003-01-01

    NEEMO is the NASA Extreme Environment Mission Operations, a cooperative project between NASA and the National Oceanic and Atmospheric Administration (NOAA). NEEMO was created and is managed by the Mission Operations Directorate at the Johnson Space Center in Houston, Texas. On the NOAA side, the National Undersea Research Center (NURC) in Key Largo, FL, with the help of the University of North Carolina at Wilmington, manages and operates the Aquarius Program. NEEMO was developed by astronaut training specialists to utilize an undersea research habitat as a multi-objective mission analog for long-duration space flight. Each mission was designed to expose astronauts to extreme environments for training purposes and to research crew behavior, habitability, and space analog life sciences. All of this was done much in the model of a space mission utilizing specific crew procedures, mission rules and timelines. Objectives of the missions were very diverse and contained many of the typical space mission type activities such as EV As (also known as extra vehicular activities), in-habitat science and research, and educational, public outreach, and media events. Five missions, dubbed NEEMO 1-5, were conducted between October 2001 and July 2003, the longest of which (NEEMO 5) lasted 14 days.

  9. Impacts of climate-change-driven sea level rise on intertidal rocky reef habitats will be variable and site specific.

    PubMed

    Thorner, Jaqueline; Kumar, Lalit; Smith, Stephen D A

    2014-01-01

    Intertidal rocky reefs are complex and rich ecosystems that are vulnerable to even the smallest fluctuations in sea level. We modelled habitat loss associated with sea level rise for intertidal rocky reefs using GIS, high-resolution digital imagery, and LIDAR technology at fine-scale resolution (0.1 m per pixel). We used projected sea levels of +0.3 m, +0.5 m and +1.0 m above current Mean Low Tide Level (0.4 m). Habitat loss and changes were analysed for each scenario for five headlands in the Solitary Islands Marine Park (SIMP), Australia. The results indicate that changes to habitat extent will be variable across different shores and will not necessarily result in net loss of area for some habitats. In addition, habitat modification will not follow a regular pattern over the projected sea levels. Two of the headlands included in the study currently have the maximum level of protection within the SIMP. However, these headlands are likely to lose much of the habitat known to support biodiverse assemblages and may not continue to be suitable sanctuaries into the future. The fine-scale approach taken in this study thus provides a protocol not only for modelling habitat modification but also for future proofing conservation measures under a scenario of changing sea levels.

  10. 76 FR 41810 - Francis Proposed Low-Effect Habitat Conservation Plan for the Morro Shoulderband Snail, Los Osos...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ...] Francis Proposed Low-Effect Habitat Conservation Plan for the Morro Shoulderband Snail, Los Osos, San Luis... conservation program to minimize and mitigate project activities as described in their low-effect habitat conservation plan. We invite comments from the public on the application, which includes the Francis Low-Effect...

  11. Design of components for the NASA OCEAN project

    NASA Technical Reports Server (NTRS)

    Wright, Jenna (Editor); Clift, James; Dumais, Bryan; Gardner, Shannon; Hernandez, Juan Carlos; Nolan, Laura; Park, Mia; Peoples, Don; Phillips, Elizabeth; Tillman, Mark

    1993-01-01

    The goal of the Fall 1993 semester of the EGM 4000 class was to design, fabricate, and test components for the 'Ocean CELSS Experimental Analog NASA' Project (OCEAN Project) and to aid in the future development of NASA's Controlled Ecological Life Support System (CELSS). The OCEAN project's specific aims are to place a human, Mr. Dennis Chamberland from NASA's Life Science Division of Research, into an underwater habitat off the shore of Key Largo, FL for three months. During his stay, he will monitor the hydroponic growth of food crops and evaluate the conditions necessary to have a successful harvest of edible food. The specific designs chosen to contribute to the OCEAN project by the EGM 4000 class are in the areas of hydroponic habitat monitoring, human health monitoring, and production of blue/green algae. The hydroponic monitoring system focused on monitoring the environment of the plants. This included the continuous sensing of the atmospheric and hydroponic nutrient solution temperatures. Methods for monitoring the continuous flow of the hydroponic nutrient solution across the plants and the continuous supply of power for these sensing devices were also incorporated into the design system. The human health monitoring system concentrated on continuously monitoring various concerns of the occupant in the underwater living habitat of the OCEAN project. These concerns included monitoring the enclosed environment for dangerous levels of carbon monoxide and smoke, high temperatures from fire, and the ceasing of the continuous airflow into the habitat. The blue/green algae project emphasized both the production and harvest of a future source of food. This project did not interact with any part of the OCEAN project. Rather, it was used to show the possibility of growing this kind of algae as a supplemental food source inside a controlled ecological life support system.

  12. A Modular Instrumentation System for NASA's Habitat Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Kennedy, Kriss; Yim, Hester; Wagner, Raymond S.; Hong, Todd; Studor, George; Delaune, Paul

    2010-01-01

    NASA's human spaceflight program is focused on developing technologies to expand the reaches of human exploration and science activities beyond low earth orbit. A critical aspect of living in space or on planetary surfaces is habitation, which provides a safe and comfortable space in which humans can live and work. NASA is seeking out the best option for habitation by exploring several different concepts through the Habitat Demonstration Unit (HDU) project. The purpose of this HDU is to develop a fully autonomous habitation system that enables human exploration of space. One critical feature of the HDU project that helps to accomplish its mission of autonomy is the instrumentation system that monitors key subsystems operating within a Habitat configuration. The following paper will discuss previous instrumentation systems used in analog habitat concepts and how the current instrumentation system being implemented on the HDU1-PEM, or pressurized excursion module, is building upon the lessons learned of those previous systems. Additionally, this paper will discuss the benefits and the limitations of implementing a wireless sensor network (WSN) as the basis for data transport in the instrumentation system. Finally, this paper will address the experiences and lessons learned with integration, testing prior to deployment, and field testing at the JSC rock yard. NASA is developing the HDU1-PEM as a step towards a fully autonomous habitation system that enables human exploration of space. To accomplish this purpose, the HDU project is focusing on development, integration, testing, and evaluation of habitation systems. The HDU will be used as a technology pull, testbed, and integration environment in which to advance NASA's understanding of alternative mission architectures, requirements, and operations concepts definition and validation. This project is a multi-year effort. In 2010, the HDU1-PEM will be in a pressurized excursion module configuration, and in 2011 the

  13. Sustainability in the AAP Bronchiolitis Quality Improvement Project.

    PubMed

    Shadman, Kristin A; Ralston, Shawn L; Garber, Matthew D; Eickhoff, Jens; Mussman, Grant M; Walley, Susan C; Rice-Conboy, Elizabeth; Coller, Ryan J

    2017-11-01

    Adherence to American Academy of Pediatrics (AAP) bronchiolitis clinical practice guideline recommendations improved significantly through the AAP's multiinstitutional collaborative, the Bronchiolitis Quality Improvement Project (BQIP). We assessed sustainability of improvements at participating institutions for 1 year following completion of the collaborative. Twenty-one multidisciplinary hospital-based teams provided monthly data for key inpatient bronchiolitis measures during baseline and intervention bronchiolitis seasons. Nine sites provided data in the season following completion of the collaborative. Encounters included children younger than 24 months who were hospitalized for bronchiolitis without comorbid chronic illness, prematurity, or intensive care. Changes between baseline-, intervention-, and sustainability-season data were assessed using generalized linear mixed-effects models with site-specific random effects. Differences between hospital characteristics, baseline performance, and initial improvement between sites that did and did not participate in the sustainability season were compared. A total of 2275 discharges were reviewed, comprising 995 baseline, 877 intervention, and 403 sustainability- season encounters. Improvements in all key bronchiolitis quality measures achieved during the intervention season were maintained during the sustainability season, and orders for intermittent pulse oximetry increased from 40.6% (95% confidence interval [CI], 22.8-61.1) to 79.2% (95% CI, 58.0- 91.3). Sites that did and did not participate in the sustainability season had similar characteristics. BQIP participating sites maintained improvements in key bronchiolitis quality measures for 1 year following the project's completion. This approach, which provided an evidence-based best-practice toolkit while building the quality-improvement capacity of local interdisciplinary teams, may support performance gains that persist beyond the active phase of the

  14. How an educational improvement project improved the summative evaluation of medical students.

    PubMed

    Hoffman, K G; Brown, R Margaret A; Gay, J W; Headrick, L A

    2009-08-01

    At the University of Missouri-Columbia School of Medicine (USA) "commitment to improving quality and safety in healthcare" is one of eight key characteristics set as goals for our graduates. As educators, commitment to continuous improvement in the educational experience has been modelled through improvement of the Medical Student Performance Evaluation (MSPE) letter (formerly the Dean's letter). This educational improvement project decreased waste, increased collaboration and developed locally useful knowledge. By applying continuous improvement principles to the construction of the MSPE the overall efficiency of the process could be enhanced, and the MSPE committee was able to spend less cognitive energy on structure and format and focus more on the content of the letters. Four MSPE cycles have been completed using a new Web-based system; after each cycle, additional enhancements were identified and implemented. This work adds to the literature, as it describes the application of continuous improvement principles to an educational system.

  15. Habitat use and habitat overlap of riparian birds in three elevational zones

    Treesearch

    Deborah M. Finch

    1989-01-01

    I examined patterns of variance in habitat use and habitat overlap in 20 breeding bird species found along a riparian vegetational gradient in southeastern Wyoming to test whether habitat use in species differed (1) from availability of random habitat resources, (2) among elevational zones, and (3) between species that inhabited only one zone and species that occupied...

  16. Habitat Design Considerations for Implementing Solar Particle Event Radiation Protection

    NASA Technical Reports Server (NTRS)

    Simon, Mathew A.; Clowdsley, Martha S.; Walker, Steven A.

    2013-01-01

    Radiation protection is an important habitat design consideration for human exploration missions beyond Low Earth Orbit. Fortunately, radiation shelter concepts can effectively reduce astronaut exposure for the relatively low proton energies of solar particle events, enabling moderate duration missions of several months before astronaut exposure (galactic cosmic ray and solar particle event) approaches radiation exposure limits. In order to minimize habitat mass for increasingly challenging missions, design of radiation shelters must minimize dedicated, single-purpose shielding mass by leveraging the design and placement of habitat subsystems, accommodations, and consumables. NASA's Advanced Exploration Systems RadWorks Storm Shelter Team has recently designed and performed radiation analysis on several low dedicated mass shelter concepts for a year-long mission. This paper describes habitat design considerations identified during the study's radiation analysis. These considerations include placement of the shelter within a habitat for improved protection, integration of human factors guidance for sizing shelters, identification of potential opportunities for habitat subsystems to compromise on individual subsystem performances for overall vehicle mass reductions, and pre-configuration of shelter components for reduced deployment times.

  17. Evaluation of an institutional project to improve venous thromboembolism prevention.

    PubMed

    Minami, Christina A; Yang, Anthony D; Ju, Mila; Culver, Eckford; Seifert, Kathryn; Kreutzer, Lindsey; Halverson, Terri; O'Leary, Kevin J; Bilimoria, Karl Y

    2016-12-01

    Northwestern Memorial Hospital (NMH) was historically a poor performer on the venous thromboembolism (VTE) outcome measure. As this measure has been shown to be flawed by surveillance bias, NMH embraced process-of-care measures to ensure appropriate VTE prophylaxis to assess healthcare-associated VTE prevention efforts. To evaluate the impact of an institution-wide project aimed at improving hospital performance on VTE prophylaxis measures. A retrospective observational study. NMH, an 885-bed academic medical center in Chicago, Illinois PATIENTS: Inpatients admitted to NMH from January 1, 2013 to May 1, 2013 and from October 1, 2014 to April 1, 2015 were eligible for evaluation. Using the define-measure-analyze-improve-control (DMAIC) process-improvement methodology, a multidisciplinary team implemented and iteratively improved 15 data-driven interventions in 4 broad areas: (1) electronic medical record (EMR) alerts, (2) education initiatives, (3) new EMR order sets, and (4) other EMR changes. The Joint Commission's 6 core measures and the Surgical Care Improvement Project (SCIP) SCIP-VTE-2 measure. Based on 3103 observations (1679 from January 1, 2013 to May 1, 2013, and 1424 from October 1, 2014 to April 1, 2015), performance on the core measures improved. Performance on measure 1 (chemoprophylaxis) improved from 82.5% to 90.2% on medicine services, and from 94.4% to 97.6% on surgical services. The largest improvements were seen in measure 4 (platelet monitoring), with a performance increase from 76.7% adherence to 100%, and measure 5 (warfarin discharge instructions), with a performance increase from 27.4% to 88.8%. A systematic hospital-wide DMAIC project improved VTE prophylaxis measure performance. Sustained performance has been observed, and novel control mechanisms for continued performance surveillance have been embedded in the hospital system. Journal of Hospital Medicine 2016;11:S29-S37. © 2016 Society of Hospital Medicine. © 2016 Society of Hospital

  18. HABITAT ASSESSMENT METHODS

    EPA Science Inventory

    This chapter summarizes and evaluated the habitat assessment protocols of five agencies, USEPA/EMAP/SW, USGS/NAWQA, USEPA/RBP, Ohio EPA, and MDNR/MBSS. It begins with a description of the origin of the habitat indices most widely used by these agencies. Then the habitat assessmen...

  19. SMALL MAMMALS: CONSEQUENCES OF STOCHASTIC DATA VARIATION FOR MODELING INDICATORS OF HABITAT SUITABILITY FOR A WELL-STUDIED RESOURCE

    EPA Science Inventory

    Increasingly, models of physical habitat variables (i.e. vegetation, soil) are utilized as indicators of small mammal habitat suitability or quality. Presumably, use of physical habitat models indicating habitat suitability or quality would be improved and enhanced by the extens...

  20. Managing Intermountain rangelands - improvement of range and wildlife habitats: proceedings; 1981 September 15-17; Twin Falls, ID; 1982 June 22-24; Elko, NV

    Treesearch

    Stephen B. Monsen; Nancy Shaw

    1983-01-01

    The proceedings summarizes recent research and existing literature pertaining to the restoration and management of game and livestock ranges in the Intermountain Region. Improved plant materials and planting practices are emphasized. The series of 28 papers was presented at the Restoration of Range and Wildlife Habitat Training Sessions held in Twin Falls, Idaho,...

  1. 76 FR 30902 - Shasta Lake Management Unit, Shasta-Trinity National Forest; California; Green-Horse Habitat...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... management strategy to allow modification of treatments if necessary during implementation. A project-level... to 15 tons per acre for those two management prescriptions. This project-level amendment is proposed... Management Unit, Shasta-Trinity National Forest; California; Green-Horse Habitat Restoration and Maintenance...

