Sample records for habitat influence life

  1. Potential Habitats for Exotic Life Within the Life Supporting Zone

    NASA Astrophysics Data System (ADS)

    Leitner, Johannes J.; Firneis, Maria G.; Hitzenberger, Regina

    2010-05-01

    Questions like "Are we alone in the universe?", "How unique is Earth as a planet?" or "How unique is water-based life in the universe?" still are nowhere near of being answered. In recent years, discussions on these topics are more and more influenced by questions whether water is really the only possible solvent, or which conditions are necessary for life to evolve in planetary habitats. A change in our present geocentric mindset on the existence of life is required, in order to address these new questions [see also 1]. In May 2009 a new research platform at the University of Vienna was initiated in order to contribute to the solution of these questions. One task is to find essential biomarkers relevant to the problem of the detection of exotic life. In this context exotic life means: life, which is not necessarily based on a double bond between carbon and oxygen (C=O) and not on water as the only possible solvent. At present little is known about metabolistic systems, which are not based on C=O or on metabolisms which are operative in alternative solvents and a high effort of future laboratory work is necessary to open this window for looking for exotic life. To address the whole spectrum of life the concept of a general life supporting zone is introduced in order to extend the classical habitable zone (which is based on liquid water on a planetary surface, [2]). The life supporting zone of a planetary system is composed of different single "habitable zones" for the liquid phases of specific solvents and composites between water and other solvents. Besides exoplanetary systems which seem to be the most promising place for exotic life in our present understanding, some potential places could also exist within our Solar System and habitats like the subsurface of Enceladus, liquid ethane/methane lakes on Titan or habitable niches in the Venus atmosphere will also be taken into account. A preliminary list of appropriate solvents and their abundances in the Solar

  2. Host Life History Strategy, Species Diversity, and Habitat Influence Trypanosoma cruzi Vector Infection in Changing Landscapes

    PubMed Central

    Gottdenker, Nicole L.; Chaves, Luis Fernando; Calzada, José E.; Saldaña, Azael; Carroll, C. Ronald

    2012-01-01

    Background Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama. Methodology/Principal Findings R. pallescens vectors (N = 643) were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3%) vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3%) dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas) were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as rmax, the maximum intrinsic rate of population increase), and habitat type (forest fragments and peridomiciliary sites) were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of rmax were positively associated with higher vector infection rate at a site. Conclusions/Significance In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially

  3. Influence of habitat degradation on fish replenishment

    NASA Astrophysics Data System (ADS)

    McCormick, M. I.; Moore, J. A. Y.; Munday, P. L.

    2010-09-01

    Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.

  4. Linking habitat structure to life history strategy: Insights from a Mediterranean killifish

    NASA Astrophysics Data System (ADS)

    Cavraro, Francesco; Daouti, Irini; Leonardos, Ioannis; Torricelli, Patrizia; Malavasi, Stefano

    2014-01-01

    Modern theories of life history evolution deal with finding links between environmental factors, demographic structure of animal populations and the optimal life history strategy. Small-sized teleost fish, occurring in fragmented populations under contrasting environments, have been widely used as study models to investigate these issues. In the present study, the Mediterranean killifish Aphanius fasciatus was used to investigate the relationships between some habitat features and life history strategy. We selected four sites in the Venice lagoon inhabited by this species, exhibiting different combinations of two factors: overall adult mortality, related to intertidal water coverage and a consequent higher level of predator exposure, and the level of sediment organic matter, as indicator of habitat trophic richness. Results showed that these were the two most important factors influencing demography and life history traits in the four sites. Fish from salt marshes with high predator pressure were smaller and produced a higher number of eggs, whereas bigger fish and a lower reproductive investment were found in the two closed, not tidally influenced habitats. Habitat richness was positively related with population density, but negatively related with growth rate. In particular the synergy between high resources and low predation level was found to be important in shaping peculiar life history traits. Results were discussed in the light of the interactions between selective demographic forces acting differentially on age/size classes, such as predation, and habitat trophic richness that may represent an important energetic constraint on life history traits. The importance to link habitat productivity and morphology to demographic factors for a better understanding of the evolution of life history strategy under contrasting environments was finally suggested.

  5. Architecture and life support systems for a rotating space habitat

    NASA Astrophysics Data System (ADS)

    Misra, Gaurav

    Life Support Systems are critical to sustain human habitation of space over long time periods. As orbiting space habitats become operational in the future, support systems such as atmo-sphere, food, water etc. will play a very pivotal role in sustaining life. To design a long-duration space habitat, it's important to consider the full gamut of human experience of the environment. Long-term viability depends on much more than just the structural or life support efficiency. A space habitat isn't just a machine; it's a life experience. To be viable, it needs to keep the inhabitants satisfied with their condition. This paper provides conceptual research on several key factors that influence the growth and sustainability of humans in a space habitat. Apart from the main life support system parameters, the architecture (both interior and exterior) of the habitat will play a crucial role in influencing the liveability in the space habitat. In order to ensure the best possible liveability for the inhabitants, a truncated (half cut) torus is proposed as the shape of the habitat. This structure rotating at an optimum rpm will en-sure 1g pseudo gravity to the inhabitants. The truncated torus design has several advantages over other proposed shapes such as a cylinder or a sphere. The design provides minimal grav-ity variation (delta g) in the living area, since its flat outer pole ensures a constant gravity. The design is superior in economy of structural and atmospheric mass. Interior architecture of the habitat addresses the total built environment, drawing from diverse disciplines includ-ing physiology, psychology, and sociology. Furthermore, factors such as line of sight, natural sunlight and overhead clearance have been discussed in the interior architecture. Substantial radiation shielding is also required in order to prevent harmful cosmic radiations and solar flares from causing damage to inhabitants. Regolith shielding of 10 tons per meter square is proposed for the

  6. Variation in habitat soundscape characteristics influences settlement of a reef-building coral.

    PubMed

    Lillis, Ashlee; Bohnenstiehl, DelWayne; Peters, Jason W; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata , was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  7. Variation in habitat soundscape characteristics influences settlement of a reef-building coral

    PubMed Central

    Bohnenstiehl, DelWayne; Peters, Jason W.; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata, was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species. PMID:27761342

  8. Vacant habitats in the Universe.

    PubMed

    Cockell, Charles S

    2011-02-01

    The search for life on other planets usually makes the assumption that where there is a habitat, it will contain life. On the present-day Earth, uninhabited habitats (or vacant habitats) are rare, but might occur, for example, in subsurface oils or impact craters that have been thermally sterilized in the past. Beyond Earth, vacant habitats might similarly exist on inhabited planets or on uninhabited planets, for example on a habitable planet where life never originated. The hypothesis that vacant habitats are abundant in the Universe is testable by studying other planets. In this review, I discuss how the study of vacant habitats might ultimately inform an understanding of how life has influenced geochemical conditions on Earth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Habitat selection by postbreeding female diving ducks: Influence of habitat attributes and conspecifics

    USGS Publications Warehouse

    Austin, Jane E.; O'Neil, Shawn T.; Warren, Jeffrey M.

    2017-01-01

    Habitat selection studies of postbreeding waterfowl have rarely focused on within-wetland attributes such as water depth, escape cover, and food availability. Flightless waterfowl must balance habitat selection between avoiding predation risks and feeding. Reproductively successful female ducks face the greatest challenges because they begin the definitive prebasic molt at or near the end of brood rearing, when their body condition is at a low point. We assessed the relative importance of habitat attributes and group effects in habitat selection by postbreeding female lesser scaup Aythya affinis on a 2332-ha montane wetland complex during the peak flightless period (August) over seven years. Hypothesis-based habitat attributes included percent open water, open water:emergent edge density, water depth, percent flooded bare substrate, fetch (distance wind can travel unobstructed), group size, and several interactions representing functional responses to interannual variation in water levels. Surveys of uniquely marked females were conducted within randomly ordered survey blocks. We fitted two-part generalized linear mixed-effects models to counts of marked females within survey blocks, which allowed us to relate habitat attributes to relative probability of occurrence and, given the presence of a marked female, abundance of marked individuals. Postbreeding female scaup selected areas with water depths > 40 cm, large open areas, and intermediate edge densities but showed no relation to flooded bare substrate, suggesting their habitat preferences were more influenced by avoiding predation risks and disturbances than in meeting foraging needs. Grouping behavior by postbreeding scaup suggests habitat selection is influenced in part by behavioral components and/or social information, conferring energetic and survival benefits (predation and disturbance risks) but potentially also contributing to competition for food resources. This study demonstrates the importance of

  10. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem

    PubMed Central

    Muposhi, Victor K.; Gandiwa, Edson; Chemura, Abel; Bartels, Paul; Makuza, Stanley M.; Madiri, Tinaapi H.

    2016-01-01

    An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i) surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii) habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii) spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana) for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats. PMID:27680673

  11. Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities

    NASA Astrophysics Data System (ADS)

    Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.

    2017-10-01

    Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of

  12. Amphibian terrestrial habitat selection and movement patterns vary with annual life-history period

    USGS Publications Warehouse

    Groff, Luke A.; Calhoun, Aram J.K.; Loftin, Cynthia S.

    2017-01-01

    Identification of essential habitat is a fundamental component of amphibian conservation; however, species with complex life histories frequently move among habitats. To better understand dynamic habitat use, we evaluated Wood Frog (Lithobates sylvaticus (LeConte, 1825)) habitat selection and movement patterns during the spring migration and foraging periods and described the spatiotemporal variability of habitats used during all annual life-history periods. We radio-tracked 71 frogs in Maine during 2011–2013 and evaluated spring migration, foraging activity center (FAC), and within-FAC habitat selection. Telemetered frogs spent the greatest percentage of each field season in hibernacula (≥54.4%), followed by FACs (≥25.5%), migration habitat (≥16.9%), and breeding sites (≥4.5%). FACs ranged 49 – 1 335 m2 (568.0 ± 493.4 m2) and annual home ranges spanned 1 413 – 32 165 m2 (11 780.6 ± 12 506.1 m2). During spring migration, Wood Frogs exhibited different movement patterns (e.g., turn angles), selected different habitat features, and selected habitat features less consistently than while occupying FACs, indicating that the migration and foraging periods are ecologically distinct. Habitat-use studies that do not discriminate among annual life-history periods may obscure true ecological relationships and fail to identify essential habitat necessary for sustaining amphibian populations.

  13. The Influence of Prescribed Fire, Habitat, and Weather on Amblyomma americanum (Ixodida: Ixodidae) in West-Central Illinois, USA.

    PubMed

    Gilliam, Mary E; Rechkemmer, Will T; McCravy, Kenneth W; Jenkins, Seán E

    2018-03-22

    The distribution of Amblyomma americanum (L.) is changing and reports of tick-borne disease transmitted by A. americanum are increasing in the USA. We used flagging to collect ticks, surveyed vegetation and collected weather data in 2015 and 2016. A. americanum dominated collections in both years (97%). Ticks did not differ among burn treatments; however, tick abundance differed between years among total, adult, and larval ticks. Habitat variables showed a weak negative correlation to total ticks in respect to: Shannon diversity index, percent bare ground, perennial cover, and coarse woody debris. Nymphal ticks showed a weak negative correlation to percent bare ground and fewer adults were collected in areas with more leaf litter and coarse woody debris. Conversely, we found larvae more often in areas with more total cover, biennials, vines, shrubs, and leaf litter, suggesting habitat is important for this life stage. We compared weather variables to tick presence and found, in 2015, temperature, precipitation, humidity, and sample period influenced tick collection and were life stage specific. In 2016, temperature, precipitation, humidity, wind, and sample period influenced tick collection and were also life stage specific. These results indicate that spring burns in an oak woodland do not reduce ticks; other variables such as habitat and weather are more influential on tick abundance or presence at different life stages.

  14. Habitat-based constraints on food web structure and parasite life cycles.

    PubMed

    Rossiter, Wayne; Sukhdeo, Michael V K

    2014-04-01

    Habitat is frequently implicated as a powerful determinant of community structure and species distributions, but few studies explicitly evaluate the relationship between habitat-based patterns of species' distributions and the presence or absence of trophic interactions. The complex (multi-host) life cycles of parasites are directly affected by these factors, but almost no data exist on the role of habitat in constraining parasite-host interactions at the community level. In this study the relationship(s) between species abundances, distributions and trophic interactions (including parasitism) were evaluated in the context of habitat structure (classic geomorphic designations of pools, riffles and runs) in a riverine community (Raritan River, Hunterdon County, NJ, USA). We report 121 taxa collected over a 2-year period, and compare the observed food web patterns to null model expectations. The results show that top predators are constrained to particular habitat types, and that species' distributions are biased towards pool habitats. However, our null model (which incorporates cascade model assumptions) accurately predicts the observed patterns of trophic interactions. Thus, habitat strongly dictates species distributions, and patterns of trophic interactions arise as a consequence of these distributions. Additionally, we find that hosts utilized in parasite life cycles are more overlapping in their distributions, and this pattern is more pronounced among those involved in trophic transmission. We conclude that habitat structure may be a strong predictor of parasite transmission routes, particularly within communities that occupy heterogeneous habitats.

  15. Developing closed life support systems for large space habitats

    NASA Technical Reports Server (NTRS)

    Phillips, J. M.; Harlan, A. D.; Krumhar, K. C.

    1978-01-01

    In anticipation of possible large-scale, long-duration space missions which may be conducted in the future, NASA has begun to investigate the research and technology development requirements to create life support systems for large space habitats. An analysis suggests the feasibility of a regeneration of food in missions which exceed four years duration. Regeneration of food in space may be justified for missions of shorter duration when large crews must be supported at remote sites such as lunar bases and space manufacturing facilities. It is thought that biological components consisting principally of traditional crop and livestock species will prove to be the most acceptable means of closing the food cycle. A description is presented of the preliminary results of a study of potential biological components for large space habitats. Attention is given to controlled ecosystems, Russian life support system research, controlled-environment agriculture, and the social aspects of the life-support system.

  16. Modeling and simulation of an aquatic habitat for bioregenerative life support research

    NASA Astrophysics Data System (ADS)

    Drayer, Gregorio E.; Howard, Ayanna M.

    2014-01-01

    Long duration human spaceflight poses challenges for spacecraft autonomy and the regeneration of life support consumables, such as oxygen and water. Bioregenerative life support systems (BLSS), which make use of biological processes to transform biological byproducts back into consumables, have the ability to recycle organic byproducts and are the preferred option for food production. A limitation in BLSS research is in the non-availability of small-scale experimental capacities that may help to better understand the challenges in system closure, integration, and control. Ground-based aquatic habitats are an option for small-scale research relevant to bioregenerative life support systems (BLSS), given that they can operate as self-contained systems enclosing a habitat composed of various species in a single volume of water. The purpose of this paper is to present the modeling and simulation of a reconfigurable aquatic habitat for experiments in regenerative life support automation; it supports the use of aquatic habitats as a small-scale approach to experiments relevant to larger-scale regenerative life support systems. It presents ground-based aquatic habitats as an option for small-scale BLSS research focusing on the process of respiration, and elaborates on the description of biological processes by introducing models of ecophysiological phenomena for consumers and producers: higher plants of the species Bacopa monnieri produce O2 for snails of the genus Pomacea; the snails consume O2 and generate CO2, which is used by the plants in combination with radiant energy to generate O2 through the process of photosynthesis. Feedback controllers are designed to regulate the concentration of dissolved oxygen in the water. This paper expands the description of biological processes by introducing models of ecophysiological phenomena of the organisms involved. The model of the plants includes a description of the rate of CO2 assimilation as a function of irradiance

  17. Does habitat fragmentation influence nest predation in the shortgrass prairie?

    USGS Publications Warehouse

    Howard, M.N.; Skagen, S.K.; Kennedy, P.L.

    2001-01-01

    We examined the effects of habitat fragmentation and vegetation structure of shortgrass prairie and Conservation Reserve Program (CRP) lands on predation rates of artificial and natural nests in northeastern Colorado. The CRP provides federal payments to landowners to take highly erodible cropland out of agricultural production. In our study area, CRP lands have been reseeded primarily with non-native grasses, and this vegetation is taller than native shortgrass prairie. We measured three indices of habitat fragmentation (patch size, degree of matrix fragmentation, and distance from edge), none of which influenced mortality rates of artificial or natural nests. Vegetation structure did influence predation rates of artificial nests; daily mortality decreased significantly with increasing vegetation height. Vegetation structure did not influence predation rates of natural nests. CRP lands and shortgrass sites did not differ with respect to mortality rates of artificial nests. Our study area is only moderately fragmented; 62% of the study area is occupied by native grassland. We conclude that the extent of habitat fragmentation in our study area does not result in increased predation in remaining patches of shortgrass prairie habitat.

  18. Ecological opportunities, habitat, and past climatic fluctuations influenced the diversification of modern turtles.

    PubMed

    Rodrigues, João Fabrício Mota; Diniz-Filho, José Alexandre Felizola

    2016-08-01

    Habitat may be viewed as an important life history component potentially related to diversification patterns. However, differences in diversification rates between aquatic and terrestrial realms are still poorly explored. Testudines is a group distributed worldwide that lives in aquatic and terrestrial environments, but until now no-one has evaluated the diversification history of the group as a whole. We aim here to investigate the diversification history of turtles and to test if habitat influenced speciation rate in these animals. We reconstructed the phylogeny of the modern species of chelonians and estimated node divergence dates using molecular markers and a Bayesian approach. Then, we used Bayesian Analyses of Macroevolutionary Mixtures to evaluate the diversification history of turtles and evaluate the effect of habitat on this pattern. Our reconstructed phylogeny covered 300 species (87% of the total diversity of the group). We found that the emydid subfamily Deirochelyinae, which forms the turtle hotspot in south-eastern United States, had an increase in its speciation rate, and that Galapagos tortoises had similar increases. Current speciation rates are lower in terrestrial turtles, contradicting studies supporting the idea terrestrial animals diversify more than aquatic species. Our results suggest that habitat, ecological opportunities, island invasions, and climatic factors are important drivers of diversification in modern turtles and reinforce the importance of habitat as a diversification driver. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Human disturbance and stage-specific habitat requirements influence snowy plover site occupancy during the breeding season

    PubMed Central

    Webber, Alyson F; Heath, Julie A; Fischer, Richard A

    2013-01-01

    Habitat use has important consequences for avian reproductive success and survival. In coastal areas with recreational activity, human disturbance may limit use of otherwise suitable habitat. Snowy plovers Charadrius nivosus have a patchy breeding distribution along the coastal areas on the Florida Panhandle, USA. Our goal was to determine the relative effects of seasonal human disturbance and habitat requirements on snowy plover habitat use. We surveyed 303 sites for snowy plovers, human disturbance, and habitat features between January and July 2009 and 2010. We made multiple visits during three different sampling periods that corresponded to snowy plover breeding: pre-breeding, incubation, and brood-rearing and used multi-season occupancy models to examine whether human disturbance, habitat features, or both influenced site occupancy, colonization (probability of transition from an unoccupied site to an occupied site), and extinction (probability of transition from an occupied site to an unoccupied site). Snowy plover site occupancy and colonization was negatively associated with human disturbance and site extinction was positively associated with human disturbance. Interdune vegetation had a negative effect on occupancy and colonization, indicating that plovers were less likely to use areas with uniform, dense vegetation among dunes. Also, dune shape, beach debris, and access to low-energy foraging areas influenced site occupancy, colonization, and extinction. Plovers used habitat based on beach characteristics that provided stage-specific resource needs; however, human disturbance was the strongest predictor of site occupancy. In addition, vegetation plantings used to enhance dune rehabilitation may negatively impact plover site occupancy. Management actions that decrease human disturbance, such as symbolic fencing and signage, may increase the amount of breeding habitat available to snowy plovers on the Florida Panhandle and in other areas with high human

  20. Mars polar cap: a habitat for elementary life1

    NASA Astrophysics Data System (ADS)

    Wallis, M. K.; Wickramasinghe, N. C.

    2009-04-01

    Ices in the Martian polar caps are potential habitats for various species of microorganisms. Salts in the ice and biological anti-freeze polymers maintain liquid in cracks in the ices far below 0°C, possibly down to the mean 220-240 K. Sub-surface microbial life is shielded from ultraviolet (UV) radiation, but could potentially be activated on south-facing slopes under the midday, midsummer Sun. Such life would be limited by low levels of vapour, little transport of nutrients, low light levels below a protective dirt-crust, frost accumulation at night and in shadows, and little if any active translocation of organisms. As in the Antarctic and in permafrost, movement to new habitats depends on geo-climatic changes, which for Mars's north polar cap occur on a 50 000 year scale, except for rare meteorite impacts.

  1. Factors influencing habitat selection by arboreal pit vipers.

    PubMed

    Sawant, Nitin S; Jadhav, Trupti D

    2013-01-01

    We studied factors influencing habitat selection by two arboreal species of pit viper, namely Trimeresurus malabaricus (Malabar pit viper) and T. gramineus (Bamboo pit viper). The macrohabitat of these species was classified as forest, forest edge, or open habitat. To determine microhabitat selection, a variety of features at every other snake location were measured. Whether or not the animal was found in a tree, the tree species, its height of perch, position on the branch (distal/ apical/middle), diameter of the branch, the tree canopy (thick/sparse) and vegetation of the area (thick/sparse) were recorded. Assessment of habitat was done to determine how patterns of habitat use vary seasonally. Shaded ambient (air) temperatures and humidity were recorded. Data pertaining to 90 individuals of T. malabaricus and 100 individuals of T. gramineus were recorded. Trimeresurus malabaricus selected home ranges that included areas with thick vegetation and were encountered at regions of higher altitude. Neither of the species was found in open habitats. Both of the species preferred diverse habitats and were spread over the entire available space during the monsoon; they did not show any preference for the perch height during different seasons. Males had a positive correlation between body mass and preferred perch diameter. The present study suggests that several factors play an important role in habitat selection by these arboreal pit vipers, thus making them highly habitat-specific.

  2. Where Wolves Kill Moose: The Influence of Prey Life History Dynamics on the Landscape Ecology of Predation

    PubMed Central

    Montgomery, Robert A.; Vucetich, John A.; Roloff, Gary J.; Bump, Joseph K.; Peterson, Rolf O.

    2014-01-01

    The landscape ecology of predation is well studied and known to be influenced by habitat heterogeneity. Little attention has been given to how the influence of habitat heterogeneity on the landscape ecology of predation might be modulated by life history dynamics of prey in mammalian systems. We demonstrate how life history dynamics of moose (Alces alces) contribute to landscape patterns in predation by wolves (Canis lupus) in Isle Royale National Park, Lake Superior, USA. We use pattern analysis and kernel density estimates of moose kill sites to demonstrate that moose in senescent condition and moose in prime condition tend to be wolf-killed in different regions of Isle Royale in winter. Predation on senescent moose was clustered in one kill zone in the northeast portion of the island, whereas predation on prime moose was clustered in 13 separate kill zones distributed throughout the full extent of the island. Moreover, the probability of kill occurrence for senescent moose, in comparison to prime moose, increased in high elevation habitat with patches of dense coniferous trees. These differences can be attributed, at least in part, to senescent moose being more vulnerable to predation and making different risk-sensitive habitat decisions than prime moose. Landscape patterns emerging from prey life history dynamics and habitat heterogeneity have been observed in the predation ecology of fish and insects, but this is the first mammalian system for which such observations have been made. PMID:24622241

  3. Spatial variation in density and size structure indicate habitat selection throughout life stages of two Southwestern Atlantic snappers.

    PubMed

    Aschenbrenner, Alexandre; Hackradt, Carlos Werner; Ferreira, Beatrice Padovani

    2016-02-01

    The early life history of Lutjanus alexandrei and Lutjanus jocu in Southwestern Atlantic is still largely unknown. Habitat use of different life stages (i.e. size categories and densities) of the Brazilian snapper (L. alexandrei) and dog snapper (L. jocu) was examined in a tropical portion of NE coast of Brazil. Visual surveys were conducted in different shallow habitats (mangroves and reefs). Both snapper species showed higher densities in early life stages in mangrove habitat, with a clear increase in fish size from mangrove to adjacent reefs. Post-settler individuals were exclusively found in mangroves for both species. Juveniles of L. alexandrei were also registered only in mangroves, while sub-adult individuals were associated with both mangrove and reef habitats. Mature individuals of L. alexandrei were only observed in reef habitats. Juvenile and sub-adult individuals of the dog snapper were both associated with mangrove and reef habitats, with high densities registered in mangroves. Mature individuals of L. jocu were not registered in the study area. This pattern suggests preference for mangrove habitat in early life stages for both species. Ontogenetic movement between habitats was also recorded. This pattern denotes habitat selection across different life cycle of both species. Such information highlights the importance of directing management and conservation efforts to these habitats to secure the continuity of contribution to adult populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Influence of habitat on behavior of Towndsend's ground squirrels (Spermophilus townsendii)

    USGS Publications Warehouse

    Sharpe, Peter B.; Van Horne, Beatrice

    1998-01-01

    Trade-offs between foraging and predator avoidance may affect an animal's survival and reproduction. These trade-offs may be influenced by differences in vegetative cover, especially if foraging profitability and predation risk differ among habitats. We examined above-ground activity of Townsend's ground squirrels (Spermophilus townsendii) in four habitats in the Snake River Birds of Prey National Conservation Area in southwestern Idaho to determine if behavior of ground squirrels varied among habitats, and we assessed factors that might affect perceived predation risk (i. e. predator detectability, predation pressure, population density). The proportion of time spent in vigilance by ground squirrels in winterfat (Krascheninnikovia lanata) and mosaic habitats of winterfat-sagebrush (Artemisia tridentata) was more than twice that of ground squirrels in burned and unburned sagebrush habitats. We found no evidence for the 'many-eyes' hypothesis as an explanation for differences in vigilance among habitats. Instead, environmental heterogeneity, especially vegetation structure, likely influenced activity budgets of ground squirrels. Differences in vigilance may have been caused by differences in predator detectability and refuge availability, because ground squirrels in the winterfat and mosaic habitats also spent more time in upright vigilant postures than ground squirrels in burned-sagebrush or sagebrush habitats. Such postures may enhance predator detection in low-growing winterfat.

  5. Life history comparison of two terrestrial isopods in relation to habitat specialization

    NASA Astrophysics Data System (ADS)

    Quadros, Aline Ferreira; Caubet, Yves; Araujo, Paula Beatriz

    2009-03-01

    For many animal species, there is a relationship between life history strategies, as predicted by the r- K-selection theory, degree of habitat specialization and response to habitat alteration and loss. Here we compare two sympatric woodlice species with contrasting patterns of habitat use and geographical distribution. We predict that Atlantoscia floridana (Philosciidae), considered a habitat generalist, would exhibit the r-selected traits, whereas Balloniscus glaber (Balloniscidae), considered a habitat specialist, should have the K-selected traits. We analyzed several life history traits as well as life and fecundity tables using 715 and 842 females of A. floridana and B. glaber, respectively, from populations living in syntopy in southern Brazil. As predicted, most evaluated traits allow A. floridana to be considered an r-strategist and B. glaber a K-strategist: A. floridana showed a shorter lifetime, faster development, earlier reproduction, a smaller parental investment, higher net reproductive rate ( R0), a higher growth rate ( r) and a shorter generation time ( T) in comparison to B. glaber. A. floridana seems to be a successful colonizer with a high reproductive output. These characteristics explain its local abundance, commonness and wide geographical distribution. On the contrary, B. glaber has a restricted geographical distribution that is mainly associated with Atlantic forest fragments, a biome threatened by deforestation and replacement by monocultures. Its narrow distribution combined with the K-selected traits may confer to this species an increased extinction risk.

  6. Unusual larval habitats and life history of chironomid (Diptera) genera

    USGS Publications Warehouse

    Hudson, Patrick L.

    1987-01-01

    Ninety-three genera, representing all subfamilies of Chironomidae, are organized into 9 categories of unusual habitats or life history including hygropetric, riparian (bank, floodplain, upland), hyporheic, symbiotic, and intertidal; others live in water held in plants or mine into unusual substrates. In riparian zones precise location of optimum habitat is difficult to determine as is definition of habitat within the continuum from shoreline to upland areas. The ecological importance of the riparian group appears to lie in its processing of coarse particulate matter along the floodplain of streams and rivers. All riparian genera are zoogeographically useful and can be used in reconstructing evolutionary dispersal pathways because they are adapted to unique habits that have remained largely undisturbed by human activities.

  7. The habitat and nature of early life.

    PubMed

    Nisbet, E G; Sleep, N H

    2001-02-22

    Earth is over 4,500 million years old. Massive bombardment of the planet took place for the first 500-700 million years, and the largest impacts would have been capable of sterilizing the planet. Probably until 4,000 million years ago or later, occasional impacts might have heated the ocean over 100 degrees C. Life on Earth dates from before about 3,800 million years ago, and is likely to have gone through one or more hot-ocean 'bottlenecks'. Only hyperthermophiles (organisms optimally living in water at 80-110 degrees C) would have survived. It is possible that early life diversified near hydrothermal vents, but hypotheses that life first occupied other pre-bottleneck habitats are tenable (including transfer from Mars on ejecta from impacts there). Early hyperthermophile life, probably near hydrothermal systems, may have been non-photosynthetic, and many housekeeping proteins and biochemical processes may have an original hydrothermal heritage. The development of anoxygenic and then oxygenic photosynthesis would have allowed life to escape the hydrothermal setting. By about 3,500 million years ago, most of the principal biochemical pathways that sustain the modern biosphere had evolved, and were global in scope.

  8. Habitat-specific differences alter traditional biogeographic patterns of life history in a climate-change induced range expansion.

    PubMed

    Riley, Megan E; Griffen, Blaine D

    2017-01-01

    Range shifts and expansions resulting from global climate change have the potential to create novel communities with unique plant-animal interactions. Organisms expanding their range into novel biotic and abiotic environments may encounter selection pressures that alter traditional biogeographic patterns of life history traits. Here, we used field surveys to examine latitudinal patterns of life history traits in a broadly distributed ectotherm (mangrove tree crab Aratus pisonii) that has recently experienced a climate change-induced range expansion into a novel habitat type. Additionally, we conducted laboratory and field experiments to investigate characteristics associated with these life history traits (e.g. fecundity, offspring quality, and potential selection pressures). We compared these characteristics in native mangrove habitats in which the species has historically dwelled and novel salt marsh habitats into which the species has recently expanded its range. Consistent with traditional biogeographic concepts (i.e. Bergmann's clines), size at maturity and mean body size of reproductive females increased with latitude within the native habitat. However, they decreased significantly in novel habitats at the highest latitudes of the species' range, which was consistent with habitat-specific differences in both biotic (predation) and abiotic (temperature) selection pressures. Although initial maternal investment (egg volume and weight) did not differ between habitats, fecundity was lower in novel habitats as a result of differences in size at reproduction. Offspring quality, as measured by larval starvation resistance, was likewise diminished in novel habitats relative to native habitats. These differences in offspring quality may have enduring consequences for species success and persistence in novel habitats. Life history characteristics such as those investigated here are fundamental organismal traits; consequently, understanding the potential impacts of

  9. The influence of habitat fragmentation on helminth communities in rodent populations from a Brazilian Mountain Atlantic Forest.

    PubMed

    Cardoso, T S; Simões, R O; Luque, J L F; Maldonado, A; Gentile, R

    2016-07-01

    The influence of habitat structure on helminth communities of three sigomdontinae rodent species (Akodon cursor, A. montensis and Oligoryzomys nigripes) was investigated in forest fragments within an agricultural landscape in south-eastern Brazil. This is a pionner study correlating the occurrence of helminth species of rodent hosts with microhabitat characteristics. Rodents were collected from 12 fragments and in a continuous conserved area. Up to 13 nematode, three cestode and two trematode species were identified, and habitat fragmentation was found to have more influence on the helminth composition of O. nigripes compared to the other two rodent species. Fragmentation appeared to limit the development of some helminths' life cycles, e.g. with some species such as Trichofreitasia lenti, Protospirura numidica, Cysticercus fasciolaris and Avellaria sp., occurring mostly in areas with less anthropic impact. However, fragmentation did not seem to affect the life cycles of other dominant helminths, such as the trematode Canaania obesa, the nematodes Stilestrongylus lanfrediae, S. eta and S. aculeata, and the cestode Rodentolepis akodontis. The helminth community structure followed a nested pattern of distribution in A. montensis and O. nigripes. Stilestrongylus lanfrediae seemed to be more associated with dense understorey, C. obesa with open canopy and dense understorey, and Guerrerostrongylus zetta with organic matter on the ground. Their presence in each area may be explained by aspects of their life cycles that take place in the external environment outside the host.

  10. Available benthic habitat type may influence predation risk in larval lampreys

    USGS Publications Warehouse

    Smith, Dustin M.; Welsh, Stuart A.; Turk, Philip J.

    2012-01-01

    Population declines of lamprey species have largely been attributed to habitat degradation, yet there still remain many unanswered questions about the relationships between lampreys and their habitats (Torgensen & Close 2004; Smith et al. 2011). One scarcely researched area of lamprey ecology is the effect of predation on lampreys (Cochran 2009). Specifically, the influence of available habitat on predation risk has not been documented for larval lampreys but may be important to the management and conservation of lamprey populations.

  11. Predator identity influences the effect of habitat management on nest predation.

    PubMed

    Lyons, Timothy P; Miller, James R; Debinski, Diane M; Engle, David M

    2015-09-01

    Predation is the leading cause of nest failure for many passerines and considerable effort is devoted to identifying the habitat characteristics and management practices that influence nest loss. The habitat components associated with nest loss are strongly influenced by the ecology of nest predators and differ among predator species as a result. Nevertheless, there is a tendency to generalize about the effects of habitat features and management on nest failure without considering how resulting patterns are influenced by nest predators. We examined how predator-specific patterns of nest loss differed among predators and in response to grassland management with fire and grazing by cattle (Bos taurus). We used video cameras to monitor and identify predators at nests of the Grasshopper Sparrow (Ammodramus savannarum), a species of conservation concern throughout its range. We observed predation by 15 different species that differed in their response to management and the habitat characteristics associated with nests they preyed on. Losses to mammals and snakes were more likely at nests with greater amounts of litter cover and tall fescue (Schedonorus phoenix). Mammals were less likely to prey on nests surrounded by greater forb cover. Nest predation by snakes was lower in burned areas, whereas predation by mammals and Brown-headed Cowbirds (Molothrus ater) was unaffected by the use of fire. Neither vegetation density at the nest, nor landscape context was related to nest loss by any predator taxon. Although there were many similarities, we identified important differences in the species composing the nest predator community between our. study and other published research. These differences are likely to be responsible for geographic variation in the influence of habitat features and management actions on nest success. Our results demonstrate the need for natural resource managers to incorporate knowledge of local nest predators and their ecology when developing

  12. Habitat heterogeneity influences restoration efficacy: Implications of a habitat-specific management regime for an invaded marsh

    NASA Astrophysics Data System (ADS)

    Tang, Long; Gao, Yang; Wang, Cheng-Huan; Li, Bo; Chen, Jia-Kuan; Zhao, Bin

    2013-07-01

    Invasive species have to be managed to prevent adverse consequences. Spartina alterniflora has invaded many marshes where salinity and inundation are often key factors affecting vegetation. The former was surface clipped twice and native Phragmites australis was planted in invaded zones to examine the effects of habitat properties on the efficacy of invader control and native restoration. The results showed that two clipping treatments almost eliminated S. alterniflora in the zones with long inundation periods of 80 h/15 d but stimulated compensatory growth of S. alterniflora in the zones with short inundation periods. Transplanted P. australis performed better over time in zones with low salinity (<10.5 psu) but performed poorly in high-salinity zones, indicating that the efficacy of invader management and native restoration activities changes significantly along habitat gradients. With a progression from the dyke to the seaward side of the studied marsh, there was a long then short then long inundation period whereas salinity increased consistently. The study indicates that the high-frequency removal of the above-ground parts of S. alterniflora should be used only in the middle tidal zones and that native vegetation should be planted in zones above the mean high water level while the others zones in the saltmarsh should be restored to mud flats. Usually, invasive plants can flourish in highly heterogeneous habitats, which can influence management efficacy by influencing the re-growth of treated invaders and the performance of restored native species. Therefore, habitat-specific management regimes for invasive species can be expected to be more efficient because of their dependence on specific habitats.

  13. Influence of habitat and intrinsic characteristics on survival of neonatal pronghorn

    USGS Publications Warehouse

    Jacques, Christopher N.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.

    2015-01-01

    Increased understanding of the influence of habitat (e.g., composition, patch size) and intrinsic (e.g., age, birth mass) factors on survival of neonatal pronghorn (Antilocapra americana) is a prerequisite to successful management programs, particularly as they relate to population dynamics and the role of population models in adaptive species management. Nevertheless, few studies have presented empirical data quantifying the influence of habitat variables on survival of neonatal pronghorn. During 2002–2005, we captured and radiocollared 116 neonates across two sites in western South Dakota. We documented 31 deaths during our study, of which coyote (Canis latrans) predation (n = 15) was the leading cause of mortality. We used known fate analysis in Program MARK to investigate the influence of intrinsic and habitat variables on neonatal survival. We generated a priori models that we grouped into habitat and intrinsic effects. The highest-ranking model indicated that neonate mortality was best explained by site, percent grassland, and open water habitat; 90-day survival (0.80; 90% CI = 0.71–0.88) declined 23% when grassland and water increased from 80.1 to 92.3% and 0.36 to 0.40%, respectively, across 50% natal home ranges. Further, our results indicated that grassland patch size and shrub density were important predictors of neonate survival; neonate survival declined 17% when shrub density declined from 5.0 to 2.5 patches per 100 ha. Excluding the site covariates, intrinsic factors (i.e., sex, age, birth mass, year, parturition date) were not important predictors of survival of neonatal pronghorns. Further, neonatal survival may depend on available land cover and interspersion of habitats. We have demonstrated that maintaining minimum and maximum thresholds for habitat factors (e.g., percentages of grassland and open water patches, density of shrub patches) throughout natal home ranges will in turn, ensure relatively high (>0.50) neonatal survival rates

  14. The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues.

    PubMed

    Marion, Giles M; Fritsen, Christian H; Eicken, Hajo; Payne, Meredith C

    2003-01-01

    The putative ocean of Europa has focused considerable attention on the potential habitats for life on Europa. By generally clement Earth standards, these Europan habitats are likely to be extreme environments. The objectives of this paper were to examine: (1) the limits for biological activity on Earth with respect to temperature, salinity, acidity, desiccation, radiation, pressure, and time; (2) potential habitats for life on Europa; and (3) Earth analogues and their limitations for Europa. Based on empirical evidence, the limits for biological activity on Earth are: (1) the temperature range is from 253 to 394 K; (2) the salinity range is a(H2O) = 0.6-1.0; (3) the desiccation range is from 60% to 100% relative humidity; (4) the acidity range is from pH 0 to 13; (5) microbes such as Deinococcus are roughly 4,000 times more resistant to ionizing radiation than humans; (6) the range for hydrostatic pressure is from 0 to 1,100 bars; and (7) the maximum time for organisms to survive in the dormant state may be as long as 250 million years. The potential habitats for life on Europa are the ice layer, the brine ocean, and the seafloor environment. The dual stresses of lethal radiation and low temperatures on or near the icy surface of Europa preclude the possibility of biological activity anywhere near the surface. Only at the base of the ice layer could one expect to find the suitable temperatures and liquid water that are necessary for life. An ice layer turnover time of 10 million years is probably rapid enough for preserving in the surface ice layers dormant life forms originating from the ocean. Model simulations demonstrate that hypothetical oceans could exist on Europa that are too cold for biological activity (T < 253 K). These simulations also demonstrate that salinities are high, which would restrict life to extreme halophiles. An acidic ocean (if present) could also potentially limit life. Pressure, per se, is unlikely to directly limit life on Europa. But

  15. Modelling the Influence of Long-Term Hydraulic Conditions on Juvenile Salmon Habitats in AN Upland Scotish River

    NASA Astrophysics Data System (ADS)

    Fabris, L.; Malcolm, I.; Millidine, K. J.; Buddendorf, B.; Tetzlaff, D.; Soulsby, C.

    2015-12-01

    Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream

  16. Geologic influences on Apache trout habitat in the White Mountains of Arizona

    Treesearch

    Jonathan W. Long; Alvin L. Medina

    2006-01-01

    Geologic variation has important influences on habitat quality for species of concern, but it can be difficult to evaluate due to subtle variations, complex terminology, and inadequate maps. To better understand habitat of the Apache trout (Onchorhynchus apache or O. gilae apache Miller), a threatened endemic species of the White...

  17. Physical habitat predictors of Manayunkia speciosa distribution in the Klamath River and implications for management of Ceratomyxa shasta, a parasite with a complex life cycle

    NASA Astrophysics Data System (ADS)

    Jordan, M. S.; Alexander, J. D.; Grant, G. E.; Bartholomew, J. L.

    2011-12-01

    Management strategies for parasites with complex life cycles may target not the parasite itself, but one of the alternate hosts. One approach is to decrease habitat for the alternate host, and in river systems flow manipulations may be employed. Two-dimensional hydraulic models can be powerful tools for predicting the relationship between flow alterations and changes in physical habit, however they require a rigorous definition of physical habitat for the organism of interest. We present habitat characterization data for the case of the alternate host of a salmonid parasite and introduce how it will be used in conjunction with a 2-dimensional hydraulic model. Ceratomyxa shasta is a myxozoan parasite of salmonids that requires a freshwater polychaete Manayunkia speciosa to complete its life cycle. Manayunkia speciosa is a small (3mm) benthic filter-feeding worm that attaches itself perpendicularly to substrate through construction of a flexible tube. In the Klamath River, CA/OR, C. shasta causes significant juvenile salmon mortality, imposing social and economic losses on commercial, sport and tribal fisheries. An interest in manipulating habitat for the polychaete host to decrease the abundance of C. shasta has therefore developed. Unfortunately, there are limited data on the habitat requirements of M. speciosa or the influence of streamflow regime and hydraulics on population dynamics and infection prevalence. This work aims to address these data needs by identifying physical habitat variables that influence the distribution of M. speciosa and determining the relationship between those variables, M. speciosa population density, and C. shasta infection prevalence. Biological samples were collected from nine sites representing three river features (runs, pools, and eddies) within the Klamath River during the summer and fall of 2010 and 2011. Environmental data including depth, velocity, and substrate, were collected at each polychaete sampling location. We tested

  18. Riverine habitat dynamics

    USGS Publications Warehouse

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  19. Robotic Technologies for Surveying Habitats and Seeking Evidence of Life: Results from the 2004 Field Experiments of the "Life in the Atacama" Project

    NASA Technical Reports Server (NTRS)

    Wettergreen, D.; Cabrol, N.; Whittaker, W.; Diaz, G. Chong; Calderon, F.; Heys, S.; Jonak, D.; Lueders, A.; Moersch, J.; Pane, D.

    2005-01-01

    The Chilean Atacama Desert is the most arid region on Earth and in several ways analogous to Mars. Evidence suggests that the interior of the Atacama is lifeless, yet where the desert meets the Pacific coastal range dessication-tolerant microorganisms are known to exist. The gradient of biodiversity and habitats in the Atacama's subregions remain unexplored and are the focus of the Life in the Atacama project. Our field investigation attempts to bring further scientific understanding of the Atacama as a habitat for life through the creation of robotic astrobiology. This involves capabilities for autonomously traversing hundreds of kilometers while deploying sensors to survey the varying geologic and biologic properties of the environment, Fig. 1. Our goal is to make genuine discoveries about the limits of life on Earth and to generate knowledge about life in extreme environments that can be applied to future planetary missions. Through these experiments we also hope to develop and practice the methods by which a rover might best be employed to survey desert terrain in search of the habitats in which life can survive, or may have in the past.

  20. Influence of habitat characteristics on shore-spawning kokanee

    USGS Publications Warehouse

    Whitlock, Steven L.; Quist, Michael C.; Dux, Andrew M.

    2014-01-01

    Sockeye Salmon Oncorhynchus nerka and kokanee (lacustrine Sockeye Salmon) commonly spawn in both lentic and lotic environments; however, the habitat requirements of shore spawners are virtually unknown relative to those of stream spawners. A laboratory experiment and an in situ incubation study were conducted to better understand the influence of habitat characteristics on the shoreline incubation success of kokanee. The laboratory experiment assessed kokanee intragravel survival, fry emergence, and fry condition in response to eight substrate treatments. The in situ study, conducted at three major shoreline spawning sites in Lake Pend Oreille, Idaho, evaluated the effect of depth, substrate composition, dissolved oxygen, shoreline slope, and groundwater on intragravel survival. Substrate size composition was generally a poor predictor of survival in both the laboratory experiment and in situ study; although, fry condition and counts of emerged fry in the laboratory were lowest for the substrate treatment that had the highest proportion of fine sediment. Results of the in situ study suggest that groundwater flow plays an important role in enhancing intragravel survival in habitats generally considered unsuitable for spawning.

  1. The relative influence of habitat amount and configuration on genetic structure across multiple spatial scales

    PubMed Central

    Millette, Katie L; Keyghobadi, Nusha

    2015-01-01

    Despite strong interest in understanding how habitat spatial structure shapes the genetics of populations, the relative importance of habitat amount and configuration for patterns of genetic differentiation remains largely unexplored in empirical systems. In this study, we evaluate the relative influence of, and interactions among, the amount of habitat and aspects of its spatial configuration on genetic differentiation in the pitcher plant midge, Metriocnemus knabi. Larvae of this species are found exclusively within the water-filled leaves of pitcher plants (Sarracenia purpurea) in a system that is naturally patchy at multiple spatial scales (i.e., leaf, plant, cluster, peatland). Using generalized linear mixed models and multimodel inference, we estimated effects of the amount of habitat, patch size, interpatch distance, and patch isolation, measured at different spatial scales, on genetic differentiation (FST) among larval samples from leaves within plants, plants within clusters, and clusters within peatlands. Among leaves and plants, genetic differentiation appears to be driven by female oviposition behaviors and is influenced by habitat isolation at a broad (peatland) scale. Among clusters, gene flow is spatially restricted and aspects of both the amount of habitat and configuration at the focal scale are important, as is their interaction. Our results suggest that both habitat amount and configuration can be important determinants of genetic structure and that their relative influence is scale dependent. PMID:25628865

  2. The relative influence of habitat amount and configuration on genetic structure across multiple spatial scales.

    PubMed

    Millette, Katie L; Keyghobadi, Nusha

    2015-01-01

    Despite strong interest in understanding how habitat spatial structure shapes the genetics of populations, the relative importance of habitat amount and configuration for patterns of genetic differentiation remains largely unexplored in empirical systems. In this study, we evaluate the relative influence of, and interactions among, the amount of habitat and aspects of its spatial configuration on genetic differentiation in the pitcher plant midge, Metriocnemus knabi. Larvae of this species are found exclusively within the water-filled leaves of pitcher plants (Sarracenia purpurea) in a system that is naturally patchy at multiple spatial scales (i.e., leaf, plant, cluster, peatland). Using generalized linear mixed models and multimodel inference, we estimated effects of the amount of habitat, patch size, interpatch distance, and patch isolation, measured at different spatial scales, on genetic differentiation (F ST) among larval samples from leaves within plants, plants within clusters, and clusters within peatlands. Among leaves and plants, genetic differentiation appears to be driven by female oviposition behaviors and is influenced by habitat isolation at a broad (peatland) scale. Among clusters, gene flow is spatially restricted and aspects of both the amount of habitat and configuration at the focal scale are important, as is their interaction. Our results suggest that both habitat amount and configuration can be important determinants of genetic structure and that their relative influence is scale dependent.

  3. Linking hydroclimate to fish phenology and habitat use with ichthyographs

    Treesearch

    Rebecca L. Flitcroft; Sarah L. Lewis; Ivan Arismendi; Rachel LovellFord; Mary V. Santelmann; Mohammad Safeeq; Gordon Grant; Kyle A. Young

    2016-01-01

    Streamflow and water temperature (hydroclimate) influence the life histories of aquatic biota. The relationship between streamflow and temperature varies with climate, hydrogeomorphic setting, and season. Life histories of native fishes reflect, in part, their adaptation to regional hydroclimate (flow and water temperature), local habitats, and natural disturbance...

  4. Short-term influence of tank tracks on vegetation and microphytic crusts in shrubsteppe habitat

    USGS Publications Warehouse

    Watts, Stephen E.

    1998-01-01

    Artemisia tridentata Nutt.) habitat within the Idaho Army National Guard Orchard Training Area in southwestern Idaho. The purpose of this study was to determine the short-term (1a??2 years) influence of tank tracks on vegetation and microphytic crusts in shrubsteppe habitat. The two types of tank tracks studied were divots (area where one track has been stopped or slowed to make a sharp turn) and straight-line tracks. Divots generally had a stronger influence on vegetation and microphytic crusts than did straight-line tracks. Tank tracks increased cover of bare ground, litter, and exotic annuals, and reduced cover of vegetation, perennial native grasses, sagebrush, and microphytic crusts. Increased bare ground and reduced cover of vegetation and microphytic crusts caused by tank tracks increase the potential for soil erosion and may reduce ecosystem productivity. Reduced sagebrush cover caused by tank tracks may reduce habitat quality for rodents. Tank tracks may also facilitate the invasion of exotic annuals into sagebrush habitat, increasing the potential for wildfire and subsequent habitat degradation. Thus, creation of divots and movement through sagebrush habitat by tanks should be minimized.

  5. How do dispersal costs and habitat selection influence realized population connectivity?

    PubMed

    Burgess, Scott C; Treml, Eric A; Marshall, Dustin J

    2012-06-01

    Despite the importance of dispersal for population connectivity, dispersal is often costly to the individual. A major impediment to understanding connectivity has been a lack of data combining the movement of individuals and their survival to reproduction in the new habitat (realized connectivity). Although mortality often occurs during dispersal (an immediate cost), in many organisms costs are paid after dispersal (deferred costs). It is unclear how such deferred costs influence the mismatch between dispersal and realized connectivity. Through a series of experiments in the field and laboratory, we estimated both direct and indirect deferred costs in a marine bryozoan (Bugula neritina). We then used the empirical data to parameterize a theoretical model in order to formalize predictions about how dispersal costs influence realized connectivity. Individuals were more likely to colonize poor-quality habitat after prolonged dispersal durations. Individuals that colonized poor-quality habitat performed poorly after colonization because of some property of the habitat (an indirect deferred cost) rather than from prolonged dispersal per se (a direct deferred cost). Our theoretical model predicted that indirect deferred costs could result in nonlinear mismatches between spatial patterns of potential and realized connectivity. The deferred costs of dispersal are likely to be crucial for determining how well patterns of dispersal reflect realized connectivity. Ignoring these deferred costs could lead to inaccurate predictions of spatial population dynamics.

  6. Loss and modification of habitat

    USGS Publications Warehouse

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.; Wilkinson, John W.; Heatwole, Harold

    2012-01-01

    Amphibians live in a wide variety of habitats around the world, many of which have been modified or destroyed by human activities. Most species have unique life history characteristics adapted to specific climates, habitats (e.g., lentic, lotic, terrestrial, arboreal, fossorial, amphibious), and local conditions that provide suitable areas for reproduction, development and growth, shelter from environmental extremes, and predation, as well as connectivity to other populations or habitats. Although some species are entirely aquatic or terrestrial, most amphibians, as their name implies, lead a dual life and require a mosaic of habitats in both aquatic and terrestrial ecosystems. With over 6 billion people on Earth, most species are now persisting in habitats that have been directly or indirectly influenced by human activities. Some species have disappeared where their habitats have been completely destroyed, reduced, or rendered unsuitable. Habitat loss and degradation are widely considered by most researchers as the most important causes of amphibian population decline globally (Barinaga 1990; Wake and Morowitz 1991; Alford and Richards 1999). In this chapter, a background on the diverse habitat requirements of amphibians is provided, followed by a discussion of the effects of urbanization, agriculture, livestock grazing, timber production and harvesting, fire and hazardous fuel management, and roads on amphibians and their habitats. Also briefly discussed is the influence on amphibian habitats of natural disturbances, such as extreme weather events and climate change, given the potential for human activities to impact climate in the longer term. For amphibians in general, microhabitats are of greater importance than for other vertebrates. As ectotherms with a skin that is permeable to water and with naked gelatinous eggs, amphibians are physiologically constrained to be active during environmental conditions that provide appropriate body temperatures and adequate

  7. Habitat size modulates the influence of heterogeneity on species richness patterns in a model zooplankton community.

    PubMed

    Schuler, Matthew S; Chase, Jonathan M; Knight, Tiffany M

    2017-06-01

    Habitat heterogeneity is a primary mechanism influencing species richness. Despite the general expectation that increased heterogeneity should increase species richness, there is considerable variation in the observed relationship, including many studies that show negative effects of heterogeneity on species richness. One mechanism that can create such disparate results is the predicted trade-off between habitat area and heterogeneity, sometimes called the area-heterogeneity-trade-off (AHTO) hypothesis. The AHTO hypothesis predicts positive effects of heterogeneity on species richness in large habitats, but negative effects in small habitats. We examined the interplay between habitat size and habitat heterogeneity in experimental mesocosms that mimic freshwater ponds, and measured responses in a species-rich zooplankton community. We used the AHTO hypothesis and related mechanisms to make predictions about how heterogeneity would affect species richness and diversity in large compared to small habitats. We found that heterogeneity had a positive influence on species richness in large, but not small habitats, and that this likely resulted because habitat specialists were able to persist only when habitat size was sufficiently large, consistent with the predictions of the AHTO hypothesis. Our results emphasize the importance of considering context (e.g., habitat size in this case) when investigating the relative importance of ecological drivers of diversity, like heterogeneity. © 2017 by the Ecological Society of America.

  8. Influence of forest and rangeland management on anadromous fish habitat in Western North America: habitat requirements of anadromous salmonids.

    Treesearch

    D.W. Reiser; T.C. Bjornn

    1979-01-01

    Habitat requirements of anadromous and some resident salmonid fishes have been described for various life stages, including upstream migration of adults, spawning, incubation, and juvenile rearing. Factors important in the migration of adults are water temperature, minimum water depth, maximum water velocity, turbidity, dissolved oxygen, and...

  9. Life stage and species identity affect whether habitat subsidies enhance or simply redistribute consumer biomass.

    PubMed

    Keller, Danielle A; Gittman, Rachel K; Bouchillon, Rachel K; Fodrie, F Joel

    2017-10-01

    Quantifying the response of mobile consumers to changes in habitat availability is essential for determining the degree to which population-level productivity is habitat limited rather than regulated by other, potentially density-independent factors. Over landscape scales, this can be explored by monitoring changes in density and foraging as habitat availability varies. As habitat availability increases, densities may: (1) decrease (unit-area production decreases; weak habitat limitation); (2) remain stable (unit-area production remains stable; habitat limitation) or (3) increase (unit-area production increases; strong habitat limitation). We tested the response of mobile estuarine consumers over 5 months to changes in habitat availability in situ by comparing densities and feeding rates on artificial reefs that were or were not adjacent to neighbouring artificial reefs or nearby natural reefs. Using either constructed or natural reefs to manipulate habitat availability, we documented threefold density decreases among juvenile stone crabs as habitat increased (i.e. weak habitat imitation). However, for adult stone crabs, density remained stable across treatments, demonstrating that habitat limitation presents a bottleneck in this species' later life history. Oyster toadfish densities also did not change with increasing habitat availability (i.e. habitat limitation), but densities of other cryptic fishes decreased as habitat availability increased (i.e. weak limitation). Feeding and abundance data suggested that some mobile fishes experience habitat limitation, or, potentially in one case, strong limitation across our habitat manipulations. These findings of significant, community-level habitat limitation provide insight into how global declines in structurally complex estuarine habitats may have reduced the fishery production of coastal ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  10. Idea Habitats: How the Prevalence of Environmental Cues Influences the Success of Ideas

    ERIC Educational Resources Information Center

    Berger, Jonah A.; Heath, Chip

    2005-01-01

    We investigate 1 factor that influences the success of ideas or cultural representations by proposing that they have a habitat, that is, a set of environmental cues that encourages people to recall and transmit them. We test 2 hypotheses: (a) fluctuation: the success of an idea will vary over time with fluctuations in its habitat, and (b)…

  11. The influence of habitat structure on energy allocation tactics in an estuarine batch spawner

    NASA Astrophysics Data System (ADS)

    Brigolin, D.; Cavraro, F.; Zanatta, V.; Pastres, R.; Malavasi, S.

    2016-04-01

    Trade-off between fecundity and survival was tested in a batch spawner, the Mediterranean killifish Aphanius fasciatus, using an integrated modelling-data approach based on previously collected empirical data. Two sites of the lagoon of Venice (Northern Adriatic sea, Italy) were selected in order to compare the energy allocation between growth and reproduction in two contrasting habitats. These were characterised by high and comparable level of richness in basal resources, but showed two different mortality schedules: an open natural salt marsh, exposed to high level of predation, and a confined artificial site protected from piscivorous predation. By means of a bioenergetic Scope for Growth model, developed and calibrated for the specific goals of this work, we compared the average individual life history between the two habitats. The average individual life history is characterised by a higher number of spawning events and lower per-spawning investment in the confined site exposed to lower predation risk, compared to the site connected with the open lagoon. Thus, model predictions suggest that habitat structure with different extrinsic mortality schedules may shape the life history strategy in modulating the pattern of energy allocation. Model application highlights the central role of energy partitioning through batch spawning, in determining the life history strategy. The particular ovary structure of a batch spawner seems therefore to allow the fish to modulate timing and investment of spawning events, shaping the optimal life history in relation to the environmental conditions.

  12. Shifting the life-history paradigm: discovery of novel habitat use by hawksbill turtles.

    PubMed

    Gaos, Alexander R; Lewison, Rebecca L; Yañez, Ingrid L; Wallace, Bryan P; Liles, Michael J; Nichols, Wallace J; Baquero, Andres; Hasbún, Carlos R; Vasquez, Mauricio; Urteaga, José; Seminoff, Jeffrey A

    2012-02-23

    Adult hawksbill turtles (Eretmochelys imbricata) are typically described as open-coast, coral reef and hard substrate dwellers. Here, we report new satellite tracking data on female hawksbills from several countries in the eastern Pacific that revealed previously undocumented behaviour for adults of the species. In contrast to patterns of habitat use exhibited by their Caribbean and Indo-Pacific counterparts, eastern Pacific hawksbills generally occupied inshore estuaries, wherein they had strong associations with mangrove saltwater forests. The use of inshore habitats and affinities with mangrove saltwater forests presents a previously unknown life-history paradigm for adult hawksbill turtles and suggests a potentially unique evolutionary trajectory for the species. Our findings highlight the variability in life-history strategies that marine turtles and other wide-ranging marine wildlife may exhibit among ocean regions, and the importance of understanding such disparities from an ecological and management perspective.

  13. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon.

    PubMed

    Vähä, Juha-Pekka; Erkinaro, Jaakko; Niemelä, Eero; Primmer, Craig R

    2007-07-01

    Defining populations and identifying ecological and life-history characteristics affecting genetic structure is important for understanding species biology and hence, for managing threatened or endangered species or populations. In this study, populations of the world's largest indigenous Atlantic salmon (Salmo salar) stock were first inferred using model-based clustering methods, following which life-history and habitat variables best predicting the genetic diversity of populations were identified. This study revealed that natal homing of Atlantic salmon within the Teno River system is accurate at least to the tributary level. Generally, defining populations by main tributaries was observed to be a reasonable approach in this large river system, whereas in the mainstem of the river, the number of inferred populations was fewer than the number of distinct sampling sites. Mainstem and headwater populations were genetically more diverse and less diverged, while each tributary fostered a distinct population with high genetic differentiation and lower genetic diversity. Population structure and variation in genetic diversity among populations were poorly explained by geographical distance. In contrast, age-structure, as estimated by the proportion of multisea-winter spawners, was the most predictive variable in explaining the variation in the genetic diversity of the populations. This observation, being in agreement with theoretical predictions, emphasizes the essence of large multisea-winter females in maintaining the genetic diversity of populations. In addition, the unique genetic diversity of populations, as estimated by private allele richness, was affected by the ease of accessibility of a site, with more difficult to access sites having lower unique genetic diversity. Our results show that despite this species' high capacity for migration, tributaries foster relatively closed populations with little gene flow which will be important to consider when developing

  14. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  15. Measuring acoustic habitats.

    PubMed

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-03-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.

  16. Livestock grazing and sage-grouse habitat: impacts and opportunities

    USDA-ARS?s Scientific Manuscript database

    Sage-grouse obtain resources from sagebrush communities for breeding, summer, and winter life stages. Grazing changes the productivity, composition, and structure of herbaceous plants in sagebrush communities, thus directly influencing the productivity of nesting and early brood-rearing habitats. In...

  17. Mars extant-life campaign using an approach based on Earth-analog habitats

    NASA Technical Reports Server (NTRS)

    Palkovic, Lawrence A.; Wilson, Thomas J.

    2005-01-01

    The Mars Robotic Outpost group at JPL has identified sixteen potential momentous discoveries that if found on Mars would alter planning for the future Mars exploration program. This paper details one possible approach to the discovery of and response to the 'momentous discovery'' of extant life on Mars. The approach detailed in this paper, the Mars Extant-Life (MEL) campaign, is a comprehensive and flexible program to find living organisms on Mars by studying Earth-analog habitats of extremophile communities.

  18. Can animal habitat use patterns influence their vulnerability to extreme climate events? An estuarine sportfish case study.

    PubMed

    Boucek, Ross E; Heithaus, Michael R; Santos, Rolando; Stevens, Philip; Rehage, Jennifer S

    2017-10-01

    Global climate forecasts predict changes in the frequency and intensity of extreme climate events (ECEs). The capacity for specific habitat patches within a landscape to modulate stressors from extreme climate events, and animal distribution throughout habitat matrices during events, could influence the degree of population level effects following the passage of ECEs. Here, we ask (i) does the intensity of stressors of an ECE vary across a landscape? And (ii) Do habitat use patterns of a mobile species influence their vulnerability to ECEs? Specifically, we measured how extreme cold spells might interact with temporal variability in habitat use to affect populations of a tropical, estuarine-dependent large-bodied fish Common Snook, within Everglades National Park estuaries (FL US). We examined temperature variation across the estuary during cold disturbances with different degrees of severity, including an extreme cold spell. Second, we quantified Snook distribution patterns when the passage of ECEs is most likely to occur from 2012 to 2016 using passive acoustic tracking. Our results revealed spatial heterogeneity in the intensity of temperature declines during cold disturbances, with some habitats being consistently 3-5°C colder than others. Surprisingly, Snook distributions during periods of greatest risk to experience an extreme cold event varied among years. During the winters of 2013-2014 and 2014-2015 a greater proportion of Snook occurred in the colder habitats, while the winters of 2012-2013 and 2015-2016 featured more Snook observed in the warmest habitats. This study shows that Snook habitat use patterns could influence vulnerability to extreme cold events, however, whether Snook habitat use increases or decreases their vulnerability to disturbance depends on the year, creating temporally dynamic vulnerability. Faunal global change research should address the spatially explicit nature of extreme climate events and animal habitat use patterns to identify

  19. Shifting the life-history paradigm: discovery of novel habitat use by hawksbill turtles

    PubMed Central

    Gaos, Alexander R.; Lewison, Rebecca L.; Yañez, Ingrid L.; Wallace, Bryan P.; Liles, Michael J.; Nichols, Wallace J.; Baquero, Andres; Hasbún, Carlos R.; Vasquez, Mauricio; Urteaga, José; Seminoff, Jeffrey A.

    2012-01-01

    Adult hawksbill turtles (Eretmochelys imbricata) are typically described as open-coast, coral reef and hard substrate dwellers. Here, we report new satellite tracking data on female hawksbills from several countries in the eastern Pacific that revealed previously undocumented behaviour for adults of the species. In contrast to patterns of habitat use exhibited by their Caribbean and Indo-Pacific counterparts, eastern Pacific hawksbills generally occupied inshore estuaries, wherein they had strong associations with mangrove saltwater forests. The use of inshore habitats and affinities with mangrove saltwater forests presents a previously unknown life-history paradigm for adult hawksbill turtles and suggests a potentially unique evolutionary trajectory for the species. Our findings highlight the variability in life-history strategies that marine turtles and other wide-ranging marine wildlife may exhibit among ocean regions, and the importance of understanding such disparities from an ecological and management perspective. PMID:21880620

  20. Habitat and distribution of post-recruit life stages of the squid Loligo forbesii

    NASA Astrophysics Data System (ADS)

    Smith, Jennifer M.; Macleod, Colin D.; Valavanis, Vasilis; Hastie, Lee; Valinassab, Tooraj; Bailey, Nick; Santos, M. Begoña; Pierce, Graham J.

    2013-10-01

    This study models habitat preferences of the squid Loligo forbesii through its post-recruitment life cycle in waters around Scotland (UK). Trawl survey and market sample data from 1985 to 2004 are used to model seasonal habitats of immature, maturing and mature squid (maturity being inferred from size and season). Squid presence-absence and catch rate in areas of presence were analysed using generalised additive models, relating spatiotemporal patterns of distribution and abundance to ecogeographic variables. For all maturity classes, higher abundance in winter and spring (i.e., quarters 1 and 2) was associated with deeper water while higher abundance in summer and autumn (quarters 3 and 4) was associated with shallower water, consistent with seasonal onshore-offshore migrations but suggesting that most spawning may take place in deeper waters. The preferred SST range was generally 8-8.75 °C while preferred salinity values were below 35‰ in winter and summer and above 35‰ in spring and autumn. Squid were positively associated with gravel substrate and negatively associated with mud. Seasonal changes in habitat use were more clearly evident than changes related to inferred maturity, although the two effects cannot be fully separated due to the annual life cycle. Habitat selection for this species can be satisfactorily modelled on a seasonal basis; predictions based on such models could be useful for fishers to target the species more effectively, and could assist managers wishing to protect spawning grounds. The extent to which this approach may be useful for other cephalopods is discussed.

  1. Influence of habitat structure on fish assemblage of an artificial reef in southern Brazil.

    PubMed

    Hackradt, Carlos Werner; Félix-Hackradt, Fabiana Cézar; García-Charton, José Antonio

    2011-12-01

    Habitat complexity strongly influences reef fish community composition. An understanding of the underlying reasons for this relationship is important for evaluating the suitability of artificial reef (AR) habitats as a marine resource management tool. We studied the influence of AR habitat structure on fish assemblage composition off the southern coast of Brazil. We found that reef blocks with greater area and number of holes possessed the greatest fish species richness and abundance. Reef blocks with greater complexity had higher abundance of almost 30% of fish species present. Natural reef (NR) and AR were different in their fish species composition, trophic structure and categories of water column occupancy by fish (spatial categories). Although NR was more diverse and harboured more trophic levels, AR presented the higher abundances and the presence of distinct fish species that underlined their importance at a regional scale. The greater availability of sheltering habitat where hard substrate is scarce, together with their frequent use by economically important species, make AR a useful tool for coastal management when certain ecological conditions are met. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Fire in the eastern United States: influence on wildlife habitat

    Treesearch

    D. H. Van Lear; R. F. Harlow

    2002-01-01

    Fire is a major influence shaping wildlife habitats in the eastern United States. Lightning- and Indian-ignited fires burned frequently and extensively over the pre-Columbian landscape and shaped the character of numerous ecosystems. Depending upon the frequency, intensity, and severity of the fires, various assemblages of plants developed along environmental gradients...

  3. Robotic ecological mapping: Habitats and the search for life in the Atacama Desert

    NASA Astrophysics Data System (ADS)

    Warren-Rhodes, K.; Weinstein, S.; Piatek, J. L.; Dohm, J.; Hock, A.; Minkley, E.; Pane, D.; Ernst, L. A.; Fisher, G.; Emani, S.; Waggoner, A. S.; Cabrol, N. A.; Wettergreen, D. S.; Grin, E.; Coppin, P.; Diaz, Chong; Moersch, J.; Oril, G. G.; Smith, T.; Stubbs, K.; Thomas, G.; Wagner, M.; Wyatt, M.; Boyle, L. Ng

    2007-12-01

    As part of the three-year `Life in the Atacama' (LITA) project, plant and microbial abundance were mapped within three sites in the Atacama Desert, Chile, using an automated robotic rover. On-board fluorescence imaging of six biological signatures (e.g., chlorophyll, DNA, proteins) was used to assess abundance, based on a percent positive sample rating system and standardized robotic ecological transects. The percent positive rating system scored each sample based on the measured signal strength (0 for no signal to 2 for strong signal) for each biological signature relative to the total rating possible. The 2005 field experiment results show that percent positive ratings varied significantly across Site D (coastal site with fog), with patchy zones of high abundance correlated with orbital and microscale habitat types (heaved surface crust and gravel bars); alluvial fan habitats generally had lower abundance. Non-random multi-scale biological patchiness also characterized interior desert Sites E and F, with relatively high abundance associated with (paleo)aqueous habitats such as playas. Localized variables, including topography, played an important, albeit complex, role in microbial spatial distribution. Site D biosignature trends correlated with culturable soil bacteria, with MPN ranging from 10-1000 CFU/g-soil, and chlorophyll ratings accurately mapped lichen/moss abundance (Site D) and higher plant (Site F) distributions. Climate also affected biological patchiness, with significant correlation shown between abundance and (rover) air relative humidity, while lichen patterns were linked to the presence of fog. Rover biological mapping results across sites parallel longitudinal W-E wet/dry/wet Atacama climate trends. Overall, the study highlights the success of targeting of aqueous-associated habitats identifiable from orbital geology and mineralogy. The LITA experience also suggests the terrestrial study of life and its distribution, particularly the fields of

  4. The evolution of coloniality in birds in relation to food, habitat, predation, and life-history traits: a comparative analysis.

    PubMed

    Rolland, C; Danchin, E; de Fraipont, M

    1998-06-01

    Coloniality in birds has been intensively studied under the cost and benefit approach, but no general conclusion can be given concerning its evolutionary function. Here, we report on a comparative analysis carried out on 320 species of birds using the general method of comparative analysis for discrete variables and the contrast method to analyze the evolution of coloniality. Showing a mean of 23 convergences and 10 reversals, coloniality appears to be a rather labile trait. Colonial breeding appears strongly correlated with the absence of feeding territory, the aquatic habitat, and nest exposure to predators but was not correlated with changes in life-history traits (body mass and clutch size). The correlation of coloniality with the aquatic habitat is in fact explained by a strong correlation with the marine habitat. Unexpectedly, we found that the evolution toward a marine habitat in birds was contingent on coloniality and that coloniality evolved before the passage to a marine life. These results-along with the lack of transitions from the nonmarine to marine habitat in solitary species and the precedence of the loss of feeding territoriality on the passage to a marine life-contradict most of the hypotheses classically accepted to explain coloniality and suggest that we use a different framework to study this evolutionary enigma.

  5. The influence of habitat on the evolution of plants: a case study across Saxifragales

    PubMed Central

    de Casas, Rafael Rubio; Mort, Mark E.; Soltis, Douglas E.

