Sample records for habitat influence macroinvertebrate

  1. Influence of riffle and snag habitat specific sampling on stream macroinvertebrate assemblage measures in bioassessment

    USGS Publications Warehouse

    Wang, L.; Weigel, B.W.; Kanehl, P.; Lohman, K.

    2006-01-01

    Stream macroinvertebrate communities vary naturally among types of habitats where they are sampled, which affects the results of environmental assessment. We analyzed macroinvertebrates collected from riffle and snag habitats to evaluate influences of habitat-specific sampling on taxon occurrence, assemblage measures, and biotic indices. We found considerably more macroinvertebrate taxa unique to snags (143 taxa) than to riffles (75 taxa), and the numbers of taxa found in both riffles and snags (149 taxa) were similar to that found in snags. About 64% of the 47 macroinvertebrate measures we tested differed significantly between riffles and snags. Eighty percent intercepts of regressions between biotic indices and urban or agricultural land uses differed significantly between riffles and snags. The Hilsenhoff biotic index calculated from snag samples explained 69% of the variance of riffle samples and classified 66% of the sites into the same stream health group as the riffle samples. However, four multimetric indices for snag samples explained less than 50% of the variance of riffle samples and classified less than 50% of the sites into the same health group as the riffle samples. We concluded that macroinvertebrate indices developed for riffle/run habitat should not be used for snag samples to assess stream impairment. We recommend developing an index of biotic integrity specifically for snags and using snags as an alternate sampling substrate for streams that naturally lack riffles. ?? Springer Science+Business Media, Inc. 2006.

  2. Multiple stress response of lowland stream benthic macroinvertebrates depends on habitat type.

    PubMed

    Graeber, Daniel; Jensen, Tinna M; Rasmussen, Jes J; Riis, Tenna; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette

    2017-12-01

    Worldwide, lowland stream ecosystems are exposed to multiple anthropogenic stress due to the combination of water scarcity, eutrophication, and fine sedimentation. The understanding of the effects of such multiple stress on stream benthic macroinvertebrates has been growing in recent years. However, the interdependence of multiple stress and stream habitat characteristics has received little attention, although single stressor studies indicate that habitat characteristics may be decisive in shaping the macroinvertebrate response. We conducted an experiment in large outdoor flumes to assess the effects of low flow, fine sedimentation, and nutrient enrichment on the structure of the benthic macroinvertebrate community in riffle and run habitats of lowland streams. For most taxa, we found a negative effect of low flow on macroinvertebrate abundance in the riffle habitat, an effect which was mitigated by fine sedimentation for overall community composition and the dominant shredder species (Gammarus pulex) and by nutrient enrichment for the dominant grazer species (Baetis rhodani). In contrast, fine sediment in combination with low flow rapidly affected macroinvertebrate composition in the run habitat, with decreasing abundances of many species. We conclude that the effects of typical multiple stressor scenarios on lowland stream benthic macroinvertebrates are highly dependent on habitat conditions and that high habitat diversity needs to be given priority by stream managers to maximize the resilience of stream macroinvertebrate communities to multiple stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities.

    PubMed

    Fabricius, K E; De'ath, G; Noonan, S; Uthicke, S

    2014-01-22

    The ecological effects of ocean acidification (OA) from rising atmospheric carbon dioxide (CO2) on benthic marine communities are largely unknown. We investigated in situ the consequences of long-term exposure to high CO2 on coral-reef-associated macroinvertebrate communities around three shallow volcanic CO2 seeps in Papua New Guinea. The densities of many groups and the number of taxa (classes and phyla) of macroinvertebrates were significantly reduced at elevated CO2 (425-1100 µatm) compared with control sites. However, sensitivities of some groups, including decapod crustaceans, ascidians and several echinoderms, contrasted with predictions of their physiological CO2 tolerances derived from laboratory experiments. High CO2 reduced the availability of structurally complex corals that are essential refugia for many reef-associated macroinvertebrates. This loss of habitat complexity was also associated with losses in many macroinvertebrate groups, especially predation-prone mobile taxa, including crustaceans and crinoids. The transition from living to dead coral as substratum and habitat further altered macroinvertebrate communities, with far more taxa losing than gaining in numbers. Our study shows that indirect ecological effects of OA (reduced habitat complexity) will complement its direct physiological effects and together with the loss of coral cover through climate change will severely affect macroinvertebrate communities in coral reefs.