  2. Wanaket Wildlife Area Management Plan : Five-Year Plan for Protecting, Enhancing, and Mitigating Wildlife Habitat Losses for the McNary Hydroelectric Facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to continue to protect, enhance, and mitigate wildlife and wildlife habitat at the Wanaket Wildlife Area. The Wanaket Wildlife Area was approved as a Columbia River Basin Wildlife Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1993. This management plan will provide an update of the original management plan approved by BPA in 1995. Wanaket will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the McNary Hydroelectric facility on the Columbia River. By funding themore » enhancement and operation and maintenance of the Wanaket Wildlife Area, BPA will receive credit towards their mitigation debt. The purpose of the Wanaket Wildlife Area management plan update is to provide programmatic and site-specific standards and guidelines on how the Wanaket Wildlife Area will be managed over the next five years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management. Specific project objectives are related to protection and enhancement of wildlife habitats and are expressed in terms of habitat units (HU's). Habitat units were developed by the US Fish and Wildlife Service's Habitat Evaluation Procedures (HEP), and are designed to track habitat gains and/or losses associated with mitigation and/or development projects. Habitat Units for a given species are a product of habitat quantity (expressed in acres) and habitat quality estimates. Habitat quality estimates are developed using Habitat Suitability Indices (HSI). These indices are based on quantifiable habitat features such as

  3. Developing a protocol for long-term population monitoring and habitat projections for a climate-sensitive sentinel species to track ecosystem change and species range shifts

    NASA Astrophysics Data System (ADS)

    Beers, A.

    2016-12-01

    As a response to ongoing climate change, many species have started to shift their ranges poleward and toward higher elevations and mountain environments are predicted to experience especially rapid climatic changes. Because of this, there is likely a greater risk of habitat loss and local extinctions for species at high elevations compared to species at lower elevations. Among those potentially threatened habitat specialists is the American pika (Ochotona princeps), a climate sensitive indicator of climate change effects which may already be experiencing climate driven extirpations. Pikas are considered sentinels, indicators of greater ecosystem change. Changes in their distribution speaks to changes in availability of resources they require and shifts in the environment. Pika presence is closely tied to sub-surface ice features that act as a temperature buffer and water source. Those sub-surface ice features are critical in water cycling and long-term water storage and drive downstream hydrological and ecological processes. Understanding how this species responds to climate change therefore provides a model to inform landscape level conservation and management decisions. Pikas may be particularly vulnerable in parts of Colorado, including Rocky Mountain National Park (ROMO) and the Niwot Ridge LTER (NWT), where they may face population collapse as habitat suitability and connectivity both decline in response to various possible climate change scenarios, in large part because of cold stress and declining functional connectivity. Because of their potential role as an ecosystem indicator, their risk for decline, and how limitations to their survival likely vary across their range, management groups can use place based models of habitat suitability for pikas or other sentinel species in designing long term monitoring protocols to detect ecosystem responses to climate change. In this project we used remotely sensed data, occupancy surveys, and a random tessellation

  4. Challenging the assumption of habitat limitation: An example from centrarchid fishes over an intermediate spatial scale

    USGS Publications Warehouse

    Gutreuter, S.

    2004-01-01

    Habitat rehabilitation efforts are predicated on the frequently untested assumption that habitat is limiting to populations. These efforts are typically costly and will be ineffective if habitat is not limiting. Therefore it is important to assess, rather than assume, habitat limitation wherever habitat rehabilitation projects are considered. Catch-count data from a standardized probability-based stratified-random monitoring programme were examined for indirect evidence of backwater habitat limitation by centrarchid fishes in the Upper Mississippi River System. The monitoring design enabled fitting statistical models of the association between mean catch at the spatial scale of tens of river kilometres and the percentage of contiguous aquatic area in backwater at least 1 m deep by maximizing a stratum-area weighted negative binomial log-likelihood function. Statistical models containing effects for backwater limitation failed to account for substantial variation in the data. However, 95% confidence intervals on the backwater parameter estimates excluded zero, indicating that population abundance may be limited by backwater prevalence where backwaters are extremely scarce. The combined results indicate, at most, a weak signal of backwater limitation where backwaters are extremely scarce in the lower reaches, but not elsewhere in the Upper Mississippi River System. This suggests that habitat restoration projects designed to increase the area of backwaters suitable for winter survival of centrarchids are unlikely to produce measurable benefits over intermediate spatial scales in much of the Upper Mississippi River System, and indicates the importance of correct identification of limiting processes. Published in 2004 by John Wiley and Sons, Ltd.

  5. Status and trends monitoring of riparian and aquatic habitat in the Olympic Experimental State Forest: Monitoring protocols

    Treesearch

    Teodora Minkova; Alex D. Foster

    2017-01-01

    Presented here are the monitoring protocols for the Status and Trends Monitoring of Riparian and Aquatic Habitats project in the Olympic Experimental State Forest (OESF). The procedures yield the empirical data needed to address key uncertainties regarding the integration of timber production and habitat conservation across landscapes and assess progress toward...

  6. Using the Science Process Skills to Investigate Animals and Animal Habitats

    NASA Astrophysics Data System (ADS)

    Braithwaite, Saisha

    This study explored how a STEM (science, technology, engineering, and math) engineer design challenge allowed students to analyze the characteristics of animals and animal habitats. This study was conducted in a kindergarten class within an urban school district. The class has 25 students while the study focuses on six students. The group consists of three boys and three girls. In this study, the students used the science process skills to observe, classify, infer, and make predictions about animals and habitats. In the engineer design, students created an established habitat and built their own animal that can survive in that habitat. The study analyzed how students used process skills to engage with the habitats and animals. The students successfully used the science process skills in this study. The results showed that students gained more content knowledge when they used multiple process skills within a lesson. The study shows that developing lessons using the science process skills improves students' ability to demonstrate their knowledge of animals and their habitats.

  7. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River

    PubMed Central

    Radinger, Johannes; Wolter, Christian; Kail, Jochem

    2015-01-01

    Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream) to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve) significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049) and topological variables (e.g., stream order) were included (AUC = +0.014). Both measured and assessed variables were similarly well suited to predict species’ presence. Stream order variables and measured cross section features (e.g., width, depth, velocity) were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types) and assessed longitudinal channel features (e.g., naturalness of river planform) were also good predictors. These findings demonstrate (i) the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables) to predict fish presence, (ii) the

  8. Using Focused Laboratory Management and Quality Improvement Projects to Enhance Resident Training and Foster Scholarship

    PubMed Central

    Ford, Bradley A.; Klutts, J. Stacey; Jensen, Chris S.; Briggs, Angela S.; Robinson, Robert A.; Bruch, Leslie A.; Karandikar, Nitin J.

    2017-01-01

    Training in patient safety, quality, and management is widely recognized as an important element of graduate medical education. These concepts have been intertwined in pathology graduate medical education for many years, although training programs face challenges in creating explicit learning opportunities in these fields. Tangibly involving pathology residents in management and quality improvement projects has the potential to teach and reinforce key concepts and further fulfill Accreditation Council for Graduate Medical Education goals for pursuing projects related to patient safety and quality improvement. In this report, we present our experience at a pathology residency program (University of Iowa) in engaging pathology residents in projects related to practical issues of laboratory management, process improvement, and informatics. In this program, at least 1 management/quality improvement project, typically performed during a clinical chemistry/management rotation, was required and ideally resulted in a journal publication. The residency program also initiated a monthly management/informatics series for pathology externs, residents, and fellows that covers a wide range of topics. Since 2010, all pathology residents at the University of Iowa have completed at least 1 management/quality improvement project. Many of the projects involved aspects of laboratory test utilization, with some projects focused on other areas such as human resources, informatics, or process improvement. Since 2012, 31 peer-reviewed journal articles involving effort from 26 residents have been published. Multiple projects resulted in changes in ongoing practice, particularly within the hospital electronic health record. Focused management/quality improvement projects involving pathology residents can result in both meaningful quality improvement and scholarly output. PMID:28913416

  9. Using Focused Laboratory Management and Quality Improvement Projects to Enhance Resident Training and Foster Scholarship.

    PubMed

    Krasowski, Matthew D; Ford, Bradley A; Klutts, J Stacey; Jensen, Chris S; Briggs, Angela S; Robinson, Robert A; Bruch, Leslie A; Karandikar, Nitin J

    2017-01-01

    Training in patient safety, quality, and management is widely recognized as an important element of graduate medical education. These concepts have been intertwined in pathology graduate medical education for many years, although training programs face challenges in creating explicit learning opportunities in these fields. Tangibly involving pathology residents in management and quality improvement projects has the potential to teach and reinforce key concepts and further fulfill Accreditation Council for Graduate Medical Education goals for pursuing projects related to patient safety and quality improvement. In this report, we present our experience at a pathology residency program (University of Iowa) in engaging pathology residents in projects related to practical issues of laboratory management, process improvement, and informatics. In this program, at least 1 management/quality improvement project, typically performed during a clinical chemistry/management rotation, was required and ideally resulted in a journal publication. The residency program also initiated a monthly management/informatics series for pathology externs, residents, and fellows that covers a wide range of topics. Since 2010, all pathology residents at the University of Iowa have completed at least 1 management/quality improvement project. Many of the projects involved aspects of laboratory test utilization, with some projects focused on other areas such as human resources, informatics, or process improvement. Since 2012, 31 peer-reviewed journal articles involving effort from 26 residents have been published. Multiple projects resulted in changes in ongoing practice, particularly within the hospital electronic health record. Focused management/quality improvement projects involving pathology residents can result in both meaningful quality improvement and scholarly output.

  10. Habitat-specific foraging of prothonotary warblers: Deducing habitat quality

    USGS Publications Warehouse

    Lyons, J.E.

    2005-01-01

    Foraging behavior often reflects food availability in predictable ways. For example, in habitats where food availability is high, predators should attack prey more often and move more slowly than in habitats where food availability is low. To assess relative food availability and habitat quality, I studied the foraging behavior of breeding Prothonotary Warblers (Protonotaria citrea) in two forest habitat types, cypress-gum swamp forest and coastal-plain levee forest. I quantified foraging behavior with focal animal sampling and continuous recording during foraging bouts. I measured two aspects of foraging behavior: 1) prey attack rate (attacks per minute), using four attack maneuvers (glean, sally, hover, strike), and 2) foraging speed (movements per minute), using three types of movement (hop, short flight [???1 m], long flight [>1 m]). Warblers attacked prey more often in cypress-gum swamp forest than in coastal-plain levee forest. Foraging speed, however, was not different between habitats. I also measured foraging effort (% time spent foraging) and relative frequency of attack maneuvers employed in each habitat; neither of these variables was influenced by forest type. I conclude that Prothonotary Warblers encounter more prey when foraging in cypress-gum swamps than in coastal-plain levee forest, and that greater food availability results in higher density and greater reproductive success for birds breeding in cypress-gum swamp.

  11. Project Management Life Cycle Models to Improve Management in High-rise Construction

    NASA Astrophysics Data System (ADS)

    Burmistrov, Andrey; Siniavina, Maria; Iliashenko, Oksana

    2018-03-01

    The paper describes a possibility to improve project management in high-rise buildings construction through the use of various Project Management Life Cycle Models (PMLC models) based on traditional and agile project management approaches. Moreover, the paper describes, how the split the whole large-scale project to the "project chain" will create the factor for better manageability of the large-scale buildings project and increase the efficiency of the activities of all participants in such projects.

  12. Seafloor habitat mapping and classification in Glacier Bay, Alaska: Phase 1 & 2 1996-2004

    USGS Publications Warehouse

    Hooge, Philip N.; Carlson, Paul R.; Mondragon, Jennifer; Etherington, Lisa L.; Cochran, G.R.

    2004-01-01

    Glacier Bay is a diverse fjord ecosystem with multiple sills, numerous tidewater glaciers and a highly complex oceanographic system. The Bay was completely glaciated prior to the 1700’s and subsequently experienced the fastest glacial retreat recorded in historical times. Currently, some of the highest sedimentation rates ever observed occur in the Bay, along with rapid uplift (up to 2.5 cm/year) due to a combination of plate tectonics and isostatic rebound. Glacier Bay is the second deepest fjord in Alaska, with depths over 500 meters. This variety of physical processes and bathymetry creates many diverse habitats within a relatively small area (1,255 km2 ). Habitat can be defined as the locality, including resources and environmental conditions, occupied by a species or population of organisms (Morrison et al 1992). Mapping and characterization of benthic habitat is crucial to an understanding of marine species and can serve a variety of purposes including: understanding species distributions and improving stock assessments, designing special management areas and marine protected areas, monitoring and protecting important habitats, and assessing habitat change due to natural or human impacts. In 1996, Congress recognized the importance of understanding benthic habitat for fisheries management by reauthorizing the Magnuson-Stevens Fishery Conservation and Management Act and amending it with the Sustainable Fisheries Act (SFA). This amendment emphasizes the importance of habitat protection to healthy fisheries and requires identification of essential fish habitat in management decisions. Recently, the National Park Service’s Ocean Stewardship Strategy identified the creation of benthic habitat maps and sediment maps as crucial components to complete basic ocean park resource inventories (Davis 2003). Glacier Bay National Park managers currently have very limited knowledge about the bathymetry, sediment types, and various marine habitats of ecological

  13. Habitat assessment, Missouri River at Hermann, Missouri

    USGS Publications Warehouse

    Jacobson, Robert B.; Laustrup, Mark S.; Reuter, Joanna M.

    2002-01-01

    This report documents methods and results of aquatic habitat assessment in the Missouri River near Hermann, Missouri. The assessment is intended to improve understanding of spatial and temporal variability of aquatic habitat, including habitats thought to be critical for the endangered pallid sturgeon (Scaphirhynchus albus). Physical aquatic habitat - depth, velocity, and substrate - was assessed around 9 wing dikes and adjacent to the U.S. Route 19 bridge, at discharges varying from 44,000 cubic feet per second (cfs) to 146, 000 cfs during August 2000-May, 2001. For the river as a whole, velocities are bi-modally distributed with distinct peaks relating to navigation channel and wing-dike environments. Velocities predictably showed an increasing trend with increasing discharge. Substrate within wing dikes was dominated by mud at low discharges, whereas the navigation channel had patches of transporting sand, rippled sand, and coarse sand. Discharges that overtopped the wing dikes (about 93,000 cfs, March 2001) were associated with increases of patchy sand, rippled sand, and coarse sand within the wing dikes. When flows were substantially over the wing dikes (146,000 cfs, May 2001) substrates within most wing dikes showed substantial reorganization and coarsening. The habitat assessment provides a geospatial database that can be used to query wing dikes for distributions of depth, velocity, and substrate for comparison with fish samples collected by US Fish and Wildlife Service biologists (Grady and others, 2001). In addition, the assessment documented spatial and temporal variation in habitat within the Hermann reach and over a range of discharges. Measurable geomorphic change--alteration of substrate conditions plus substantial erosion and deposition--was associated with flows equaled or exceeded 12-40% of the time (40-140 days per year). Documented geomorphic change associated with high-frequency flows underscores the natural temporal variability of physical

  14. Multiscale sagebrush rangeland habitat modeling in southwest Wyoming

    USGS Publications Warehouse

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Coan, Michael J.; Bowen, Zachary H.