    2016-01-01

    Background and Aims Organismal evolution tends to be closely associated with ecological conditions. However, the extent to which this association constrains adaptation or diversification into new habitats remains unclear. We studied habitat evolution in the hyper-diverse angiosperm clade Saxifragales. Methods We used species-level phylogenies for approx. 950 species to analyse the evolution of habitat shifts as well as their influence on plant diversification. We combined habitat characterization based on floristic assignments and state-of-the art phylogenetic comparative methods to estimate within- and across-habitat diversification patterns. Key Results Our analyses showed that Saxifragales diversified into multiple habitats from a forest-inhabiting ancestor and that this diversification is governed by relatively rare habitat shifts. Lineages are likely to stay within inferred ancestral ecological conditions. Adaptation to some habitat types (e.g. aquatic, desert) may be canalizing events that lineages do not escape. Although associations between increased diversification rates and shifts in habitat preferences are occasionally observed, extreme macroevolutionary rates are closely associated with specific habitats. Lineages occurring in shrubland, and especially tundra and rock cliffs, exhibit comparatively high diversification, whereas forest, grassland, desert and aquatic habitats are associated with low diversification. Conclusions The likelihood of occupation of new habitats appears to be asymmetric. Shifts to aquatic and desert habitats may be canalizing events. Other habitats, such as tundra, might act as evolutionary sources, while forests provide the only habitat seemingly colonized easily by lineages originating elsewhere. However, habitat shifts are very rare, and any major environmental alteration is expected to have dramatic evolutionary consequences. PMID:27551029

  6. The Effects of the Wildlife Habitat Evaluation Program on Targeted Life Skills

    ERIC Educational Resources Information Center

    Allen, Kevin; Elmore, R. Dwayne

    2012-01-01

    Does participation in the Wildlife Habitat Evaluation Program (WHEP) help develop life skills? 4-H members and coaches who participated in the National WHEP Contest between the years 2003-2005 and 2007-2009 were asked to complete an evaluation at the end of each contest. A portion of the evaluation asked participants and coaches to determine if…

  7. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    Treesearch

    Gretchen H. Roffler; Michael K. Schwartz; Kristine Pilgrim; Sandra L. Talbot; George K. Sage; Layne G. Adams; Gordon Luikart

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is...

  8. The influence of habitat on the evolution of plants: a case study across Saxifragales.

    PubMed

    de Casas, Rafael Rubio; Mort, Mark E; Soltis, Douglas E

    2016-12-01

    Organismal evolution tends to be closely associated with ecological conditions. However, the extent to which this association constrains adaptation or diversification into new habitats remains unclear. We studied habitat evolution in the hyper-diverse angiosperm clade Saxifragales. We used species-level phylogenies for approx. 950 species to analyse the evolution of habitat shifts as well as their influence on plant diversification. We combined habitat characterization based on floristic assignments and state-of-the art phylogenetic comparative methods to estimate within- and across-habitat diversification patterns. Our analyses showed that Saxifragales diversified into multiple habitats from a forest-inhabiting ancestor and that this diversification is governed by relatively rare habitat shifts. Lineages are likely to stay within inferred ancestral ecological conditions. Adaptation to some habitat types (e.g. aquatic, desert) may be canalizing events that lineages do not escape. Although associations between increased diversification rates and shifts in habitat preferences are occasionally observed, extreme macroevolutionary rates are closely associated with specific habitats. Lineages occurring in shrubland, and especially tundra and rock cliffs, exhibit comparatively high diversification, whereas forest, grassland, desert and aquatic habitats are associated with low diversification. The likelihood of occupation of new habitats appears to be asymmetric. Shifts to aquatic and desert habitats may be canalizing events. Other habitats, such as tundra, might act as evolutionary sources, while forests provide the only habitat seemingly colonized easily by lineages originating elsewhere. However, habitat shifts are very rare, and any major environmental alteration is expected to have dramatic evolutionary consequences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  9. Abiotic vs. biotic influences on habitat selection of coexisting species: Climate change impacts?

    USGS Publications Warehouse

    Martin, T.E.

    2001-01-01

    Species are commonly segregated along gradients of microclimate and vegetation. I explore the question of whether segregation is the result of microhabitat partitioning (biotic effects) or choice of differing microclimates (abiotic effects). I explored this question for four ground-nesting bird species that are segregated along a microclimate and vegetation gradient in Arizona. Birds shifted position of their nests on the microhabitat and microclimate gradient in response to changing precipitation over nine years. Similarly, annual bird abundance varied with precipitation across 12 yr. Those shifts in abundance and nesting microhabitat with changing precipitation demonstrate the importance of abiotic influences on bird distributions and habitat choice. However, nest-site shifts and microhabitat use also appear to be influenced by interactions among coexisting species. Moreover, shifts in habitat use by all species caused nest predation (i.e., biotic) costs that increased with increasing distance along the microclimate gradient. These results indicate that abiotic and biotic costs can strongly interact to influence microhabitat choice and abundances of coexisting species. Global climate change impacts have been considered largely in terms of simple distributional shifts, but these results indicate that shifts can also increase biotic costs when species move into habitat types for which they are poorly adapted or that create new biotic interactions.

  10. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    USGS Publications Warehouse

    Roffler, Gretchen H.; Schwartz, Michael K.; Pilgrim, Kristy L.; Talbot, Sandra L.; Sage, Kevin; Adams, Layne G.; Luikart, Gordon

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is important to consider explicit assumptions and spatial scales of measurement. We calculated pairwise genetic distance among 301 Dall's sheep (Ovis dalli dalli) in southcentral Alaska using an intensive noninvasive sampling effort and 15 microsatellite loci. We used multiple regression of distance matrices to assess the correlation of pairwise genetic distance and landscape resistance derived from an RSF, and combinations of landscape features hypothesized to influence dispersal. Dall's sheep gene flow was positively correlated with steep slopes, moderate peak normalized difference vegetation indices (NDVI), and open land cover. Whereas RSF covariates were significant in predicting genetic distance, the RSF model itself was not significantly correlated with Dall's sheep gene flow, suggesting that certain habitat features important during summer (rugged terrain, mid-range elevation) were not influential to effective dispersal. This work underscores that consideration of both habitat selection and landscape genetics models may be useful in developing management strategies to both meet the immediate survival of a species and allow for long-term genetic connectivity.

  11. Feeding habitats of nesting wading birds: Spatial use and social influences

    USGS Publications Warehouse

    Erwin, R. Michael

    1983-01-01

    In an effort to relate social interactions to feeding-habitat use, I observed six species of wading birds near a major colony site in coastal North Carolina. Three spatial scales of habitat use were considered: the general orientation to and from the colony (coarsest level), the habitat "patch," and (at the finest level) the microhabitat. Departure-arrival directions of Great Egrets (Casmerodius albus), Snowy Egrets (Egretta thula), Cattle Egrets (Bubulcus ibis), Little Blue Herons (Egretta caerulea), Tricolored Herons (Egretta tricolor), and Glossy Ibises (Plegadis falcinellus) were monitored at the colony site to document coarse patterns of feeding-habitat use. Added to these data were observations made at five different wetland sites to monitor between-habitat and within-habitat patterns for the five aquatic-feeding species. The results indicated a broad and variable use of feeding habitat over time. At the coarsest scale (i.e. orientation at the colony), diffuse patterns, influenced little by either inter- or intraspecific social interaction, were found for all species. At the next level (habitat "patch"), only one of five wetland sites was relatively consistent in attracting feeding birds, and its use increased from May to June. Few groups were seen at four of the five sites. At the one "attractive" site, the within-habitat patterns again were spatially variable over time, except for those of the abundant Snowy Egret, whose microhabitat preference was fairly consistent. Glossy Ibises and Snowy Egrets frequently formed mixed-species groups, Little Blue Herons were the least social, and Great Egrets and Tricolored Herons generally occurred in groups of less than 10 birds but rarely in groups larger than 30. The close association between Snowy Egrets and Glossy Ibises appeared to be based on a "beater-follower" relationship, wherein the probing, nonvisually feeding ibises make prey more available to the followers. In the study area, local enhancement appeared to

  12. The influence of fine-scale habitat features on regional variation in population performance of alpine White-tailed Ptarmigan

    USGS Publications Warehouse

    Fedy, B.; Martin, K.

    2011-01-01

    It is often assumed (explicitly or implicitly) that animals select habitat features to maximize fitness. However, there is often a mismatch between preferred habitats and indices of individual and population measures of performance. We examined the influence of fine-scale habitat selection on the overall population performance of the White-tailed Ptarmigan (Lagopus leucura), an alpine specialist, in two subdivided populations whose habitat patches are configured differently. The central region of Vancouver Island, Canada, has more continuous and larger habitat patches than the southern region. In 2003 and 2004, using paired logistic regression between used (n = 176) and available (n = 324) sites, we identified food availability, distance to standing water, and predator cover as preferred habitat components . We then quantified variation in population performance in the two regions in terms of sex ratio, age structure (n = 182 adults and yearlings), and reproductive success (n = 98 females) on the basis of 8 years of data (1995-1999, 2002-2004). Region strongly influenced females' breeding success, which, unsuccessful hens included, was consistently higher in the central region (n = 77 females) of the island than in the south (n = 21 females, P = 0.01). The central region also had a much higher proportion of successful hens (87%) than did the south (55%, P < 0.001). In light of our findings, we suggest that population performance is influenced by a combination of fine-scale habitat features and coarse-scale habitat configuration. ?? The Cooper Ornithological Society 2011.

  13. Seasonal movement and habitat use by sub-adult bull trout in the upper Flathead River system, Montana

    USGS Publications Warehouse

    Muhlfeld, Clint C.; Marotz, Brian

    2005-01-01

    Despite the importance of large-scale habitat connectivity to the threatened bull trout Salvelinus confluentus, little is known about the life history characteristics and processes influencing natural dispersal of migratory populations. We used radiotelemetry to investigate the seasonal movements and habitat use by subadult bull trout (i.e., fish that emigrated from natal streams to the river system) tracked for varying durations from 1999 to 2002 in the upper Flathead River system in northwestern Montana. Telemetry data revealed migratory (N = 32 fish) and nonmigratory (N = 35 fish) behavior, indicating variable movement patterns in the subadult phase of bull trout life history. Most migrating subadults (84%) made rapid or incremental downriver movements (mean distance, 33 km; range, 6–129 km) to lower portions of the river system and to Flathead Lake during high spring flows and as temperatures declined in the fall and winter. Bull trout subadults used complex daytime habitat throughout the upper river system, including deep runs that contained unembedded boulder and cobble substrates, pools with large woody debris, and deep lake-influenced areas of the lower river system. Our results elucidate the importance of maintaining natural connections and a diversity of complex habitats over a large spatial scale to conserve the full expression of life history traits and processes influencing the natural dispersal of bull trout populations. Managers should seek to restore and enhance critical river corridor habitat and remove migration barriers, where possible, for recovery and management programs.

  14. Life-history habitat matching in invading non-native plant species

    USGS Publications Warehouse

    Stohlgren, T.J.; Crosier, C.; Chong, G.W.; Guenther, D.; Evangelista, P.

    2005-01-01

    We briefly reviewed the literature on habitat matching in invading non-native plant species. Then we hypothesized that the richness and cover of native annual and perennial plant species integrate complex local information of vegetation and soils that would help to predict invasion success by similarly adapted non-native plant species. We tested these ‘life-history habitat matching’ relationships in 603 0.1-ha plots, including 294 plots in Colorado, which were relatively high for the cover of native perennial plant species, and for 309 0.1-ha plots in southern Utah, which were relatively high in the cover of native annual plant species. We found strong positive relationships between the richness and foliar cover for both native and non-native species, whether they were annual or perennial species (0.34 > r2 < 0.53; P < 0.0001). We also found significant positive relationships between the cover of native annual species at a site and the richness (r2 = 0.13; P < 0.0001) and the foliar cover (r2 = 0.06; P < 0.0001) of non-native annual species. The proportion of non-native annual species in the flora of a plot also increased significantly with the foliar cover of native annual species. Conversely, the richness and cover of non-native annual species were significantly negatively associated with the foliar cover of native perennial species (r2 = 0.05 and 0.06, respectively; P < 0.0001). The cover of non-native annual or perennial species was not significantly correlated with soil texture variables, %N, or %C. We conclude that there may be a high degree of life-history habitat matching by non-native annual species in these study sites. Information on native annual and perennial species richness and cover may help characterize the complex soils, climate, and disturbance environment in which similarly adapted non-native plant species establish and gain foliar cover.

  15. Loss and modification of habitat: Chapter 1

    USGS Publications Warehouse

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.

    2012-01-01

    Amphibians live in a wide variety of habitats around the world, many of which have been modified or destroyed by human activities. Most species have unique life history characteristics adapted to specific climates, habitats (e.g., lentic, lotic, terrestrial, arboreal, fossorial, amphibious), and local conditions that provide suitable areas for reproduction, development and growth, shelter from environmental extremes, and predation, as well as connectivity to other populations or habitats. Although some species are entirely aquatic or terrestrial, most amphibians, as their name implies, lead a dual life and require a mosaic of habitats in both aquatic and terrestrial ecosystems. With over 6 billion people on Earth, most species are now persisting in habitats that have been directly or indirectly influenced by human activities. Some species have disappeared where their habitats have been completely destroyed, reduced, or rendered unsuitable. Habitat loss and degradation are widely considered by most researchers as the most important causes of amphibian population decline globally (Barinaga 1990; Wake and Morowitz 1991; Alford and Richards 1999). In this chapter, a background on the diverse habitat requirements of amphibians is provided, followed by a discussion of the effects of urbanization, agriculture, livestock grazing, timber production and harvesting, fire and hazardous fuel management, and roads on amphibians and their habitats. Also briefly discussed is the influence on amphibian habitats of natural disturbances, such as extreme weather events and climate change, given the potential for human activities to impact climate in the longer term. For amphibians in general, microhabitats are of greater importance than for other vertebrates. As ectotherms with a skin that is permeable to water and with naked gelatinous eggs, amphibians are physiologically constrained to be active during environmental conditions that provide appropriate body temperatures and adequate

  16. Mid-Life Career Influence

    ERIC Educational Resources Information Center

    Heald, James E.

    1977-01-01

    Events common to all people, although in differing degrees, such as physiological and technological changes at mid-life, constitute important influences on career change and development in the mid-life period. (Author)

  17. Environmental control and life support system selection for the first Lunar outpost habitat

    NASA Technical Reports Server (NTRS)

    Adams, Alan

    1993-01-01

    The planning for and feasibility study of an early human return mission to the lunar surface has been undertaken. The First Lunar Outpost (FLO) Mission philosophy is to use existing or near-term technology to achieve a human landing on the lunar surface in the year 2000. To support the crew the lunar habitat for the FLO mission incorporates an environmental control/life support system (ECLSS) design which meets the mission requirements and balances fixed mass and consumable mass. This tradeoff becomes one of regenerable life support systems versus open-loop systems.

  18. Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees.

    PubMed

    Pisanty, Gideon; Mandelik, Yael

    2015-04-01

    Wild pollinators, bees in particular, may greatly contribute to crop pollination and provide a safety net against declines in commercial pollinators. However, the identity, life history traits, and environmental sensitivities of main crop pollinator species.have received limited attention. These are crucial for predicting pollination services of different communities and for developing management practices that enhance crop pollinators. We sampled wild bees in three crop systems (almond, confection sunflower, and seed watermelon) in a mosaic Israeli Mediterranean landscape. Bees were sampled in field/orchard edges and interiors, and in seminatural scrub surrounding the fields/orchards. We also analyzed land cover at 50-2500 m radii around fields/orchards. We used this data to distinguish crop from non-crop pollinators based on a set of life history traits (nesting, lecty, sociality, body size) linked to habitat preference and crop visitation. Bee abundance and species richness decreased from the surrounding seminatural habitat to the field/orchard interior, especially across the seminatural habitat-field edge ecotone. Thus, although rich bee communities were found near fields, only small fractions crossed the ecotone and visited crop flowers in substantial numbers. The bee assemblage in agricultural fields/orchards and on crop flowers was dominated by ground-nesting bees of the tribe Halictini, which tend to nest within fields. Bees' habitat preferences were determined mainly by nesting guild, whereas crop visitation was determined mainly by sociality. Lecty and body size also affected both measures. The percentage of surrounding seminatural habitat at 250-2500 m radii had a positive effect on wild bee diversity in field edges, for all bee guilds, while at 50-100 m radii, only aboveground nesters were positively affected. In sum, we found that crop and non-crop pollinators are distinguished by behavioral and morphological traits. Hence, analysis of life

  19. Predation and infanticide influence ideal free choice by a parrot occupying heterogeneous tropical habitats.

    PubMed

    Bonebrake, Timothy C; Beissinger, Steven R

    2010-06-01

    The ideal free distribution (IFD) predicts that organisms will disperse to sites that maximize their fitness based on availability of resources. Habitat heterogeneity underlies resource variation and influences spatial variation in demography and the distribution of populations. We relate nest site productivity at multiple scales measured over a decade to habitat quality in a box-nesting population of Forpus passerinus (green-rumped parrotlets) in Venezuela to examine critical IFD assumptions. Variation in reproductive success at the local population and neighborhood scales had a much larger influence on productivity (fledglings per nest box per year) than nest site or female identity. Habitat features were reliable cues of nest site quality. Nest sites with less vegetative cover produced greater numbers of fledglings than sites with more cover. However, there was also a competitive cost to nesting in high-quality, low-vegetative cover nest boxes, as these sites experienced the most infanticide events. In the lowland local population, water depth and cover surrounding nest sites were related with F. passerinus productivity. Low vegetative cover and deeper water were associated with lower predation rates, suggesting that predation could be a primary factor driving habitat selection patterns. Parrotlets also demonstrated directional dispersal. Pairs that changed nest sites were more likely to disperse from poor-quality nest sites to high-quality nest sites rather than vice versa, and juveniles were more likely to disperse to, or remain in, the more productive of the two local populations. Parrotlets exhibited three characteristics fundamental to the IFD: habitat heterogeneity within and between local populations, reliable habitat cues to productivity, and active dispersal to sites of higher fitness.

  20. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    PubMed

    Kweka, Eliningaya J; Zhou, Guofa; Munga, Stephen; Lee, Ming-Chieh; Atieli, Harrysone E; Nyindo, Mramba; Githeko, Andrew K; Yan, Guiyun

    2012-01-01

    Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya. A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60%) and An.arabiensis (18.34%), the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024) and An. arabiensis (P = 0.002) larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001), grass cover (P≤0.001), while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001). The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001) when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002). When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines. These findings suggest that implementation of effective larval control programme should be targeted with larval habitats

  1. Behavioral development and habitat structure affect postfledging movements of songbirds

    Treesearch

    Julianna M. A. Jenkins; Frank R., III Thompson; John Faaborg

    2016-01-01

    Postfledging survival of neotropical migrant songbirds has been linked to seasonal and annual changes in the environment and to individual condition. Understanding what influences variation in postfledging movements may provide insight into the differential value of habitat across life-history stages. We conducted a radio-telemetry study of postfledging ovenbirds (

  2. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models.

    PubMed

    Keith, David A; Akçakaya, H Resit; Thuiller, Wilfried; Midgley, Guy F; Pearson, Richard G; Phillips, Steven J; Regan, Helen M; Araújo, Miguel B; Rebelo, Tony G

    2008-10-23

    Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change.

  3. Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert.

    PubMed

    Wierzchos, Jacek; Casero, M Cristina; Artieda, Octavio; Ascaso, Carmen

    2018-01-22

    The extremely harsh conditions of hyperarid deserts are a true challenge for microbial life. Microorganisms thriving in such polyextreme environments are fascinating as they can tell us more about life, its strategies and its boundaries than other groups of organisms. The Atacama Desert (North Chile) holds two world records of extreme environmental characteristics: the lowest rainfall and greatest surface ultraviolet radiation and total solar irradiance ever measured on Earth. Despite these limiting conditions for life, we recently identified several remarkable examples of endolithic habitats colonized by phototrophic and heterotrophic microorganisms in the hyperarid core of the Atacama Desert. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Habitat and Scale Shape the Demographic Fate of the Keystone Sea Urchin Paracentrotus lividus in Mediterranean Macrophyte Communities

    PubMed Central

    Prado, Patricia; Tomas, Fiona; Pinna, Stefania; Farina, Simone; Roca, Guillem; Ceccherelli, Giulia; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Demographic processes exert different degrees of control as individuals grow, and in species that span several habitats and spatial scales, this can influence our ability to predict their population at a particular life-history stage given the previous life stage. In particular, when keystone species are involved, this relative coupling between demographic stages can have significant implications for the functioning of ecosystems. We examined benthic and pelagic abundances of the sea urchin Paracentrotus lividus in order to: 1) understand the main life-history bottlenecks by observing the degree of coupling between demographic stages; and 2) explore the processes driving these linkages. P. lividus is the dominant invertebrate herbivore in the Mediterranean Sea, and has been repeatedly observed to overgraze shallow beds of the seagrass Posidonia oceanica and rocky macroalgal communities. We used a hierarchical sampling design at different spatial scales (100 s, 10 s and <1 km) and habitats (seagrass and rocky macroalgae) to describe the spatial patterns in the abundance of different demographic stages (larvae, settlers, recruits and adults). Our results indicate that large-scale factors (potentially currents, nutrients, temperature, etc.) determine larval availability and settlement in the pelagic stages of urchin life history. In rocky macroalgal habitats, benthic processes (like predation) acting at large or medium scales drive adult abundances. In contrast, adult numbers in seagrass meadows are most likely influenced by factors like local migration (from adjoining rocky habitats) functioning at much smaller scales. The complexity of spatial and habitat-dependent processes shaping urchin populations demands a multiplicity of approaches when addressing habitat conservation actions, yet such actions are currently mostly aimed at managing predation processes and fish numbers. We argue that a more holistic ecosystem management also needs to incorporate the landscape

  5. The Adaptability of Life on Earth and the Diversity of Planetary Habitats.

    PubMed

    Schulze-Makuch, Dirk; Airo, Alessandro; Schirmack, Janosch

    2017-01-01

    The evolutionary adaptability of life to extreme environments is astounding given that all life on Earth is based on the same fundamental biochemistry. The range of some physicochemical parameters on Earth exceeds the ability of life to adapt, but stays within the limits of life for other parameters. Certain environmental conditions such as low water availability in hyperarid deserts on Earth seem to be close to the limit of biological activity. A much wider range of environmental parameters is observed on planetary bodies within our Solar System such as Mars or Titan, and presumably even larger outside of our Solar System. Here we review the adaptability of life as we know it, especially regarding temperature, pressure, and water activity. We use then this knowledge to outline the range of possible habitable environments for alien planets and moons and distinguish between a variety of planetary environment types. Some of these types are present in our Solar System, others are hypothetical. Our schematic categorization of alien habitats is limited to life as we know it, particularly regarding to the use of solvent (water) and energy source (light and chemical compounds).

  6. The Adaptability of Life on Earth and the Diversity of Planetary Habitats

    PubMed Central

    Schulze-Makuch, Dirk; Airo, Alessandro; Schirmack, Janosch

    2017-01-01

    The evolutionary adaptability of life to extreme environments is astounding given that all life on Earth is based on the same fundamental biochemistry. The range of some physicochemical parameters on Earth exceeds the ability of life to adapt, but stays within the limits of life for other parameters. Certain environmental conditions such as low water availability in hyperarid deserts on Earth seem to be close to the limit of biological activity. A much wider range of environmental parameters is observed on planetary bodies within our Solar System such as Mars or Titan, and presumably even larger outside of our Solar System. Here we review the adaptability of life as we know it, especially regarding temperature, pressure, and water activity. We use then this knowledge to outline the range of possible habitable environments for alien planets and moons and distinguish between a variety of planetary environment types. Some of these types are present in our Solar System, others are hypothetical. Our schematic categorization of alien habitats is limited to life as we know it, particularly regarding to the use of solvent (water) and energy source (light and chemical compounds). PMID:29085352

  7. Systematic review of the influence of foraging habitat on red-cockaded woodpecker reproductive success.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garabedian, James E.

    Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides borealis (RCW) in the USA as immediate nesting constraints are mitigated. Several researchers have characterized resource selection by foraging RCWs, but emerging research linking reproductive success (e.g. clutch size, nestling and fledgling production, and group size) and foraging habitat features has yet to be synthesized. Therefore, we reviewed peer-refereed scientific literature and technicalmore » resources (e.g. books, symposia proceedings, and technical reports) that examined RCW foraging ecology, foraging habitat, or demography to evaluate evidence for effects of the key foraging habitat features described in the species’ recovery plan on group reproductive success. Fitness-based habitat models suggest foraging habitat with low to intermediate pine Pinus spp. densities, presence of large and old pines, minimal midstory development, and herbaceous groundcover support more productive RCW groups. However, the relationships between some foraging habitat features and RCW reproductive success are not well supported by empirical data. In addition, few regression models account for > 30% of variation in reproductive success, and unstandardized multiple and simple linear regression coefficient estimates typically range from -0.100 to 0.100, suggesting ancillary variables and perhaps indirect mechanisms influence reproductive success. These findings suggest additional research is needed to address uncertainty in relationships between foraging habitat features and RCW reproductive success and in the mechanisms underlying those relationships.« less

  8. Spawning distribution of sockeye salmon in a glacially influenced watershed: The importance of glacial habitats

    USGS Publications Warehouse

    Young, Daniel B.; Woody, C.A.

    2007-01-01

    The spawning distribution of sockeye salmon Oncorhynchus nerka was compared between clear and glacially turbid habitats in Lake Clark, Alaska, with the use of radiotelemetry. Tracking of 241 adult sockeye salmon to 27 spawning locations revealed both essential habitats and the relationship between spawn timing and seasonal turbidity cycles. Sixty-six percent of radio-tagged sockeye salmon spawned in turbid waters (???5 nephelometric turbidity units) where visual observation was difficult. Spawning in turbid habitats coincided with seasonal temperature declines and associated declines in turbidity and suspended sediment concentration. Because spawn timing is heritable and influenced by temperature, the observed behavior suggests an adaptive response to glacier-fed habitats, as it would reduce embryonic exposure to the adverse effects of fine sediments. ?? Copyright by the American Fisheries Society 2007.

  9. Bioaccumulation of human pharmaceuticals in fish across habitats of a tidally influenced urban bayou.

    PubMed

    Du, Bowen; Haddad, Samuel P; Luek, Andreas; Scott, W Casan; Saari, Gavin N; Burket, S Rebekah; Breed, Christopher S; Kelly, Martin; Broach, Linda; Rasmussen, Joseph B; Chambliss, C Kevin; Brooks, Bryan W

    2016-04-01

    Though pharmaceuticals and other contaminants of emerging concern are increasingly observed in inland water bodies, the occurrence and bioaccumulation of pharmaceuticals in estuaries and coastal ecosystems are poorly understood. In the present study, bioaccumulation of select pharmaceuticals and other contaminants of emerging concern was examined in fish from Buffalo Bayou, a tidally influenced urban ecosystem that receives effluent from a major (∼200 million gallons per day) municipal wastewater treatment plant in Houston, Texas, USA. Using isotope dilution liquid chromatography-tandem mass spectrometry, various target analytes were observed in effluent, surface water, and multiple fish species. The trophic position of each species was determined using stable isotope analysis. Fish tissue levels of diphenhydramine, which represented the only pharmaceutical detected in all fish species, did not significantly differ between freshwater and marine fish predominantly inhabiting benthic habitats; however, saltwater fish with pelagic habitat preferences significantly accumulated diphenhydramine to the highest levels observed in the present study. Consistent with previous observations from an effluent-dependent freshwater river, diphenhydramine did not display trophic magnification, which suggests site-specific, pH-influenced inhalational uptake to a greater extent than dietary exposure in this tidally influenced urban ecosystem. The findings highlight the importance of understanding differential bioaccumulation and risks of ionizable contaminants of emerging concern in habitats of urbanizing coastal systems. © 2015 SETAC.

  10. Using a spatially structured life cycle model to assess the influence of multiple stressors on an exploited coastal-nursery-dependent population

    NASA Astrophysics Data System (ADS)

    Archambault, B.; Rivot, E.; Savina, M.; Le Pape, O.

    2018-02-01

    Exploited coastal-nursery-dependent fish species are subject to various stressors occurring at specific stages of the life cycle: climate-driven variability in hydrography determines the success of the first eggs/larvae stages; coastal nursery habitat suitability controls juvenile growth and survival; and fisheries target mostly adults. A life cycle approach was used to quantify the relative influence of these stressors on the Eastern English Channel (EEC) population of the common sole (Solea solea), a coastal-nursery-dependent flatfish population which sustains important fisheries. The common sole has a complex life cycle: after eggs hatch, larvae spend several weeks drifting in open water. Survivors go on to metamorphose into benthic fish. Juveniles spend the first two years of their life in coastal and estuarine nurseries. Close to maturation, they migrate to deeper areas, where different subpopulations supplied by different nurseries reproduce and are exploited by fisheries. A spatially structured age-and stage-based hierarchical Bayesian model integrating various aspects of ecological knowledge, data sources and expert knowledge was built to quantitatively describe this complex life cycle. The model included the low connectivity among three subpopulations in the EEC, the influence of hydrographic variability, the availability of suitable juvenile habitat and fisheries. Scenarios were designed to quantify the effects of interacting stressors on population renewal. Results emphasized the importance of coastal nursery habitat availability and quality for the population renewal. Realistic restoration scenarios of the highly degraded Seine estuary produced a two-third increase in catch potential for the adjacent subpopulation. Fisheries, however, remained the main source of population depletion. Setting fishing mortality to the maximum sustainable yield led to substantial increases in biomass (+100%) and catch (+33%) at the EEC scale. The approach also showed how

  11. The Cosmic Habitat for Earth-Life and the Issue of Sustainable Development

    NASA Astrophysics Data System (ADS)

    Piątek, Zdzisława

    2017-12-01

    The subjects under consideration here are the philosophical consequences arising as the cosmic dimension to ecology is taken into account. If the habitat for Earthlife is a part of the cosmic environment, then cosmology and astrophysics become a part of ecology. The human species is furthermore a participant in a vast process of cosmic evolution, with sustainable-development strategy thus defi ning the conditions for - and time needed to achieve - a technological civilisation allowing Earth-life to be evacuated to another part of the galaxy as and when the further existence of life on this planet becomes (or threatens to become) an impossibility. In the context of such a cosmic perspective, the value ascribable to our scientifi c and technological civilisation (and future versions thereof) changes, given that only this kind of civilisation offers a chance for Earth-life to persist in an extra-terrestrial environment.

  12. Indicators: Physical Habitat Complexity

    EPA Pesticide Factsheets

    Physical habitat complexity measures the amount and variety of all types of cove at the water’s edge in lakes. In general, dense and varied shoreline habitat is able to support more diverse communities of aquatic life.

  13. Habitat Suitability Index Models: Pronghorn

    USGS Publications Warehouse

    Allen, Arthur W.; Cook, John G.; Armbruster, Michael J.

    1984-01-01

    This is one of a series of publications that provide information on the habitat requirements of selected fish and wildlife species. Literature describing the relationship between habitat variables related to life requisites and habitat suitability for the pronghorn (Antilocapra americana) are synthesized. These data are subsequently used to develop Habitat Suitability Index (HSI) models. The HSI models are designed to provide information that can be used in impact assessment and habitat management.

  14. Research planning criteria for regenerative life-support systems applicable to space habitats

    NASA Technical Reports Server (NTRS)

    Spurlock, J.; Cooper, W.; Deal, P.; Harlan, A.; Karel, M.; Modell, M.; Moe, P.; Phillips, J.; Putnam, D.; Quattrone, P.

    1979-01-01

    The second phase of analyses that were conducted by the Life Support Systems Group of the 1977 NASA Ames Summer Study is described. This phase of analyses included a preliminary review of relevant areas of technology that can contribute to the development of closed life-support systems for space habitats, the identification of research options in these areas of technology, and the development of guidelines for an effective research program. The areas of technology that were studied included: (1) nutrition, diet, and food processing; (2) higher plant agriculture; (3) animal agriculture; (4) waste conversion and resource recovery; and (5) system stability and safety. Results of these analyses, including recommended research options and criteria for establishing research priorities among these many options, are discussed.

  15. Influence of habitat amount, arrangement, and use on population trend estimates of male Kirtland's warblers

    USGS Publications Warehouse

    Donner, D.M.; Probst, J.R.; Ribic, C.A.

    2008-01-01

    Kirtland's warblers (Dendroica kirtlandii) persist in a naturally patchy environment of young, regenerating jack pine forests (i.e., 5-23 years old) created after wildfires and human logging activities. We examined how changing landscape structure from 26 years of forest management and wildfire disturbances influenced population size and spatial dispersion of male Kirtland's warblers within their restricted breeding range in northern Lower Michigan, USA. The male Kirtland's warbler population was six times larger in 2004 (1,322) compared to 1979 (205); the change was nonlinear with 1987 and 1994 identified as significant points of change. In 1987, the population trend began increasing after a slowly declining trend prior to 1987, and the rate of increase appeared to slow after 1994. Total amount of suitable habitat and the relative area of wildfire-regenerated habitat were the most important factors explaining population trend. Suitable habitat increased 149% primarily due to increasing plantations from forest management. The relative amount and location of wildfire-regenerated habitat modified the distribution of males among various habitat types, and the spatial variation in their abundance across the primary breeding range. These findings indicate that the Kirtland's warbler male population shifted its use of habitat types temporally and spatially as the population increased and as the relative availability of habitats changed through time. We demonstrate that researchers and managers need to consider not only habitat quality, but the temporal and the spatial context of habitat availability and population levels when making habitat restoration decisions. ?? 2008 Springer Science+Business Media B.V.

  16. Landscape-scale Habitat Templates and Life Histories of Endangered and Invasive Fish Species in Large Rivers of the Mid-Continent USA (Invited)

    NASA Astrophysics Data System (ADS)

    Jacobson, R. B.; Braaten, P. J.; Chapman, D.; DeLonay, A. J.

    2013-12-01

    Many fish species migrate through river systems to complete their life cycles, occupying specific habitats during specific life stages. Regional geomorphology sets a template for their habitat-use patterns and ontogenetic development. In large rivers of the Mid-continent USA, understanding of relations of fish life histories to landscape-scale habitat templates informs recovery of endangered species and prevention of spread of invasive species. The endangered pallid sturgeon has evolved in the Missouri-Mississippi river system over 150 Ma. Its present-day distribution probably results from extensive drainage re-arrangements during the Pleistocene, followed by contemporary fragmentation. The reproductive and early life-stage needs of pallid sturgeon encompass hundreds of km, as adults migrate upstream to spawn and free embryos and larvae disperse downstream. Spawning requires coarse, hard substrate for incubation of adhesive eggs but adult pallid sturgeon are found predominately over sand, indicating that coarse substrate is a critical but transient habitat need. Once hatched, free-embryos initiate 9-17 days of downstream dispersal that distributes them over several hundreds of km. Lotic conditions at the dispersal terminus are required for survival. Persistent recruitment failure has been attributed to dams and channelization, which have fragmented migration and dispersal corridors, altered flow regimes, and diminished rearing habitats. Key elements of the natural history of this species remain poorly understood because adults are rare and difficult to observe, while the earliest life stages are nearly undetectable. Recent understanding has been accelerated using telemetry and hydroacoustics, but such assessments occur in altered systems and may not be indicative of natural behaviors. Restoration activities attempt - within considerable uncertainty -- to restore elements of the habitat template where they are needed. In comparison, invasive Asian carps have been

  17. Environmental factors and habitat use influence body condition of individuals in a species at risk, the grizzly bear.

    PubMed

    Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B; Janz, David M

    2014-01-01

    Metrics used to quantify the condition or physiological states of individuals provide proactive mechanisms for understanding population dynamics in the context of environmental factors. Our study examined how anthropogenic disturbance, habitat characteristics and hair cortisol concentrations interpreted as a sex-specific indicator of potential habitat net-energy demand affect the body condition of grizzly bears (n = 163) in a threatened population in Alberta, Canada. We quantified environmental variables by modelling spatial patterns of individual habitat use based on global positioning system telemetry data. After controlling for gender, age and capture effects, we assessed the influence of biological and environmental variables on body condition using linear mixed-effects models in an information theoretical approach. Our strongest model suggested that body condition was improved when patterns of habitat use included greater vegetation productivity, increased influence of forest harvest blocks and oil and gas well sites, and a higher percentage of regenerating and coniferous forest. However, body condition was negatively affected by habitat use in close proximity to roads and in areas where potential energetic demands were high. Poor body condition was also associated with increased selection of parks and protected areas and greater seasonal vegetation productivity. Adult females, females with cubs-of-year, juvenile females and juvenile males were in poorer body condition compared with adult males, suggesting that intra-specific competition and differences in habitat use based on gender and age may influence body condition dynamics. Habitat net-energy demand also tended to be higher in areas used by females which, combined with observed trends in body condition, could affect reproductive success in this threatened population. Our results highlight the importance of considering spatiotemporal variability in environmental factors and habitat use when assessing

  18. Mangrove habitat partitioning by Ucides cordatus (Ucididae): effects of the degree of tidal flooding and tree-species composition during its life cycle

    NASA Astrophysics Data System (ADS)

    Wunderlich, A. C.; Pinheiro, M. A. A.

    2013-06-01

    Environmental factors strongly affect mangrove crabs, and some factors modulate population structure and habitat partitioning during the crabs' life cycle. However, the effect of these environmental factors on habitat selection by mangrove crabs is still unknown. We evaluated habitat selection by the mangrove crab Ucides cordatus in mangrove forests with different degrees of predominance of Rhizophora mangle, Laguncularia racemosa or Avicennia schaueriana, two tidal flooding levels (less- and more-flooded), and two biological periods (breeding and non-breeding seasons). Sampling was conducted in four mangrove forests with different influences of these biotic and abiotic parameters. We used the data for sex ratio to explain environmental partitioning by this species. Females predominated in R. mangle mangroves, independently of the biological period (breeding or non-breeding seasons), and males predominated only in the less-flooded L. racemosa mangroves. The flooding level affected the sex ratio of U. cordatus, with a predominance of males in less-flooded mangroves, independently of the biological period; and a gender balance in the more-flooded mangroves only during the breeding season. Outside the breeding season, the largest specimens were recorded in the R. mangle mangroves, but in the breeding season, the largest crabs were recorded in the L. racemosa mangroves with a higher level of flooding. These results suggest that tree-species composition and tidal flooding level can have a significant effect on the habitat partitioning of sexes and sizes of the mangrove crab U. cordatus both during and outside the breeding season.

  19. Terrrestrialization of isolated habitats

    NASA Astrophysics Data System (ADS)

    Kolodziejczyk, Agata; Harasymczuk, Matt; Foing, Bernard

    2017-04-01

    One of the most prominent issue for habitability of the solar system and beyond is to adjust a habitat for human life. Since the human life adapted to terrestrial environment during millions of years of evolution, terrestrialization of the base should be a natural trend strictly applied in habitat design. We discuss basic concerns about introducing biomimetic backup safety solutions such modularity, circularity, autonomy and plasticity into life support systems. Particularly we describe critical life processes such briefing, drinking, eating, homeostatic regulation, activity and sleep, in relation to symbiosis and competition with other species living together. Finally, we analyze ecological tolerance and transformation factors, which seem to be crucial in future habitability projects.

  20. Testing the risk of predation hypothesis: the influence of recolonizing wolves on habitat use by moose.

    PubMed

    Nicholson, Kerry L; Milleret, Cyril; Månsson, Johan; Sand, Håkan

    2014-09-01

    Considered as absent throughout Scandinavia for >100 years, wolves (Canis lupus) have recently naturally recolonized south-central Sweden. This recolonization has provided an opportunity to study behavioral responses of moose (Alces alces) to wolves. We used satellite telemetry locations from collared moose and wolves to determine whether moose habitat use was affected by predation risk based on wolf use distributions. Moose habitat use was influenced by reproductive status and time of day and showed a different selection pattern between winter and summer, but there was weak evidence that moose habitat use depended on predation risk. The seemingly weak response may have several underlying explanations that are not mutually exclusive from the long term absence of non-human predation pressure: intensive harvest by humans during the last century is more important than wolf predation as an influence on moose behavior; moose have not adapted to recolonizing wolves; and responses may include other behavioral adaptations or occur at finer temporal and spatial levels than investigated.

  1. Temperature influences habitat preference of coral reef fishes: Will generalists become more specialised in a warming ocean?

    PubMed

    Matis, Paloma A; Donelson, Jennifer M; Bush, Stephen; Fox, Rebecca J; Booth, David J

    2018-07-01

    Climate change is expected to pose a significant risk to species that exhibit strong behavioural preferences for specific habitat types, with generalist species assumed to be less vulnerable. In this study, we conducted habitat choice experiments to determine how water temperature influences habitat preference for three common species of coral reef damselfish (Pomacentridae) that differ in their levels of habitat specialisation. The lemon damselfish Pomacentrus moluccensis, a habitat specialist, consistently selected complex coral habitat across all temperature treatments (selected based on local average seasonal temperatures naturally experienced in situ: ambient winter 22°C; ambient summer 28°C; and elevated 31°C). Unexpectedly, the neon damselfish Pomacentrus coelestis and scissortail sergeant Abudefduf sexfasciatus, both of which have more generalist habitat associations, developed strong habitat preferences (for complex coral and boulder habitat, respectively) at the elevated temperature treatment (31°C) compared to no single preferred habitat at 22°C or 28°C. The observed shifts in habitat preference with temperature suggest that we may be currently underestimating the vulnerability of some habitat generalists to climate change and highlight that the ongoing loss of complex live coral through coral bleaching could further exacerbate resource overlap and species competition in ways not currently considered in climate change models. © 2018 John Wiley & Sons Ltd.

  2. The relative influence of nutrients and habitat on stream metabolism in agricultural streams

    USGS Publications Warehouse

    Frankforter, J.D.; Weyers, H.S.; Bales, J.D.; Moran, P.W.; Calhoun, D.L.

    2010-01-01

    Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79-0.91) and CR-24 (r 2 = 0.76-0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP. ?? 2009 The Author(s).

  3. Rainbow trout movement behavior and habitat occupancy are influenced by sex and Pacific salmon presence in an Alaska river system

    USGS Publications Warehouse

    Fraley, Kevin M.; Falke, Jeffrey A.; McPhee, Megan V.; Prakash, Anupma

    2018-01-01

    We used spatially continuous field-measured and remotely-sensed aquatic habitat characteristics paired with weekly ground-based telemetry tracking and snorkel surveys to describe movements and habitat occupancy of adult rainbow trout (N = 82) in a runoff-fed, salmon-influenced southcentral Alaska river system. We found that during the ice-free feeding season (June through September) rainbow trout occurrence was associated more with fine-scale (channel unit) characteristics relative to coarse-scale (stream reach) variables. The presence of Pacific salmon (which provide an important seasonal food subsidy), and habitat size were particularly useful predictors. Weekly movement distance differed between pre- and post- spawning salmon arrival, but did not vary by sex. Habitat quality, season, and the arrival of spawning salmon influenced the likelihood of rainbow trout movement, and fish moved farther to seek out higher quality habitats. Because rainbow trout respond to habitat factors at multiple scales and seek out salmon-derived subsidies, it will be important to take a multiscale approach in protecting trout and salmon populations and managing the associated fisheries.

  4. Life cycle and reproduction of house-dust mites: environmental factors influencing mite populations.

    PubMed

    Hart, B J

    1998-01-01

    An understanding of the life cycle of house-dust mites, as well as environmental factors influencing mite populations, can be exploited in mite control. The most important limiting factor for house-dust-mite populations is air humidity. House-dust mites osmoregulate through the cuticle and therefore require a high ambient air humidity to prevent excessive water loss. In addition, the supracoxal glands actively take up ambient water vapour, and the protonynph stage of the life cycle is resistant to desiccation. Larger house-dust-mite populations are found when the absolute indoor air humidity is above 7 g/kg (45% relative humidity at 20 degrees C). Consequently, ventilation by air-conditioning systems is being developed as a means of control. A number of other aspects of the domestic environment are also being manipulated in an integrated approach to render the habitat less suitable for mites. The potential exists for developing models for house-dust mite populations, environmental characteristics, and the effects of various approaches to control.

  5. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    NASA Astrophysics Data System (ADS)

    Tullos, D. D.; Walter, C.; Dunham, J.

    2016-12-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: 1) the velocities considered to be representative of habitat units; 2) patterns of use of the hydraulic environment by fish; and 3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution, reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  6. The Influence of Mitigation on Sage-Grouse Habitat Selection within an Energy Development Field

    PubMed Central

    Fedy, Bradley C.; Kirol, Christopher P.; Sutphin, Andrew L.; Maechtle, Thomas L.

    2015-01-01

    Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may

  7. The influence of mitigation on sage-grouse habitat selection within an energy development field.

    PubMed

    Fedy, Bradley C; Kirol, Christopher P; Sutphin, Andrew L; Maechtle, Thomas L

    2015-01-01

    Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may

  8. Nomadic-colonial life strategies enable paradoxical survival and growth despite habitat destruction

    PubMed Central

    Tan, Zong Xuan; Cheong, Kang Hao

    2017-01-01

    Organisms often exhibit behavioral or phenotypic diversity to improve population fitness in the face of environmental variability. When each behavior or phenotype is individually maladaptive, alternating between these losing strategies can counter-intuitively result in population persistence–an outcome similar to the Parrondo’s paradox. Instead of the capital or history dependence that characterize traditional Parrondo games, most ecological models which exhibit such paradoxical behavior depend on the presence of exogenous environmental variation. Here we present a population model that exhibits Parrondo’s paradox through capital and history-dependent dynamics. Two sub-populations comprise our model: nomads, who live independently without competition or cooperation, and colonists, who engage in competition, cooperation, and long-term habitat destruction. Nomads and colonists may alternate behaviors in response to changes in the colonial habitat. Even when nomadism and colonialism individually lead to extinction, switching between these strategies at the appropriate moments can paradoxically enable both population persistence and long-term growth. DOI: http://dx.doi.org/10.7554/eLife.21673.001 PMID:28084993

  9. Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore.

    PubMed

    Bjørneraas, Kari; Herfindal, Ivar; Solberg, Erling Johan; Sæther, Bernt-Erik; van Moorter, Bram; Rolandsen, Christer Moe

    2012-01-01

    Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.

  10. Elk migration patterns and human activity influence wolf habitat use in the Greater Yellowstone Ecosystem.

    PubMed

    Nelson, Abigail A; Kauffman, Matthew J; Middleton, Arthur D; Jimenez, Michael D; McWhirter, Douglas E; Barber, Jarrett; Gerow, Kenneth

    2012-12-01

    Identifying the ecological dynamics underlying human-wildlife conflicts is important for the management and conservation of wildlife populations. In landscapes still occupied by large carnivores, many ungulate prey species migrate seasonally, yet little empirical research has explored the relationship between carnivore distribution and ungulate migration strategy. In this study, we evaluate the influence of elk (Cervus elaphus) distribution and other landscape features on wolf (Canis lupus) habitat use in an area of chronic wolf-livestock conflict in the Greater Yellowstone Ecosystem, USA. Using three years of fine-scale wolf (n = 14) and elk (n = 81) movement data, we compared the seasonal habitat use of wolves in an area dominated by migratory elk with that of wolves in an adjacent area dominated by resident elk. Most migratory elk vacate the associated winter wolf territories each summer via a 40-60 km migration, whereas resident elk remain accessible to wolves year-round. We used a generalized linear model to compare the relative probability of wolf use as a function of GIS-based habitat covariates in the migratory and resident elk areas. Although wolves in both areas used elk-rich habitat all year, elk density in summer had a weaker influence on the habitat use of wolves in the migratory elk area than the resident elk area. Wolves employed a number of alternative strategies to cope with the departure of migratory elk. Wolves in the two areas also differed in their disposition toward roads. In winter, wolves in the migratory elk area used habitat close to roads, while wolves in the resident elk area avoided roads. In summer, wolves in the migratory elk area were indifferent to roads, while wolves in resident elk areas strongly avoided roads, presumably due to the location of dens and summering elk combined with different traffic levels. Study results can help wildlife managers to anticipate the movements and establishment of wolf packs as they expand into areas

  11. Elk migration patterns and human activity influence wolf habitat use in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Nelson, Abigail; Kauffman, Matthew J.; Middleton, Arthur D.; Jimenez, Mike; McWhirter, Douglas; Barber, Jarrett; Gerow, Ken

    2012-01-01

    Identifying the ecological dynamics underlying human–wildlife conflicts is important for the management and conservation of wildlife populations. In landscapes still occupied by large carnivores, many ungulate prey species migrate seasonally, yet little empirical research has explored the relationship between carnivore distribution and ungulate migration strategy. In this study, we evaluate the influence of elk (Cervus elaphus) distribution and other landscape features on wolf (Canis lupus) habitat use in an area of chronic wolf–livestock conflict in the Greater Yellowstone Ecosystem, USA. Using three years of fine-scale wolf (n = 14) and elk (n = 81) movement data, we compared the seasonal habitat use of wolves in an area dominated by migratory elk with that of wolves in an adjacent area dominated by resident elk. Most migratory elk vacate the associated winter wolf territories each summer via a 40–60 km migration, whereas resident elk remain accessible to wolves year-round. We used a generalized linear model to compare the relative probability of wolf use as a function of GIS-based habitat covariates in the migratory and resident elk areas. Although wolves in both areas used elk-rich habitat all year, elk density in summer had a weaker influence on the habitat use of wolves in the migratory elk area than the resident elk area. Wolves employed a number of alternative strategies to cope with the departure of migratory elk. Wolves in the two areas also differed in their disposition toward roads. In winter, wolves in the migratory elk area used habitat close to roads, while wolves in the resident elk area avoided roads. In summer, wolves in the migratory elk area were indifferent to roads, while wolves in resident elk areas strongly avoided roads, presumably due to the location of dens and summering elk combined with different traffic levels. Study results can help wildlife managers to anticipate the movements and establishment of wolf packs as they expand into

  12. Habitats for life in the Venusian Environment? Can the VENUS EXPRESS payload answer?

    NASA Astrophysics Data System (ADS)

    Muller, C.

    2003-04-01

    The Venusian conditions are unique in the solar system. Venus abounds in molecules which could feed a life form except that the usual missing factor, energy, is present in excessive amounts from both active geothermic phenomena and from the nearby solar radiation trapped in a dense carbon dioxide atmosphere. Its surface conditions are hotter than the best practiced in hospital sterilisation; volcanism injects highly toxic gases which in the absence of water can accumulate in the atmosphere. Its upper atmosphere lays bare to solar radiation with only carbon dioxide to act as a confirmed EUV filter, so any consideration of life might seem excessive compared to what was known from life on earth before extremophile bacterias were discovered in dark undersea high temperature sulphur rich volcanic vents. However, some regions of the atmosphere might show conditions similar to the earth surface and could be a habitat of earth like microbial life. A synergy between the different atmospheric instruments of the VENUS-Express payload: SPICAM, VIRTIS and PFS can provide the way to probe the actual environmental conditions of this region and to check its capabilities of preserving an extant life or providing nutrients to a new one.

  13. Microbial biogeography of arctic streams: exploring influences of lithology and habitat.

    PubMed

    Larouche, Julia R; Bowden, William B; Giordano, Rosanna; Flinn, Michael B; Crump, Byron C

    2012-01-01

    Terminal restriction fragment length polymorphism and 16S rRNA gene sequencing were used to explore the community composition of bacterial communities in biofilms on sediments (epipssamon) and rocks (epilithon) in stream reaches that drain watersheds with contrasting lithologies in the Noatak National Preserve, Alaska. Bacterial community composition varied primarily by stream habitat and secondarily by lithology. Positive correlations were detected between bacterial community structure and nutrients, base cations, and dissolved organic carbon. Our results showed significant differences at the stream habitat, between epipssamon and epilithon bacterial communities, which we expected. Our results also showed significant differences at the landscape scale that could be related to different lithologies and associated stream biogeochemistry. These results provide insight into the bacterial community composition of little known and pristine arctic stream ecosystems and illustrate how differences in the lithology, soils, and vegetation community of the terrestrial environment interact to influence stream bacterial taxonomic richness and composition.

  14. Microbial Biogeography of Arctic Streams: Exploring Influences of Lithology and Habitat

    PubMed Central

    Larouche, Julia R.; Bowden, William B.; Giordano, Rosanna; Flinn, Michael B.; Crump, Byron C.

    2012-01-01

    Terminal restriction fragment length polymorphism and 16S rRNA gene sequencing were used to explore the community composition of bacterial communities in biofilms on sediments (epipssamon) and rocks (epilithon) in stream reaches that drain watersheds with contrasting lithologies in the Noatak National Preserve, Alaska. Bacterial community composition varied primarily by stream habitat and secondarily by lithology. Positive correlations were detected between bacterial community structure and nutrients, base cations, and dissolved organic carbon. Our results showed significant differences at the stream habitat, between epipssamon and epilithon bacterial communities, which we expected. Our results also showed significant differences at the landscape scale that could be related to different lithologies and associated stream biogeochemistry. These results provide insight into the bacterial community composition of little known and pristine arctic stream ecosystems and illustrate how differences in the lithology, soils, and vegetation community of the terrestrial environment interact to influence stream bacterial taxonomic richness and composition. PMID:22936932

  15. The influence of living conditions in early life on life satisfaction in old age.

    PubMed

    Deindl, Christian

    2013-03-01

    This article examines the influence of living conditions in early life on life satisfaction in old age in eleven Western European countries. It combines the influence of individual conditions, for example housing and family background, with country characteristics in the decade of birth. Using pooled data from the second and third wave of the Survey of Health, Ageing and Retirement in Europe, multilevel models show that early life living conditions have an influence on life satisfaction in old age. Furthermore, interaction effects between current and past living conditions show that adverse living conditions strengthen the effect of early life on life satisfaction in later life and therefore are an indication of cumulative inequality over the life course. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Winter habitat quality but not long-distance dispersal influences apparent reproductive success in a migratory bird.

    PubMed

    Rushing, Clark S; Marra, Peter P; Dudash, Michele R

    2016-05-01

    Long-distance breeding and natal dispersal play central roles in many ecological and evolutionary processes, including gene flow, population dynamics, range expansion, and individual responses to fluctuating biotic and abiotic conditions. However, the relative contribution of long-distance dispersal to these processes depends on the ability of dispersing individuals to successfully reproduce in their new environment. Unfortunately, due to the difficulties associated with tracking dispersal in the field, relatively little is known about its reproductive consequences. Furthermore, because reproductive success is influenced by a variety of processes, disentangling the influence of each of these processes is critical to understanding the direct consequences of dispersal. In this study, we used stable hydrogen and carbon isotopes to estimate long-distance dispersal and winter territory quality in a migratory bird, the American Redstart (Setophaga ruticilla). We then applied Aster life-history models to quantify the strength of influence of these factors on apparent reproductive success. We found no evidence that male or female reproductive success was lower for long-distance dispersers relative to non-dispersing individuals. In contrast, carry-over effects from the winter season did influence male, but not female, reproductive success. Use of Aster models further revealed that for adult males, winter territory quality influenced the number of offspring produced whereas for yearling males, high-quality winter territories were associated with higher mating and nesting success. These results suggest that although long-distance natal and breeding dispersal carry no immediate reproductive cost for American Redstarts, reproductive success in this species may ultimately be limited by the quality of winter habitat.

  17. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    USGS Publications Warehouse

    Tullos, Desiree D.; Walter, Cara; Dunham, Jason B.

    2016-01-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: (1) the velocities considered to be representative of habitat units; (2) patterns of use of the hydraulic environment by fish; and (3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution (grid spacing from 10 to 100 cm), reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  18. Does fluoride influence oviposition of Anopheles stephensi in stored water habitats in an urban setting?

    PubMed

    Thomas, Shalu; Ravishankaran, Sangamithra; Johnson Amala Justin, N A; Asokan, Aswin; Maria Jusler Kalsingh, T; Mathai, Manu Thomas; Valecha, Neena; Eapen, Alex

    2016-11-09

    The physico-chemical characteristics of lentic aquatic habitats greatly influence mosquito species in selecting suitable oviposition sites; immature development, pupation and adult emergence, therefore are considerations for their preferred ecological niche. Correlating water quality parameters with mosquito breeding, as well as immature vector density, are useful for vector control operations in identifying and targeting potential breeding habitats. A total of 40 known habitats of Anopheles stephensi, randomly selected based on a vector survey in parallel, were inspected for the physical and chemical nature of the aquatic environment. Water samples were collected four times during 2013, representing four seasons (i.e., ten habitats per season). The physico-chemical variables and mosquito breeding were statistically analysed to find their correlation with immature density of An. stephensi and also co-inhabitation with other mosquito species. Anopheles stephensi prefer water with low nitrite content and high phosphate content. Parameters such as total dissolved solids, electrical conductivity, total hardness, chloride, fluoride and sulfate had a positive correlation in habitats with any mosquito species breeding (p < 0.05) and also in habitats with An. stephensi alone breeding. Fluoride was observed to have a strong positive correlation with immature density of An. stephensi in both overhead tanks and wells. Knowledge of larval ecology of vector mosquitoes is a key factor in risk assessment and for implementing appropriate and sustainable vector control operations. The presence of fluoride in potential breeding habitats and a strong positive correlation with An. stephensi immature density is useful information, as fluoride can be considered an indicator/predictor of vector breeding. Effective larval source management can be focussed on specified habitats in vulnerable areas to reduce vector abundance and malaria transmission.

  19. Understanding Existing Salmonid Habitat Availability and Connectivity to Improve River Management

    NASA Astrophysics Data System (ADS)

    Duffin, J.; Yager, E.; Tonina, D.; Benjankar, R. M.

    2017-12-01

    In the Pacific Northwest river restoration is common for salmon conservation. Mangers need methods to help target restoration to problem areas in rivers to create habitat that meets a species' needs. Hydraulic models and habitat suitability curves provide basic information on habitat availability and overall quality, but these analyses need to be expanded to address habitat quality based on the accessibility of habitats required for multiple life stages. Scientists are starting to use connectivity measurements to understand the longitudinal proximity of habitat patches, which can be used to address the habitat variability of a reach. By evaluating the availability and quality of habitat and calculating the connectivity between complementary habitats, such as spawning and rearing habitats, we aim to identify areas that should be targeted for restoration. To meet these goals, we assessed Chinook salmon habitat on the Lemhi River in Idaho. The depth and velocity outputs from a 2D hydraulic model are used in conjunction with locally created habitat suitability curves to evaluate the availability and quality of habitat for multiple Chinook salmon life stages. To assess the variability of the habitat, connectivity between habitat patches necessary for different life stages is calculated with a proximity index. A spatial representation of existing habitat quality and connectivity between complimentary habitats can be linked to river morphology by the evaluation of local geomorphic characteristics, including sinuosity and channel units. The understanding of the current habitat availability for multiple life stage needs, the connectivity between these habitat patches, and their relationship with channel morphology can help managers better identify restoration needs and direct their limited resources.

  20. Advanced Plant Habitat (APH)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Reed, David W.

    2016-01-01

    The Advanced Plant Habitat (APH) hardware will be a large growth volume plant habitat, capable of hosting multigenerational studies, in which environmental variables (e.g., temperature, relative humidity, carbon dioxide level light intensity and spectral quality) can be tracked and controlled in support of whole plant physiological testing and Bio-regenerative Life Support System investigations.

  1. A global analysis of traits predicting species sensitivity to habitat fragmentation

    USGS Publications Warehouse

    Keinath, Douglas; Doak, Daniel F.; Hodges, Karen E.; Prugh, Laura R.; Fagan, William F.; Sekercioglu, Cagan H.; Buchart, Stuart H. M.; Kauffman, Matthew J.

    2017-01-01

    AimElucidating patterns in species responses to habitat fragmentation is an important focus of ecology and conservation, but studies are often geographically restricted, taxonomically narrow or use indirect measures of species vulnerability. We investigated predictors of species presence after fragmentation using data from studies around the world that included all four terrestrial vertebrate classes, thus allowing direct inter-taxonomic comparison.LocationWorld-wide.MethodsWe used generalized linear mixed-effect models in an information theoretic framework to assess the factors that explained species presence in remnant habitat patches (3342 patches; 1559 species, mostly birds; and 65,695 records of patch-specific presence–absence). We developed a novel metric of fragmentation sensitivity, defined as the maximum rate of change in probability of presence with changing patch size (‘Peak Change’), to distinguish between general rarity on the landscape and sensitivity to fragmentation per se.ResultsSize of remnant habitat patches was the most important driver of species presence. Across all classes, habitat specialists, carnivores and larger species had a lower probability of presence, and those effects were substantially modified by interactions. Sensitivity to fragmentation (measured by Peak Change) was influenced primarily by habitat type and specialization, but also by fecundity, life span and body mass. Reptiles were more sensitive than other classes. Grassland species had a lower probability of presence, though sample size was relatively small, but forest and shrubland species were more sensitive.Main conclusionsHabitat relationships were more important than life-history characteristics in predicting the effects of fragmentation. Habitat specialization increased sensitivity to fragmentation and interacted with class and habitat type; forest specialists and habitat-specific reptiles were particularly sensitive to fragmentation. Our results suggest that when

  2. Habitat surrounding patch reefs influences the diet and nutrition of the western rock lobster

    EPA Science Inventory

    In this study the influence of habitat on the diet and nutrition of a common reef-associated generalist consumer, the western rock lobster Panulirus cygnus, was tested. Stable isotopes (13C/12C and 15N/14N) and gut contents were used to assess the diet of lobsters collected from ...

  3. Life-stages, exploitation status and habitat use of Lutjanus goreensis (Perciformes: Lutjanidae) in coastal marine environments of Lagos, SW Nigeria.

    PubMed

    Kafayat, A Fakoya; Martins, A Anetekhai; Shehu, L Akintola; Abdulwakil, O Sabal; Abass, Mikhail A

    2015-03-01

    The Gorean snapper, Lutanus goreensis is an important component of artisanal fisheries and trawl landings in the Gulf of Guinea. Despite its economic importance, there is a dearth of information on size structure and life history strategies of the species. Therefore, the objectives of this study were to provide baseline data on the life stages, exploitation status and habitat use for the species in Nigeria. Monthly samples were obtained from artisanal and trawl catches in Five Cowrie Creek and Lagos coastal waters between December 2008 and December 2010, respectively. Length-frequency distributions of the fishes caught were analysed to provide preliminary information on mean and modal lengths at capture and life-history strategies based on habitat use and estuarine-dependency for L. goreensis. A total of 822 specimens of L. goreensis were collected from Five Cowrie Creek while 377 specimens were collected from Lagos coastal waters. Total length varied between 7.90-34.90 cm for creek samples and from 21.90-56.10 cm for marine samples. Length-frequency histograms showed polymodal size distributions in creek and marine samples. Length-frequency distributions of L. goreensis showed a high abundance ofjuveniles (<20 cm) and sub-adults (20-35 cm) which accounted for 84.1% and 68.4% of creek and marine samples examined, respectively. For the creek samples, fish in modal length class of 13.00-13.99 cm were the most exploited while in the marine samples, length classes of 29.00-30.99 cm and 31.00-32.99cm constituted the most frequently exploited fishes. Increase in total lengths from the creek (mean +/- SD; 16.19 +/- 3.73 cm) to the marine habitat samples (32.89 +/- 6.14 cm) indicated ontogenetic shift in habitat use. Occurrence of a predominant juvenile population in Five Cowrie Creek by L. goreensis suggests estuarine-dependency and is indicative of a temporary juvenile habitat or a migratory corridor. In conclusion, data from the presently reported study and previous

  4. Influence of Mowing Artemisia tridentata ssp. wyomingensis on Winter Habitat for Wildlife

    NASA Astrophysics Data System (ADS)

    Davies, Kirk W.; Bates, Jonathan D.; Johnson, Dustin D.; Nafus, Aleta M.

    2009-07-01

    Mowing is commonly implemented to Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh (Wyoming big sagebrush) plant communities to improve wildlife habitat, increase forage production for livestock, and create fuel breaks for fire suppression. However, information detailing the influence of mowing on winter habitat for wildlife is lacking. This information is crucial because many wildlife species depended on A. tridentata spp. wyomingensis plant communities for winter habitat and consume significant quantities of Artemisia during this time . Furthermore, information is generally limited describing the recovery of A. tridentata spp. wyomingensis to mowing and the impacts of mowing on stand structure. Stand characteristics and Artemisia leaf tissue crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF) concentrations were measured in midwinter on 0-, 2-, 4-, and 6-year-old fall-applied mechanical (mowed at 20 cm height) treatments and compared to adjacent untreated (control) areas. Mowing compared to the control decreased Artemisia cover, density, canopy volume, canopy elliptical area, and height ( P < 0.05), but all characteristics were recovering ( P < 0.05). Mowing A. tridentata spp. wyomingensis plant communities slightly increases the nutritional quality of Artemisia leaves ( P < 0.05), but it simultaneously results in up to 20 years of decrease in Artemisia structural characteristics. Because of the large reduction in A. tridentata spp. wyomingensis for potentially 20 years following mowing, mowing should not be applied in Artemisia facultative and obligate wildlife winter habitat. Considering the decline in A. tridentata spp. wyomingensis-dominated landscapes, we caution against mowing these communities.

  5. Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use.

    PubMed

    Valeix, M; Loveridge, A J; Chamaillé-Jammes, S; Davidson, Z; Murindagomo, F; Fritz, H; Macdonald, D W

    2009-01-01

    Predators may influence their prey populations not only through direct lethal effects, but also through indirect behavioral changes. Here, we combined spatiotemporal fine-scale data from GPS radio collars on lions with habitat use information on 11 African herbivores in Hwange National Park (Zimbabwe) to test whether the risk of predation by lions influenced the distribution of herbivores in the landscape. Effects of long-term risk of predation (likelihood of lion presence calculated over four months) and short-term risk of predation (actual presence of lions in the vicinity in the preceding 24 hours) were contrasted. The long-term risk of predation by lions appeared to influence the distributions of all browsers across the landscape, but not of grazers. This result strongly suggests that browsers and grazers, which face different ecological constraints, are influenced at different spatial and temporal scales in the variation of the risk of predation by lions. The results also show that all herbivores tend to use more open habitats preferentially when lions are in their vicinity, probably an effective anti-predator behavior against such an ambush predator. Behaviorally induced effects of lions may therefore contribute significantly to structuring African herbivore communities, and hence possibly their effects on savanna ecosystems.

  6. Habitat suitability index models: Black crappie

    USGS Publications Warehouse

    Edwards, Elizabeth A.; Krieger, Douglas A.; Bacteller, Mary; Maughan, O. Eugene

    1982-01-01

    Characteristics and habitat requirements of the black crappie (Pomoxis nigromaculatus) are described in a review of Habitat Suitability Index models. This is one in a series of publications to provide information on the habitat requirements of selected fish and wildlife species. Numerous literature sources have been consulted in an effort to consolidate scientific data on species-habitat relationships. These data have subsequently been synthesized into explicit Habitat Suitability Index (HSI) models. The models are based on suitability indices indicating habitat preferences. Indices have been formulated for variables found to affect the life cycle and survival of each species. Habitat Suitability Index (HSI) models are designed to provide information for use in impact assessment and habitat management activities. The HSI technique is a corollary to the U.S. Fish and Wildlife Service's Habitat Evaluation Procedures.

  7. Habitat shifts in rainbow trout: competitive influences of brown trout.

    PubMed

    Gatz, A J; Sale, M J; Loar, J M

    1987-11-01

    We compared habitat use by rainbow trout sympatric (three streams) and allopatric (two streams) with brown trout to determine whether competition occurred between these two species in the southern Appalachian Mountains. We measured water depth, water velocity, substrate, distance to overhead vegetation, sunlight, and surface turbulence both where we collected trout and for the streams in general. This enabled us to separate the effects of habitat availability from possible competitive effects. The results provided strong evidence for asymmetrical interspecific competition. Habitat use varied significantly between allopatric and sympatric rainbow trout in 68% of the comparisons made. Portions of some differences refelected differences in habitats available in the several streams. However, for all habitat variables measured except sunlight, rainbow trout used their preferred habitats less in sympatry with brown trout than in allopatry if brown trout also preferred the same habitats. Multivariate analysis indicated that water velocity and its correlates (substrate particle size and surface turbulence) were the most critical habitat variables in the interaction between the species, cover in the form of shade and close overhead vegetation was second most important, and water depth was least important.

  8. Considering direct and indirect habitat influences on stream biota in eco-geomorphology research to better understand, model, and manage riverine ecosystems

    NASA Astrophysics Data System (ADS)

    Cienciala, P.; Nelson, A. D.

    2017-12-01

    The field of fluvial eco-geomorphology strives to improve the understanding of interactions between physical and biological processes in running waters. This body of research has greatly contributed to the advancement of integrated river science and management. Arguably, the most popular research themes in eco-geomorphology include hydrogemorphic controls of habitat quality and effects of disturbances such as floods, sediment transport events or sediment accumulation. However, in contrast to the related field of ecology, the distinction between direct and indirect mechanisms which may affect habitat quality and biotic response to disturbance has been poorly explored in eco-geomorphic research. This knowledge gap poses an important challenge for interpretations of field observations and model development. In this research, using the examples of benthic invertebrates and fish, we examine the importance of direct and indirect influences that geomorphic and hydraulic processes may exert on stream biota. We also investigate their implications for modeling of organism-habitat relationships. To achieve our goal, we integrate field and remote sensing data from montane streams in the Pacific Northwest region with habitat models. Preliminary results indicate that indirect hydrogeomorphic influences of stream organisms, such as those mediated by altered availability of food resources, can be as important as direct influences (e.g. physical disturbance). We suggest that these findings may also have important implications for modeling of riverine habitat.

  9. Habitat-dependent changes in vigilance behaviour of Red-crowned Crane influenced by wildlife tourism.

    PubMed

    Li, Donglai; Liu, Yu; Sun, Xinghai; Lloyd, Huw; Zhu, Shuyu; Zhang, Shuyan; Wan, Dongmei; Zhang, Zhengwang

    2017-11-30

    The Endangered Red-crowned Crane (Grus japonensis) is one of the most culturally iconic and sought-after species by wildlife tourists. Here we investigate how the presence of tourists influence the vigilance behaviour of cranes foraging in Suaeda salsa salt marshes and S. salsa/Phragmites australis mosaic habitat in the Yellow River Delta, China. We found that both the frequency and duration of crane vigilance significantly increased in the presence of wildlife tourists. Increased frequency in crane vigilance only occurred in the much taller S. salsa/P. australis mosaic vegetation whereas the duration of vigilance showed no significant difference between the two habitats. Crane vigilance declined with increasing distance from wildlife tourists in the two habitats, with a minimum distance of disturbance triggering a high degree of vigilance by cranes identified at 300 m. The presence of wildlife tourists may represent a form of disturbance to foraging cranes but is habitat dependent. Taller P. australis vegetation serves primarily as a visual obstruction for cranes, causing them to increase the frequency of vigilance behaviour. Our findings have important implications for the conservation of the migratory red-crowned crane population that winters in the Yellow River Delta and can help inform visitor management.