  4. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities

    PubMed Central

    Fabricius, K. E.; De'ath, G.; Noonan, S.; Uthicke, S.

    2014-01-01

    The ecological effects of ocean acidification (OA) from rising atmospheric carbon dioxide (CO2) on benthic marine communities are largely unknown. We investigated in situ the consequences of long-term exposure to high CO2 on coral-reef-associated macroinvertebrate communities around three shallow volcanic CO2 seeps in Papua New Guinea. The densities of many groups and the number of taxa (classes and phyla) of macroinvertebrates were significantly reduced at elevated CO2 (425–1100 µatm) compared with control sites. However, sensitivities of some groups, including decapod crustaceans, ascidians and several echinoderms, contrasted with predictions of their physiological CO2 tolerances derived from laboratory experiments. High CO2 reduced the availability of structurally complex corals that are essential refugia for many reef-associated macroinvertebrates. This loss of habitat complexity was also associated with losses in many macroinvertebrate groups, especially predation-prone mobile taxa, including crustaceans and crinoids. The transition from living to dead coral as substratum and habitat further altered macroinvertebrate communities, with far more taxa losing than gaining in numbers. Our study shows that indirect ecological effects of OA (reduced habitat complexity) will complement its direct physiological effects and together with the loss of coral cover through climate change will severely affect macroinvertebrate communities in coral reefs. PMID:24307670

  5. Relationships of field habitat measurements, visual habitat indices, and land cover to benthic macroinvertebrates in urbanized streams of the Santa Clara Valley, California

    USGS Publications Warehouse

    Fend, S.V.; Carter, J.L.; Kearns, F.R.

    2005-01-01

    We evaluated several approaches for measuring natural and anthropogenic habitat characteristics to predict benthic macroinvertebrate assemblages over a range of urban intensity at 85 stream sites in the Santa Clara Valley, California. Land cover was summarized as percentage urban land cover and impervious area within upstream buffers and the upstream subwatersheds. Field measurements characterized water chemistry, channel slope, sediment, and riparian canopy. In . addition to applying the visual-based habitat assessment in U.S. Environmental Protection Agency's rapid bioassessment protocol, we developed a simplified urban habitat assessment index based on turbidity, fine sediment deposition, riparian condition, and channel modification. Natural and anthropogenic habitat variables covaried along longitudinal stream gradients and were highly correlated with elevation. At the scale of the entire watershed, benthic macroinvertebrate measures were equally correlated with variables expressing natural gradients and urbanization effects. When natural gradients were reduced by partitioning sites into ecoregion subsection groupings, habitat variables most highly correlated with macroinvertebrate measures differed between upland and valley floor site groups. Among the valley floor sites, channel slope and physical modification of channel and riparian habitats appeared more important than upstream land cover or water quality in determining macroinvertebrate richness and ordination scores. Among upland sites, effects of upstream reservoir releases on habitat quality appeared important. Rapid habitat evaluation methods appeared to be an effective method for describing habitat features important to benthic macroinvertebrates when adapted for the region and the disturbance of interest. ?? 2005 by the American Fisheries Society.

  6. Spatial and temporal variability of macroinvertebrates in spawning and non-spawning habitats during a salmon run in Southeast Alaska.

    PubMed

    Campbell, Emily Y; Merritt, Richard W; Cummins, Kenneth W; Benbow, M Eric

    2012-01-01

    Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams. Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon (Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia) habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during salmon spawning in a Southeast Alaskan stream.

  7. Spatial and Temporal Variability of Macroinvertebrates in Spawning and Non-Spawning Habitats during a Salmon Run in Southeast Alaska

    PubMed Central

    Campbell, Emily Y.; Merritt, Richard W.; Cummins, Kenneth W.; Benbow, M. Eric

    2012-01-01

    Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams. Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon (Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia) habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during salmon spawning in a Southeast Alaskan stream. PMID:22745724

  8. Assessment of water chemistry, habitat, and benthic macroinvertebrates at selected stream-quality monitoring sites in Chester County, Pennsylvania, 1998-2000

    USGS Publications Warehouse

    Reif, Andrew G.