    2009-01-01

    Sagebrush-steppe ecosystems in North America have experienced dramatic elimination and degradation since European settlement. As a result, sagebrush-steppe dependent species have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, would improve the ability to maintain existing sagebrush habitats. However, current data only identify resource availability locally, with rigorous spatial tools and models that accurately model and map sagebrush habitats over large areas still unavailable. Here we report on an effort to produce a rigorous large-area sagebrush-habitat classification and inventory with statistically validated products and estimates of precision in the State of Wyoming. This research employs a combination of significant new tools, including (1) modeling sagebrush rangeland as a series of independent continuous field components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground-measured plot data on 2.4-meter imagery in the same season the satellite imagery is acquired; (3) effective modeling of ground-measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of an additional two spatial scales of imagery (30 meter and 56 meter) for optimal large-area modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution sensors; and (6) employing rigorous accuracy assessment of model predictions to enable users to understand the inherent uncertainties. First-phase results modeled eight rangeland components (four primary targets and four secondary targets) as continuous field predictions. The primary targets included percent bare ground, percent herbaceousness, percent shrub, and percent litter. The

  15. Implementing service improvement projects within pre-registration nursing education: a multi-method case study evaluation.

    PubMed

    Baillie, Lesley; Bromley, Barbara; Walker, Moira; Jones, Rebecca; Mhlanga, Fortune

    2014-01-01

    Preparing healthcare students for quality and service improvement is important internationally. A United Kingdom (UK) initiative aims to embed service improvement in pre-registration education. A UK university implemented service improvement teaching for all nursing students. In addition, the degree pathway students conducted service improvement projects as the basis for their dissertations. The study aimed to evaluate the implementation of service improvement projects within a pre-registration nursing curriculum. A multi-method case study was conducted, using student questionnaires, focus groups with students and academic staff, and observation of action learning sets. Questionnaire data were analysed using SPSS v19. Qualitative data were analysed using Ritchie and Spencer's (1994) Framework Approach. Students were very positive about service improvement. The degree students, who conducted service improvement projects in practice, felt more knowledgeable than advanced diploma students. Selecting the project focus was a key issue and students encountered some challenges in practice. Support for student service improvement projects came from action learning sets, placement staff, and academic staff. Service improvement projects had a positive effect on students' learning. An effective partnership between the university and partner healthcare organisations, and support for students in practice, is essential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. ISTC projects devoted to improving laser beam quality

    NASA Astrophysics Data System (ADS)

    Malakhov, Yu. I.

    2007-05-01

    Short overview is done about the activity of ISTC in a direction concerned with improving powerful laser beam quality by means of nonlinear and linear adaptive optics methods. Completed projects #0591 and #1929 resulted in the development of a stimulated Brillouin scattering (SBS) phase conjugation mirror of superhigh fidelity employing the kinoform optical elements (rasters of small lenses) of new generation designed for pulsed or pulse-periodic lasers with nanosecond scale pulse duration. Project #2631 is devoted to development of an adaptive optical system for phase registration and correction of laser beams with wave front vortices. The principles of operation of conventional adaptive systems are based on the assumption that the phase is a smooth continuous function in space. Therefore the solution of the Project tasks will assume a new step in adaptive optics.

  17. Habitat Management to Suppress Pest Populations: Progress and Prospects.

    PubMed

    Gurr, Geoff M; Wratten, Steve D; Landis, Douglas A; You, Minsheng

    2017-01-31

    Habitat management involving manipulation of farmland vegetation can exert direct suppressive effects on pests and promote natural enemies. Advances in theory and practical techniques have allowed habitat management to become an important subdiscipline of pest management. Improved understanding of biodiversity-ecosystem function relationships means that researchers now have a firmer theoretical foundation on which to design habitat management strategies for pest suppression in agricultural systems, including landscape-scale effects. Supporting natural enemies with shelter, nectar, alternative prey/hosts, and pollen (SNAP) has emerged as a major research topic and applied tactic with field tests and adoption often preceded by rigorous laboratory experimentation. As a result, the promise of habitat management is increasingly being realized in the form of practical worldwide implementation. Uptake is facilitated by farmer participation in research and is made more likely by the simultaneous delivery of ecosystem services other than pest suppression.

  18. Habitat Evaluation Procedures (HEP) Report; Tacoma/Trimble Area Management Plan, Technical Report 2001-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Entz, Ray; Lockwood, Jr., Neil; Holmes, Darren

    2003-10-01

    In 2000 and 2001, the Kalispel Natural Resource Department (KNRD) continued to mitigate the wildlife habitat losses as part of the Albeni Falls Wildlife Mitigation Project. Utilizing Bonneville Power Administration (BPA) funds, the Kalispel Tribe of Indians (Tribe) purchased three projects totaling nearly 1,200 acres. The Tacoma/Trimble Wildlife Management Area is a conglomeration of properties now estimated at 1,700 acres. It is the Tribe's intent to manage these properties in cooperation and collaboration with the Pend Oreille County Public Utility District (PUD) No. 1 and the U.S. Fish and Wildlife Service (USFWS) to benefit wildlife habitats and associated species, populations,more » and guilds.« less

  19. Using a rule-based envelope model to predict the expansion of habitat suitability within New Zealand for the tick Haemaphysalis longicornis, with future projections based on two climate change scenarios.

    PubMed

    Lawrence, K E; Summers, S R; Heath, A C G; McFadden, A M J; Pulford, D J; Tait, A B; Pomroy, W E

    2017-08-30

    Haemaphysalis longicornis is the only species of tick present in New Zealand which infests livestock and is also the only competent vector for Theileria orientalis. Since 2012, New Zealand has suffered from an epidemic of infectious bovine anaemia associated with T. orientalis, an obligate intracellular protozoan parasite of cattle and buffaloes. The aim of this study was to predict the spatial distribution of habitat suitability of New Zealand for the tick H. longicornis using a simple rule-based climate envelope model, to validate the model against published data and use the validated model to project an expansion in habitat suitability for H. longicornis under two alternative climate change scenarios for the periods 2046-2065 and 2081-2100, relative to the climate of 1981-2010. A rule-based climate envelope model was developed based on the environmental requirements for off-host tick survival. The resulting model was validated against a maximum entropy environmental niche model of environmental suitability for T. orientalis transmission and against a H. longicornis occurrence map. Validation was completed using the I-similarity statistic and by linear regression. The H. longicornis climate envelope model predicted that 75% of cattle farms in the North Island, 3% of cattle farms in the South Island and 54% of cattle farms in New Zealand overall have habitats potentially suitable for the establishment of H. longicornis. The validation methods showed an acceptable level of agreement between the envelope model and published data. Both of the climate change scenarios, for each of the time periods, projected only slight to moderate increases in the average farm habitat suitability scores for all the South Island regions. However, only for the West Coast, Marlborough, Tasman, and Nelson regions did these increases in environmental suitability translate into an increased proportion of cattle farms with low or high H. longicornis habitat suitability. These results will

  20. The 1990-1991 project summaries

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Project summaries for 1990-91 at the Georgia Institute of Technology are presented. The following research projects were studied: a lunar surface vehicle model; lunar loader/transporter; trenching and cable-laying device for the lunar surface; a lunar vehicle system for habitat transport and placement; and lunar storage facility.

  1. 77 FR 33240 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Project water conservation best management practices that shall ``develop criteria for evaluating the... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  2. 75 FR 70020 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... office on Central Valley Project water conservation best management practices that shall ``* * * develop... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior ACTION: Notice of Availability. SUMMARY: The...

  3. 77 FR 64544 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... Central Valley Project water conservation best management practices that shall ``develop criteria for... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  4. 76 FR 12756 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... office on Central Valley Project water conservation best management practices that shall ``* * * develop... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  5. Program Improvement Project for Industrial Education. Annual Report.

    ERIC Educational Resources Information Center

    Shaeffer, Bruce W.

    Designed to improve industrial education programs through the development of minimum uniform quality standards, a project developed a task list, educationally sequenced the identified tasks, and developed a recommended shop layout and equipment list for four occupational areas: diesel repair, appliance repair, office machine repair, and small…

  6. Restoration of Soldier Spring: an isolated habitat for native Apache trout

    Treesearch

    Jonathan W. Long; B. Mae Burnette; Alvin L. Medina; Joshua L. Parker

    2004-01-01

    Degradation of streams is a threat to the recovery of the Apache trout, an endemic fish of the White Mountains of Arizona. Historic efforts to improve trout habitat in the Southwest relied heavily on placement of in-stream log structures. However, the effects of structural interventions on trout habitat and populations have not been adequately evaluated. We treated an...

  7. 76 FR 54251 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... and administer an office on Central Valley Project water conservation best management practices that... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  8. 78 FR 63491 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are available for review: Westside... project contractors using best available cost-effective technology and best management practices.'' These...

  9. 78 FR 21414 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are available for review... establish and administer an office on Central Valley Project water conservation best management practices...

  10. 75 FR 38538 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... to establish and administer an office on Central Valley Project water conservation best management... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  11. Habitat assessment for giant pandas in the Qinling Mountain region of China

    USGS Publications Warehouse

    Feng, Tian-Tian; Van Manen, Frank T.; Zhao, Na-Xun; Li, Ming; Wei, Fu-Wen

    2009-01-01

    Because habitat loss and fragmentation threaten giant pandas (Ailuropoda melanoleuca), habitat protection and restoration are important conservation measures for this endangered species. However, distribution and value of potential habitat to giant pandas on a regional scale are not fully known. Therefore, we identified and ranked giant panda habitat in Foping Nature Reserve, Guanyinshan Nature Reserve, and adjacent areas in the Qinling Mountains of China. We used Mahalanobis distance and 11 digital habitat layers to develop a multivariate habitat signature associated with 247 surveyed giant panda locations, which we then applied to the study region. We identified approximately 128 km2 of giant panda habitat in Foping Nature Reserve (43.6% of the reserve) and 49 km2 in Guanyinshan Nature Reserve (33.6% of the reserve). We defined core habitat areas by incorporating a minimum patch-size criterion (5.5 km2) based on home-range size. Percentage of core habitat area was higher in Foping Nature Reserve (41.8% of the reserve) than Guanyinshan Nature Reserve (26.3% of the reserve). Within the larger analysis region, Foping Nature Reserve contained 32.7% of all core habitat areas we identified, indicating regional importance of the reserve. We observed a negative relationship between distribution of core areas and presence of roads and small villages. Protection of giant panda habitat at lower elevations and improvement of habitat linkages among core habitat areas are important in a regional approach to giant panda conservation.

  12. Housing improvement projects in Indonesia: responding to local demand.

    PubMed

    Josodipoero, R I

    2003-06-01

    For more than three decades, environmental health programmes in Indonesia have emphasized prevention and treatment of the high incidence of disease among villagers. One of the main causes of disease is the unhygienic conditions of typical rural houses - two-room constructions with dirt floors and walls of lightly fired bricks or woven bamboo skins. While most houses have few or no windows, the occupants frequently cook, eat, sleep and even keep animals in a single room. The main objective of the housing improvement programme was to improve air circulation and introduce more sunlight to kill bacteria, avoid dampness and eliminate smoke from cooking. The programme encourages villagers to construct a permanent floor, enlarge existing windows or insert new windows for good ventilation. This presentation will share the 'success stories' of housing improvement projects in Indonesia that adopted demand-responsive approaches instead of the conventional 'supply approach'. Through exercises like Wealth Classification and Social Mapping, a demand-responsive approach lets the community decide who is eligible for assistance, resulting in higher participation and accurate information on community demand and on materials needed. In addition to the successes, the failures will be discussed at field level. This presentation will discuss the lessons learned from: the World Bank-funded Kalisemut Case Study; government's Family Welfare Movement; Plan International's project in Yogyakarta, and AusAID-funded Sustainable Development through Community Participation Project in Lombok.

  13. Do management actions to restore rare habitat benefit native fish conservation? Distribution of juvenile native fish among shoreline habitats of the Colorado River

    USGS Publications Warehouse

    Dodrill, Michael J.; Yackulic, Charles B.; Gerig, Brandon; Pine, William E.; Korman, Josh; Finch, Colton

    2015-01-01

    Many management actions in aquatic ecosystems are directed at restoring or improving specific habitats to benefit fish populations. In the Grand Canyon reach of the Colorado River, experimental flow operations as part of the Glen Canyon Dam Adaptive Management Program have been designed to restore sandbars and associated backwater habitats. Backwaters can have warmer water temperatures than other habitats, and native fish, including the federally endangered humpback chub Gila cypha, are frequently observed in backwaters, leading to a common perception that this habitat is critical for juvenile native fish conservation. However, it is unknown how fish densities in backwaters compare with that in other habitats or what proportion of juvenile fish populations reside in backwaters. Here, we develop and fit multi-species hierarchical models to estimate habitat-specific abundances and densities of juvenile humpback chub, bluehead suckerCatostomus discobolus, flannelmouth sucker Catostomus latipinnis and speckled dace Rhinichthys osculus in a portion of the Colorado River. Densities of all four native fish were greatest in backwater habitats in 2009 and 2010. However, backwaters are rare and ephemeral habitats, so they contain only a small portion of the overall population. For example, the total abundance of juvenile humpback chub in this study was much higher in talus than in backwater habitats. Moreover, when we extrapolated relative densities based on estimates of backwater prevalence directly after a controlled flood, the majority of juvenile humpback chub were still found outside of backwaters. This suggests that the role of controlled floods in influencing native fish population trends may be limited in this section of the Colorado River. 

  14. Fish assemblage structure and habitat associations in a large western river system

    USGS Publications Warehouse

    Smith, C.D.; Quist, Michael C.; Hardy, R. S.