  10. Habitat split and the global decline of amphibians.

    PubMed

    Becker, Carlos Guilherme; Fonseca, Carlos Roberto; Haddad, Célio Fernando Baptista; Batista, Rômulo Fernandes; Prado, Paulo Inácio

    2007-12-14

    The worldwide decline in amphibians has been attributed to several causes, especially habitat loss and disease. We identified a further factor, namely "habitat split"-defined as human-induced disconnection between habitats used by different life history stages of a species-which forces forest-associated amphibians with aquatic larvae to make risky breeding migrations between suitable aquatic and terrestrial habitats. In the Brazilian Atlantic Forest, we found that habitat split negatively affects the richness of species with aquatic larvae but not the richness of species with terrestrial development (the latter can complete their life cycle inside forest remnants). This mechanism helps to explain why species with aquatic larvae have the highest incidence of population decline. These findings reinforce the need for the conservation and restoration of riparian vegetation.

  11. Intercohort density dependence drives brown trout habitat selection

    NASA Astrophysics Data System (ADS)

    Ayllón, Daniel; Nicola, Graciela G.; Parra, Irene; Elvira, Benigno; Almodóvar, Ana

    2013-01-01

    Habitat selection can be viewed as an emergent property of the quality and availability of habitat but also of the number of individuals and the way they compete for its use. Consequently, habitat selection can change across years due to fluctuating resources or to changes in population numbers. However, habitat selection predictive models often do not account for ecological dynamics, especially density dependent processes. In stage-structured population, the strength of density dependent interactions between individuals of different age classes can exert a profound influence on population trajectories and evolutionary processes. In this study, we aimed to assess the effects of fluctuating densities of both older and younger competing life stages on the habitat selection patterns (described as univariate and multivariate resource selection functions) of young-of-the-year, juvenile and adult brown trout Salmo trutta. We observed all age classes were selective in habitat choice but changed their selection patterns across years consistently with variations in the densities of older but not of younger age classes. Trout of an age increased selectivity for positions highly selected by older individuals when their density decreased, but this pattern did not hold when the density of younger age classes varied. It suggests that younger individuals are dominated by older ones but can expand their range of selected habitats when density of competitors decreases, while older trout do not seem to consider the density of younger individuals when distributing themselves even though they can negatively affect their final performance. Since these results may entail critical implications for conservation and management practices based on habitat selection models, further research should involve a wider range of river typologies and/or longer time frames to fully understand the patterns of and the mechanisms underlying the operation of density dependence on brown trout habitat

  12. Reproductive constraints influence habitat accessibility, segregation, and preference of sympatric albatross species.

    PubMed

    Kappes, Michelle A; Shaffer, Scott A; Tremblay, Yann; Foley, David G; Palacios, Daniel M; Bograd, Steven J; Costa, Daniel P

    2015-01-01

    The spatiotemporal distribution of animals is dependent on a suite of factors, including the distribution of resources, interactions within and between species, physiological limitations, and requirements for reproduction, dispersal, or migration. During breeding, reproductive constraints play a major role in the distribution and behavior of central place foragers, such as pelagic seabirds. We examined the foraging behavior and marine habitat selection of Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses throughout their eight month breeding cycle at Tern Island, Northwest Hawaiian Islands to evaluate how variable constraints of breeding influenced habitat availability and foraging decisions. We used satellite tracking and light-based geolocation to determine foraging locations of individuals, and applied a biologically realistic null usage model to generate control locations and model habitat preference under a case-control design. Remotely sensed oceanographic data were used to characterize albatross habitats in the North Pacific. Individuals of both species ranged significantly farther and for longer durations during incubation and chick-rearing compared to the brooding period. Interspecific segregation of core foraging areas was observed during incubation and chick-rearing, but not during brooding. At-sea activity patterns were most similar between species during brooding; neither species altered foraging effort to compensate for presumed low prey availability and high energy demands during this stage. Habitat selection during long-ranging movements was most strongly associated with sea surface temperature for both species, with a preference for cooler ocean temperatures compared to overall availability. During brooding, lower explanatory power of habitat models was likely related to the narrow range of ocean temperatures available for selection. Laysan and black-footed albatrosses differ from other albatross species in that they breed

  13. Tektite 2 habitability research program: Day-to-day life in the habitat

    NASA Technical Reports Server (NTRS)

    Nowlis, D. P.

    1972-01-01

    Because it is widely agreed that the field of environmental psychology is quite young, it was determined that a sample of recorded observations from a representative mission should be included in the report on Tektite to give the professional reader a better feeling of normal day-to-day life in the isolated habitat. Names of the crew members have been replaced with numbers and some off-color words have been replaced by more acceptable slang; some remarks have been omitted that might lead to easy identification of the subjects. Otherwise, the following pages are exactly as transcribed during the late afternoons and the evenings of the mission.

  14. Fine-Scale Habitat Heterogeneity Influences Occupancy in Terrestrial Mammals in a Temperate Region of Australia

    PubMed Central

    Stirnemann, Ingrid; Mortelliti, Alessio; Gibbons, Philip; Lindenmayer, David B.

    2015-01-01

    Vegetation heterogeneity is an inherent feature of most ecosystems, characterises the structure of habitat, and is considered an important driver of species distribution patterns. However, quantifying fine-scale heterogeneity of vegetation cover can be time consuming, and therefore it is seldom measured. Here, we determine if heterogeneity is worthwhile measuring, in addition to the amount of cover, when examining species distribution patterns. Further, we investigated the effect of the surrounding landscape heterogeneity on species occupancy. We tested the effect of cover and heterogeneity of trees and shrubs, and the context of the surrounding landscape (number of habitats and distance to an ecotone) on site occupancy of three mammal species (the black wallaby [Wallabia bicolor], the long-nosed bandicoot [Perameles nasuta], and the bush rat [Rattus fuscipes]) within a naturally heterogeneous landscape in a temperate region of Australia. We found that fine-scale heterogeneity of vegetation attributes is an important driver of mammal occurrence of two of these species. Further, we found that, although all three species responded positively to vegetation heterogeneity, different mammals vary in their response to different types of vegetation heterogeneity measurement. For example, the black wallaby responded to the proximity of an ecotone, and the bush rat and the long-nosed bandicoot responded to fine-scale heterogeneity of small tree cover, whereas none of the mammals responded to broad scale heterogeneity (i.e., the number of habitat types). Our results highlight the influence of methodological decisions, such as how heterogeneity vegetation is measured, in quantifying species responses to habitat structures. The findings confirm the importance of choosing meaningful heterogeneity measures when modelling the factors influencing occupancy of the species of interest. PMID:26394327

  15. The Influence of Social Structure, Habitat, and Host Traits on the Transmission of Escherichia coli in Wild Elephants

    PubMed Central

    Chiyo, Patrick I.; Grieneisen, Laura E.; Wittemyer, George; Moss, Cynthia J.; Lee, Phyllis C.; Douglas-Hamilton, Iain; Archie, Elizabeth A.

    2014-01-01

    Social structure is proposed to influence the transmission of both directly and environmentally transmitted infectious agents. However in natural populations, many other factors also influence transmission, including variation in individual susceptibility and aspects of the environment that promote or inhibit exposure to infection. We used a population genetic approach to investigate the effects of social structure, environment, and host traits on the transmission of Escherichia coli infecting two populations of wild elephants: one in Amboseli National Park and another in Samburu National Reserve, Kenya. If E. coli transmission is strongly influenced by elephant social structure, E. coli infecting elephants from the same social group should be genetically more similar than E. coli sampled from members of different social groups. However, we found no support for this prediction. Instead, E. coli was panmictic across social groups, and transmission patterns were largely dominated by habitat and host traits. For instance, habitat overlap between elephant social groups predicted E. coli genetic similarity, but only in the relatively drier habitat of Samburu, and not in Amboseli, where the habitat contains large, permanent swamps. In terms of host traits, adult males were infected with more diverse haplotypes, and males were slightly more likely to harbor strains with higher pathogenic potential, as compared to adult females. In addition, elephants from similar birth cohorts were infected with genetically more similar E. coli than elephants more disparate in age. This age-structured transmission may be driven by temporal shifts in genetic structure of E. coli in the environment and the effects of age on bacterial colonization. Together, our results support the idea that, in elephants, social structure often will not exhibit strong effects on the transmission of generalist, fecal-oral transmitted bacteria. We discuss our results in the context of social, environmental

  16. The influence of social structure, habitat, and host traits on the transmission of Escherichia coli in wild elephants.

    PubMed

    Chiyo, Patrick I; Grieneisen, Laura E; Wittemyer, George; Moss, Cynthia J; Lee, Phyllis C; Douglas-Hamilton, Iain; Archie, Elizabeth A

    2014-01-01

    Social structure is proposed to influence the transmission of both directly and environmentally transmitted infectious agents. However in natural populations, many other factors also influence transmission, including variation in individual susceptibility and aspects of the environment that promote or inhibit exposure to infection. We used a population genetic approach to investigate the effects of social structure, environment, and host traits on the transmission of Escherichia coli infecting two populations of wild elephants: one in Amboseli National Park and another in Samburu National Reserve, Kenya. If E. coli transmission is strongly influenced by elephant social structure, E. coli infecting elephants from the same social group should be genetically more similar than E. coli sampled from members of different social groups. However, we found no support for this prediction. Instead, E. coli was panmictic across social groups, and transmission patterns were largely dominated by habitat and host traits. For instance, habitat overlap between elephant social groups predicted E. coli genetic similarity, but only in the relatively drier habitat of Samburu, and not in Amboseli, where the habitat contains large, permanent swamps. In terms of host traits, adult males were infected with more diverse haplotypes, and males were slightly more likely to harbor strains with higher pathogenic potential, as compared to adult females. In addition, elephants from similar birth cohorts were infected with genetically more similar E. coli than elephants more disparate in age. This age-structured transmission may be driven by temporal shifts in genetic structure of E. coli in the environment and the effects of age on bacterial colonization. Together, our results support the idea that, in elephants, social structure often will not exhibit strong effects on the transmission of generalist, fecal-oral transmitted bacteria. We discuss our results in the context of social, environmental

  17. The relative influence of road characteristics and habitat on adjacent lizard populations in arid shrublands

    USGS Publications Warehouse

    Hubbard, Kaylan A.; Chalfoun, Anna D.; Gerow, Kenneth G.

    2016-01-01

    As road networks continue to expand globally, indirect impacts to adjacent wildlife populations remain largely unknown. Simultaneously, reptile populations are declining worldwide and anthropogenic habitat loss and fragmentation are frequently cited causes. We evaluated the relative influence of three different road characteristics (surface treatment, width, and traffic volume) and habitat features on adjacent populations of Northern Sagebrush Lizards (Sceloporus graciosus graciosus), Plateau Fence Lizards (S. tristichus), and Greater Short-Horned Lizards (Phrynosoma hernandesi) in mixed arid shrubland habitats in southwest Wyoming. Neither odds of lizard presence nor relative abundance was significantly related to any of the assessed road characteristics, although there was a trend for higher Sceloporus spp. abundance adjacent to paved roads. Sceloporus spp. relative abundance did not vary systematically with distance to the nearest road. Rather, both Sceloporus spp. and Greater Short-Horned Lizards were associated strongly with particular habitat characteristics adjacent to roads. Sceloporus spp. presence and relative abundance increased with rock cover, relative abundance was associated positively with shrub cover, and presence was associated negatively with grass cover. Greater Short-Horned Lizard presence increased with bare ground and decreased marginally with shrub cover. Our results suggest that habitat attributes are stronger correlates of lizard presence and relative abundance than individual characteristics of adjacent roads, at least in our system. Therefore, an effective conservation approach for these species may be to consider the landscape through which new roads and their associated development would occur, and the impact that placement could have on fragment size and key habitat elements.

  18. Survival of freezing by hydrated tardigrades inhabiting terrestrial and freshwater habitats.

    PubMed

    Guidetti, Roberto; Altiero, Tiziana; Bertolani, Roberto; Grazioso, Pasqualina; Rebecchi, Lorena

    2011-04-01

    The seasonality and unpredictability of environmental conditions at high altitudes and latitudes govern the life cycle patterns of organisms, giving rise to stresses that cause death or development of specific adaptations. Ice formation is a major variable affecting the survival of both freshwater fauna and fauna inhabiting lichens, mosses and leaf litter. Tardigrades occupy a wide range of niches in marine, freshwater and terrestrial environments. The highest number of species is found in terrestrial habitats thanks to their ability to enter anhydrobiosis and cryobiosis. The cryobiotic ability of tardigrade species from polar regions is well known. Consequently, we focused our research on the ability to survive freezing in the active hydrated state using seven tardigrade species differing in phylogenetic position and collected at various altitudes and from different habitats in a temperate area. Specimens were cooled at different cooling rates (from 0.31° C min(-1) to 3.26° C min(-1)). Even though the final survival and the time required by animals to recover to active life were both inversely related to the cooling rate, highly significant interspecific differences were found. Species survival ability ranged from excellent to none. Species living in xeric habitats withstood freezing better than those living in hygrophilous habitats, while true limnic species did not exhibit any cryobiotic ability. The ability to withstand freezing seems linked to the anhydrobiotic ability. The differences in cryptobiotic performance among tardigrade species seem more influenced by selective pressures linked to local adaptation to habitat characteristics than by phylogenetic relationships. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. INFLUENCE OF FRESHWATER INPUT ON THE HABITAT VALUE OF OYSTER REEFS IN THREE SOUTHWEST FLORIDA ESTUARIES.

    EPA Science Inventory

    In order to examine the influence of freshwater input on the habitat value of oyster reefs, a spatiotemporal comparison of reef-resident fishes and decapod crustaceans was conducted during three seasonally dry and three seasonally wet months in three Southwest Florida estuaries: ...

  20. Habitat Suitability Index Models: Red king crab

    USGS Publications Warehouse

    Jewett, Stephen C.; Onuf, Christopher P.

    1988-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for evaluating habitat of different life stages of red king crab (Paralithodes camtschatica). A model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) and 1.0 (optimum habitat) in Alaskan coastal waters, especially in the Gulf of Alaska and the southeastern Bering Sea. HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  1. Influence of forest and rangeland management on anadromous fish habitat in Western North America: impacts of natural events.

    Treesearch

    Douglas N. Swanston

    1980-01-01

    Natural events affecting vegetative cover and the hydrology and stability of a stream and its parent watershed are key factors influencing the quality of anadromous fish habitat. High intensity storms, drought, soil mass movement, and fire have the greatest impacts. Wind, stream icing, and the influence of insects and disease are important locally...

  2. Modeling habitat split: landscape and life history traits determine amphibian extinction thresholds.

    PubMed

    Fonseca, Carlos Roberto; Coutinho, Renato M; Azevedo, Franciane; Berbert, Juliana M; Corso, Gilberto; Kraenkel, Roberto A

    2013-01-01

    Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance - the distance between the two required habitats - affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations.

  3. Terrestrial habitat selection and strong density-dependent mortality in recently metamorphosed amphibians.

    PubMed

    Patrick, David A; Harper, Elizabeth B; Hunter, Malcolm L; Calhoun, Aram J K

    2008-09-01

    To predict the effects of terrestrial habitat change on amphibian populations, we need to know how amphibians respond to habitat heterogeneity, and whether habitat choice remains consistent throughout the life-history cycle. We conducted four experiments to evaluate how the spatial distribution of juvenile wood frogs, Rana sylvatica (including both overall abundance and localized density), was influenced by habitat choice and habitat structure, and how this relationship changed with spatial scale and behavioral phase. The four experiments included (1) habitat manipulation on replicated 10-ha landscapes surrounding breeding pools; (2) short-term experiments with individual frogs emigrating through a manipulated landscape of 1 m wide hexagonal patches; and habitat manipulations in (3) small (4-m2); and (4) large (100-m2) enclosures with multiple individuals to compare behavior both during and following emigration. The spatial distribution of juvenile wood frogs following emigration resulted from differences in the scale at which juvenile amphibians responded to habitat heterogeneity during active vs. settled behavioral phases. During emigration, juvenile wood frogs responded to coarse-scale variation in habitat (selection between 2.2-ha forest treatments) but not to fine-scale variation. After settling, however, animals showed habitat selection at much smaller scales (2-4 m2). This resulted in high densities of animals in small patches of suitable habitat where they experienced rapid mortality. No evidence of density-dependent habitat selection was seen, with juveniles typically choosing to remain at extremely high densities in high-quality habitat, rather than occupying low-quality habitat. These experiments demonstrate how prediction of the terrestrial distribution of juvenile amphibians requires understanding of the complex behavioral responses to habitat heterogeneity. Understanding these patterns is important, given that human alterations to amphibian habitats

  4. Snow as a habitat for microorganisms

    NASA Technical Reports Server (NTRS)

    Hoham, Ronald W.

    1989-01-01

    There are three major habitats involving ice and snow, and the microorganisms studied from these habitats are most eukaryotic. Sea ice is inhabited by algae called diatoms, glacial ice has sparse populations of green algai cal desmids, and the temporary and permanent snows in mountainous regions and high latitudes are inhabited mostly by green algal flagellates. The life cycle of green algal flagellates is summarized by discussing the effects of light, temperature, nutrients, and snow melts. Specific examples of optimal conditions and environmental effects for various snow algae are given. It is not likely that the eukaryotic snow algae presented are candidated for life on the planet Mars. Evolutionally, eukaryotic cells as know on Earth may not have had the opportunity to develop on Mars (if life evolved at all on Mars) since eukaryotes did not appear on Earth until almost two billion years after the first prokaryotic organisms. However, the snow/ice ecosystems on Earth present themselves as extreme habitats were there is evidence of prokaryotic life (eubacteria and cyanbacteria) of which literally nothing is known. Any future surveillances of extant and/or extinct life on Mars should include probes (if not landing sites) to investigate sites of concentrations of ice water. The possibility of signs of life in Martian polar regions should not be overlooked.

  5. THE EFFECTS OF BODY MASS, PHYLOGENY, HABITAT, AND TROPHIC LEVEL ON MAMMALIAN AGE AT FIRST REPRODUCTION.

    PubMed

    Wootton, J Timothy

    1987-07-01

    I examined age at first reproduction of 547 mammalian species to determine the influence of diet and habitat on the evolution of life-history traits. Body mass correlated positively with age at first reproduction, explaining 56% of the variance. Habitat and trophic groups deviated significantly from the allometric curve in a pattern generally consistent with predictions from r/K selection theory and its modifications. However, mammalian orders also deviated significantly from the allometric curve, and different habitat and diet groups contained different ratios of mammalian orders. When the effects of orders were removed, residual deviations did not differ among ecological groups. Adjusting for ecological differences did not eliminate the differences between orders. These results suggest that body mass (or some correlated factor) and phylogeny strongly constrain age at first reproduction. Ecological factors appear to have little effect on the evolution of age at first reproduction. Apparent differences in weight-specific ages at first reproduction within habitats and trophic groups may be the result of ecological selection of order composition in the present, rather than ecologically driven evolution of life history in the past. © 1987 The Society for the Study of Evolution.

  6. Optimal flow for brown trout: Habitat - prey optimization.

    PubMed

    Fornaroli, Riccardo; Cabrini, Riccardo; Sartori, Laura; Marazzi, Francesca; Canobbio, Sergio; Mezzanotte, Valeria

    2016-10-01

    The correct definition of ecosystem needs is essential in order to guide policy and management strategies to optimize the increasing use of freshwater by human activities. Commonly, the assessment of the optimal or minimum flow rates needed to preserve ecosystem functionality has been done by habitat-based models that define a relationship between in-stream flow and habitat availability for various species of fish. We propose a new approach for the identification of optimal flows using the limiting factor approach and the evaluation of basic ecological relationships, considering the appropriate spatial scale for different organisms. We developed density-environment relationships for three different life stages of brown trout that show the limiting effects of hydromorphological variables at habitat scale. In our analyses, we found that the factors limiting the densities of trout were water velocity, substrate characteristics and refugia availability. For all the life stages, the selected models considered simultaneously two variables and implied that higher velocities provided a less suitable habitat, regardless of other physical characteristics and with different patterns. We used these relationships within habitat based models in order to select a range of flows that preserve most of the physical habitat for all the life stages. We also estimated the effect of varying discharge flows on macroinvertebrate biomass and used the obtained results to identify an optimal flow maximizing habitat and prey availability. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Endothermy in African platypleurine cicadas: the influence of body size and habitat (Hemiptera: Cicadidae).

    PubMed

    Sanborn, Allen F; Villet, Martin H; Phillips, Polly K

    2004-01-01

    The platypleurine cicadas have a wide distribution across Africa and southern Asia. We investigate endothermy as a thermoregulatory strategy in 11 South African species from five genera, with comparisons to the lone ectothermic platypleurine we found, in an attempt to ascertain any influence that habitat and/or body size have on the expression of endothermy in the platypleurine cicadas. Field measurements of body temperature (T(b)) show that these animals regulate T(b) through endogenous heat production. Heat production in the laboratory elevated T(b) to the same range as in animals active in the field. Maximum T(b) measured during calling activity when there was no access to solar radiation ranged from 13.2 degrees to 22.3 degrees C above ambient temperature in the five species measured. The mean T(b) during activity without access to solar radiation did not differ from the mean T(b) during diurnal activity. All platypleurines exhibit a unique behavior for cicadas while warming endogenously, a temperature-dependent telescoping pulsation of the abdomen that probably functions in ventilation. Platypleurines generally call from trunks and branches within the canopy and appear to rely on endothermy even when the sun is available to elevate T(b), in contrast to the facultative endothermy exhibited by New World endothermic species. The two exceptions to this generalization we found within the platypleurines are Platypleura wahlbergi and Albanycada albigera, which were the smallest species studied. The small size of P. wahlbergi appears to have altered their thermoregulatory strategy to one of facultative endothermy, whereby they use the sun when it is available to facilitate increases in T(b). Albanycada albigera is the only ectothermic platypleurine we found. The habitat and host plant association of A. albigera appear to have influenced the choice of ectothermy as a thermoregulatory strategy, as the species possesses the metabolic machinery to elevate to the T

  8. Habitat complexity influences fine scale hydrological processes and the incidence of stormwater runoff in managed urban ecosystems.

    PubMed

    Ossola, Alessandro; Hahs, Amy Kristin; Livesley, Stephen John

    2015-08-15

    Urban ecosystems have traditionally been considered to be pervious features of our cities. Their hydrological properties have largely been investigated at the landscape scale and in comparison with other urban land use types. However, hydrological properties can vary at smaller scales depending upon changes in soil, surface litter and vegetation components. Management practices can directly and indirectly affect each of these components and the overall habitat complexity, ultimately affecting hydrological processes. This study aims to investigate the influence that habitat components and habitat complexity have upon key hydrological processes and the implications for urban habitat management. Using a network of urban parks and remnant nature reserves in Melbourne, Australia, replicate plots representing three types of habitat complexity were established: low-complexity parks, high-complexity parks, and high-complexity remnants. Saturated soil hydraulic conductivity in low-complexity parks was an order of magnitude lower than that measured in the more complex habitat types, due to fewer soil macropores. Conversely, soil water holding capacity in low-complexity parks was significantly higher compared to the two more complex habitat types. Low-complexity parks would generate runoff during modest precipitation events, whereas high-complexity parks and remnants would be able to absorb the vast majority of rainfall events without generating runoff. Litter layers on the soil surface would absorb most of precipitation events in high-complexity parks and high-complexity remnants. To minimize the incidence of stormwater runoff from urban ecosystems, land managers could incrementally increase the complexity of habitat patches, by increasing canopy density and volume, preserving surface litter and maintaining soil macropore structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Degree of adaptive response in urban tolerant birds shows influence of habitat-of-origin

    PubMed Central

    2014-01-01

    Urban exploiters and adapters are often coalesced under a term of convenience as ‘urban tolerant’. This useful but simplistic characterisation masks a more nuanced interplay between and within assemblages of birds that are more or less well adapted to a range of urban habitats. I test the hypotheses that objectively-defined urban exploiter and suburban adapter assemblages within the broad urban tolerant grouping in Melbourne vary in their responses within the larger group to predictor variables, and that the most explanatory predictor variables vary between the two assemblages. A paired, partitioned analysis of exploiter and adapter preferences for points along the urban–rural gradient was undertaken to decompose the overall trend into diagnosable parts for each assemblage. In a similar way to that in which time since establishment has been found to be related to high urban densities of some bird species and biogeographic origin predictive of urban adaptation extent, habitat origins of members of bird assemblages influence the degree to which they become urban tolerant. Bird species that objectively classify as urban tolerant will further classify as either exploiters or adapters according to the degree of openness of their habitats-of-origin. PMID:24688881

  10. ASSESSING THE EFFECT OF HABITAT ALTERATION ON SHELLFISH POPULATIONS

    EPA Science Inventory

    Habitat provides a variety of life support functions for many species, such as providing shelter, substrate, food, and nursery areas. Habitat alteration is one of the most important causes of declines in ecological resources in North America, and habitats essential to the well b...

  11. Echinoid associations with coral habitats differ with taxon in the deep sea and the influence of other echinoids, depth, and fishing history on their distribution

    NASA Astrophysics Data System (ADS)

    Stevenson, Angela; Davies, Jaime S.; Williams, Alan; Althaus, Franziska; Rowden, Ashley A.; Bowden, David A.; Clark, Malcolm R.; Mitchell, Fraser J. G.

    2018-03-01

    Patterns of habitat use by animals and knowledge of the environmental factors affecting these spatial patterns are important for understanding the structure and dynamics of ecological communities. Both aspects are poorly known for deep-sea habitats. The present study investigates echinoid distributions within cold water coral (CWC) habitats on continental margins off France, Australia, and New Zealand. It further examines the influence of habitat-related variables that might help explain the observed distribution of echinoid taxa. Six echinoid taxa were examined from video and photographic transects to reveal taxon-specific distribution patterns and habitat-related influences. The Echinoidea were found in all habitats studied, but tended to aggregate in architecturally complex habitats associated with living cold-water corals. However, a taxon-specific investigation found that such associations were largely an artefact of the dominant taxa observed in a specific region. Despite the food and shelter resources offered to echinoids by matrix-forming coral habitats, not all taxa were associated with these habitats, and some had a random association with the habitats examined, while others displayed non-random associations. Echinoid distribution was correlated with several variables; the presence of other echinoids, depth, and fishing history were the most influential factors. This study indicates that image data can be a useful tool to detect trends in echinoid habitat associations. It also suggests that refinement of the methods, in particular with studies conducted at a more precise taxon and habitat scale, would facilitate better quantitative analyses of habitat associations and paint a more realistic picture of a population's ecology. Most deep-sea ecological studies to date have been conducted at a relatively coarse taxonomic and habitat resolution, and lack sufficient resolution to provide useful information for the conservation of vulnerable deep-sea habitats.

  12. Social environment affects the life history tactic of a phoretic mite.

    PubMed

    Nehring, V; Müller, J K

    2009-08-01

    Phoretic animals use their hosts for travelling to habitat patches suitable for reproduction. Some species, such as the mite Poecilochirus carabi, are phoretic as juveniles and cannot leave their habitat once they reach adulthood. Previous work has shown that mites exercise choice over the habitat in which they will mature and reproduce based on abiotic parameters, but it is hitherto unknown whether their social environment influences this choice. By manipulating the composition of their conspecific company we show that P. carabi perform the adult moult in the presence of prospective mating partners only. Furthermore, juvenile male mites do not moult in the presence of an adult competitor. Recently-moulted males are severely disadvantaged in fighting, so such delayed moulting may allow juveniles to increase their chances of surviving and reproducing. Our results clearly demonstrate a strong influence of the social environment on a phoretic's habitat choice and life history.

  13. Habitat models to predict wetland bird occupancy influenced by scale, anthropogenic disturbance, and imperfect detection

    USGS Publications Warehouse

    Glisson, Wesley J.; Conway, Courtney J.; Nadeau, Christopher P.; Borgmann, Kathi L.

    2017-01-01

    Understanding species–habitat relationships for endangered species is critical for their conservation. However, many studies have limited value for conservation because they fail to account for habitat associations at multiple spatial scales, anthropogenic variables, and imperfect detection. We addressed these three limitations by developing models for an endangered wetland bird, Yuma Ridgway's rail (Rallus obsoletus yumanensis), that examined how the spatial scale of environmental variables, inclusion of anthropogenic disturbance variables, and accounting for imperfect detection in validation data influenced model performance. These models identified associations between environmental variables and occupancy. We used bird survey and spatial environmental data at 2473 locations throughout the species' U.S. range to create and validate occupancy models and produce predictive maps of occupancy. We compared habitat-based models at three spatial scales (100, 224, and 500 m radii buffers) with and without anthropogenic disturbance variables using validation data adjusted for imperfect detection and an unadjusted validation dataset that ignored imperfect detection. The inclusion of anthropogenic disturbance variables improved the performance of habitat models at all three spatial scales, and the 224-m-scale model performed best. All models exhibited greater predictive ability when imperfect detection was incorporated into validation data. Yuma Ridgway's rail occupancy was negatively associated with ephemeral and slow-moving riverine features and high-intensity anthropogenic development, and positively associated with emergent vegetation, agriculture, and low-intensity development. Our modeling approach accounts for common limitations in modeling species–habitat relationships and creating predictive maps of occupancy probability and, therefore, provides a useful framework for other species.

  14. The relative influence of geographic location and reach-scale habitat on benthic invertebrate assemblages in six ecoregions

    EPA Science Inventory

    The objective of this study was to determine the relative influence of reach-specific habitat variables and geographic location on benthic invertebrate assemblages within six ecoregions across the Western USA. This study included 417 sites from six ecoregions. A total of 301 ta...

  15. Marsupials don't adjust their thermal energetics for life in an alpine environment

    PubMed Central

    Cooper, Christine E.; Withers, Philip C.; Hardie, Andrew; Geiser, Fritz

    2016-01-01

    ABSTRACT Marsupials have relatively low body temperatures and metabolic rates, and are therefore considered to be maladapted for life in cold habitats such as alpine environments. We compared body temperature, energetics and water loss as a function of ambient temperature for 4 Antechinus species, 2 from alpine habitats and 2 from low altitude habitats. Our results show that body temperature, metabolic rate, evaporative water loss, thermal conductance and relative water economy are markedly influenced by ambient temperature for each species, as expected for endothermic mammals. However, despite some species and individual differences, habitat (alpine vs non-alpine) does not affect any of these physiological variables, which are consistent with those for other marsupials. Our study suggests that at least under the environmental conditions experienced on the Australian continent, life in an alpine habitat does not require major physiological adjustments by small marsupials and that they are physiologically equipped to deal with sub-zero temperatures and winter snow cover. PMID:28349088

  16. Marsupials don't adjust their thermal energetics for life in an alpine environment.

    PubMed

    Cooper, Christine E; Withers, Philip C; Hardie, Andrew; Geiser, Fritz

    2016-01-01

    Marsupials have relatively low body temperatures and metabolic rates, and are therefore considered to be maladapted for life in cold habitats such as alpine environments. We compared body temperature, energetics and water loss as a function of ambient temperature for 4 Antechinus species, 2 from alpine habitats and 2 from low altitude habitats. Our results show that body temperature, metabolic rate, evaporative water loss, thermal conductance and relative water economy are markedly influenced by ambient temperature for each species, as expected for endothermic mammals. However, despite some species and individual differences, habitat (alpine vs non-alpine) does not affect any of these physiological variables, which are consistent with those for other marsupials. Our study suggests that at least under the environmental conditions experienced on the Australian continent, life in an alpine habitat does not require major physiological adjustments by small marsupials and that they are physiologically equipped to deal with sub-zero temperatures and winter snow cover.

  17. Virtual Habitat -a dynamic simulation of closed life support systems -human model status

    NASA Astrophysics Data System (ADS)

    Markus Czupalla, M. Sc.; Zhukov, Anton; Hwang, Su-Au; Schnaitmann, Jonas

    In order to optimize Life Support Systems on a system level, stability questions must be in-vestigated. To do so the exploration group of the Technical University of Munich (TUM) is developing the "Virtual Habitat" (V-HAB) dynamic LSS simulation software. V-HAB shall provide the possibility to conduct dynamic simulations of entire mission scenarios for any given LSS configuration. The Virtual Habitat simulation tool consists of four main modules: • Closed Environment Module (CEM) -monitoring of compounds in a closed environment • Crew Module (CM) -dynamic human simulation • P/C Systems Module (PCSM) -dynamic P/C subsystems • Plant Module (PM) -dynamic plant simulation The core module of the simulation is the dynamic and environment sensitive human module. Introduced in its basic version in 2008, the human module has been significantly updated since, increasing its capabilities and maturity significantly. In this paper three newly added human model subsystems (thermal regulation, digestion and schedule controller) are introduced touching also on the human stress subsystem which is cur-rently under development. Upon the introduction of these new subsystems, the integration of these into the overall V-HAB human model is discussed, highlighting the impact on the most important I/F. The overall human model capabilities shall further be summarized and presented based on meaningful test cases. In addition to the presentation of the results, the correlation strategy for the Virtual Habitat human model shall be introduced assessing the models current confidence level and giving an outlook on the future correlation strategy. Last but not least, the remaining V-HAB mod-ules shall be introduced shortly showing how the human model is integrated into the overall simulation.

  18. Habitat selection of two gobies (Microgobius gulosus, Gobiosoma robustum): influence of structural complexity, competitive interactions and presence of a predator

    USGS Publications Warehouse

    Schofield, P.J.

    2003-01-01

    Herein I compare the relative importance of preference for structurally complex habitat against avoidance of competitors and predators in two benthic fishes common in the Gulf of Mexico. The code goby Gobiosoma robustum Ginsburg and clown goby Microgobius gulosus (Girard) are common, ecologically similar fishes found throughout the Gulf of Mexico and in the southeastern Atlantic Ocean. In Florida Bay, these fishes exhibit habitat partitioning: G. robustum is most abundant in seagrass-dominated areas while M. gulosus is most abundant in sparsely vegetated habitats. In a small-scale field survey, I documented the microhabitat use of these species where their distributions overlap. In a series of laboratory experiments, I presented each species with structured (artificial seagrass) versus nonstructured (bare sand) habitats and measured their frequency of choosing either habitat type. I then examined the use of structured versus nonstructured habitats when the two species were placed together in a mixed group. Finally, I placed a predator (Opsanus beta) in the experimental aquaria to determine how its presence influenced habitat selection. In the field, G. robustum was more abundant in seagrass and M. gulosus was more abundant in bare mud. In the laboratory, both species selected grass over sand in allopatry. However, in sympatry, M. gulosus occupied sand more often when paired with G. robustum than when alone. G. robustum appears to directly influence the habitat choice of M. gulosus: It seems that M. gulosus is pushed out of the structured habitat that is the preferred habitat of G. robustum. Thus, competition appears to modify the habitat selection of these species when they occur in sympatry. Additionally, the presence of the toadfish was a sufficient stimulus to provoke both M. gulosus and G. robustum to increase their selection for sand (compared to single-species treatments). Distribution patterns of M. gulosus and G. robustum

  19. Effects of spatial habitat heterogeneity on habitat selection and annual fecundity for a migratory forest songbird

    USGS Publications Warehouse

    Cornell, K.L.; Donovan, T.M.

    2010-01-01

    Understanding how spatial habitat patterns influence abundance and dynamics of animal populations is a primary goal in landscape ecology. We used an information-theoretic approach to investigate the association between habitat patterns at multiple spatial scales and demographic patterns for black-throated blue warblers (Dendroica caerulescens) at 20 study sites in west-central Vermont, USA from 2002 to 2005. Sites were characterized by: (1) territory-scale shrub density, (2) patch-scale shrub density occurring within 25 ha of territories, and (3) landscape-scale habitat patterns occurring within 5 km radius extents of territories. We considered multiple population parameters including abundance, age ratios, and annual fecundity. Territory-scale shrub density was most important for determining abundance and age ratios, but landscape-scale habitat structure strongly influenced reproductive output. Sites with higher territory-scale shrub density had higher abundance, and were more likely to be occupied by older, more experienced individuals compared to sites with lower shrub density. However, annual fecundity was higher on sites located in contiguously forested landscapes where shrub density was lower than the fragmented sites. Further, effects of habitat pattern at one spatial scale depended on habitat conditions at different scales. For example, abundance increased with increasing territory-scale shrub density, but this effect was much stronger in fragmented landscapes than in contiguously forested landscapes. These results suggest that habitat pattern at different spatial scales affect demographic parameters in different ways, and that effects of habitat patterns at one spatial scale depends on habitat conditions at other scales. ?? Springer Science+Business Media B.V. 2009.

  20. Effects of water management, connectivity, and surrounding land use on habitat use by frogs in rice paddies in Japan.

    PubMed

    Naito, Risa; Yamasaki, Michimasa; Lmanishi, Ayumi; Natuhara, Yosihiro; Morimoto, Yukihiro

    2012-09-01

    In Japan, rice paddies play an important role as a substitute habitat for wetland species, and support rich indigenous ecosystems. However, since the 1950s, agricultural modernization has altered the rice paddy environment, and many previously common species are now endangered. It is urgently necessary to evaluate rice paddies as habitats for conservation. Among the species living in rice paddies, frogs are representative and are good indicator species, so we focused on frog species and analyzed the influence of environmental factors on their habitat use. We found four frog species and one subspecies (Hyla japonica, Pelophylax nigromaculatus, Glandirana rugosa, Lithobates catesbeianus, and Pelophylax porosa brevipoda) at our study sites in Shiga prefecture. For all but L. catesbeianus, we analyzed the influence of environmental factors related to rice paddy structure, water management and availability, agrochemical use, connectivity, and land use on breeding and non-breeding habitat use. We constructed generalized additive mixed models with survey date as the smooth term and applied Akaike's information criterion to choose the bestranked model. Because life histories and biological characteristics vary among species, the factors affecting habitat use by frogs are also expected to differ by species. We found that both breeding and non-breeding habitat uses of each studied species were influenced by different combinations of environmental factors and that in most cases, habitat use showed seasonality. For frog conservation in rice paddies, we need to choose favorable rice paddy in relation to surrounding land use and apply suitable management for target species.

  1. Habitat-specific foraging of prothonotary warblers: Deducing habitat quality

    USGS Publications Warehouse

    Lyons, J.E.

    2005-01-01

    Foraging behavior often reflects food availability in predictable ways. For example, in habitats where food availability is high, predators should attack prey more often and move more slowly than in habitats where food availability is low. To assess relative food availability and habitat quality, I studied the foraging behavior of breeding Prothonotary Warblers (Protonotaria citrea) in two forest habitat types, cypress-gum swamp forest and coastal-plain levee forest. I quantified foraging behavior with focal animal sampling and continuous recording during foraging bouts. I measured two aspects of foraging behavior: 1) prey attack rate (attacks per minute), using four attack maneuvers (glean, sally, hover, strike), and 2) foraging speed (movements per minute), using three types of movement (hop, short flight [???1 m], long flight [>1 m]). Warblers attacked prey more often in cypress-gum swamp forest than in coastal-plain levee forest. Foraging speed, however, was not different between habitats. I also measured foraging effort (% time spent foraging) and relative frequency of attack maneuvers employed in each habitat; neither of these variables was influenced by forest type. I conclude that Prothonotary Warblers encounter more prey when foraging in cypress-gum swamps than in coastal-plain levee forest, and that greater food availability results in higher density and greater reproductive success for birds breeding in cypress-gum swamp.

  2. Tracing multi-habitat support of coastal fishes

    EPA Science Inventory

    Hydrologic linkages among coastal wetland and nearshore areas allow coastal fish to move among the habitats, which has led to a variety of habitat use patterns. In the Great Lakes, fine-scale microchemical analyses of yellow perch otoliths have revealed life-history categories th...

  3. Genetic effects of landscape, habitat preference and demography on three co-occurring turtle species.

    PubMed

    Reid, Brendan N; Mladenoff, David J; Peery, M Zachariah

    2017-02-01

    Expanding the scope of landscape genetics beyond the level of single species can help to reveal how species traits influence responses to environmental change. Multispecies studies are particularly valuable in highly threatened taxa, such as turtles, in which the impacts of anthropogenic change are strongly influenced by interspecific differences in life history strategies, habitat preferences and mobility. We sampled approximately 1500 individuals of three co-occurring turtle species across a gradient of habitat change (including varying loss of wetlands and agricultural conversion of upland habitats) in the Midwestern USA. We used genetic clustering and multiple regression methods to identify associations between genetic structure and permanent landscape features, past landscape composition and landscape change in each species. Two aquatic generalists (the painted turtle, Chrysemys picta, and the snapping turtle Chelydra serpentina) both exhibited population genetic structure consistent with isolation by distance, modulated by aquatic landscape features. Genetic divergence for the more terrestrial Blanding's turtle (Emydoidea blandingii), on the other hand, was not strongly associated with geographic distance or aquatic features, and Bayesian clustering analysis indicated that many Emydoidea populations were genetically isolated. Despite long generation times, all three species exhibited associations between genetic structure and postsettlement habitat change, indicating that long generation times may not be sufficient to delay genetic drift resulting from recent habitat fragmentation. The concordances in genetic structure observed between aquatic species, as well as isolation in the endangered, long-lived Emydoidea, reinforce the need to consider both landscape composition and demographic factors in assessing differential responses to habitat change in co-occurring species. © 2016 John Wiley & Sons Ltd.

  4. RESEARCH IN SUPPORT OF CRITERIA FOR HABITAT ALTERATIONS

    EPA Science Inventory

    Many anthropogenic activities exert their influence on fish, shellfish and aquatic-dependent wildlife by affecting habitats. In fact, habitat alteration is one of the most important contributors to declines in ecological resources in North America. Habitat loss and degradation ar...

  5. The influence of fire on lepidopteran abundance and community structure in forested habitats of eastern Texas

    Treesearch

    D. Craig Rudolph; Charles A. Ely

    2000-01-01

    Transect surveys were used to examine the influence of fire on lepidopteran communities (Papilionoidea and Hesperioidea) in forested habitats in eastern Texas. Lepidopteran abundance was greater in pine forests where prescribed fire maintained an open mid- and understory compared to forests where fire had less impact on forest structure. Ahundance of nectar sources...

  6. Life on the rocks: habitat use drives morphological and performance evolution in lizards.

    PubMed

    Goodman, Brett A; Miles, Donald B; Schwarzkopf, Lin

    2008-12-01

    As a group, lizards occupy a vast array of habitats worldwide, yet there remain relatively few cases where habitat use (ecology), morphology, and thus, performance, are clearly related. The best known examples include: increased limb length in response to increased arboreal perch diameter in anoles and increased limb length in response to increased habitat openness for some skinks. Rocky habitats impose strong natural selection on specific morphological characteristics, which differs from that imposed on terrestrial species, because moving about on inclined substrates of irregular sizes and shapes constrains locomotor performance in predictable ways. We quantified habitat use, morphology, and performance of 19 species of lizards (family Scincidae, subfamily Lygosominae) from 23 populations in tropical Australia. These species use habitats with considerable variation in rock availability. Comparative phylogenetic analyses revealed that occupation of rock-dominated habitats correlated with the evolution of increased limb length, compared to species from forest habitats that predominantly occupied leaf litter. Moreover, increased limb length directly affected performance, with species from rocky habitats having greater sprinting, climbing, and clinging ability than their relatives from less rocky habitats. Thus, we found that the degree of rock use is correlated with both morphological and performance evolution in this group of tropical lizards.

  7. COASTAL SUBMERGED VEGETATION: AQUATIC HABITAT RESEARCH

    EPA Science Inventory

    Aquatic vegetation is one of the most widespread and important types of aquatic habitat, in part because of the exceptional productivity of the plants. Aquatic vegetation also strongly influences local physical and chemical habitat conditions of significance to fish and shellfis...

  8. Diverse habitat use during two life stages of the critically endangered Bahama Oriole (Icterus northropi): community structure, foraging, and social interactions

    PubMed Central

    Hayes, William K.

    2017-01-01

    Our ability to prevent extinction in declining populations often depends on effective management of habitats that are disturbed through wildfire, logging, agriculture, or development. In these disturbed landscapes, the juxtaposition of multiple habitat types can be especially important to fledglings and young birds, which may leave breeding grounds in human-altered habitat for different habitats nearby that provide increased foraging opportunities, reduced competition, and higher protection from predators. In this study, we evaluated the importance of three habitat types to two life stages of the critically endangered Bahama Oriole (Icterus northropi), a synanthropic songbird endemic to Andros, The Bahamas. First, we determined the avian species composition and relative abundance of I. northropi among three major vegetation types on Andros: Caribbean pine (Pinus caribaea) forest, coppice (broadleaf dry forest), and anthropogenic areas, dominated by nonnative vegetation (farmland and developed land). We then compared the foraging strategies and social interactions of two age classes of adult Bahama Orioles in relation to differential habitat use. Bird surveys late in the Bahama Oriole’s breeding season indicated the number of avian species and Bahama Oriole density were highest in coppice. Some bird species occurring in the coppice and pine forest were never observed in agricultural or residential areas, and may be at risk if human disturbance of pine forest and coppice increases, as is occurring at a rapid pace on Andros. During the breeding season, second-year (SY) adult Bahama Orioles foraged in all vegetation types, whereas after-second-year (ASY) adults were observed foraging only in anthropogenic areas, where the species nested largely in introduced coconut palms (Cocos nucifera). Additionally, SY adults foraging in anthropogenic areas were often observed with an ASY adult, suggesting divergent habitat use for younger, unpaired birds. Other aspects of

  9. Slipping through the Cracks: Rubber Plantation Is Unsuitable Breeding Habitat for Frogs in Xishuangbanna, China

    PubMed Central

    Behm, Jocelyn E.; Yang, Xiaodong; Chen, Jin

    2013-01-01

    Conversion of tropical forests into agriculture may present a serious risk to amphibian diversity if amphibians are not able to use agricultural areas as habitat. Recently, in Xishuangbanna Prefecture, Yunnan Province – a hotspot of frog diversity within China – two-thirds of the native tropical rainforests have been converted into rubber plantation agriculture. We conducted surveys and experiments to quantify habitat use for breeding and non-breeding life history activities of the native frog species in rainforest, rubber plantation and other human impacted sites. Rubber plantation sites had the lowest species richness in our non-breeding habitat surveys and no species used rubber plantation sites as breeding habitat. The absence of breeding was likely not due to intrinsic properties of the rubber plantation pools, as our experiments indicated that rubber plantation pools were suitable for tadpole growth and development. Rather, the absence of breeding in the rubber plantation was likely due to a misalignment of breeding and non-breeding habitat preferences. Analyses of our breeding surveys showed that percent canopy cover over pools was the strongest environmental variable influencing breeding site selection, with species exhibiting preferences for pools under both high and low canopy cover. Although rubber plantation pools had high canopy cover, the only species that bred in high canopy cover sites used the rainforest for both non-breeding and breeding activities, completing their entire life cycle in the rainforest. Conversely, the species that did use the rubber plantation for non-breeding habitat preferred to breed in low canopy sites, also avoiding breeding in the rubber plantation. Rubber plantations are likely an intermediate habitat type that ‘slips through the cracks’ of species habitat preferences and is thus avoided for breeding. In summary, unlike the rainforests they replaced, rubber plantations alone may not be able to support frog

  10. The influence of landscape's dynamics on the Oriental Migratory Locust habitat change based on the time-series satellite data.

    PubMed

    Shi, Yue; Huang, Wenjiang; Dong, Yingying; Peng, Dailiang; Zheng, Qiong; Yang, Puyun

    2018-07-15

    Landscape structure and vegetation coverage are important habitat conditions for Oriental Migratory Locust infestation in East Asia. Characterizing the landscape's dynamics of locust habitat is meaningful for reducing the occupation of locusts and limiting potential risks. To better understand causes and consequences of landscape pattern and locust habitat, it is not enough to simply detect locust habitat of each year. Rather, landcover transitions causing the change of locust habitat area must also be explored. This paper proposes an integrated implement to quantify the influence of landscape's dynamics on locust habitat changes based on three tenets: 1) temporal context can provide insight into the land cover transitions, 2) the detection of locust habitat area is operated on patches rather than pixels with full consideration of landscape's ecology, 3) the modeling must be flexible and unsupervised. These ideas have not been previously explored in demonstrating the possible role of changes in landscape characteristics to drive locust habitat transitions. The case study focuses on the Dagang district, a hot spot of locust infestation of China, from 2000 to 2015. Firstly, the seasonal characteristics of typical landcovers in NDVI, TVI, and LST were extracted from fused Landsat-MODIS surface reflectance imagery. Subsequently, a landscape membership-based random forest (LMRF) algorithm was proposed to quantify the landscape structure and hydrological regimen of locust habitat at the patch level. Finally, we investigated the correlations between the specific landcover transitions and habitat changes. Within the 16 years observations, our findings suggest that the sparse reeds and weeds in the vicinity of beach land, riverbanks, and wetlands are the dominant landscape structure associated with locust habitat change (R 2  > 0.68), and the fluctuation in the water level is a key ecological factor to facilitate the locust habitat change (R 2  > 0.61). These

  11. Hydrologic Reconnaissance of Wetland-Bird Habitat in Areas With Potential to be Influenced by Water Produced During Coalbed Methane Production in the Northern Powder River Basin, MT

    NASA Astrophysics Data System (ADS)

    Custer, S. G.; Sojda, R. S.

    2003-12-01

    The removal and disposal of ground water during production of coalbed methane has the potential to influence wetland-bird habitat in the Powder River Basin. Office analysis of wetland areas was conducted on National Wetland Inventory maps and Digital Orthophoto Quadrangles along the Tongue and Powder rivers in the northern Powder River Basin, Montana. Selected sites were palustrine emergent, large enough to be important to waterbirds, part of a wetland complex, not dependent on artificial water regimes, in an area with high potential for coalbed methane production, and judged to be accessible in the field. Several promising wetland areas were selected for field examination. Field investigation suggests that the most promising wetlands in oxbow cutoffs would not be productive sites. Only facultative not obligate wetland plants were observed, the topographic position of the wetlands suggested that flooding would be infrequent, and the stream flow would likely dilute the effect of produced water adjacent to these rivers. Fortuitously wetland-bird habitat not recognized on the National Wetland Inventory maps and Digital Orthophoto Quadrangles was observed along Rosebud Creek during the field reconnaissance. This habitat is not continuous. The lack of continuity is reflected in the soil surveys as well as in the reconnaissance field nvestigation. The Alluvial Land soil series corresponds to observed wetland areas but the extent of the wetland-bird habitat varies substantially within the soil unit. When the Korchea series is present, extensive wetland-bird habitat is not observed. Field and aerial photo analysis suggests that the presence of the habitat may be controlled by beaver, and/or by stratigraphic and structural elements that influence stream erosion. Human modification of the stream for irrigation purposes may impact habitat continuity in some areas. The "Rosebud" type wetland-bird habitat may have the potential to be influenced by coalbed methane water

  12. Habitat use and life history of the vernal crayfish, Procambarus viaeviridis (Faxon, 1914), a secondary burrowing crayfish in Mississippi, USA

    Treesearch

    Zanethia C. Barnett; Susan B. Adams; Rebecca L.   Rosamond

    2017-01-01

    The Lower Mississippi Alluvial Valley (LMAV) is a species-rich region in North America, but its crayfish community has not been extensively sampled. We investigated the annual life cycle, habitat use, and some morphological characteristics of the vernal crayfish, Procambarus viaeviridis (Faxon, 1914), in the Dahomey National Wildlife Refuge,...

  13. Confounding factors in the detection of species responses to habitat fragmentation.

    PubMed

    Ewers, Robert M; Didham, Raphael K

    2006-02-01

    Habitat loss has pervasive and disruptive impacts on biodiversity in habitat remnants. The magnitude of the ecological impacts of habitat loss can be exacerbated by the spatial arrangement -- or fragmentation -- of remaining habitat. Fragmentation per se is a landscape-level phenomenon in which species that survive in habitat remnants are confronted with a modified environment of reduced area, increased isolation and novel ecological boundaries. The implications of this for individual organisms are many and varied, because species with differing life history strategies are differentially affected by habitat fragmentation. Here, we review the extensive literature on species responses to habitat fragmentation, and detail the numerous ways in which confounding factors have either masked the detection, or prevented the manifestation, of predicted fragmentation effects. Large numbers of empirical studies continue to document changes in species richness with decreasing habitat area, with positive, negative and no relationships regularly reported. The debate surrounding such widely contrasting results is beginning to be resolved by findings that the expected positive species-area relationship can be masked by matrix-derived spatial subsidies of resources to fragment-dwelling species and by the invasion of matrix-dwelling species into habitat edges. Significant advances have been made recently in our understanding of how species interactions are altered at habitat edges as a result of these changes. Interestingly, changes in biotic and abiotic parameters at edges also make ecological processes more variable than in habitat interiors. Individuals are more likely to encounter habitat edges in fragments with convoluted shapes, leading to increased turnover and variability in population size than in fragments that are compact in shape. Habitat isolation in both space and time disrupts species distribution patterns, with consequent effects on metapopulation dynamics and the

  14. Transitions during cephalopod life history: the role of habitat, environment, functional morphology and behaviour.

    PubMed

    Robin, Jean-Paul; Roberts, Michael; Zeidberg, Lou; Bloor, Isobel; Rodriguez, Almendra; Briceño, Felipe; Downey, Nicola; Mascaró, Maite; Navarro, Mike; Guerra, Angel; Hofmeister, Jennifer; Barcellos, Diogo D; Lourenço, Silvia A P; Roper, Clyde F E; Moltschaniwskyj, Natalie A; Green, Corey P; Mather, Jennifer

    2014-01-01

    Cephalopod life cycles generally share a set of stages that take place in different habitats and are adapted to specific, though variable, environmental conditions. Throughout the lifespan, individuals undertake a series of brief transitions from one stage to the next. Four transitions were identified: fertilisation of eggs to their release from the female (1), from eggs to paralarvae (2), from paralarvae to subadults (3) and from subadults to adults (4). An analysis of each transition identified that the changes can be radical (i.e. involving a range of morphological, physiological and behavioural phenomena and shifts in habitats) and critical (i.e. depending on environmental conditions essential for cohort survival). This analysis underlines that transitions from eggs to paralarvae (2) and from paralarvae to subadults (3) present major risk of mortality, while changes in the other transitions can have evolutionary significance. This synthesis suggests that more accurate evaluation of the sensitivity of cephalopod populations to environmental variation could be achieved by taking into account the ontogeny of the organisms. The comparison of most described species advocates for studies linking development and ecology in this particular group. © 2014 Elsevier Ltd All rights reserved.

  15. Influence of forest and rangeland management on anadromous fish habitat in Western North America: timber harvest.

    Treesearch

    T.W. Chamberlin

    1982-01-01

    The water and land-system processes through which timber harvesting affects anadromous fish habitat in western North America are discussed. The effects of timber harvesting on the water balance that regulates streamflow are evaluated, as are direct influences of harvesting on slope stability, erosion, and the introduction of debris in to stream channels. The effects of...

  16. Ghosts of habitats past: Contribution of landscape change to current habitats used by shrubland birds

    USGS Publications Warehouse

    Knick, Steven T.; Rotenberry, J.T.

    2000-01-01

    Models of habitat associations for species often are developed with an implicit assumption that habitats are static, even though recent disturbance may have altered the landscape. We tested our hypothesis that trajectory and magnitude of habitat change influenced observed distribution and abundance of passerine birds breeding in shrubsteppe habitats of southwestern Idaho. Birds in this region live in dynamic landscapes undergoing predominantly large-scale, radical, and unidirectional habitat change because wildfires are converting shrublands into expanses of exotic annual grasslands. We used data from field surveys and satellite image analyses in a series of redundancy analyses to partition variances and to determine the relative contribution of habitat change and current landscapes. Although current habitats explained a greater proportion of total variation, changes in habitat and measures of habitat richness and texture also contributed to variation in abundance of Horned Larks (Eremophila alpestris), Brewera??s Sparrows (Spizella breweri), and Sage Sparrows (Amphispiza belli). Abundance of birds was insensitive to scale for nonspatial habitat variables. In contrast, spatial measures of habitat richness and texture in the landscape were significant only at large spatial scales. Abundance of Horned Larks, Western Meadowlarks (Sturnella neglecta), and Brewera??s Sparrows, but not Sage Thrashers (Oreoscoptes montanus) or Sage Sparrows, was positively correlated with changes toward stable habitats. Because dominant habitat changes were toward less stable conditions, regional declines of those birds in shrubsteppe habitats reflect current landscapes as well as the history, magnitude, and trajectory of habitat change.

  17. Modeling effects of climate change on Yakima River salmonid habitats

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.; Connolly, Patrick J.; Maule, Alec G.

    2014-01-01

    We evaluated the potential effects of two climate change scenarios on salmonid habitats in the Yakima River by linking the outputs from a watershed model, a river operations model, a two-dimensional (2D) hydrodynamic model, and a geographic information system (GIS). The watershed model produced a discharge time series (hydrograph) in two study reaches under three climate scenarios: a baseline (1981–2005), a 1-°C increase in mean air temperature (plus one scenario), and a 2-°C increase (plus two scenario). A river operations model modified the discharge time series with Yakima River operational rules, a 2D model provided spatially explicit depth and velocity grids for two floodplain reaches, while an expert panel provided habitat criteria for four life stages of coho and fall Chinook salmon. We generated discharge-habitat functions for each salmonid life stage (e.g., spawning, rearing) in main stem and side channels, and habitat time series for baseline, plus one (P1) and plus two (P2) scenarios. The spatial and temporal patterns in salmonid habitats differed by reach, life stage, and climate scenario. Seventy-five percent of the 28 discharge-habitat responses exhibited a decrease in habitat quantity, with the P2 scenario producing the largest changes, followed by P1. Fry and spring/summer rearing habitats were the most sensitive to warming and flow modification for both species. Side channels generally produced more habitat than main stem and were more responsive to flow changes, demonstrating the importance of lateral connectivity in the floodplain. A discharge-habitat sensitivity analysis revealed that proactive management of regulated surface waters (i.e., increasing or decreasing flows) might lessen the impacts of climate change on salmonid habitats.

  18. Staying cool in a changing landscape: the influence of maximum daily ambient temperature on grizzly bear habitat selection.

    PubMed

    Pigeon, Karine E; Cardinal, Etienne; Stenhouse, Gordon B; Côté, Steeve D

    2016-08-01

    To fulfill their needs, animals are constantly making trade-offs among limiting factors. Although there is growing evidence about the impact of ambient temperature on habitat selection in mammals, the role of environmental conditions and thermoregulation on apex predators is poorly understood. Our objective was to investigate the influence of ambient temperature on habitat selection patterns of grizzly bears in the managed landscape of Alberta, Canada. Grizzly bear habitat selection followed a daily and seasonal pattern that was influenced by ambient temperature, with adult males showing stronger responses than females to warm temperatures. Cutblocks aged 0-20 years provided an abundance of forage but were on average 6 °C warmer than mature conifer stands and 21- to 40-year-old cutblocks. When ambient temperatures increased, the relative change (odds ratio) in the probability of selection for 0- to 20-year-old cutblocks decreased during the hottest part of the day and increased during cooler periods, especially for males. Concurrently, the probability of selection for 21- to 40-year-old cutblocks increased on warmer days. Following plant phenology, the odds of selecting 0- to 20-year-old cutblocks also increased from early to late summer while the odds of selecting 21- to 40-year-old cutblocks decreased. Our results demonstrate that ambient temperatures, and therefore thermal requirements, play a significant role in habitat selection patterns and behaviour of grizzly bears. In a changing climate, large mammals may increasingly need to adjust spatial and temporal selection patterns in response to thermal constraints.

  19. Oceanographic connectivity between right whale critical habitats in Canada and its influence on whale abundance indices during 1987-2009

    NASA Astrophysics Data System (ADS)

    Davies, Kimberley T. A.; Vanderlaan, Angelia S. M.; Smedbol, R. Kent; Taggart, Christopher T.

    2015-10-01

    The Roseway and Grand Manan basins on the Canadian Atlantic coast are neighboring late-summer critical feeding habitats for endangered North Atlantic right whales. Although in late summer these habitats regularly contain thick aggregations of right whale food - the copepod Calanus spp. - right whales periodically abandon one or both habitats in the same year. The causes of abandonments, their relationship to food supply, and the locations of whales during abandonment periods are unclear. The goals of this study were to explain variation in right whale abundance indices from a habitat perspective, and to determine whether or not oceanographic variation in the habitats influences occupancy. Four indices of whale abundance and habitat occupancy, including sightings per unit effort (SPUE), photographic sightings of known individuals, population size and habitat transition probabilities, were analyzed in relation to unique datasets of Calanus concentration and water mass characteristics in each basin over the period 1987 through 2009. Calanus concentration, water mass sources and various hydrographic properties each varied coherently between basins. Calanus concentration showed an increasing trend over time in each habitat, although a short-lived reduction in Calanus may have caused right whales to abandon Roseway Basin during the mid-1990s. Food supply explained variation in right whale sightings and population size in Roseway Basin, but not in Grand Manan Basin, suggesting that the Grand Manan Basin has important habitat characteristics in addition to food supply. Changes in the distribution of whale abundance indices during years when oceanographic conditions were associated with reduced food supply in the Scotia-Fundy region suggest that other suitable feeding habitats may not have existed during such years and resulted in negative effects on whale health and reproduction.

  20. Landscape effects on mallard habitat selection at multiple spatial scales during the non-breeding period

    USGS Publications Warehouse

    Beatty, William S.; Webb, Elisabeth B.; Kesler, Dylan C.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.

    2014-01-01

    Previous studies that evaluated effects of landscape-scale habitat heterogeneity on migratory waterbird distributions were spatially limited and temporally restricted to one major life-history phase. However, effects of landscape-scale habitat heterogeneity on long-distance migratory waterbirds can be studied across the annual cycle using new technologies, including global positioning system satellite transmitters. We used Bayesian discrete choice models to examine the influence of local habitats and landscape composition on habitat selection by a generalist dabbling duck, the mallard (Anas platyrhynchos), in the midcontinent of North America during the non-breeding period. Using a previously published empirical movement metric, we separated the non-breeding period into three seasons, including autumn migration, winter, and spring migration. We defined spatial scales based on movement patterns such that movements >0.25 and <30.00 km were classified as local scale and movements >30.00 km were classified as relocation scale. Habitat selection at the local scale was generally influenced by local and landscape-level variables across all seasons. Variables in top models at the local scale included proximities to cropland, emergent wetland, open water, and woody wetland. Similarly, variables associated with area of cropland, emergent wetland, open water, and woody wetland were also included at the local scale. At the relocation scale, mallards selected resource units based on more generalized variables, including proximity to wetlands and total wetland area. Our results emphasize the role of landscape composition in waterbird habitat selection and provide further support for local wetland landscapes to be considered functional units of waterbird conservation and management.

  1. Influence of riffle and snag habitat specific sampling on stream macroinvertebrate assemblage measures in bioassessment

    USGS Publications Warehouse

    Wang, L.; Weigel, B.W.; Kanehl, P.; Lohman, K.

    2006-01-01

    Stream macroinvertebrate communities vary naturally among types of habitats where they are sampled, which affects the results of environmental assessment. We analyzed macroinvertebrates collected from riffle and snag habitats to evaluate influences of habitat-specific sampling on taxon occurrence, assemblage measures, and biotic indices. We found considerably more macroinvertebrate taxa unique to snags (143 taxa) than to riffles (75 taxa), and the numbers of taxa found in both riffles and snags (149 taxa) were similar to that found in snags. About 64% of the 47 macroinvertebrate measures we tested differed significantly between riffles and snags. Eighty percent intercepts of regressions between biotic indices and urban or agricultural land uses differed significantly between riffles and snags. The Hilsenhoff biotic index calculated from snag samples explained 69% of the variance of riffle samples and classified 66% of the sites into the same stream health group as the riffle samples. However, four multimetric indices for snag samples explained less than 50% of the variance of riffle samples and classified less than 50% of the sites into the same health group as the riffle samples. We concluded that macroinvertebrate indices developed for riffle/run habitat should not be used for snag samples to assess stream impairment. We recommend developing an index of biotic integrity specifically for snags and using snags as an alternate sampling substrate for streams that naturally lack riffles. ?? Springer Science+Business Media, Inc. 2006.

  2. Surface Habitat Systems

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2009-01-01

    the 1) surface habitat concept definition, 2) inflatable surface habitat development, and 3) autonomous habitat operations, and 4) cross-cutting / systems engineering. In subsequent years, the SHS-FIG will solicit a call for innovations and technologies that will support the development of these four development areas. The other development areas will be assessed yearly and identified on the SHS-FIG s Strategic Development Roadmap. Initial investment projects that are funded by the Constellation Program Office (CxPO), LSSPO, or the Exploration Technology Development Projects (ETDP) will also be included on the Roadmap. For example, in one or two years from now, the autonomous habitat operations and testbed would collaborations with the Integrated Systems Health Management (ISHM) and Automation for Operations ETDP projects, which will give the surface habitat projects an integrated habitat autonomy testbed to test software and systems. The SHS-FIG scope is to provide focused direction for multiple innovations, technologies and subsystems that are needed to support humans at a remote planetary surface habitat during the concept development, design definition, and integration phases of that project. Subsystems include: habitability, lightweight structures, power management, communications, autonomy, deployment, outfitting, life support, wireless connectivity, lighting, thermal and more.

  3. The Areal Extent of Brown Shrimp Habitat Suitability in Mobile Bay, Alabama USA: Targeting Vegetated Habitat Restoration

    EPA Science Inventory

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the U.S. Protection and management of these vital GOM habitats are critical t...

  4. Volcaniclastic habitats for early life on Earth and Mars: A case study from ˜3.5 Ga-old rocks from the Pilbara, Australia

    NASA Astrophysics Data System (ADS)

    Westall, Frances; Foucher, Frédéric; Cavalazzi, Barbara; de Vries, Sjoukje T.; Nijman, Wouter; Pearson, Victoria; Watson, Jon; Verchovsky, Alexander; Wright, Ian; Rouzaud, Jean-Noel; Marchesini, Daniele; Anne, Severine

    2011-08-01

    Within the context of present and future in situ missions to Mars to investigate its habitability and to search for traces of life, we studied the habitability and traces of past life in ˜3.5 Ga-old volcanic sands deposited in littoral environments an analogue to Noachian environments on Mars. The environmental conditions on Noachian Mars (4.1-3.7 Ga) and the Early Archaean (4.0-3.3 Ga) Earth were, in many respects, similar: presence of liquid water, dense CO 2 atmosphere, availability of carbon and bio-essential elements, and availability of energy. For this reason, information contained in Early Archaean terrestrial rocks concerning habitable conditions (on a microbial scale) and traces of past life are of relevance in defining strategies to be used to identify past habitats and past life on Mars. One such example is the 3.446 Ga-old Kitty's Gap Chert in the Pilbara Craton, NW. Australia. This formation consists of volcanic sediments deposited in a coastal mudflat environment and is thus a relevant analogue for sediments deposited in shallow water environments on Noachian Mars. Two main types of habitat are represented, a volcanic (lithic) habitat and planar stabilized sediment surfaces in sunlit shallow waters. The sediments hosted small (<1 μm in size) microorganisms that formed colonies on volcanic particle surfaces and in pore waters within the volcanic sediments, as well as biofilms on stabilised sediment surfaces. The microorganisms included coccoids, filaments and rare rod-shaped organisms associated with microbial polymer (EPS). The preserved microbial community was apparently dominated by chemotrophic organisms but some locally transported filaments and filamentous mat fragments indicate that possibly photosynthetic mats formed nearby. Both microorganisms and sediments were silicified during very early diagenesis. There are no macroscopic traces of fossilised life in these volcanic sediments and sophisticated instrumentation and specialized sample

  5. Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Stephen N. Matthews; Matthew P. Peters

    2011-01-01

    We present an approach to modeling potential climate-driven changes in habitat for tree and bird species in the eastern United States. First, we took an empirical-statistical modeling approach, using randomForest, with species abundance data from national inventories combined with soil, climate, and landscape variables, to build abundance-based habitat models for 134...

  6. Floral and nesting resources, habitat structure, and fire influence bee distribution across an open-forest gradient

    USGS Publications Warehouse

    Grundel, R.; Jean, R.P.; Frohnapple, K.J.; Glowacki, G.A.; Scott, P.E.; Pavlovic, N.B.

    2010-01-01

    composition in species-poor sites was not merely a subset of species composition at richer sites. The lack of significant proximity or nestedness effects suggests that factors at a small spatial scale strongly influence bees' use of sites. The findings indicate that patterns of plant diversity, nesting resource availability, recent fire, and habitat shading, present at the scale of a few hundred meters, are key determinants of bee community patterns in the mosaic open-savanna-forest landscape. ?? 2010 by the Ecological Society of America.

  7. Intrapopulation variability in the timing of ontogenetic habitat shifts in sea turtles revealed using δ15N values from bone growth rings

    PubMed Central

    Turner Tomaszewicz, Calandra N.; Seminoff, Jeffrey A.; Peckham, S. Hoyt; Avens, Larisa; Kurle, Carolyn M.

    2016-01-01

    Summary Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat use patterns is especially difficult for remote oceanic species.To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ15N) patterns that differentiate distinct ocean regions to create a “regional isotope characterization”, analyzed the δ15N values from annual bone growth layer rings from dead-stranded animals, then combined the bone and regional isotope data to track individual animal movement patterns over multiple years.We used humeri from juvenile North Pacific loggerhead turtles (Caretta caretta), animals that undergo long migrations across the North Pacific Ocean (NPO), using multiple discrete regions as they develop to adulthood. Typical of many migratory marine species, ontogenetic changes in habitat use throughout their decades-long juvenile stage is poorly understood, but each potential habitat has unique foraging opportunities and spatially explicit natural and anthropogenic threats that could affect key life history parameters.We found a bimodal size/age distribution in the timing that juveniles underwent an ontogenetic habitat shift from the oceanic central North Pacific (CNP) to the neritic east Pacific region near the Baja California Peninsula (BCP) (42.7±7.2 vs. 68.3±3.4 cm carapace length, 7.5±2.7 vs. 15.6±1.7 years). Important to the survival of this population, these disparate habitats differ considerably in their food availability, energy requirements, and threats, and these differences can influence life history parameters such as growth, survival, and future fecundity. This is the first evidence of

  8. Invertebrate Communities of Forested Limesink Wetlands in Southwest Georgia, USA: Habitat Use and Influence of Extended Inundation

    Treesearch

    Stephen W. Golladay; Brad W. Taylor; Brian J. Palik

    1997-01-01

    Limesink wetlands are a common aquatic habitat in southwest Georgia, USA. These wetlands are non-alluvial, occupying shallow depressions formed from dissolution of limestone bedrock and collapse of surface sands. They are seasonally inundated, with a typical hydroperiod extending from late February to early July. Little is known about factors influencing invertebrate...

  9. Factors Influencing Expanded Use of Urban Marine Habitats by Foraging Wading Birds

    EPA Science Inventory

    Urban marine habitats are often utilized by wildlife for foraging and other activities despite surrounding anthropogenic impact or disturbance. However little is known of the ecological factors that determine habitat value of these and other remnant natural habitats. We examine...