    2004-01-01

    Biological, chemical, and habitat data have been collected from a network of sites in Chester County, Pa., from 1970 to 2003 to assess stream quality. Forty sites in 6 major stream basins were sampled between 1998 and 2000. Biological data were used to determine levels of impairment in the benthic-macroinvertebrate community in Chester County streams and relate the impairment, in conjunction with chemical and habitat data, to overall stream quality. Biological data consisted of benthic-macroinvertebrate samples that were collected annually in the fall. Water-chemistry samples were collected and instream habitat was assessed in support of the biological sampling.Most sites in the network were designated as nonimpacted or slightly impacted by human activities or extreme climatic conditions on the basis of biological-metric analysis of benthic-macroinvertebrate data. Impacted sites were affected by factors, such as nutrient enrichment, erosion and sedimentation, point discharges, and droughts and floods. Streams in the Schuylkill River, Delaware River, and East Branch Brandywine Creek Basins in Chester County generally had low nutrient concentrations, except in areas affected by wastewater-treatment discharges, and stream habitat that was affected by erosion. Streams in the West Branch Brandywine, Christina, Big Elk, and Octoraro Creek Basins in Chester County generally had elevated nutrient concentrations and streambottom habitat that was affected by sediment deposition.Macroinvertebrate communities identified in samples from French Creek, Pigeon Creek (Schuylkill River Basin), and East Branch Brandywine Creek at Glenmoore consistently indicate good stream conditions and were the best conditions measured in the network. Macroinvertebrate communities identified in samples from Trout Creek (site 61), West Branch Red Clay Creek (site 55) (Christina River Basin), and Valley Creek near Atglen (site 34) (Octoraro Creek Basin) indicated fair to poor stream conditions and

  9. A mega-nourishment creates novel habitat for intertidal macroinvertebrates by enhancing habitat relief of the sandy beach

    NASA Astrophysics Data System (ADS)

    van Egmond, E. M.; van Bodegom, P. M.; Berg, M. P.; Wijsman, J. W. M.; Leewis, L.; Janssen, G. M.; Aerts, R.

    2018-07-01

    Globally, sandy beaches are subject to coastal squeeze due to erosion. Soft-sediment strategies, such as sand nourishment, are increasingly applied to mitigate effects of erosion, but have long-term negative impacts on beach flora and fauna. As a more ecologically and sustainable alternative to regular beach nourishments, a mega-nourishment has been constructed along the Dutch coast by depositing 21.5 Mm3 of sand, from which sand is gradually redistributed along the coast by natural physical processes. The 'Sand Motor' mega-nourishment was constructed as a long-term management alternative for coastal protection and is the first large-scale experiment of its kind. We evaluated the development of intertidal macroinvertebrate communities in relation to this mega-nourishment, and compared it to species composition of beaches subject to regular beach or no nourishment. We found that a mega-nourishment resulted initially in a higher macroinvertebrate richness, but a lower macroinvertebrate abundance, compared to regular beach nourishment. As there was no effect of year after nourishment, this finding suggests that colonization and/or local extinction were not limiting macroinvertebrate richness at the mega-nourishment. In addition, a mega-nourishment does not converge to an intertidal macroinvertebrate community similar to those on unnourished beaches within a time scale of four years. Beach areas at the mega-nourishment sheltered from waves harbored a distinct macroinvertebrate community compared to typical wave-exposed sandy beach communities. Thus, a mega-nourishment temporally creates new habitat for intertidal macroinvertebrates by enhancing habitat relief of the sandy beach. We conclude that a mega-nourishment may be a promising coastal defense strategy for sandy shores in terms of the macroinvertebrate community of the intertidal beach.