    2016-01-01

    Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500-m river reaches was sampled repeatedly with several techniques (boat-mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non-native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non-native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species-specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems.

  15. Ghosts of habitats past: Contribution of landscape change to current habitats used by shrubland birds

    USGS Publications Warehouse

    Knick, Steven T.; Rotenberry, J.T.

    2000-01-01

    Models of habitat associations for species often are developed with an implicit assumption that habitats are static, even though recent disturbance may have altered the landscape. We tested our hypothesis that trajectory and magnitude of habitat change influenced observed distribution and abundance of passerine birds breeding in shrubsteppe habitats of southwestern Idaho. Birds in this region live in dynamic landscapes undergoing predominantly large-scale, radical, and unidirectional habitat change because wildfires are converting shrublands into expanses of exotic annual grasslands. We used data from field surveys and satellite image analyses in a series of redundancy analyses to partition variances and to determine the relative contribution of habitat change and current landscapes. Although current habitats explained a greater proportion of total variation, changes in habitat and measures of habitat richness and texture also contributed to variation in abundance of Horned Larks (Eremophila alpestris), Brewera??s Sparrows (Spizella breweri), and Sage Sparrows (Amphispiza belli). Abundance of birds was insensitive to scale for nonspatial habitat variables. In contrast, spatial measures of habitat richness and texture in the landscape were significant only at large spatial scales. Abundance of Horned Larks, Western Meadowlarks (Sturnella neglecta), and Brewera??s Sparrows, but not Sage Thrashers (Oreoscoptes montanus) or Sage Sparrows, was positively correlated with changes toward stable habitats. Because dominant habitat changes were toward less stable conditions, regional declines of those birds in shrubsteppe habitats reflect current landscapes as well as the history, magnitude, and trajectory of habitat change.

  16. Agricultural model intercomparison and improvement project: Overview of model intercomparisons

    USDA-ARS?s Scientific Manuscript database

    Improvement of crop simulation models to better estimate growth and yield is one of the objectives of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The overall goal of AgMIP is to provide an assessment of crop model through rigorous intercomparisons and evaluate future clim...

  17. Effects of dam removal on Tule Fall Chinook salmon spawning habitat in the White Salmon River, Washington

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.; Skalicky, Joseph J.; Engle, Rod; Barton, Gary J.; Fosness, Ryan L.; Warren, Joe

    2016-01-01

    Condit Dam is one of the largest hydroelectric dams ever removed in the USA. Breached in a single explosive event in October 2011, hundreds-of-thousands of cubic metres of sediment washed down the White Salmon River onto spawning grounds of a threatened species, Columbia River tule fall Chinook salmon Oncorhynchus tshawytscha. We investigated over a 3-year period (2010–2012) how dam breaching affected channel morphology, river hydraulics, sediment composition and tule fall Chinook salmon (hereafter ‘tule salmon’) spawning habitat in the lower 1.7 km of the White Salmon River (project area). As expected, dam breaching dramatically affected channel morphology and spawning habitat due to a large load of sediment released from Northwestern Lake. Forty-two per cent of the project area that was previously covered in water was converted into islands or new shoreline, while a large pool near the mouth filled with sediments and a delta formed at the mouth. A two-dimensional hydrodynamic model revealed that pool area decreased 68.7% in the project area, while glides and riffles increased 659% and 530%, respectively. A spatially explicit habitat model found the mean probability of spawning habitat increased 46.2% after dam breaching due to an increase in glides and riffles. Shifting channels and bank instability continue to negatively affect some spawning habitat as sediments continue to wash downstream from former Northwestern Lake, but 300 m of new spawning habitat (river kilometre 0.6 to 0.9) that formed immediately post-breach has persisted into 2015. Less than 10% of tule salmon have spawned upstream of the former dam site to date, but the run sizes appear healthy and stable. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  18. MDSplus quality improvement project

    DOE PAGES

    Fredian, Thomas W.; Stillerman, Joshua; Manduchi, Gabriele; ...

    2016-05-31

    MDSplus is a data acquisition and analysis system used worldwide predominantly in the fusion research community. Development began 29 years ago on the OpenVMS operating system. Since that time there have been many new features added and the code has been ported to many different operating systems. There have been contributions to the MDSplus development from the fusion community in the way of feature suggestions, feature implementations, documentation and porting to different operating systems. The bulk of the development and support of MDSplus, however, has been provided by a relatively small core developer group of three or four members. Givenmore » the size of the development team and the large number of users much more effort was focused on providing new features for the community than on keeping the underlying code and documentation up to date with the evolving software development standards. To ensure that MDSplus will continue to provide the needs of the community in the future, the MDSplus development team along with other members of the MDSplus user community has commenced on a major quality improvement project. The planned improvements include changes to software build scripts to better use GNU Autoconf and Automake tools, refactoring many of the source code modules using new language features available in modern compilers, using GNU MinGW-w64 to create MS Windows distributions, migrating to a more modern source code management system, improvement of source documentation as well as improvements to the www.mdsplus.org web site documentation and layout, and the addition of more comprehensive test suites to apply to MDSplus code builds prior to releasing installation kits to the community. This paper should lead to a much more robust product and establish a framework to maintain stability as more enhancements and features are added. Finally, this paper will describe these efforts that are either in progress or planned for the near future.« less

  19. Improved dense trajectories for action recognition based on random projection and Fisher vectors

    NASA Astrophysics Data System (ADS)

    Ai, Shihui; Lu, Tongwei; Xiong, Yudian

    2018-03-01

    As an important application of intelligent monitoring system, the action recognition in video has become a very important research area of computer vision. In order to improve the accuracy rate of the action recognition in video with improved dense trajectories, one advanced vector method is introduced. Improved dense trajectories combine Fisher Vector with Random Projection. The method realizes the reduction of the characteristic trajectory though projecting the high-dimensional trajectory descriptor into the low-dimensional subspace based on defining and analyzing Gaussian mixture model by Random Projection. And a GMM-FV hybrid model is introduced to encode the trajectory feature vector and reduce dimension. The computational complexity is reduced by Random Projection which can drop Fisher coding vector. Finally, a Linear SVM is used to classifier to predict labels. We tested the algorithm in UCF101 dataset and KTH dataset. Compared with existed some others algorithm, the result showed that the method not only reduce the computational complexity but also improved the accuracy of action recognition.

  20. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines.

    PubMed

    Honda, Kentaro; Nakamura, Yohei; Nakaoka, Masahiro; Uy, Wilfredo H; Fortes, Miguel D

    2013-01-01

    Understanding the interconnectivity of organisms among different habitats is a key requirement for generating effective management plans in coastal ecosystems, particularly when determining component habitat structures in marine protected areas. To elucidate the patterns of habitat use by fishes among coral, seagrass, and mangrove habitats, and between natural and transplanted mangroves, visual censuses were conducted semiannually at two sites in the Philippines during September and March 2010-2012. In total, 265 species and 15,930 individuals were recorded. Species richness and abundance of fishes were significantly higher in coral reefs (234 species, 12,306 individuals) than in seagrass (38 species, 1,198 individuals) and mangrove (47 species, 2,426 individuals) habitats. Similarity tests revealed a highly significant difference among the three habitats. Fishes exhibited two different strategies for habitat use, inhabiting either a single (85.6% of recorded species) or several habitats (14.4%). Some fish that utilized multiple habitats, such as Lutjanus monostigma and Parupeneus barberinus, showed possible ontogenetic habitat shifts from mangroves and/or seagrass habitats to coral reefs. Moreover, over 20% of commercial fish species used multiple habitats, highlighting the importance of including different habitat types within marine protected areas to achieve efficient and effective resource management. Neither species richness nor abundance of fishes significantly differed between natural and transplanted mangroves. In addition, 14 fish species were recorded in a 20-year-old transplanted mangrove area, and over 90% of these species used multiple habitats, further demonstrating the key role of transplanted mangroves as a reef fish habitat in this region.

  1. Habitat Use by Fishes in Coral Reefs, Seagrass Beds and Mangrove Habitats in the Philippines

    PubMed Central

    Honda, Kentaro; Nakamura, Yohei; Nakaoka, Masahiro; Uy, Wilfredo H.; Fortes, Miguel D.

    2013-01-01

    Understanding the interconnectivity of organisms among different habitats is a key requirement for generating effective management plans in coastal ecosystems, particularly when determining component habitat structures in marine protected areas. To elucidate the patterns of habitat use by fishes among coral, seagrass, and mangrove habitats, and between natural and transplanted mangroves, visual censuses were conducted semiannually at two sites in the Philippines during September and March 2010–2012. In total, 265 species and 15,930 individuals were recorded. Species richness and abundance of fishes were significantly higher in coral reefs (234 species, 12,306 individuals) than in seagrass (38 species, 1,198 individuals) and mangrove (47 species, 2,426 individuals) habitats. Similarity tests revealed a highly significant difference among the three habitats. Fishes exhibited two different strategies for habitat use, inhabiting either a single (85.6% of recorded species) or several habitats (14.4%). Some fish that utilized multiple habitats, such as Lutjanus monostigma and Parupeneus barberinus, showed possible ontogenetic habitat shifts from mangroves and/or seagrass habitats to coral reefs. Moreover, over 20% of commercial fish species used multiple habitats, highlighting the importance of including different habitat types within marine protected areas to achieve efficient and effective resource management. Neither species richness nor abundance of fishes significantly differed between natural and transplanted mangroves. In addition, 14 fish species were recorded in a 20-year-old transplanted mangrove area, and over 90% of these species used multiple habitats, further demonstrating the key role of transplanted mangroves as a reef fish habitat in this region. PMID:23976940

  2. Quality initiatives: planning, setting up, and carrying out radiology process improvement projects.

    PubMed

    Tamm, Eric P; Szklaruk, Janio; Puthooran, Leejo; Stone, Danna; Stevens, Brian L; Modaro, Cathy

    2012-01-01

    In the coming decades, those who provide radiologic imaging services will be increasingly challenged by the economic, demographic, and political forces affecting healthcare to improve their efficiency, enhance the value of their services, and achieve greater customer satisfaction. It is essential that radiologists master and consistently apply basic process improvement skills that have allowed professionals in many other fields to thrive in a competitive environment. The authors provide a step-by-step overview of process improvement from the perspective of a radiologic imaging practice by describing their experience in conducting a process improvement project: to increase the daily volume of body magnetic resonance imaging examinations performed at their institution. The first step in any process improvement project is to identify and prioritize opportunities for improvement in the work process. Next, an effective project team must be formed that includes representatives of all participants in the process. An achievable aim must be formulated, appropriate measures selected, and baseline data collected to determine the effects of subsequent efforts to achieve the aim. Each aspect of the process in question is then analyzed by using appropriate tools (eg, flowcharts, fishbone diagrams, Pareto diagrams) to identify opportunities for beneficial change. Plans for change are then established and implemented with regular measurements and review followed by necessary adjustments in course. These so-called PDSA (planning, doing, studying, and acting) cycles are repeated until the aim is achieved or modified and the project closed.

  3. The cumulative effects assessment of a coastal ecological restoration project in China: An integrated perspective.

    PubMed

    Ma, Deqiang; Zhang, Liyu; Fang, Qinhua; Jiang, Yuwu; Elliott, Michael

    2017-05-15

    Large scale coastal land-claim and sea-enclosing (CLASE) activities have caused habitat destruction, biodiversity losses and water deterioration, thus the local governments in China have recently undertaken seabed dredging and dyke opening (SDADO) as typical ecological restoration projects. However, some projects focus on a single impact on hydrodynamic conditions, water quality or marine organisms. In a case study in Xiamen, China, an integrated effects assessment framework centres on ecohydrology, using modeling of hydrodynamic conditions and statistical analysis of water quality, was developed to assess the effects of ecological restoration projects. The benefits of SDADO projects include improving hydrodynamic conditions and water quality, as a precursor to further marine biological improvements. This study highlights the need to comprehensively consider ecological effects of SDADO projects in the planning stage, and an integrative assessment method combining cumulative effects of hydrodynamic conditions, water quality and biological factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. [Cooperative learning for improving healthy housing conditions in Bogota: a case study].

    PubMed

    Torres-Parra, Camilo A; García-Ubaque, Juan C; García-Ubaque, César A

    2014-01-01

    This was a community-based effort at constructing an educational proposal orientated towards self-empowerment aimed at improving the target population's sanitary, housing and living conditions through cooperative learning. A constructivist approach was adopted based on a programme called "Habitat community manger". The project involved working with fifteen families living in the Mochuelo Bajo barrio in Ciudad Bolívar in Bogotá, Colombia, for identifying the most relevant sanitary aspects for improving their homes and proposing a methodology and organisation for an educational proposal. Twenty-one poor housing-related epidemiological indicators were identified which formed the basis for defining specific problems and establishing a methodology for designing an educational proposal. The course which emerged from the cooperative learning experience was designed to promote the community's skills and education regarding health aimed at improving households' living conditions and ensuring a healthy environment which would allow them to develop an immediate habitat ensuring their own welfare and dignity.

  5. Geomorphic and habitat response to a large-dam removal in a Mediterranean river

    NASA Astrophysics Data System (ADS)

    Harrison, L.; East, A. E.; Smith, D. P.; Bond, R.; Logan, J. B.; Nicol, C.; Williams, T.; Boughton, D. A.; Chow, K.

    2017-12-01

    The presence of large dams has fundamentally altered physical and biological processes in riverine ecosystems, and dam removal is becoming more common as a river restoration strategy. We used a before-after-control-impact study design to investigate the geomorphic and habitat response to removal of 32-m-high San Clemente Dam on the Carmel River, CA. The project represents the first major dam removal in a Mediterranean river and is also unique among large dam removals in that most reservoir sediment was sequestered in place. We found that in the first year post-removal, a sediment pulse migrated 3.5 km downstream, filling pools and the interstitial pore spaces of gravels with sand. These sedimentary and topographic changes initially reduced the overall quality of steelhead (O. mykiss) spawning and rearing habitat in impacted reaches. Over the second winter after dam removal, a sequence of high flows flushed large volumes of sand from pools and mobilized the river bed throughout much of the active channel. The floods substantially altered fluvial evolution in the upper part of the reservoir, promoting new avulsion and the subsequent delivery of gravel and large wood to below dam reaches. These geomorphic processes increased the availability of spawning-sized gravel and enhanced channel complexity in reaches within several km of the former dam, which should improve habitat for multiple life stages of steelhead. Results indicate that when most reservoir sediment remains impounded, high flows become more important drivers of geomorphic and habitat change than dam removal alone. In such cases, the rates at which biophysical processes are reestablished will depend largely on post-dam removal flow sequencing and the upstream supply of sediment and large wood.