  10. Factors Influencing Expanded Use of Urban Estuarine Habitats by Foraging Wading Birds

    EPA Science Inventory

    Urban estuarine habitats are often utilized by wildlife for foraging and other activities despite surrounding anthropogenic impact or disturbance. However little is known of the ecological factors that determine habitat value of these and other remnant natural habitats. We exam...

  11. Physical and chemical controls on habitats for life in the deep subsurface beneath continents and ice

    PubMed Central

    Parnell, John; McMahon, Sean

    2016-01-01

    The distribution of life in the continental subsurface is likely controlled by a range of physical and chemical factors. The fundamental requirements are for space to live, carbon for biomass and energy for metabolic activity. These are inter-related, such that adequate permeability is required to maintain a supply of nutrients, and facies interfaces invite colonization by juxtaposing porous habitats with nutrient-rich mudrocks. Viable communities extend to several kilometres depth, diminishing downwards with decreasing porosity. Carbon is contributed by recycling of organic matter originally fixed by photosynthesis, and chemoautotrophy using crustal carbon dioxide and methane. In the shallow crust, the recycled component predominates, as processed kerogen or hydrocarbons, but abiotic carbon sources may be significant in deeper, metamorphosed crust. Hydrogen to fuel chemosynthesis is available from radiolysis, mechanical deformation and mineral alteration. Activity in the subcontinental deep biosphere can be traced through the geological record back to the Precambrian. Before the colonization of the Earth's surface by land plants, a geologically recent event, subsurface life probably dominated the planet's biomass. In regions of thick ice sheets the base of the ice sheet, where liquid water is stable and a sediment layer is created by glacial erosion, can be regarded as a deep biosphere habitat. This environment may be rich in dissolved organic carbon and nutrients accumulated from dissolving ice, and from weathering of the bedrock and the sediment layer. PMID:26667907

  12. Multiscale hydrogeomorphic influences on bull trout (Salvelinus confluentus) spawning habitat

    USGS Publications Warehouse

    Bean, Jared R; Wilcox, Andrew C.; Woessner, William W.; Muhlfeld, Clint C.

    2015-01-01

    We investigated multiscale hydrogeomorphic influences on the distribution and abundance of bull trout (Salvelinus confluentus) spawning in snowmelt-dominated streams of the upper Flathead River basin, northwestern Montana. Within our study reaches, bull trout tended to spawn in the finest available gravel substrates. Analysis of the mobility of these substrates, based on one-dimensional hydraulic modeling and calculation of dimensionless shear stresses, indicated that bed materials in spawning reaches would be mobilized at moderate (i.e., 2-year recurrence interval) high-flow conditions, although the asynchronous timing of the fall–winter egg incubation period and typical late spring – early summer snowmelt high flows in our study area may limit susceptibility to redd scour under current hydrologic regimes. Redd occurrence also tended to be associated with concave-up bedforms (pool tailouts) with downwelling intragravel flows. Streambed temperatures tracked stream water diurnal temperature cycles to a depth of at least 25 cm, averaging 6.1–8.1 °C in different study reaches during the spawning period. Ground water provided thermal moderation of stream water for several high-density spawning reaches. Bull trout redds were more frequent in unconfined alluvial valley reaches (8.5 versus 5.0 redds·km−1 in confined valley reaches), which were strongly influenced by hyporheic and groundwater – stream water exchange. A considerable proportion of redds were patchily distributed in confined valley reaches, however, emphasizing the influence of local physical conditions in supporting bull trout spawning habitat. Moreover, narrowing or “bounding” of these alluvial valley segments did not appear to be important. Our results suggest that geomorphic, thermal, and hydrological factors influence bull trout spawning occurrence at multiple spatial scales.

  13. beta-diversity and species accumulation in antarctic coastal benthos: influence of habitat, distance and productivity on ecological connectivity.

    PubMed

    Thrush, Simon F; Hewitt, Judi E; Cummings, Vonda J; Norkko, Alf; Chiantore, Mariachiara

    2010-07-30

    High Antarctic coastal marine environments are comparatively pristine with strong environmental gradients, which make them important places to investigate biodiversity relationships. Defining how different environmental features contribute to shifts in beta-diversity is especially important as these shifts reflect both spatio-temporal variations in species richness and the degree of ecological separation between local and regional species pools. We used complementary techniques (species accumulation models, multivariate variance partitioning and generalized linear models) to assess how the roles of productivity, bio-physical habitat heterogeneity and connectivity change with spatial scales from metres to 100's of km. Our results demonstrated that the relative importance of specific processes influencing species accumulation and beta-diversity changed with increasing spatial scale, and that patterns were never driven by only one factor. Bio-physical habitat heterogeneity had a strong influence on beta-diversity at scales <290 km, while the effects of productivity were low and significant only at scales >40 km. Our analysis supports the emphasis on the analysis of diversity relationships across multiple spatial scales and highlights the unequal connectivity of individual sites to the regional species pool. This has important implications for resilience to habitat loss and community homogenisation, especially for Antarctic benthic communities where rates of recovery from disturbance are slow, there is a high ratio of poor-dispersing and brooding species, and high biogenic habitat heterogeneity and spatio-temporal variability in primary production make the system vulnerable to disturbance. Consequently, large areas need to be included within marine protected areas for effective management and conservation of these special ecosystems in the face of increasing anthropogenic disturbance.

  14. Factors Influencing Adjustment to Late-Life Divorce.

    ERIC Educational Resources Information Center

    Wilson, Keren Brown; DeShane, Michael R.

    Although the rate of divorce among older Americans has increased steadily, little attention has been paid to late life divorce. To describe the role of age and other factors which might influence adjustment to divorce in later life, data from a larger pilot study were used: 81 divorced persons over the age of 60 completed in-depth, structured…

  15. The influence of food abundance, food dispersion and habitat structure on territory selection and size of an Afrotropical terrestrial insectivore

    USGS Publications Warehouse

    Stanley, Thomas R.; Newmark, William D.

    2015-01-01

    Most tropical insectivorous birds, unlike their temperate counterparts, hold and defend a feeding and breeding territory year-around. However, our understanding of ecological factors influencing territory selection and size in tropical insectivores is limited. Here we examine three prominent hypotheses relating food abundance, food dispersion (spatial arrangement of food items), and habitat structure to territoriality in the Usambara Thrush Turdus roehli. We first compared leaf-litter macro-invertebrate abundance and dispersion, and habitat structure between territories and random sites. We then examined the relation between these same ecological factors and territory size. Invertebrate abundance and dispersion were sparsely and evenly distributed across our study system and did not vary between territories and random sites. In contrast, habitat structure did vary between territories and random sites indicating the Usambara Thrush selects territories with open understorey and closed overstorey habitat. Invertebrate abundance and dispersion within territories of the Usambara Thrush were not associated with habitat structure. We believe the most likely explanation for the Usambara Thrush’s preference for open understorey and closed overstorey habitat relates to foraging behavior. Using information-theoretic model selection we found that invertebrate abundance was the highest-ranked predictor of territory size and was inversely related, consistent with food value theory of territoriality.

  16. Enhancing wildlife habitat when regenerating stands

    Treesearch

    Frank R., III Thompson

    1989-01-01

    Forest regeneration cuttings affect wildlife habitat more drastically than most forest management practices because a mature forest stand is replaced by a young sapling stand. Regeneration cuttings quickly provide habitat for many wildlife species but they also influence wildlife use of the new stand and adjacent areas throughout the rotation. Retaining snags, cavity...

  17. Influence of environmental parameters on movements and habitat utilization of humpback whales (Megaptera novaeangliae) in the Madagascar breeding ground.

    PubMed

    Trudelle, Laurène; Cerchio, Salvatore; Zerbini, Alexandre N; Geyer, Ygor; Mayer, François-Xavier; Jung, Jean-Luc; Hervé, Maxime R; Pous, Stephane; Sallée, Jean-Baptiste; Rosenbaum, Howard C; Adam, Olivier; Charrassin, Jean-Benoit

    2016-12-01

    Assessing the movement patterns and key habitat features of breeding humpback whales is a prerequisite for the conservation management of this philopatric species. To investigate the interactions between humpback whale movements and environmental conditions off Madagascar, we deployed 25 satellite tags in the northeast and southwest coast of Madagascar. For each recorded position, we collated estimates of environmental variables and computed two behavioural metrics: behavioural state of 'transiting' (consistent/directional) versus 'localized' (variable/non-directional), and active swimming speed (i.e. speed relative to the current). On coastal habitats (i.e. bathymetry < 200 m and in adjacent areas), females showed localized behaviour in deep waters (191 ± 20 m) and at large distances (14 ± 0.6 km) from shore, suggesting that their breeding habitat extends beyond the shallowest waters available close to the coastline. Males' active swimming speed decreased in shallow waters, but environmental parameters did not influence their likelihood to exhibit localized movements, which was probably dominated by social factors instead. In oceanic habitats, both males and females showed localized behaviours in shallow waters and favoured high chlorophyll- a concentrations. Active swimming speed accounts for a large proportion of observed movement speed; however, breeding humpback whales probably exploit prevailing ocean currents to maximize displacement. This study provides evidence that coastal areas, generally subject to strong human pressure, remain the core habitat of humpback whales off Madagascar. Our results expand the knowledge of humpback whale habitat use in oceanic habitat and response to variability of environmental factors such as oceanic current and chlorophyll level.

  18. Subsurface microbial habitats on Mars

    NASA Technical Reports Server (NTRS)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  19. Influence of Fire Mosaics, Habitat Characteristics and Cattle Disturbance on Mammals in Fire-Prone Savanna Landscapes of the Northern Kimberley.

    PubMed

    Radford, Ian J; Gibson, Lesley A; Corey, Ben; Carnes, Karin; Fairman, Richard

    2015-01-01

    Patch mosaic burning, in which fire is used to produce a mosaic of habitat patches representative of a range of fire histories ('pyrodiversity'), has been widely advocated to promote greater biodiversity. However, the details of desired fire mosaics for prescribed burning programs are often unspecified. Threatened small to medium-sized mammals (35 g to 5.5 kg) in the fire-prone tropical savannas of Australia appear to be particularly fire-sensitive. Consequently, a clear understanding of which properties of fire mosaics are most instrumental in influencing savanna mammal populations is critical. Here we use mammal capture data, remotely sensed fire information (i.e. time since last fire, fire frequency, frequency of late dry season fires, diversity of post-fire ages in 3 km radius, and spatial extent of recently burnt, intermediate and long unburnt habitat) and structural habitat attributes (including an index of cattle disturbance) to examine which characteristics of fire mosaics most influence mammals in the north-west Kimberley. We used general linear models to examine the relationship between fire mosaic and habitat attributes on total mammal abundance and richness, and the abundance of the most commonly detected species. Strong negative associations of mammal abundance and richness with frequency of late dry season fires, the spatial extent of recently burnt habitat (post-fire age <1 year within 3 km radius) and level of cattle disturbance were observed. Shrub cover was positively related to both mammal abundance and richness, and availability of rock crevices, ground vegetation cover and spatial extent of ≥4 years unburnt habitat were all positively associated with at least some of the mammal species modelled. We found little support for diversity of post-fire age classes in the models. Our results indicate that both a high frequency of intense late dry season fires and extensive, recently burnt vegetation are likely to be detrimental to mammals in the

  20. Constellation Architecture Team-Lunar: Lunar Habitat Concepts

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Kennedy, Kriss J.

    2008-01-01

    This paper will describe lunar habitat concepts that were defined as part of the Constellation Architecture Team-Lunar (CxAT-Lunar) in support of the Vision for Space Exploration. There are many challenges to designing lunar habitats such as mission objectives, launch packaging, lander capability, and risks. Surface habitats are required in support of sustaining human life to meet the mission objectives of lunar exploration, operations, and sustainability. Lunar surface operations consist of crew operations, mission operations, EVA operations, science operations, and logistics operations. Habitats are crewed pressurized vessels that include surface mission operations, science laboratories, living support capabilities, EVA support, logistics, and maintenance facilities. The challenge is to deliver, unload, and deploy self-contained habitats and laboratories to the lunar surface. The CxAT-Lunar surface campaign analysis focused on three primary trade sets of analysis. Trade set one (TS1) investigated sustaining a crew of four for six months with full outpost capability and the ability to perform long surface mission excursions using large mobility systems. Two basic habitat concepts of a hard metallic horizontal cylinder and a larger inflatable torus concept were investigated as options in response to the surface exploration architecture campaign analysis. Figure 1 and 2 depicts the notional outpost configurations for this trade set. Trade set two (TS2) investigated a mobile architecture approach with the campaign focused on early exploration using two small pressurized rovers and a mobile logistics support capability. This exploration concept will not be described in this paper. Trade set three (TS3) investigated delivery of a "core' habitation capability in support of an early outpost that would mature into the TS1 full outpost capability. Three core habitat concepts were defined for this campaign analysis. One with a four port core habitat, another with a 2 port

  1. Demographic and habitat requirements for conservation of bull trout

    Treesearch

    Bruce E. Rieman; John D. Mclntyre

    1993-01-01

    Elements in bull trout biology, population dynamics, habitat, and biotic interactions important to conservation of the species are identified. Bull trout appear to have more specific habitat requirements than other salmonids, but no critical thresholds of acceptable habitat condition were found. Size, temporal variation, and spatial distribution are likely to influence...

  2. Influence of environmental parameters on movements and habitat utilization of humpback whales (Megaptera novaeangliae) in the Madagascar breeding ground

    PubMed Central

    Cerchio, Salvatore; Zerbini, Alexandre N.; Geyer, Ygor; Mayer, François-Xavier; Jung, Jean-Luc; Hervé, Maxime R.; Pous, Stephane; Sallée, Jean-Baptiste; Rosenbaum, Howard C.; Adam, Olivier; Charrassin, Jean-Benoit

    2016-01-01

    Assessing the movement patterns and key habitat features of breeding humpback whales is a prerequisite for the conservation management of this philopatric species. To investigate the interactions between humpback whale movements and environmental conditions off Madagascar, we deployed 25 satellite tags in the northeast and southwest coast of Madagascar. For each recorded position, we collated estimates of environmental variables and computed two behavioural metrics: behavioural state of ‘transiting’ (consistent/directional) versus ‘localized’ (variable/non-directional), and active swimming speed (i.e. speed relative to the current). On coastal habitats (i.e. bathymetry < 200 m and in adjacent areas), females showed localized behaviour in deep waters (191 ± 20 m) and at large distances (14 ± 0.6 km) from shore, suggesting that their breeding habitat extends beyond the shallowest waters available close to the coastline. Males' active swimming speed decreased in shallow waters, but environmental parameters did not influence their likelihood to exhibit localized movements, which was probably dominated by social factors instead. In oceanic habitats, both males and females showed localized behaviours in shallow waters and favoured high chlorophyll-a concentrations. Active swimming speed accounts for a large proportion of observed movement speed; however, breeding humpback whales probably exploit prevailing ocean currents to maximize displacement. This study provides evidence that coastal areas, generally subject to strong human pressure, remain the core habitat of humpback whales off Madagascar. Our results expand the knowledge of humpback whale habitat use in oceanic habitat and response to variability of environmental factors such as oceanic current and chlorophyll level. PMID:28083104

  3. Intrapopulation variability in the timing of ontogenetic habitat shifts in sea turtles revealed using δ15 N values from bone growth rings.

    PubMed

    Turner Tomaszewicz, Calandra N; Seminoff, Jeffrey A; Peckham, S Hoyt; Avens, Larisa; Kurle, Carolyn M

    2017-05-01

    Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat-use patterns is especially difficult for remote oceanic species. To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ 15 N) patterns that differentiate distinct ocean regions to create a 'regional isotope characterization', analysed the δ 15 N values from annual bone growth layer rings from dead-stranded animals, and then combined the bone and regional isotope data to track individual animal movement patterns over multiple years. We used humeri from juvenile North Pacific loggerhead turtles (Caretta caretta), animals that undergo long migrations across the North Pacific Ocean (NPO), using multiple discrete regions as they develop to adulthood. Typical of many migratory marine species, ontogenetic changes in habitat use throughout their decades-long juvenile stage is poorly understood, but each potential habitat has unique foraging opportunities and spatially explicit natural and anthropogenic threats that could affect key life-history parameters. We found a bimodal size/age distribution in the timing that juveniles underwent an ontogenetic habitat shift from the oceanic central North Pacific (CNP) to the neritic east Pacific region near the Baja California Peninsula (BCP) (42·7 ± 7·2 vs. 68·3 ± 3·4 cm carapace length, 7·5 ± 2·7 vs. 15·6 ± 1·7 years). Important to the survival of this population, these disparate habitats differ considerably in their food availability, energy requirements and threats, and these differences can influence life-history parameters such as growth, survival and future fecundity. This is the first

  4. The Virtual Habitat - A tool for dynamic life support system simulations

    NASA Astrophysics Data System (ADS)

    Czupalla, M.; Zhukov, A.; Schnaitmann, J.; Olthoff, C.; Deiml, M.; Plötner, P.; Walter, U.

    2015-06-01

    In this paper we present the Virtual Habitat (V-HAB) model, which simulates on a system level the dynamics of entire mission scenarios for any given life support system (LSS) including a dynamic representation of the crew. We first present the V-HAB architecture. Thereafter we validate in selected case studies the V-HAB submodules. Finally, we demonstrate the overall abilities of V-HAB by first simulating the LSS of the International Space Station (ISS) and showing how close this comes to real data. In a second case study we simulate the LSS dynamics of a Mars mission scenario. We thus show that V-HAB is able to support LSS design processes, giving LSS designers a set of dynamic decision parameters (e.g. stability, robustness, effective crew time) at hand that supplement or even substitute the common Equivalent System Mass (ESM) quantities as a proxy for LSS hardware costs. The work presented here builds on a LSS heritage by the exploration group at the Technical University at Munich (TUM) dating from even before 2006.

  5. The relative effects of habitat loss, fragmentation, and degradation on population extinction

    EPA Science Inventory

    The most prominent conservation concerns are typically habitat loss and habitat fragmentation. The role of habitat degradation has received comparatively little attention. But research has shown that the quality of habitat patches can significantly influence wildlife population d...

  6. Habitat preferences of baleen whales in a mid-latitude habitat

    NASA Astrophysics Data System (ADS)

    Prieto, Rui; Tobeña, Marta; Silva, Mónica A.

    2017-07-01

    Understanding the dynamics of baleen whale distribution is essential to predict how environmental changes can affect their ecology and, in turn, ecosystem functioning. Recent work showed that mid-latitude habitats along migratory routes may play an important role on the feeding ecology of baleen whales. This study aimed to investigate the function of a mid-latitude habitat for blue (Balaenoptera musculus), fin (Balaenoptera physalus) and sei (Balaenoptera borealis) whales occurring in sympatry during spring and summer months and to what extent their environmental niches overlap. We addressed those questions by developing environmental niche models (ENM) for each species and then making pairwise comparisons of niche overlap and relative habitat patch importance among the three species. ENMs were created using sightings from the Azorean Fisheries Observer Program from May to November, between 2004 and 2009, and a set of 18 predictor environmental variables. We then assessed monthly (April-July) overlap among ENMs using a modified Hellinger's distance metric (I). Results show that the habitat niches of blue and fin whales are strongly influenced by primary productivity and sea surface temperature and are highly dynamic both spatially and temporally due to the oceanography of the region. Niche overlap analyses show that blue and fin whale environmental niches are similar and that the suitable habitats for the two species have high degree of spatial coincidence. These results in combination suggest that this habitat may function as a mid-latitude feeding ground to both species while conditions are adequate. The sei whale model, on the other hand, did not include variables considered to be proxies for prey distribution and little environmental niche overlap was found between this species and the other two. We argue that these results suggest that the region holds little importance as a foraging habitat for the sei whale.

  7. The forest ecosystem of southeast Alaska: 3. Fish habitats.

    Treesearch

    William R. Meehan

    1974-01-01

    The effects of logging and associated activities on fish habitat in southeastern Alaska are discussed, and fish habitat research applicable to southeast Alaska is summarized. Requirements of salmonids for suitable spawning and rearing areas are presented. Factors associated with timber harvest which may influence these habitats are discussed in detail; e.g., sediment,...

  8. Photosynthesis in chlorolichens: the influence of the habitat light regime.

    PubMed

    Piccotto, Massimo; Tretiach, Mauro

    2010-11-01

    The hypothesis that CO(2) gas exchange and chlorophyll a fluorescence (ChlaF) of lichens vary according to the light regimes of their original habitat, as observed in vascular plants, was tested by analysing the photosynthetic performance of 12 populations of seven dorsoventral, foliose lichens collected from open, south-exposed rocks to densely shaded forests. Light response curves were induced at optimum thallus water content and ChlaF emission curves at the species-specific photon flux at which the quantum yield of CO(2) assimilation is the highest and is saturating the photosynthetic process. Photosynthetic pigments were quantified in crude extracts. The results confirm that the maximum rate of gross photosynthesis is correlated with the chlorophyll content of lichens, which is influenced by light as well as by nitrogen availability. Like leaves, shade tolerant lichens emit more ChlaF than sun-loving ones, whereas the photosynthetic quantum conversion is higher in the latter.

  9. Spatial structure and nest demography reveal the influence of competition, parasitism and habitat quality on slavemaking ants and their hosts

    PubMed Central

    2011-01-01

    Background Natural communities are structured by intra-guild competition, predation or parasitism and the abiotic environment. We studied the relative importance of these factors in two host-social parasite ecosystems in three ant communities in Europe (Bavaria) and North America (New York, West Virginia). We tested how these factors affect colony demography, life-history and the spatial pattern of colonies, using a large sample size of more than 1000 colonies. The strength of competition was measured by the distance to the nearest competitor. Distance to the closest social parasite colony was used as a measure of parasitism risk. Nest sites (i.e., sticks or acorns) are limited in these forest ecosystems and we therefore included nest site quality as an abiotic factor in the analysis. In contrast to previous studies based on local densities, we focus here on the positioning and spatial patterns and we use models to compare our predictions to random expectations. Results Colony demography was universally affected by the size of the nest site with larger and more productive colonies residing in larger nest sites of higher quality. Distance to the nearest competitor negatively influenced host demography and brood production in the Bavarian community, pointing to an important role of competition, while social parasitism was less influential in this community. The New York community was characterized by the highest habitat variability, and productive colonies were clustered in sites of higher quality. Colonies were clumped on finer spatial scales, when we considered only the nearest neighbors, but more regularly distributed on coarser scales. The analysis of spatial positioning within plots often produced different results compared to those based on colony densities. For example, while host and slavemaker densities are often positively correlated, slavemakers do not nest closer to potential host colonies than expected by random. Conclusions The three communities are

  10. Spatial structure and nest demography reveal the influence of competition, parasitism and habitat quality on slavemaking ants and their hosts.

    PubMed

    Scharf, Inon; Fischer-Blass, Birgit; Foitzik, Susanne

    2011-03-28

    Natural communities are structured by intra-guild competition, predation or parasitism and the abiotic environment. We studied the relative importance of these factors in two host-social parasite ecosystems in three ant communities in Europe (Bavaria) and North America (New York, West Virginia). We tested how these factors affect colony demography, life-history and the spatial pattern of colonies, using a large sample size of more than 1000 colonies. The strength of competition was measured by the distance to the nearest competitor. Distance to the closest social parasite colony was used as a measure of parasitism risk. Nest sites (i.e., sticks or acorns) are limited in these forest ecosystems and we therefore included nest site quality as an abiotic factor in the analysis. In contrast to previous studies based on local densities, we focus here on the positioning and spatial patterns and we use models to compare our predictions to random expectations. Colony demography was universally affected by the size of the nest site with larger and more productive colonies residing in larger nest sites of higher quality. Distance to the nearest competitor negatively influenced host demography and brood production in the Bavarian community, pointing to an important role of competition, while social parasitism was less influential in this community. The New York community was characterized by the highest habitat variability, and productive colonies were clustered in sites of higher quality. Colonies were clumped on finer spatial scales, when we considered only the nearest neighbors, but more regularly distributed on coarser scales. The analysis of spatial positioning within plots often produced different results compared to those based on colony densities. For example, while host and slavemaker densities are often positively correlated, slavemakers do not nest closer to potential host colonies than expected by random. The three communities are differently affected by biotic and

  11. Habitats and Surface Construction Technology and Development Roadmap

    NASA Technical Reports Server (NTRS)

    Cohen, Marc; Kennedy, Kriss J.

    1997-01-01

    The vision of the technology and development teams at NASA Ames and Johnson Research Centers is to provide the capability for automated delivery and emplacement of habitats and surface facilities. The benefits of the program are as follows: Composites and Inflatables: 30-50% (goal) lighter than Al Hard Structures; Capability for Increased Habitable Volume, Launch Efficiency; Long Term Growth Potential; and Supports initiation of commercial and industrial expansion. Key Habitats and Surface Construction (H&SC) technology issues are: Habitat Shell Structural Materials; Seals and Mechanisms; Construction and Assembly: Automated Pro-Deploy Construction Systems; ISRU Soil/Construction Equipment: Lightweight and Lower Power Needs; Radiation Protection (Health and Human Performance Tech.); Life Support System (Regenerative Life Support System Tech.); Human Physiology of Long Duration Space Flight (Health and Human Performance Tech.); and Human Psychology of Long Duration Space Flight (Health and Human Performance Tech.) What is being done regarding these issues?: Use of composite materials for X-38 CRV, RLV, etc.; TransHAB inflatable habitat design/development; Japanese corporations working on ISRU-derived construction processes. What needs to be done for the 2004 Go Decision?: Characterize Mars Environmental Conditions: Civil Engineering, Material Durability, etc.; Determine Credibility of Inflatable Structures for Human Habitation; and Determine Seal Technology for Mechanisms and Hatches, Life Cycle, and Durability. An overview encompassing all of the issues above is presented.

  12. Grasslands. Habitat Ecology Learning Program (HELP). Teachers' Manual.

    ERIC Educational Resources Information Center

    Wildlife Conservation Society, Bronx, NY.

    The goal of this guide is to address a major environmental dilemma: worldwide habitat destruction and the disappearance of species. This guide is one of six that are included in the Habitat Ecology Learning Program (HELP), a holistic life science curriculum that involves students in an in-depth study of ecology. HELP includes six teaching guides…

  13. Deserts. Habitat Ecology Learning Program (HELP). Teachers' Manual.

    ERIC Educational Resources Information Center

    Wildlife Conservation Society, Bronx, NY.

    The goal of this guide is to address a major environmental dilemma: worldwide habitat destruction and the disappearance of species. This guide is one of six that are included in the Habitat Ecology Learning Program (HELP), a holistic life science curriculum that involves students in an in-depth study of ecology. HELP includes six teaching guides…

  14. Spatiotemporal patterns and habitat associations of smallmouth bass (Micropterus dolomieu) invading salmon-rearing habitat

    USGS Publications Warehouse

    Lawrence, David J.; Olden, Julian D.; Torgersen, Christian E.

    2012-01-01

    km (2009 and 2010, respectively) as stream temperatures seasonally warmed, but subyearling Chinook salmon were also found farther upstream during this time.4. Our multiscale analysis suggests that bass were selecting habitat based on antecedent thermal history at a broad scale, and if satisfactory temperature conditions were met, mesoscale habitat features (i.e. channel-unit type and depth) played an additional role in determining bass abundance. The upstream extent of bass in the late summer corresponded to a high-gradient geomorphic discontinuity in the NFJDR, which probably hindered further upstream movements of bass. The habitat determinants and upstream extent of bass were largely consistent across years, despite marked differences in the magnitude and timing of spring peak flows prior to bass spawning.5. The overriding influence of water temperature on smallmouth bass distribution suggests that managers may be able limit future upstream range expansions of bass into salmon-rearing habitat by concentrating on restoration activities that mitigate climate- or land-use-related stream warming. These management activities could be prioritised to capitalise on survival bottlenecks in the life history of bass and spatially focused on landscape knick points such as high-gradient discontinuities to discourage further upstream movements of bass.

  15. Freshwater ecosystems and resilience of Pacific salmon: Habitat Management based on natural variability

    USGS Publications Warehouse

    Bisson, P.A.; Dunham, J.B.; Reeves, G.H.

    2009-01-01

    In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability. ?? 2009 by the author(s).

  16. An Astrobiological View on Sustainable Life

    NASA Astrophysics Data System (ADS)

    Naganuma, Takeshi

    2009-10-01

    Life on a global biosphere basis is substantiated in the form of organics and organisms, and defined as the intermediate forms (briefly expressed as CH2O) hovering between the reduced (CH4, methane) and (CO2, carbon dioxide) ends, different from the classical definition of life as a complex organization maintaining ordered structure and information. Both definitions consider sustenance of life meant as protection of life against chaos through an input of external energy. The CH2O-life connection is maintained as long as the supply of H and O lasts, which is in turn are provided by the splitting of the water molecule H2O. Water is split by electricity, as well-known from school-level experiments, and by solar radiation and geothermal heat on a global scale. In other words, the Sun's radiation and the Earth's heat as well as radioactivity split water to supply H and O for continued existence of life on the Earth. These photochemical, radiochemical and geothermal processes have influences on the evolution and current composition of the Earth's atmosphere, compared with those of Venus and Mars, and influences on the planetary climatology. This view of life may be applicable to the "search-for-life in space" and to sustainability assessment of astrobiological habitats.

  17. Removal of small dams and its influence on physical habitat for salmonids in a Norwegian river

    NASA Astrophysics Data System (ADS)

    Fjeldstad, Hans-Petter; Barlaup, Bjørn; Stickler, Morten; Alfredsen, Knut; Gabrielsen, Sven-Erik

    2010-05-01

    While research and implementation of upstream migration solutions is extensive, and indeed often successful, full scale restoration projects and investigations of their influence on fish biology are rare in Norway. Acid deposition in Norwegian catchments peaked in the 1980's and resulted in both chronically and episodically acidified rivers and Salmonids in River Nidelva, one of the largest cathments in southern Norway, where extinct for decades. During this period hydropower development in the river paid limited attention to aquatic ecology. Weirs were constructed for esthetic purposes in the late 1970's and turned a 3 km stretch into a lake habitat, well suited for lake dwelling fish species, but unsuited for migration, spawning and juvenile habitat for salmonids. Since 2005, continuous liming to mitigate acidification has improved the water quality and a program for reintroduction of Atlantic salmon has been implemented. We used hydraulic modeling to plan the removal of two weirs on a bypass reach of the river. The 50 meters wide concrete weirs were blasted and removed in 2007, and ecological monitoring has been carried out in the river to assess the effect of weir removal. Topographic mapping, hydraulic measurements and modeling, in combination with biological surveys before and after the removal of the weirs, has proved to represent a powerful method for design of physical habitat adjustments and assessing their influence on fish biology. The model results also supported a rapid progress of planning and executing of the works. While telemetry studies before weir removal suggested that adult migration past the weirs was delayed with several weeks the fish can now pass the reach with minor obstacles. Spawning sites were discovered in the old bed substrate and were occupied already the first season after water velocities increased to suitable levels for spawning. Accordingly, the densities of Atlantic salmon juveniles have shown a marked increased after the

  18. Brief notes on habitat geology and clay pipe habitat on Stellwagen Bank

    USGS Publications Warehouse

    Valentine, Page C.; Dorsey, Eleanor M.; Pederson, Judith

    1998-01-01

    In our studies of sea floor habitats, my colleagues and I use both biological and geological approaches. We call our studies “habitat geology,” a term coined by a biologist friend of mine. We view it as the study of sea floor materials and biological and geological processes that influence where species live. Some of the factors that we consider are the following:composition of the sea bed, which ranges from mud to sand, gravel, bedrock, and shell beds;shape and steepness of the bottom;roughness of the bottom, which is enhanced by the presence of cobbles, boulders, sand waves and ripples, burrows into the bottom, and species that extend above the bottom;bottom currents generated by storm waves and tides, which can move sediment and expose or cover habitats; andthe way in which the sea bed is utilized by species.In addition, we take into account the impact of sea bed disturbance by bottom fishing trawls and dredges. Habitats characterized by attached and burrowing species that protrude above the sea bed appear to be most vulnerable to disturbance.

  19. Generalisation of physical habitat-discharge relationships

    NASA Astrophysics Data System (ADS)

    Booker, D. J.; Acreman, M. C.

    2007-01-01

    Physical habitat is increasingly used worldwide as a measure of river ecosystem health when assessing changes to river flows, such as those caused by abstraction. The major drawback with this approach is that defining precisely the relationships between physical habitat and flow for a given river reach requires considerable data collection and analysis. Consequently, widely used models such as the Physical Habitat Simulation (PHABSIM) system are expensive to apply. There is, thus, a demand for rapid methods for defining habitat-discharge relationships from simple field measurements. This paper reports the analysis of data from 63 sites in the UK where PHABSIM has been applied. The results demonstrate that there are strong relationships between single measurements of channel form and river hydraulics and the habitat available for target species. The results can form the basis of a method to estimate sensitivity of physical habitat to flow change by visiting a site at only one flow. Furthermore, the uncertainty in estimates reduces as more information is collected. This allows the user to select the level of investment in data collection appropriate for the desired confidence in the estimates. The method is demonstrated using habitat indicators for different life stages of Atlantic salmon, brown trout, roach and dace.

  20. Behavioural cues surpass habitat factors in explaining prebreeding resource selection by a migratory diving duck

    USGS Publications Warehouse

    O'Neil, Shawn T.; Warren, Jeffrey M.; Takekawa, John Y.; De La Cruz, Susan E. W.; Cutting, Kyle A.; Parker, Michael W.; Yee, Julie L.

    2014-01-01

    Prebreeding habitat selection in birds can often be explained in part by habitat characteristics. However, females may also select habitats on the basis of fidelity to areas of previous reproductive success or use by conspecifics. The relative influences of sociobehavioural attributes versus habitat characteristics in habitat selection has been primarily investigated in songbirds, while less is known about how these factors affect habitat selection processes in migratory waterfowl. Animal resource selection models often exhibit much unexplained variation; spatial patterns driven by social and behavioural characteristics may account for some of this. We radiomarked female lesser scaup, Aythya affinis, in the southwestern extent of their breeding range to explore hypotheses regarding relative roles of habitat quality, site fidelity and conspecific density in prebreeding habitat selection. We used linear mixed-effects models to relate intensity of use within female home ranges to habitat features, distance to areas of reproductive success during the previous breeding season and conspecific density. Home range habitats included shallow water (≤118 cm), moderate to high densities of flooded emergent vegetation/open water edge and open water areas with submerged aquatic vegetation. Compared with habitat features, conspecific female density and proximity to successful nesting habitats from the previous breeding season had greater influences on habitat use within home ranges. Fidelity and conspecific attraction are behavioural characteristics in some waterfowl species that may exert a greater influence than habitat features in influencing prebreeding space use and habitat selection within home ranges, particularly where quality habitat is abundant. These processes may be of critical importance to a better understanding of habitat selection in breeding birds.

  1. Habitat manipulation influences northern bobwhite resource selection on a reclaimed surface mine

    USGS Publications Warehouse

    Brooke, Jarred M.; Peters, David C.; Unger, Ashley M.; Tanner, Evan P.; Harper, Craig A.; Keyser, Patrick D.; Clark, Joseph D.; Morgan, John J.

    2015-01-01

    More than 600,000 ha of mine land have been reclaimed in the eastern United States, providing large contiguous tracts of early successional vegetation that can be managed for northern bobwhite (Colinus virginianus). However, habitat quality on reclaimed mine land can be limited by extensive coverage of non-native invasive species, which are commonly planted during reclamation. We used discrete-choice analysis to investigate bobwhite resource selection throughout the year on Peabody Wildlife Management Area, a 3,330-ha reclaimed surface mine in western Kentucky. We used a treatment-control design to study resource selection at 2 spatial scales to identify important aspects of mine land vegetation and whether resource selection differed between areas with habitat management (i.e., burning, disking, herbicide; treatment) and unmanaged units (control). Our objectives were to estimate bobwhite resource selection on reclaimed mine land and to estimate the influence of habitat management practices on resource selection. We used locations from 283 individuals during the breeding season (1 Apr–30 Sep) and 136 coveys during the non-breeding season (1 Oct–Mar 31) from August 2009 to March 2014. Individuals were located closer to shrub cover than would be expected at random throughout the year. During the breeding season, individuals on treatment units used areas with smaller contagion index values (i.e., greater interspersion) compared with individuals on control units. During the non-breeding season, birds selected areas with greater shrub-open edge density compared with random. At the microhabitat scale, individuals selected areas with increased visual obstruction >1 m aboveground. During the breeding season, birds were closer to disked areas (linear and non-linear) than would be expected at random. Individuals selected non-linear disked areas during winter but did not select linear disked areas (firebreaks) because they were planted to winter wheat each fall and

  2. Life on the boundary: Environmental factors as drivers of habitat distribution in the littoral zone

    NASA Astrophysics Data System (ADS)

    Cefalì, Maria Elena; Cebrian, Emma; Chappuis, Eglantine; Pinedo, Susana; Terradas, Marc; Mariani, Simone; Ballesteros, Enric

    2016-04-01

    The boundary between land and sea, i.e. the littoral zone, is home to a large number of habitats whose distribution is primarily driven by the distance to the sea level but also by other environmental factors such as littoral's geomorphological features, wave exposure, water temperature or orientation. Here we explore the relative importance of those major environmental factors that drive the presence of littoral rocky habitats along 1100 Km of Catalonia's shoreline (Spain, NW Mediterranean) by using Geographic Information Systems and Generalized Linear Models. The distribution of mediolittoral and upper infralittoral habitats responded to different environmental factors. Mediolittoral habitats showed regional differences drawn by sea-water temperature and substrate type. Wave exposure (hydrodynamism), slope and geological features were only relevant to those mediolittoral habitats with specific environmental needs. We did not find any regional pattern of distribution in upper infralittoral habitats, and selected factors only played a moderate role in habitat distribution at the local scale. This study shows for the first time that environmental factors determining habitat distribution differ within the mediolittoral and the upper infralittoral zones and provides the basis for further development of models oriented at predicting the distribution of littoral marine habitats.

  3. Habitat specialization through germination cueing: a comparative study of herbs from forests and open habitats.

    PubMed

    Ten Brink, Dirk-Jan; Hendriksma, Harmen Pieter; Bruun, Hans Henrik

    2013-02-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently accompanied by specialization in their regeneration niche; and (2) species are thereby adapted to utilize different windows of opportunity in time (season) and space (habitat). Seed germination response to temperature, light and stratification was tested for 17 congeneric pairs, each consisting of one forest species and one open-habitat species. A factorial design was used with temperature levels and diurnal temperature variation (10 °C constant, 15-5 °C fluctuating, 20 °C constant, 25-15 °C fluctuating), and two light levels (light and darkness) and a cold stratification treatment. The congeneric species pair design took phylogenetic dependence into account. Species from open habitats germinated better at high temperatures, whereas forest species performed equally well at low and high temperatures. Forest species tended to germinate only after a period of cold stratification that could break dormancy, while species from open habitats generally germinated without cold stratification. The empirically derived germination strategies correspond quite well with establishment opportunities for forest and open-habitat plant species in nature. Annual changes in temperature and light regime in temperate forest delimit windows of opportunity for germination and establishment. Germination strategies of forest plants are adaptations to utilize such narrow windows in time. Conversely, lack of fit between germination ecology and environment may explain why species of open habitats generally fail to establish in forests. Germination strategy should be considered an important mechanism for habitat specialization in temperate herbs to forest habitats. The findings strongly suggest that

  4. Support of Coastal Fishes by Nearshore and Coastal Wetland Habitats

    EPA Science Inventory

    Hydrologic linkages among Great Lakes nearshore and coastal wetlands free coastal fish to move among the habitats, which has led to a variety of habitat use patterns. Fine-scale microchemical analyses of yellow perch otoliths have revealed life-history categories that include per...

  5. Assessing Wild Bee Biodiversity in Cranberry Agroenvironments: Influence of Natural Habitats.

    PubMed

    Gervais, Amélie; Fournier, Valérie; Sheffield, Cory S; Chagnon, Madeleine

    2017-08-01

    The conservation of bee populations for pollination in agricultural landscapes has attracted a lot of recent research interest, especially for crop industries undergoing expansion to meet increased production demands. In Canada, much growth has been occurring with commercial cranberry production, a field crop which is largely dependent on bee pollination. Wild bee pollinators could be negatively impacted by losses of natural habitat surrounding cranberry fields to accommodate increased production, but growers have little insight on how to manage their lands to maximize the presence of wild bees. Here, we described a 2-yr study where bee diversity and species composition were investigated to better understand the dynamic between natural habitat and cranberry fields. Bees were sampled using pan-traps and hand netting both within cranberry fields and in one of the three adjacent natural habitat types once a week during the crop flowering period. We found that bee community composition among cranberry fields did not differ based on the respective adjacent habitat type, but fields bordered by meadows were marginally less diverse than fields bordered by forest. As one would expect, field and natural habitat communities differed in terms of species composition and species richness. There was no evidence that one type of natural habitat was more favorable for the bees than another. Future agrobiodiversity studies should simultaneously examine bee diversity comprised in both crop fields and adjacent natural environments to better understand the species dynamics essential to the preservation of pollination services. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Sampling uncharted waters: Examining rearing habitat of larval Longfin Smelt (Spirinchus thaleichthys) in the upper San Francisco Estuary

    USGS Publications Warehouse

    Grimaldo, Lenny; Feyrer, Frederick; Burns, Jillian; Maniscalco, Donna

    2017-01-01

    The southern-most reproducing Longfin Smelt population occurs in the San Francisco Estuary, California, USA. Long-term monitoring of estuarine habitat for this species has generally only considered deep channels, with little known of the role shallow waters play in supporting their early life stage. To address the need for focused research on shallow-water habitat, a targeted study of Longfin Smelt larvae in littoral habitat was conducted to identify potential rearing habitats during 2013 and 2014. Our study objectives were to (1) determine if larval densities vary between littoral habitats (tidal slough vs. open-water shoal), (2) determine how larval densities in littoral habitats vary with physicochemical and biological attributes, (3) determine if larval densities vary between littoral habitats and long-term monitoring channel collections, and (4) determine what factors predict larval rearing distributions from the long-term monitoring channel collections. Larval densities did not vary between littoral habitats but they did vary between years. Water temperature, salinity, and chlorophyll a were found important in predicting larval densities in littoral habitats. Larval densities do not vary between littoral and channel surveys; however, the analysis based on channel data suggests that Longfin Smelt are hatching and rearing in a much broader region and under higher salinities (∼2–12 psu) than previously recognized. Results of this study indicate that conservation efforts should consider how freshwater flow, habitat, climate, and food webs interact as mechanisms that influence Longfin Smelt recruitment in estuarine environments.

  7. Effects of Gravity on Cells, Tissues, and Organisms: Their Implications on Habitat and Human Support in Microgravity

    NASA Technical Reports Server (NTRS)

    Kizito, John

    2004-01-01

    This presentation will demonstrate that gravity plays a major role in advanced human life support in a closed habitat. The examples include, but are not limited to, control of purity in drinking water supplies (application of biocides), control of urine in space rodent habitats and operation of space septic tanks (waste management). Our goal is to understand and determine possible mechanisms that describe the process by which cells anchor to a substrate to form dynamic, vibrant communities of cells which influence human health in absence of gravity. The balance of all forces (mechanotransduction) acting on a cell will determine whether a cell thrives and multiplies or dies in a process called apoptosis and/or necrosis. The balance of forces are tightly coupled to the transport of nutrients and metabolic products (biochemotransduction) to and from the cell interface. We will highlight our effort to improve astronaut health by showing that microgravity life support systems have to be designed differently from those on Earth.

  8. MWSA's physical habitat approach - combining knowledge of habitat requirements with mechanisms of geomorphic and anthropogenic influence on stream channel form

    EPA Science Inventory

    Effective environmental policy decisions benefit from stream habitat information that is accurate, precise, and relevant. The recent National Wadeable Streams Assessment (NWSA) carried out by the U.S. EPA required physical habitat information sufficiently comprehensive to facilit...

  9. Susceptibility of eastern U.S. habitats to invasion of Celastrus orbiculatus (oriental bittersweet) following fire

    USGS Publications Warehouse

    Leicht-Young, Stacey A.; Pavlovic, Noel B.; Grundel, Ralph

    2013-01-01

    Fire effects on invasive species are an important land management issue in areas subjected to prescribed fires as well as wildfires. These effects on invasive species can be manifested across life stages. The liana Celastrus orbiculatus (oriental bittersweet) is a widespread invader of eastern US habitats including those where fire management is in practice. This study examined if prescribed fire makes these habitats more susceptible to invasion of C. orbiculatus by seed at Indiana Dunes National Lakeshore. Four treatments (control, litter removed, high and low intensity fire) were applied in six habitat types (sand savanna/woodland, sand prairie, moraine prairie, sand oak forest, beech-maple forest, and oak-hickory forest) and germinating seedlings were tracked over two growing seasons. Treatment did not have a significant effect on the germination, survival, or biomass of C. orbiculatus. However, habitat type did influence these responses mostly in the first growing season. Moraine prairie, beech-maple forest, and oak-hickory forests had the greatest peak percentage of germinants. Moraine prairie had significantly greater survival than oak forest and savanna habitats. Control plots with intact litter, and the moraine prairie habitat had the tallest seedlings at germination, while tallest final heights and greatest aboveground biomass were highest in oak forest. Thus, fire and litter removal did not increase the susceptibility of these habitats to germination and survival of C. orbiculatus. These results indicate that most eastern US habitats are vulnerable to invasion by this species via seed regardless of the level or type of disturbance to the litter layer.

  10. Habitats of North American sea ducks.

    USGS Publications Warehouse

    Derksen, Dirk V.; Petersen, Margaret R.; Savard, Jean-Pierre L.

    2015-01-01

    Breeding, molting, fall and spring staging, and wintering habitats of the sea duck tribe Mergini are described based on geographic locations and distribution in North America, geomorphology, vegetation and soil types, and fresh water and marine characteristics. The dynamics of habitats are discussed in light of natural and anthropogenic events that shape areas important to sea ducks. Strategies for sea duck habitat management are outlined and recommendations for international collaboration to preserve key terrestrial and aquatic habitats are advanced. We follow the definition of habitat advanced by Odum (1971), which is the place or space where an organism lives. Weller (1999) emphasized that habitats for waterbirds required presence of sufficient resources (i.e., food, water, cover, space) for maintenance during a portion of their annual cycle. Habitats exploited by North American sea ducks are diverse, widespread across the continent and adjacent marine waters and until recently, most were only superficially known. A 15-year-long effort funded research on sea duck habitats through the Sea Duck Joint Venture and the Endangered or Threatened Species programs of the United States and Canada. Nevertheless, important gaps remain in our understanding of key elements required by some species during various life stages. Many significant habitats, especially staging and wintering sites, have been and continue to be destroyed or altered by anthropogenic activities. The goal of this chapter is to develop a comprehensive summary of marine, freshwater, and terrestrial habitats and their characteristics by considering sea duck species with similar needs as groups within the tribe Mergini. Additionally, we examine threats and changes to sea duck habitats from human-caused and natural events. Last, we evaluate conservation and management programs underway or available for maintenance and enhancement of habitats critical for sea ducks.

  11. The influence of vertical and horizontal habitat structure on nationwide patterns of avian biodiversity

    Treesearch

    Patrick D. Culbert; Volker C. Radeloff; Curtis H. Flather; Josef M. Kellndorfer; Chadwick D. Rittenhouse; Anna M. Pidgeon

    2013-01-01

    With limited resources for habitat conservation, the accurate identification of high-value avian habitat is crucial. Habitat structure affects avian biodiversity but is difficult to quantify over broad extents. Our goal was to identify which measures of vertical and horizontal habitat structure are most strongly related to patterns of avian biodiversity across the...

  12. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    USGS Publications Warehouse

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-01-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03–0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  13. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    NASA Astrophysics Data System (ADS)

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-08-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03-0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  14. The Limits of Life in the Deep Subsurface - Implications for the Origin of Life

    NASA Astrophysics Data System (ADS)

    Baross, John

    2013-06-01

    There are very few environments on Earth where life is absent. Microbial life has proliferated into habitats that span nearly every imaginable physico-chemical variable. Only the availability of liquid water and temperature are known to prevent the growth of organisms. The other extreme physical and chemical variables, such as pH, pressure, high concentrations of solutes, damaging radiation, and toxic metals, are life-prohibiting factors for most organisms but not for all. The deep subsurface environments span all of the extreme conditions encountered by life including habitat conditions not yet explored, such as those that combine high temperature, high and low pH and extreme pressures. Some of the ``extremophile'' microorganisms inhabiting the deep subsurface environments have been shown to be among the most ``ancient'' of extant life. Their genomes and physiologies have led to a broader understanding of the geological settings of early life, the most ancient energy pathways, and the importance of water/rock interactions and tectonics in the origin and early evolution of life. The case can now be made that deep subsurface environments contributed to life's origin and provided the habitat(s) for the earliest microbial communities. However, there is much more to be done to further our understanding on the role of moderate to high pressures and temperatures on the chemical and biochemical ``steps'' leading to life, and on the evolution and physiology of both ancient and present-day subsurface microbial communities.

  15. Life lessons after classes: investigating the influence of an afterschool sport program on adolescents' life skills development.

    PubMed

    Lee, Okseon; Park, Mirim; Jang, Kyunghwan; Park, Yongnam

    2017-12-01

    The purpose of this study was to investigate the influence of an afterschool sport program on adolescents' life skills development and to identify which characteristics of the program would have an influence on their life skills acquisition. The participants were six children (4 boys, 2 girls) who participated in a 12-week afterschool program implemented in two elementary schools, as well as the two program instructors who implemented the afterschool sport program. Data were collected from individual interviews with program participants and instructors. The inductive analysis of data revealed four categories of life skills developed through program participation: (1) playing well and being more active, (2) connecting well and having better social skills, (3) coping well and becoming a better problem solver, and (4) dreaming well and having a better sense of purpose. Regarding the characteristics of the program that influenced life skills development, three themes emerged: (1) having a clear goal and building consensus with stakeholders, (2) establishing a firm yet flexible structure, and (3) instructors' use of effective strategies for teaching life skills.

  16. Life lessons after classes: investigating the influence of an afterschool sport program on adolescents’ life skills development

    PubMed Central

    Lee, Okseon; Park, Mirim; Jang, Kyunghwan; Park, Yongnam

    2017-01-01

    ABSTRACT The purpose of this study was to investigate the influence of an afterschool sport program on adolescents’ life skills development and to identify which characteristics of the program would have an influence on their life skills acquisition. The participants were six children (4 boys, 2 girls) who participated in a 12-week afterschool program implemented in two elementary schools, as well as the two program instructors who implemented the afterschool sport program. Data were collected from individual interviews with program participants and instructors. The inductive analysis of data revealed four categories of life skills developed through program participation: (1) playing well and being more active, (2) connecting well and having better social skills, (3) coping well and becoming a better problem solver, and (4) dreaming well and having a better sense of purpose. Regarding the characteristics of the program that influenced life skills development, three themes emerged: (1) having a clear goal and building consensus with stakeholders, (2) establishing a firm yet flexible structure, and (3) instructors’ use of effective strategies for teaching life skills. PMID:28367697

  17. Recruitment and connectivity influence the role of seagrass as a penaeid nursery habitat in a wave dominated estuary.

    PubMed

    Taylor, Matthew D; Fry, Brian; Becker, Alistair; Moltschaniwskyj, Natalie

    2017-04-15

    Estuaries provide a diverse mosaic of habitats which support both juveniles and adults of exploited species. In particular, estuaries play an important role in the early life history of many penaeid prawn species. This study used a combination of stable isotope ecology and quantitative sampling to examine recruitment and the nursery function of seagrass habitats for Eastern King Prawn (Penaeus [Melicertus] plebejus), and the processes that contributed to this nursery role. Stable isotopes were used to assign prawns joining the adult stock to putative nursery habitat areas within the estuary. Emigrating prawns originated from only 11 of the 20 sites surveyed. Of these, 8 sites were designated as Effective Juvenile Habitat (EJH), and 5 sites designated as Nursery Habitat (NH). The contribution of individuals from different nursery areas to the adult stock was related to both the abundance of prawns within an area and the distance to the mouth of the estuary, and with the exception of 1 site all EJH and NH were located in the northern section of the estuary. Quantitative sampling in this area indicated that prawns were present at an average density of 165±11 per 100m 2 , and density formed non-linear relationships with the distance to the mouth of the estuary, seagrass cover and temperature. Prawn size also formed non-linear relationships with prawn density and seagrass cover. Spatial patterns in abundance were consistent with wind-driven recruitment patterns, which in turn affected the nursery role of particular areas within the system. These findings have implications for targeted fishery restoration efforts for both Eastern King Prawn and other ocean spawned species in wave dominated estuaries where circulation is primarily wind-driven. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  18. Competition and habitat quality influence age and sex distribution in wintering Rusty Blackbirds

    Treesearch

    Claudia Mettke-Hofmann; Paul B. Hamel; Gerhard Hofmann; Theodore J. Zenzal Jr.; Anne Pellegrini; Jennifer Malpass; Megan Garfinkel; Nathan Schiff; Russell Greenberg

    2015-01-01

    Bird habitat quality is often inferred from species abundance measures during the breeding and non-breeding season and used for conservation management decisions. However, during the non-breeding season age and sex classes often occupy different habitats which suggest a need for more habitat-specific data. Rusty Blackbird (Euphagus carolinus) is a...

  19. Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark

    PubMed Central

    Carlisle, Aaron B.; Goldman, Kenneth J.; Litvin, Steven Y.; Madigan, Daniel J.; Bigman, Jennifer S.; Swithenbank, Alan M.; Kline, Thomas C.; Block, Barbara A.

    2015-01-01

    Ontogenetic changes in habitat are driven by shifting life-history requirements and play an important role in population dynamics. However, large portions of the life history of many pelagic species are still poorly understood or unknown. We used a novel combination of stable isotope analysis of vertebral annuli, Bayesian mixing models, isoscapes and electronic tag data to reconstruct ontogenetic patterns of habitat and resource use in a pelagic apex predator, the salmon shark (Lamna ditropis). Results identified the North Pacific Transition Zone as the major nursery area for salmon sharks and revealed an ontogenetic shift around the age of maturity from oceanic to increased use of neritic habitats. The nursery habitat may reflect trade-offs between prey availability, predation pressure and thermal constraints on juvenile endothermic sharks. The ontogenetic shift in habitat coincided with a reduction of isotopic niche, possibly reflecting specialization upon particular prey or habitats. Using tagging data to inform Bayesian isotopic mixing models revealed that adult sharks primarily use neritic habitats of Alaska yet receive a trophic subsidy from oceanic habitats. Integrating the multiple methods used here provides a powerful approach to retrospectively study the ecology and life history of migratory species throughout their ontogeny. PMID:25621332

  20. Effect of habitat preference on frond life span in three Cyathea tree ferns

    NASA Astrophysics Data System (ADS)

    Chiu, Tzu Yun; Wang, Hsiang Hua; Lun Kuo, Yao; Kume, Tomonori

    2013-04-01

    It has been reported that plants living in various geographical areas had different physiological forms, as factors of microenvironment have strong impacts on physiological characters. However, the physiological characters of fronds have been scarcely reported in ferns. In this study, we investigated physiological differences in response to the habitat preference in the three tree ferns in northeast Taiwan, Cyathea lepifera, C. spinulosa, and C. podophylla, prefer to open site, edge of forest, and interior forest, respectively. The canopy openness above the individuals of C. lepifera, C. spinulosa and C. podophylla were 29.2 ± 14.10 , 7.0 ± 3.07 and 5.0 ± 2.24 %, respectively. Among three species, C. podophylla had the longest frond life span (13.0 ± 4.12 months) than the two others (C. lepifera (6.8 ± 1.29 months) and C. spinulosa (7.3 ±1.35 months). Our result supported the general patterns that shade intolerant species have a shorter leaf life span than shade tolerant species. The maximum net CO2 assimilation of C. lepifera, C. spinulosa and C. podophylla were 11.46 ± 1.34, 8.27 ± 0.69, and 6.34 ± 0.54 μmol CO2 m-2 s-1, respectively. As well, C. lepifera had the highest photosynthetic light saturation point (LSP), while C. podophylla had the lowest LSP among these three tree ferns. These suggested that C. lepifera could be more efficient for capturing and utilizing light resources under the larger canopy openness condition than the other two species. We also found that frond C : N ratio were positively correlated with frond life span among species. C. podophylla, with the longest frond life span, had the highest frond C : N ratio (22.17 ± 1.95), which was followed by C. spinulosa (18.58 ± 1.37) and C. lepifera (18.68 ± 2.63) with shorter frond life span. The results were consistent to the theory that the fronds and leaves of shade intolerant species have high photosynthetic abilities with low C : N ratio. Key words: Canopy openness, frond life span

  1. Virtual Habitat -a Dynamic Simulation of Closed Life Support Systems -Overall Status and Outlook

    NASA Astrophysics Data System (ADS)

    Zhukov, Anton; Schnaitmann, Jonas; Mecsaci, Ahmad; Bickel, Thomas; Markus Czupalla, M. Sc.

    In order to optimize Life Support Systems (LSS) on a system level, stability questions and closure grade must be investigated. To do so the exploration group of the Technical University of Munich (TUM) is developing the "Virtual Habitat" (V-HAB) dynamic LSS simulation software. The main advantages of the dynamic simulation of LSS within V-HAB are the possibilities to compose different LSS configurations from the LSS subsystems and conduct dynamic simulation of it to test its stability in different mission scenarios inclusive emergency events and define the closure grade of the LSS. Additional the optimization of LSS based on different criteria will be possible. The Virtual Habitat simulation tool consists of four main modules: • Closed Environment Module (CEM) -monitoring of compounds in a closed environment • Crew Module (CM) -dynamic human simulation • P/C Systems Module (PCSM) -dynamic P/C subsystems • Plant Module (PM) -dynamic plant simulation Since the first idea and version, the V-HAB simulation has been significantly updated increasing its capabilities and maturity significantly. The updates which shall be introduced concern all modules of V-HAB. In particular: Significant progress has been made in development of the human model. In addition to the exist-ing human sub-models three newly developed ones (thermal regulation, digestion and schedule controller) have been introduced and shall be presented. Regarding the Plant Module a wheat plant model has been integrated in the V-HAB and is being correlated against test data. Ad-ditionally a first version of the algae bioreactor model has been developed and integrated. In terms of the P/C System module, an innovative approach for the P/C subsystem modelling has been developed and applied. The capabilities and features of the improved V-HAB models and the overall functionality of the V-HAB are demonstrated in form of meaningful test cases. In addition to the presentation of the results, the correlation

  2. Fatty acid composition at the base of aquatic food webs is influenced by habitat type and watershed land use.

    PubMed

    Larson, James H; Richardson, William B; Knights, Brent C; Bartsch, Lynn A; Bartsch, Michelle R; Nelson, John C; Veldboom, Jason A; Vallazza, Jon M

    2013-01-01

    Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.

  3. Fatty acid composition at the base of aquatic food webs is influenced by habitat type and watershed land use

    USGS Publications Warehouse

    Larson, James H.; Richardson, William B.; Knights, Brent C.; Bartsch, Lynn; Bartsch, Michelle; Nelson, J. C.; Veldboom, Jason A.; Vallazza, Jonathan M.

    2013-01-01

    Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.

  4. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    USGS Publications Warehouse

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  5. Assessing Habitat Suitability at Multiple Scales: A Landscape-Level Approach

    Treesearch

    Kurt H. Riitters; R.V. O' Neill; K.B. Jones

    1997-01-01

    The distribution and abundance of many plants and animals are influenced by the spatial arrangement of suitable habitats across landscapes. We derived habitat maps from a digital land cover map of the ~178,000 km2 Chesapeake Bay Watershed by using a spatial filtering algorithm. The regional amounts and patterns of habitats were different for...

  6. Do physical habitat complexity and predator cues influence the baseline and stress-induced glucocorticoid levels of a mangrove-associated fish?

    PubMed

    Magel, Jennifer M T; Pleizier, Naomi; Wilson, Alexander D M; Shultz, Aaron D; Vera Chang, Marilyn N; Moon, Thomas W; Cooke, Steven J

    2017-01-01

    As human populations continue to expand, increases in coastal development have led to the alteration of much of the world's mangrove habitat, creating problems for the multitude of species that inhabit these unique ecosystems. Habitat alteration often leads to changes in habitat complexity and predation risk, which may serve as additional stressors for those species that rely on mangroves for protection from predators. However, few studies have been conducted to date to assess the effects of these specific stressors on glucocorticoid (GC) stress hormone levels in wild fish populations. Using the checkered puffer as a model, our study sought to examine the effects of physical habitat complexity and predator environment on baseline and acute stress-induced GC levels. This was accomplished by examining changes in glucose and cortisol concentrations of fish placed in artificial environments for short periods (several hours) where substrate type and the presence of mangrove roots and predator cues were manipulated. Our results suggest that baseline and stress-induced GC levels are not significantly influenced by changes in physical habitat complexity or the predator environment using the experimental protocol that we applied. Although more research is required, the current study suggests that checkered puffers may be capable of withstanding changes in habitat complexity and increases in predation risk without experiencing adverse GC-mediated physiological effects, possibly as a result of the puffers' unique morphological and chemical defenses that help them to avoid predation in the wild. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Linking Demographic Processes of Juvenile Corals to Benthic Recovery Trajectories in Two Common Reef Habitats

    PubMed Central

    Doropoulos, Christopher; Ward, Selina; Roff, George; González-Rivero, Manuel; Mumby, Peter J.

    2015-01-01

    Tropical reefs are dynamic ecosystems that host diverse coral assemblages with different life-history strategies. Here, we quantified how juvenile (<50 mm) coral demographics influenced benthic coral structure in reef flat and reef slope habitats on the southern Great Barrier Reef, Australia. Permanent plots and settlement tiles were monitored every six months for three years in each habitat. These environments exhibited profound differences: the reef slope was characterised by 95% less macroalgal cover, and twice the amount of available settlement substrata and rates of coral settlement than the reef flat. Consequently, post-settlement coral survival in the reef slope was substantially higher than that of the reef flat, and resulted in a rapid increase in coral cover from 7 to 31% in 2.5 years. In contrast, coral cover on the reef flat remained low (~10%), whereas macroalgal cover increased from 23 to 45%. A positive stock-recruitment relationship was found in brooding corals in both habitats; however, brooding corals were not directly responsible for the observed changes in coral cover. Rather, the rapid increase on the reef slope resulted from high abundances of broadcast spawning Acropora recruits. Incorporating our results into transition matrix models demonstrated that most corals escape mortality once they exceed 50 mm, but for smaller corals mortality in brooders was double those of spawners (i.e. acroporids and massive corals). For corals on the reef flat, sensitivity analysis demonstrated that growth and mortality of larger juveniles (21–50 mm) highly influenced population dynamics; whereas the recruitment, growth and mortality of smaller corals (<20 mm) had the highest influence on reef slope population dynamics. Our results provide insight into the population dynamics and recovery trajectories in disparate reef habitats, and highlight the importance of acroporid recruitment in driving rapid increases in coral cover following large-scale perturbation

  8. Linking demographic processes of juvenile corals to benthic recovery trajectories in two common reef habitats.

    PubMed

    Doropoulos, Christopher; Ward, Selina; Roff, George; González-Rivero, Manuel; Mumby, Peter J

    2015-01-01

    Tropical reefs are dynamic ecosystems that host diverse coral assemblages with different life-history strategies. Here, we quantified how juvenile (<50 mm) coral demographics influenced benthic coral structure in reef flat and reef slope habitats on the southern Great Barrier Reef, Australia. Permanent plots and settlement tiles were monitored every six months for three years in each habitat. These environments exhibited profound differences: the reef slope was characterised by 95% less macroalgal cover, and twice the amount of available settlement substrata and rates of coral settlement than the reef flat. Consequently, post-settlement coral survival in the reef slope was substantially higher than that of the reef flat, and resulted in a rapid increase in coral cover from 7 to 31% in 2.5 years. In contrast, coral cover on the reef flat remained low (~10%), whereas macroalgal cover increased from 23 to 45%. A positive stock-recruitment relationship was found in brooding corals in both habitats; however, brooding corals were not directly responsible for the observed changes in coral cover. Rather, the rapid increase on the reef slope resulted from high abundances of broadcast spawning Acropora recruits. Incorporating our results into transition matrix models demonstrated that most corals escape mortality once they exceed 50 mm, but for smaller corals mortality in brooders was double those of spawners (i.e. acroporids and massive corals). For corals on the reef flat, sensitivity analysis demonstrated that growth and mortality of larger juveniles (21-50 mm) highly influenced population dynamics; whereas the recruitment, growth and mortality of smaller corals (<20 mm) had the highest influence on reef slope population dynamics. Our results provide insight into the population dynamics and recovery trajectories in disparate reef habitats, and highlight the importance of acroporid recruitment in driving rapid increases in coral cover following large-scale perturbation in

  9. Influence of breeding habitat on bear predation and age at maturity and sexual dimorphism of sockeye salmon populations

    USGS Publications Warehouse

    Quinn, Thomas P.; Wetzel, Lisa A.; Bishop, Susan; Overberg, Kristi; Rogers, Donald E.

    2001-01-01

    Age structure and morphology differ among Pacific salmon (Oncorhynchus spp.) populations. Sexual selection and reproductive capacity (fecundity and egg size) generally favor large (old), deep-bodied fish. We hypothesized that natural selection from physical access to spawning grounds and size-biased predation by bears, Ursus spp., opposes such large, deep-bodied salmon. Accordingly, size and shape of salmon should vary predictably among spawning habitats. We tested this hypothesis by measuring the age composition and body depth of sockeye salmon, Oncorhynchus nerka, and the intensity of predation in a range of breeding habitats in southwestern Alaska. Stream width was positively correlated with age at maturity and negatively correlated with predation level. However, salmon spawning on lake beaches were not consistently old, indicating that different factors affect age in riverine- and beach-spawning populations. Body depths of male and female salmon were positively correlated with water depth across all sites, as predicted. However, the mouths of some streams were so shallow that they might select against large or deep-bodied salmon, even in the absence of bear predation. Taken together, the results indicated that habitat has direct and indirect effects (via predation) on life history and morphology of mature salmon.

  10. Influences of recreation influence of forest and rangeland management on anadromous fish habitat in Western North America: influences of recreation.

    Treesearch

    Roger N. Clark; Dave R. Gibbons; Gilbert B. Pauley

    1985-01-01

    Public and private lands in the United States are used by millions of people for recreational activities. Many of these activities occur in or near streams and coastal areas that produce various species of anadromous fish. A major concern of fishery managers is the possible adverse effect of recreational uses on fish habitat. Conversely, the management of fish habitats...

  11. Temperate Forests. Habitat Ecology Learning Program (HELP). Teachers' Manual.

    ERIC Educational Resources Information Center

    Wildlife Conservation Society, Bronx, NY.

    The goal of this guide is to address a major environmental dilemma: worldwide habitat destruction and the disappearance of species. This guide is one of six that are included in the Habitat Ecology Learning Program (HELP), a holistic life science curriculum that involves students in an in-depth study of ecology. HELP includes six teaching guides…

  12. Underground Habitats in the Río Tinto Basin: A Model for Subsurface Life Habitats on Mars

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, David C.; Prieto-Ballesteros, Olga; Rodríguez, Nuria; Gómez, Felipe; Amils, Ricardo; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    A search for evidence of cryptic life in the subsurface region of a fractured Paleozoic volcanosedimentary deposit near the source waters of the Río Tinto River (Iberian pyrite belt, southwest Spain) was carried out by Mars Astrobiology Research and Technology Experiment (MARTE) project investigators in 2003 and 2004. This conventional deep-drilling experiment is referred to as the MARTE ground truth drilling project. Boreholes were drilled at three sites, and samples from extracted cores were analyzed with light microscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. Core leachates were analyzed with ion chromatography, and borehole fluids were analyzed with ion and gas chromatography. Key variables of the groundwater system (e.g. , pO2, pH, and salinity) exhibit huge ranges probably due to surficial oxygenation of overall reducing waters, physical mixing of waters, and biologically mediated water-rock interactions. Mineral distribution is mainly driven by the pH of subsurface solutions, which range from highly acidic to neutral. Borehole fluids contain dissolved gases such as CO2, CH4, and H2. SEM-EDS analyses of core samples revealed evidence of microbes attacking pyrite. The Río Tinto alteration mechanisms may be similar to subsurface weathering of the martian crust and provide insights into the possible (bio)geochemical cycles that may have accompanied underground habitats in extensive early Mars volcanic regions and associated sulfide ores.

  13. Underground habitats in the Río Tinto basin: a model for subsurface life habitats on Mars.

    PubMed

    Fernández-Remolar, David C; Prieto-Ballesteros, Olga; Rodríguez, Nuria; Gómez, Felipe; Amils, Ricardo; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    A search for evidence of cryptic life in the subsurface region of a fractured Paleozoic volcanosedimentary deposit near the source waters of the Río Tinto River (Iberian pyrite belt, southwest Spain) was carried out by Mars Astrobiology Research and Technology Experiment (MARTE) project investigators in 2003 and 2004. This conventional deep-drilling experiment is referred to as the MARTE ground truth drilling project. Boreholes were drilled at three sites, and samples from extracted cores were analyzed with light microscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. Core leachates were analyzed with ion chromatography, and borehole fluids were analyzed with ion and gas chromatography. Key variables of the groundwater system (e.g., pO(2), pH, and salinity) exhibit huge ranges probably due to surficial oxygenation of overall reducing waters, physical mixing of waters, and biologically mediated water-rock interactions. Mineral distribution is mainly driven by the pH of subsurface solutions, which range from highly acidic to neutral. Borehole fluids contain dissolved gases such as CO(2), CH(4), and H(2). SEM-EDS analyses of core samples revealed evidence of microbes attacking pyrite. The Río Tinto alteration mechanisms may be similar to subsurface weathering of the martian crust and provide insights into the possible (bio)geochemical cycles that may have accompanied underground habitats in extensive early Mars volcanic regions and associated sulfide ores.

  14. Thermal quality influences effectiveness of thermoregulation, habitat use, and behaviour in milk snakes.

    PubMed

    Row, Jeffrey R; Blouin-Demers, Gabriel

    2006-05-01

    We investigated the link between thermal quality and the effectiveness of thermoregulation in milk snakes in a thermally challenging environment. We defined thermoregulatory effectiveness as the extent to which an individual maintains its body temperature (Tb) closer to the preferred range (Tset) than allowed by the thermal quality of its environment. We defined thermal quality as the magnitude of the difference between operative environmental temperatures (Te) and Tset. Because ectotherms regulate body temperatures through choice of habitat and behavioural adjustments, we also examined the link between thermoregulation, habitat use and behaviour. During 2003-2004, we located 25 individuals 890 times, and recorded their Tb. Thermal quality was lower in the spring and fall than in the summer, and was lower in forests than in open habitats. Milk snakes thermoregulated more effectively in the spring than in the summer and fall, and more effectively in the forest than in open habitats. Milk snakes had a strong preference for open habitats in all seasons, which was likely to facilitate behavioural thermoregulation. The preference for open habitats was equally strong in all seasons and, therefore, the higher effectiveness of thermoregulation was not a result of altered habitat use. Instead, milk snakes modified their behaviour and were seen basking more and moved less in the spring than in the summer.