  10. Evaluation of Macroinvertebrate Communities and Habitat for Selected Stream Reaches at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.J. Henne; K.J. Buckley

    2005-08-12

    This is the second aquatic biological monitoring report generated by Los Alamos National Laboratory's (LANL's) Water Quality and Hydrology Group. The study has been conducted to generate impact-based assessments of habitat and water quality for LANL waterways. The monitoring program was designed to allow for the detection of spatial and temporal trends in water and habitat quality through ongoing, biannual monitoring of habitat characteristics and benthic aquatic macroinvertebrate communities at six key sites in Los Alamos, Sandia, Water, Pajarito, and Starmer's Gulch Canyons. Data were collected on aquatic habitat characteristics, channel substrate, and macroinvertebrate communities during 2001 and 2002. Aquaticmore » habitat scores were stable between 2001 and 2002 at all locations except Starmer's Gulch and Pajarito Canyon, which had lower scores in 2002 due to low flow conditions. Channel substrate changes were most evident at the upper Los Alamos and Pajarito study reaches. The macroinvertebrate Stream Condition Index (SCI) indicated moderate to severe impairment at upper Los Alamos Canyon, slight to moderate impairment at upper Sandia Canyon, and little or no impairment at lower Sandia Canyon, Starmer's Gulch, and Pajarito Canyon. Habitat, substrate, and macroinvertebrate data from the site in upper Los Alamos Canyon indicated severe impacts from the Cerro Grande Fire of 2000. Impairment in the macroinvertebrate community at upper Sandia Canyon was probably due to effluent-dominated flow at that site. The minimal impairment SCI scores for the lower Sandia site indicated that water quality improved with distance downstream from the outfall at upper Sandia Canyon.« less

  11. The Relative Influence of Catchment and Site Variabbles on Fish and Macroinvertebrate Richness in Cerrado Biome Streams

    EPA Science Inventory

    Landscape and site-scale data aid the interpretation of biological data and management alternatives. We evaluated how three classes of environmental variables (natural landscape, anthropogenic pressures, and local physical habitat), influence fish and macroinvertebrate assemblage...

  12. Investigating the influence of heavy metals on macro-invertebrate assemblages using Partial Cononical Correspondence Analysis (pCCA)

    NASA Astrophysics Data System (ADS)

    Beasley, Gary; Kneale, Pauline E.

    This paper defines the spectrum of impairment to stream macroinvertebrates arising from urban runoff. Field sampling of stream sediments at 62 sites across Yorkshire, UK was used to investigate the influence of heavy metals and habitat on macroinvertebrate family distribution using partial Canonical Correspondence Analysis (pCCA). Increasing urbanization and trafficking was associated with increasing levels of metal pollution but, even when traffic is light, family numbers can be reduced by 50%. Industrial areas and motorway runoff depress macroinvertebrate numbers but drainage from streets with no off-road parking in residential areas can have similar impacts. The heavy metals in the sediment accounted for approximately 24% of the variation in macroinvertebrate community composition while the physical habitat variables used in RIVPACS (River InVertebrate Prediction And Classification System) (Wright, 2000) accounted for an additional 30%. Zinc and nickel were the main metal influences regardless of the time of sampling; at these sites copper is less than critical. Results agree with those reported in other studies in which families mainly from the orders Ephemeroptera (mayfly), Plecoptera (stonefly) and Tricoptera (caddisfly) displayed metal sensitivity in that they were absent from metal polluted streams. However, within each of these orders, a continuum of sensitivity is evident: this highlights the risks of generalising on orders rather than using family or indeed species data.

  13. The role of physical habitat and sampling effort on estimates of benthic macroinvertebrate taxonomic richness at basin and site scales.

    PubMed

    Silva, Déborah R O; Ligeiro, Raphael; Hughes, Robert M; Callisto, Marcos

    2016-06-01

    Taxonomic richness is one of the most important measures of biological diversity in ecological studies, including those with stream macroinvertebrates. However, it is impractical to measure the true richness of any site directly by sampling. Our objective was to evaluate the effect of sampling effort on estimates of macroinvertebrate family and Ephemeroptera, Plecoptera, and Trichoptera (EPT) genera richness at two scales: basin and stream site. In addition, we tried to determine which environmental factors at the site scale most influenced the amount of sampling effort needed. We sampled 39 sites in the Cerrado biome (neotropical savanna). In each site, we obtained 11 equidistant samples of the benthic assemblage and multiple physical habitat measurements. The observed basin-scale richness achieved a consistent estimation from Chao 1, Jack 1, and Jack 2 richness estimators. However, at the site scale, there was a constant increase in the observed number of taxa with increased number of samples. Models that best explained the slope of site-scale sampling curves (representing the necessity of greater sampling effort) included metrics that describe habitat heterogeneity, habitat structure, anthropogenic disturbance, and water quality, for both macroinvertebrate family and EPT genera richness. Our results demonstrate the importance of considering basin- and site-scale sampling effort in ecological surveys and that taxa accumulation curves and richness estimators are good tools for assessing sampling efficiency. The physical habitat explained a significant amount of the sampling effort needed. Therefore, future studies should explore the possible implications of physical habitat characteristics when developing sampling objectives, study designs, and calculating the needed sampling effort.