  6. Future land-use scenarios and the loss of wildlife habitats in the southeastern United States.

    PubMed

    Martinuzzi, Sebastián; Withey, John C; Pidgeon, Anna M; Plantinga, Andrew J; McKerrow, Alexa J; Williams, Steven G; Helmers, David P; Radeloff, Volker C

    2015-01-01

    Land-use change is a major cause of wildlife habitat loss. Understanding how changes in land-use policies and economic factors can impact future trends in land use and wildlife habitat loss is therefore critical for conservation efforts. Our goal here was to evaluate the consequences of future land-use changes under different conservation policies and crop market conditions on habitat loss for wildlife species in the southeastern United States. We predicted the rates of habitat loss for 336 terrestrial vertebrate species by 2051. We focused on habitat loss due to the expansion of urban, crop, and pasture. Future land-use changes following business-as-usual conditions resulted in relatively low rates of wildlife habitat loss across the entire Southeast, but some ecoregions and species groups experienced much higher habitat loss than others. Increased crop commodity prices exacerbated wildlife habitat loss in most ecoregions, while the implementation of conservation policies (reduced urban sprawl, and payments for land conservation) reduced the projected habitat loss in some regions, to a certain degree. Overall, urban and crop expansion were the main drivers of habitat loss. Reptiles and wildlife species associated with open vegetation (grasslands, open woodlands) were the species groups most vulnerable to future land-use change. Effective conservation of wildlife habitat in the Southeast should give special consideration to future land-use changes, regional variations, and the forces that could shape land-use decisions.

  7. Future land-use scenarios and the loss of wildlife habitats in the southeastern United States

    USGS Publications Warehouse

    Martinuzzi, Sebastián; Withey, John C.; Pidgeon, Anna M.; Plantinga, Andrew; McKerrow, Alexa; Williams, Steven G.; Helmers, David P.; Radeloff, Volker C.

    2015-01-01

    Land-use change is a major cause of wildlife habitat loss. Understanding how changes in land-use policies and economic factors can impact future trends in land use and wildlife habitat loss is therefore critical for conservation efforts. Our goal here was to evaluate the consequences of future land-use changes under different conservation policies and crop market conditions on habitat loss for wildlife species in the southeastern United States. We predicted the rates of habitat loss for 336 terrestrial vertebrate species by 2051. We focused on habitat loss due to the expansion of urban, crop, and pasture. Future land-use changes following business-as-usual conditions resulted in relatively low rates of wildlife habitat loss across the entire Southeast, but some ecoregions and species groups experienced much higher habitat loss than others. Increased crop commodity prices exacerbated wildlife habitat loss in most ecoregions, while the implementation of conservation policies (reduced urban sprawl, and payments for land conservation) reduced the projected habitat loss in some regions, to a certain degree. Overall, urban and crop expansion were the main drivers of habitat loss. Reptiles and wildlife species associated with open vegetation (grasslands, open woodlands) were the species groups most vulnerable to future land-use change. Effective conservation of wildlife habitat in the Southeast should give special consideration to future land-use changes, regional variations, and the forces that could shape land-use decisions.

  8. Future changes in Yuan River ecohydrology: Individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat quality.

    PubMed

    Wen, Xin; Liu, Zhehua; Lei, Xiaohui; Lin, Rongjie; Fang, Guohua; Tan, Qiaofeng; Wang, Chao; Tian, Yu; Quan, Jin

    2018-08-15

    The eco-hydrological system in southwestern China is undergoing great changes in recent decades owing to climate change and extensive cascading hydropower exploitation. With a growing recognition that multiple drivers often interact in complex and nonadditive ways, the purpose of this study is to predict the potential future changes in streamflow and fish habitat quality in the Yuan River and quantify the individual and cumulative effect of cascade damming and climate change. The bias corrected and spatial downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Model (GCM) projections are employed to drive the Soil and Water Assessment Tool (SWAT) hydrological model and to simulate and predict runoff responses under diverse scenarios. Physical habitat simulation model is established to quantify the relationship between river hydrology and fish habitat, and the relative change rate is used to assess the individual and combined effects of cascade damming and climate change. Mean annual temperature, precipitation and runoff in 2015-2100 show an increasing trend compared with that in 1951-2010, with a particularly pronounced difference between dry and wet years. The ecological habitat quality is improved under cascade hydropower development since that ecological requirement has been incorporated in the reservoir operation policy. As for middle reach, the runoff change from January to August is determined mainly by damming, and climate change influence becomes more pronounced in dry seasons from September to December. Cascade development has an effect on runoff of lower reach only in dry seasons due to the limited regulation capacity of reservoirs, and climate changes have an effect on runoff in wet seasons. Climate changes have a less significant effect on fish habitat quality in middle reach than damming, but a more significant effect in lower reach. In addition, the effect of climate changes on fish habitat quality in lower reach is high

  9. Ord's kangaroo rats living in floodplain habitats: Factors contributing to habitat attraction

    USGS Publications Warehouse

    Miller, M.S.; Wilson, K.R.; Andersen, D.C.

    2003-01-01

    High densities of an aridland granivore, Ord's kangaroo rat (Dipodomys ordii), have been documented in floodplain habitats along the Yampa River in northwestern Colorado. Despite a high probability of inundation and attendant high mortality during the spring flood period, the habitat is consistently recolonized. To understand factors that potentially make riparian habitats attractive to D. ordii, we compared density and spatial pattern of seeds, density of a competitor (western harvester ant, Pogonomyrmex occidentalis), and digging energetics within floodplain habitats and between floodplain and adjacent upland habitats. Seed density within the floodplain was greatest in the topographically high (rarely flooded) floodplain and lowest immediately after a spring flood in the topographically low (frequently flooded) floodplain. Seed densities in adjacent upland habitat that never floods were higher than the lowest floodplain habitat. In the low floodplain prior to flooding, seeds had a clumped spatial pattern, which D. ordii is adept at exploiting; after spring flooding, a more random pattern resulted. Populations of the western harvester ant were low in the floodplain relative to the upland. Digging by D. ordii was energetically less expensive in floodplain areas than in upland areas. Despite the potential for mortality due to annual spring flooding, the combination of less competition from harvester ants and lower energetic costs of digging might promote the use of floodplain habitat by D. ordii.

  10. Considering Spatial Scale and Reproductive Consequences of Habitat Selection when Managing Grasslands for a Threatened Species

    PubMed Central

    Pearson, Scott F.; Knapp, Shannon M.

    2016-01-01

    Habitat selection that has fitness consequences has important implications for conservation activities. For example, habitat characteristics that influence nest success in birds can be manipulated to improve habitat quality with the goal of ultimately improving reproductive success. We examined habitat selection by the threatened streaked horned lark (Eremophila alpestris strigata) at both the breeding-site (territory) and nest-site scales. Larks were selective at both spatial scales but with contrasting selection. At the territory scale, male larks selected sparsely vegetated grasslands with relatively short vegetation. At the nest-site scale, female larks selected sites within territories with higher vegetation density and more perennial forbs. These nest-site scale choices had reproductive consequences, with greater nest success in areas with higher densities of perennial forbs. We experimentally manipulated lark habitat structure in an attempt to mimic the habitat conditions selected by larks by using late summer prescribed fires. After the burn, changes in vegetation structure were in the direction preferred by larks but habitat effects attenuated by the following year. Our results highlight the importance of evaluating habitat selection at spatial scales appropriate to the species of interest, especially when attempting to improve habitat quality for rare and declining species. They also highlight the importance of conducting restoration activities in a research context. For example, because the sparsely vegetated conditions created by fire attenuate, there may be value in examining more frequent burns or hotter fires as the next management and research action. We hope the design outlined in this study will serve as an integrated research and management example for conserving grassland birds generally. PMID:27322196

  11. Predicted effect of landscape position on wildlife habitat value of Conservation Reserve Enhancement Program wetlands in a tile-drained agricultural region

    USGS Publications Warehouse

    Otis, David L.; Crumpton, William R.; Green, David; Loan-Wilsey, Anna; Cooper, Tom; Johnson, Rex R.

    2013-01-01

    Justification for investment in restored or constructed wetland projects are often based on presumed net increases in ecosystem services. However, quantitative assessment of performance metrics is often difficult and restricted to a single objective. More comprehensive performance assessments could help inform decision-makers about trade-offs in services provided by alternative restoration program design attributes. The primary goal of the Iowa Conservation Reserve Enhancement Program is to establish wetlands that efficiently remove nitrates from tile-drained agricultural landscapes. A secondary objective is provision of wildlife habitat. We used existing wildlife habitat models to compare relative net change in potential wildlife habitat value for four alternative landscape positions of wetlands within the watershed. Predicted species richness and habitat value for birds, mammals, amphibians, and reptiles generally increased as the wetland position moved lower in the watershed. However, predicted average net increase between pre- and post-project value was dependent on taxonomic group. The increased average wetland area and changes in surrounding upland habitat composition among landscape positions were responsible for these differences. Net change in predicted densities of several grassland bird species at the four landscape positions was variable and species-dependent. Predicted waterfowl breeding activity was greater for lower drainage position wetlands. Although our models are simplistic and provide only a predictive index of potential habitat value, we believe such assessment exercises can provide a tool for coarse-level comparisons of alternative proposed project attributes and a basis for constructing informed hypotheses in auxiliary empirical field studies.

  12. Maintenance of Certification Part IV Quality-Improvement Project for Hypertension Control: A Preliminary Retrospective Analysis

    PubMed Central

    Kolasinski, Vallerie A; Price, David W

    2015-01-01

    Context: A Maintenance of Certification Part IV project was created on the basis of an existing, multifaceted hypertension improvement program. Objective: To evaluate the impact of the Maintenance of Certification project, the effects of the improvement options on blood pressure control in hypertensive patients, and the participants’ perception of the workload related to participation in the project. Design: Nonexperimental retrospective analysis. Setting: Kaiser Permanente hospitals and medical office buildings in Northern California. Intervention: Participants used one or more options from a defined menu of strategies to attempt to increase the percentage of hypertensive patients on their patient panels who had controlled blood pressure. Main Outcome Measure: Proportion of hypertensive patients with blood pressure ≤ 139/89 mm Hg. Results: Fifty-two American Board of Family Medicine and 19 American Board of Internal Medicine certified physicians completed projects. Mean panel blood pressure control improved from 79.49% (standard deviation [SD] = 11.32) to 84.64% (SD = 7.80). The choice of improvement option was not associated with the level of improvement or with the participants’ perception of the workload related to completing the project. Conclusion: Project participants improved the care of their patients without an increased perceived burden to their practice. We found no association between the choice of improvement option and either the level of improvement or the perception of workload. PMID:25785642

  13. The Starkey habitat database for ungulate research: construction, documentation, and use.

    Treesearch

    Mary M. Rowland; Priscilla K. Coe; Rosemary J. Stussy; [and others].

    1998-01-01

    The Starkey Project, a large-scale, multidisciplinary research venture, began in 1987 in the Starkey Experimental Forest and Range in northeast Oregon. Researchers are studying effects of forest management on interactions and habitat use of mule deer (Odocoileus hemionus hemionus), elk (Cervus elaphus nelsoni), and cattle. A...

  14. Removing Dams: Project-Level Policy and Scientific Research Needs (Invited)

    NASA Astrophysics Data System (ADS)

    Graber, B.

    2010-12-01

    More than 800 dams have been removed around the country, mostly “small” dams, under 25 feet in height. The total number of removals, however, is small relative to the number of deteriorating dams and the ecological impacts those structures continue to have on native riverine species and natural river function. The number of dam removal projects is increasing as aging dams continue to deteriorate and riverine species continue to decline. Practitioners and regulators need to find cost-effective project approaches that minimize short-term environmental impacts and maximize long-term benefits while keeping project costs manageable. Dam removals can be a regulatory challenge because they inherently have short-term impacts in order to achieve larger, self-sustaining, long-term benefits. These short-term impacts include sediment movement, construction access roads, and habitat conversion from lacustrine to riverine. Environmental regulations are designed to prevent degradation and have presented challenges for projects designed to benefit the environment. For example, a short-term release of sediment may exceed water quality standards for some period of time, but lead to a long-term beneficial project. Other regulatory challenges include permitting the loss of wetland area for increased native river function, or allowing the release of some level of contaminated sediment when the downstream sediment is similarly contaminated. Dam removal projects raise a range of engineering and scientific questions on effective implementation techniques such as appropriate sediment management approaches, construction equipment access approaches, invasive species management, channel/floodplain reconstruction, and active versus passive habitat rehabilitation. While practitioners have learned and refined implementation approaches over the last decade, more input is needed from researchers to help assess the effectiveness of those techniques, and to provide more effective techniques

  15. Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes.

    PubMed

    Yates, Katherine L; Mellin, Camille; Caley, M Julian; Radford, Ben T; Meeuwig, Jessica J

    2016-01-01

    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modelling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modelling metrics of fish biodiversity that are

  16. Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes

    PubMed Central

    Yates, Katherine L.; Mellin, Camille; Caley, M. Julian; Radford, Ben T.; Meeuwig, Jessica J.

    2016-01-01

    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modelling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modelling metrics of fish biodiversity that are

  17. San Pablo Bay Tidal Marsh Enhancement and Water Quality Improvement Project

    EPA Pesticide Factsheets

    Information about the SFBWQP San Pablo Bay Tidal Marsh Enhancement and Water Quality Improvement Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  18. Improvement in Herpes Zoster Vaccination in Patients with Rheumatoid Arthritis: A Quality Improvement Project.

    PubMed

    Sheth, Heena; Moreland, Larry; Peterson, Hilary; Aggarwal, Rohit

    2017-01-01

    To improve herpes zoster (HZ) vaccination rates in high-risk patients with rheumatoid arthritis (RA) being treated with immunosuppressive therapy. This quality improvement project was based on the pre- and post-intervention design. The project targeted all patients with RA over the age of 60 years while being treated with immunosuppressive therapy (not with biologics) seen in 13 rheumatology outpatient clinics. The study period was from July 2012 to June 2013 for the pre-intervention and February 2014 to January 2015 for the post-intervention phase. The electronic best practice alert (BPA) for HZ vaccination was developed; it appeared on electronic medical records during registration and medication reconciliation of the eligible patient by the medical assistant. The BPA was designed to electronically identify patient eligibility and to enable the physician to order the vaccine or to document refusal or deferral reason. Education regarding vaccine guidelines, BPA, vaccination process, and feedback were crucial components of the project interventions. The vaccination rates were compared using the chi-square test. We evaluated 1823 and 1554 eligible patients with RA during the pre-intervention and post-intervention phases, respectively. The HZ vaccination rates, reported as patients vaccinated among all eligible patients, improved significantly from the pre-intervention period of 10.1% (184/1823) to 51.7% (804/1554) during the intervention phase (p < 0.0001). The documentation rates (vaccine received, vaccine ordered, patient refusal, and deferral reasons) increased from 28% (510/1823) to 72.9% (1133/1554; p < 0.0001). The HZ infection rates decreased significantly from 2% to 0.3% (p = 0.002). Electronic identification of vaccine eligibility and BPA significantly improved HZ vaccination rates. The process required minimal modification of clinic work flow and did not burden the physician's time, and has the potential for self-sustainability and generalizability.