  15. Genetic variation reveals influence of landscape connectivity on population dynamics and resiliency of western trout in disturbance-prone habitats

    USGS Publications Warehouse

    Helen M. Neville,; Gresswell, Robert E.; Dunham, Jason B.

    2012-01-01

    Salmonid fishes have evolved and persisted in dynamic ecosystems where disturbance events vary in frequency, magnitude, timing, and duration, as well as the specific nature of associated effects (e.g., changes in thermal or flow regimes, geomorphology, or water chemistry). In the western United States, one of the major drivers of disturbance in stream ecosystems is fire. Although there is a growing consensus that fish populations can ultimately benefit from the productive and heterogeneous habitats created by fire, to persist they obviously have to withstand the immediate and shorter-term effects of fire, which can reduce or even extirpate local populations. Movement among interconnected stream habitats is thought to be an important strategy enabling persistence during and following fire, and there is mounting concern that the extensive isolation of salmonid populations in fragmented habitats is reducing their resiliency to fire. In spite of this concern, there are few direct observations of salmonid responses to fire. In fact, guidance is based largely on a broader understanding of the influences of landscape structure and disturbance in general on salmonid fishes, and there is considerable uncertainty about how best to manage for salmonid resilience to wildfire. Studies are limited by the difficult logistics of following fish responses in the face of unpredictable events such as wildfires. Therefore, BACI (Before-After-Control-Impact) study designs are nearly impossible, and replication is similarly challenging because fires are often low-frequency events. Furthermore, conventional ecological study approaches (e.g., studies of fish distribution, abundance, life histories, and movement) are logistically difficult to implement. Overall, a major challenge to understanding resilience of salmonid populations in fire-prone environments is related to moving beyond localized case studies to those with broader applicability in wildfire management . Genetic data can be

  16. Cognitive constraints influence an understanding of life-cycle change.

    PubMed

    French, Jason A; Menendez, David; Herrmann, Patricia A; Evans, E Margaret; Rosengren, Karl S

    2018-05-04

    We investigated children's (n = 120; 3- to 11-year-olds) and adults' (n = 18) reasoning about life-cycle changes in biological organisms by examining their endorsements of four different patterns of life-span changes. Participants were presented with two separate tasks: (a) judging possible adult versions of a juvenile animal and (b) judging possible juvenile versions of an adult animal. The stimuli enabled us to examine the endorsement of four different patterns of change: identical growth, natural growth, dramatic change, and speciation. The results suggest that endorsement of the different patterns is influenced by age and familiarity. Young children and individuals confronted with unfamiliar organisms often endorsed an identical growth that emphasizes the stability of features over the life span and between parents and offspring. The results are interpreted as supporting the idea that cognitive constraints influence individuals' reasoning about biological change and that the influence of these constraints is most notable when individuals are young or are presented with unfamiliar biological organisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Environmental and human influences on trumpeter swan habitat occupancy in Alaska

    USGS Publications Warehouse

    Schmidt, J.H.; Lindberg, M.S.; Johnson, D.S.; Schmultz, J.A.

    2009-01-01

    Approximately 70-80% of the entire population of the Trumpeter Swan (Cygnus huccinator) depends for reproduction on wetlands in Alaska. This makes the identification of important habitat features and the effects of human interactions important for the species' long-term management. We analyzed the swan's habitat preferences in five areas throughout the state and found that swan broods occupied some wetland types, especially larger closed-basin wetlands such as lakes and ponds, at rates much higher than they occupied other wetland types, such as shrubby or forested wetlands. We also found a negative effect of transportation infrastructure on occupancy by broods in and around the Minto Flats State Game Refuge, Kenai National Wildlife Refuge, and Tetlin National Wildlife Refuge. This finding is of particular interest because much of the Minto Flats refuge has recently been licensed for oil and gas exploration and parts of the Kenai refuge have been developed in the past. We also investigated the potential effects of the shrinkage of closed-basin ponds on habitat occupancy by nesting Trumpeter Swans. We compared nesting swans' use of ponds with changes in the ponds' size and other characteristics from 1982 to 1996 and found no relationships between occupancy and changes in pond size. However, we believe that the recent and rapid growth of Trumpeter Swan populations in Alaska may become limited by available breeding habitat, and anthropogenic and climate-induced changes to the swan's breeding habitats have the potential to limit future production. ?? 2009 by The Cooper Ornithological Society. All rights reserved.

  18. Factors influencing health-related quality of life among Korean cancer survivors.

    PubMed

    Kim, KiSook; Kim, Ji-Su

    2017-01-01

    Early cancer detection and remarkable improvements in cancer treatment have seen the cancer survival rate grow steadily for the past 40 years. Despite expectations regarding treatment effectiveness, acceptable quality of life, and a comfortable death, patients with cancer generally have a decreased quality of life. The study aim was to examine the factors influencing health-related quality of life among South Korean cancer survivors for future development of an intervention to enhance their survivorship. Korea National Health and Nutrition Examination Survey 2008-2012 data regarding 1020 cancer survivors were used for analysis. Health-related quality of life was measured using the EuroQol 5-Dimension. The factors influencing health-related quality of life were age, educational status, employment status, income, smoking, time since diagnosis, subjective health status, stress, depression, and suicidal ideation. Individual-centered clinical interventions that consider dimensional-influencing factors, including subjective health status, are needed to improve cancer survivors' health-related quality of life. Subsequent systematic studies are needed regarding dimension-specific differences according to cancer types and time since diagnosis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Population ecology of house mice in unstable habitats

    USGS Publications Warehouse

    Stickel, L.F.

    1979-01-01

    (1) The relationships between habitat change and house mouse populations were studied by monthly live trapping in a corn-wheat-hay rotation on a small Maryland farm. (2) Population density reached 53.0/ha in a wheat/hay field in October and 25.4/ha in corn in September. Populations increased by immigration as wheat or corn grew and ripened and decreased by emigration as hay became tall and dense. (3) Survival rates were high in winter in the relatively stable habitat of the wheat/hay field; they were Iow throughout the summer in both fields, and were reduced by corn harvest, less so by wheat harvest. If they were related to population density or increase, or to breeding condition, the relationships were obscured by the overriding influence of habitat change. (4) In the spring, when the population in the hay field 'crashed,' essentially the entire population moved from long-established ranges in the hay field to the field of ripening wheat, where new ranges were established. In the new field, fewer than 30% of the old associations between individuals persisted. (5) Individual mice maintained home ranges (88.1 + 6.1 m in length) in the same general area during their residence in a field. Ranges shifted from month to month, perhaps in response to changes in populations and habitat; exploratory travels and other movements also modified home range behaviour. (6) Minimum life expectancy (residence time) was greater from November (4-5 months) than from June/July (1-2 months). Maximum individual age was 17 months. (7) The demographic pattern fell at the r extreme of the r-K continuum. Mice bred from May to October matured and produced litters rapidly, produced several litters in a season, and had a high turnover rate. (8) It was concluded that migration was a primary mechanism of population regulation in the cropfield mosaic and that it was driven by habitat change, a system in contrast to those described for house mice in confined conditions.

  20. Habitat selection by juvenile Mojave Desert tortoises

    USGS Publications Warehouse

    Todd, Brian D; Halstead, Brian J.; Chiquoine, Lindsay P.; Peaden, J. Mark; Buhlmann, Kurt A.; Tuberville, Tracey D.; Nafus, Melia G.

    2016-01-01

    Growing pressure to develop public lands for renewable energy production places several protected species at increased risk of habitat loss. One example is the Mojave desert tortoise (Gopherus agassizii), a species often at the center of conflicts over public land development. For this species and others on public lands, a better understanding of their habitat needs can help minimize negative impacts and facilitate protection or restoration of habitat. We used radio-telemetry to track 46 neonate and juvenile tortoises in the Eastern Mojave Desert, California, USA, to quantify habitat at tortoise locations and paired random points to assess habitat selection. Tortoise locations near burrows were more likely to be under canopy cover and had greater coverage of perennial plants (especially creosote [Larrea tridentata]), more coverage by washes, a greater number of small-mammal burrows, and fewer white bursage (Ambrosia dumosa) than random points. Active tortoise locations away from burrows were closer to washes and perennial plants than were random points. Our results can help planners locate juvenile tortoises and avoid impacts to habitat critical for this life stage. Additionally, our results provide targets for habitat protection and restoration and suggest that diverse and abundant small-mammal populations and the availability of creosote bush are vital for juvenile desert tortoises in the Eastern Mojave Desert.

  1. Habitat Selection and Behaviour of a Reintroduced Passerine: Linking Experimental Restoration, Behaviour and Habitat Ecology

    PubMed Central

    Bennett, Victoria A.; Doerr, Veronica A. J.; Doerr, Erik D.; Manning, Adrian D.; Lindenmayer, David B.; Yoon, Hwan-Jin

    2013-01-01

    Habitat restoration can play an important role in recovering functioning ecosystems and improving biodiversity. Restoration may be particularly important in improving habitat prior to species reintroductions. We reintroduced seven brown treecreeper (Climacteris picumnus) social groups into two nature reserves in the Australian Capital Territory in south-eastern Australia. This study provided a unique opportunity to understand the interactions between restoration ecology, behavioural ecology and habitat ecology. We examined how experimental restoration treatments (addition of coarse woody debris, variations in ground vegetation cover and nest box installation) influenced the behaviour and microhabitat use of radio-tracked individuals to evaluate the success of restoration treatments. The addition of coarse woody debris benefited the brown treecreeper through increasing the probability of foraging on a log or on the ground. This demonstrated the value of using behaviour as a bio-indicator for restoration success. Based on previous research, we predicted that variations in levels of ground vegetation cover would influence behaviour and substrate use, particularly that brown treecreepers would choose sites with sparse ground cover because this allows better access to food and better vigilance for predators. However, there was little effect of this treatment, which was likely influenced by the limited overall use of the ground layer. There was also little effect of nest boxes on behaviour or substrate use. These results somewhat confound our understanding of the species based on research from extant populations. Our results also have a significant impact regarding using existing knowledge on a species to inform how it will respond to reintroduction and habitat restoration. This study also places great emphasis on the value of applying an experimental framework to ecological restoration, particularly when reintroductions produce unexpected outcomes. PMID:23349923

  2. Competition and Habitat Quality Influence Age and Sex Distribution in Wintering Rusty Blackbirds

    PubMed Central

    Mettke-Hofmann, Claudia; Hamel, Paul B.; Hofmann, Gerhard; Zenzal Jr., Theodore J.; Pellegrini, Anne; Malpass, Jennifer; Garfinkel, Megan; Schiff, Nathan

    2015-01-01

    Bird habitat quality is often inferred from species abundance measures during the breeding and non-breeding season and used for conservation management decisions. However, during the non-breeding season age and sex classes often occupy different habitats which suggest a need for more habitat-specific data. Rusty Blackbird (Euphagus carolinus) is a forested wetland specialist wintering in bottomland hardwood forests in the south-eastern U. S. and belongs to the most steeply declining songbirds in the U.S. Little information is available to support priority birds such as the Rusty Blackbird wintering in this threatened habitat. We assessed age and sex distribution and body condition of Rusty Blackbirds among the three major habitats used by this species in the Lower Mississippi Alluvial Valley and also measured food availability. Overall, pecan groves had the highest biomass mainly driven by the amount of nuts. Invertebrate biomass was highest in forests but contributed only a small percentage to overall biomass. Age and sex classes were unevenly distributed among habitats with adult males primarily occupying pecan groves containing the highest nut biomass, females being found in forests which had the lowest nut biomass and young males primarily staying in forest fragments along creeks which had intermediate nut biomass. Males were in better body condition than females and were in slightly better condition in pecan groves. The results suggest that adult males occupy the highest quality habitat and may competitively exclude the other age and sex classes. PMID:25946335

  3. Competition and habitat quality influence age and sex distribution in wintering rusty blackbirds.

    PubMed

    Mettke-Hofmann, Claudia; Hamel, Paul B; Hofmann, Gerhard; Zenzal, Theodore J; Pellegrini, Anne; Malpass, Jennifer; Garfinkel, Megan; Schiff, Nathan; Greenberg, Russell

    2015-01-01

    Bird habitat quality is often inferred from species abundance measures during the breeding and non-breeding season and used for conservation management decisions. However, during the non-breeding season age and sex classes often occupy different habitats which suggest a need for more habitat-specific data. Rusty Blackbird (Euphagus carolinus) is a forested wetland specialist wintering in bottomland hardwood forests in the south-eastern U. S. and belongs to the most steeply declining songbirds in the U.S. Little information is available to support priority birds such as the Rusty Blackbird wintering in this threatened habitat. We assessed age and sex distribution and body condition of Rusty Blackbirds among the three major habitats used by this species in the Lower Mississippi Alluvial Valley and also measured food availability. Overall, pecan groves had the highest biomass mainly driven by the amount of nuts. Invertebrate biomass was highest in forests but contributed only a small percentage to overall biomass. Age and sex classes were unevenly distributed among habitats with adult males primarily occupying pecan groves containing the highest nut biomass, females being found in forests which had the lowest nut biomass and young males primarily staying in forest fragments along creeks which had intermediate nut biomass. Males were in better body condition than females and were in slightly better condition in pecan groves. The results suggest that adult males occupy the highest quality habitat and may competitively exclude the other age and sex classes.

  4. Habitat conditions and phenological tree traits overrule the influence of tree genotype in the needle mycobiome-Picea glauca system at an arctic treeline ecotone.

    PubMed

    Eusemann, Pascal; Schnittler, Martin; Nilsson, R Henrik; Jumpponen, Ari; Dahl, Mathilde B; Würth, David G; Buras, Allan; Wilmking, Martin; Unterseher, Martin

    2016-09-01

    Plant-associated mycobiomes in extreme habitats are understudied and poorly understood. We analysed Illumina-generated ITS1 sequences from the needle mycobiome of white spruce (Picea glauca) at the northern treeline in Alaska (USA). Sequences were obtained from the same DNA that was used for tree genotyping. In the present study, fungal metabarcoding and tree microsatellite data were compared for the first time. In general, neighbouring trees shared more fungal taxa with each other than trees growing in further distance. Mycobiomes correlated strongly with phenological host traits and local habitat characteristics contrasting a dense forest stand with an open treeline site. Genetic similarity between trees did not influence fungal composition and no significant correlation existed between needle mycobiome and tree genotype. Our results suggest the pronounced influence of local habitat conditions and phenotypic tree traits on needle-inhabiting fungi. By contrast, the tree genetic identity cannot be benchmarked as a dominant driver for needle-inhabiting mycobiomes, at least not for white spruce in this extreme environment. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Adaptive breeding habitat selection: Is it for the birds?

    USGS Publications Warehouse

    Chalfoun, Anna D.; Schmidt, Kenneth A.

    2012-01-01

    The question of why animals choose particular habitats has important implications for understanding behavioral evolution and distribution of organisms in the wild and for delineating between habitats of different quality for conservation and management. Habitats chosen by animals can influence fitness outcomes via the costs (e.g., predation risk) and benefits (e.g., food availability) of habitat use. Habitat preferences should therefore be under selection to favor those that confer fitness advantages (Clark and Shutler 1999). Indeed, prevailing theory suggests that the habitat preferences of animals should be adaptive, such that fitness is higher in preferred habitats (Hildén 1965, Southwood 1977, Martin 1998). However, studies have often identified apparent mismatches between observed habitat preferences and fitness outcomes across a wide variety of taxa (Valladares and Lawton 1991, Mayhew 1997, Kolbe and Janzen 2002, Arlt and Pärt 2007, Mägi et al. 2009). Certainly, one limitation of studies may be that assessment of “fitness” is typically constrained to fitness surrogates such as nest success rather than lifetime reproductive success or classic Fisherian fitness (Endler 1986). Nevertheless, important habitat choices such as nest sites influence the probability that temporarily sedentary, dependent young are discovered by enemies such as predators and parasites. We therefore expect, on average, to see congruence between evolved habitat preferences and relevant components of fitness (e.g., nest success). Here, we (1) review the prevalence of apparent mismatches between avian breeding-habitat preferences and fitness outcomes using nest-site selection as a focus; (2) describe several potential mechanisms for such mismatches, including anthropogenic, methodological, and ecological–evolutionary; and (3) suggest a framework for understanding the contexts in which habitat preferences represent adaptive decisions, with a primary focus on ecological information

  6. Diet composition of age-0 fishes in created habitats of the Lower Missouri River

    USGS Publications Warehouse

    Starks, Trevor A.; Long, James M.

    2017-01-01

    Channelization of the Missouri River has greatly reduced the availability of shallow water habitats used by many larval and juvenile fishes and contributed to imperilment of floodplain-dependent biota. Creation of small side channels, or chutes, is being used to restore shallow water habitat and reverse negative environmental effects associated with channelization. In the summer of 2012, the U.S. Army Corps of Engineers collected early life stages of fishes from constructed chutes and nearby unrestored shallow habitats at six sites on the Missouri River between Rulo, Nebraska and St. Louis, Missouri. We compared the diets of two abundant species of fishes to test the hypothesis that created shallow chutes provided better foraging habitat for early life stages than nearby unrestored shallow habitats. Graphical analysis of feeding patterns of freshwater drum indicated specialization on chironomid larvae, which were consumed in greater numbers in unrestored mainstem reaches compared to chutes. Hiodon spp. were more generalist feeders with no differences in prey use between habitat types. Significantly greater numbers of individuals with empty stomachs were observed in chute shallow-water habitats, indicating poor foraging habitat. For these two species, constructed chute shallow-water habitat does not appear to provide the hypothesized benefits of higher quality foraging habitat.

  7. Life Style: Personality, Role Concept, Attitudes, Influences, and Choices.

    ERIC Educational Resources Information Center

    O'Connell, Agnes N.

    The relationships between life style and personality, role concept, attitudes, the influence of significant others, and personal and professional choices are examined for women pursuing various life styles. College-graduated women (N=87) between ages 30 and 58 were divided into three groups based on career-home commitment. Traditionals (N=24) left…

  8. Space use and habitat selection by resident and transient red wolves (Canis rufus)

    USGS Publications Warehouse

    Hinton, Joseph W.; Proctor, Christine; Kelly, Marcella J.; van Manen, Frank T.; Vaughan, Michael R.; Chamberlain, Michael J.

    2016-01-01

    Recovery of large carnivores remains a challenge because complex spatial dynamics that facilitate population persistence are poorly understood. In particular, recovery of the critically endangered red wolf (Canis rufus) has been challenging because of its vulnerability to extinction via human-caused mortality and hybridization with coyotes (Canis latrans). Therefore, understanding red wolf space use and habitat selection is important to assist recovery because key aspects of wolf ecology such as interspecific competition, foraging, and habitat selection are well-known to influence population dynamics and persistence. During 2009–2011, we used global positioning system (GPS) radio-telemetry to quantify space use and 3rd-order habitat selection for resident and transient red wolves on the Albemarle Peninsula of eastern North Carolina. The Albemarle Peninsula was a predominantly agricultural landscape in which red wolves maintained spatially stable home ranges that varied between 25 km2 and 190 km2. Conversely, transient red wolves did not maintain home ranges and traversed areas between 122 km2 and 681 km2. Space use by transient red wolves was not spatially stable and exhibited shifting patterns until residency was achieved by individual wolves. Habitat selection was similar between resident and transient red wolves in which agricultural habitats were selected over forested habitats. However, transients showed stronger selection for edges and roads than resident red wolves. Behaviors of transient wolves are rarely reported in studies of space use and habitat selection because of technological limitations to observed extensive space use and because they do not contribute reproductively to populations. Transients in our study comprised displaced red wolves and younger dispersers that competed for limited space and mating opportunities. Therefore, our results suggest that transiency is likely an important life-history strategy for red wolves that facilitates

  9. Temporal and Spatial Scales Matter: Circannual Habitat Selection by Bird Communities in Vineyards

    PubMed Central

    Arlettaz, Raphaël; Korner, Pius

    2017-01-01

    Vineyards are likely to be regionally important for wildlife, but we lack biodiversity studies in this agroecosystem which is undergoing a rapid management revolution. As vine cultivation is restricted to arid and warm climatic regions, biodiversity-friendly management would promote species typical of southern biomes. Vineyards are often intensively cultivated, mostly surrounded by few natural features and offering a fairly mineral appearance with little ground vegetation cover. Ground vegetation cover and composition may further strongly vary with respect to season, influencing patterns of habitat selection by ecological communities. We investigated season-specific bird-habitat associations to highlight the importance of semi-natural habitat features and vineyard ground vegetation cover throughout the year. Given that avian habitat selection varies according to taxa, guilds and spatial scale, we modelled bird-habitat associations in all months at two spatial scales using mixed effects regression models. At the landscape scale, birds were recorded along 10 1-km long transects in Southwestern Switzerland (February 2014 –January 2015). At the field scale, we compared the characteristics of visited and unvisited vineyard fields (hereafter called parcels). Bird abundance in vineyards tripled in winter compared to summer. Vineyards surrounded by a greater amount of hedges and small woods harboured higher bird abundance, species richness and diversity, especially during the winter season. Regarding ground vegetation, birds showed a season-specific habitat selection pattern, notably a marked preference for ground-vegetated parcels in winter and for intermediate vegetation cover in spring and summer. These season-specific preferences might be related to species-specific life histories: more insectivorous, ground-foraging species occur during the breeding season whereas granivores predominate in winter. These results highlight the importance of investigating habitat

  10. Space Use and Habitat Selection by Resident and Transient Red Wolves (Canis rufus).

    PubMed

    Hinton, Joseph W; Proctor, Christine; Kelly, Marcella J; van Manen, Frank T; Vaughan, Michael R; Chamberlain, Michael J

    2016-01-01

    Recovery of large carnivores remains a challenge because complex spatial dynamics that facilitate population persistence are poorly understood. In particular, recovery of the critically endangered red wolf (Canis rufus) has been challenging because of its vulnerability to extinction via human-caused mortality and hybridization with coyotes (Canis latrans). Therefore, understanding red wolf space use and habitat selection is important to assist recovery because key aspects of wolf ecology such as interspecific competition, foraging, and habitat selection are well-known to influence population dynamics and persistence. During 2009-2011, we used global positioning system (GPS) radio-telemetry to quantify space use and 3rd-order habitat selection for resident and transient red wolves on the Albemarle Peninsula of eastern North Carolina. The Albemarle Peninsula was a predominantly agricultural landscape in which red wolves maintained spatially stable home ranges that varied between 25 km2 and 190 km2. Conversely, transient red wolves did not maintain home ranges and traversed areas between 122 km2 and 681 km2. Space use by transient red wolves was not spatially stable and exhibited shifting patterns until residency was achieved by individual wolves. Habitat selection was similar between resident and transient red wolves in which agricultural habitats were selected over forested habitats. However, transients showed stronger selection for edges and roads than resident red wolves. Behaviors of transient wolves are rarely reported in studies of space use and habitat selection because of technological limitations to observed extensive space use and because they do not contribute reproductively to populations. Transients in our study comprised displaced red wolves and younger dispersers that competed for limited space and mating opportunities. Therefore, our results suggest that transiency is likely an important life-history strategy for red wolves that facilitates

  11. Space Use and Habitat Selection by Resident and Transient Red Wolves (Canis rufus)

    PubMed Central

    Hinton, Joseph W.; Proctor, Christine; Kelly, Marcella J.; van Manen, Frank T.; Vaughan, Michael R.; Chamberlain, Michael J.

    2016-01-01

    Recovery of large carnivores remains a challenge because complex spatial dynamics that facilitate population persistence are poorly understood. In particular, recovery of the critically endangered red wolf (Canis rufus) has been challenging because of its vulnerability to extinction via human-caused mortality and hybridization with coyotes (Canis latrans). Therefore, understanding red wolf space use and habitat selection is important to assist recovery because key aspects of wolf ecology such as interspecific competition, foraging, and habitat selection are well-known to influence population dynamics and persistence. During 2009–2011, we used global positioning system (GPS) radio-telemetry to quantify space use and 3rd-order habitat selection for resident and transient red wolves on the Albemarle Peninsula of eastern North Carolina. The Albemarle Peninsula was a predominantly agricultural landscape in which red wolves maintained spatially stable home ranges that varied between 25 km2 and 190 km2. Conversely, transient red wolves did not maintain home ranges and traversed areas between 122 km2 and 681 km2. Space use by transient red wolves was not spatially stable and exhibited shifting patterns until residency was achieved by individual wolves. Habitat selection was similar between resident and transient red wolves in which agricultural habitats were selected over forested habitats. However, transients showed stronger selection for edges and roads than resident red wolves. Behaviors of transient wolves are rarely reported in studies of space use and habitat selection because of technological limitations to observed extensive space use and because they do not contribute reproductively to populations. Transients in our study comprised displaced red wolves and younger dispersers that competed for limited space and mating opportunities. Therefore, our results suggest that transiency is likely an important life-history strategy for red wolves that facilitates

  12. Habitat Complexity in Aquatic Microcosms Affects Processes Driven by Detritivores

    PubMed Central

    Flores, Lorea; Bailey, R. A.; Elosegi, Arturo; Larrañaga, Aitor; Reiss, Julia

    2016-01-01

    Habitat complexity can influence predation rates (e.g. by providing refuge) but other ecosystem processes and species interactions might also be modulated by the properties of habitat structure. Here, we focussed on how complexity of artificial habitat (plastic plants), in microcosms, influenced short-term processes driven by three aquatic detritivores. The effects of habitat complexity on leaf decomposition, production of fine organic matter and pH levels were explored by measuring complexity in three ways: 1. as the presence vs. absence of habitat structure; 2. as the amount of structure (3 or 4.5 g of plastic plants); and 3. as the spatial configuration of structures (measured as fractal dimension). The experiment also addressed potential interactions among the consumers by running all possible species combinations. In the experimental microcosms, habitat complexity influenced how species performed, especially when comparing structure present vs. structure absent. Treatments with structure showed higher fine particulate matter production and lower pH compared to treatments without structures and this was probably due to higher digestion and respiration when structures were present. When we explored the effects of the different complexity levels, we found that the amount of structure added explained more than the fractal dimension of the structures. We give a detailed overview of the experimental design, statistical models and R codes, because our statistical analysis can be applied to other study systems (and disciplines such as restoration ecology). We further make suggestions of how to optimise statistical power when artificially assembling, and analysing, ‘habitat complexity’ by not confounding complexity with the amount of structure added. In summary, this study highlights the importance of habitat complexity for energy flow and the maintenance of ecosystem processes in aquatic ecosystems. PMID:27802267

  13. Development of habitat suitability indices for the Candy Darter, with cross-scale validation across representative populations

    USGS Publications Warehouse

    Dunn, Corey G.; Angermeier, Paul

    2016-01-01

    Understanding relationships between habitat associations for individuals and habitat factors that limit populations is a primary challenge for managers of stream fishes. Although habitat use by individuals can provide insight into the adaptive significance of selected microhabitats, not all habitat parameters will be significant at the population level, particularly when distributional patterns partially result from habitat degradation. We used underwater observation to quantify microhabitat selection by an imperiled stream fish, the Candy Darter Etheostoma osburni, in two streams with robust populations. We developed multiple-variable and multiple-life-stage habitat suitability indices (HSIs) from microhabitat selection patterns and used them to assess the suitability of available habitat in streams where Candy Darter populations were extirpated, localized, or robust. Next, we used a comparative framework to examine relationships among (1) habitat availability across streams, (2) projected habitat suitability of each stream, and (3) a rank for the likely long-term viability (robustness) of the population inhabiting each stream. Habitat selection was characterized by ontogenetic shifts from the low-velocity, slightly embedded areas used by age-0 Candy Darters to the swift, shallow areas with little fine sediment and complex substrate, which were used by adults. Overall, HSIs were strongly correlated with population rank. However, we observed weak or inverse relationships between predicted individual habitat suitability and population robustness for multiple life stages and variables. The results demonstrated that microhabitat selection by individuals does not always reflect population robustness, particularly when based on a single life stage or season, which highlights the risk of generalizing habitat selection that is observed during nonstressful periods or for noncritical resources. These findings suggest that stream fish managers may need to be cautious when

  14. Lunar and Planetary Bases, Habitats, and Colonies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes the design and construction of lunar and Mars bases, habitats, and settlements; construction materials and equipment; life support systems; base operations and logistics; thermal management and power systems; and robotic systems.

  15. Species associations and habitat influence the range-wide distribution of breeding Canada Geese (Branta canadensis interior) on Western Hudson Bay

    USGS Publications Warehouse

    Reiter, Matthew E.; Andersen, David E.; Raedeke, Andrew H.; Humburg, Dale D.

    2017-01-01

    Inter- and intra-specific interactions are potentially important factors influencing the distribution of populations. Aerial survey data, collected during range-wide breeding population surveys for Eastern Prairie Population (EPP) Canada Geese (Branta canadensis interior), 1987–2008, were evaluated to assess factors influencing their nesting distribution. Specifically, associations between nesting Lesser Snow Geese (Chen caerulescens caerulescens) and EPP Canada Geese were quantified; and changes in the spatial distribution of EPP Canada Geese were identified. Mixed-effects Poisson regression models of EPP Canada Goose nest counts were evaluated within a cross-validation framework. The total count of EPP Canada Goose nests varied moderately among years between 1987 and 2008 with no long-term trend; however, the total count of nesting Lesser Snow Geese generally increased. Three models containing factors related to previous EPP Canada Goose nest density (representing recruitment), distance to Hudson Bay (representing brood-habitat), nesting habitat type, and Lesser Snow Goose nest density (inter-specific associations) were the most accurate, improving prediction accuracy by 45% when compared to intercept-only models. EPP Canada Goose nest density varied by habitat type, was negatively associated with distance to coastal brood-rearing areas, and suggested density-dependent intra-specific effects on recruitment. However, a non-linear relationship between Lesser Snow and EPP Canada Goose nest density suggests that as nesting Lesser Snow Geese increase, EPP Canada Geese locally decline and subsequently the spatial distribution of EPP Canada Geese on western Hudson Bay has changed.

  16. An Integrated Science Glovebox for the Gateway Habitat

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Evans, C. A.; Garrison, D. H.; Bell, M. S.

    2018-01-01

    Next generation habitats for deep space exploration of cislunar space, the Moon, and ultimately Mars will benefit from on-board glovebox capability. Such a glovebox facility will maintain sample integrity for a variety of scientific endeavors whether for life science, materials science, or astromaterials. Glovebox lessons learned from decades of astromaterials curation, ISS on-board sample handling, and robust analog missions provide key design and operational factors for inclusion in on-going habitat development.

  17. Systematic review of the influence of foraging habitat on red-cockaded woodpecker reproductive success

    Treesearch

    James E. Garabedian; Christopher E. Moorman; M. Nils Peterson; John C. Kilgo

    2014-01-01

    Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides...

  18. Influences of spatial and temporal variation on fish-habitat relationships defined by regression quantiles

    USGS Publications Warehouse

    Dunham, J.B.; Cade, B.S.; Terrell, J.W.

    2002-01-01

    We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The spatial and temporal stability of model predictions were examined across years and streams, respectively. Variation in fish density with width:depth ratio (10th-90th regression quantiles) modeled for streams sampled in 1993-1997 predicted the variation observed in 1998-1999, indicating similar habitat relationships across years. Both linear and nonlinear models described the limiting relationships well, the latter performing slightly better. Although estimated relationships were transferable in time, results were strongly dependent on the influence of spatial variation in fish density among streams. Density changes with width:depth ratio in a single stream were responsible for the significant (P < 0.10) negative slopes estimated for the higher quantiles (>80th). This suggests that stream-scale factors other than width:depth ratio play a more direct role in determining population density. Much of the variation in densities of cutthroat trout among streams was attributed to the occurrence of nonnative brook trout Salvelinus fontinalis (a possible competitor) or connectivity to migratory habitats. Regression quantiles can be useful for estimating the effects of limiting factors when ecological responses are highly variable, but our results indicate that spatiotemporal variability in the data should be explicitly considered. In this study, data from individual streams and stream-specific characteristics (e.g., the occurrence of nonnative species and habitat connectivity) strongly affected our interpretation of the relationship between width:depth ratio and fish density.

  19. [Influence of road on breeding habitat of Nipponia nippon based on MaxEnt model].

    PubMed

    Zhang, Hui; Gao, Ji Xi; Ma, Meng Xiao; Shao, Fang Ze; Wang, Qiao; Li, Guang Yu; Qiu, Jie; Zhou, Ke Xin

    2017-04-18

    Quantitative study on effects of roads on suitable breeding habitats of wildlife is one of topics that need in-depth research in road ecology. Crested ibis (Nipponia nippon), a first class nationally protected bird species, is the species of interest in this research. Using the Maximum Entropy Models (MaxEnt) in the Species Distribution Model (SDM) toolbox of ArcGIS, autocorrelation of environmental variables were analyzed and environmental variables with r>0.8 were removed. Ten environmental variables were chosen as impact factors for the breeding habitat of crested ibis, including mean temperature of coldest quarter, landscape type, normalized difference vegetation index(NDVI), slope, aspect, distance to waters, distance to paddy field, distance to high-grade roads (expressway, national way, provincial way), and distance to low-grade roads (country road). By analyzing the contribution rate of each environmental variable, the results showed that the mean temperature of coldest quarter, landscape type, distance to paddy field, and distance to high-grade roads were the main factors determining breeding habitat of crested ibis. The suitable distribution of crested ibis' nesting area was under the following scenarios: variable road present (scenario1), high-grade road absent (scenario2), and low-grade road absent (scenario 3). The results showed that the presence of roads affected suitable nesting areas of crested ibis with high-grade roads showing a larger influence than low-grade roads. The presence of high-grade roads and low-grade roads decreased the suitable nesting areas of crested ibis by 66.23 and 35.69 km 2 , respectively. The crested ibis preferred to nest in areas distant from high-grade roads, with an average road avoidance distance of 1500 m. This study was of great significance for formulating management measures to protect crested ibis and provide a reference for quantitative assessment on impacts of engineering and construction projects on wildlife.

  20. Telemetry-Determined Habitat Use Informs Multi-Species Habitat Management in an Urban Harbour.

    PubMed

    Rous, Andrew M; Midwood, Jonathon D; Gutowsky, Lee F G; Lapointe, Nicolas W R; Portiss, Rick; Sciscione, Thomas; Wells, Mathew G; Doka, Susan E; Cooke, Steven J

    2017-01-01

    Widespread human development has led to impairment of freshwater coastal wetlands and embayments, which provide critical and unique habitat for many freshwater fish species. This is particularly evident in the Laurentian Great Lakes, where such habitats have been severely altered over the last century as a result of industrial activities, urbanization, dredging and infilling. In Toronto Harbour, extensive restoration efforts have been directed towards improving the amount and quality of aquatic habitat, especially for fishes. To evaluate the effectiveness of this restoration work, use of the restored area by both target species and the fish community as a whole must be assessed. Individuals from four species (Common Carp, Largemouth Bass, Northern Pike and Yellow Perch) were tagged and tracked continuously for 1 year using an acoustic telemetry array in Toronto Harbour area of Lake Ontario. Daily site fidelity was estimated using a mixed-effects logistic regression model. Daily site fidelity was influenced by habitat restoration and its interactions with species and body size, as well as season and its interactions with species and body size. Daily site fidelity was higher in restored sites compared to non-restored sites for Yellow Perch and Northern Pike, but lower for Largemouth Bass and Common Carp. For all species, daily site fidelity estimates were highest during the summer and lowest during autumn. The approach used here has merit for evaluating restoration success and informing future habitat management activities. Creating diverse habitats that serve multiple functions and species are more desirable than single-function-oriented or single-species-oriented designs.

  1. Telemetry-Determined Habitat Use Informs Multi-Species Habitat Management in an Urban Harbour

    NASA Astrophysics Data System (ADS)

    Rous, Andrew M.; Midwood, Jonathon D.; Gutowsky, Lee F. G.; Lapointe, Nicolas W. R.; Portiss, Rick; Sciscione, Thomas; Wells, Mathew G.; Doka, Susan E.; Cooke, Steven J.

    2017-01-01

    Widespread human development has led to impairment of freshwater coastal wetlands and embayments, which provide critical and unique habitat for many freshwater fish species. This is particularly evident in the Laurentian Great Lakes, where such habitats have been severely altered over the last century as a result of industrial activities, urbanization, dredging and infilling. In Toronto Harbour, extensive restoration efforts have been directed towards improving the amount and quality of aquatic habitat, especially for fishes. To evaluate the effectiveness of this restoration work, use of the restored area by both target species and the fish community as a whole must be assessed. Individuals from four species (Common Carp, Largemouth Bass, Northern Pike and Yellow Perch) were tagged and tracked continuously for 1 year using an acoustic telemetry array in Toronto Harbour area of Lake Ontario. Daily site fidelity was estimated using a mixed-effects logistic regression model. Daily site fidelity was influenced by habitat restoration and its interactions with species and body size, as well as season and its interactions with species and body size. Daily site fidelity was higher in restored sites compared to non-restored sites for Yellow Perch and Northern Pike, but lower for Largemouth Bass and Common Carp. For all species, daily site fidelity estimates were highest during the summer and lowest during autumn. The approach used here has merit for evaluating restoration success and informing future habitat management activities. Creating diverse habitats that serve multiple functions and species are more desirable than single-function-oriented or single-species-oriented designs.

  2. Influence of long-term trends of flooding on habitat conditions in lowland riparian wetlands under low antropopression

    NASA Astrophysics Data System (ADS)

    Mirosław-Świątek, Dorota; Grygoruk, Mateusz

    2016-04-01

    Temporal, volumetric and areal trends of flooding remain dominant factors shaping habitat conditions of riparian wetlands. In contemporary Europe, where the pristine extent of riparian wetlands strongly decreased due to antropopression and the flow regime of majority of rivers was decently modified in agricultural and hydropower purposes, valuable riparian habitats that remained in good ecological state require appropriate maintenance of floods. Even though multiple environmental regulations were implemented worldwide in order to mitigate negative effects of antropopression to flow regime and habitats, it is the climatic change that challenges riparian ecosystem management to the extent comparable (if not higher) than the direct human interventions. Wishing to detect probable influence of the ongoing climatic change on the flood regime one should search for catchment systems of a low antropopression, where the long term variability of flood extents, flood depths and recurrence intervals are likely to reflect climatic changes rather than human activity. In our study we analysed 60-years long time series of the discharge data of Biebrza river (NE Poland) that was found in numerous studies a reference in a temperate-continental European riparian and mire ecosystem research. Daily data of river discharge was used as boundary conditions in the WETFLOD - a developed integrated river-floodplain-groundwater flow model applied to the environment of Lower Biebrza Basin. The model was used to simulate and analyze trends of changes in flood extent and water depths in selected, well preserved vegetation patches namely the Caricetum appropinquatae, Caricetum gracilis, Phragmitetum communis and Glycerietum maximae. Temporal trends were analysed on the basis of distribution deciles of flood extents, depths and recurrence intervals. Study revealed that flood extents and flood depths in the first decade of the 21st century were decently different from the ones modeled for the second

  3. Evolutionary consequences of habitat loss for Pacific anadromous salmonids

    PubMed Central

    McClure, Michelle M; Carlson, Stephanie M; Beechie, Timothy J; Pess, George R; Jorgensen, Jeffrey C; Sogard, Susan M; Sultan, Sonia E; Holzer, Damon M; Travis, Joseph; Sanderson, Beth L; Power, Mary E; Carmichael, Richard W

    2008-01-01

    Large portions of anadromous salmonid habitat in the western United States has been lost because of dams and other blockages. This loss has the potential to affect salmonid evolution through natural selection if the loss is biased, affecting certain types of habitat differentially, and if phenotypic traits correlated with those habitat types are heritable. Habitat loss can also affect salmonid evolution indirectly, by reducing genetic variation and changing its distribution within and among populations. In this paper, we compare the characteristics of lost habitats with currently accessible habitats and review the heritability of traits which show correlations with habitat/environmental gradients. We find that although there is some regional variation, inaccessible habitats tend to be higher in elevation, wetter and both warmer in the summer and colder in the winter than habitats currently available to anadromous salmonids. We present several case studies that demonstrate either a change in phenotypic or life history expression or an apparent reduction in genetic variation associated with habitat blockages. These results suggest that loss of habitat will alter evolutionary trajectories in salmonid populations and Evolutionarily Significant Units. Changes in both selective regime and standing genetic diversity might affect the ability of these taxa to respond to subsequent environmental perturbations. Both natural and anthropogenic and should be considered seriously in developing management and conservation strategies. PMID:25567633

  4. How Nature Works. Habitat Ecology Learning Program (HELP). Teachers' Manual.

    ERIC Educational Resources Information Center

    Wildlife Conservation Society, Bronx, NY.

    The goal of this guide is to address a major environmental dilemma: worldwide habitat destruction and the disappearance of species. This guide is one of six that are included in the Habitat Ecology Learning Program (HELP), a holistic life science curriculum that involves students in an in-depth study of ecology. HELP includes six teaching guides…

  5. Simulating the influences of various fire regimes on caribou winter habitat

    USGS Publications Warehouse

    Rupp, T. Scott; Olson, Mark; Adams, Layne G.; Dale, Bruce W.; Joly, Kyle; Henkelman, Jonathan; Collins, William B.; Starfield, Anthony M.

    2006-01-01

    Caribou are an integral component of high‐latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long‐term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5‐fold increase in the area burned annually and an associated 41% decrease in the amount of spruce–lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.

  6. Pupal productivity & nutrient reserves of Aedes mosquitoes breeding in sewage drains & other habitats of Kolkata, India: Implications for habitat expansion & vector management.

    PubMed

    Banerjee, Soumyajit; Mohan, Sushree; Saha, Nabaneeta; Mohanty, Siba Prasad; Saha, Goutam K; Aditya, Gautam

    2015-12-01

    The quality of breeding sites is reflected through the pupal productivity and the life history traits of Aedes mosquitoes. Using nutrient reserves and pupal productivity of Aedes as indicators, the larval habitats including sewage drains were characterized to highlight the habitat expansion and vector management. The pupae and adults collected from the containers and sewage drains were characterized in terms of biomass and nutrient reserves and the data were subjected to three way factorial ANOVA. Discriminant function analyses were performed to highlight the differences among the habitats for sustenance of Aedes mosquitoes. Survey of larval habitats from the study area revealed significant differences (P<0.05) in the pupal productivity of Aedes among the habitats and months. Despite sewage drains being comparatively less utilized for breeding, the pupae were of higher biomass with corresponding adults having longer wings in contrast to other habitats. The nutrient reserve of the adults emerging from pupae of sewage drains was significantly higher (P<0.05), compared to other habitats, as reflected through the discriminant function analysis. The present results showed that for both Ae. aegypti and Ae. albopictus, sewage drains were equally congenial habitat as were plastic, porcelain and earthen habitats. Availability of Aedes immature in sewage drains poses increased risk of dengue, and thus vector control programme should consider inclusion of sewage drains as breeding habitat of dengue vector mosquitoes.

  7. Influence of 4-H Horse Project Involvement on Development of Life Skills

    ERIC Educational Resources Information Center

    Anderson, K. P.; Karr-Lilienthal, L.

    2011-01-01

    Four-H horse project members who competed in non-riding horse contests were surveyed to evaluate the influence of their horse project participation on life-skill development. Contests in which youth competed included Horse Bowl, Demonstrations, Public Speaking, and Art. Youth indicated a positive influence on both life-skill development and horse…

  8. Physical habitat and its alteration: A common ground for exposure of amphibians to environmental stressors

    USGS Publications Warehouse

    Bishop, Christine A.; Cunnington, David C.; Fellers, Gary M.; Gibbs, James P.; Pauli, Bruce D.; Rothermel, Betsie B.; Linder, Greg L.; Krest, Sherry K.; Sparling, Donald W.

    2003-01-01

    Amphibians as a class of vertebrates have persisted for hundreds of millions of years (Stebbins and Cohen 1995), but they are currently threatened by a variety of stressors, many resulting from human-related alterations of the environment. Most species of amphibians live closely associated with moist environments throughout their life and have evolved specialized adaptations that conserve water and reduce desiccation (Stebbins and Cohen 1995; Henry 2000; Chapter 2A). Amphibians are ectotherms, so their body temperatures fluctuate with the local environment. Latitude, elevation, and habitat affect environmental temperature and have a strong influence on amphibian distributions. Despite these physiological and habitat constraints, the 4750 species of amphibians in the world today have exploited a wide variety of habitats that range from dry deserts to tropical rain forests and from sea level to elevations above 4000 m (McDairmid and Mitchell 2000).The direct loss of suitable habitat has had a profound effect on amphibian populations (Johnson 1992), as it has on nearly all species of wildlife. In the U.S., 53% of wetlands have been lost to human development in the last 200 years (Dahl 1990). Similar loss of wetlands has occurred throughout much of the world, especially in developing countries (Miller 1993). In many regions, deforestation has reduced or eliminated suitable terrestrial habitats, and this may prove to be the largest global threat to amphibian populations (Johnson 1992). Eight thousand years ago, forests covered approximately 40% of the world’s land (6 billion hectares), but by 1997, the world’s forests had been reduced to 3.5 billion hectares, a 42% loss worldwide (CIDA 2001). The effect of habitat loss is generally both obvious and predictable; with increasing restriction of suitable habitat, amphibian populations will probably not survive. The anthropogenic effects on the quality of the habitat that remains are often less obvious.

  9. Influences of scale on bat habitat relationships in a forested landscape in Nicaragua

    Treesearch

    Carol L. Chambers; Samuel A. Cushman; Arnulfo Medina-Fitoria; Jose Martinez-Fonseca; Marlon Chavez-Velasquez

    2016-01-01

    Scale dependence of bat habitat selection is poorly known with few studies evaluating relationships among landscape metrics such as class versus landscape, or metrics that measure composition or configuration. This knowledge can inform conservation approaches to mitigate habitat loss and fragmentation.

  10. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    NASA Astrophysics Data System (ADS)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access

  11. A test of the substitution-habitat hypothesis in amphibians.

    PubMed

    Martínez-Abraín, Alejandro; Galán, Pedro

    2018-06-01

    Most examples that support the substitution-habitat hypothesis (human-made habitats act as substitutes of original habitat) deal with birds and mammals. We tested this hypothesis in 14 amphibians by using percentage occupancy as a proxy of habitat quality (i.e., higher occupancy percentages indicate higher quality). We classified water body types as original habitat (no or little human influence) depending on anatomical, behavioral, or physiological adaptations of each amphibian species. Ten species had relatively high probabilities (0.16-0.28) of occurrence in original habitat, moderate probability of occurrence in substitution habitats (0.11-0.14), and low probability of occurrence in refuge habitats (0.05-0.08). Thus, the substitution-habitat hypothesis only partially applies to amphibians because the low occupancy of refuges could be due to the negligible human persecution of this group (indicating good conservation status). However, low occupancy of refuges could also be due to low tolerance of refuge conditions, which could have led to selective extinction or colonization problems due to poor dispersal capabilities. That original habitats had the highest probabilities of occupancy suggests amphibians have a good conservation status in the region. They also appeared highly adaptable to anthropogenic substitution habitats. © 2017 Society for Conservation Biology.

  12. Nest habitat use of Rio Grande wild turkeys

    USGS Publications Warehouse

    Schmutz, Joel A.; Braun, Clait E.; Andelt, William F.

    1989-01-01

    Nest habitat use of Rio Grande Wild Turkeys (Meleagris gallopavo intermedia) was studied along the South Platte River in northeast Colorado in 1986-87. Thirty-three of 35 nests were in riparian habitats. Nests were either in western snowberry (Symphoricarpos occidentalis) (67%) or mixed forbs and grasses (33%). Early season nests were more likely to be in snowberry than late season nests. Nest sites were characterized by greater overstory canopy cover, more shrubs, fewer grasses, and greater understory cover and height than surrounding areas. These areas had more shrubs, fewer large trees, and greater understory cover and height than riparian habitats throughout the study area. Phenology of understory vegetation and the effect of such vegetation on nest predation may influence temporal patterns of nest habitat use.

  13. Restoring and rehabilitating sagebrush habitats

    USGS Publications Warehouse

    Pyke, David A.; Knick, S.T.; Connelly, J.W.

    2011-01-01

    Less than half of the original habitat of the Greater Sage-Grouse (Centrocercus uropha-sianus) currently exists. Some has been perma-nently lost to farms and urban areas, but the remaining varies in condition from high quality to no longer adequate. Restoration of sagebrush (Artemisia spp.) grassland ecosystems may be pos-sible for resilient lands. However, Greater Sage-Grouse require a wide variety of habitats over large areas to complete their life cycle. Effective restoration will require a regional approach for prioritizing and identifying appropriate options across the landscape. A landscape triage method is recommended for prioritizing lands for restora-tion. Spatial models can indicate where to protect and connect intact quality habitat with other simi-lar habitat via restoration. The ecological site con-cept of land classification is recommended for characterizing potential habitat across the region along with their accompanying state and transi-tion models of plant community dynamics. These models assist in identifying if passive, manage-ment-based or active, vegetation manipulation?based restoration might accomplish the goals of improved Greater Sage-Grouse habitat. A series of guidelines help formulate questions that manag-ers might consider when developing restoration plans: (1) site prioritization through a landscape triage; (2) soil verification and the implications of soil features on plant establishment success; (3) a comparison of the existing plant community to the potential for the site using ecological site descriptions; (4) a determination of the current successional status of the site using state and transition models to aid in predicting if passive or active restoration is necessary; and (5) implemen-tation of post-treatment monitoring to evaluate restoration effectiveness and post-treatment man-agement implications to restoration success.

  14. Influences of human and livestock density on winter habitat selection of Mongolian gazelle (Procapra gutturosa).

    PubMed

    Luo, Zhenhua; Liu, Bingwan; Liu, Songtao; Jiang, Zhigang; Halbrook, Richard S

    2014-01-01

    Human and livestock related disturbances of habitat selection by ungulates are topics of global concern, as they have profound impacts on ungulate survival, population density, fitness, and management; however, differences in ungulate habitat use under different human and livestock densities are not fully understood. Mongolian gazelle (Procapra gutturosa), an endemic ungulate species on the Asia-European steppe, faces varying intensities of human and livestock disturbances in the area around Dalai Lake, China. To investigate how habitat selection strategies vary as disturbance intensity changes, we randomly set 20 transects containing 1486 plots, on which we conducted repeated surveys of 21 ecological factors during the winters in the period of 2005-2008. We aimed to: 1) determine the critical factors underlying habitat selection of the gazelles; 2) determine the gazelles' habitat preferences in this area; 3) determine how habitat selection varies with disturbance intensity and explore the primary underlying mechanism. We used binary-logistic regressions and information theoretic approaches to build best-fit habitat selection models, and calculated resource selection functions. Sixty-six herds, 522 individuals, and 499 tracks were recorded. Our results indicate that snow depth and aboveground biomass are the main factors affecting habitat selection by Mongolian gazelle throughout the district in winter. Thin snow cover and abundant aboveground biomass are preferred. Avoiding disturbance was the primary factor accounting for habitat selection in low disturbance areas, although with increasing human or live-stock-related disturbance, gazelle maintained a reduced distance to the source of the disturbance. Presumably owing to that shift, movement costs were more important as disturbance increased. In addition, Mongolian gazelle selected habitats based on topographical features promoting greater visibility where disturbance was lower. We suggest several management

  15. Habitat fragmentation effects depend on complex interactions between population size and dispersal ability: Modeling influences of roads, agriculture and residential development across a range of life-history characteristics [chapter 20

    Treesearch

    Samuel A. Cushman; Bradley W. Compton; Kevin McGarigal

    2010-01-01

    Habitat loss and fragmentation are widely believed to be the most important drivers of extinction (Leakey and Lewin 1995). The habitats in which organisms live are spatially structured at a number of scales, and these patterns interact with organism perception and behavior to drive population dynamics and community structure (Johnson et al. 1992). Anthropogenic habitat...

  16. INFLUENCE OF STRESSFUL LIFE EVENTS AND COPING STRATEGIES IN DEPRESSION

    PubMed Central

    Satija, Y.K.; Advani, G.B.; Nathawat, S.S.

    1998-01-01

    The influence of stressful life events and coping strategies was studied in 50 depressed and 50 non-depressed persons. It was observed that depressives experienced significantly more stressful life events and were also using significantly more avoidance coping strategies as compared to their non-depressed counterparts. The moderate and severely depressed patients were exposed to more stressful life events and were using more avoidance coping strategies as compared to mildly depressed patients. PMID:21494464

  17. Genetic and Environmental Influences on Negative Life Events from Late Childhood to Adolescence

    ERIC Educational Resources Information Center

    Johnson, Daniel P.; Rhee, Soo Hyun; Whisman, Mark A.; Corley, Robin P.; Hewitt, John K.

    2013-01-01

    This multiwave longitudinal study tested two quantitative genetic developmental models to examine genetic and environmental influences on exposure to negative dependent and independent life events. Participants (N = 457 twin pairs) completed measures of life events annually from ages 9 to 16. The same genetic factors influenced exposure to…

  18. Fish movement and habitat use depends on water body size and shape

    USGS Publications Warehouse

    Woolnough, D.A.; Downing, J.A.; Newton, T.J.

    2009-01-01

    Home ranges are central to understanding habitat diversity, effects of fragmentation and conservation. The distance that an organism moves yields information on life history, genetics and interactions with other organisms. Present theory suggests that home range is set by body size of individuals. Here, we analyse estimates of home ranges in lakes and rivers to show that body size of fish and water body size and shape influence home range size. Using 71 studies including 66 fish species on five continents, we show that home range estimates increased with increasing water body size across water body shapes. This contrasts with past studies concluding that body size sets home range. We show that water body size was a consistently significant predictor of home range. In conjunction, body size and water body size can provide improved estimates of home range than just body size alone. As habitat patches are decreasing in size worldwide, our findings have implications for ecology, conservation and genetics of populations in fragmented ecosystems. ?? 2008 Blackwell Munksgaard.

  19. Habitat degradation may affect niche segregation patterns in lizards

    NASA Astrophysics Data System (ADS)

    Pelegrin, N.; Chani, J. M.; Echevarria, A. L.; Bucher, E. H.

    2013-08-01

    Lizards partition resources in three main niche dimensions: time, space and food. Activity time and microhabitat use are strongly influenced by thermal environment, and may differ between species according to thermal requirements and tolerance. As thermal characteristics are influenced by habitat structure, microhabitat use and activity of lizards can change in disturbed habitats. We compared activity and microhabitat use of two abundant lizard species of the Semi-arid Chaco of Argentina between a restored and a highly degraded Chaco forest, to determine how habitat degradation affects lizard segregation in time and space, hypothesizing that as activity and microhabitat use of lizards are related to habitat structure, activity and microhabitat use of individual species can be altered in degraded habitats, thus changing segregation patterns between them. Activity changed from an overlapped pattern in a restored forest to a segregated pattern in a degraded forest. A similar trend was observed for microhabitat use, although to a less extent. No correlation was found between air temperature and lizard activity, but lizard activity varied along the day and among sites. Contrary to what was believed, activity patterns of neotropical diurnal lizards are not fixed, but affected by multiple factors related to habitat structure and possibly to interspecific interactions. Changes in activity patterns and microhabitat use in degraded forests may have important implications when analyzing the effects of climate change on lizard species, due to synergistic effects.

  20. Sage-grouse habitat selection during winter in Alberta

    USGS Publications Warehouse

    Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.

    2010-01-01

    Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.

  1. Habitat selection responses of parents to offspring predation risk: An experimental test

    USGS Publications Warehouse

    Fontaine, J.J.; Martin, T.E.

    2006-01-01

    The ability of nest predation to influence habitat settlement decisions in birds is widely debated, despite its importance in limiting fitness. Here, we experimentally manipulated nest predation risk across a landscape and asked the question, do migratory birds assess and respond to variation in nest predation risk when choosing breeding habitats? We examined habitat preference by quantifying the density and settlement date of eight species of migratory passerines breeding in areas with and without intact nest predator communities. We found consistently more individuals nesting in areas with reduced nest predation than in areas with intact predator assemblages, although predation risk had no influence on settlement or breeding phenology. Additionally, those individuals occupying safer nesting habitats exhibited increased singing activity. These findings support a causal relationship between habitat choice and nest predation risk and suggest the importance of nest predation risk in shaping avian community structure and breeding activity. ?? 2006 by The University of Chicago. All rights reserved.

  2. Very high resolution Earth Observation features for testing the direct and indirect effects of landscape structure on local habitat quality

    NASA Astrophysics Data System (ADS)

    Mairota, Paola; Cafarelli, Barbara; Labadessa, Rocco; Lovergine, Francesco P.; Tarantino, Cristina; Nagendra, Harini; Didham, Raphael K.

    2015-02-01

    Modelling the empirical relationships between habitat quality and species distribution patterns is the first step to understanding human impacts on biodiversity. It is important to build on this understanding to develop a broader conceptual appreciation of the influence of surrounding landscape structure on local habitat quality, across multiple spatial scales. Traditional models which report that 'habitat amount' in the landscape is sufficient to explain patterns of biodiversity, irrespective of habitat configuration or spatial variation in habitat quality at edges, implicitly treat each unit of habitat as interchangeable and ignore the high degree of interdependence between spatial components of land-use change. Here, we test the contrasting hypothesis, that local habitat units are not interchangeable in their habitat attributes, but are instead dependent on variation in surrounding habitat structure at both patch- and landscape levels. As the statistical approaches needed to implement such hierarchical causal models are observation-intensive, we utilise very high resolution (VHR) Earth Observation (EO) images to rapidly generate fine-grained measures of habitat patch internal heterogeneities over large spatial extents. We use linear mixed-effects models to test whether these remotely-sensed proxies for habitat quality were influenced by surrounding patch or landscape structure. The results demonstrate the significant influence of surrounding patch and landscape context on local habitat quality. They further indicate that such an influence can be direct, when a landscape variable alone influences the habitat structure variable, and/or indirect when the landscape and patch attributes have a conjoined effect on the response variable. We conclude that a substantial degree of interaction among spatial configuration effects is likely to be the norm in determining the ecological consequences of habitat fragmentation, thus corroborating the notion of the spatial context

  3. Physical habitat simulation system reference manual: version II

    USGS Publications Warehouse

    Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.

    1989-01-01

    There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a

  4. Habitat features influencing jaguar Panthera onca (Carnivora: Felidae) occupancy in Tortuguero National Park, Costa Rica.

    PubMed

    Arroyo-Arce, Stephanny; Guilder, James; Salom-Pérez, Roberto

    2014-12-01

    Habitat characteristics and human activities are known to play a major role in the occupancy of jaguars Panthera onca across their range, however the key variables influencing jaguar distribution in Tortuguero National Park, Costa Rica, have yet to be identified. This study evaluated jaguar occupancy in Tortuguero National Park and the surrounding area. Jaguar detection/non-detection data was collected using digital camera traps distributed within the boundaries of the protected area. Local community members were also interviewed to determine jaguar occurrence in the Park's buffer zone. Occupancy models were then applied to identify the habitat characteristics that may better explain jaguar distribution across the study area. From June 2012 to June 2013, a total of 4,339 camera trap days were used to identify 18 individual jaguars inside the protected area; 17 of these jaguars were exclusively detected within the coastal habitat, whilst the remaining individual was detected solely within the interior of the Park. Interviewees reported 61 occasions of jaguar presence inside the buffer zone, between 1995 and 2013, with 80% of these described by the communities of Lomas de Sierpe, Barra de Parismina and La Aurora. These communities also reported the highest levels of livestock predation by jaguars (85% of attacks). In the study area, jaguar occurrence was positively correlated with the seasonal presence of nesting green turtles Chelonia mydas, and negatively correlated with distance to the Park boundary. Our findings suggested that the current occupancy of the jaguar in the study area may be a response to: 1) the vast availability of prey (marine turtles) on Tortuguero beach, 2) the decline of its primary prey species as a result of illegal hunting inside the Park, and 3) the increase in anthropogenic pressures in the Park boundaries.

  5. Restricted cross-scale habitat selection by American beavers.

    PubMed

    Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-12-01

    Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.

  6. Restricted cross-scale habitat selection by American beavers

    PubMed Central

    Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-01-01

    Abstract Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection. PMID:29492032

  7. Mother doesn't always know best: Maternal wormlion choice of oviposition habitat does not match larval habitat choice.

    PubMed

    Adar, Shay; Dor, Roi

    2018-02-01

    Habitat choice is an important decision that influences animals' fitness. Insect larvae are less mobile than the adults. Consequently, the contribution of the maternal choice of habitat to the survival and development of the offspring is considered to be crucial. According to the "preference-performance hypothesis", ovipositing females are expected to choose habitats that will maximize the performance of their offspring. We tested this hypothesis in wormlions (Diptera: Vermileonidae), which are small sand-dwelling insects that dig pit-traps in sandy patches and ambush small arthropods. Larvae prefer relatively deep and obstacle-free sand, and here we tested the habitat preference of the ovipositing female. In contrast to our expectation, ovipositing females showed no clear preference for either a deep sand or obstacle-free habitat, in contrast to the larval choice. This suboptimal female choice led to smaller pits being constructed later by the larvae, which may reduce prey capture success of the larvae. We offer several explanations for this apparently suboptimal female behavior, related either to maximizing maternal rather than offspring fitness, or to constraints on the female's behavior. Female's ovipositing habitat choice may have weaker negative consequences than expected for the offspring, as larvae can partially correct suboptimal maternal choice. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Associations of Dragonflies (Odonata) to Habitat Variables within the Maltese Islands: A Spatio-Temporal Approach

    PubMed Central

    Balzan, Mario V.

    2012-01-01

    Relatively little information is available on environmental associations and the conservation of Odonata in the Maltese Islands. Aquatic habitats are normally spatio-temporally restricted, often located within predominantly rural landscapes, and are thereby susceptible to farmland water management practices, which may create additional pressure on water resources. This study investigates how odonate assemblage structure and diversity are associated with habitat variables of local breeding habitats and the surrounding agricultural landscapes. Standardized survey methodology for adult Odonata involved periodical counts over selected water-bodies (valley systems, semi-natural ponds, constructed agricultural reservoirs). Habitat variables relating to the type of water body, the floristic and physiognomic characteristics of vegetation, and the composition of the surrounding landscape, were studied and analyzed through a multivariate approach. Overall, odonate diversity was associated with a range of factors across multiple spatial scales, and was found to vary with time. Lentic water-bodies are probably of high conservation value, given that larval stages were mainly associated with this habitat category, and that all species were recorded in the adult stage in this habitat type. Comparatively, lentic and lotic seminatural waterbodies were more diverse than agricultural reservoirs and brackish habitats. Overall, different odonate groups were associated with different vegetation life-forms and height categories. The presence of the great reed, Arundo donax L., an invasive alien species that forms dense stands along several water-bodies within the Islands, seems to influence the abundance and/or occurrence of a number of species. At the landscape scale, roads and other ecologically disturbed ground, surface water-bodies, and landscape diversity were associated with particular components of the odonate assemblages. Findings from this study have several implications for the

  9. Associations of dragonflies (Odonata) to habitat variables within the Maltese Islands: a spatio-temporal approach.

    PubMed

    Balzan, Mario V

    2012-01-01

    Relatively little information is available on environmental associations and the conservation of Odonata in the Maltese Islands. Aquatic habitats are normally spatio-temporally restricted, often located within predominantly rural landscapes, and are thereby susceptible to farmland water management practices, which may create additional pressure on water resources. This study investigates how odonate assemblage structure and diversity are associated with habitat variables of local breeding habitats and the surrounding agricultural landscapes. Standardized survey methodology for adult Odonata involved periodical counts over selected water-bodies (valley systems, semi-natural ponds, constructed agricultural reservoirs). Habitat variables relating to the type of water body, the floristic and physiognomic characteristics of vegetation, and the composition of the surrounding landscape, were studied and analyzed through a multivariate approach. Overall, odonate diversity was associated with a range of factors across multiple spatial scales, and was found to vary with time. Lentic water-bodies are probably of high conservation value, given that larval stages were mainly associated with this habitat category, and that all species were recorded in the adult stage in this habitat type. Comparatively, lentic and lotic seminatural waterbodies were more diverse than agricultural reservoirs and brackish habitats. Overall, different odonate groups were associated with different vegetation life-forms and height categories. The presence of the great reed, Arundo donax L., an invasive alien species that forms dense stands along several water-bodies within the Islands, seems to influence the abundance and/or occurrence of a number of species. At the landscape scale, roads and other ecologically disturbed ground, surface water-bodies, and landscape diversity were associated with particular components of the odonate assemblages. Findings from this study have several implications for the

  10. Societal Influences on Health and Life-styles

    PubMed Central

    Ulmer, David D.

    1984-01-01

    Strong sociocultural forces affect individual attitudes toward health and choice of life-style. Economic deprivation fosters negative health behaviors. Positive health habits are reinforced by discrete societal groups. The news media, particularly television, disseminate much useful health information, though the overall educational value is diminished by the content of commercial messages and programming. The automobile is a major societal influence, but neither individual drivers nor the car manufacturers give enough priority to highway safety, leaving that role to governmental regulation. American industry is becoming a positive influence in the encouragement of good health habits, and fashion is lately an important ally in personal health maintenance. PMID:6523860

  11. Depth and Medium-Scale Spatial Processes Influence Fish Assemblage Structure of Unconsolidated Habitats in a Subtropical Marine Park

    PubMed Central

    Schultz, Arthur L.; Malcolm, Hamish A.; Bucher, Daniel J.; Linklater, Michelle; Smith, Stephen D. A.

    2014-01-01

    Where biological datasets are spatially limited, abiotic surrogates have been advocated to inform objective planning for Marine Protected Areas. However, this approach assumes close correlation between abiotic and biotic patterns. The Solitary Islands Marine Park, northern NSW, Australia, currently uses a habitat classification system (HCS) to assist with planning, but this is based only on data for reefs. We used Baited Remote Underwater Videos (BRUVs) to survey fish assemblages of unconsolidated substrata at different depths, distances from shore, and across an along-shore spatial scale of 10 s of km (2 transects) to examine how well the HCS works for this dominant habitat. We used multivariate regression modelling to examine the importance of these, and other environmental factors (backscatter intensity, fine-scale bathymetric variation and rugosity), in structuring fish assemblages. There were significant differences in fish assemblages across depths, distance from shore, and over the medium spatial scale of the study: together, these factors generated the optimum model in multivariate regression. However, marginal tests suggested that backscatter intensity, which itself is a surrogate for sediment type and hardness, might also influence fish assemblages and needs further investigation. Species richness was significantly different across all factors: however, total MaxN only differed significantly between locations. This study demonstrates that the pre-existing abiotic HCS only partially represents the range of fish assemblages of unconsolidated habitats in the region. PMID:24824998

  12. Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie

    USGS Publications Warehouse

    Arend, Kristin K.; Beletsky, Dmitry; DePinto, Joseph; Ludsin, Stuart A.; Roberts, James J.; Rucinski, Daniel K.; Scavia, Donald; Schwab, David J.; Höök, Tomas O.

    2011-01-01

    1. Hypoxia occurs seasonally in many stratified coastal marine and freshwater ecosystems when bottom dissolved oxygen (DO) concentrations are depleted below 2–3 mg O2 L-1. 2. We evaluated the effects of hypoxia on fish habitat quality in the central basin of Lake Erie from 1987 to 2005, using bioenergetic growth rate potential (GRP) as a proxy for habitat quality. We compared the effect of hypoxia on habitat quality of (i) rainbow smelt, Osmerus mordax mordax Mitchill (young-of-year, YOY, and adult), a cold-water planktivore, (ii) emerald shiner, Notropis atherinoides Rafinesque (adult), a warm-water planktivore, (iii) yellow perch, Perca flavescens Mitchill (YOY and adult), a cool-water benthopelagic omnivore and (iv) round goby Neogobius melanostomus Pallas (adult) a eurythermal benthivore. Annual thermal and DO profiles were generated from 1D thermal and DO hydrodynamics models developed for Lake Erie’s central basin. 3. Hypoxia occurred annually, typically from mid-July to mid-October, which spatially and temporally overlaps with otherwise high benthic habitat quality. Hypoxia reduced the habitat quality across fish species and life stages, but the magnitude of the reduction varied both among and within species because of the differences in tolerance to low DO levels and warm-water temperatures. 4. Across years, trends in habitat quality mirrored trends in phosphorus concentration and water column oxygen demand in central Lake Erie. The per cent reduction in habitat quality owing to hypoxia was greatest for adult rainbow smelt and round goby (mean: -35%), followed by adult emerald shiner (mean: -12%), YOY rainbow smelt (mean: -10%) and YOY and adult yellow perch (mean: -8.5%). 5. Our results highlight the importance of differential spatiotemporally interactive effects of DO and temperature on relative fish habitat quality and quantity. These effects have the potential to influence the performance of individual fish species as well as population dynamics

  13. Scale-specific habitat relationships influence patch occupancy: defining neighborhoods to optimize the effectiveness of landscape-scale grassland bird conservation

    USGS Publications Warehouse

    Guttery, Michael; Ribic, Christine; Sample, David W.; Paulios, Andy; Trosen, Chris; Dadisman, John D.; Schneider, Daniel; Horton, Josephine

    2017-01-01

    ContextBeyond the recognized importance of protecting large areas of contiguous habitat, conservation efforts for many species are complicated by the fact that patch suitability may also be affected by characteristics of the landscape within which the patch is located. Currently, little is known about the spatial scales at which species respond to different aspects of the landscape surrounding an occupied patch.ObjectivesUsing grassland bird point count data, we describe an approach to evaluating scale-specific effects of landscape composition on patch occupancy.MethodsWe used data from 793 point count surveys conducted in idle and grazed grasslands across Wisconsin, USA from 2012 to 2014 to evaluate scale-dependencies in the response of grassland birds to landscape composition. Patch occupancy models were used to evaluate the relationship between occupancy and landscape composition at scales from 100 to 3000 m.ResultsBobolink (Dolichonyx oryzivorus) exhibited a pattern indicating selection for grassland habitats in the surrounding landscape at all spatial scales while selecting against other habitats. Eastern Meadowlark (Sturnella magna) displayed evidence of scale sensitivity for all habitat types. Grasshopper Sparrow (Ammodramus savannarum) showed a strong positive response to pasture and idle grass at all scales and negatively to cropland at large scales. Unlike other species, patch occupancy by Henslow’s Sparrow (A. henslowii) was primarily influenced by patch area.ConclusionsOur results suggest that both working grasslands (pasture) and idle conservation grasslands can play an important role in grassland bird conservation but also highlight the importance of considering species-specific patch and landscape characteristics for effective conservation.