  14. Comparison of macroinvertebrate-derived stream quality metrics between snag and riffle habitats

    USGS Publications Warehouse

    Stepenuck, K.F.; Crunkilton, R.L.; Bozek, Michael A.; Wang, L.

    2008-01-01

    We compared benthic macroinvertebrate assemblage structure at snag and riffle habitats in 43 Wisconsin streams across a range of watershed urbanization using a variety of stream quality metrics. Discriminant analysis indicated that dominant taxa at riffles and snags differed; Hydropsychid caddisflies (Hydropsyche betteni and Cheumatopsyche spp.) and elmid beetles (Optioservus spp. and Stenemlis spp.) typified riffles, whereas isopods (Asellus intermedius) and amphipods (Hyalella azteca and Gammarus pseudolimnaeus) predominated in snags. Analysis of covariance indicated that samples from snag and riffle habitats differed significantly in their response to the urbanization gradient for the Hilsenhoff biotic index (BI), Shannon's diversity index, and percent of filterers, shredders, and pollution intolerant Ephemeroptera, Plecoptera, and Trichoptera (EPT) at each stream site (p ??? 0.10). These differences suggest that although macroinvertebrate assemblages present in either habitat type are sensitive to detecting the effects of urbanization, metrics derived from different habitats should not be intermixed when assessing stream quality through biomonitoring. This can be a limitation to resource managers who wish to compare water quality among streams where the same habitat type is not available at all stream locations, or where a specific habitat type (i.e., a riffle) is required to determine a metric value (i.e., BI). To account for differences in stream quality at sites lacking riffle habitat, snag-derived metric values can be adjusted based on those obtained from riffles that have been exposed to the same level of urbanization. Comparison of nonlinear regression equations that related stream quality metric values from the two habitat types to percent watershed urbanization indicated that snag habitats had on average 30.2 fewer percent EPT individuals, a lower diversity index value than riffles, and a BI value of 0.29 greater than riffles. ?? 2008 American Water

  15. Variability of lotic macroinvertebrate assemblages and stream habitat characteristics across hierarchical landscape classifications.

    PubMed

    Mykrä, Heikki; Heino, Jani; Muotka, Timo

    2004-09-01

    Streams are naturally hierarchical systems, and their biota are affected by factors effective at regional to local scales. However, there have been only a few attempts to quantify variation in ecological attributes across multiple spatial scales. We examined the variation in several macroinvertebrate metrics and environmental variables at three hierarchical scales (ecoregions, drainage systems, streams) in boreal headwater streams. In nested analyses of variance, significant spatial variability was observed for most of the macroinvertebrate metrics and environmental variables examined. For most metrics, ecoregions explained more variation than did drainage systems. There was, however, much variation attributable to residuals, suggesting high among-stream variation in macroinvertebrate assemblage characteristics. Nonmetric multidimensional scaling (NMDS) and multiresponse permutation procedure (MRPP) showed that assemblage composition differed significantly among both drainage systems and ecoregions. The associated R-statistics were, however, very low, indicating wide variation among sites within the defined landscape classifications. Regional delineations explained most of the variation in stream water chemistry, ecoregions being clearly more influential than drainage systems. For physical habitat characteristics, by contrast, the among-stream component was the major source of variation. Distinct differences attributable to stream size were observed for several metrics, especially total number of taxa and abundance of algae-scraping invertebrates. Although ecoregions clearly account for a considerable amount of variation in macroinvertebrate assemblage characteristics, we suggest that a three-tiered classification system (stratification through ecoregion and habitat type, followed by assemblage prediction within these ecologically meaningful units) will be needed for effective bioassessment of boreal running waters.