  19. Projecting technology change to improve space technology planning and systems management

    NASA Astrophysics Data System (ADS)

    Walk, Steven Robert

    2011-04-01

    Projecting technology performance evolution has been improving over the years. Reliable quantitative forecasting methods have been developed that project the growth, diffusion, and performance of technology in time, including projecting technology substitutions, saturation levels, and performance improvements. These forecasts can be applied at the early stages of space technology planning to better predict available future technology performance, assure the successful selection of technology, and improve technology systems management strategy. Often what is published as a technology forecast is simply scenario planning, usually made by extrapolating current trends into the future, with perhaps some subjective insight added. Typically, the accuracy of such predictions falls rapidly with distance in time. Quantitative technology forecasting (QTF), on the other hand, includes the study of historic data to identify one of or a combination of several recognized universal technology diffusion or substitution patterns. In the same manner that quantitative models of physical phenomena provide excellent predictions of system behavior, so do QTF models provide reliable technological performance trajectories. In practice, a quantitative technology forecast is completed to ascertain with confidence when the projected performance of a technology or system of technologies will occur. Such projections provide reliable time-referenced information when considering cost and performance trade-offs in maintaining, replacing, or migrating a technology, component, or system. This paper introduces various quantitative technology forecasting techniques and illustrates their practical application in space technology and technology systems management.

  20. Modeling habitat split: landscape and life history traits determine amphibian extinction thresholds.

    PubMed

    Fonseca, Carlos Roberto; Coutinho, Renato M; Azevedo, Franciane; Berbert, Juliana M; Corso, Gilberto; Kraenkel, Roberto A

    2013-01-01

    Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance - the distance between the two required habitats - affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations.

  1. Development of a Multi-Domain Assessment Tool for Quality Improvement Projects.

    PubMed

    Rosenbluth, Glenn; Burman, Natalie J; Ranji, Sumant R; Boscardin, Christy K

    2017-08-01

    Improving the quality of health care and education has become a mandate at all levels within the medical profession. While several published quality improvement (QI) assessment tools exist, all have limitations in addressing the range of QI projects undertaken by learners in undergraduate medical education, graduate medical education, and continuing medical education. We developed and validated a tool to assess QI projects with learner engagement across the educational continuum. After reviewing existing tools, we interviewed local faculty who taught QI to understand how learners were engaged and what these faculty wanted in an ideal assessment tool. We then developed a list of competencies associated with QI, established items linked to these competencies, revised the items using an iterative process, and collected validity evidence for the tool. The resulting Multi-Domain Assessment of Quality Improvement Projects (MAQIP) rating tool contains 9 items, with criteria that may be completely fulfilled, partially fulfilled, or not fulfilled. Interrater reliability was 0.77. Untrained local faculty were able to use the tool with minimal guidance. The MAQIP is a 9-item, user-friendly tool that can be used to assess QI projects at various stages and to provide formative and summative feedback to learners at all levels.

  2. Lunar base habitat designs: Characterizing the environment, and selecting habitat designs for future trade-offs

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Ferrall, Joseph; Seshan, P. K.

    1993-01-01

    A survey of distinct conceptual lunar habitat designs covering the pre- and post-Apollo era is presented. The impact of the significant lunar environmental challenges such as temperature, atmosphere, radiation, soil properties, meteorites, and seismic activity on the habitat design parameters are outlined. Over twenty habitat designs were identified and classified according to mission type, crew size; total duration of stay, modularity, environmental protection measures, and emplacement. Simple selection criteria of (1) post-Apollo design, (2) uniqueness of the habitat design, (3) level of thoroughness in design layout, (4) habitat dimensions are provided, and (5) materials of construction for the habitat shell are specified, are used to select five habitats for future trade studies. Habitat emplacement scenarios are created to examine the possible impact of emplacement of the habitat in different locations, such as lunar poles vs. equatorial, above ground vs. below ground, etc.

  3. Projected future suitable habitat and productivity of Douglas-fir in western North America

    Treesearch

    Aaron R. Weiskittel; Nicholas L. Crookston; Gerald E. Rehfeldt

    2012-01-01

    Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) is one of the most common and commercially important species in western North America. The species can occupy a range of habitats, is long-lived (up to 500 years), and highly productive. However, the future of Douglas-fir in western North America is highly uncertain due to the expected changes in climate conditions....

  4. Dam operations may improve aquatic habitat and offset negative effects of climate change.

    PubMed

    Benjankar, Rohan; Tonina, Daniele; McKean, James A; Sohrabi, Mohammad M; Chen, Quiwen; Vidergar, Dmitri

    2018-05-01

    Dam operation impacts on stream hydraulics and ecological processes are well documented, but their effect depends on geographical regions and varies spatially and temporally. Many studies have quantified their effects on aquatic ecosystem based mostly on flow hydraulics overlooking stream water temperature and climatic conditions. Here, we used an integrated modeling framework, an ecohydraulics virtual watershed, that links catchment hydrology, hydraulics, stream water temperature and aquatic habitat models to test the hypothesis that reservoir management may help to mitigate some impacts caused by climate change on downstream flows and temperature. To address this hypothesis we applied the model to analyze the impact of reservoir operation (regulated flows) on Bull Trout, a cold water obligate salmonid, habitat, against unregulated flows for dry, average, and wet climatic conditions in the South Fork Boise River (SFBR), Idaho, USA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Longitudinal patterns of fish assemblages, aquatic habitat, and water temperature in the Lower Crooked River, Oregon

    USGS Publications Warehouse

    Torgersen, Christian E.; Hockman-Wert, David P.; Bateman, Douglas S.; Leer, David W.; Gresswell, Robert E.

    2007-01-01

    The goal of this project was to examine longitudinal patterns in fish assemblages, aquatic habitat, and water temperature in the Lower Crooked River during summer conditions. Specific objectives were to (1) characterize the spatial distribution of native and non-native fishes, (2) describe variation in channel morphology, substrate composition, and water temperature, and (3) evaluate the associations between fishes, aquatic habitat, and water temperature.

  6. Application of Wind Fetch and Wave Models for Habitat Rehabilitation and Enhancement Projects

    USGS Publications Warehouse

    Rohweder, Jason J.; Rogala, James T.; Johnson, Barry L.; Anderson, Dennis; Clark, Steve; Chamberlin, Ferris; Runyon, Kip

    2008-01-01

    Models based upon coastal engineering equations have been developed to quantify wind fetch length and several physical wave characteristics including significant height, length, peak period, maximum orbital velocity, and shear stress. These models, developed using Environmental Systems Research Institute's ArcGIS 9.2 Geographic Information System platform, were used to quantify differences in proposed island construction designs for three Habitat Rehabilitation and Enhancement Projects (HREPs) in the U.S. Army Corps of Engineers St. Paul District (Capoli Slough and Harpers Slough) and St. Louis District (Swan Lake). Weighted wind fetch was calculated using land cover data supplied by the Long Term Resource Monitoring Program (LTRMP) for each island design scenario for all three HREPs. Figures and graphs were created to depict the results of this analysis. The difference in weighted wind fetch from existing conditions to each potential future island design was calculated for Capoli and Harpers Slough HREPs. A simplistic method for calculating sediment suspension probability was also applied to the HREPs in the St. Paul District. This analysis involved determining the percentage of days that maximum orbital wave velocity calculated over the growing seasons of 2002-2007 exceeded a threshold value taken from the literature where fine unconsolidated sediments may become suspended. This analysis also evaluated the difference in sediment suspension probability from existing conditions to the potential island designs. Bathymetric data used in the analysis were collected from the LTRMP and wind direction and magnitude data were collected from the National Oceanic and Atmospheric Administration, National Climatic Data Center.

  7. High resolution critical habitat mapping and classification of tidal freshwater wetlands in the ACE Basin

    NASA Astrophysics Data System (ADS)

    Strickland, Melissa Anne

    In collaboration with the South Carolina Department of Natural Resources ACE Basin National Estuarine Research Reserve (ACE Basin NERR), the tidal freshwater ecosystems along the South Edisto River in the ACE Basin are being accurately mapped and classified using a LIDAR-Remote Sensing Fusion technique that integrates LAS LIDAR data into texture images and then merges the elevation textures and multispectral imagery for very high resolution mapping. This project discusses the development and refinement of an ArcGIS Toolbox capable of automating protocols and procedures for marsh delineation and microhabitat identification. The result is a high resolution habitat and land use map used for the identification of threatened habitat. Tidal freshwater wetlands are also a critical habitat for colonial wading birds and an accurate assessment of community diversity and acreage of this habitat type in the ACE Basin will support SCDNR's conservation and protection efforts. The maps developed by this study will be used to better monitor the freshwater/saltwater interface and establish a baseline for an ACE NERR monitoring program to track the rates and extent of alterations due to projected environmental stressors. Preliminary ground-truthing in the field will provide information about the accuracy of the mapping tool.

  8. The airspace is habitat

    USGS Publications Warehouse

    Diehl, Robert H.

    2013-01-01

    A preconception concerning habitat persists and has gone unrecognized since use of the term first entered the lexicon of ecological and evolutionary biology many decades ago. Specifically, land and water are considered habitats, while the airspace is not. This might at first seem a reasonable, if unintended, demarcation, since years of education and personal experience as well as limits to perception predispose a traditional view of habitat. Nevertheless, the airspace satisfies the definition and functional role of a habitat, and its recognition as habitat may have implications for policy where expanding anthropogenic development of airspace could impact the conservation of species and subject parts of the airspace to formalized legal protection.

  9. Physical Habitat and Energy Inputs Determine Freshwater Invertebrate Communities in Reference and Cranberry Farm Impacted Northeastern Coastal Zone Streams

    NASA Astrophysics Data System (ADS)

    Lander, D. M. P.; McCanty, S. T.; Dimino, T. F.; Christian, A. D.

    2016-02-01

    The River Continuum Concept (RCC) predicts stream biological communities based on dominant physical structures and energy inputs into streams and predicts how these features and corresponding communities change along the stream continuum. Verifying RCC expectations is important for creating valid points of comparison during stream ecosystem evaluation. These reference expectations are critical for restoration projects, such as the restoration of decommissioned cranberry bogs. Our research compares the physical habitat and freshwater invertebrate functional feeding groups (FWIFFG) of reference, active cranberry farming, and cranberry farm passive restoration sites in Northeastern Coastal Zone streams of Massachusetts to the specific RCC FWIFFG predictions. We characterized stream physical habitat using a semi-quantitative habitat characterization protocol and sampled freshwater invertebrates using the U.S. EPA standard 20-jab multi-habitat protocol. We expected that stream habitat would be most homogeneous at active farming stations, intermediate at restoration stations, and most heterogeneous at reference stations. Furthermore, we expected reference stream FWIFFG would be accurately predicted by the RCC and distributions at restoration and active sites would vary significantly. Habitat data was analyzed using a principle component analysis and results confirmed our predictions showing more homogeneous habitat for the active and reference stations, while showing a more heterogeneous habitat at the reference stations. The FWIFFG chi-squared analysis showed significant deviation from our specific RCC FWIFFG predictions. Because published FWIFFG distributions did not match our empirical values for a least disturbed Northeastern Coastal Zone headwater stream, using our data as a community structure template for current and future restoration projects is not recommend without further considerations.

  10. Habitat Evaluation Procedures (HEP) Report : Rainwater Wildlife Area, 1998-2001 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland rover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens),more » black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2} plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native

  11. Developing a top-down land-use management procedure for fish habitat enhancement

    NASA Astrophysics Data System (ADS)

    Chiang, Li-Chi; Lin, Yu-Pin; Wu, Chen-Huan

    2013-04-01

    Land-use change can influence stream ecosystem and alter instream physical, chemical and biological habitat. For example, urbanization usually contributes to increasing sediment loadings to streams and inappropriate agricultural management results in degradation of stream water quality. Watershed model is an effective way to forecast the watershed response to different land-use change scenarios. We developed a top-down approach from the watershed scale to the microscale by combining the habitat model, land-use change model and watershed hydrological model. This approach can assist land-use planner to make optimal decisions with fish habitat enhancement. The study was conducted in Datuan Stream, located in Tamsui District, New Taipei City and the target species is monk goby (Sicyopterus japonicus). The spatially explicit land-use change model, CLUE-s was first applied to project several future land-use scenarios and the Soil and Water Assessment Tool (SWAT) was then applied to simulate streamflow for different land-use scenarios. The simulated streamflow were used as input data for simulating river habitat, where Habitat Suitability Analysis is one of the most important processes. The relationship between target species and multiple environmental factors of habitat was first developed using the Habitat suitability index (HSI). In this study, we used fish presence probabilities for each velocity and water depth to establish different HSI functions under 4 flow conditions (slack, riffle, pool and run) using genetic programming (GP). The physical habitat model, River 2D, was then applied to simulate the river section and calculate weighted usable area (WUA). Based on the WUA results for different land-use scenarios, we further evaluated the relationships between WUA and land-use/landscape patterns using a spatial pattern analysis program, Fragstats. The results showed that by using the habitat model for classified flows, the habitat suitability curve which reflects

  12. Habitat Suitability Index Models: Beaver

    USGS Publications Warehouse

    Allen, Arthur W.

    1982-01-01

    Habitat preferences of the beaver (Castor canadensis) are described in this publication, which is one of a series of Habitat Suitability Index (HSI) models. Habitat use information is presented in a synthesis of the literature on the species-habitat requirements of the beaver, followed by the development of the HSI model. The model is designed to provide information for use in impact assessment and habitat management activities, and should be used in conjunction with habitat evaluation procedures previously developed by the Fish and Wildlife Service. This revised model updates the original publication dated September 1982.