  14. Habitat Specialization in Tropical Continental Shelf Demersal Fish Assemblages

    PubMed Central

    Fitzpatrick, Ben M.; Harvey, Euan S.; Heyward, Andrew J.; Twiggs, Emily J.; Colquhoun, Jamie

    2012-01-01

    The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1–10 m depth), down the fore reef slope to the reef base (10–30 m depth) then across the adjacent continental shelf (30–110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected

  15. Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm

    PubMed Central

    Kuhn, Thomas; Cunze, Sarah; Kochmann, Judith; Klimpel, Sven

    2016-01-01

    Marine nematodes of the genus Anisakis are common parasites of a wide range of aquatic organisms. Public interest is primarily based on their importance as zoonotic agents of the human Anisakiasis, a severe infection of the gastro-intestinal tract as result of consuming live larvae in insufficiently cooked fish dishes. The diverse nature of external impacts unequally influencing larval and adult stages of marine endohelminth parasites requires the consideration of both abiotic and biotic factors. Whereas abiotic factors are generally more relevant for early life stages and might also be linked to intermediate hosts, definitive hosts are indispensable for a parasite’s reproduction. In order to better understand the uneven occurrence of parasites in fish species, we here use the maximum entropy approach (Maxent) to model the habitat suitability for nine Anisakis species accounting for abiotic parameters as well as biotic data (definitive hosts). The modelled habitat suitability reflects the observed distribution quite well for all Anisakis species, however, in some cases, habitat suitability exceeded the known geographical distribution, suggesting a wider distribution than presently recorded. We suggest that integrative modelling combining abiotic and biotic parameters is a valid approach for habitat suitability assessments of Anisakis, and potentially other marine parasite species. PMID:27507328

  16. Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Cunze, Sarah; Kochmann, Judith; Klimpel, Sven

    2016-08-01

    Marine nematodes of the genus Anisakis are common parasites of a wide range of aquatic organisms. Public interest is primarily based on their importance as zoonotic agents of the human Anisakiasis, a severe infection of the gastro-intestinal tract as result of consuming live larvae in insufficiently cooked fish dishes. The diverse nature of external impacts unequally influencing larval and adult stages of marine endohelminth parasites requires the consideration of both abiotic and biotic factors. Whereas abiotic factors are generally more relevant for early life stages and might also be linked to intermediate hosts, definitive hosts are indispensable for a parasite’s reproduction. In order to better understand the uneven occurrence of parasites in fish species, we here use the maximum entropy approach (Maxent) to model the habitat suitability for nine Anisakis species accounting for abiotic parameters as well as biotic data (definitive hosts). The modelled habitat suitability reflects the observed distribution quite well for all Anisakis species, however, in some cases, habitat suitability exceeded the known geographical distribution, suggesting a wider distribution than presently recorded. We suggest that integrative modelling combining abiotic and biotic parameters is a valid approach for habitat suitability assessments of Anisakis, and potentially other marine parasite species.

  17. Local habitat and landscape influence predation of bird nests on afforested Mediterranean cropland

    NASA Astrophysics Data System (ADS)

    Sánchez-Oliver, J. S.; Rey Benayas, J. M.; Carrascal, L. M.

    2014-07-01

    Afforestation programs such as the one promoted by the EU Common Agrarian Policy have contributed to spread tree plantations on former cropland. Nevertheless these afforestations may cause severe damage to open habitat species, especially birds of high conservation value. We investigated predation of artificial bird nests at young tree plantations and at the open farmland habitat adjacent to the tree plantations in central Spain. Predation rates were very high at both tree plantations (95.6%) and open farmland habitat (94.2%) after two and three week exposure. Plantation edge/area ratio and development of the tree canopy decreased predation rates and plantation area and magpie (Pica pica) abundance increased predation rates within tree plantations, which were also affected by land use types around plantations. The area of nearby tree plantations (positive effect), distance to the tree plantation edge (negative effect), and habitat type (mainly attributable to the location of nests in vineyards) explained predation rates at open farmland habitat. We conclude that predation rates on artificial nests were particularly high and rapid at or nearby large plantations, with high numbers of magpies and low tree development, and located in homogenous landscapes dominated by herbaceous crops and pastures with no remnants of semi-natural woody vegetation. Landscape planning should not favour tree plantations as the ones studied here in Mediterranean agricultural areas that are highly valuable for ground-nesting bird species.

  18. Assessing the Wildlife Habitat Value of New England Salt Marshes: I. Model and Application

    EPA Science Inventory

    We developed an assessment model to quantify the wildlife habitat value of New England salt marshes based on marsh characteristics and the presence of habitat types that influence habitat use by terrestrial wildlife. Applying the model to12 salt marshes located in Narragansett B...

  19. Bathymodiolus growth dynamics in relation to environmental fluctuations in vent habitats

    NASA Astrophysics Data System (ADS)

    Nedoncelle, K.; Lartaud, F.; Contreira Pereira, L.; Yücel, M.; Thurnherr, A. M.; Mullineaux, L.; Le Bris, N.

    2015-12-01

    The deep-sea mussel Bathymodiolus thermophilus is a dominant species in the East Pacific Rise (EPR) hydrothermal vent fields. On the EPR volcanically unstable area, this late colonizer reaches high biomass within 4-5 years on new habitats created by lava flows. The environmental conditions and growth rates characterizing the reestablishment of B. thermophilus populations are however largely unknown, leaving unconstrained the role of this foundation species in the ecosystem dynamics. A typical example from the vent field at 9°50'N that was affected by the last massive eruption was the Bio-9 hydrothermal vent site. Here, six years later, a large mussel population had reestablished. The von Bertalanffy growth model estimates the oldest B. thermophilus specimens to be 1.3 year-old in March 2012, consistent with the observation of scarce juveniles among tubeworms in 2010. Younger cohorts were also observed in 2012 but the low number of individuals, relatively to older cohorts, suggests limited survival or growth of new recruits at this site, that could reflect unsuitable habitat conditions. To further explore this asumption, we investigated the relationships between mussel growth dynamics and habitat properties. The approach combined sclerochronology analyses of daily shell growth with continuous habitat monitoring for two mussel assemblages; one from the Bio-9 new settlement and a second from the V-vent site unreached by the lava flow. At both vent sites, semi-diurnal fluctuations of abiotic conditions were recorded using sensors deployed in the mussel bed over 5 to 10 days. These data depict steep transitions from well oxygenated to oxygen-depleted conditions and from alkaline to acidic pH, combined with intermittent sulfide exposure. These semi-diurnal fluctuations exhibited marked changes in amplitude over time, exposing mussels to distinct regimes of abiotic constraints. The V-vent samples allowed growth patterns to be examined at the scale of individual life and

  20. Management regime influences shrubland birds and habitat conditions in the Northern Appalachians, USA

    Treesearch

    Jennifer R. Smetzer; David I. King; Scott Schlossberg

    2014-01-01

    Population declines of birds that breed in early-successional shrubland habitat are of great concern to conservationists throughout the northeastern United States. To help increase the efficiency and effectiveness of efforts to conserve these species and their habitats, we studied birds in temporary forest openings created through even-aged timber harvest, and...

  1. Moisture as a determinant of habitat quality for a nonbreeding Neotropical migratory songbird

    Treesearch

    Joseph A.M. Smith; Leonard R. Reitsma; Peter P. Marra

    2010-01-01

    Identifying the determinants of habitat quality for a species is essential for understanding how populations are limited and regulated. Spatiotemporal variation in moisture and its influence on food availability may drive patterns of habitat occupancy and demographic outcomes. Nonbreeding migratory birds in the neotropics occupy a range of habitat types that vary with...

  2. HABITAT RELATIONSHIPS OF WATERFOWL WINTERING IN NARRAGANSTT BAY

    EPA Science Inventory

    Coastal marine habitats often provide essential structure and life support functions for estuarine-dependent wildlife such as wading birds, small mammals, and waterfowl. Unfortunately, these areas are increasingly being lost or degraded by watershed development and human disturb...

  3. Oak woodlands as wildlife habitat

    Treesearch

    W. Tietje; K. Purcell; S. Drill

    2005-01-01

    This chapter provides local planners and policymakers with information on the diversity and abundance of oak woodland wildlife, wildlife habitat needs, and how local planning activities can influence wildlife abundance and diversity. Federal and state laws, particularly the federal and California Endangered Species Act and the California Environmental Quality Act (CEQA...

  4. Life events and hopelessness depression: The influence of affective experience

    PubMed Central

    Chen, Jian

    2017-01-01

    This study explored the association of the affective experience (AE) of life events on hopelessness depression (HD). Undergraduates (N = 301) participating in a 12-week prospective study completed measures of HD, cognitive style, and psychological stress. The results indicate AE is an underlying mechanism influencing the longitudinal link between life events and HD. Negative life events with clear negative AE directly promoted the development of HD. Positive life events with clear positive AE directly impeded the development of HD. Neutral life events with mixed AE directly and interacting with negative cognitive style promoted the development of HD. The results should increase understanding of the hopelessness theory of depression, and suggest that neutral life events should be important elements in depression therapy. PMID:29176863

  5. Creating Habitable Zones, at all Scales, from Planets to Mud Micro-Habitats, on Earth and on Mars

    NASA Astrophysics Data System (ADS)

    Nisbet, Euan; Zahnle, Kevin; Gerasimov, M. V.; Helbert, Jörn; Jaumann, Ralf; Hofmann, Beda A.; Benzerara, Karim; Westall, Frances

    The factors that create a habitable planet are considered at all scales, from planetary inventories to micro-habitats in soft sediments and intangibles such as habitat linkage. The possibility of habitability first comes about during accretion, as a product of the processes of impact and volatile inventory history. To create habitability water is essential, not only for life but to aid the continual tectonic reworking and erosion that supply key redox contrasts and biochemical substrates to sustain habitability. Mud or soft sediment may be a biochemical prerequisite, to provide accessible substrate and protection. Once life begins, the habitat is widened by the activity of life, both by its management of the greenhouse and by partitioning reductants (e.g. dead organic matter) and oxidants (including waste products). Potential Martian habitats are discussed: by comparison with Earth there are many potential environmental settings on Mars in which life may once have occurred, or may even continue to exist. The long-term evolution of habitability in the Solar System is considered.

  6. Creating Habitable Zones, at all Scales, from Planets to Mud Micro-Habitats, on Earth and on Mars

    NASA Astrophysics Data System (ADS)

    Nisbet, Euan; Zahnle, Kevin; Gerasimov, M. V.; Helbert, Jörn; Jaumann, Ralf; Hofmann, Beda A.; Benzerara, Karim; Westall, Frances

    2007-03-01

    The factors that create a habitable planet are considered at all scales, from planetary inventories to micro-habitats in soft sediments and intangibles such as habitat linkage. The possibility of habitability first comes about during accretion, as a product of the processes of impact and volatile inventory history. To create habitability water is essential, not only for life but to aid the continual tectonic reworking and erosion that supply key redox contrasts and biochemical substrates to sustain habitability. Mud or soft sediment may be a biochemical prerequisite, to provide accessible substrate and protection. Once life begins, the habitat is widened by the activity of life, both by its management of the greenhouse and by partitioning reductants (e.g. dead organic matter) and oxidants (including waste products). Potential Martian habitats are discussed: by comparison with Earth there are many potential environmental settings on Mars in which life may once have occurred, or may even continue to exist. The long-term evolution of habitability in the Solar System is considered.

  7. Movements and habitat use of mallard broods in northeastern California

    USGS Publications Warehouse

    Mauser, D.M.; Jarvis, R.L.; Gilmer, D.S.

    1994-01-01

    To increase recruitment of mallards (Anas platyrhynchos), wildlife managers must understand the habitat and space needs of mallard broods. During 1989-90, we examined the movements, home range, and habitat use of 27 radio-marked mallard broods on Lower Klamath National Wildlife Refuge, California. Twelve of the 27 broods made 22 relocation movements (>1,000 m in 24 hr) in the first week (n = 6) and after the fourth (n = 16) week of life. Mean home range size was 0.93 km2 (SE = 0.25) and did not differ between years (P = 0.26). Brood-rearing females selected seasonally flooded wetlands with a cover component and avoided open or permanently flooded habitats. In 1989, broods hatched in permanent wetlands were less successful in fledging (P = 0.006) radio-marked ducklings than broods from seasonal wetlands, suggesting habitat availability or movement to preferred habitats may affect duckling survival.

  8. Microbial ecology of the cryosphere: sea ice and glacial habitats.

    PubMed

    Boetius, Antje; Anesio, Alexandre M; Deming, Jody W; Mikucki, Jill A; Rapp, Josephine Z

    2015-11-01

    The Earth's cryosphere comprises those regions that are cold enough for water to turn into ice. Recent findings show that the icy realms of polar oceans, glaciers and ice sheets are inhabited by microorganisms of all three domains of life, and that temperatures below 0 °C are an integral force in the diversification of microbial life. Cold-adapted microorganisms maintain key ecological functions in icy habitats: where sunlight penetrates the ice, photoautotrophy is the basis for complex food webs, whereas in dark subglacial habitats, chemoautotrophy reigns. This Review summarizes current knowledge of the microbial ecology of frozen waters, including the diversity of niches, the composition of microbial communities at these sites and their biogeochemical activities.

  9. Nematode parasite diversity in birds: the role of host ecology, life history and migration.

    PubMed

    Leung, Tommy L F; Koprivnikar, Janet

    2016-11-01

    Previous studies have found that migratory birds generally have a more diverse array of pathogens such as parasites, as well as higher intensities of infection. However, it is not clear whether this is driven by the metabolic and physiological demands of migration, differential selection on host life-history traits or basic ecological differences between migratory and non-migratory species. Parasitic helminths can cause significant pathology in their hosts, and many are trophically transmitted such that host diet and habitat use play key roles in the acquisition of infections. Given the concurrent changes in avian habitats and migratory behaviour, it is critical to understand the degree to which host ecology influences their parasite communities. We examined nematode parasite diversity in 153 species of Anseriformes (water birds) and Accipitriformes (predatory birds) in relation to their migratory behaviour, diet, habitat use, geographic distribution and life history using previously published data. Overall, migrators, host species with wide geographic distributions and those utilizing multiple aquatic habitats had greater nematode richness (number of species), and birds with large clutches harboured more diverse nematode fauna with respect to number of superfamilies. Separate analyses for each host order found similar results related to distribution, habitat use and migration; however, herbivorous water birds played host to a less diverse nematode community compared to those that consume some animals. Birds using multiple aquatic habitats have a more diverse nematode fauna relative to primarily terrestrial species, likely because there is greater opportunity for contact with parasite infectious stages and/or consumption of infected hosts. As such, omnivorous and carnivorous birds using aquatic habitats may be more affected by environmental changes that alter their diet and range. Even though there were no overall differences in their ecology and life history

  10. Forestry herbicide influences on biodiversity and wildlife habitat in southern forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Karl V.; Miller, James H.

    In the southern United States, herbicide use continues to increase for timber management in commercial pine (Pinus spp.) plantations, for modifying wildlife habitats, and for invasive plant control. Several studies have reported that single applications of forestry herbicides at stand initiation have minor and temporary impacts on plant communities and wildlife habitat conditions, with some reports of enhanced habitat conditions for both game and nongame species. Due to the high resiliency of floral communities, plant species richness and diversity rebound rapidly after single herbicide treatments, with short- and long-term compositional shifts according to the selectivity and efficacy of the herbicidemore » used. Recently, however, a shift to the Southeast in North American timber supplies has resulted in increased forest management intensity. Current site-preparation techniques rely on herbicide combinations, often coupled with mechanical treatments and >1 years of post-planting applications to enhance the spectrum and duration of vegetation control. This near-total control of associated vegetation at establishment and more rapid pine canopy closure, coupled with shortened and repeated rotations, likely will affect plant diversity and wildlife habitat quality. Development of mitigation methods at the stand and landscape levels will be required to minimize vegetative and wildlife impacts while allowing continued improvement in pine productivity. More uncertain are long-term impacts of increasing invasive plant occupation and the projected increase in herbicide use that will be needed to reverse this worsening situation. In addition, the potential of herbicides to meet wildlife management objectives in areas where traditional techniques have high social costs (e.g., prescribed fire) should be fully explored.« less

  11. Factors influencing behavior and transferability of habitat models for a benthic stream fish

    Treesearch

    Kevin N. Leftwich; Paul L. Angermeier; C. Andrew Dolloff

    1997-01-01

    The authors examined the predictive power and transferability of habitat-based models by comparing associations of tangerine darter Percina aurantiaca and stream habitat at local and regional scales in North Fork Holston River (NFHR) and Little River, VA. The models correctly predicted the presence or absence of tangerine darters in NFHR for 64 percent (local model)...

  12. Use of riverine through reef habitat systems by dog snapper ( Lutjanus jocu ) in eastern Brazil

    NASA Astrophysics Data System (ADS)

    Moura, Rodrigo L.; Francini-Filho, Ronaldo B.; Chaves, Eduardo M.; Minte-Vera, Carolina V.; Lindeman, Kenyon C.

    2011-11-01

    The early life history of Western Atlantic snappers from the Southern hemisphere is largely unknown. Habitat use of different life stages (i.e. size categories) of the dog snapper ( Lutjanus jocu) was examined across the largest South Atlantic reef-estuarine complex (Abrolhos Shelf, Brazil, 16-19° S). Visual surveys were conducted in different habitats across the shelf (estuary, inner-shelf reefs and mid-shelf reefs). Lutjanus jocu showed higher densities on inner-shelf habitats, with a clear increase in fish size across the shelf. Individuals <7 cm were associated with both the estuary (mangrove and rocky habitats) and inner-shelf reefs (particularly shallow fore-reefs and tide pools). Individuals ranging 10-30 cm were broadly distributed, but consistently more abundant on inner-shelf reefs. Individuals between 30 and 40 cm were more common on mid-shelf reefs, while individuals >40 cm were recorded only on mid-shelf reefs. Literature data indicate that individuals ranging 70-80 cm are common on deep offshore reefs. This pattern suggests that the dog snapper performs ontogenetic cross-shelf migrations. Protecting portions of the different habitats used by the dog snapper during its post-settlement life cycle is highlighted as an important conservation and management measure.

  13. Spatiotemporal variability of stream habitat and movement of three species of fish

    USGS Publications Warehouse

    Roberts, J.H.; Angermeier, P.L.

    2007-01-01

    Relationships between environmental variability and movement are poorly understood, due to both their complexity and the limited ecological scope of most movement studies. We studied movements of fantail (Etheostoma flabellare), riverweed (E. podostemone), and Roanoke darters (Percina roanoka) through two stream systems during two summers. We then related movement to variability in measured habitat attributes using logistic regression and exploratory data plots. We indexed habitat conditions at both microhabitat (i.e., patches of uniform depth, velocity, and substrate) and mesohabitat (i.e., riffle and pool channel units) spatial scales, and determined how local habitat conditions were affected by landscape spatial (i.e., longitudinal position, land use) and temporal contexts. Most spatial variability in habitat conditions and fish movement was unexplained by a site's location on the landscape. Exceptions were microhabitat diversity, which was greater in the less-disturbed watershed, and riffle isolation and predator density in pools, which were greater at more-downstream sites. Habitat conditions and movement also exhibited only minor temporal variability, but the relative influences of habitat attributes on movement were quite variable over time. During the first year, movements of fantail and riverweed darters were triggered predominantly by loss of shallow microhabitats; whereas, during the second year, microhabitat diversity was more strongly related (though in opposite directions) to movement of these two species. Roanoke darters did not move in response to microhabitat-scale variables, presumably because of the species' preference for deeper microhabitats that changed little over time. Conversely, movement of all species appeared to be constrained by riffle isolation and predator density in pools, two mesohabitat-scale attributes. Relationships between environmental variability and movement depended on both the spatiotemporal scale of consideration and the

  14. Effects of habitat fragmentation on passerine birds breeding in Intermountain shrubsteppe

    USGS Publications Warehouse

    Knick, S.T.; Rotenberry, J.T.

    2002-01-01

    Habitat fragmentation and loss strongly influence the distribution and abundance of passerine birds breeding in Intermountain shrubsteppe. Wildfires, human activities, and change in vegetation communities often are synergistic in these systems and can result in radical conversion from shrubland to grasslands dominated by exotic annuals at large temporal and spatial scales from which recovery to native conditions is unlikely. As a result, populations of 5 of the 12 species in our review of Intermountain shrubsteppe birds are undergoing significant declines; 5 species are listed as at-risk or as candidates for protection in at least one state. The process by which fragmentation affects bird distributions in these habitats remains unknown because most research has emphasized the detection of population trends and patterns of habitat associations at relatively large spatial scales. Our research indicates that the distribution of shrubland-obligate species, such as Brewer's Sparrows (Spizella breweri), Sage Sparrows (Amphispiza belli), and Sage Thrashers (Oreoscoptes montanus), was highly sensitive to fragmentation of shrublands at spatial scales larger than individual home ranges. In contrast, the underlying mechanisms for both habitat change and bird population dynamics may operate independently of habitat boundaries. We propose alternative, but not necessarily exclusive, mechanisms to explain the relationship between habitat fragmentation and bird distribution and abundance. Fragmentation might influence productivity through differences in breeding density, nesting success, or predation. However, local and landscape variables were not significant determinants either of success, number fledged, or probability of predation or parasitism (although our tests had relatively low statistical power). Alternatively, relative absence of natal philopatry and redistribution by individuals among habitats following fledging or post-migration could account for the pattern of

  15. Influence of Green Tides in Coastal Nursery Grounds on the Habitat Selection and Individual Performance of Juvenile Fish

    PubMed Central

    Murillo, Laurence; Randon, Marine; Lebot, Clément

    2017-01-01

    Coastal ecosystems, which provide numerous essential ecological functions for fish, are threatened by the proliferation of green macroalgae that significantly modify habitat conditions in intertidal areas. Understanding the influence of green tides on the nursery function of these ecosystems is essential to determine their potential effects on fish recruitment success. In this study, the influence of green tides on juvenile fish was examined in an intertidal sandy beach area, the Bay of Saint-Brieuc (Northwestern France), during two annual cycles of green tides with varying levels of intensity. The responses of three nursery-dependent fish species, the pelagic Sprattus sprattus (L.), the demersal Dicentrarchus labrax (L.) and the benthic Pleuronectes platessa L., were analysed to determine the effects of green tides according to species-specific habitat niche and behaviour. The responses to this perturbation were investigated based on habitat selection and a comparison of individual performance between a control and an impacted site. Several indices on different integrative scales were examined to evaluate these responses (antioxidant defence capacity, muscle total lipid, morphometric condition and growth). Based on these analyses, green tides affect juvenile fish differently according to macroalgal density and species-specific tolerance, which is linked to their capacity to move and to their distribution in the water column. A decreasing gradient of sensitivity was observed from benthic to demersal and pelagic fish species. At low densities of green macroalgae, the three species stayed at the impacted site and the growth of plaice was reduced. At medium macroalgal densities, plaice disappeared from the impacted site and the growth of sea bass and the muscle total lipid content of sprat were reduced. Finally, when high macroalgal densities were reached, none of the studied species were captured at the impacted site. Hence, sites affected by green tides are less

  16. Influence of Green Tides in Coastal Nursery Grounds on the Habitat Selection and Individual Performance of Juvenile Fish.

    PubMed

    Le Luherne, Emilie; Le Pape, Olivier; Murillo, Laurence; Randon, Marine; Lebot, Clément; Réveillac, Elodie

    2017-01-01

    Coastal ecosystems, which provide numerous essential ecological functions for fish, are threatened by the proliferation of green macroalgae that significantly modify habitat conditions in intertidal areas. Understanding the influence of green tides on the nursery function of these ecosystems is essential to determine their potential effects on fish recruitment success. In this study, the influence of green tides on juvenile fish was examined in an intertidal sandy beach area, the Bay of Saint-Brieuc (Northwestern France), during two annual cycles of green tides with varying levels of intensity. The responses of three nursery-dependent fish species, the pelagic Sprattus sprattus (L.), the demersal Dicentrarchus labrax (L.) and the benthic Pleuronectes platessa L., were analysed to determine the effects of green tides according to species-specific habitat niche and behaviour. The responses to this perturbation were investigated based on habitat selection and a comparison of individual performance between a control and an impacted site. Several indices on different integrative scales were examined to evaluate these responses (antioxidant defence capacity, muscle total lipid, morphometric condition and growth). Based on these analyses, green tides affect juvenile fish differently according to macroalgal density and species-specific tolerance, which is linked to their capacity to move and to their distribution in the water column. A decreasing gradient of sensitivity was observed from benthic to demersal and pelagic fish species. At low densities of green macroalgae, the three species stayed at the impacted site and the growth of plaice was reduced. At medium macroalgal densities, plaice disappeared from the impacted site and the growth of sea bass and the muscle total lipid content of sprat were reduced. Finally, when high macroalgal densities were reached, none of the studied species were captured at the impacted site. Hence, sites affected by green tides are less

  17. Influence of monsoon-related riparian phenology on yellow-billed cuckoo habitat selection in Arizona

    USGS Publications Warehouse

    Wallace, Cynthia S.A.; Villarreal, Miguel; van Riper, Charles

    2013-01-01

    Aim: The western yellow-billed cuckoo (Coccyzus americanus occidentalis), a Neotropical migrant bird, is facing steep population declines in its western breeding grounds owing primarily to loss of native habitat. The favoured esting habitat for the cuckoo in the south-western United States is low-elevation riparian forests and woodlands. Our aim was to explore relationships between vegetation phenology patterns captured by satellite phenometrics and the distribution of the yellow-billed cuckoo, and to use this information to map cuckoo habitat. Location: Arizona, USA. Methods: Land surface phenometrics were derived from satellite Advanced Very High-Resolution Radiometer (AVHRR), bi-weekly time-composite, ormalized difference vegetation index (NDVI) data for 1998 and 1999 at a resolution of 1 km. Fourier harmonics were used to analyse the waveform of the annual NDVI profile in each pixel. To create the models, we coupled 1998 satellite phenometrics with 1998 field survey data of cuckoo presence or absence and with point data that sampled riparian and cottonwood–willow vegetation types. Our models were verified and refined using field and satellite data collected in 1999. Results: The models reveal that cuckoos prefer areas that experience peak greenness 29 days later, are 36% more dynamic and slightly (< 1%) more productive than their average cottonwood–willow habitat. The results support a scenario in which cuckoos migrate northwards, following the greening of riparian corridors and surrounding landscapes in response to monsoon precipitation, but then select a nesting site based on optimizing the near-term foraging potential of the neighbourhood. Main conclusions: The identification of preferred phenotypes within recognized habitat can be used to refine future habitat models, inform habitat response to climate change, and suggest adaptation strategies. For example, models of phenotype preferences can guide management actions by identifying and prioritizing for

  18. The global distribution of deep-water Antipatharia habitat

    NASA Astrophysics Data System (ADS)

    Yesson, Chris; Bedford, Faye; Rogers, Alex D.; Taylor, Michelle L.

    2017-11-01

    Antipatharia are a diverse group of corals with many species found in deep water. Many Antipatharia are habitat for associates, have extreme longevity and some species can occur beyond 8500 m depth. As they are major constituents of'coral gardens', which are Vulnerable Marine Ecosystems (VMEs), knowledge of their distribution and environmental requirements is an important pre-requisite for informed conservation planning particularly where the expense and difficulty of deep-sea sampling prohibits comprehensive surveys. This study uses a global database of Antipatharia distribution data to perform habitat suitability modelling using the Maxent methodology to estimate the global extent of black coral habitat suitability. The model of habitat suitability is driven by temperature but there is notable influence from other variables of topography, surface productivity and oxygen levels. This model can be used to predict areas of suitable habitat, which can be useful for conservation planning. The global distribution of Antipatharia habitat suitability shows a marked contrast with the distribution of specimen observations, indicating that many potentially suitable areas have not been sampled, and that sampling effort has been disproportionate to shallow, accessible areas inside marine protected areas (MPAs). Although 25% of Antipatharia observations are located in MPAs, only 7-8% of predicted suitable habitat is protected, which is short of the Convention on Biological Diversity target to protect 10% of ocean habitats by 2020.

  19. Quantifying spatial habitat loss from hydrocarbon development through assessing habitat selection patterns of mule deer.

    PubMed

    Northrup, Joseph M; Anderson, Charles R; Wittemyer, George

    2015-11-01

    Extraction of oil and natural gas (hydrocarbons) from shale is increasing rapidly in North America, with documented impacts to native species and ecosystems. With shale oil and gas resources on nearly every continent, this development is set to become a major driver of global land-use change. It is increasingly critical to quantify spatial habitat loss driven by this development to implement effective mitigation strategies and develop habitat offsets. Habitat selection is a fundamental ecological process, influencing both individual fitness and population-level distribution on the landscape. Examinations of habitat selection provide a natural means for understanding spatial impacts. We examined the impact of natural gas development on habitat selection patterns of mule deer on their winter range in Colorado. We fit resource selection functions in a Bayesian hierarchical framework, with habitat availability defined using a movement-based modeling approach. Energy development drove considerable alterations to deer habitat selection patterns, with the most substantial impacts manifested as avoidance of well pads with active drilling to a distance of at least 800 m. Deer displayed more nuanced responses to other infrastructure, avoiding pads with active production and roads to a greater degree during the day than night. In aggregate, these responses equate to alteration of behavior by human development in over 50% of the critical winter range in our study area during the day and over 25% at night. Compared to other regions, the topographic and vegetative diversity in the study area appear to provide refugia that allow deer to behaviorally mediate some of the impacts of development. This study, and the methods we employed, provides a template for quantifying spatial take by industrial activities in natural areas and the results offer guidance for policy makers, mangers, and industry when attempting to mitigate habitat loss due to energy development. © 2015 The Authors

  20. Extreme habitats as refuge from parasite infections? Evidence from an extremophile fish

    NASA Astrophysics Data System (ADS)

    Tobler, Michael; Schlupp, Ingo; García de León, Francisco J.; Glaubrecht, Matthias; Plath, Martin

    2007-05-01

    Living in extreme habitats typically requires costly adaptations of any organism tolerating these conditions, but very little is known about potential benefits that trade off these costs. We suggest that extreme habitats may function as refuge from parasite infections, since parasites can become locally extinct either directly, through selection by an extreme environmental parameter on free-living parasite stages, or indirectly, through selection on other host species involved in its life cycle. We tested this hypothesis in a small freshwater fish, the Atlantic molly ( Poecilia mexicana) that inhabits normal freshwaters as well as extreme habitats containing high concentrations of toxic hydrogen sulfide. Populations from such extreme habitats are significantly less parasitized by the trematode Uvulifer sp. than a population from a non-sulfidic habitat. We suggest that reduced parasite prevalence may be a benefit of living in sulfidic habitats.

  1. Spatially explicit measures of production of young alewives in Lake Michigan: Linkage between essential fish habitat and recruitment

    USGS Publications Warehouse

    Hook, Tomas O.; Rutherford, Edward S.; Brines, Shannon J.; Mason, Doran M.; Schwab, David J.; McCormick, Michael; Desorcie, Timothy J.

    2003-01-01

    The identification and protection of essential habitats for early life stages of fishes are necessary to sustain fish stocks. Essential fish habitat for early life stages may be defined as areas where fish densities, growth, survival, or production rates are relatively high. To identify critical habitats for young-of-year (YOY) alewives (Alosa pseud oharengus) in Lake Michigan, we integrated bioenergetics models with GIS (Geographic Information Systems) to generate spatially explicit estimates of potential population production (an index of habitat quality). These estimates were based upon YOY alewife bioenergetic growth rate potential and their salmonine predators’ consumptive demand. We compared estimates of potential population production to YOY alewife yield (an index of habitat importance). Our analysis suggested that during 1994–1995, YOY alewife habitat quality and yield varied widely throughout Lake Michigan. Spatial patterns of alewife yield were not significantly correlated to habitat quality. Various mechanisms (e.g., predator migrations, lake circulation patterns, alternative strategies) may preclude YOY alewives from concentrating in areas of high habitat quality in Lake Michigan.

  2. Predation of Artificial Nests in Hardwood Fragments Enclosed by Pine and Agricultural Habitats

    Treesearch

    Robert A. Sargent; John C. Kilgo; Briand R. Chapman; Karl V. Miller

    1998-01-01

    Nesting success of songbirds often is poor in edge-dominated habitats. Because the spatial juxtaposition of forest fragments relative to other habitats may influence nest success, we tested the hypothesis that the depredation rate for bird nests in small hardwood forests would decrease if the degree of edge contrast with adjoining habitats was reduced. Over 4 trials,...

  3. Sea level rise may increase extinction risk of a saltmarsh ontogenetic habitat specialist.

    PubMed

    Johnson, David Samuel; Williams, Bethany L

    2017-10-01

    Specialist species are more vulnerable to environmental change than generalist species. For species with ontogenetic niche shifts, specialization may occur at a particular life stage making those stages more susceptible to environmental change. In the salt marshes in the northeast U.S., accelerated sea level rise is shifting vegetation patterns from flood-intolerant species such as Spartina patens to the flood-tolerant Spartina alterniflora . We tested the potential impact of this change on the coffee bean snail, Melampus bidentatus , a numerically dominant benthic invertebrate with an ontogenetic niche shift. From a survey of eight marshes throughout the northeast U.S., small snails were found primarily in S. patens habitats, and large snails were found primarily in stunted S. alterniflora habitats. When transplanted into stunted S. alterniflora , small snails suffered significantly higher mortality relative to those in S. patens habitats; adult snail survivorship was similar between habitats. Because other habitats were not interchangeable with S. patens for young snails, these results suggest that Melampus is an ontogenetic specialist where young snails are habitat specialists and adult snails are habitat generalists. Temperature was significantly higher and relative humidity significantly lower in stunted S. alterniflora than in S. patens . These data suggest that thermal and desiccation stress restricted young snails to S. patens habitat, which has high stem density and a layer of thatch that protects snails from environmental stress. Other authors predict that if salt marshes in the northeast U.S. are unable to migrate landward, sea level rise will eliminate S. patens habitats. We suggest that if a salt marsh loses its S. patens habitats, it will also lose its coffee bean snails. Our results demonstrate the need to consider individual life stages when determining a species' vulnerability to global change.

  4. Rain Forests. Habitat Ecology Learning Program (H.E.L.P.), Teachers' Manual.

    ERIC Educational Resources Information Center

    Wildlife Conservation Society, Bronx, NY.

    The goal of this guide is to address a major environmental dilemma: worldwide habitat destruction and the disappearance of species. This guide is one of six that are included in the Habitat Ecology Learning Program (HELP), a holistic life science curriculum that involves students in an in-depth study of ecology. HELP includes six teaching guides…

  5. Microbial diversity of extreme habitats in human homes.

    PubMed

    Savage, Amy M; Hills, Justin; Driscoll, Katherine; Fergus, Daniel J; Grunden, Amy M; Dunn, Robert R

    2016-01-01

    High-throughput sequencing techniques have opened up the world of microbial diversity to scientists, and a flurry of studies in the most remote and extreme habitats on earth have begun to elucidate the key roles of microbes in ecosystems with extreme conditions. These same environmental extremes can also be found closer to humans, even in our homes. Here, we used high-throughput sequencing techniques to assess bacterial and archaeal diversity in the extreme environments inside human homes (e.g., dishwashers, hot water heaters, washing machine bleach reservoirs, etc.). We focused on habitats in the home with extreme temperature, pH, and chemical environmental conditions. We found a lower diversity of microbes in these extreme home environments compared to less extreme habitats in the home. However, we were nonetheless able to detect sequences from a relatively diverse array of bacteria and archaea. Habitats with extreme temperatures alone appeared to be able to support a greater diversity of microbes than habitats with extreme pH or extreme chemical environments alone. Microbial diversity was lowest when habitats had both extreme temperature and one of these other extremes. In habitats with both extreme temperatures and extreme pH, taxa with known associations with extreme conditions dominated. Our findings highlight the importance of examining interactive effects of multiple environmental extremes on microbial communities. Inasmuch as taxa from extreme environments can be both beneficial and harmful to humans, our findings also suggest future work to understand both the threats and opportunities posed by the life in these habitats.

  6. Historical changes in pool habitats in the Columbia River basin

    Treesearch

    Bruce A. McIntosh; James R. Sedell; Russell F. Thurow; Sharon E. Clarke; Gwynn L. Chandler

    1995-01-01

    Knowledge of how stream habitats change over time in natural and human-influenced ecosystems at large, regional scales is currently limited. A historical stream survey (1934-1945) was compared to current surveys to assess changes in pool habitats in the Columbia River basin. Streams from across the basin, representing a wide range of geologies, stream sizes and land-...

  7. Influence of habitat structure and nature of substratum on limpet recruitment: Conservation implications for endangered species

    NASA Astrophysics Data System (ADS)

    Espinosa, Free; Rivera-Ingraham, Georgina; García-Gómez, Jose C.

    2011-08-01

    Habitat complexity has been recognised to exert a significant influence on the abundance and diversity of benthic invertebrates. This issue is especially important for the management of endangered species. The recruitment of limpet species was monitored monthly for one year on natural and artificial surfaces. Control plots showed the highest mean number of species and individuals settled per plot, followed by rough then smooth plots. Control plots presented the highest mean diversity values followed by rough and smooth plots. Recruits of the endangered limpet Patella ferruginea were mainly observed during the spring, from April to June. Recruitment seemed to be influenced by both the heterogeneity and nature of the substratum. P. ferruginea repopulation programmes involving the translocation of recruits on experimental plates should be conducted using similar materials to the natural substratum, such as granite or limestone, rather than plastic, avoiding surfaces with low levels of heterogeneity, and taking into account that translocation of adults is not feasible due to the high mortality observed.

  8. Frugivore-Mediated Selection in A Habitat Transformation Scenario

    PubMed Central

    Fontúrbel, Francisco E.; Medel, Rodrigo

    2017-01-01

    Plant-animal interactions are strong drivers of phenotypic evolution. However, the extent to which anthropogenic habitat transformation creates new selective scenarios for plant-animal interactions is a little explored subject. We examined the effects of native forest replacement by exotic Eucalyptus trees on the frugivore-mediated phenotypic selection coefficients imposed by the relict marsupial Dromiciops gliroides upon traits involved in frugivore attraction and germination success of the mistletoe Tristerix corymbosus (Loranthaceae). We found significant gradients for seed weight and sugar content along the native - transformed habitat gradient. While selection for larger seed weight was more relevant in native habitats, fruits with intermediate sugar content were promoted in transformed habitats. The spatial habitat structure and microclimate features such as the degree of sunlight received influenced the natural selection processes, as they correlated with the phenotypic traits analysed. The response of this plant-frugivore interaction to human disturbance seemed to be context-dependent, in which extremely transformed habitats would offer new opportunities for natural selection on dispersal-related traits. Even in recent transformation events like this, human disturbance acts as a strong contemporary evolution driver. PMID:28349942

  9. Influence of static habitat attributes on local and regional Rocky intertidal community structure

    USGS Publications Warehouse

    Konar, B.; Iken, K.; Coletti, H.; Monson, Daniel H.; Weitzman, Ben P.

    2016-01-01

    Rocky intertidal communities are structured by local environmental drivers, which can be dynamic, fluctuating on various temporal scales, or static and not greatly varying across years. We examined the role of six static drivers (distance to freshwater, tidewater glacial presence, wave exposure, fetch, beach slope, and substrate composition) on intertidal community structure across the northern Gulf of Alaska. We hypothesized that community structure is less similar at the local scale compared with the regional scale, coinciding with static drivers being less similar on smaller than larger scales. We also hypothesized that static attributes mainly drive local biological community structure. For this, we surveyed five to six sites in each of the six regions in the mid and low intertidal strata. Across regions, static attributes were not consistently different and only small clusters of sites had similar attributes. Additionally, intertidal communities were less similar on the site compared with the region level. These results suggest that these biological communities are not strongly influenced by the local static attributes measured in this study. An alternative explanation is that static attributes among our regions are not different enough to influence the biological communities. This lack of evidence for a strong static driver may be a result of our site selection, which targeted rocky sheltered communities. This suggests that this habitat may be ideal to examine the influence of dynamic drivers. We recommend that future analyses of dynamic attributes may best be performed after analyses have demonstrated that sites do not differ in static attributes.

  10. Estuarine Biotope Mosaics and Habitat Management Goals: An Application in Tampa Bay, Florida, USA

    EPA Science Inventory

    Many types of anthropogenic stress to estuaries lead to destruction and conversion of habitats, thus altering habitat landscapes and changing the “arena” in which the life history interactions of native fauna take place. This can lead to decreased populations of valued fauna, an...

  11. Estuarine Biotope Mosaics and Habitat Management Goals: An Application in Tampa Bay, Florida, USA

    EPA Science Inventory

    Many types of anthropogenic stress to estuaries lead to destruction and conversion of habitats, thus altering habitat landscapes and changing the “arena” in which the life history interactions of native fauna take place. This can lead to decreased populations of valued fauna, a...

  12. Using urban forest assessment tools to model bird habitat potential

    USGS Publications Warehouse

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  13. Spatio temporal analysis of microbial habitats in soil-root interfaces

    NASA Astrophysics Data System (ADS)

    Eickhorst, Thilo; Schmidt, Hannes

    2017-04-01

    Microbial habitats in soils are formed by the arrangement and availability of inorganic and organic compounds. They can be characterized by physico-chemical parameters and the resulting colonization by microorganisms. Areas being preferably colonized are known as microbial hot spots which can be found in (bio)pores within the aggregatusphere or in the rhizosphere. The latter is directly influenced by plants i.e. the growth and activity of plant roots which has an influence on physico-chemical dynamics in the rhizosphere and can even shape plants' root microbiome. As microbial communities play an important role in nutrient cycling their response in soil-root interfaces is of great importance. Especially in complex systems such as paddy soils used for the cultivation of wetland rice the analysis of spatio-temporal aspects is important to get knowledge about their influence on the microbial dynamics in the respective habitats. But also other spatial variations on larger scales up to landscape scale may have an impact on the soil microorganisms in their habitats. This PICO presentation will introduce a set of techniques which are useful to analyze both the physico-chemical characteristics of microbial habitats and the microbial colonization and dynamics in soil-root interfaces. Examples will be given on various studies from rice cultivation in different paddy soils up to an European transect representing rhizosphere soils of selected plant species.

  14. Landscape characteristics of fragmented shrubsteppe habitats and breeding passerine birds

    USGS Publications Warehouse

    Knick, Steven T.; Rotenberry, J.T.

    1995-01-01

    We examined the influence of local and landscape-level attributes of fragmented habitats in shrubsteppe habitats on the breeding distributions of Sage (Amphispiza belli) and Brewer's (Spizella breweri) Sparrows, Sage Thrashers (Oreoscoptes montanus), Horned Larks (Eremophila alpestris), and Western Meadowlarks (Sturnella neglecta) in the Snake River Plains of southwestern Idaho. We developed habitat (resource) selection models for each species by combining bird counts conducted from 1991 through 1933 with local vegetation characteristics and landscape attributes derived from satellite imagery. Site selection by shrubsteppe species (Sage and Brewer's Sparrows, and Sage Thrashers) depended on local vegetation cover and landscape features, such as the patch size of shrub habitats or the spatial similarity of sites. Marginal sites for these species (with species present in one of three years) were intermediate between unoccupied (never present) and occupied sites along environmental gradients characterized by increasing size of shrub habitat patches and total shrub cover and by decreasing disturbance. Horned Larks and Western Meadowlarks, typical grassland species, were not sensitive to landscape features, and their occupancy depended on the amount of grassland or shrub cover. In contrast to shrubsteppe species, sites that varied by occupancy rates of Western Meadowlarks did not significantly differ in vegetation or landscape components. Our results demonstrate that fragmentation of shrubsteppe significantly influenced the presence of shrub-obligate species. Because of restoration difficulties, the disturbance of semiarid shrubsteppe may cause irreversible loss of habitat and significant long-term consequences for the conservation of shrub-obligate birds.

  15. Selection of nest-site habitat by interior least terns in relation to sandbar construction

    USGS Publications Warehouse

    Sherfy, M.H.; Stucker, J.H.; Buhl, D.A.

    2012-01-01

    Federally endangered interior least terns (Sternula antillarum) nest on bare or sparsely vegetated sandbars on midcontinent river systems. Loss of nesting habitat has been implicated as a cause of population declines, and managing these habitats is a major initiative in population recovery. One such initiative involves construction of mid-channel sandbars on the Missouri River, where natural sandbar habitat has declined in quantity and quality since the late 1990s. We evaluated nest-site habitat selection by least terns on constructed and natural sandbars by comparing vegetation, substrate, and debris variables at nest sites (na =a 798) and random points (na =a 1,113) in bare or sparsely vegetated habitats. Our logistic regression models revealed that a broader suite of habitat features was important in nest-site selection on constructed than on natural sandbars. Odds ratios for habitat variables indicated that avoidance of habitat features was the dominant nest-site selection process on both sandbar types, with nesting terns being attracted to nest-site habitat features (gravel and debris) and avoiding vegetation only on constructed sandbars, and avoiding silt and leaf litter on both sandbar types. Despite the seemingly uniform nature of these habitats, our results suggest that a complex suite of habitat features influences nest-site choice by least terns. However, nest-site selection in this social, colonially nesting species may be influenced by other factors, including spatial arrangement of bare sand habitat, proximity to other least terns, and prior habitat occupancy by piping plovers (Charadrius melodus). We found that nest-site selection was sensitive to subtle variation in habitat features, suggesting that rigor in maintaining habitat condition will be necessary in managing sandbars for the benefit of least terns. Further, management strategies that reduce habitat features that are avoided by least terns may be the most beneficial to nesting least terns

  16. Selection of nest-site habitat by interior least terns in relation to sandbar construction

    USGS Publications Warehouse

    Sherfy, Mark H.; Stucker, Jennifer H.; Buhl, Deborah A.

    2012-01-01

    Federally endangered interior least terns (Sternula antillarum) nest on bare or sparsely vegetated sandbars on midcontinent river systems. Loss of nesting habitat has been implicated as a cause of population declines, and managing these habitats is a major initiative in population recovery. One such initiative involves construction of mid-channel sandbars on the Missouri River, where natural sandbar habitat has declined in quantity and quality since the late 1990s. We evaluated nest-site habitat selection by least terns on constructed and natural sandbars by comparing vegetation, substrate, and debris variables at nest sites (n = 798) and random points (n = 1,113) in bare or sparsely vegetated habitats. Our logistic regression models revealed that a broader suite of habitat features was important in nest-site selection on constructed than on natural sandbars. Odds ratios for habitat variables indicated that avoidance of habitat features was the dominant nest-site selection process on both sandbar types, with nesting terns being attracted to nest-site habitat features (gravel and debris) and avoiding vegetation only on constructed sandbars, and avoiding silt and leaf litter on both sandbar types. Despite the seemingly uniform nature of these habitats, our results suggest that a complex suite of habitat features influences nest-site choice by least terns. However, nest-site selection in this social, colonially nesting species may be influenced by other factors, including spatial arrangement of bare sand habitat, proximity to other least terns, and prior habitat occupancy by piping plovers (Charadrius melodus). We found that nest-site selection was sensitive to subtle variation in habitat features, suggesting that rigor in maintaining habitat condition will be necessary in managing sandbars for the benefit of least terns. Further, management strategies that reduce habitat features that are avoided by least terns may be the most beneficial to nesting least terns.

  17. Biota connect aquatic habitats throughout freshwater ecosystem mosaics

    USGS Publications Warehouse

    Schofield, Kate A.; Alexander, Laurie C.; Ridley, Caroline E.; Vanderhoof, Melanie; Fritz, Ken M.; Autrey, Bradley; DeMeester, Julie; Kepner, William G.; Lane, Charles R.; Leibowitz, Scott; Pollard, Amina I.

    2018-01-01

    Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.

  18. Liana habitat and host preferences in northern temperate forests

    USGS Publications Warehouse

    Leicht-Young, S. A.; Pavlovic, N.B.; Frohnapple, K.J.; Grundel, R.

    2010-01-01

    Lianas and other climbers are important ecological and structural components of forest communities. Like other plants, their abundance in a given habitat depends on a variety of factors, such as light, soil moisture and nutrients. However, since lianas require external support, host tree characteristics also influence their distribution. Lianas are conspicuous life forms in tropical regions, but in temperate areas, where they are less prominent, little is known about factors that control their distributions in these forests. We surveyed the climbing plant species in 20 mature (100 years and greater) forested habitats in the Midwest USA at a variety of levels from simple presence/absence, to ground layer abundances, to those species that had ascended trees. We also examined attributes of the tree species with climbers attached to them. Using cluster analysis, we distinguished five different tree communities in our survey locations. We determined that 25% of the trees we surveyed had one or more lianas attached to it, with Parthenocissus quinquefolia (Virginia creeper) the most common climbing species encountered. Canopy cover and soil attributes both influenced climber species presence/absence and ground layer climber abundance. The proportion of liana species of a given climbing type (roots, stem twiner, tendril climber) was significantly related to the DBH of the host tree, with more root climbers and fewer stem and tendril climbers on large trees. In general, the DBH of climbing lianas had a significant positive relationship to the DBH of the host tree; however this varied by the identity of the liana and the tree species. The greater the DBH of the host tree, the higher the probability that it was colonized by one or more lianas, with tree species such as Pinus banksiana (jack pine) and Quercus alba (white oak) being more susceptible to liana colonization than others. Finally, some liana species such as Celastrus scandens (American bittersweet) showed a

  19. Camouflage and individual variation in shore crabs (Carcinus maenas) from different habitats.

    PubMed

    Stevens, Martin; Lown, Alice E; Wood, Louisa E

    2014-01-01

    Camouflage is widespread throughout the natural world and conceals animals from predators in a vast range of habitats. Because successful camouflage usually involves matching aspects of the background environment, species and populations should evolve appearances tuned to their local habitat, termed phenotype-environment associations. However, although this has been studied in various species, little work has objectively quantified the appearances of camouflaged animals from different habitats, or related this to factors such as ontogeny and individual variation. Here, we tested for phenotype-environment associations in the common shore crab (Carcinus maenas), a species highly variable in appearance and found in a wide range of habitats. We used field surveys and digital image analysis of the colors and patterns of crabs found in four locations around Cornwall in the UK to quantify how individuals vary with habitat (predominantly rockpool, mussel bed, and mudflat). We find that individuals from sites comprising different backgrounds show substantial differences in several aspects of color and pattern, and that this is also dependent on life stage (adult or juvenile). Furthermore, the level of individual variation is dependent on site and life stage, with juvenile crabs often more variable than adults, and individuals from more homogenous habitats less diverse. Ours is the most comprehensive study to date exploring phenotype-environment associations for camouflage and individual variation in a species, and we discuss the implications of our results in terms of the mechanisms and selection pressures that may drive this.

  20. Camouflage and Individual Variation in Shore Crabs (Carcinus maenas) from Different Habitats

    PubMed Central

    Stevens, Martin; Lown, Alice E.; Wood, Louisa E.

    2014-01-01

    Camouflage is widespread throughout the natural world and conceals animals from predators in a vast range of habitats. Because successful camouflage usually involves matching aspects of the background environment, species and populations should evolve appearances tuned to their local habitat, termed phenotype-environment associations. However, although this has been studied in various species, little work has objectively quantified the appearances of camouflaged animals from different habitats, or related this to factors such as ontogeny and individual variation. Here, we tested for phenotype-environment associations in the common shore crab (Carcinus maenas), a species highly variable in appearance and found in a wide range of habitats. We used field surveys and digital image analysis of the colors and patterns of crabs found in four locations around Cornwall in the UK to quantify how individuals vary with habitat (predominantly rockpool, mussel bed, and mudflat). We find that individuals from sites comprising different backgrounds show substantial differences in several aspects of color and pattern, and that this is also dependent on life stage (adult or juvenile). Furthermore, the level of individual variation is dependent on site and life stage, with juvenile crabs often more variable than adults, and individuals from more homogenous habitats less diverse. Ours is the most comprehensive study to date exploring phenotype-environment associations for camouflage and individual variation in a species, and we discuss the implications of our results in terms of the mechanisms and selection pressures that may drive this. PMID:25551233

  1. The effects of chemical interactions and culture history on the colonization of structured habitats by competing bacterial populations.

    PubMed

    van Vliet, Simon; Hol, Felix J H; Weenink, Tim; Galajda, Peter; Keymer, Juan E

    2014-05-07

    Bacterial habitats, such as soil and the gut, are structured at the micrometer scale. Important aspects of microbial life in such spatial ecosystems are migration and colonization. Here we explore the colonization of a structured ecosystem by two neutrally labeled strains of Escherichia coli. Using time-lapse microscopy we studied the colonization of one-dimensional arrays of habitat patches linked by connectors, which were invaded by the two E. coli strains from opposite sides. The two strains colonize a habitat from opposite sides by a series of traveling waves followed by an expansion front. When population waves collide, they branch into a continuing traveling wave, a reflected wave and a stationary population. When the two strains invade the landscape from opposite sides, they remain segregated in space and often one population will displace the other from most of the habitat. However, when the strains are co-cultured before entering the habitats, they colonize the habitat together and do not separate spatially. Using physically separated, but diffusionally coupled, habitats we show that colonization waves and expansion fronts interact trough diffusible molecules, and not by direct competition for space. Furthermore, we found that colonization outcome is influenced by a culture's history, as the culture with the longest doubling time in bulk conditions tends to take over the largest fraction of the habitat. Finally, we observed that population distributions in parallel habitats located on the same device and inoculated with cells from the same overnight culture are significantly more similar to each other than to patterns in identical habitats located on different devices inoculated with cells from different overnight cultures, even tough all cultures were started from the same -80°C frozen stock. We found that the colonization of spatially structure habitats by two interacting populations can lead to the formation of complex, but reproducible, spatiotemporal

  2. The effects of chemical interactions and culture history on the colonization of structured habitats by competing bacterial populations

    PubMed Central

    2014-01-01

    Background Bacterial habitats, such as soil and the gut, are structured at the micrometer scale. Important aspects of microbial life in such spatial ecosystems are migration and colonization. Here we explore the colonization of a structured ecosystem by two neutrally labeled strains of Escherichia coli. Using time-lapse microscopy we studied the colonization of one-dimensional arrays of habitat patches linked by connectors, which were invaded by the two E. coli strains from opposite sides. Results The two strains colonize a habitat from opposite sides by a series of traveling waves followed by an expansion front. When population waves collide, they branch into a continuing traveling wave, a reflected wave and a stationary population. When the two strains invade the landscape from opposite sides, they remain segregated in space and often one population will displace the other from most of the habitat. However, when the strains are co-cultured before entering the habitats, they colonize the habitat together and do not separate spatially. Using physically separated, but diffusionally coupled, habitats we show that colonization waves and expansion fronts interact trough diffusible molecules, and not by direct competition for space. Furthermore, we found that colonization outcome is influenced by a culture’s history, as the culture with the longest doubling time in bulk conditions tends to take over the largest fraction of the habitat. Finally, we observed that population distributions in parallel habitats located on the same device and inoculated with cells from the same overnight culture are significantly more similar to each other than to patterns in identical habitats located on different devices inoculated with cells from different overnight cultures, even tough all cultures were started from the same −80°C frozen stock. Conclusions We found that the colonization of spatially structure habitats by two interacting populations can lead to the formation of

  3. [Influence of demographic and socioeconomic characteristics on the quality of life].

    PubMed

    Grbić, Gordana; Djokić, Dragoljub; Kocić, Sanja; Mitrašinović, Dejan; Rakić, Ljiljana; Prelević, Rade; Krivokapić, Žarko; Miljković, Snežana

    2011-01-01

    The quality of life is a multidimensional concept, which is best expressed by the subjective well-being. Evaluation of the quality of life is the basis for measuring the well-being, and the determination of factors that determine the quality of life quality is the basis for its improvement. To evaluate and assess the determinants of the perceived quality of life of group distinguishing features which characterize demographic and socioeconomic factors. This was a cross-sectional study of a representative sample of the population in Serbia aged over 20 years (9479 examinees). The quality of life was expressed by the perception of well-being (pleasure of life). Data on the examinees (demographic and socioeconomic characteristics) were collected by using a questionnaire for adults of each household. To process, analyze and present the data, we used the methods of parametric descriptive statistics (mean value, standard deviation, coefficient of variation), variance analysis and factor analysis. Although men evaluated the quality of life with a slightly higher grading, there was no statistically significant difference in the evaluation of the quality of life in relation to the examinee's gender (p > 0.005). Among the examinees there was a high statistically significant difference in grading the quality of life depending on age, level of education, marital status and type of job (p < 0.001). In relation to the number of children, there was no statistically significant difference in he grading of the quality of life (p > 0.005). The quality of life is influenced by numerous factors that characterize each person (demographic and socioeconomic characteristics of individual). Determining factors of the quality of life are numerous and diverse, and the manner and the strength of their influence are variable.

  4. Multistate modeling of habitat dynamics: Factors affecting Florida scrub transition probabilities

    USGS Publications Warehouse

    Breininger, D.R.; Nichols, J.D.; Duncan, B.W.; Stolen, Eric D.; Carter, G.M.; Hunt, D.K.; Drese, J.H.

    2010-01-01

    Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess

  5. Influence of pilates training on the quality of life of chronic stroke patients.

    PubMed

    Yun, Seok-Min; Park, Sang-Kyoon; Lim, Hee Sung

    2017-10-01

    [Purpose] This study was to observe the influence of Pilates training on the quality of life in chronic stoke patients. [Subjects and Methods] Forty chronic stroke patients participated in this study. They were divided into same number of experimental group (EG) and control group (CG). EG participated in a 60-min Pilates training program, twice a week for 12 weeks, while the CG did not participate in any exercise-related activities for the duration and participating in general occupational therapy without any exercise-related activities. Then the MMSE-K was performed before and after Pilates training to observe the influence of Pilates training on the quality of life in chronic stroke patients. [Results] Statistically significant improvement in the physical, social, and psychological domains was found in EG after the training. No statistically significant difference was found in all three quality of life domains for the CG. EG experienced a statistically significant improvement in all quality of life domains compared with that of CG. [Conclusion] Therefore, participation in Pilates training was found to effectively improve the quality of life in stroke patients. Pilates training involves low and intermediate intensity resistance and repetition that match the patient's physical ability and can be a remedial exercise program that can improve physical ability and influence quality of life.

  6. Landscape evaluation of female black bear habitat effectiveness and capability in the North Cascades, Washington.

    Treesearch

    William L. Gaines; Andrea L. Lyons; John F. Lehmkuhl; Kenneth J. Raedeke

    2005-01-01

    We used logistic regression to derive scaled resource selection functions (RSFs) for female black bears at two study areas in the North Cascades Mountains. We tested the hypothesis that the influence of roads would result in potential habitat effectiveness (RSFs without the influence of roads) being greater than realized habitat effectiveness (RSFs with roads). Roads...

  7. The influence of disturbed habitat on the spatial ecology of Argentine black and white tegu (Tupinambis merianae), a recent invader in the Everglades ecosystem (Florida, USA)

    USGS Publications Warehouse

    Klug, Page E.; Reed, Robert N.; Mazzotti, Frank J.; McEachern, Michelle A.; Vinci, Joy J.; Craven, Katelin K.; Yackel Adams, Amy A.

    2015-01-01

    The threat of invasive species is often intensified in disturbed habitat. To optimize control programs, it is necessary to understand how degraded habitat influences the behavior of invasive species. We conducted a radio telemetry study to characterize movement and habitat use of introduced male Argentine black and white tegus (Tupinambis merianae) in the Everglades of southern Florida from May to August 2012 at the core and periphery of the introduced range. Tegus at the periphery moved farther per day (mean 131.7 ± 11.6 m, n = 6) compared to tegus at the core (mean 50.3 ± 12.4 m, n = 6). However, activity ranges were not significantly smaller in the core (mean 19.4 ± 8.4 ha, n = 6) compared to periphery (mean 29.1 ± 5.2 ha, n = 6). Peripheral activity ranges were more linear due to activity being largely restricted to levee habitat surrounded by open water or marsh. Tegus were located in shrub or tree habitat (mean 96%) more often than expected based on random locations (mean 58%), and the percent cover of trees and shrubs was higher in activity ranges (mean 61%) than the general study area (17%). Our study highlighted the ability of tegus to spread across the Florida landscape, especially in linear disturbed habitats where increased movement occurred and in areas of altered hydrology where movement is not restricted by water.

  8. Conceptual model for quantifying pre-smolt production from flow-dependent physical habitat and water temperature

    USGS Publications Warehouse

    Williamson, S. C.; Bartholow, J. M.; Stalnaker, C. B.

    1993-01-01

    A conceptual model has been developed to test river regulation concepts by linking physical habitat and water temperature with salmonid population and production in cold water streams. Work is in progress to examine numerous questions as part of flow evaluation and habitat restoration programmes in the Trinity River of California and elsewhere. For instance, how much change in pre-smolt chinook salmon (Oncorhynchus tshawytscha) production in the Trinity River would result from a different annual instream allocation (i.e. up or down from 271 × 106 m3released in the late 1980s) and how much change in pre-smolt production would result from a different release pattern (i.e. different from the 8.5 m3 s−1 year-round release). The conceptual model is being used to: design, integrate and improve young-of-year population data collection efforts; test hypotheses that physical habitat significantly influences movement, growth and mortality of salmonid fishes; and analyse the relative severity of limiting factors during each life stage. The conceptual model, in conjunction with previously developed tools in the Instream Flow Incremental Methodology, should provide the means to more effectively manage a fishery resource below a regulated reservoir and to provide positive feedback to planning of annual reservoir operations.

  9. Structural Concepts and Materials for Lunar Exploration Habitats

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Watson, Judith J.; Singhal, Surendra N.

    2006-01-01

    A new project within the Exploration Systems Mission Directorate s Technology Development Program at NASA involves development of lightweight structures and low temperature mechanisms for Lunar and Mars missions. The Structures and Mechanisms project is to develop advanced structure technology for the primary structure of various pressurized elements needed to implement the Vision for Space Exploration. The goals are to significantly enhance structural systems for man-rated pressurized structures by 1) lowering mass and/or improving efficient volume for reduced launch costs, 2) improving performance to reduce risk and extend life, and 3) improving manufacturing and processing to reduce costs. The targeted application of the technology is to provide for the primary structure of the pressurized elements of the lunar lander for both sortie and outpost missions, and surface habitats for the outpost missions. The paper presents concepts for habitats that support six month (and longer) lunar outpost missions. Both rigid and flexible habitat wall systems are discussed. The challenges of achieving a multi-functional habitat that provides micro-meteoroid, radiation, and thermal protection for explorers are identified.

  10. A modeling framework for integrated harvest and habitat management of North American waterfowl: Case-study of northern pintail metapopulation dynamics

    USGS Publications Warehouse

    Mattsson, Brady J.; Runge, M.C.; Devries, J.H.; Boomer, G.S.; Eadie, J.M.; Haukos, D.A.; Fleskes, J.P.; Koons, D.N.; Thogmartin, W.E.; Clark, R.G.

    2012-01-01

    parameters linking influences of habitat management and environmental conditions to key life-history parameters; (2) a formal sensitivity analysis of the revised model; (3) an integrated population model that incorporates empirical data for estimating key vital rates; and (4) cost estimates for changing these additional parameters through habitat management efforts. We foresee great utility in using an integrated modeling approach to predict habitat and harvest management influences on continental-scale population responses while explicitly considering putative effects of climate change. Such a model could be readily adapted for management of many habitat-limited species.

  11. Impact-shocked rocks--insights into Archean and extraterrestrial microbial habitats (and sites for prebiotic chemistry?)

    NASA Technical Reports Server (NTRS)

    Cockell, C. S.

    2004-01-01

    Impact-shocked gneiss shocked to greater than 10 GPa in the Haughton impact structure in the Canadian High Arctic has an approximately 25-times greater pore surface area than unshocked rocks. These pore spaces provide microhabitats for a diversity of heterotrophic microorganisms and in the near-surface environment of the rocks, where light levels are sufficient, cyanobacteria. Shocked rocks provide a moisture retaining, UV protected microenvironment. During the Archean, when impact fluxes were more than two orders of magnitude higher than today, the shocked-rock habitat was one of the most common terrestrial habitats and might have provided a UV-shielded refugium for primitive life. These potential habitats are in high abundance on Mars where impact crater habitats could have existed over geologic time periods of billions of years, suggesting that impact-shocked rocks are important sites to search for biomolecules in extraterrestrial life detection strategies. In addition to being favourable sites for life, during the prebiotic period of planetary history impact-shocked rocks might have acted as a site for the concentration of reactants for prebiotic syntheses. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  12. Impact-shocked rocks--insights into Archean and extraterrestrial microbial habitats (and sites for prebiotic chemistry?).

    PubMed

    Cockell, C S

    2004-01-01

    Impact-shocked gneiss shocked to greater than 10 GPa in the Haughton impact structure in the Canadian High Arctic has an approximately 25-times greater pore surface area than unshocked rocks. These pore spaces provide microhabitats for a diversity of heterotrophic microorganisms and in the near-surface environment of the rocks, where light levels are sufficient, cyanobacteria. Shocked rocks provide a moisture retaining, UV protected microenvironment. During the Archean, when impact fluxes were more than two orders of magnitude higher than today, the shocked-rock habitat was one of the most common terrestrial habitats and might have provided a UV-shielded refugium for primitive life. These potential habitats are in high abundance on Mars where impact crater habitats could have existed over geologic time periods of billions of years, suggesting that impact-shocked rocks are important sites to search for biomolecules in extraterrestrial life detection strategies. In addition to being favourable sites for life, during the prebiotic period of planetary history impact-shocked rocks might have acted as a site for the concentration of reactants for prebiotic syntheses. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  13. Phylogeny and micro-habitats utilized by lizards determine the composition of their endoparasites in the semiarid Caatinga of Northeast Brazil.

    PubMed

    Brito, S V; Corso, G; Almeida, A M; Ferreira, F S; Almeida, W O; Anjos, L A; Mesquita, D O; Vasconcellos, A

    2014-11-01

    Trophic networks can have architectonic configurations influenced by historical and ecological factors. The objective of this study was to analyze the architecture of networks between lizards, their endoparasites, diet, and micro-habitat, aiming to understand which factors exert an influence on the composition of the species of parasites. All networks showed a compartmentalized pattern. There was a positive relation between diet and the diversity of endoparasites. Our analyses also demonstrated that phylogeny and the use of micro-habitat influenced the composition of species of endoparasites and diet pattern of lizards. The principal factor that explained the modularity of the network was the foraging strategy, with segregation between the "active foragers" and "sit-and-wait" lizards. Our analyses also demonstrated that historical (phylogeny) and ecological factors (use of micro-habitat by the lizards) influenced the composition of parasite communities. These results corroborate other studies with ectoparasites, which indicate phylogeny and micro-habitat as determinants in the composition of parasitic fauna. The influence of phylogeny can be the result of coevolution between parasites and lizards in the Caatinga, and the influence of micro-habitat should be a result of adaptations of species of parasites to occupy the same categories of micro-habitats as hosts, thus favoring contagion.

  14. Effects of hydropower operations on spawning habitat, rearing habitat, and standing/entrapment mortality of fall Chinook salmon in the Hanford Reach of the Columbia River

    USGS Publications Warehouse

    Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard; Tiffan, Kenneth F.; Hatten, James R.; Hoffarth, Paul; Nugent, John; Benner, David; Yoshinaka, Marv

    2006-01-01

    This report describes research conducted primarily in 2003 and 2004 to evaluate the effects of upstream dam operations on spawning and rearing conditions for fall Chinook salmon, Oncorhynchus tshawytscha, in the Hanford Reach of the Columbia River. Results from habitat modeling tasks which continued in 2005 and 2006 are also included in this report. This study is focused on the effects of streamflows and streamflow fluctuations on 1) entrapment and entrapment mortality of juveniles, 2) adult spawning habitat, and 3) juvenile rearing habitat. An independent peer review was conducted on the draft version of this report utilizing three reviewers, each with different areas of expertise and different levels of knowledge regarding hydrodynamic modeling, fall Chinook biology, life history, and habitat requirements, and fishery issues relating to hydropower development and operations. Peer review comments have been incorporated into this final version.

  15. Methods for evaluating riparian habitats with applications to management

    USGS Publications Warehouse

    Platts, William S.; Armour, C.L.; Booth, G.D.; Bryant, M.; Bufford, J.L.; Cuplin, P.; Jensen, S.; Lienkaemper, G.W.; Minshall, G.W.; Monsen, S.T.; Nelson, R.L.; Sedell, J.R.; Tuhy, J.S.

    1987-01-01

    Riparian area planning and management is a major national issues today--something that should have been the case a century ago. A century of additive effects of land use has resulted in major impacts on many riparian stream habitats and their fisheries, wildlife, and domestic livestock use. Before scientists can evaluate the influences of various land and water uses on riparian environments, they must first understand these environments. This means being able to detect and measure with confidence the natural and artificial variation and instantaneous conditions of the riparian habitat. These conditions must then be related to the production capability of riparian habitat and any extraneous factors affecting this production potential.

  16. Defining and Identifying Functional Habitat to Inform Species Recovery on a Large Regulated River

    NASA Astrophysics Data System (ADS)

    Erwin, S.; Jacobson, R. B.; Elliott, C. M.; Gemeinhardt, T.; Welker, T.; DeLonay, A. J.; Chojnacki, K.

    2014-12-01

    Goals and objectives for the restoration of aquatic ecosystems often focus on species recovery, but often the primary tools available to managers involve the manipulation of flow regime and physical habitat. Management decisions thus rely on hypotheses about the links between management actions, the response of physical habitat, and the assumed response of a target organism. Ongoing efforts to inform management of the Missouri River as part of Missouri River Restoration Project are focused on the recovery of three endangered species, including the pallid sturgeon (Scaphirhynchus albus), which is endemic to the Mississippi River basin. Recovery of the pallid sturgeon is hampered by uncertainties surrounding the definition and dynamics of ecologically significant habitats for the fish across a range of life stages. Of special interest are constructed side-channel chutes. Construction of these features has emerged as one of the primary restoration techniques used on the Lower Missouri River, yet much remains to be learned about the effectiveness of these chutes in the effort to recover pallid sturgeon. It remains unclear whether these constructed features provide habitat that may be beneficial to the species and for which life stages. Biologists hypothesize that these areas may be critical for larval retention, refugia, food production, foraging, or spawning. We present the integration of a suite of data - high-resolution hydroacoustic data, hydrodynamic modeling, biotic inventories, and laboratory experiments - designed to refine our understanding of habitat dynamics critical during the early life stages of the pallid sturgeon. We present our findings in the context of ongoing restoration activities in the basin and describe how fundamental science exploring habitat dynamics may be incorporated within the existing adaptive management framework.

  17. Explaining spatial variability in stream habitats using both natural and management-influenced landscape predictors

    Treesearch

    K.J. Anlauf; D.W. Jensen; K.M. Burnett; E.A. Steel; K. Christiansen; J.C. Firman; B.E. Feist; D.P. Larsen

    2011-01-01

    1. The distribution and composition of in-stream habitats are reflections of landscape scale geomorphic and climatic controls. Correspondingly, Pacific salmon (Oncorhynchus spp.) are largely adapted to and constrained by the quality and complexity of those in-stream habitat conditions. The degree to which lands have been fragmented and managed can...