  16. A COMPARISON OF SINGLE AND MULTIPLE HABITAT RAPID BIOASSESSMENT SAMPLING METHODS FOR MACROINVERTEBRATES IN PIEDMONT AND NORTHERN PIEDMONT STREAMS

    EPA Science Inventory

    Stream macroinvertebrate collection methods described in the Rapid Bioassessment Protocols (RBPs) have been used widely throughout the U.S. The first edition of the RBP manual in 1989 described a single habitat approach that focused on riffles and runs, where macroinvertebrate d...

  17. Fish, benthic macroinvertebrate, and stream habitat data from the Houston-Galveston Area Council service area, Texas, 1997-98

    USGS Publications Warehouse

    Moring, J. Bruce; Rosendale, John C.; Ansley, Stephen P.; Brown, Dexter W.

    1998-01-01

    The U.S. Geological Survey collected fish, benthic macroinvertebrate, and stream habitat data at sampling sites in the Houston-Galveston Area Council service area, a 15-county area with a population of about 4.3 million people. The data were collected for a 1997?98 study in cooperation with the Houston-Galveston Area Council to provide data for the Texas Clean Rivers Program for watersheds near Houston, Texas. Fish community and stream habitat data were collected at all 56 sites selected, and benthic macroinvertebrate data were collected at 39 of the sites.

  18. Macroinvertebrate colonization dynamics on artificial substrates along an algal resource gradient

    Treesearch

    A. Braccia; S.L. Eggert; N. King

    2014-01-01

    Riparian canopy removal and land use may introduce multiple stressors that can alter food and habitat for stream organisms, but the influence of these alterations on macroinvertebrate colonization dynamics is less well known. A field study involving the simultaneous placement and removal of artificial substrates was performed to examine how macroinvertebrate...

  19. Small-Scale Habitat Structure Modulates the Effects of No-Take Marine Reserves for Coral Reef Macroinvertebrates

    PubMed Central

    Dumas, Pascal; Jimenez, Haizea; Peignon, Christophe; Wantiez, Laurent; Adjeroud, Mehdi

    2013-01-01

    No-take marine reserves are one of the oldest and most versatile tools used across the Pacific for the conservation of reef resources, in particular for invertebrates traditionally targeted by local fishers. Assessing their actual efficiency is still a challenge in complex ecosystems such as coral reefs, where reserve effects are likely to be obscured by high levels of environmental variability. The goal of this study was to investigate the potential interference of small-scale habitat structure on the efficiency of reserves. The spatial distribution of widely harvested macroinvertebrates was surveyed in a large set of protected vs. unprotected stations from eleven reefs located in New Caledonia. Abundance, density and individual size data were collected along random, small-scale (20×1 m) transects. Fine habitat typology was derived with a quantitative photographic method using 17 local habitat variables. Marine reserves substantially augmented the local density, size structure and biomass of the target species. Density of Trochus niloticus and Tridacna maxima doubled globally inside the reserve network; average size was greater by 10 to 20% for T. niloticus. We demonstrated that the apparent success of protection could be obscured by marked variations in population structure occurring over short distances, resulting from small-scale heterogeneity in the reef habitat. The efficiency of reserves appeared to be modulated by the availability of suitable habitats at the decimetric scale (“microhabitats”) for the considered sessile/low-mobile macroinvertebrate species. Incorporating microhabitat distribution could significantly enhance the efficiency of habitat surrogacy, a valuable approach in the case of conservation targets focusing on endangered or emblematic macroinvertebrate or relatively sedentary fish species PMID:23554965

  20. Influence of fipronil compounds and rice-cultivation land-use intensity on macroinvertebrate communities in streams of southwestern Louisiana, USA

    USGS Publications Warehouse

    Mize, S.V.; Porter, S.D.; Demcheck, D.K.

    2008-01-01

    Laboratory tests of fipronil and its degradation products have revealed acute lethal toxicity at very low concentrations (LC50) of <0.5 ??g/L to selected aquatic macroinvertebrates. In streams draining basins with intensive rice cultivation in southwestern Louisiana, USA, concentrations of fipronil compounds were an order of magnitude larger than the LC50. The abundance (?? = -0.64; p = 0.015) and taxa richness (r2 = 0.515, p < 0.005) of macroinvertebrate communities declined significantly with increases in concentrations of fipronil compounds and rice-cultivation land-use intensity. Macroinvertebrate community tolerance scores increased linearly (r2 = 0.442, p < 0.005) with increases in the percentage of rice cultivation in the basins, indicating increasingly degraded stream conditions. Similarly, macroinvertebrate community-tolerance scores increased rapidly as fipronil concentrations approached about 1 ??g/L. Pesticide toxicity index determinations indicated that aquatic macroinvertebrates respond to a gradient of fipronil compounds in water although stream size and habitat cannot be ruled out as contributing influences.