  13. Interactive effects of temperature and habitat complexity on freshwater communities.

    PubMed

    Scrine, Jennifer; Jochum, Malte; Ólafsson, Jón S; O'Gorman, Eoin J

    2017-11-01

    Warming can lead to increased growth of plants or algae at the base of the food web, which may increase the overall complexity of habitat available for other organisms. Temperature and habitat complexity have both been shown to alter the structure and functioning of communities, but they may also have interactive effects, for example, if the shade provided by additional habitat negates the positive effect of temperature on understory plant or algal growth. This study explored the interactive effects of these two major environmental factors in a manipulative field experiment, by assessing changes in ecosystem functioning (primary production and decomposition) and community structure in the presence and absence of artificial plants along a natural stream temperature gradient of 5-18°C. There was no effect of temperature or habitat complexity on benthic primary production, but epiphytic production increased with temperature in the more complex habitat. Cellulose decomposition rate increased with temperature, but was unaffected by habitat complexity. Macroinvertebrate communities were less similar to each other as temperature increased, while habitat complexity only altered community composition in the coldest streams. There was also an overall increase in macroinvertebrate abundance, body mass, and biomass in the warmest streams, driven by increasing dominance of snails and blackfly larvae. Presence of habitat complexity, however, dampened the strength of this temperature effect on the abundance of macroinvertebrates in the benthos. The interactive effects that were observed suggest that habitat complexity can modify the effects of temperature on important ecosystem functions and community structure, which may alter energy flow through the food web. Given that warming is likely to increase habitat complexity, particularly at higher latitudes, more studies should investigate these two major environmental factors in combination to improve our ability to predict the

  14. Habitat Evaluation Procedures (HEP) Report : Oxbow Conservation Area, 2002-2005 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, Brian

    2005-02-01

    This Habitat Evaluation Procedure (HEP) study was performed to determine baseline habitat units on the Oxbow Conservation Area in Grant County, Oregon. The evaluation is a required part of the Memorandum of Agreement between the Confederated Tribes of the Warm Springs and Bonneville Power Administration (BPA) relating to the acquisition and management of the Oxbow Conservation Area. The HEP team was comprised of individuals from the Washington Department of Fish and Wildlife and the Confederated Tribes of the Warm Springs Reservation of Oregon. The survey was conducted using the following HEP evaluation models for key species: black-capped chickadee (Poecile atricapilla),more » mallard (Anas platyrhynchos), mink (Mustela vison), western meadowlark (Sturnella neglecta), white-tailed deer (Odocoileus virginiana), and yellow warbler (Dendroica petechia). Cover types used in this survey were conifer forest, irrigated meadow, riparian meadow, upland meadow, riparian shrub, upland shrub, and mine tailings. The project generated 701.3 habitat units for mitigation crediting purposes. Results for each HEP species are: (1) Black-capped chickadee habitat was good, with only isolated areas lacking snags or having low tree canopy cover. (2) Mallard habitat was poor in upland meadows and marginal elsewhere due to a lack of herbaceous/shrub cover and low herbaceous height. (3) Mink habitat was good, limited only by the lack of the shrub component. (4) Western meadowlark habitat was marginal in upland meadow and mine tailing cover types and good in irrigated meadow. Percent cover of grass and height of herbaceous variables were limiting factors. (5) White-tailed deer habitat was marginal due to relatively low tree canopy cover, reduced shrub cover, and limited browse diversity. (6) Yellow Warbler habitat was marginal due to less than optimum shrub height and the lack of hydrophytic shrubs. General ratings (poor, marginal, etc.) are described in the introduction section.« less

  15. The Apollo Medical Operations Project: Recommendations to Improve Crew Health and Performance for Future Exploration Missions and Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Jones, Jeffrey A.; Jones, Jeffrey A.; Novak, Joseph D.; Polk, James D.; Gillis, David B.; Schmid, Josef; Duncan, James M.; Davis, Jeffrey R.

    2007-01-01

    Medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), advanced Extravehicular Activity (EVA) suits and Lunar habitat are currently being developed. Crews returning to the lunar surface will construct the lunar habitat and conduct scientific research. Inherent in aggressive surface activities is the potential risk of injury to crewmembers. Physiological responses and the operational environment for short forays during the Apollo lunar missions were studied and documented. Little is known about the operational environment in which crews will live and work and the hardware will be used for long-duration lunar surface operations. Additional information is needed regarding productivity and the events that affect crew function such as a compressed timeline. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The operationally oriented goals of this project were to develop or modify medical requirements for new exploration vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with the multiple entities at NASA and abroad participating in the exploration effort.

  16. The Apollo Medical Operations Project: Recommendations to Improve Crew Health and Performance for Future Exploration Missions and Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Jones, Jeffrey A.; Polk, James D.; Gillis, David B.; Schmid, Joseph; Duncan, James M.; Davis, Jeffrey R.; Novak, Joseph D.

    2007-01-01

    Medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), advanced Extravehicular Activity (EVA) suits and Lunar habitat are currently being developed. Crews returning to the lunar surface will construct the lunar habitat and conduct scientific research. Inherent in aggressive surface activities is the potential risk of injury to crewmembers. Physiological responses to and the operational environment of short forays during the Apollo lunar missions were studied and documented. Little is known about the operational environment in which crews will live and work and the hardware that will be used for long-duration lunar surface operations.Additional information is needed regarding productivity and the events that affect crew function such as a compressed timeline. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The operationally oriented goals of this project were to develop or modify medical requirements for new exploration vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with the multiple entities at NASA and abroad participating in the exploration effort.

  17. The reuse of logistics carriers for the first lunar outpost alternative habitat study

    NASA Technical Reports Server (NTRS)

    Vargas, Carolina

    1992-01-01

    The Systems Definition Branch deals with preliminary concepts/designs of various projects currently in progress at NASA. One of these projects is called the First Lunar Outpost. The First Lunar Outpost (FLO) is a proposed permanent lunar base to be located on the moon. In order to better understand the Lunar Habitat, a detailed analysis of the lunar environment as well as conceptual studies of the physical living arrangements for the support crew is necessary. The habitat will be inhabited for a period of 45 days followed by a six month dormant period. Requirements for the habitat include radiation protection, a safe haven for occasional solar flare storms, an airlock module and consumables to support a crew of 4 with a schedule of 34 extra vehicular activities. Consumables in order to sustain a crew of four for 45 days ranges from 430 kg of food to only 15 kg for personal hygiene items. These consumables must be brought to the moon with every mission. They are transported on logistics carriers. The logistics carrier must be pressurized in order to successfully transport the consumables. Refrigeration along with other types of thermal control and variation in pressure are defined by the list of necessary consumables. The objective of the proposed work was to collaborate the Habitat Team with their study on Logistic Carriers as possible alternatives for additional habitable volume. Options for possible reuses was also determined. From this analysis, a recommended design is proposed.

  18. The reuse of logistics carriers for the first lunar outpost alternative habitat study

    NASA Astrophysics Data System (ADS)

    Vargas, Carolina

    1992-12-01

    The Systems Definition Branch deals with preliminary concepts/designs of various projects currently in progress at NASA. One of these projects is called the First Lunar Outpost. The First Lunar Outpost (FLO) is a proposed permanent lunar base to be located on the moon. In order to better understand the Lunar Habitat, a detailed analysis of the lunar environment as well as conceptual studies of the physical living arrangements for the support crew is necessary. The habitat will be inhabited for a period of 45 days followed by a six month dormant period. Requirements for the habitat include radiation protection, a safe haven for occasional solar flare storms, an airlock module and consumables to support a crew of 4 with a schedule of 34 extra vehicular activities. Consumables in order to sustain a crew of four for 45 days ranges from 430 kg of food to only 15 kg for personal hygiene items. These consumables must be brought to the moon with every mission. They are transported on logistics carriers. The logistics carrier must be pressurized in order to successfully transport the consumables. Refrigeration along with other types of thermal control and variation in pressure are defined by the list of necessary consumables. The objective of the proposed work was to collaborate the Habitat Team with their study on Logistic Carriers as possible alternatives for additional habitable volume. Options for possible reuses was also determined. From this analysis, a recommended design is proposed.

  19. Habitat use by giant panda in relation to man-made forest in Wanglang Nature Reserve of China.

    PubMed

    Kang, Dongwei; Wang, Xiaorong; Yang, Hongwei; Duan, Lijuan; Li, Junqing

    2014-12-01

    To evaluate the effectiveness of human restoration in species conservation, in this study, we undertook a field survey of giant panda (Ailuropoda melanoleuca) habitat and man-made forest habitat in Wanglang Nature Reserve of China. Our results revealed that giant panda did not use the man-made forest in this area so far, and that there were significant differences between the giant panda habitat and the man-made forest habitat. Compared with giant panda habitat, the man-made forest habitat was characterized by lower shrub coverage, thinner trees and lower bamboo density. To improve the effectiveness of human restoration, the habitat requirement of giant panda should be fully consider in the whole process of habitat restoration.

  20. Habitat preferences of baleen whales in a mid-latitude habitat

    NASA Astrophysics Data System (ADS)

    Prieto, Rui; Tobeña, Marta; Silva, Mónica A.

    2017-07-01

    Understanding the dynamics of baleen whale distribution is essential to predict how environmental changes can affect their ecology and, in turn, ecosystem functioning. Recent work showed that mid-latitude habitats along migratory routes may play an important role on the feeding ecology of baleen whales. This study aimed to investigate the function of a mid-latitude habitat for blue (Balaenoptera musculus), fin (Balaenoptera physalus) and sei (Balaenoptera borealis) whales occurring in sympatry during spring and summer months and to what extent their environmental niches overlap. We addressed those questions by developing environmental niche models (ENM) for each species and then making pairwise comparisons of niche overlap and relative habitat patch importance among the three species. ENMs were created using sightings from the Azorean Fisheries Observer Program from May to November, between 2004 and 2009, and a set of 18 predictor environmental variables. We then assessed monthly (April-July) overlap among ENMs using a modified Hellinger's distance metric (I). Results show that the habitat niches of blue and fin whales are strongly influenced by primary productivity and sea surface temperature and are highly dynamic both spatially and temporally due to the oceanography of the region. Niche overlap analyses show that blue and fin whale environmental niches are similar and that the suitable habitats for the two species have high degree of spatial coincidence. These results in combination suggest that this habitat may function as a mid-latitude feeding ground to both species while conditions are adequate. The sei whale model, on the other hand, did not include variables considered to be proxies for prey distribution and little environmental niche overlap was found between this species and the other two. We argue that these results suggest that the region holds little importance as a foraging habitat for the sei whale.

  1. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.

    Treesearch

    Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson

    1979-01-01

    Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.

  2. Ultra-Fine Scale Spatially-Integrated Mapping of Habitat and Occupancy Using Structure-From-Motion.

    PubMed

    McDowall, Philip; Lynch, Heather J

    2017-01-01

    Organisms respond to and often simultaneously modify their environment. While these interactions are apparent at the landscape extent, the driving mechanisms often occur at very fine spatial scales. Structure-from-Motion (SfM), a computer vision technique, allows the simultaneous mapping of organisms and fine scale habitat, and will greatly improve our understanding of habitat suitability, ecophysiology, and the bi-directional relationship between geomorphology and habitat use. SfM can be used to create high-resolution (centimeter-scale) three-dimensional (3D) habitat models at low cost. These models can capture the abiotic conditions formed by terrain and simultaneously record the position of individual organisms within that terrain. While coloniality is common in seabird species, we have a poor understanding of the extent to which dense breeding aggregations are driven by fine-scale active aggregation or limited suitable habitat. We demonstrate the use of SfM for fine-scale habitat suitability by reconstructing the locations of nests in a gentoo penguin colony and fitting models that explicitly account for conspecific attraction. The resulting digital elevation models (DEMs) are used as covariates in an inhomogeneous hybrid point process model. We find that gentoo penguin nest site selection is a function of the topography of the landscape, but that nests are far more aggregated than would be expected based on terrain alone, suggesting a strong role of behavioral aggregation in driving coloniality in this species. This integrated mapping of organisms and fine scale habitat will greatly improve our understanding of fine-scale habitat suitability, ecophysiology, and the complex bi-directional relationship between geomorphology and habitat use.

  3. Ultra-Fine Scale Spatially-Integrated Mapping of Habitat and Occupancy Using Structure-From-Motion

    PubMed Central

    McDowall, Philip; Lynch, Heather J.

    2017-01-01

    Organisms respond to and often simultaneously modify their environment. While these interactions are apparent at the landscape extent, the driving mechanisms often occur at very fine spatial scales. Structure-from-Motion (SfM), a computer vision technique, allows the simultaneous mapping of organisms and fine scale habitat, and will greatly improve our understanding of habitat suitability, ecophysiology, and the bi-directional relationship between geomorphology and habitat use. SfM can be used to create high-resolution (centimeter-scale) three-dimensional (3D) habitat models at low cost. These models can capture the abiotic conditions formed by terrain and simultaneously record the position of individual organisms within that terrain. While coloniality is common in seabird species, we have a poor understanding of the extent to which dense breeding aggregations are driven by fine-scale active aggregation or limited suitable habitat. We demonstrate the use of SfM for fine-scale habitat suitability by reconstructing the locations of nests in a gentoo penguin colony and fitting models that explicitly account for conspecific attraction. The resulting digital elevation models (DEMs) are used as covariates in an inhomogeneous hybrid point process model. We find that gentoo penguin nest site selection is a function of the topography of the landscape, but that nests are far more aggregated than would be expected based on terrain alone, suggesting a strong role of behavioral aggregation in driving coloniality in this species. This integrated mapping of organisms and fine scale habitat will greatly improve our understanding of fine-scale habitat suitability, ecophysiology, and the complex bi-directional relationship between geomorphology and habitat use. PMID:28076351

  4. Detroit River habitat inventory

    USGS Publications Warehouse

    Manny, Bruce A.

    2003-01-01

    This inventory complements a previous survey of habitat in Ontario waters of the Detroit River (OMNR,1993). It is a starting point for balanced and sustained use of the river for natural resource conservation and economic development. The objectives of the inventory were to: (1) locate candidate sites for protection and restoration of fish and wildlife habitat in Michigan waters of the Detroit River; (2) describe the ownership and size of each site, as well as its potential for habitat protection and restoration; and (3) subjectively assess the extent to which existing habitat along the river is productive of fish and wildlife and protected from land uses that have degraded or destroyed such habitat.

  5. Selecting Health Care Improvement Projects: A Methodology Integrating Cause-and-Effect Diagram and Analytical Hierarchy Process.