  18. Impacts of temperature on giant panda habitat in the north Minshan Mountains.

    PubMed

    Liu, Gang; Guan, Tianpei; Dai, Qiang; Li, Huixin; Gong, Minghao

    2016-02-01

    Understanding the impacts of meteorological factors on giant pandas is necessary for future conservation measures in response to global climate change. We integrated temperature data with three main habitat parameters (elevation, vegetation type, and bamboo species) to evaluate the influence of climate change on giant panda habitat in the northern Minshan Mountains using a habitat assessment model. Our study shows that temperature (relative importance = 25.1%) was the second most important variable influencing giant panda habitat excepting the elevation. There was a significant negative correlation between temperature and panda presence (ρ = -0.133, P < 0.05), and the temperature range preferred by giant pandas within the study area was 18-21°C, followed by 15-17°C and 22-24°C. The overall suitability of giant panda habitats will increase by 2.7%, however, it showed a opposite variation patterns between the eastern and northwestern region of the study area. Suitable and subsuitable habitats in the northwestern region of the study area, which is characterized by higher elevation and latitude, will increase by 18007.8 hm(2) (9.8% habitat suitability), while the eastern region will suffer a decrease of 9543.5 hm(2) (7.1% habitat suitability). Our results suggest that increasing areas of suitable giant panda habitat will support future giant panda expansion, and food shortage and insufficient living space will not arise as problems in the northwest Minshan Mountains, which means that giant pandas can adapt to climate change, and therefore may be resilient to climate change. Thus, for the safety and survival of giant pandas in the Baishuijiang Reserve, we propose strengthening the giant panda monitoring program in the west and improving the integrity of habitats to promote population dispersal with adjacent populations in the east.

  19. Habitat Preference of German Mantis religiosa Populations (Mantodea: Mantidae) and Implications for Conservation.

    PubMed

    Linn, Catherine Anne; Griebeler, Eva Maria

    2016-08-01

    In Germany, the thermophilic European mantid (Mantis religiosa L.) is endangered. Here, we study habitat requirements during its life, and discuss the applicability of the two conservation measures grazing and mowing to this insect species. At two study sites in south-western Germany, which were each subject to one of these measures, we recorded structural and climatic conditions within different microhabitats. We also conducted capture-mark-recapture studies for adult M. religiosa, and mapped adult roosting, oothecae deposition, egg hatching, and imaginal molting in microhabitats over two vegetation periods. In order to assess microhabitat preference of M. religiosa during its life, and identify climatic conditions driving preferences, we applied the Lille habitat preference index and conducted logistic regression analysis for life phases. Our results suggest that temperature is important for egg and nymph development. For egg deposition, females preferred solid substrates with high heat-storing capacities, as those attenuate the negative influence of cold weather periods on egg development. Being ambush predators, males and females preferred roosting sites with sufficient shelter and high prey abundance. Contrary to our expectation, the conservation measures reduced adult population sizes, and presumably reproduction rates. We thus suggest that mowing during the adult phase should reduce vegetation height to a moderate level to keep prey abundance high. Mowing with a clearing saw or grazing over a short period in small fenced areas should be preferred over prolonged grazing, as grazers collaterally stamp down the vegetation. Grazers indirectly reduce prey availability by deteriorating prevailing microclimatic conditions. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts.

    PubMed

    Colesie, Claudia; Green, T G Allan; Haferkamp, Ilka; Büdel, Burkhard

    2014-10-01

    Biological soil crusts (BSC) are the dominant functional vegetation unit in some of the harshest habitats in the world. We assessed BSC response to stress through changes in biotic composition, CO2 gas exchange and carbon allocation in three lichen-dominated BSC from habitats with different stress levels, two more extreme sites in Antarctica and one moderate site in Germany. Maximal net photosynthesis (NP) was identical, whereas the water content to achieve maximal NP was substantially lower in the Antarctic sites, this apparently being achieved by changes in biomass allocation. Optimal NP temperatures reflected local climate. The Antarctic BSC allocated fixed carbon (tracked using (14)CO2) mostly to the alcohol soluble pool (low-molecular weight sugars, sugar alcohols), which has an important role in desiccation and freezing resistance and antioxidant protection. In contrast, BSC at the moderate site showed greater carbon allocation into the polysaccharide pool, indicating a tendency towards growth. The results indicate that the BSC of the more stressed Antarctic sites emphasise survival rather than growth. Changes in BSC are adaptive and at multiple levels and we identify benefits and risks attached to changing life traits, as well as describing the ecophysiological mechanisms that underlie them.

  1. Effects of littoral habitat complexity and sunfish composition on fish production

    USGS Publications Warehouse

    Carey, Michael P.; Maloney, K.O.; Chipps, S.R.; Wahl, David H.

    2010-01-01

    Habitat complexity is a key driver of food web dynamics because physical structure dictates resource availability to a community. Changes in fish diversity can also alter trophic interactions and energy pathways in food webs. Few studies have examined the direct, indirect, and interactive effects of biodiversity and habitat complexity on fish production. We explored the effects of habitat complexity (simulated vegetation), sunfish diversity (intra‐ vs. inter‐specific sunfish), and their interaction using a mesocosm experiment. Total fish production was examined across two levels of habitat complexity (low: 161 strands m−2 and high: 714 strands m−2) and two sunfish diversity treatments: bluegill only (Lepomis macrochirus) and bluegill, redear sunfish (Lepomis microlophus), and green sunfish (Lepomis cyanellus) combination. We also measured changes in total phosphorus, phytoplankton, periphyton, and invertebrates to explain patterns in fish production. Bluegill and total fish production were unaffected by the sunfish treatments. Habitat complexity had a large influence on food web structure by shifting primary productivity from pelagic to a more littoral pathway in the high habitat treatments. Periphyton was higher with dense vegetation, leading to reductions in total phosphorus, phytoplankton, cladoceran abundance and fish biomass. In tanks with low vegetation, bluegill exhibited increased growth. Habitat complexity can alter energy flow through food webs ultimately influencing higher trophic levels. The lack of an effect of sunfish diversity on fish production does not imply that conserving biodiversity is unimportant; rather, we suggest that understanding the context in which biodiversity is important to food web dynamics is critical to conservation planning

  2. Safeguarding saproxylic fungal biodiversity in Apennine beech forest priority habitats

    NASA Astrophysics Data System (ADS)

    Maggi, Oriana; Lunghini, Dario; Pecoraro, Lorenzo; Sabatini, Francesco Maria; Persiani, Anna Maria

    2015-04-01

    The FAGUS LIFE Project (LIFE11/NAT/IT/135) targets two European priority habitats, i.e. Habitat 9210* Apennine beech forests with Taxus and Ilex, and Habitat 9220* Apennine beech forests with Abies alba, within two National Parks: Cilento, Vallo di Diano and Alburni; Gran Sasso and Monti della Laga. The current limited distribution of the target habitats is also due to the impact of human activities on forest systems, such as harvesting and grazing. The FAGUS project aims at developing and testing management strategies able to integrate the conservation of priority forest habitats (9210* and 9220*) and the sustainable use of forest resources. In order to assess the responses to different management treatments the BACI monitoring design (Before-After, Control-Intervention) has been applied on forest structure and diversity of focus taxa before and after experimental harvesting treatments. Conventional management of Apennine beech forests impacts a wealth of taxonomic groups, such as saproxylic beetles and fungi, which are threatened throughout Europe by the lack of deadwood and of senescing trees, and by the homogeneous structure of managed forests. Deadwood has been denoted as the most important manageable habitat for biodiversity in forests not only for supporting a wide diversity of organisms, but also for playing a prominent role in several ecological processes, creating the basis for the cycling of photosynthetic energy, carbon, and nutrients stored in woody material. Especially fungi can be regarded as key group for understanding and managing biodiversity associated with decaying wood. The before-intervention field sampling was carried out in Autumn 2013 in 33 monitoring plots across the two national Parks. The occurrence at plot level of both Ascomycota and Basidiomycota sporocarps was surveyed. All standing and downed deadwood with a minimum diameter of 10 cm was sampled for sporocarps larger than 1 mm, and information on decay class and fungal morphogroups

  3. Bonobo habituation in a forest-savanna mosaic habitat: influence of ape species, habitat type, and sociocultural context.

    PubMed

    Narat, Victor; Pennec, Flora; Simmen, Bruno; Ngawolo, Jean Christophe Bokika; Krief, Sabrina

    2015-10-01

    Habituation is the term used to describe acceptance by wild animals of a human observer as a neutral element in their environment. Among primates, the process takes from a few days for Galago spp. to several years for African apes. There are also intraspecies differences reflecting differences in habitat, home range, and ape-human relationship history. Here, we present the first study of the process of bonobo habituation in a fragmented habitat, a forest-savanna mosaic in the community-based conservation area led by the Congolese nongovernmental organization Mbou-Mon-Tour, Democratic Republic of the Congo. In this area, local people use the forest almost every day for traditional activities but avoid bonobos because of a traditional taboo. Because very few flight reactions were observed during habituation, we focused on quantitative parameters to assess the development of ape tolerance and of the tracking efficiency of observer teams. During the 18-month study period (May 2012-October 2013), 4043 h (319 days) were spent in the forest and bonobos were observed for a total of 405 h (196 contacts on 134 days). The average contact duration was stable over time (124 min), but the minimal distance during a contact decreased with habituation effort. Moreover, bonobo location and tracking efficiency, daily ratio of contact time to habituation effort, and the number of observations at ground level were positively correlated with habituation effort. Our observations suggest that bonobos become habituated relatively rapidly. These results are discussed in relation to the habitat type, ape species, and the local sociocultural context of villagers. The habituation process involves changes in ape behavior toward observers and also more complex interactions concerning the ecosystem, including the building of an efficient local team. Before starting a habituation process, knowledge of the human sociocultural context is essential to assess the balance between risks and benefits.

  4. Habitat, topographical, and geographical components structuring shrubsteppe bird communities

    USGS Publications Warehouse

    Knick, S.T.; Rotenberry, J.T.; Leu, M.

    2008-01-01

    Landscapes available to birds to select for breeding locations are arrayed along multiple dimensions. Identifying the primary gradients structuring shrubsteppe bird communities in the western United States is important because widespread habitat loss and alteration are shifting the environmental template on which these birds depend. We integrated field habitat surveys, GIS coverages, and bird counts from 61 Breeding Bird Survey routes located in shrubsteppe habitats across a >800 000 km2 region to determine the gradients of habitat, topography, and geography underlying bird communities. A small set of habitat features dominated the primary environmental gradients in a canonical ordination; the 13 species in the shrubsteppe bird community were closely packed along the first two axes. Using hierarchical variance partitioning, we identified habitat as the most important pure (31% explained variation) or shared component. Topography (9%) and geography (4%) were minor components but each shared a larger contribution with habitat (habitat-topography 21%; habitat-geography 22%) in explaining the organization of the bird community. In a second tier partition of habitat structure, pure composition (% land cover) was more important (45%) than configuration (patch size and edge) (7%); the two components shared 27% of the explained variation in the bird community axes. Local (9%), community (14%), and landscape (10%) levels contributed equally. Adjacent organizational levels had a larger shared contribution (local-community 26%; community-landscape 27%) than more separated local-landscape levels (21%). Extensive conversion of shrubsteppe habitats to agriculture, exotic annual grasslands, or pinyon (Pinus spp.)-juniper (Juniperus spp.) woodlands is occurring along the primary axes of habitat structure. Because the shrubsteppe bird community was organized along short gradients dominated by habitat features, relatively small shifts in their available environment will exert a

  5. Experimental evidence for the effect of habitat loss on the dynamics of migratory networks.

    PubMed

    Betini, Gustavo S; Fitzpatrick, Mark J; Norris, D Ryan

    2015-06-01

    Migratory animals present a unique challenge for understanding the consequences of habitat loss on population dynamics because individuals are typically distributed over a series of interconnected breeding and non-breeding sites (termed migratory network). Using replicated breeding and non-breeding populations of Drosophila melanogaster and a mathematical model, we investigated three hypotheses to explain how habitat loss influenced the dynamics of populations in networks with different degrees of connectivity between breeding and non-breeding seasons. We found that habitat loss increased the degree of connectivity in the network and influenced population size at sites that were not directly connected to the site where habitat loss occurred. However, connected networks only buffered global population declines at high levels of habitat loss. Our results demonstrate why knowledge of the patterns of connectivity across a species range is critical for predicting the effects of environmental change and provide empirical evidence for why connected migratory networks are commonly found in nature. © 2015 John Wiley & Sons Ltd/CNRS.

  6. Contrast of degraded and restored stream habitat using an individual-based salmon model

    Treesearch

    S. F. Railsback; M. Gard; Bret Harvey; Jason White; J.K.H. Zimmerman

    2013-01-01

    Stream habitat restoration projects are popular, but can be expensive and difficult to evaluate. We describe inSALMO, an individual-based model designed to predict habitat effects on freshwater life stages (spawning through juvenile out-migration) of salmon. We applied inSALMO to Clear Creek, California, simulating the production of total and large (>5 cm FL)...

  7. Integrated Systems Health Management for Sustainable Habitats (Using Sustainability Base as a Testbed)

    NASA Technical Reports Server (NTRS)

    Martin, Rodney A.

    2017-01-01

    Habitation systems provide a safe place for astronauts to live and work in space and on planetary surfaces. They enable crews to live and work safely in deep space, and include integrated life support systems, radiation protection, fire safety, and systems to reduce logistics and the need for resupply missions. Innovative health management technologies are needed in order to increase the safety and mission-effectiveness for future space habitats on other planets, asteroids, or lunar surfaces. For example, off-nominal or failure conditions occurring in safety-critical life support systems may need to be addressed quickly by the habitat crew without extensive technical support from Earth due to communication delays. If the crew in the habitat must manage, plan and operate much of the mission themselves, operations support must be migrated from Earth to the habitat. Enabling monitoring, tracking, and management capabilities on-board the habitat and related EVA platforms for a small crew to use will require significant automation and decision support software.Traditional caution and warning systems are typically triggered by out-of-bounds sensor values, but can be enhanced by including machine learning and data mining techniques. These methods aim to reveal latent, unknown conditions while still retaining and improving the ability to provide highly accurate alerts for known issues. A few of these techniques will briefly described, along with performance targets for known faults and failures. Specific system health management capabilities required for habitat system elements (environmental control and life support systems, etc.) may include relevant subsystems such as water recycling systems, photovoltaic systems, electrical power systems, and environmental monitoring systems. Sustainability Base, the agency's flagship LEED-platinum certified green building acts as a living laboratory for testing advanced information and sustainable technologies that provides an

  8. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Treesearch

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  9. Habitat use of non-native burbot in a western river

    USGS Publications Warehouse

    Klein, Zachary B.; Quist, Michael C.; Rhea, Darren T.; Senecal, Anna C.

    2015-01-01

    Burbot, Lota lota (Linnaeus), were illegally introduced into the Green River drainage, Wyoming in the 1990s. Burbot could potentially alter the food web in the Green River, thereby negatively influencing socially, economically, and ecologically important fish species. Therefore, managers of the Green River are interested in implementing a suppression program for burbot. Because of the cost associated with the removal of undesirable species, it is critical that suppression programs are as effective as possible. Unfortunately, relatively little is known about the habitat use of non-native burbot in lotic systems, severely limiting the effectiveness of any removal effort. We used hurdle models to identify habitat features influencing the presence and relative abundance of burbot. A total of 260 burbot was collected during 207 sampling events in the summer and autumn of 2013. Regardless of the season, large substrate (e.g., cobble, boulder) best predicted the presence and relative abundance of burbot. In addition, our models indicated that the occurrence of burbot was inversely related to mean current velocity. The efficient and effective removal of burbot from the Green River largely relies on an improved understanding of the influence of habitat on their distribution and relative abundance.

  10. Habitat fragmentation resulting in overgrazing by herbivores.

    PubMed

    Kondoh, Michio

    2003-12-21

    Habitat fragmentation sometimes results in outbreaks of herbivorous insect and causes an enormous loss of primary production. It is hypothesized that the driving force behind such herbivore outbreaks is disruption of natural enemy attack that releases herbivores from top-down control. To test this hypothesis I studied how trophic community structure changes along a gradient of habitat fragmentation level using spatially implicit and explicit models of a tri-trophic (plant, herbivore and natural enemy) food chain. While in spatially implicit model number of trophic levels gradually decreases with increasing fragmentation, in spatially explicit model a relatively low level of habitat fragmentation leads to overgrazing by herbivore to result in extinction of the plant population followed by a total system collapse. This provides a theoretical support to the hypothesis that habitat fragmentation can lead to overgrazing by herbivores and suggests a central role of spatial structure in the influence of habitat fragmentation on trophic communities. Further, the spatially explicit model shows (i) that the total system collapse by the overgrazing can occur only if herbivore colonization rate is high; (ii) that with increasing natural enemy colonization rate, the fragmentation level that leads to the system collapse becomes higher, and the frequency of the collapse is lowered.

  11. Habitat filters in fungal endophyte community assembly

    USDA-ARS?s Scientific Manuscript database

    Fungal endophytes can influence host health, and more broadly, can instigate trophic cascades with effects scaling to the ecosystem level. Despite this, biotic mechanisms of endophyte community assembly are largely unknown. We used maize to investigate three potential habitat filters in endophyte co...

  12. Phylogeny, habitat together with biological and ecological factors can influence germination of 36 subalpine Rhododendron species from the eastern Tibetan Plateau.

    PubMed

    Wang, Yongji; Lai, Liming; Du, Hui; Jiang, Lianhe; Wang, Fei; Zhang, Chao; Zhuang, Ping; Zheng, Yuanrun

    2018-04-01

    The reproductive stages of the life cycle are crucial in explaining the distribution patterns of plant species because of their extreme vulnerability to environmental conditions. Despite reported evidence that seed germination is related to habitat macroclimatic characteristics, such as mean annual temperature, the effect of this trait in controlling plant species distribution has not yet been systematically and quantitatively evaluated. To learn whether seed germination can predict species distribution along altitude gradients, we examined germination data of 36 Rhododendron species in southeastern Tibet originating from contrasting altitudes, habitats, plant heights, seed masses, and phylogenies. Germination varied significantly with altitude, habitat, plant height, and phylogeny and was higher in the light than in the dark. Germination percentage was highest at 10:20°C in the light and 15:25°C in the dark. As altitude increased, germination percentages first rose and then decreased, being highest at 3,500-4,000 m. Germination percentage and rate were highest on rocky slopes, increasing as seed mass and plant height rose. Variations in germination percentage and rate were not significant at subgenera, section, and subsection levels, but they were significant at species level. The results suggested that the relationship between germination and altitude may provide insights into species distribution patterns. Further, germination patterns are a result of long-term evolution as well as taxonomic constraints.

  13. The influence of stigma on the quality of life for prostate cancer survivors.

    PubMed

    Wood, Andrew W; Barden, Sejal; Terk, Mitchell; Cesaretti, Jamie

    2017-01-01

    The purpose of the present study was to investigate the influence of stigma on prostate cancer (PCa) survivors' quality of life. Stigma for lung cancer survivors has been the focus of considerable research (Else-Quest & Jackson, 2014); however, gaps remain in understanding the experience of PCa stigma. A cross-sectional correlational study was designed to assess the incidence of PCa stigma and its influence on the quality of life of survivors. Eighty-five PCa survivors were administered survey packets consisting of a stigma measure, a PCa-specific quality of life measure, and a demographic survey during treatment of their disease. A linear regression analysis was conducted with the data received from PCa survivors. Results indicated that PCa stigma has a significant, negative influence on the quality of life for survivors (R 2 = 0.33, F(4, 80) = 11.53, p < 0.001). There were no statistically significant differences in PCa stigma based on demographic variables (e.g., race and age). Implications for physical and mental health practitioners and researchers are discussed.

  14. Physical, biotic, and sampling influences on diel habitat use by stream-dwelling bull trout

    Treesearch

    Nolan P. Banish; James T. Peterson; Russell F. Thurow

    2008-01-01

    We used daytime and nighttime underwater observation to assess microhabitat use by bull trout Salvelinus confluentus (N = 213) in streams of the intermountain western USA during the summers of 2001 and 2002. We recorded fish focal points and measured a set of habitat characteristics as well as habitat availability via line transects. Bull trout were...

  15. Influence of pilates training on the quality of life of chronic stroke patients

    PubMed Central

    Yun, Seok-Min; Park, Sang-Kyoon; Lim, Hee Sung

    2017-01-01

    [Purpose] This study was to observe the influence of Pilates training on the quality of life in chronic stoke patients. [Subjects and Methods] Forty chronic stroke patients participated in this study. They were divided into same number of experimental group (EG) and control group (CG). EG participated in a 60-min Pilates training program, twice a week for 12 weeks, while the CG did not participate in any exercise-related activities for the duration and participating in general occupational therapy without any exercise-related activities. Then the MMSE-K was performed before and after Pilates training to observe the influence of Pilates training on the quality of life in chronic stroke patients. [Results] Statistically significant improvement in the physical, social, and psychological domains was found in EG after the training. No statistically significant difference was found in all three quality of life domains for the CG. EG experienced a statistically significant improvement in all quality of life domains compared with that of CG. [Conclusion] Therefore, participation in Pilates training was found to effectively improve the quality of life in stroke patients. Pilates training involves low and intermediate intensity resistance and repetition that match the patient’s physical ability and can be a remedial exercise program that can improve physical ability and influence quality of life. PMID:29184300

  16. Influence of biological and physicochemical characteristics of larval habitats on the body size of Anopheles gambiae mosquitoes (Diptera: Culicidae) along the Kenyan coast.

    PubMed

    Mwangangi, Joseph M; Mbogo, Charles M; Muturi, Ephantus J; Nzovua, Joseph G; Kabiru, Ephantus W; Githure, John I; Novak, Robert J; Beier, John C

    2007-06-01

    The number and productivity of larval habitats ultimately determine the density of adult mosquitoes. The biological and physicochemical conditions at the larval habitat affect larval development hence affecting the adult body size. The influence of biological and physicochemical characteristics on the body size of Anopheles gambiae was assessed in Jaribuni village, Kilifi district along the Kenyan Coast. Ten cages measuring 1 x 1 x 1 m (1 m3) with a netting material were placed in 10 different aquatic habitats, which were positive for anopheline mosquito larvae. Emergent mosquitoes were collected daily by aspiration and the wing lengths were determined by microscopy. In the habitats, physicochemical parameters were assessed: pH, surface debris, algae and emergent plants, turbidity, substrate, nitrate, ammonia, phosphate and chlorophyll a content. A total of 685 anopheline and culicine mosquitoes were collected from the emergent cages. Only female mosquitoes were considered in this study. Among the Anopheles spp, 202 were An. gambiae s.s., eight An. arabiensis, two An. funestus, whereas the Culex spp was composed of 214 Cx. quinquefasciatus, 10 Cx. tigripes, eight Cx. annulioris and one Cx. cumminsii. The mean wing length of the female An. gambiae s.s. mosquitoes was 3.02 mm (n=157), while that of An. arabiensis was 3.09 mm (n=9). There were no associations between the wing lengths and the environmental and chemical parameters, except for a positive correlation between wing length of An. gambiae and chlorophyll a content (r = 0.622). The day on which the mosquitoes emerged was not significant for the anopheline (p = 0.324) or culicine mosquitoes (p = 0.374), because the mosquito emerged from the cages on a daily basis. In conclusion, there was variability in production of emergent mosquitoes from different habitats, which means that there should be targeted control on these habitats based on productivity.

  17. Space Use and Habitat Selection by Resident and Transient Coyotes (Canis latrans)

    PubMed Central

    Hinton, Joseph W.; van Manen, Frank T.; Chamberlain, Michael J.

    2015-01-01

    Little information exists on coyote (Canis latrans) space use and habitat selection in the southeastern United States and most studies conducted in the Southeast have been carried out within small study areas (e.g., ≤1,000 km2). Therefore, studying the placement, size, and habitat composition of coyote home ranges over broad geographic areas could provide relevant insights regarding how coyote populations adjust to regionally varying ecological conditions. Despite an increasing number of studies of coyote ecology, few studies have assessed the role of transiency as a life-history strategy among coyotes. During 2009–2011, we used GPS radio-telemetry to study coyote space use and habitat selection on the Albemarle Peninsula of northeastern North Carolina. We quantified space use and 2nd- and 3rd-order habitat selection for resident and transient coyotes to describe space use patterns in a predominantly agricultural landscape. The upper limit of coyote home-range size was approximately 47 km2 and coyotes exhibiting shifting patterns of space use of areas >65 km2 were transients. Transients exhibited localized space use patterns for short durations prior to establishing home ranges, which we defined as “biding” areas. Resident and transient coyotes demonstrated similar habitat selection, notably selection of agricultural over forested habitats. However, transients exhibited stronger selection for roads than resident coyotes. Although transient coyotes are less likely to contribute reproductively to their population, transiency may be an important life history trait that facilitates metapopulation dynamics through dispersal and the eventual replacement of breeding residents lost to mortality. PMID:26148130

  18. Space use and habitat selection by resident and transient coyotes (Canis latrans)

    USGS Publications Warehouse

    Hinton, Joseph W; van Manen, Frank T.; Chamberlain, Michael J

    2015-01-01

    Little information exists on coyote (Canis latrans) space use and habitat selection in the southeastern United States and most studies conducted in the Southeast have been carried out within small study areas (e.g., ≤1,000 km2). Therefore, studying the placement, size, and habitat composition of coyote home ranges over broad geographic areas could provide relevant insights regarding how coyote populations adjust to regionally varying ecological conditions. Despite an increasing number of studies of coyote ecology, few studies have assessed the role of transiency as a life-history strategy among coyotes. During 2009–2011, we used GPS radio-telemetry to study coyote space use and habitat selection on the Albemarle Peninsula of northeastern North Carolina. We quantified space use and 2nd- and 3rd-order habitat selection for resident and transient coyotes to describe space use patterns in a predominantly agricultural landscape. The upper limit of coyote home-range size was approximately 47 km2 and coyotes exhibiting shifting patterns of space use of areas >65 km2 were transients. Transients exhibited localized space use patterns for short durations prior to establishing home ranges, which we defined as “biding” areas. Resident and transient coyotes demonstrated similar habitat selection, notably selection of agricultural over forested habitats. However, transients exhibited stronger selection for roads than resident coyotes. Although transient coyotes are less likely to contribute reproductively to their population, transiency may be an important life history trait that facilitates metapopulation dynamics through dispersal and the eventual replacement of breeding residents lost to mortality.

  19. Shrew species richness and abundance in relation to vernal pond habitat in southern New England

    Treesearch

    Robert T. Brooks; Katherine L. Doyle

    2001-01-01

    Vernal ponds are important aquatic habitat for many species of amphibians and invertebrates. While many aspects of such ponds have been investigated, small mammal populations in the adjacent upland [catchment] habitat are largely unstudied. We selected three ponds in central Massachusetts to determine whether the presence of vernal ponds in forested habitat influences...

  20. Habitat characteristics provide insights of carbon storage in seagrass meadows.

    PubMed

    Mazarrasa, Inés; Samper-Villarreal, Jimena; Serrano, Oscar; Lavery, Paul S; Lovelock, Catherine E; Marbà, Núria; Duarte, Carlos M; Cortés, Jorge

    2018-02-16

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO 2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence C org sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence C org sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Trophic disruption: a meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems.

    PubMed

    Martinson, Holly M; Fagan, William F

    2014-09-01

    Habitat fragmentation is a complex process that affects ecological systems in diverse ways, altering everything from population persistence to ecosystem function. Despite widespread recognition that habitat fragmentation can influence food web interactions, consensus on the factors underlying variation in the impacts of fragmentation across systems remains elusive. In this study, we conduct a systematic review and meta-analysis to quantify the effects of habitat fragmentation and spatial habitat structure on resource consumption in terrestrial arthropod food webs. Across 419 studies, we found a negative overall effect of fragmentation on resource consumption. Variation in effect size was extensive but predictable. Specifically, resource consumption was reduced on small, isolated habitat fragments, higher at patch edges, and neutral with respect to landscape-scale spatial variables. In general, resource consumption increased in fragmented settings for habitat generalist consumers but decreased for specialist consumers. Our study demonstrates widespread disruption of trophic interactions in fragmented habitats and describes variation among studies that is largely predictable based on the ecological traits of the interacting species. We highlight future prospects for understanding how changes in spatial habitat structure may influence trophic modules and food webs. © 2014 John Wiley & Sons Ltd/CNRS.

  2. Adjacent Habitat Influence on Stink Bug (Hemiptera: Pentatomidae) Densities and the Associated Damage at Field Corn and Soybean Edges

    PubMed Central

    Venugopal, P. Dilip; Coffey, Peter L.; Dively, Galen P.; Lamp, William O.

    2014-01-01

    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields. PMID:25295593

  3. Adjacent habitat influence on stink bug (Hemiptera: Pentatomidae) densities and the associated damage at field corn and soybean edges.

    PubMed

    Venugopal, P Dilip; Coffey, Peter L; Dively, Galen P; Lamp, William O

    2014-01-01

    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields.

  4. Influences of Species Interactions With Aggressive Ants and Habitat Filtering on Nest Colonization and Community Composition of Arboreal Twig-Nesting Ants.

    PubMed

    Philpott, Stacy M; Serber, Zachary; De la Mora, Aldo

    2018-04-05

    Ant community assembly is driven by many factors including species interactions (e.g., competition, predation, parasitism), habitat filtering (e.g., vegetation differences, microclimate, food and nesting resources), and dispersal. Canopy ant communities, including dominant and twig-nesting ants, are structured by all these different factors, but we know less about the impacts of species interactions and habitat filters acting at the colonization or recruitment stage. We examined occupation of artificial twig nests placed in shade trees in coffee agroecosystems. We asked whether species interactions-aggression from the dominant canopy ant, Azteca sericeasur Longino (Hymenoptera: Formicidae)-or habitat filtering-species of tree where nests were placed or surrounding vegetation-influence colonization, species richness, and community composition of twig-nesting ants. We found 20 species of ants occupying artificial nests. Nest occupation was lower on trees with A. sericeasur, but did not differ depending on tree species or surrounding vegetation. Yet, there were species-specific differences in occupation depending on A. sericeasur presence and tree species. Ant species richness did not vary with A. sericeasur presence or tree species. Community composition varied with A. sericeasur presence and surrounding vegetation. Our results suggest that species interactions with dominant ants are important determinants of colonization and community composition of twig-nesting ants. Habitat filtering at the level of tree species did not have strong effects on twig-nesting ants, but changes in coffee management may contribute to differences in community composition with important implications for ant conservation in agricultural landscapes, as well as biological control of coffee pests.

  5. Habitat Selection and Post-Release Movement of Reintroduced Brown Treecreeper Individuals in Restored Temperate Woodland

    PubMed Central

    Bennett, Victoria A.; Doerr, Veronica A. J.; Doerr, Erik D.; Manning, Adrian D.; Lindenmayer, David B.; Yoon, Hwan-Jin

    2012-01-01

    It is essential to choose suitable habitat when reintroducing a species into its former range. Habitat quality may influence an individual’s dispersal decisions and also ultimately where they choose to settle. We examined whether variation in habitat quality (quantified by the level of ground vegetation cover and the installation of nest boxes) influenced the movement, habitat choice and survival of a reintroduced bird species. We experimentally reintroduced seven social groups (43 individuals) of the brown treecreeper (Climacteris picumnus) into two nature reserves in south-eastern Australia. We radio-tracked 18 brown treecreepers from release in November 2009 until February 2010. We observed extensive movements by individuals irrespective of the release environment or an individual’s gender. This indicated that individuals were capable of dispersing and actively selecting optimum habitat. This may alleviate pressure on wildlife planners to accurately select the most optimum release sites, so long as the species’ requirements are met. There was significant variation in movement between social groups, suggesting that social factors may be a more important influence on movement than habitat characteristics. We found a significant effect of ground vegetation cover on the likelihood of settlement by social groups, with high rates of settlement and survival in dry forests, rather than woodland (where the species typically resides), which has implications for the success of woodland restoration. However, overall the effects of variation in habitat quality were not as strong as we had expected, and resulted in some unpredicted effects such as low survival and settlement in woodland areas with medium levels of ground vegetation cover. The extensive movement by individuals and unforeseen effects of habitat characteristics make it difficult to predict the outcome of reintroductions, the movement behaviour and habitat selection of reintroduced individuals, particularly

  6. [Study on morphology, quality and germination characteristics of Acanthopanax trifoliatus seeds under different habitats].

    PubMed

    Xiao, Juan

    2014-05-01

    To preliminary explore the difference of the morphological, quality and germinal characteristics of Acanthopanax trifoliatus seeds under different habitats. Collect the wild seeds from different habitats in West Mountain, and then observe their external appearances and internal structure, and test the thousand seeds weight,water content and seed vigor. What's more, the influence to germination rates of the seeds from different temperatures and light intensities in artificial bioclimatic chamber was studied. Orthogonal test in experimental plots was carried out to screen the different sowing dates, matrix types and soil depths which may influence germination rate. The external appearances and quality characteristics of wild seeds from three habitats were different. Seeds could germinate in the both light and dark, the germination rate of the habitat II was as high as 70.5% at the optimum temperature 20 degrees C in artificial bioclimatic chamber. The optimal combination A1, B1, C1 was screened out through orthogonal test, namely, the germination rate would be the highest when the seeds sowed in autumn covering with 2 cm depth of matrix type which component of the ratio of soil, sand and organic fertilizer was 6: 3: 1. There was significant difference in the morphology and germination rate of the three habitats seeds. The habitat II seeds were the optimal choice when culture seedling. The influences of different temperatures on germination rate were different, and the dried seeds should sow in current autumn, better than the next spring.

  7. Habitat and food resources of otters (Mustelidae) in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Abdul-Patah, P.; Nur-Syuhada, N.; Md-Nor, S.; Sasaki, H.; Md-Zain, B. M.

    2014-09-01

    Habitat and food resources of otters were studied in several locations in Peninsular Malaysia. A total of 210 fecal samples were collected from April 2010 to March 2011 believed to be of otter's were analyzed for their diet composition and their habitat preferences. The DNA testing conducted revealed that only 126 samples were identified as Lultrogale perspicillata and Aonyx cinereus with 105 and 21 samples, respectively. Habitat analyses revealed that these two species preferred paddy fields and mangroves as their main habitats but L. perspicillata preferred to hunt near habitat with large water bodies, such as mangroves, rivers, ponds, and lakes. A. cinereus on the other hand, were mainly found near land-based habitat, such as paddy fields, casuarinas forest and oil palms near mangroves. Habitats chosen were influenced by their food preferences where L. perspicillata consumed a variety of fish species with a supplementary diet of prawns, small mammals, and amphibians, compared to A. cinereus which consumed less fish and more non-fish food items, such as insects, crabs, and snails. Since, the most of the otter habitats in this study are not located within the protected areas, conservation effort involving administrations, landowners, private organizations and public are necessary.

  8. Matrix quality and disturbance frequency drive evolution of species behavior at habitat boundaries.

    PubMed

    Martin, Amanda E; Fahrig, Lenore

    2015-12-01

    Previous theoretical studies suggest that a species' landscape should influence the evolution of its dispersal characteristics, because landscape structure affects the costs and benefits of dispersal. However, these studies have not considered the evolution of boundary crossing, that is, the tendency of animals to cross from habitat to nonhabitat ("matrix"). It is important to understand this dispersal behavior, because of its effects on the probability of population persistence. Boundary-crossing behavior drives the rate of interaction with matrix, and thus, it influences the rate of movement among populations and the risk of dispersal mortality. We used an individual-based, spatially explicit model to simulate the evolution of boundary crossing in response to landscape structure. Our simulations predict higher evolved probabilities of boundary crossing in landscapes with more habitat, less fragmented habitat, higher-quality matrix, and more frequent disturbances (i.e., fewer generations between local population extinction events). Unexpectedly, our simulations also suggest that matrix quality and disturbance frequency have much stronger effects on the evolution of boundary crossing than either habitat amount or habitat fragmentation. Our results suggest that boundary-crossing responses are most affected by the costs of dispersal through matrix and the benefits of escaping local extinction events. Evolution of optimal behavior at habitat boundaries in response to the landscape may have implications for species in human-altered landscapes, because this behavior may become suboptimal if the landscape changes faster than the species' evolutionary response to that change. Understanding how matrix quality and habitat disturbance drive evolution of behavior at boundaries, and how this in turn influences the extinction risk of species in human-altered landscapes should help us identify species of conservation concern and target them for management.

  9. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    PubMed

    Malison, Rachel L; Kuzishchin, Kirill V; Stanford, Jack A

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3-12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99-1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  10. Winter habitat predictions of a key Southern Ocean predator, the Antarctic fur seal (Arctocephalus gazella)

    NASA Astrophysics Data System (ADS)

    Arthur, Benjamin; Hindell, Mark; Bester, Marthan; De Bruyn, P. J. Nico; Trathan, Phil; Goebel, Michael; Lea, Mary-Anne

    2017-06-01

    Quantification of the physical and biological environmental factors that influence the spatial distribution of higher trophic species is central to inform management and develop ecosystem models, particularly in light of ocean changes. We used tracking data from 184 female Antarctic fur seals (Arctocephalus gazella) to develop habitat models for three breeding colonies for the poorly studied Southern Ocean winter period. Models were used to identify and predict the broadly important winter foraging habitat and to elucidate the environmental factors influencing these areas. Model predictions closely matched observations and several core areas of foraging habitat were identified for each colony, with notable areas of inter-colony overlap suggesting shared productive foraging grounds. Seals displayed clear choice of foraging habitat, travelling through areas of presumably poorer quality to access habitats that likely offer an energetic advantage in terms of prey intake. The relationships between environmental predictors and foraging habitat varied between colonies, with the principal predictors being wind speed, sea surface temperature, chlorophyll a concentration, bathymetry and distance to the colony. The availability of core foraging areas was not consistent throughout the winter period. The habitat models developed in this study not only reveal the core foraging habitats of Antarctic fur seals from multiple colonies, but can facilitate the hindcasting of historical foraging habitats as well as novel predictions of important habitat for other major colonies currently lacking information of the at-sea distribution of this major Southern Ocean consumer.

  11. The universe: a cryogenic habitat for microbial life.

    PubMed

    Wickramasinghe, Chandra

    2004-04-01

    Panspermia, an ancient idea, posits that microbial life is ubiquitous in the Universe. After several decades of almost irrational rejection, panspermia is at last coming to be regarded as a serious contender for the beginnings of life on our planet. Astronomical data is shown to be consistent with the widespread distribution of complex organic molecules and dust particles that may have a biological provenance. A minuscule (10(-21)) survival rate of freeze-dried bacteria in space is all that is needed to ensure the continual re-cycling of cosmic microbial life in the galaxy. Evidence that terrestrial life may have come from elsewhere in the solar system has accumulated over the past decade. Mars is seen by some as a possible source of terrestrial life, but some hundreds of billions of comets that enveloped the entire solar system, are a far more likely primordial reservoir of life. Comets would then have seeded Earth, Mars, and indeed all other habitable planetary bodies in the inner regions of the solar system. The implications of this point of view, which was developed in conjunction with the late Sir Fred Hoyle since the 1970s, are now becoming amenable to direct empirical test by studies of pristine organic material in the stratosphere. The ancient theory of panspermia may be on the verge of vindication, in which case the entire universe would be a grand crucible of cryomicrobiology.

  12. The Universe: a Cryogenic Habitat for Microbial Life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Chandra

    Panspermia, an ancient idea, posits that microbial life is ubiquitous in the Universe. After several decades of almost irrational rejection, panspermia is at last coming to be regarded as a serious contender for the beginnings of life on our planet. Astronomical data is shown to be consistent with the widespread distribution of complex organic molecules and dust particles that may have a biological provenance. A minuscule (10-21) survival rate of freeze-dried bacteria in space is all that is needed to ensure the continual recycling of cosmic microbial life in the galaxy. Evidence that terrestrial life may have come from elsewhere in the solar system has accumulated over the past decade. Mars is seen by some as a possible source of terrestrial life, but some hundreds of billions of comets that enveloped the entire solar system, are a far more likely primordial reservoir of life. Comets would then have seeded Earth, Mars, and indeed all other habitable planetary bodies in the inner regions of the solar system. The implications of this point of view, which was developed in conjunction with the late Sir Fred Hoyle since the 1970's, are now becoming amenable to direct empirical test by studies of pristine organic material in the stratosphere. The ancient theory of panspermia may be on the verge of vindication, in which case the entire universe would be a grand crucible of cryomicrobiology.

  13. Environmental restraints and life strategies: a habitat templet matrix.

    PubMed

    Holm, E

    1988-02-01

    Four basic environmental restraints on life are deduced from the requirements of life's inherent order laws. Possible life strategies to contend with these restraints are listed. The various combinations of the restraints are subsequently investigated, and appropriate combinations of life strategies are fitted. This model is finally tested against insect case histories in various environments, and is demonstrated to explain some combinations of characteristics of insects in ecosystems not covered by the r-K or r-K-A continua. The role of heterochrony in achieving appropriate life strategies is briefly discussed.

  14. City life makes females fussy: sex differences in habitat use of temperate bats in urban areas

    PubMed Central

    Lintott, Paul R.; Bunnefeld, Nils; Fuentes-Montemayor, Elisa; Minderman, Jeroen; Mayhew, Rebekah J.; Olley, Lena; Park, Kirsty J.

    2014-01-01

    Urbanization is a major driver of the global loss of biodiversity; to mitigate its adverse effects, it is essential to understand what drives species' patterns of habitat use within the urban matrix. While many animal species are known to exhibit sex differences in habitat use, adaptability to the urban landscape is commonly examined at the species level, without consideration of intraspecific differences. The high energetic demands of pregnancy and lactation in female mammals can lead to sexual differences in habitat use, but little is known of how this might affect their response to urbanization. We predicted that female Pipistrellus pygmaeus would show greater selectivity of forging locations within urban woodland in comparison to males at both a local and landscape scale. In line with these predictions, we found there was a lower probability of finding females within woodlands which were poorly connected, highly cluttered, with a higher edge : interior ratio and fewer mature trees. By contrast, habitat quality and the composition of the surrounding landscape were less of a limiting factor in determining male distributions. These results indicate strong sexual differences in the habitat use of fragmented urban woodland, and this has important implications for our understanding of the adaptability of bats and mammals more generally to urbanization. PMID:26064557

  15. Earth is a Marine Habitat. Habitat Conservation Program.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This brochure is intended to educate the public about the need to conserve and preserve the earth's environment (man's habitat). It contains an introduction to the ocean world and threats to coastal habitat. Photos and narrative revolve around the theme "Earth is a Marine Habitat." Sections include: "The Web of…

  16. From broadscale patterns to fine-scale processes: habitat structure influences genetic differentiation in the pitcher plant midge across multiple spatial scales.

    PubMed

    Rasic, Gordana; Keyghobadi, Nusha

    2012-01-01

    The spatial scale at which samples are collected and analysed influences the inferences that can be drawn from landscape genetic studies. We examined genetic structure and its landscape correlates in the pitcher plant midge, Metriocnemus knabi, an inhabitant of the purple pitcher plant, Sarracenia purpurea, across several spatial scales that are naturally delimited by the midge's habitat (leaf, plant, cluster of plants, bog and system of bogs). We analysed 11 microsatellite loci in 710 M. knabi larvae from two systems of bogs in Algonquin Provincial Park (Canada) and tested the hypotheses that variables related to habitat structure are associated with genetic differentiation in this midge. Up to 54% of variation in individual-based genetic distances at several scales was explained by broadscale landscape variables of bog size, pitcher plant density within bogs and connectivity of pitcher plant clusters. Our results indicate that oviposition behaviour of females at fine scales, as inferred from the spatial locations of full-sib larvae, and spatially limited gene flow at broad scales represent the important processes underlying observed genetic patterns in M. knabi. Broadscale landscape features (bog size and plant density) appear to influence oviposition behaviour of midges, which in turn influences the patterns of genetic differentiation observed at both fine and broad scales. Thus, we inferred linkages among genetic patterns, landscape patterns and ecological processes across spatial scales in M. knabi. Our results reinforce the value of exploring such links simultaneously across multiple spatial scales and landscapes when investigating genetic diversity within a species. © 2011 Blackwell Publishing Ltd.

  17. Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient.

    PubMed

    Vanbergen, Adam J; Watt, Allan D; Mitchell, Ruth; Truscott, Anne-Marie; Palmer, Stephen C F; Ivits, Eva; Eggleton, Paul; Jones, T Hefin; Sousa, José Paulo

    2007-09-01

    Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates-species with small range sizes-is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km(2)) and local (up to 200 m(2)) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together

  18. Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Rebotim, Andreia; Voelker, Antje H. L.; Jonkers, Lukas; Waniek, Joanna J.; Meggers, Helge; Schiebel, Ralf; Fraile, Igaratza; Schulz, Michael; Kucera, Michal

    2017-02-01

    Planktonic foraminifera preserved in marine sediments archive the physical and chemical conditions under which they built their shells. To interpret the paleoceanographic information contained in fossil foraminifera, the recorded proxy signals have to be attributed to the habitat and life cycle characteristics of individual species. Much of our knowledge on habitat depth is based on indirect methods, which reconstruct the depth at which the largest portion of the shell has been calcified. However, habitat depth can be best studied by direct observations in stratified plankton nets. Here we present a synthesis of living planktonic foraminifera abundance data in vertically resolved plankton net hauls taken in the eastern North Atlantic during 12 oceanographic campaigns between 1995 and 2012. Live (cytoplasm-bearing) specimens were counted for each depth interval and the vertical habitat at each station was expressed as average living depth (ALD). This allows us to differentiate species showing an ALD consistently in the upper 100 m (e.g., Globigerinoides ruber white and pink), indicating a shallow habitat; species occurring from the surface to the subsurface (e.g., Globigerina bulloides, Globorotalia inflata, Globorotalia truncatulinoides); and species inhabiting the subsurface (e.g., Globorotalia scitula and Globorotalia hirsuta). For 17 species with variable ALD, we assessed whether their depth habitat at a given station could be predicted by mixed layer (ML) depth, temperature in the ML and chlorophyll a concentration in the ML. The influence of seasonal and lunar cycle on the depth habitat was also tested using periodic regression. In 11 out of the 17 tested species, ALD variation appears to have a predictable component. All of the tested parameters were significant in at least one case, with both seasonal and lunar cyclicity as well as the environmental parameters explaining up to > 50 % of the variance. Thus, G. truncatulinoides, G. hirsuta and G. scitula

  19. Storied experiences of school-based habitat restoration

    NASA Astrophysics Data System (ADS)

    Bell, Anne C.

    The purpose of this study has been to consider the eco-pedagogical promise of school-based habitat restoration. How does the practice of restoration foster a lived sense of being in a more-than-human world1 while inviting alternative approaches to teaching and learning? What opportunities does it offer to resist the societal forces and patterns, reinforced through the school system, which are eroding and effacing human relationships with other life? A literature review sets the broader context for an in-depth exploration of the experiences and understandings of participants (students, teachers, parents) involved in a case study. I proceeded with my research on the assumption that both the discursive and non-discursive dimensions of habitat restoration were key to appreciating its eco-pedagogical potential. Through participant observation over a ten month period, interviewing and a survey, I listened to some of the ways that habitat restoration challenged the typically disembodied, decontextualized organization of schooling by privileging hands-on involvement and encouraging attentive, caring relationships within the human and natural communities of which students were a part. I investigated particular storylines and metaphors which encoded and supported participants' endeavours, especially with regard to their potential to disrupt human-centered values and beliefs. This study suggests that the promise of habitat restoration lies in the openings created to attune to and interact with human and nonhuman others in fully embodied, locally situated and personally meaningful ways. Participants overwhelmingly attested to the importance of the experience of restoration which many deemed to be memorable and motivating and to provide fertile ground for future engagements in/for nature and society. As participants attended to the nuances and complexities of their interactions with a specific place and its inhabitants, their intimate involvement added a depth of feeling and

  20. VARIATION IN JUVENILE COHO SALMON END-OF-SUMMER SIZE: HIERARACHICAL ANALYSIS OF HABITAT EFFECTS

    EPA Science Inventory

    The size of coho salmon juveniles entering the winter has been shown to influence overwinter survival, and hence may be a useful indicator of linkages between summer habitat conditions and subsequent smolt production. We are investigating habitat-specific demographics of juvenile...

  1. Room to Live: the sizing of Lunar and Martian Habitats

    NASA Technical Reports Server (NTRS)

    McGregor, Walter L.

    2006-01-01

    In order for man to return to space or extra terrestrial bodies for long duration missions it is important that adequate habitat volume be defined early to avoid costly delays and redesign. To properly define a habitat volume two major factors need to be considered. The first factor is the free or open space. This is the space that allows the crew room to move about the habitat. This space will vary based on crew size and length of the mission. The second major factor is the stowage space required for equipment and supplies. This includes both fixed volumes and consumables. Fixed volumes include items such as tools, communication equipment, Advanced Life Support (ALS) equipment, and support equipment. Consumables include items like filters, food, water and oxygen. This space is also dependent on crew size and mission length. A review of past missions into alien environments, such as deep sea habitats as well as space based habitats will be used to validate the assumption made in this paper. Once these key factors are defined trades must be run to optimize the overall volume of a habitat. This includes trades of disposable vs. reusable for items such as clothing, dishes, and water. Another factor to consider is the availability of in situ resources to aid in the construction of the habitat structure as well as re-supply of consumable items. A review of past missions into alien environments, such as deep sea habitats as well as space based habitats will be used to validate the assumption made in this paper. The result is a habitat sizing tool to provide a first order estimate of habitat volumes for extended mission to the surface of the moon and Mars.

  2. Potential impact of climate change on the Intra-Americas Sea: Part 2. Implications for Atlantic bluefin tuna and skipjack tuna adult and larval habitats

    NASA Astrophysics Data System (ADS)

    Muhling, Barbara A.; Liu, Yanyun; Lee, Sang-Ki; Lamkin, John T.; Roffer, Mitchell A.; Muller-Karger, Frank; Walter, John F., III

    2015-08-01

    Increasing water temperatures due to climate change will likely have significant impacts on distributions and life histories of Atlantic tunas. In this study, we combined predictive habitat models with a downscaled climate model to examine potential impacts on adults and larvae of Atlantic bluefin tuna (Thunnus thynnus) and skipjack tuna (Katsuwonus pelamis) in the Intra-Americas Sea (IAS). An additional downscaled model covering the 20th century was used to compare habitat fluctuations from natural variability to predicted future changes under two climate change scenarios: Representative Concentration Pathway (RCP) 4.5 (medium-low) and RCP 8.5 (high). Results showed marked temperature-induced habitat losses for both adult and larval bluefin tuna on their northern Gulf of Mexico spawning grounds. In contrast, habitat suitability for skipjack tuna increased as temperatures warmed. Model error was highest for the two skipjack tuna models, particularly at higher temperatures. This work suggests that influences of climate change on highly migratory Atlantic tuna species are likely to be substantial, but strongly species-specific. While impacts on fish populations remain uncertain, these changes in habitat suitability will likely alter the spatial and temporal availability of species to fishing fleets, and challenge equilibrium assumptions of environmental stability, upon which fisheries management benchmarks are based.

  3. Influence of Socioeconomic Factors on Daily Life Activities and Quality of Life of Thai Elderly

    PubMed Central

    Somrongthong, Ratana; Wongchalee, Sunanta; Ramakrishnan, Chandrika; Hongthong, Donnapa; Yodmai, Korravarn; Wongtongkam, Nualnong

    2017-01-01

    Background The increasing number of older people is a significant issue in Thailand, resulted in growing demands of health and social welfare services. The study aim was to explore the influence of socioeconomic factors on activities of daily living and quality of life of Thai seniors. Design and methods Using randomised cluster sampling, one province was sampled from each of the Central, North, Northeast and South regions, then one subdistrict sampled in each province, and a household survey used to identify the sample of 1678 seniors aged 60 years and over. The Mann-Whitney U-test and binary logistic regression were used to compare and determine the association of socioeconomic variables on quality of life and activities of daily living. Results The findings showed that sociodemographic and socioeconomic factors were significantly related to functional capacity of daily living. Education levels were strongly associated with daily life activities, with 3.55 adjusted ORs for respondents with secondary school education. Gender was important, with females comprising 61% of dependent respondents but only 47% of independent respondents. Seniors with low incomes were more likely to be anxious in the past, present and future and less likely to accept death in the late stage, with 1.40 Adjusted ORs (95%CI: 1.02-1.92), and 0.72 (95%CI: 0.53-0.98), respectively. However, they were more likely to engage in social activities. Conclusions While socioeconomic factors strongly indicated the functional capacity to live independently, a good quality of life also required other factors leading to happiness and life satisfaction. Significance for public health Increasing numbers of ageing population raise a public health concern in Thai society due to the increasing demands of medical and health services regarding chronic diseases and disability. Unfortunately, few studies have mentioned socioeconomic factors on daily living activities and quality of life and none has taken place

  4. Concurrent assessment of fish and habitat in warmwater streams in Wyoming

    USGS Publications Warehouse

    Quist, M.C.; Hubert, W.A.; Rahel, F.J.

    2006-01-01

    Fisheries research and management in North America have focused largely on sport fishes, but native non-game fishes have attracted increased attention due to their declines. The Warmwater Stream Assessment (WSA) was developed to evaluate simultaneously both fish and habitat in Wyoming streams by a process that includes three major components: (1) stream-reach selection and accumulation of existing information, (2) fish and habitat sampling and (3) summarisation and evaluation of fish and habitat information. Fish are sampled by electric fishing or seining and habitat is measured at reach and channel-unit (i.e. pool, run, riffle, side channel, or backwater) scales. Fish and habitat data are subsequently summarised using a data-matrix approach. Hierarchical decision trees are used to assess critical habitat requirements for each fish species expected or found in the reach. Combined measurements of available habitat and the ecology of individual species contribute to the evaluation of the observed fish assemblage. The WSA incorporates knowledge of the fish assemblage and habitat features to enable inferences of factors likely influencing both the fish assemblage and their habitat. The WSA was developed for warmwater streams in Wyoming, but its philosophy, process and conceptual basis may be applied to environmental assessments in other geographical areas. ?? 2006 Blackwell Publishing Ltd.

  5. Invasion of novel habitats uncouples haplo-diplontic life cycles.

    PubMed

    Krueger-Hadfield, Stacy A; Kollars, Nicole M; Byers, James E; Greig, Thomas W; Hammann, Mareike; Murray, David C; Murren, Courtney J; Strand, Allan E; Terada, Ryuta; Weinberger, Florian; Sotka, Erik E

    2016-08-01

    Baker's Law predicts uniparental reproduction will facilitate colonization success in novel habitats. While evidence supports this prediction among colonizing plants and animals, few studies have investigated shifts in reproductive mode in haplo-diplontic species in which both prolonged haploid and diploid stages separate meiosis and fertilization in time and space. Due to this separation, asexual reproduction can yield the dominance of one of the ploidy stages in colonizing populations. We tested for shifts in ploidy and reproductive mode across native and introduced populations of the red seaweed Gracilaria vermiculophylla. Native populations in the northwest Pacific Ocean were nearly always attached by holdfasts to hard substrata and, as is characteristic of the genus, haploid-diploid ratios were slightly diploid-biased. In contrast, along North American and European coastlines, introduced populations nearly always floated atop soft-sediment mudflats and were overwhelmingly dominated by diploid thalli without holdfasts. Introduced populations exhibited population genetic signals consistent with extensive vegetative fragmentation, while native populations did not. Thus, the ecological shift from attached to unattached thalli, ostensibly necessitated by the invasion of soft-sediment habitats, correlated with shifts from sexual to asexual reproduction and slight to strong diploid bias. We extend Baker's Law by predicting other colonizing haplo-diplontic species will show similar increases in asexuality that correlate with the dominance of one ploidy stage. Labile mating systems likely facilitate colonization success and subsequent range expansion, but for haplo-diplontic species, the long-term eco-evolutionary impacts will depend on which ploidy stage is lost and the degree to which asexual reproduction is canalized. © 2016 John Wiley & Sons Ltd.

  6. California wildlife and their habitats: western Sierra Nevada

    Treesearch

    Jared Verner; Allan S. Boss

    1980-01-01

    The relationships between 355 wildlife species and their habitats are examined in a series of matrices, life history notes, and distribution maps covering 26 amphibians, 27 reptiles, 208 birds, and 94 mammals. The information is useful in identifying and evaluating the consequences of proposed land management activities-particularly those that manipulate vegetation....

  7. The influence of urban heat islands and socioeconomic factors on the spatial distribution of Aedes aegypti larval habitats.

    PubMed

    De Azevedo, Thiago S; Bourke, Brian Patrick; Piovezan, Rafael; Sallum, Maria Anice M

    2018-05-08

    We addressed the potential associations among the temporal and spatial distribution of larval habitats of Aedes (Stegomyia) aegypti, the presence of urban heat islands and socioeconomic factors. Data on larval habitats were collected in Santa Bárbara d'Oeste, São Paulo, Brazil, from 2004 to 2006, and spatial and temporal variations were analysed using a wavelet-based approach. We quantified urban heat islands by calculating surface temperatures using the results of wavelet analyses and grey level transformation from Thematic Mapper images (Landsat 5). Ae. aegypti larval habitats were geo-referenced corresponding to the wavelet analyses to test the potential association between geographical distribution of habitats and surface temperature. In an inhomogeneous spatial point process, we estimated the frequency of occurrence of larval habitats in relation to temperature. The São Paulo State Social Vulnerability Index in the municipality of Santa Barbára d'Oeste was used to test the potential association between presence of larval habitats and social vulnerability. We found abundant Ae. aegypti larval habitats in areas of higher surface temperature and social vulnerability and fewer larval habitats in areas with lower surface temperature and social vulnerability.

  8. Site fidelity and condition metrics suggest sequential habitat use by early juvenile snook

    USGS Publications Warehouse

    Brame, Adam B.; McIvor, Carole; Peebles, Ernst B; Hollander, David J.

    2014-01-01

    The common snook Centropomus undecimalis is an estuarine-dependent fish that relies on landward wetlands as nursery habitat. Despite its economic importance, portions of the snook's early life history are poorly understood. We compared habitat use of young-of-the-year (YOY) snook in 2 geomorphic mesohabitats (tidal pond and tidal creek) along an estuarine gradient (upstream vs. downstream) within a single wetland during fall recruitment. We used abundance, length, condition indices, and stable isotopes to assess ontogenetic mesohabitat use and site fidelity. We found that (1) YOY snook were more abundant within the upstream creek and ponds; (2) the smallest snook were found only in ponds; (3) snook from ponds had lower condition (Fulton's K and hepatosomatic index); (4) snook began moving from ponds to the creek at ~40 mm standard length; and (5) snook from the 2 mesohabitats were isotopically distinct, indicating high site fidelity at rather small spatial scales. Collectively, these data identified sequential use of mesohabitats, wherein seaward-spawned YOY snook moved landward and recruited to pond habitats, where they dedicated energy to growth (as length) before making an ontogenetic habitat shift to the creek. Once in the creek, YOY snook condition improved as they approached maturity and started the downstream return towards seaward locations. The wetland network that was previously viewed as generalized nursery habitat instead consists of mesohabitats that support different life stages in sequence. This represents ontogenetic habitat complementation, in which lower availability of a required mesohabitat type may limit the entire wetland's contribution to the adult population.

  9. Propagule Pressure, Habitat Conditions and Clonal Integration Influence the Establishment and Growth of an Invasive Clonal Plant, Alternanthera philoxeroides.

    PubMed

    You, Wen-Hua; Han, Cui-Min; Fang, Long-Xiang; Du, Dao-Lin

    2016-01-01

    Many notorious invasive plants are clonal, spreading mainly by vegetative propagules. Propagule pressure (the number of propagules) may affect the establishment, growth, and thus invasion success of these clonal plants, and such effects may also depend on habitat conditions. To understand how propagule pressure, habitat conditions and clonal integration affect the establishment and growth of the invasive clonal plants, an 8-week greenhouse with an invasive clonal plant, Alternanthera philoxeroides was conducted. High (five fragments) or low (one fragment) propagule pressure was established either in bare soil (open habitat) or dense native vegetation of Jussiaea repens (vegetative habitat), with the stolon connections either severed from or connected to the relatively older ramets. High propagule pressure greatly increased the establishment and growth of A. philoxeroides, especially when it grew in vegetative habitats. Surprisingly, high propagule pressure significantly reduced the growth of individual plants of A. philoxeroides in open habitats, whereas it did not affect the individual growth in vegetative habitats. A shift in the intraspecific interaction on A. philoxeroides from competition in open habitats to facilitation in vegetative habitats may be the main reason. Moreover, clonal integration significantly improved the growth of A. philoxeroides only in open habitats, especially with low propagule pressure, whereas it had no effects on the growth and competitive ability of A. philoxeroides in vegetative habitats, suggesting that clonal integration may be of most important for A. philoxeroides to explore new open space and spread. These findings suggest that propagule pressure may be crucial for the invasion success of A. philoxeroides, and such an effect also depends on habitat conditions.

  10. Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach.

    PubMed

    Hübner, Lena; Pennings, Steven C; Zimmer, Martin

    2015-08-01

    Distinct habitats are often linked through fluxes of matter and migration of organisms. In particular, intertidal ecotones are prone to being influenced from both the marine and the terrestrial realms, but whether or not small-scale migration for feeding, sheltering or reproducing is detectable may depend on the parameter studied. Within the ecotone of an upper saltmarsh in the United States, we investigated the sex-specific movement of the semi-terrestrial crab Armases cinereum using an approach of determining multiple measures of across-ecotone migration. To this end, we determined food preference, digestive abilities (enzyme activities), bacterial hindgut communities (genetic fingerprint), and the trophic position of Armases and potential food sources (stable isotopes) of males versus females of different sub-habitats, namely high saltmarsh and coastal forest. Daily observations showed that Armases moved frequently between high-intertidal (saltmarsh) and terrestrial (forest) habitats. Males were encountered more often in the forest habitat, whilst gravid females tended to be more abundant in the marsh habitat but moved more frequently. Food preference was driven by both sex and habitat. The needlerush Juncus was preferred over three other high-marsh detrital food sources, and the periwinkle Littoraria was the preferred prey of male (but not female) crabs from the forest habitats; both male and female crabs from marsh habitat preferred the fiddler crab Uca over three other prey items. In the field, the major food sources were clearly vegetal, but males have a higher trophic position than females. In contrast to food preference, isotope data excluded Uca and Littoraria as major food sources, except for males from the forest, and suggested that Armases consumes a mix of C4 and C3 plants along with animal prey. Digestive enzyme activities differed significantly between sexes and habitats and were higher in females and in marsh crabs. The bacterial hindgut community

  11. Fine-scale movements and habitat use of juvenile southern flounder Paralichthys lethostigma in an estuarine seascape.

    PubMed

    Furey, N B; Dance, M A; Rooker, J R

    2013-05-01

    Habitat use of juvenile southern flounder Paralichthys lethostigma was examined within a shallow estuarine seascape during June and July 2011 using acoustic telemetry. Fine-scale movement and habitat use of P. lethostigma was investigated with an acoustic positioning system placed in a seascape that varied in habitat type, physicochemical conditions and bathymetry. The use of different habitat types was examined with Euclidean distance-based analyses, and generalized additive models were used to determine the relative importance of habitat type relative to physicochemical conditions and bathymetry. Tracks of P. lethostigma ranged in distance between 1477 and 8582 m and speed was 4·2 ± 1·1 m min⁻¹ (mean ± s.e.) for all P. lethostigma combined. Depth, slope and habitat type had the most influence on P. lethostigma occurrence and deep sandy areas with shallow slopes were used most frequently. In addition, depth use by P. lethostigma was influenced by tidal cycles, indicating habitat use varies temporally and is dynamic. Finally, temperatures <30·5° C were used more than warmer waters within the study area. The results successfully identify movements by juvenile P. lethostigma, and indicate that definitions of essential habitats need to account for dynamics in habitat use. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  12. Quantification of fish habitat in selected reaches of the Marmaton and Marais des Cygnes Rivers, Missouri

    USGS Publications Warehouse

    Heimann, David C.; Richards, Joseph M.; Brewer, Shannon K.; Norman, Richard D.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Conservation, undertook a study to quantify fish habitat by using relations between streamflow and the spatial and temporal distributions of fish habitat at five sites in the Marmaton and Marais des Cygnes Rivers in western Missouri. Twenty-six fish habitat categories were selected for nine species under varying seasonal (spring, summer, and fall), diel (summer day and night), and life-stage (spawning, juvenile, and adult) conditions. Physical habitat characteristics were determined for each category using depth, velocity, and channel substrate criteria. Continuous streamflow data were then combined with the habitat-streamflow relations to compile a habitat time series for each habitat category at each site. Fish habitat categories were assessed as to their vulnerability to habitat alteration based on critical life stages (spawning and juvenile rearing periods) and susceptibility to habitat limitations from dewatering or high flows. Species categories representing critical life stages with physical habitat limitations represent likely bottlenecks in fish populations. Categories with potential bottlenecks can serve as indicator categories and aid managers when determining the flows necessary for maintaining these habitats under altered flow regimes. The relation between the area of each habitat category and streamflow differed greatly between category, season, and stream reach. No single flow maximized selected habitat area for all categories or even for all species/category within a particular season at a site. However, some similarities were noted among habitat characteristics, including the streamflow range for which habitat availability is maximized and the range of streamflows for which a habitat category area is available at the Marmaton River sites. A monthly habitat time series was created for all 26 habitat categories at two Marmaton River sites. A daily habitat time series was

  13. The Influence of Chronic Illness and Lifestyle Behaviors on Quality of Life among Older Thais

    PubMed Central

    Wongtongkam, Nualnong

    2016-01-01

    Chronic conditions and lifestyle behaviors have a detrimental influence on the quality of life for seniors because of physical disability and emotional concerns. This study aimed to assess the influence of chronic illness, smoking, and alcohol use on quality of life among Thai seniors. A cross-sectional study was conducted in three communities, selected purposively from the North, Northeast, and Central regions, and 1278 senior participants were recruited. Binary logistic regression was used to predict the influence of factors on quality of life with adjusted covariates. Most participants were aged 60–70 years and married, earned 500–1,000 Baht/month (US $17–$35), had one chronic illness, and were nonsmokers and nondrinkers. Surprisingly, there appeared to be no link between chronic conditions and quality of life. Current drinkers were more likely to have a high quality of life, with Odds Ratios of 2.16 for men and 2.73 for women. Seniors of both genders who were current drinkers were more likely to accept death and dying and this improved their quality of life. Social participation in alcohol consumption may encourage seniors to share their concerns about death and dying and eventually accept this as a foundation of life. PMID:27022604

  14. Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects.

    PubMed

    Phillipsen, Ivan C; Kirk, Emily H; Bogan, Michael T; Mims, Meryl C; Olden, Julian D; Lytle, David A

    2015-01-01

    Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population-level data for large numbers of species, ecologists seek to identify proximate organismal traits-such as dispersal ability, habitat preference and life history-that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape-based metrics of resistance. We found that the moderate-disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation-by-distance pattern, suggesting migration-drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong-flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best-fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale-dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities. © 2014 John Wiley & Sons Ltd.

  15. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    PubMed Central

    Kuzishchin, Kirill V.; Stanford, Jack A.

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3–12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99–1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  16. Native species behaviour mitigates the impact of habitat-forming invasive seaweed.

    PubMed

    Wright, Jeffrey T; Byers, James E; Koukoumaftsis, Loni P; Ralph, Peter J; Gribben, Paul E

    2010-06-01

    Habitat-forming invasive species cause large, novel changes to the abiotic environment. These changes may elicit important behavioural responses in native fauna, yet little is known about mechanisms driving this behaviour and how such trait-mediated responses influence the fitness of native species. Low dissolved oxygen is a key abiotic change created by the habitat-forming invasive seaweed, Caulerpa taxifolia, which influences an important behavioural response (burrowing depth) in the native infaunal bivalve Anadara trapezia. In Caulerpa-colonised areas, Anadara often emerged completely from the sediment, and we experimentally demonstrate that water column hypoxia beneath the Caulerpa canopy is the mechanism instigating this "pop-up" behaviour. Importantly, pop-up in Caulerpa allowed similar survivorship to that in unvegetated sediment; however, when we prevented Anadara from popping-up, they suffered >50% mortality in just 1 month. Our findings not only highlight the substantial environmental alteration by Caulerpa, but also an important role for the behaviour of native species in mitigating the effects of habitat-forming invasive species.

  17. Habitat-related specialization of lateral-line system morphology in a habitat-generalist and a habitat-specialist New Zealand eleotrid.

    PubMed

    Vanderpham, J P; Nakagawa, S; Senior, A M; Closs, G P

    2016-04-01

    An investigation of intraspecific habitat-related patterns of variation in oculoscapular lateral-line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat-generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat-related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat-specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral-line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments. © 2016 The Fisheries Society of the British Isles.

  18. Connectivity of the habitat-forming kelp, Ecklonia radiata within and among estuaries and open coast.

    PubMed

    Coleman, Melinda A

    2013-01-01

    With marine protected areas being established worldwide there is a pressing need to understand how the physical setting in which these areas are placed influences patterns of dispersal and connectivity of important marine organisms. This is particularly critical for dynamic and complex nearshore marine environments where patterns of genetic structure of organisms are often chaotic and uncoupled from broad scale physical processes. This study determines the influence of habitat heterogeneity (presence of estuaries) on patterns of genetic structure and connectivity of the common kelp, Ecklonia radiata. There was no genetic differentiation of kelp between estuaries and the open coast and the presence of estuaries did not increase genetic differentiation among open coast populations. Similarly, there were no differences in level of inbreeding or genetic diversity between estuarine and open coast populations. The presence of large estuaries along rocky coastlines does not appear to influence genetic structure of this kelp and factors other than physical heterogeneity of habitat are likely more important determinants of regional connectivity. Marine reserves are currently lacking in this bioregion and may be designated in the future. Knowledge of the factors that influence important habitat forming organisms such as kelp contribute to informed and effective marine protected area design and conservation initiatives to maintain resilience of important marine habitats.

  19. Waste streams in a crewed space habitat. II

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore

    1992-01-01

    An update is presented of a compilation of generation rates and chemical compositions of potential waste streams in a typical crewed space habitat which was reported in the NASA Technical Memorandum. New topics under consideration include data obtained from Soviet literature on life support issues and data on various minor human body wastes not presented previously (saliva, Flatus, hair, finger- and toenails, dried skin and skin secretions, tears and semen). Attention is also given to the latest information on the environmental control and life support system design parameters for SSF.

  20. Population viability impacts of habitat additions and subtractions: A simulation experiment with endangered kangaroo rats

    EPA Science Inventory

    Species viability is influenced by the quality, quantity and configuration of habitat. For species at risk, a principal challenge is to identify landscape configurations that, if realized, would improve a population’s viability or restoration potential. Critical habitat patche...