    PubMed

    Testik, Özlem Müge; Shaygan, Amir; Dasdemir, Erdi; Soydan, Guray

    It is often vital to identify, prioritize, and select quality improvement projects in a hospital. Yet, a methodology, which utilizes experts' opinions with different points of view, is needed for better decision making. The proposed methodology utilizes the cause-and-effect diagram to identify improvement projects and construct a project hierarchy for a problem. The right improvement projects are then prioritized and selected using a weighting scheme of analytical hierarchy process by aggregating experts' opinions. An approach for collecting data from experts and a graphical display for summarizing the obtained information are also provided. The methodology is implemented for improving a hospital appointment system. The top-ranked 2 major project categories for improvements were identified to be system- and accessibility-related causes (45%) and capacity-related causes (28%), respectively. For each of the major project category, subprojects were then ranked for selecting the improvement needs. The methodology is useful in cases where an aggregate decision based on experts' opinions is expected. Some suggestions for practical implementations are provided.

  6. Preventing Stalled Quality Improvement Teams: A Written Test of Project Selectionability.

    ERIC Educational Resources Information Center

    Bacdayan, Paul

    2002-01-01

    Discusses organizations' use of quality improvement teams in total quality management and how they can benefit from training team personnel in how to select projects with a low risk of stalling. Describes an efficient written assessment test of project selection ability designed for those who conduct evaluations of training sessions. (Author/LRW)

  7. Habitat Suitability Index Models: Veery

    USGS Publications Warehouse

    Sousa, Patrick J.

    1982-01-01

    Habitat preferences and species characteristics of the veery (Catharus fuscesens) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available scientific data on the habitat requirements of the veery. Habitat use information is presented in a review of the literature, followed by the development of an HSI model. The model is presented in three formats: graphic; word; and mathematical. Suitability index graphs quantify the species-habitat relationship. These data are synthesized into a model designed to provide information for use in impact assessment and habitat management.

  8. Predicting the effects of proposed Mississippi River diversions on oyster habitat quality; application of an oyster habitat suitability index model

    USGS Publications Warehouse

    Soniat, Thomas M.; Conzelmann, Craig P.; Byrd, Jason D.; Roszell, Dustin P.; Bridevaux, Joshua L.; Suir, Kevin J.; Colley, Susan B.

    2013-01-01

    In an attempt to decelerate the rate of coastal erosion and wetland loss, and protect human communities, the state of Louisiana developed its Comprehensive Master Plan for a Sustainable Coast. The master plan proposes a combination of restoration efforts including shoreline protection, marsh creation, sediment diversions, and ridge, barrier island, and hydrological restoration. Coastal restoration projects, particularly the large-scale diversions of fresh water from the Mississippi River, needed to supply sediment to an eroding coast potentially impact oyster populations and oyster habitat. An oyster habitat suitability index model is presented that evaluates the effects of a proposed sediment and freshwater diversion into Lower Breton Sound. Voluminous freshwater, needed to suspend and broadly distribute river sediment, will push optimal salinities for oysters seaward and beyond many of the existing reefs. Implementation and operation of the Lower Breton Sound diversion structure as proposed would render about 6,173 ha of hard bottom immediately east of the Mississippi River unsuitable for the sustained cultivation of oysters. If historical harvests are to be maintained in this region, a massive and unprecedented effort to relocate private leases and restore oyster bottoms would be required. Habitat suitability index model results indicate that the appropriate location for such efforts are to the east and north of the Mississippi River Gulf Outlet.

  9. Supplemental Environmental Assessment & Finding of No Significant Impact: Louisville Bend State Wildlife Area Fish and Wildlife Habitat Rehabilitation

    DTIC Science & Technology

    2013-05-01

    and Maintenance of the Missouri River Bank Stabilization and Navigation Project, and Operation of the Kansas River Reservoir System, and acquiring and...developing lands to produce habitat as directed by the BSNP Mitigation Project. The proposed project would be constructed under the authority of...the Mitigation Project. The Missouri River BSNP Mitigation Project of Missouri, Kansas , Iowa, and Nebraska was authorized by Section 601 (a) of the

  10. Distant Operational Care Centre: Design Project Report

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The goal of this project is to outline the design of the Distant Operational Care Centre (DOCC), a modular medical facility to maintain human health and performance in space, that is adaptable to a range of remote human habitats. The purpose of this project is to outline a design, not to go into a complete technical specification of a medical facility for space. This project involves a process to produce a concise set of requirements, addressing the fundamental problems and issues regarding all aspects of a space medical facility for the future. The ideas presented here are at a high level, based on existing, researched, and hypothetical technologies. Given the long development times for space exploration, the outlined concepts from this project embodies a collection of identified problems, and corresponding proposed solutions and ideas, ready to contribute to future space exploration efforts. In order to provide a solid extrapolation and speculation in the context of the future of space medicine, the extent of this project's vision is roughly within the next two decades. The Distant Operational Care Centre (DOCC) is a modular medical facility for space. That is, its function is to maintain human health and performance in space environments, through prevention, diagnosis, and treatment. Furthermore, the DOCC must be adaptable to meet the environmental requirements of different remote human habitats, and support a high quality of human performance. To meet a diverse range of remote human habitats, the DOCC concentrates on a core medical capability that can then be adapted. Adaptation would make use of the DOCC's functional modularity, providing the ability to replace, add, and modify core functions of the DOCC by updating hardware, operations, and procedures. Some of the challenges to be addressed by this project include what constitutes the core medical capability in terms of hardware, operations, and procedures, and how DOCC can be adapted to different remote

  11. The Importance of Ambient Sound Level to Characterise Anuran Habitat

    PubMed Central

    Goutte, Sandra; Dubois, Alain; Legendre, Frédéric

    2013-01-01

    Habitat characterisation is a pivotal step of any animal ecology study. The choice of variables used to describe habitats is crucial and need to be relevant to the ecology and behaviour of the species, in order to reflect biologically meaningful distribution patterns. In many species, acoustic communication is critical to individuals’ interactions, and it is expected that ambient acoustic conditions impact their local distribution. Yet, classic animal ecology rarely integrates an acoustic dimension in habitat descriptions. Here we show that ambient sound pressure level (SPL) is a strong predictor of calling site selection in acoustically active frog species. In comparison to six other habitat-related variables (i.e. air and water temperature, depth, width and slope of the stream, substrate), SPL had the most important explanatory power in microhabitat selection for the 34 sampled species. Ambient noise was particularly useful in differentiating two stream-associated guilds: torrents and calmer streams dwelling species. Guild definitions were strongly supported by SPL, whereas slope, which is commonly used in stream-associated habitat, had a weak explanatory power. Moreover, slope measures are non-standardized across studies and are difficult to assess at small scale. We argue that including an acoustic descriptor will improve habitat-species analyses for many acoustically active taxa. SPL integrates habitat topology and temporal information (such as weather and hour of the day, for example) and is a simple and precise measure. We suggest that habitat description in animal ecology should include an acoustic measure such as noise level because it may explain previously misunderstood distribution patterns. PMID:24205070

  12. Machine Reading for Extraction of Bacteria and Habitat Taxonomies

    PubMed Central

    Kordjamshidi, Parisa; Massa, Wouter; Provoost, Thomas; Moens, Marie-Francine

    2015-01-01

    There is a vast amount of scientific literature available from various resources such as the internet. Automating the extraction of knowledge from these resources is very helpful for biologists to easily access this information. This paper presents a system to extract the bacteria and their habitats, as well as the relations between them. We investigate to what extent current techniques are suited for this task and test a variety of models in this regard. We detect entities in a biological text and map the habitats into a given taxonomy. Our model uses a linear chain Conditional Random Field (CRF). For the prediction of relations between the entities, a model based on logistic regression is built. Designing a system upon these techniques, we explore several improvements for both the generation and selection of good candidates. One contribution to this lies in the extended exibility of our ontology mapper that uses an advanced boundary detection and assigns the taxonomy elements to the detected habitats. Furthermore, we discover value in the combination of several distinct candidate generation rules. Using these techniques, we show results that are significantly improving upon the state of art for the BioNLP Bacteria Biotopes task. PMID:27077141

  13. Habitat Suitability Index Models: Pronghorn

    USGS Publications Warehouse

    Allen, Arthur W.; Cook, John G.; Armbruster, Michael J.

    1984-01-01

    This is one of a series of publications that provide information on the habitat requirements of selected fish and wildlife species. Literature describing the relationship between habitat variables related to life requisites and habitat suitability for the pronghorn (Antilocapra americana) are synthesized. These data are subsequently used to develop Habitat Suitability Index (HSI) models. The HSI models are designed to provide information that can be used in impact assessment and habitat management.

  14. Habitat Suitability Index Models: Muskellunge

    USGS Publications Warehouse

    Cook, Mark F.; Solomon, R. Charles

    1987-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the muskellunge (Esox masquinongy Mitchell). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  15. Habitat selection by postbreeding female diving ducks: Influence of habitat attributes and conspecifics

    USGS Publications Warehouse

    Austin, Jane E.; O'Neil, Shawn T.; Warren, Jeffrey M.

    2017-01-01

    Habitat selection studies of postbreeding waterfowl have rarely focused on within-wetland attributes such as water depth, escape cover, and food availability. Flightless waterfowl must balance habitat selection between avoiding predation risks and feeding. Reproductively successful female ducks face the greatest challenges because they begin the definitive prebasic molt at or near the end of brood rearing, when their body condition is at a low point. We assessed the relative importance of habitat attributes and group effects in habitat selection by postbreeding female lesser scaup Aythya affinis on a 2332-ha montane wetland complex during the peak flightless period (August) over seven years. Hypothesis-based habitat attributes included percent open water, open water:emergent edge density, water depth, percent flooded bare substrate, fetch (distance wind can travel unobstructed), group size, and several interactions representing functional responses to interannual variation in water levels. Surveys of uniquely marked females were conducted within randomly ordered survey blocks. We fitted two-part generalized linear mixed-effects models to counts of marked females within survey blocks, which allowed us to relate habitat attributes to relative probability of occurrence and, given the presence of a marked female, abundance of marked individuals. Postbreeding female scaup selected areas with water depths > 40 cm, large open areas, and intermediate edge densities but showed no relation to flooded bare substrate, suggesting their habitat preferences were more influenced by avoiding predation risks and disturbances than in meeting foraging needs. Grouping behavior by postbreeding scaup suggests habitat selection is influenced in part by behavioral components and/or social information, conferring energetic and survival benefits (predation and disturbance risks) but potentially also contributing to competition for food resources. This study demonstrates the importance of

  16. Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) Systems Integration Strategy

    NASA Technical Reports Server (NTRS)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott

    2011-01-01

    The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a rapid prototyping approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process was based on a rapid prototyping approach. Tailored design review and test and integration processes facilitated that approach. The use of collaboration tools including electronic tools as well as documentation enabled a geographically distributed team take a paper concept to an operational prototype in approximately one year. One of the major tools used in the integration strategy was a coordinated effort to accurately model all the subsystems using computer aided design (CAD), so conflicts were identified before physical components came together. A deliberate effort was made following the deployment of the HDU PEM for field operations to collect lessons learned to facilitate process improvement and inform the design of future flight or analog versions of habitat systems. Significant items within those lessons learned were limitations with the CAD integration approach and the impact of shell design on flexibility of placing systems within the HDU shell.

  17. Coastal habitat and biological community response to dam removal on the Elwha River

    USGS Publications Warehouse

    Foley, Melissa M.; Warrick, Jonathan A.; Ritchie, Andrew C.; Stevens, Andrew; Shafroth, Patrick B.; Duda, Jeff; Beirne, Matthew M.; Paradis, Rebecca; Gelfenbaum, Guy R.; McCoy, Randall; Cubley, Erin S.

    2017-01-01

    Habitat diversity and heterogeneity play a fundamental role in structuring ecological communities. Dam emplacement and removal can fundamentally alter habitat characteristics, which in turn can affect associated biological communities. Beginning in the early 1900s, the Elwha and Glines Canyon dams in Washington, USA, withheld an estimated 30 million tonnes of sediment from river, coastal, and nearshore habitats. During the staged removal of these dams—the largest dam removal project in history—over 14 million tonnes of sediment were released from the former reservoirs. Our interdisciplinary study in coastal habitats—the first of its kind—shows how the physical changes to the river delta and estuary habitats during dam removal were linked to responses in biological communities. Sediment released during dam removal resulted in over a meter of sedimentation in the estuary and over 400 m of expansion of the river mouth delta landform. These changes increased the amount of supratidal and intertidal habitat, but also reduced the influx of seawater into the pre-removal estuary complex. The effects of these geomorphic and hydrologic changes cascaded to biological systems, reducing the abundance of macroinvertebrates and fish in the estuary and shifting community composition from brackish to freshwater-dominated species. Vegetation did not significantly change on the delta, but pioneer vegetation increased during dam removal, coinciding with the addition of newly available habitat. Understanding how coastal habitats respond to large-scale human stressors—and in some cases the removal of those stressors—is increasingly important as human uses and restoration activities increase in these habitats.

  18. Forest owner incentives to protect riparian habitat.

    Treesearch

    Jeffrey D. Kline; Ralph J. Alig; Rebecca L. Johnson

    2000-01-01

    Private landowners increasingly are asked to cooperate with landscape-level management to protect or enhance ecological resources. We examine the willingness of nonindustrial private forest owners in the Pacific Northwest (USA) to forego harvesting within riparian areas to improve riparian habitat. An empirical model is developed describing owners' willingness to...

  19. Special Project Grants Awarded for Improvement in Nurse Training. A Listing.

    ERIC Educational Resources Information Center

    National Institutes of Health (DHEW), Bethesda, MD. Div. of Nursing.

    This current directory lists alphabetically by state, special projects funded by the Title II Nurse Training Act of the Health Manpower Act of 1968, which are awarded for improvement programs in nurse training. Projects funded through June 1971 are listed and briefly annotated, including planning grants awarded for the first time during the fiscal…

  20. Improvement of Project Portfolio Management in an Information Technology Consulting Company

    NASA Astrophysics Data System (ADS)

    Kaewta, S.; Chutima, P.

    2014-06-01

    The scope of this research is to improve the efficiency of multiple project management in an information technology consulting company through the adaptation of the project portfolio management technique. The project management information system (PMIS) is implemented to establish effective communication channels so that internal and external teams as well as all relevant stakeholders can be employed to negotiate their work schedules. In addition, all activities created by multiple teams can be systematically reviewed and combined into a single checklist to be used as an agreed working plan for all team members. A general guideline for project portfolio management in information technology consulting companies is also proposed, which could results in a higher level of project on-time delivery.