  1. The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland.

    PubMed

    Mullins, Jacinta; McDevitt, Allan D; Kowalczyk, Rafał; Ruczyńska, Iwona; Górny, Marcin; Wójcik, Jan M

    2014-01-01

    The red fox ( Vulpes vulpes ) has the widest global distribution among terrestrial carnivore species, occupying most of the Northern Hemisphere in its native range. Because it carries diseases that can be transmitted to humans and domestic animals, it is important to gather information about their movements and dispersal in their natural habitat but it is difficult to do so at a broad scale with trapping and telemetry. In this study, we have described the genetic diversity and structure of red fox populations in six areas of north-eastern Poland, based on samples collected from 2002-2003. We tested 22 microsatellite loci isolated from the dog and the red fox genome to select a panel of nine polymorphic loci suitable for this study. Genetic differentiation between the six studied populations was low to moderate and analysis in Structure revealed a panmictic population in the region. Spatial autocorrelation among all individuals showed a pattern of decreasing relatedness with increasing distance and this was not significantly negative until 93 km, indicating a pattern of isolation-by-distance over a large area. However, there was no correlation between genetic distance and either Euclidean distance or least-cost path distance at the population level. There was a significant relationship between genetic distance and the proportion of large forests and water along the Euclidean distances. These types of habitats may influence dispersal paths taken by red foxes, which is useful information in terms of wildlife disease management.

  2. Influence of menu labeling on food choices in real-life settings: a systematic review.

    PubMed

    Fernandes, Ana C; Oliveira, Renata C; Proença, Rossana P C; Curioni, Cintia C; Rodrigues, Vanessa M; Fiates, Giovanna M R

    2016-08-01

    Evidence that menu labeling influences food choices in real-life settings is lacking. Reviews usually focus on calorie counts without addressing broader issues related to healthy eating. This systematic review assessed the influence of diverse menu-labeling formats on food choices in real-life settings. Several databases were searched: Cochrane Library, Scopus, MEDLINE, Web of Science, Food Science and Technology Abstracts, Biological Abstracts, CAB Abstracts, EconLit, SciELO, and LILACS. Articles reporting experiments, quasi-experiments, and observational studies using control or preintervention groups were selected blindly by two reviewers. Data was extracted using a standard form. Analyses differentiated between foodservice types. The quality of the 38 included studies was assessed blindly by two reviewers. The results were mixed, but a partial influence of menu labeling on food choices was more frequent than an overall influence or no influence. Menu labeling was more effective in cafeterias than in restaurants. Qualitative information, such as healthy-food symbols and traffic-light labeling, was most effective in promoting healthy eating. In general, the studies were of moderate quality and did not use control groups. Calorie labeling in menus is not effective to promote healthier food choices. Further research in real-life settings with control groups should test diverse qualitative information in menu labeling. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Scale-Dependent Habitat Selection and Size-Based Dominance in Adult Male American Alligators

    PubMed Central

    Strickland, Bradley A.; Vilella, Francisco J.; Belant, Jerrold L.

    2016-01-01

    Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance

  4. Scale-dependent habitat selection and size-based dominance in adult male American alligators

    USGS Publications Warehouse

    Strickland, Bradley A.; Vilella, Francisco; Belant, Jerrold L.

    2016-01-01

    Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance

  5. Habitat history improves prediction of biodiversity in rainforest fauna

    PubMed Central

    Graham, Catherine H.; Moritz, Craig; Williams, Stephen E.

    2006-01-01

    Patterns of biological diversity should be interpreted in light of both contemporary and historical influences; however, to date, most attempts to explain diversity patterns have largely ignored history or have been unable to quantify the influence of historical processes. The historical effects on patterns of diversity have been hypothesized to be most important for taxonomic groups with poor dispersal abilities. We quantified the relative stability of rainforests over the late Quaternary period by modeling rainforest expansion and contraction in 21 biogeographic subregions in northeast Australia across four time periods. We demonstrate that historical habitat stability can be as important, and in endemic low-dispersal taxa even more important, than current habitat area in explaining spatial patterns of species richness. In contrast, patterns of endemic species richness for taxa with high dispersal capacity are best predicted by using current environmental parameters. We also show that contemporary patterns of species turnover across the region are best explained by historical patterns of habitat connectivity. These results clearly demonstrate that spatially explicit analyses of the historical processes of persistence and colonization are both effective and necessary for understanding observed patterns of biodiversity. PMID:16407139

  6. The Influence of Angler Values, Involvement, Catch Orientation, Satisfaction, Agency Trust, and Demographics on Support for Habitat Protection and Restoration Versus Stocking in Publicly Managed Waters.

    PubMed

    Schroeder, Susan A; Fulton, David C; Altena, Eric; Baird, Heather; Dieterman, Douglas; Jennings, Martin

    2018-05-23

    Resource managers benefit from knowledge of angler support for fisheries management strategies. Factors including angler values (protection, utilitarian, and dominance), involvement (attraction, centrality, social, identity affirmation, and expression), catch-related motivations (catching some, many, and big fish, and keeping fish), satisfaction, agency trust, and demographics may relate to fisheries management preferences. Using results from a mail survey of Minnesota resident anglers, we explored how these factors were related to budget support for fish stocking relative to habitat protection/restoration. Results suggest that values, angler involvement, catch orientation, satisfaction, total and recent years fishing, age, and education influence relative support for stocking versus habitat protection/restoration. Utilitarian values, angling centrality, an orientation to catch many fish, satisfaction with the number of fish caught, number of recent years fishing, and age positively related to support for stocking over habitat management, while protection values, attraction to angling, total years fishing, and education level were negatively related to relative support for stocking.

  7. Movement, demographics, and occupancy dynamics of a federally-threatened salamander: evaluating the adequacy of critical habitat

    PubMed Central

    McEntire, Kira D.; Sissel, Blake N.

    2016-01-01

    Critical habitat for many species is often limited to occupied localities. For rare and cryptic species, or those lacking sufficient data, occupied habitats may go unrecognized, potentially hindering species recovery. Proposed critical habitat for the aquatic Jollyville Plateau salamander (Eurycea tonkawae) and two sister species were delineated based on the assumption that surface habitat is restricted to springs and excludes intervening stream reaches. To test this assumption, we performed two studies to understand aspects of individual, population, and metapopulation ecology of E. tonkawae. First, we examined movement and population demographics using capture-recapture along a spring-influenced stream reach. We then extended our investigation of stream habitat use with a study of occupancy and habitat dynamics in multiple headwater streams. Indications of extensive stream channel use based on capture-recapture results included frequent movements of >15 m, and high juvenile abundance downstream of the spring. Initial occupancy of E. tonkawae was associated with shallow depths, maidenhair fern presence and low temperature variation (indicative of groundwater influence), although many occupied sites were far from known springs. Additionally, previously dry sites were three times more likely to be colonized than wet sites. Our results indicate extensive use of stream habitats, including intermittent ones, by E. tonkawae. These areas may be important for maintaining population connectivity or even as primary habitat patches. Restricting critical habitat to occupied sites will result in a mismatch with actual habitat use, particularly when assumptions of habitat use are untested, thus limiting the potential for recovery. PMID:26998413

  8. Terrestrial movements and habitat use of gopher frogs in longleaf pine forests: a comparative study of juveniles and adults

    Treesearch

    Elizabeth A. Roznik; Steve A. Johnson; Cathryn H. Greenberg; George W. Tanner

    2009-01-01

    Many animals exhibit changes in patterns of movement and habitat use as they age, and understanding such ontogenetic shifts is important for ensuring that habitat management is appropriate for all life stages. We used radiotelemetry to study movements and habitat use of juvenile and adult gopher frogs (Rana capito) as they migrated from the same ponds following...

  9. Influence of biological and physicochemical characteristics of larval habitats on the body size of Anopheles gambiae mosquitoes (Diptera: Culicidae) along the Kenyan coast

    PubMed Central

    Mwangangi, Joseph M.; Mbogo, Charles M.; Muturi, Ephantus J.; Nzovu, Joseph G.; Kabiru, Ephantus W.; Githure, John I.; Novak, Robert J.; Beier, John C.

    2009-01-01

    Background & objectives The number and productivity of larval habitats ultimately determine the density of adult mosquitoes. The biological and physicochemical conditions at the larval habitat affect larval development hence affecting the adult body size. The influence of biological and physicochemical characteristics on the body size of Anopheles gambiae was assessed in Jaribuni village, Kilifi district along the Kenyan Coast. Methods Ten cages measuring 1 × 1 × 1 m (1 m3) with a netting material were placed in 10 different aquatic habitats, which were positive for anopheline mosquito larvae. Emergent mosquitoes were collected daily by aspiration and the wing lengths were determined by microscopy. In the habitats, physicochemical parameters were assessed: pH, surface debris, algae and emergent plants, turbidity, substrate, nitrate, ammonia, phosphate and chlorophyll a content. Results A total of 685 anopheline and culicine mosquitoes were collected from the emergent cages. Only female mosquitoes were considered in this study. Among the Anopheles spp, 202 were An. gambiae s.s., eight An. arabiensis, two An. funestus, whereas the Culex spp was composed of 214 Cx. quinquefasciatus, 10 Cx. tigripes, eight Cx. annulioris and one Cx. cumminsii. The mean wing length of the female An. gambiae s.s. mosquitoes was 3.02 mm (n = 157), while that of An. arabiensis was 3.09 mm (n = 9). There were no associations between the wing lengths and the environmental and chemical parameters, except for a positive correlation between wing length of An. gambiae and chlorophyll a content (r = 0.622). The day on which the mosquitoes emerged was not significant for the anopheline (p = 0.324) or culicine mosquitoes (p = 0.374), because the mosquito emerged from the cages on a daily basis. Interpretation & conclusion In conclusion, there was variability in production of emergent mosquitoes from different habitats, which means that there should be targeted control on these habitats based on

  10. An approach of habitat degradation assessment for characterization on coastal habitat conservation tendency.

    PubMed

    Zhou, Xi-Yin; Lei, Kun; Meng, Wei

    2017-09-01

    Coastal zones are population and economy highly intensity regions all over the world, and coastal habitat supports the sustainable development of human society. The accurate assessment of coastal habitat degradation is the essential prerequisite for coastal zone protection. In this study, an integrated framework of coastal habitat degradation assessment including landuse classification, habitat classifying and zoning, evaluation criterion of coastal habitat degradation and coastal habitat degradation index has been established for better regional coastal habitat assessment. Through establishment of detailed three-class landuse classification, the fine landscape change is revealed, the evaluation criterion of coastal habitat degradation through internal comparison based on the results of habitat classifying and zoning could indicate the levels of habitat degradation and distinguish the intensity of human disturbances in different habitat subareas under the same habitat classification. Finally, the results of coastal habitat degradation assessment could be achieved through coastal habitat degradation index (CHI). A case study of the framework is carried out in the Circum-Bohai-Sea-Coast, China, and the main results show the following: (1) The accuracy of all land use classes are above 90%, which indicates a satisfactory accuracy for the classification map. (2) The Circum-Bohai-Sea-Coast is divided into 3 kinds of habitats and 5 subareas. (3) In the five subareas of the Circum-Bohai-Sea-Coast, the levels of coastal habitat degradation own significant difference. The whole Circum-Bohai-Sea-Coast generally is in a worse state according to area weighting of each habitat subarea. This assessment framework of coastal habitat degradation would characterize the landuse change trend, realize better coastal habitat degradation assessment, reveal the habitat conservation tendency and distinguish intensity of human disturbances. Furthermore, it would support for accurate coastal

  11. A variance-decomposition approach to investigating multiscale habitat associations

    USGS Publications Warehouse

    Lawler, J.J.; Edwards, T.C.

    2006-01-01

    The recognition of the importance of spatial scale in ecology has led many researchers to take multiscale approaches to studying habitat associations. However, few of the studies that investigate habitat associations at multiple spatial scales have considered the potential effects of cross-scale correlations in measured habitat variables. When cross-scale correlations in such studies are strong, conclusions drawn about the relative strength of habitat associations at different spatial scales may be inaccurate. Here we adapt and demonstrate an analytical technique based on variance decomposition for quantifying the influence of cross-scale correlations on multiscale habitat associations. We used the technique to quantify the variation in nest-site locations of Red-naped Sapsuckers (Sphyrapicus nuchalis) and Northern Flickers (Colaptes auratus) associated with habitat descriptors at three spatial scales. We demonstrate how the method can be used to identify components of variation that are associated only with factors at a single spatial scale as well as shared components of variation that represent cross-scale correlations. Despite the fact that no explanatory variables in our models were highly correlated (r < 0.60), we found that shared components of variation reflecting cross-scale correlations accounted for roughly half of the deviance explained by the models. These results highlight the importance of both conducting habitat analyses at multiple spatial scales and of quantifying the effects of cross-scale correlations in such analyses. Given the limits of conventional analytical techniques, we recommend alternative methods, such as the variance-decomposition technique demonstrated here, for analyzing habitat associations at multiple spatial scales. ?? The Cooper Ornithological Society 2006.

  12. Habitat use and preferences of breeding female wood ducks

    USGS Publications Warehouse

    Hartke, Kevin M.; Hepp, G.R.

    2004-01-01

    Female wood ducks (Aix sponsa) feed primarily on plant foods in the prelaying period and switch to a diet of mostly invertebrates during egg production. If nutrient acquisition is habitat-specific, then selection and use of habitats may differ between these reproductive stages. A better understanding of these processes is needed to assist future habitat conservation and management efforts. In January-May 1999 and 2000, we monitored movements and habitat use of radiomarked females (n = 47) during the prelaying and egg-production periods of first nests. Home-range size averaged 367 ha and did not vary with reproductive period, year, or female age. Habitat use did not differ between periods of prelaying and egg production; consequently, data were combined. Habitat use varied between years, female age, and periods of nest initiation (i.e., early vs. late). Use of beaver ponds (BP), temporary wetlands (TW), managed impoundments (MI), and lake habitats (LK) declined in 2000 compared to 1999, possibly due to reduced precipitation. Nest initiation date was independent of female age. Adult females used BP more than yearlings, and early-nesting females used BP and MI more than late-nesting females. Females selected habitats nonrandomly when habitat composition of the study area was compared to that of home ranges (second-order selection). Lake-influenced wetlands (LI) and MI were ranked highest in preference. Home-range size was inversely related to percentage of the home range comprised of MI and LI, supporting the idea that MI and LI were high-quality habitats. However, we found no relationship between nest initiation date (an important index to reproductive performance) and the combined area of MI and LI in home ranges. Habitai selection did not differ from random when habitat composition of home ranges was compared to that of radio locations (third-order selection). Although MI and LI were preferred, high-quality habitats, our results suggest that breeding female wood

  13. Closed Environment Module - Modularization and extension of the Virtual Habitat

    NASA Astrophysics Data System (ADS)

    Plötner, Peter; Czupalla, Markus; Zhukov, Anton

    2013-12-01

    The Virtual Habitat (V-HAB), is a Life Support System (LSS) simulation, created to perform dynamic simulation of LSS's for future human spaceflight missions. It allows the testing of LSS robustness by means of computer simulations, e.g. of worst case scenarios.

  14. Do management actions to restore rare habitat benefit native fish conservation? Distribution of juvenile native fish among shoreline habitats of the Colorado River

    USGS Publications Warehouse

    Dodrill, Michael J.; Yackulic, Charles B.; Gerig, Brandon; Pine, William E.; Korman, Josh; Finch, Colton

    2015-01-01

    Many management actions in aquatic ecosystems are directed at restoring or improving specific habitats to benefit fish populations. In the Grand Canyon reach of the Colorado River, experimental flow operations as part of the Glen Canyon Dam Adaptive Management Program have been designed to restore sandbars and associated backwater habitats. Backwaters can have warmer water temperatures than other habitats, and native fish, including the federally endangered humpback chub Gila cypha, are frequently observed in backwaters, leading to a common perception that this habitat is critical for juvenile native fish conservation. However, it is unknown how fish densities in backwaters compare with that in other habitats or what proportion of juvenile fish populations reside in backwaters. Here, we develop and fit multi-species hierarchical models to estimate habitat-specific abundances and densities of juvenile humpback chub, bluehead suckerCatostomus discobolus, flannelmouth sucker Catostomus latipinnis and speckled dace Rhinichthys osculus in a portion of the Colorado River. Densities of all four native fish were greatest in backwater habitats in 2009 and 2010. However, backwaters are rare and ephemeral habitats, so they contain only a small portion of the overall population. For example, the total abundance of juvenile humpback chub in this study was much higher in talus than in backwater habitats. Moreover, when we extrapolated relative densities based on estimates of backwater prevalence directly after a controlled flood, the majority of juvenile humpback chub were still found outside of backwaters. This suggests that the role of controlled floods in influencing native fish population trends may be limited in this section of the Colorado River. 

  15. Plenty to eat, nothing to breathe: challenges to life in serpentinite habitats (Invited)

    NASA Astrophysics Data System (ADS)

    Brazelton, W. J.; Twing, K. I.; Crespo-Medina, M.; Lang, S. Q.; Schrenk, M. O.

    2013-12-01

    When tectonic uplift exposes ultramafic rocks from the Earth's mantle to water from the surface, iron minerals are oxidized and release hydrogen gas (H2) in a set of geochemical reactions known collectively as serpentinization. The generation of high concentrations of H2 can also lead to abiotic synthesis of organic molecules, thereby providing an exothermic, abundant source of electron donors and organic carbon. The major biological challenges of serpentinization-influenced habitats appear to be the extremely high pH (typically pH 9-12), the associated lack of inorganic carbon, and the lack of electron acceptors due to the highly reducing conditions (1). These challenges are apparently overcome by the prolific archaeal and bacterial biofilms associated with the carbonate chimneys at the Lost City hydrothermal field. Cell densities exceed 109 cells per gram of chimney material (2). Phylogenetic, metagenomic, and experimental evidence indicate that the communities are supported by the copious quantities of H2, CH4, and sulphur fluxing from the chimneys, but the metabolic pathways and associated thermodynamic factors are still unclear (3). In particular, the oxidants that microbes couple with H2, CH4, and sulphur at Lost City remain a matter of speculation. The mystery of the oxidants has also featured in our recent explorations of continental sites of serpentinization. In strong contrast to the Lost City chimneys, these continental fluids tend to contain very little biomass (fewer than 102 cells per mL in the most extreme cases). Presumably, the anoxic, pH 12 fluids enriched in H2 and CH4 are flowing from subsurface habitats where there must be a surplus of reductants and carbon (4). Given the extremely reducing, anoxic conditions, though, oxidants are likely to be very limited in these environments. The ';oxidant limitation' hypothesis is particularly intriguing because of its counter-intuitive nature: to our knowledge, no other habitats on Earth have a surplus of

  16. Influence of childhood scleroderma on physical function and quality of life.

    PubMed

    Baildam, Eileen M; Ennis, Holly; Foster, Helen E; Shaw, Lindsay; Chieng, Alice S E; Kelly, Jane; Herrick, Ariane L; Richards, Helen L

    2011-01-01

    there have been few studies of quality of life in childhood scleroderma and these focused predominantly on self-perception and the influence of skin lesions. Our cross-sectional study aimed to describe the influence of childhood scleroderma on physical function and quality of life in relation to clinical and demographic measures. children with either localized scleroderma or systemic sclerosis (SSc) attending pediatric rheumatology clinics, together with their parents or guardians, were asked to complete a set of 4 validated measures. Clinical and demographic data were provided by consultant pediatric rheumatologists. in total, 28 children and their parents/guardians participated in the study (68% female, median age 13 yrs; 86% localized scleroderma, 14% SSc). The median Child Health Assessment Questionnaire (CHAQ) score was 0.1 (range 0-3, 0 indicating no impairment), the median Child Dermatology Life Quality Index (CDLQI) score was 5 (range 0-30, 0 indicating no impairment), and the median Child Quality of Life Questionnaire (CQOL) function score was 26 (range 0-105, 0 indicating no impairment). Family activity, measured by the Child Health Questionnaire (CHQ-PF50), was also moderately impaired by scleroderma, with a median score of 83 (0-100, 100 indicating no impairment). scleroderma had only a moderate effect on quality of life and physical function as measured by the 4 validated instruments. Although a small number of children reported greater impairment, this is an encouraging finding, given its potential disfiguring and debilitating effects.

  17. Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.; Plaut, Karen; Meeker, Gabrielle B.; Sun, Sid (Technical Monitor)

    2000-01-01

    The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories. The habitats provide all basic life support capabilities including temperature control, humidity monitoring and control, waste management, food, media and water delivery as well as adjustable lighting. All habitats will have either an internal centrifuge or are fitted to the 2.5-meter diameter centrifuge allowing for variable centrifugation up to 2 g. Specimen chambers are removable so that the specimens can be handled in the life sciences glovebox. Laboratory support equipment is provided for handling the specimens. This includes a compound and dissecting microscope with advanced video imaging, mass measuring devices, refrigerated centrifuge for processing biological samples, pH meter, fixation and complete cryogenic storage capabilities. The research capabilities provided by the fundamental biology facilities will allow for flexibility and efficiency for long term research on the International Space Station.

  18. The relative influence of geographic location and reach-scale habitat on benthic invertebrate assemblages in six ecoregions

    USGS Publications Warehouse

    Munn, M.D.; Waite, I.R.; Larsen, D.P.; Herlihy, A.T.

    2009-01-01

    The objective of this study was to determine the relative influence of reach-specific habitat variables and geographic location on benthic invertebrate assemblages within six ecoregions across the Western USA. This study included 417 sites from six ecoregions. A total of 301 taxa were collected with the highest richness associated with ecoregions dominated by streams with coarse substrate (19-29 taxa per site). Lowest richness (seven to eight taxa per site) was associated with ecoregions dominated by fine-grain substrate. Principle component analysis (PCA) on reach-scale habitat separated the six ecoregions into those in high-gradient mountainous areas (Coast Range, Cascades, and Southern Rockies) and those in lower-gradient ecoregions (Central Great Plains and Central California Valley). Nonmetric multidimensional scaling (NMS) models performed best in ecoregions dominated by coarse-grain substrate and high taxa richness, along with coarse-grain substrates sites combined from multiple ecoregions regardless of location. In contrast, ecoregions or site combinations dominated by fine-grain substrate had poor model performance (high stress). Four NMS models showed that geographic location (i.e. latitude and longitude) was important for: (1) all ecoregions combined, (2) all sites dominated by coarse-grain sub strate combined, (3) Cascades Ecoregion, and (4) Columbia Ecoregion. Local factors (i.e. substrate or water temperature) seem to be overriding factors controlling invertebrate composition across the West, regardless of geographic location. ?? The Author(s) 2008.

  19. Surveillance of biting midges (Culicoides spp.) in Northern Ireland: influence of seasonality, surrounding habitat and livestock housing.

    PubMed

    Jess, S; Thompson, G M; Clawson, S; Forsythe, I W N; Rea, I; Gordon, A W; Murchie, A K

    2018-03-01

    Biting midges, Culicoides spp. (Diptera: Ceratopogonidae), are important vectors of viral pathogens. Following the outbreak of bluetongue serotype 8 in Europe between 2006 and 2009, many Culicoides surveillance programmes were initiated to identify vector-active periods, in accordance with European Commission regulation 2007/1266/EC. This study utilized surveillance data from 4 years of continuous light-trapping at 14 sites in Northern Ireland. The number of captured Culicoides varied from none during the vector-free period (December-April) to more than 36 000 per night during peak activity in the summer. The Obsoletus group represented 75% of Culicoides collected and the Pulicaris group represented 21%. A total of 91% of Culicoides were female, of which 42% were parous. Abundance data, sex ratios and parous rates suggested that both the Obsoletus and Pulicaris groups underwent three generations/year. The Obsoletus group was associated with cattle-rearing habitats and woodland, the Impunctatus group was found in habitats related to sheep rearing and the Pulicaris group were associated with both cattle and sheep. Housing did not reduce incursion of female Obsoletus group Culicoides but it did for males and for the Pulicaris group Culicoides. The influence of housing was strongly affected by time of year, probably reflecting the presence of livestock indoors/outdoors. © 2017 The Royal Entomological Society.

  20. A rehabilitation plan for walleye populations and habitats in Lake Superior

    USGS Publications Warehouse

    Hoff, Michael H.

    2003-01-01

    The walleye (Stizostedion vitreum vitreum) has been historically important in regional fisheries and fish communities in large bays, estuaries, and rivers of Lake Superior. Significant negative impacts on the species caused by overharvesting, habitat degradation, and pollution during the late 1800s and early 1900s have led to the preparation of a strategic rehabilitation plan. The lakewide goal is to maintain, enhance, and rehabilitate habitat for walleye and to establish self-sustaining populations in areas where walleyes historically lived. Population objectives that support the goal are to increase the abundance of juvenile and adult walleyes in selected areas. Habitat objectives that support the goal include increasing spawning and nursery habitat in four areas: enhancing fish passage, reducing sedimentation, increasing water quality, and reducing contaminants in walleyes. Progress toward achieving the habitat objectives should be measured by documenting increases in spawning and nursery habitats, resolving fish-passage issues, reducing sediments in rivers, and reducing contaminant levels in walleyes. Stocking various life stages of walleye should be considered to rehabilitate certain degraded populations. Total annual mortality of walleye populations should be less than 45% to allow populations to either increase or be maintained at target levels of abundance. Routine assessments should focus on gathering the data necessary to evaluate abundance and mortality and on taking inventories of spawning and nursery habitats. Research should be conducted to understand the specific habitat requirements for Lake Superior walleye populations and the habitat-abundance relationships for populations and for the lake as a whole.

  1. Exploring trophic strategies of exotic caprellids (Crustacea: Amphipoda): Comparison between habitat types and native vs introduced distribution ranges

    NASA Astrophysics Data System (ADS)

    Ros, Macarena; Tierno de Figueroa, José Manuel; Guerra-García, José Manuel; Navarro-Barranco, Carlos; Lacerda, Mariana Baptista; Vázquez-Luis, Maite; Masunari, Setuko

    2014-02-01

    The trophic ecology of non-native species is a key aspect to understand their invasion success and the community effects. Despite the important role of caprellid amphipods as trophic intermediates between primary producers and higher levels of marine food webs, there is very little information on their feeding habits. This is the first comprehensive study on the trophic strategies of two co-occurring introduced caprellids in the Spanish coasts: Caprella scaura and Paracaprella pusilla. The diet of 446 specimens of C. scaura and 230 of P. pusilla was analyzed to investigate whether there were differences in the feeding habits in relation to habitat characteristics (natural vs artificial hard substrata), type of host substrata (bryozoans and hydroids) and native vs introduced distribution ranges (Brazil vs Spain). Results revealed differences in diet preferences of the two species that have important implications for their trophic behaviour and showed a limited food overlap, which may favour their coexistence in introduced areas. In general terms, P. pusilla is a predator species, showing preference by crustacean prey in all of its life stages, while C. scaura feeds mainly on detritus. Although no sex-related diet shifts were observed in either of the species, evidence of ontogenetic variation in diet of C. scaura was found, with juveniles feeding on more amount of prey than adults. No diet differences were found between native and introduced populations within the same habitat type. However, P. pusilla exhibited a shift in its diet when different habitats were compared in the same distribution area, and C. scaura showed a flexible feeding behaviour between different host substrata in the same habitat type. This study shows that habitat characteristics at different scales can have greater influence on the feeding ecology of exotic species than different distribution ranges, and support the hypothesis that a switch between feeding strategies depending on habitat

  2. Patch dynamics and the timing of colonization-abandonment events by male Kirtland’s Warblers in an early succession habitat

    USGS Publications Warehouse

    Donner, Deahn M.; Ribic, Christine; Probst, John R.

    2010-01-01

    Habitat colonization and abandonment affects the distribution of a species in space and time, ultimately influencing the duration of time habitat is used and the total area of habitat occupied in any given year. Both aspects have important implications to long-term conservation planning. The importance of patch isolation and area to colonization–extinction events is well studied, but little information exists on how changing regional landscape structure and population dynamics influences the variability in the timing of patch colonization and abandonment events. We used 26 years of Kirtland’s Warbler (Dendroica kirtlandii) population data taken during a habitat restoration program (1979–2004) across its historical breeding range to examine the influence of patch attributes and temporal large-scale processes, specifically the rate of habitat turnover and fraction of occupied patches, on the year-to-year timing of patch colonization and abandonment since patch origin. We found the timing of patch colonization and abandonment was influenced by patch and large-scale regional factors. In this system, larger patches were typically colonized earlier (i.e., at a younger age) and abandoned later than smaller patches. Isolated patches (i.e., patches farther from another occupied patch) were generally colonized later and abandoned earlier. Patch habitat type affected colonization and abandonment; colonization occurred at similar patch ages between plantation and wildfire areas (9 and 8.5 years, respectively), but plantations were abandoned at earlier ages (13.9 years) than wildfire areas (16.4 years) resulting in shorter use. As the fraction of occupied patches increased, patches were colonized and abandoned at earlier ages. Patches were abandoned at older ages when the influx of new habitat patches was at low and high rates. Our results provide empirical support for the temporal influence of patch dynamics (i.e., patch destruction, creation, and succession) on

  3. Stream habitat characteristics of fixed sites in the western Lake Michigan drainages, Wisconsin and Michigan, 1993-95

    USGS Publications Warehouse

    Fitzpatrick, F.A.; Giddings, E.M.

    1997-01-01

    Results from this study illustrate the need for collection of habitat data at multiple scales along with water-chemistry data for determining major influences on distribution of aquatic communities. These results also indicate the importance of collecting land use, geological, and geomorphic information at the drainage-basin level to adequately describe how natural and human factors influence local aquatic habitat conditions.

  4. The Influence of Life Events and Psychological Stress on Objectively Measured Physical Activity: A 12-Month Longitudinal Study.

    PubMed

    Paluch, Amanda E; Shook, Robin P; Hand, Gregory A; O'Connor, Daniel P; Wilcox, Sara; Drenowatz, Clemens; Baruth, Meghan; Burgess, Stephanie; Blair, Steven N

    2018-05-01

    This study examined how life event occurrences and stressfulness influence objectively measured light through vigorous physical activity (PA) among young adults. Every 3 months over a 12-month period, 404 healthy young adults completed questionnaires on the occurrence and stress of 16 life events and wore an accelerometer for 10 days. A modest positive relationship was seen between cumulative life event occurrences [between effect: β = 22.2 (9.7) min/d, P = .02] and cumulative stress [between effect: β = 7.6 (2.9) min/d, P = .01] with light through vigorous PA among men. When considering events individually, job change, starting a first job, beginning a mortgage, and changes in a relationship influenced men's PA. For women, mortgage, starting a first job, job change, and engagement had significant associations. Life event stressfulness influenced PA in women more than in men. For men, stress from changes in a relationship or job positively influenced PA. Stress of a mortgage, quitting a job, changing jobs or a first job influenced women's PA. Considering each life event individually was more informative than the summation of life events or summation of stress. Specific life events substantially altered PA, and this change varied by gender, direction of association, and PA intensity and duration.

  5. Managing harvest and habitat as integrated components

    USGS Publications Warehouse

    Osnas, Erik; Runge, Michael C.; Mattsson, Brady J.; Austin, Jane E.; Boomer, G. S.; Clark, R. G.; Devers, P.; Eadie, J. M.; Lonsdorf, E. V.; Tavernia, Brian G.

    2014-01-01

    In 2007, several important initiatives in the North American waterfowl management community called for an integrated approach to habitat and harvest management. The essence of the call for integration is that harvest and habitat management affect the same resources, yet exist as separate endeavours with very different regulatory contexts. A common modelling framework could help these management streams to better understand their mutual effects. Particularly, how does successful habitat management increase harvest potential? Also, how do regional habitat programmes and large-scale harvest strategies affect continental population sizes (a metric used to express habitat goals)? In the ensuing five years, several projects took on different aspects of these challenges. While all of these projects are still on-going, and are not yet sufficiently developed to produce guidance for management decisions, they have been influential in expanding the dialogue and producing some important emerging lessons. The first lesson has been that one of the more difficult aspects of integration is not the integration across decision contexts, but the integration across spatial and temporal scales. Habitat management occurs at local and regional scales. Harvest management decisions are made at a continental scale. How do these actions, taken at different scales, combine to influence waterfowl population dynamics at all scales? The second lesson has been that consideration of the interface of habitat and harvest management can generate important insights into the objectives underlying the decision context. Often the objectives are very complex and trade-off against one another. The third lesson follows from the second – if an understanding of the fundamental objectives is paramount, there is no escaping the need for a better understanding of human dimensions, specifically the desires of hunters and nonhunters and the role they play in conservation. In the end, the compelling question is

  6. Ecological consequences of the MPB epidemic for habitats and populations of wildlife [Chapter 5

    Treesearch

    Beth Hahn; Vicki Saab; Barbara Bentz; Rachel Loehman; Bob Keane

    2014-01-01

    Wildlife biologists must balance a diverse array of ecological and social considerations in managing species and habitats. The challenges of managing species and habitats in dynamic landscapes are influenced by diverse factors, including natural disturbances, vegetation development, and anthropogenic-mediated changes, such as climate change, management activities, and...

  7. Scale dependence in habitat selection: The case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain)

    Treesearch

    Maria C. Mateo Sanchez; Samuel A. Cushman; Santiago Saura

    2013-01-01

    Animals select habitat resources at multiple spatial scales. Thus, explicit attention to scale dependency in species-habitat relationships is critical to understand the habitat suitability patterns as perceived by organisms in complex landscapes. Identification of the scales at which particular environmental variables influence habitat selection may be as important as...

  8. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon: The Importance of Geomorphic Features in Large Rivers

    PubMed

    Geist; Dauble

    1998-09-01

    / Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. We present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of our conceptual model. We suggest that traditional habitat models and our conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.KEY WORDS: Hyporheic zone; Geomorphology; Spawning habitat; Large rivers; Fall chinook salmon; Habitat management

  9. Forestry herbicide influences on biodiversity and wildlife habitat in southern forests

    Treesearch

    Karl V. Miller; James H. Miller

    2004-01-01

    In the southern United States, herbicide use continues to increase for timber management in commercial pine (Pinus spp.) plantations, for mod@ing wildlife habitats, and for invasive plant control. Several studies have reported that single applications of forestry herbicides at stand initiation have minor and temporary impacts on plant communities and...

  10. Identifying Greater Sage-Grouse source and sink habitats for conservation planning in an energy development landscape.

    PubMed

    Kirol, Christopher P; Beck, Jeffrey L; Huzurbazar, Snehalata V; Holloran, Matthew J; Miller, Scott N

    2015-06-01

    Conserving a declining species that is facing many threats, including overlap of its habitats with energy extraction activities, depends upon identifying and prioritizing the value of the habitats that remain. In addition, habitat quality is often compromised when source habitats are lost or fragmented due to anthropogenic development. Our objective was to build an ecological model to classify and map habitat quality in terms of source or sink dynamics for Greater Sage-Grouse (Centrocercus urophasianus) in the Atlantic Rim Project Area (ARPA), a developing coalbed natural gas field in south-central Wyoming, USA. We used occurrence and survival modeling to evaluate relationships between environmental and anthropogenic variables at multiple spatial scales and for all female summer life stages, including nesting, brood-rearing, and non-brooding females. For each life stage, we created resource selection functions (RSFs). We weighted the RSFs and combined them to form a female summer occurrence map. We modeled survival also as a function of spatial variables for nest, brood, and adult female summer survival. Our survival-models were mapped as survival probability functions individually and then combined with fixed vital rates in a fitness metric model that, when mapped, predicted habitat productivity (productivity map). Our results demonstrate a suite of environmental and anthropogenic variables at multiple scales that were predictive of occurrence and survival. We created a source-sink map by overlaying our female summer occurrence map and productivity map to predict habitats contributing to population surpluses (source habitats) or deficits (sink habitat) and low-occurrence habitats on the landscape. The source-sink map predicted that of the Sage-Grouse habitat within the ARPA, 30% was primary source, 29% was secondary source, 4% was primary sink, 6% was secondary sink, and 31% was low occurrence. Our results provide evidence that energy development and avoidance of

  11. Temporal segmentation of animal trajectories informed by habitat use

    USGS Publications Warehouse

    van Toor, Marielle L.; Newman, Scott H.; Takekawa, John Y.; Wegmann, Martin; Safi, Kamran

    2016-01-01

    Most animals live in seasonal environments and experience very different conditions throughout the year. Behavioral strategies like migration, hibernation, and a life cycle adapted to the local seasonality help to cope with fluctuations in environmental conditions. Thus, how an individual utilizes the environment depends both on the current availability of habitat and the behavioral prerequisites of the individual at that time. While the increasing availability and richness of animal movement data has facilitated the development of algorithms that classify behavior by movement geometry, changes in the environmental correlates of animal movement have so far not been exploited for a behavioral annotation. Here, we suggest a method that uses these changes in individual–environment associations to divide animal location data into segments of higher ecological coherence, which we term niche segmentation. We use time series of random forest models to evaluate the transferability of habitat use over time to cluster observational data accordingly. We show that our method is able to identify relevant changes in habitat use corresponding to both changes in the availability of habitat and how it was used using simulated data, and apply our method to a tracking data set of common teal (Anas crecca). The niche segmentation proved to be robust, and segmented habitat suitability outperformed models neglecting the temporal dynamics of habitat use. Overall, we show that it is possible to classify animal trajectories based on changes of habitat use similar to geometric segmentation algorithms. We conclude that such an environmentally informed classification of animal trajectories can provide new insights into an individuals' behavior and enables us to make sensible predictions of how suitable areas might be connected by movement in space and time.

  12. The Relative Importance of Janzen-Connell Effects in Influencing the Spatial Patterns at the Gutianshan Subtropical Forest

    PubMed Central

    Zhu, Yan; Getzin, Stephan; Wiegand, Thorsten; Ren, Haibao; Ma, Keping

    2013-01-01

    The Janzen-Connell hypothesis is among the most important theories put forward to explain species coexistence in species-rich communities. However, the relative importance of Janzen-Connell effects with respect to other prominent mechanisms of community assembly, such as dispersal limitation, self-thinning due to competition, or habitat association, is largely unresolved. Here we use data from a 24-ha Gutianshan subtropical forest to address it. First we tested for significant associations of adults, juveniles, and saplings with environmental variables. Second we evaluated if aggregation decreased with life stage. In a third analysis we approximately factored out the effect of habitat association and comprehensively analyzed the spatial associations of intraspecific adults and offspring (saplings, juveniles) of 46 common species at continuous neighborhood distances. We found i) that, except for one, all species were associated with at least one environmental variable during at least one of their life stages, but the frequency of significant habitat associations declined with increasing life stage; ii) a decline in aggregation with increasing life stage that was strongest from juveniles to adults; and iii) intraspecific adult-offspring associations were dominated by positive relationships at neighborhood distances up to 10 m. Our results suggest that Janzen-Connell effects were not the dominant mechanisms in structuring the spatial patterns of established trees in the subtropical Gutianshan forest. The spatial patterns may rather reflect the joint effects of size-dependent self-thinning, dispersal limitation and habitat associations. Our findings contribute to a more comprehensive understanding of the relative importance of Janzen-Connell effects in influencing plant community structure under strong topographic heterogeneity. PMID:24040283

  13. Lake trout spawning habitat in the Great Lakes - a review of current knowledge

    USGS Publications Warehouse

    Marsden, J. Ellen; Casselman, John M.; Edsall, Thomas A.; Elliott, Robert F.; Fitzsimons, John D.; Horns, William H.; Manny, Bruce A.; McAughey, Scott C.; Sly, Peter G.; Swanson, Bruce L.

    1995-01-01

    We review existing information on lake trout spawning habitat, which might indicate whether habitat is now a limiting factor in lake trout reproductive success. Lake trout spawning habitat quality is defined by the presence or absence of olfactory cues for homing, reef location with respect to the shoreline, water depth, proximity to nursery areas, reef size, contour, substrate size and shape, depth of interstitial spaces, water temperature at spawning time, water quality in interstitial spaces, and the presence of egg and fry predators. Data on factors which attracted native spawners to spawning reefs are lacking, due to the absence of historic data on egg deposition. No direct evidence of egg deposition has been collected from sites deeper than 18 m. Interstitial space and, therefore, substrate size and shape, appear to be critical for both site selection by adults and protection of eggs and fry. Water quality is clearly important for egg incubation, but the critical parameters which define water quality have not yet been well determined in the field. Exposure to wave energy, dictated in part by reef location, may maintain high water quality but may also damage or dislodge eggs. The importance of olfactory cues, water temperature, and proximity to nursery habitat to spawning trout is unclear. Limited data suggest that egg and fry predators, particularly exotic species, may critically affect fry production and survival. Although availability of physical spawning habitat is probably not limiting lake trout reproduction, changes in water quality and species composition may negatively affect early life stages. This review of habitat factors that affect early life stages of lake trout suggests several priorities for research and management.

  14. Naturalization of European plants on other continents: The role of donor habitats.

    PubMed

    Kalusová, Veronika; Chytrý, Milan; van Kleunen, Mark; Mucina, Ladislav; Dawson, Wayne; Essl, Franz; Kreft, Holger; Pergl, Jan; Weigelt, Patrick; Winter, Marten; Pyšek, Petr

    2017-12-26

    The success of European plant species as aliens worldwide is thought to reflect their association with human-disturbed environments. However, an explicit test including all human-made, seminatural and natural habitat types of Europe, and their contributions as donor habitats of naturalized species to the rest of the globe, has been missing. Here we combine two databases, the European Vegetation Checklist and the Global Naturalized Alien Flora, to assess how human influence in European habitats affects the probability of naturalization of their plant species on other continents. A total of 9,875 native European vascular plant species were assigned to 39 European habitat types; of these, 2,550 species have become naturalized somewhere in the world. Species that occur in both human-made habitats and seminatural or natural habitats in Europe have the highest probability of naturalization (64.7% and 64.5% of them have naturalized). Species associated only with human-made or seminatural habitats still have a significantly higher probability of becoming naturalized (41.7% and 28.6%, respectively) than species confined to natural habitats (19.4%). Species associated with arable land and human settlements were recorded as naturalized in the largest number of regions worldwide. Our findings highlight that plant species' association with native-range habitats disturbed by human activities, combined with broad habitat range, play an important role in shaping global patterns of plant invasions.

  15. Use of sand wave habitats by silver hake

    USGS Publications Warehouse

    Auster, P.J.; Lindholm, J.; Schaub, S.; Funnell, G.; Kaufman, L.S.; Valentine, P.C.

    2003-01-01

    Silver hake Merluccius bilinearis are common members of fish communities in sand wave habitats on Georges Bank and on Stellwagen Bank in the Gulf of Maine. Observations of fish size v. sand wave period showed that silver hake are not randomly distributed within sand wave landscapes. Regression analyses showed a significant positive relationship between sand wave period and fish length. Correlation coefficients, however, were low, suggesting other interactions with sand wave morphology, the range of current velocities, and available prey may also influence their distribution. Direct contact with sand wave habitats varied over diel periods, with more fish resting on the seafloor during daytime than at night. Social foraging, in the form of polarized groups of fish swimming in linear formations during crepuscular and daytime periods, was also observed. Sand wave habitats may provide shelter from current flows and mediate fish-prey interactions. ?? 2003 The Fisheries Society of the British Isles.

  16. Habitat model for the Florida Scrub Jay on John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Breininger, David R.

    1992-01-01

    The Florida Scrub Jay is endemic to Florida. The John F. Kennedy Space Center (KSC) provides habitat for one of the three largest populations of the Florida Scrub Jay. This threatened bird occupies scrub, slash pine flatwoods, disturbed scrub, and coastal strand on KSC. Densities of Florida Scrub Jays were shown to vary with habitat characteristics but not necessarily with vegetation type. Relationships between Florida Scrub Jay densities and habitat characteristics were used to develop a habitat model to provide a tool to compare alternative sites for new facilities and to quantify environmental impacts. This model is being tested using long term demographic studies of colorbanded Florida Scrub Jays. Optimal habitat predicted by the model has greater than or equal to 50 percent of the shrub canopy comprised of scrub oaks, 20-50 percent open space or scrub oak vegetation within 100 m of a ruderal edge, less than or equal to 15 percent pine canopy cover, a shrub height of 120-170 cm, and is greater than or equal to 100 m from a forest. This document reviews life history, social behavior, food, foraging habitat, cover requirements, characteristics of habitat on KSC, and habitat preferences of the Florida Scrub Jay. Construction of the model and its limitations are discussed.

  17. Environmental Monitoring as Part of Life Support for the Crew Habitat for Lunar and Mars Missions

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.

    2010-01-01

    Like other crewed space missions, future missions to the moon and Mars will have requirements for monitoring the chemical and microbial status of the crew habitat. Monitoring the crew habitat becomes more critical in such long term missions. This paper will describe the state of technology development for environmental monitoring of lunar lander and lunar outpost missions, and the state of plans for future missions.

  18. Shift from slow- to fast-water habitats accelerates lineage and phenotype evolution in a clade of Neotropical suckermouth catfishes (Loricariidae: Hypoptopomatinae).

    PubMed

    Roxo, Fábio F; Lujan, Nathan K; Tagliacollo, Victor A; Waltz, Brandon T; Silva, Gabriel S C; Oliveira, Claudio; Albert, James S

    2017-01-01

    Identifying habitat characteristics that accelerate organismal evolution is essential to understanding both the origins of life on Earth and the ecosystem properties that are most critical to maintaining life into the future. Searching for these characteristics on a large scale has only recently become possible via advances in phylogenetic reconstruction, time-calibration, and comparative analyses. In this study, we combine these tools with habitat and phenotype data for 105 species in a clade of Neotropical suckermouth catfishes commonly known as cascudinhos. Our goal was to determine whether riverine mesohabitats defined by different flow rates (i.e., pools vs. rapids) and substrates (plants vs. rocks) have affected rates of cascudinho cladogenesis and morphological diversification. In contrast to predictions based on general theory related to life in fast-flowing, rocky riverine habitats, Neoplecostomini lineages associated with these habitats exhibited increased body size, head shape diversity, and lineage and phenotype diversification rates. These findings are consistent with a growing understanding of river rapids as incubators of biological diversification and specialization. They also highlight the urgent need to conserve rapids habitats throughout the major rivers of the world.

  19. An analytical method for assessing the spatial and temporal variation of juvenile Atlantic salmon habitat in an upland Scottish river.

    NASA Astrophysics Data System (ADS)

    Buddendorf, B.; Fabris, L.; Malcolm, I.; Lazzaro, G.; Tetzlaff, D.; Botter, G.; Soulsby, C.

    2016-12-01

    Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Stream hydrodynamics have a strong influence on habitat quality and affect the distribution and density of juvenile salmon. As stream hydrodynamics directly relate to stream flow variability and channel morphology, the effects of hydroclimatic drivers on the spatial and temporal variability of habitat suitability can be assessed. Critical Displacement Velocity (CDV), which describes the velocity at which fish can no longer hold station, is one potential approach for characterising habitat suitability. CDV is obtained using an empirical formula that depends on fish size and stream temperature. By characterising the proportion of a reach below CDV it is possible to assess the suitable area. We demonstrate that a generic analytical approach based on field survey and hydraulic modelling can provide insights on the interactions between flow regime and average suitable area (SA) for juvenile salmon that could be extended to other aquatic species. Analytical functions are used to model the pdf of stream flow p(q) and the relationship between flow and suitable area SA(q). Theoretically these functions can assume any form. Here we used a gamma distribution to model p(q) and a gamma function to model SA(q). Integrating the product of these functions we obtain an analytical expression of SA. Since parameters of p(q) can be estimated from meteorological and flow measurements, they can be used directly to predict the effect of flow regime on SA. We show the utility of the approach with reference to 6 electrofishing sites in a single river system where long term (50 years) data on spatially distributed juvenile salmon densities are available.

  20. Centrifuge Facility Conceptual System Study. Volume 1: Facility overview and habitats

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor)

    1990-01-01

    The results are presented for a NASA Phase 1 study conducted from mid 1987 through mid 1989 at Ames Research Center. The Centrifuge Facility is the major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using non-human specimens (such as small primates, rodents, plants, insects, cell tissues). Five systems are described which comprise the Facility: habitats, holding units, centrifuge, glovebox, and service unit. Volume 1 presents a facility overview and describes the habitats - modular units which house living specimens.

  1. Masticophis flagellum selects florida scrub habitat at multiple spatial scales

    USGS Publications Warehouse

    Halstead, B.J.; Mushinsky, H.R.; McCoy, E.D.

    2009-01-01

    The use of space by individual animals strongly influences the spatial extent, abundance, and growth rates of their populations. We analyzed the spatial ecology and habitat selection of Masticophis flagellum (the coachwhip) at three different scales to determine which habitats are most important to this species. Home ranges and mean daily displacements of M. flagellum in Florida were large compared to individuals in other populations of this species. Home ranges contained a greater proportion of Florida scrub habitat than did the study site as a whole, and individuals selected Florida scrub habitat within their home ranges. For both selection of the home range within the study site and selection of habitats within the home range, mesic cutthroat and hydric swamp habitats were avoided. Standardized selection ratios of Florida scrub patches were positively correlated with lizard abundance. Several non-mutually exclusive mechanisms, including foraging success (prey abundance, prey vulnerability, and foraging efficiency), abundance of refugia, and thermoregulatory opportunity may underlie the selection of Florida scrub by M. flagellum. Historic rarity and anthropogenic loss and fragmentation of Florida scrub habitat, coupled with the long-distance movements, large home ranges, and selection of Florida scrub by M. flagellum, indicate that large contiguous tracts of land containing Florida scrub will be essential for the persistence of M. flagellum in central Florida. ?? 2009 by The Herpetologists' League, Inc.

  2. Skin problems of the stump in lower-limb amputees: 2. Influence on functioning in daily life.

    PubMed

    Meulenbelt, Henk E J; Geertzen, Jan H B; Jonkman, Marcel F; Dijkstra, Pieter U

    2011-03-01

    The aim of this study was to analyse the influence of stump skin problems on functioning in daily life in lower-limb amputees. A cross-sectional study was performed by means of a questionnaire containing 9 questions assessing functioning in daily life. Question scores were added to give a total score (range 0 (no influence) to 27 (maximum negative influence)). Two thousand and thirty-nine people were invited to participate, with 805 participants completing a questionnaire. Of these, 507 reported one or more skin problems. Skin problems had a negative influence on ability to perform household tasks, prosthesis use, social functioning, and participation in sports. The mean total score was 5.5 ± 4.1. This correlated significantly with the number of skin complaints (r = 0.483; p = 0.01). In linear regression analyses, gender (β = -0.15) and number of skin problems (β = 0.25) accounted for 23% of the total score. This study confirms the influence of skin problems on functioning in daily life.

  3. Ecology of bonytail and razorback sucker and the role of off-channel habitats in their recovery

    USGS Publications Warehouse

    Mueller, Gordon A.

    2006-01-01

    This report presents new findings, updates existing information, and describes what may well represent the only practical approach to these species’ conservation and recovery. Chapter 1 provides an overview of the Colorado River system from its origin to the Gulf of California and includes a description of propagation and stocking programs which have not been described elsewhere. The report also updates what is known or suspected on the life history and ecology of these two endangered fishes. Chapter 2 describes the successful recruitment of both species at an oxbow pond on the Cibola National Wildlife Refuge in Arizona, discusses factors that contribute to completion of the life cycle of both fishes, and provides recommendations for future management of the impoundment. Chapter 3 provides historical evidence that oxbow habitats were formed historically in years of high runoff and the importance of these habitats for survival and evolution of native fishes. It also summarizes key features of habitats that can serve as sanctuaries that enhance early survival of the endangered fishes and allow the fish to complete their entire life cycles.

  4. Variables influencing the presence of subyearling fall Chinook salmon in shoreline habitats of the Hanford Reach, Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Clark, L.O.; Garland, R.D.; Rondorf, D.W.

    2006-01-01

    Little information currently exists on habitat use by subyearling fall Chinook salmon Oncorhynchus tshawytscha rearing in large, main-stem habitats. We collected habitat use information on subyearlings in the Hanford Reach of the Columbia River during May 1994 and April-May 1995 using point abundance electrofishing. We analyzed measures of physical habitat using logistic regression to predict fish presence and absence in shoreline habitats. The difference between water temperature at the point of sampling and in the main river channel was the most important variable for predicting the presence and absence of subyearlings. Mean water velocities of 45 cm/s or less and habitats with low lateral bank slopes were also associated with a greater likelihood of subyearling presence. Intermediate-sized gravel and cobble substrates were significant predictors of fish presence, but small (<32-mm) and boulder-sized (>256-mm) substrates were not. Our rearing model was accurate at predicting fish presence and absence using jackknifing (80% correct) and classification of observations from an independent data set (76% correct). The habitat requirements of fall Chinook salmon in the Hanford Reach are similar to those reported for juvenile Chinook salmon in smaller systems but are met in functionally different ways in a large river.

  5. Human Activity and Habitat Characteristics Influence Shorebird Habitat Use and Behavior at a Vancouver Island Migratory Stopover Site.

    PubMed

    Murchison, Colleen R; Zharikov, Yuri; Nol, Erica

    2016-09-01

    Pacific Rim National Park Reserve on Vancouver Island, British Columbia, Canada, has 16 km of coastal beaches that attract many thousands of people and shorebirds (S.O. Charadrii) every year. To identify locations where shorebirds concentrate and to determine the impact of human activity and habitat characteristics on shorebirds, we conducted shorebird and visitor surveys at 20 beach sectors (across 20 total km of beach) during fall migration in 2011-2014 and spring migration in 2012 and 2013. Using zero-inflated negative binomial regression and a model selection approach, we found that beach width and number of people influenced shorebird use of beach sectors (Bayesian information criterion weight of top model = 0.69). Shorebird absence from beaches was associated with increasing number of people (parameter estimate from top model: 0.38; 95 % CI 0.19, 0.57) and decreasing beach width (parameter estimate: -0.32; 95 % CI -0.47, -0.17). Shorebirds spent more time at wider beaches (parameter estimate: 0.68; 95 % CI 0.49, 0.87). Close proximity to people increased the proportion of time shorebirds spent moving, while shorebirds spent more time moving and less time foraging on wider beaches than on narrower ones. Shorebird disturbance increased with proximity of people, activity speed, and presence of dogs. Based on our findings, management options, for reducing shorebird disturbance at Pacific Rim National Park Reserve and similar shorebird stopover areas, include mandatory buffer distances between people and shorebirds, restrictions on fast-moving activities (e.g., running, biking), prohibiting dogs, and seasonal closures of wide beach sections.

  6. Human Activity and Habitat Characteristics Influence Shorebird Habitat Use and Behavior at a Vancouver Island Migratory Stopover Site

    NASA Astrophysics Data System (ADS)

    Murchison, Colleen R.; Zharikov, Yuri; Nol, Erica

    2016-09-01

    Pacific Rim National Park Reserve on Vancouver Island, British Columbia, Canada, has 16 km of coastal beaches that attract many thousands of people and shorebirds (S.O. Charadrii) every year. To identify locations where shorebirds concentrate and to determine the impact of human activity and habitat characteristics on shorebirds, we conducted shorebird and visitor surveys at 20 beach sectors (across 20 total km of beach) during fall migration in 2011-2014 and spring migration in 2012 and 2013. Using zero-inflated negative binomial regression and a model selection approach, we found that beach width and number of people influenced shorebird use of beach sectors (Bayesian information criterion weight of top model = 0.69). Shorebird absence from beaches was associated with increasing number of people (parameter estimate from top model: 0.38; 95 % CI 0.19, 0.57) and decreasing beach width (parameter estimate: -0.32; 95 % CI -0.47, -0.17). Shorebirds spent more time at wider beaches (parameter estimate: 0.68; 95 % CI 0.49, 0.87). Close proximity to people increased the proportion of time shorebirds spent moving, while shorebirds spent more time moving and less time foraging on wider beaches than on narrower ones. Shorebird disturbance increased with proximity of people, activity speed, and presence of dogs. Based on our findings, management options, for reducing shorebird disturbance at Pacific Rim National Park Reserve and similar shorebird stopover areas, include mandatory buffer distances between people and shorebirds, restrictions on fast-moving activities (e.g., running, biking), prohibiting dogs, and seasonal closures of wide beach sections.

  7. Fish communities across a spectrum of habitats in the western Beaufort Sea and Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Logerwell, E.; Busby, M.; Carothers, C.; Cotton, S.; Duffy-Anderson, J.; Farley, E.; Goddard, P.; Heintz, R.; Holladay, B.; Horne, J.; Johnson, S.; Lauth, B.; Moulton, L.; Neff, D.; Norcross, B.; Parker-Stetter, S.; Seigle, J.; Sformo, T.

    2015-08-01

    The increased scientific interest in the Arctic due to climate change and potential oil and gas development has resulted in numerous surveys of Arctic marine fish communities since the mid-2000s. Surveys have been conducted in nearly all Arctic marine fish habitats: from lagoons, beaches and across the continental shelf and slope. This provides an opportunity only recently available to study Arctic fish communities across a spectrum of habitats. We examined fish survey data from lagoon, beach, nearshore benthic, shelf pelagic and shelf benthic habitats in the western Beaufort Sea and Chukchi Sea. Specifically, we compare and contrast relative fish abundance and length (a proxy for age) among habitats and seas. We also examined ichthyoplankton presence/absence and abundance of dominant taxa in the shelf habitat. Our synthesis revealed more similarities than differences between the two seas. For example, our results show that the nearshore habitat is utilized by forage fish across age classes, and is also a nursery area for other species. Our results also indicated that some species may be expanding their range to the north, for example, Chinook Salmon. In addition, we documented the presence of commercially important taxa such as Walleye Pollock and flatfishes (Pleuronectidae). Our synthesis of information on relative abundance and age allowed us to propose detailed conceptual models for the life history distribution of key gadids in Arctic food webs: Arctic and Saffron Cod. Finally, we identify research gaps, such as the need for surveys of the surface waters of the Beaufort Sea, surveys of the lagoons of the Chukchi Sea, and winter season surveys in all areas. We recommend field studies on fish life history that sample multiple age classes in multiple habitats throughout the year to confirm, resolve and interpret the patterns in fish habitat use that we observed.

  8. Use of Urban Marine Habitats by Foraging Wading Birds

    EPA Science Inventory

    Wading birds that utilize coastal habitats may be at risk from increasing urbanization near their foraging and stopover sites. However, the relative importance of human disturbance in the context of other landscape and biological factors that may be influencing their distributio...

  9. Invasive lionfish use a diversity of habitats in Florida

    USGS Publications Warehouse

    Schofield, Pamela J.; Akins, Lad; Gregoire-Lucente, Denise R.; Pawlitz, Rachel J.

    2014-01-01

    Two species of lionfish (Pterois volitans and Pterois miles) are the first marine fishes known to invade and establish self-sustaining populations along the eastern seaboard of the United States. First documented off the coast of Florida in 1985, lionfish are now found along the Atlantic coast of the United States as well as in the Caribbean Sea and Gulf of Mexico. Although long-term effects of this invasion are not yet fully known, there is early evidence that lionfish are negatively impacting native marine life.The lionfish invasion raises questions about which types of habitat the species will occupy in its newly invaded ecosystem. In their native range, lionfish are found primarily on coral reefs but sometimes are found in other habitats such as seagrasses and mangroves. This fact sheet documents the diversity of habitat types in which invasive lionfish have been reported within Florida’s coastal waters, based on lionfish sightings recorded in the U.S. Geological Survey Nonindigenous Aquatic Species database (USGS-NAS).

  10. Habitat structure mediates biodiversity effects on ecosystem properties

    PubMed Central

    Godbold, J. A.; Bulling, M. T.; Solan, M.

    2011-01-01

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised. PMID:21227969

  11. Habitat structure mediates biodiversity effects on ecosystem properties.

    PubMed

    Godbold, J A; Bulling, M T; Solan, M

    2011-08-22

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.

  12. Habitat influence on antioxidant activity and tannin concentrations of Spondias tuberosa.

    PubMed

    de Sousa Araújo, Thiago Antônio; de Almeida e Castro, Valerium Thijan Nobre; de Amorim, Elba Lúcia Cavalcanti; de Albuquerque, Ulysses Paulino

    2012-06-01

    Different habitat conditions can be responsible for the production of secondary metabolites and for the antioxidant properties of plant products. Thus, the aim of this study was to evaluate whether the antioxidant activity and tannin concentrations in the stem bark of Spondias tuberosa Arruda (Anacardiaceae) varied with collection site. The bark was collected from 25 individual trees, distributed in five different landscape units, as follows: agroforestry gardens, areas of pastures, maize cultivation areas, mountain areas and mountain bases, with the former 3 being considered as anthropogenic habitats, and the latter 2 considered as habitats with native coverage. The study was conducted in the rural area of the city of Altinho, Pernambuco State (Northeast Brazil). The DPPH (1,1-diphenyl-2-picrylhydrazyl) method was used to measure the antioxidant activity and tannin concentrations were evaluated by using the radial diffusion method. The results demonstrated that there were no significant differences among the tannin concentrations of the individuals from the native (6.27% ± 1.75) or anthropogenic areas (4.63% ± 2.55), (H = 2.24; p > 0.05). In contrast, there were significant differences (H = 5.1723; p < 0.05) among the CE₅₀ means of the antioxidant activities of the individuals from the native (32.10 µg/ml ± 5.27) and anthropogenic areas (27.07 µg/ml ± 2.29). However, correlations between the tannin concentrations and antioxidant activity of the extracts were not observed in the native (r = 0.39; p > 0.05) or in the anthropogenic areas (r = 0.38; p > 0.05). Because the variation of the antioxidant capacity of S. tuberosa bark was not accompanied by a variation in the tannin concentration, this property may be related to the presence of other metabolite(s).

  13. Factors influencing young adults' attitudes and knowledge of late-life sexuality among older women.

    PubMed

    Allen, Rebecca S; Petro, Kathryn N; Phillips, Laura L

    2009-03-01

    Although sexuality is valued throughout the lifespan, older women's sexual expression can be influenced by physical, mental and social factors, including attitudes and stereotypes held by younger generations. By gaining an understanding of what influences negative attitudes toward sexuality and beliefs about sexual consent capacity, the stigma associated with sexuality in late life may be reduced. Using vignette methodology in an online survey, we examined older women's health and young adults' (N = 606; mean age = 18.86, SD = 1.42, range 17-36) general knowledge and attitudes toward aging and sexuality, personal sexual behavior, religious beliefs and perceived closeness with an older adult on attitudes towards sexual behavior and perceptions of consent capacity among older women. The health status of older women proved important in determining young adults' acceptance and perception of sexual consent capacity regarding late-life heterosexual/autoerotic and homosexual behaviors. Specifically, young adults expressed lower acceptance and more doubt regarding capacity to consent to sexual expression when the older woman was described as cognitively impaired. Additionally, young adults' personal attitudes toward late-life sexuality, but not knowledge, predicted acceptance toward sexual expression and belief in sexual consent capacity. Attention toward the influence of older women's cognitive health and young adults' attitudes toward late-life sexuality may prove beneficial in designing interventions to decrease the stigma associated with sexual activity in later life.

  14. HABSEED: a Simple Spatially Explicit Meta-Populations Model Using Remote Sensing Derived Habitat Quality Data

    NASA Astrophysics Data System (ADS)

    Heumann, B. W.; Guichard, F.; Seaquist, J. W.

    2005-05-01

    The HABSEED model uses remote sensing derived NPP as a surrogate for habitat quality as the driving mechanism for population growth and local seed dispersal. The model has been applied to the Sahel region of Africa. Results show that the functional response of plants to habitat quality alters population distribution. Plants more tolerant of medium quality habitat have greater distributions to the North while plants requiring only the best habitat are limited to the South. For all functional response types, increased seed production results in diminishing returns. Functional response types have been related to life history tradeoffs and r-K strategies based on the results. Results are compared to remote sensing derived vegetation land cover.

  15. VARIATION IN JUVENILE COHO SALMON END-OF-SUMMER SIZE AND ABUNDANCE: HIERARCHICAL ANALYSIS OF HABITAT EFFECTS

    EPA Science Inventory

    The size of coho salmon juveniles entering the winter has been shown to influence overwinter survival, and hence may be a useful indicator of linkages between summer habitat conditions and subsequent smolt production. We are investigating habitat-specific demographics of juvenile...

  16. Predicting fish community properties within estuaries: Influence of habitat type and other environmental features

    NASA Astrophysics Data System (ADS)

    França, Susana; Vasconcelos, Rita P.; Fonseca, Vanessa F.; Tanner, Susanne E.; Reis-Santos, Patrick; Costa, Maria José; Cabral, Henrique N.

    2012-07-01

    Statistical models predicting species distributions are essential not only to increase knowledge on species but for their application in conservation and ecologically-based management. The variation of fish species richness and abundance in the most representative habitats (saltmarsh, mudflat and subtidal) in five estuaries along the Portuguese coast was analysed through seasonal sampling surveys in 2009. Generalized additive models (GAM) were developed to describe the variation of species richness and abundances with a set of geomorphologic, hydrologic and environmental characteristics from the sampled estuaries and habitats. GAM were chosen as the complex interactions dominating these ecosystems and species distribution are non-linear. Final models built for each estuary and for all estuaries together performed well during the calibration phase and also during the validation phase, where an unused data sub-set from each estuary was used. There was not a similar combination of variables retained by the models for the studied estuaries but factors such as the area of the habitat, the distance to estuary mouth, percentage of mud in the sediment and depth were commonly retained. The partial effect of these predictor variables on the variation of species richness and abundance in the estuaries varied markedly and the importance of preserving the heterogeneity of habitats within estuaries was highlighted. Models for each individual estuary performed better than models for estuaries combined. Predictive models could be useful as a preliminary tool to prepare long-term conservation plans at different scales.

  17. Range expansion and habitat shift triggered elevated diversification of the rice genus (Oryza, Poaceae) during the Pleistocene.

    PubMed

    Lin, Li; Tang, Liang; Bai, Yun-Jun; Tang, Zhi-Yao; Wang, Wei; Chen, Zhi-Duan

    2015-09-03

    The rice genus (Oryza) contains many wild genetic resources that are vital to the well-being of humans. However, little is known about the process by which the genus diversified or the factors that drove its speciation. Here, we integrated the phylogenetic, molecular dating and biogeographic methods to investigate the spatial-temporal patterns of Oryza diversification, and used a series of model tests to examine whether intercontinental migrations and/or key innovations were associated with significant changes in diversification rates in the genus. Oryza became differentiated in tropical Asia in the Miocene. There were two migrations from the ancestral area into Africa and Australia during the Miocene. We inferred at least 10 migration events out of tropical Asia since the Pleistocene, mainly involving the species adapting open habitat. A rapid increase in diversification rates of the whole Oryza occurred during the Pleistocene. Intercontinental migrations from tropical Asia to other tropical regions were positively correlated with shift in habitat, but not with changes in life history. A habitat preference shift from shade tolerant to open habitat predated the burst in diversification rates. Rice species may have been pre-adapted to invade open habitat. Significant increase in diversification rates occurred during the Pleistocene and is associated with range expansion and habitat shift, but not with life history. The rice genus provides an excellent case supporting the idea that range expansion and invasion of novel habitats can drive the diversification of a group.

  18. The influence of mastery on mother's health in middle years: Moderating role of stressful life context.

    PubMed

    King, Victoria; Wickrama, K A S; Klopack, Erick; Lorenz, Frederick O

    2018-06-07

    Using data from 416 middle-aged mothers gathered over the course of a decade, this study examined the influence of mastery trajectories (the initial level and change), on change in physical health. Mastery is defined as one's ability to control and influence his/her life and environment to reach a desired outcome or goal. Both the initial level and change in mastery from 1991 to 1994 were associated with decreased physical health problems over the middle years (1991-2001). Contextual moderation of this association by stressful life contexts including negative life events and work-family conflict was investigated. Moderation analysis showed that under conditions of low contextual life stressors, the level and increase in mastery significantly contributed to decreases in physical health problems in middle-aged mothers. Alternatively, conditions of high contextual life stressors inhibited the ability of mastery to influence physical health of mothers, suggesting that the positive health impact of mastery on physical health is mitigated by stressful life experiences. Implications for the need to maintain important personal resources, such as mastery, during times of stress are discussed. Copyright © 2018 John Wiley & Sons, Ltd.

  19. The Deep Subsurface Biosphere in Igneous Ocean Crust: Frontier Habitats for Microbiological Exploration

    PubMed Central

    Edwards, Katrina J.; Fisher, Andrew T.; Wheat, C. Geoffrey

    2011-01-01

    We discuss ridge flank environments in the ocean crust as habitats for subseafloor microbial life. Oceanic ridge flanks, areas far from the magmatic and tectonic influence of seafloor spreading, comprise one of the largest and least explored microbial habitats on the planet. We describe the nature of selected ridge flank crustal environments, and present a framework for delineating a continuum of conditions and processes that are likely to be important for defining subseafloor microbial "provinces." The basis for this framework is three governing conditions that help to determine the nature of subseafloor biomes: crustal age, extent of fluid flow, and thermal state. We present a brief overview of subseafloor conditions, within the context of these three characteristics, for five field sites where microbial studies have been done, are underway, or have been proposed. Technical challenges remain and likely will limit progress in studies of microbial ridge flank ecosystems, which is why it is vital to select and design future studies so as to leverage as much general understanding as possible from work focused at a small number of sites. A characterization framework such that as presented in this paper, perhaps including alternative or additional physical or chemical characteristics, is essential for achieving the greatest benefit from multidisciplinary microbial investigations of oceanic ridge flanks. PMID:22347212

  20. Demographic consequences of terrestrial habitat loss for pool-breeding amphibians: predicting extinction risks associated with inadequate size of buffer zones.

    PubMed

    Harper, Elizabeth B; Rittenhouse, Tracy A G; Semlitsch, Raymond D

    2008-10-01

    Much of the biodiversity associated with isolated wetlands requires aquatic and terrestrial habitat to maintain viable populations. Current federal wetland regulations in the United States do not protect isolated wetlands or extend protection to surrounding terrestrial habitat. Consequently, some land managers, city planners, and policy makers at the state and local levels are making an effort to protect these wetland and neighboring upland habitats. Balancing human land-use and habitat conservation is challenging, and well-informed land-use policy is hindered by a lack of knowledge of the specific risks of varying amounts of habitat loss. Using projections of wood frog (Rana sylvatica) and spotted salamander (Ambystoma maculatum) populations, we related the amount of high-quality terrestrial habitat surrounding isolated wetlands to the decline and risk of extinction of local amphibian populations. These simulations showed that current state-level wetland regulations protecting 30 m or less of surrounding terrestrial habitat are inadequate to support viable populations of pool-breeding amphibians. We also found that species with different life-history strategies responded differently to the loss and degradation of terrestrial habitat. The wood frog, with a short life span and high fecundity, was most sensitive to habitat loss and isolation, whereas the longer-lived spotted salamander with lower fecundity was most sensitive to habitat degradation that lowered adult survival rates. Our model results demonstrate that a high probability of local amphibian population persistence requires sufficient terrestrial habitat, the maintenance of habitat quality, and connectivity among local populations. Our results emphasize the essential role of adequate terrestrial habitat to the maintenance of wetland biodiversity and ecosystem function and offer a means of quantifying the risks associated with terrestrial habitat loss and degradation.