  1. A comparison of macroinvertebrate and habitat methods of data collection in the Little Colorado River Watershed, Arizona 2007

    USGS Publications Warehouse

    Spindler, Patrice; Paretti, Nick V.

    2007-01-01

    The Arizona Department of Environmental Quality (ADEQ) and the U.S. Environmental Protection Agency (USEPA) Ecological Monitoring and Assessment Program (EMAP), use different field methods for collecting macroinvertebrate samples and habitat data for bioassessment purposes. Arizona’s Biocriteria index was developed using a riffle habitat sampling methodology, whereas the EMAP method employs a multi-habitat sampling protocol. There was a need to demonstrate comparability of these different bioassessment methodologies to allow use of the EMAP multi-habitat protocol for both statewide probabilistic assessments for integration of the EMAP data into the national (305b) assessment and for targeted in-state bioassessments for 303d determinations of standards violations and impaired aquatic life conditions. The purpose of this study was to evaluate whether the two methods yield similar bioassessment results, such that the data could be used interchangeably in water quality assessments. In this Regional EMAP grant funded project, a probabilistic survey of 30 sites in the Little Colorado River basin was conducted in the spring of 2007. Macroinvertebrate and habitat data were collected using both ADEQ and EMAP sampling methods, from adjacent reaches within these stream channels.


    All analyses indicated that the two macroinvertebrate sampling methods were significantly correlated. ADEQ and EMAP samples were classified into the same scoring categories (meeting, inconclusive, violating the biocriteria standard) 82% of the time. When the ADEQ-IBI was applied to both the ADEQ and EMAP taxa lists, the resulting IBI scores were significantly correlated (r=0.91), even though only 4 of the 7 metrics in the IBI were significantly correlated. The IBI scores from both methods were significantly correlated to the percent of riffle habitat, even though the average percent riffle habitat was only 30% of the stream reach. Multivariate analyses found that the percent riffle

  2. Influence of agricultural land-use and pesticides on benthic macroinvertebrate assemblages in an agricultural river basin in southeast Brazil.

    PubMed

    Egler, M; Buss, D F; Moreira, J C; Baptista, D F

    2012-08-01

    Land-use alterations and pesticide run-offs are among the main causes for impairment in agricultural areas. We evaluated the influence of different land-uses (forest, pasture and intensive agriculture) on the water quality and on benthic macroinvertebrate assemblages on three occasions: in the dry season, wet season and at the end of the wet season. Macroinvertebrates responded to this gradient of impairment: agricultural sites had significantly lower richness numbers than forested and pasture sites, and all major invertebrate groups were significantly affected. Most taxa found in forested sites were found in pasture sites, but often with lower densities. In this case, the loss of habitats due to sedimentation and the lower complexity of substrates seem to be the disruptive force for the macroinvertebrate fauna.

  3. Effects of management legacies on stream fish and aquatic benthic macroinvertebrate assemblages

    USGS Publications Warehouse

    Quist, Michael C.; Schultz, Randall D.

    2014-01-01

    Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002–2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence–absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat

  4. Effects of Management Legacies on Stream Fish and Aquatic Benthic Macroinvertebrate Assemblages

    NASA Astrophysics Data System (ADS)

    Quist, Michael C.; Schultz, Randall D.

    2014-09-01

    Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002-2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence-absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat, particularly

  5. Effects of management legacies on stream fish and aquatic benthic macroinvertebrate assemblages.

    PubMed

    Quist, Michael C; Schultz, Randall D

    2014-09-01

    Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002-2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence-absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat, particularly

  6. Fire, flow and dynamic equilibrium in stream macroinvertebrate communities

    USGS Publications Warehouse

    Arkle, R.S.; Pilliod, D.S.; Strickler, K.

    2010-01-01

    The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4-year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (??NBR) from satellite imagery to quantify the percentage of each catchment's riparian and upland vegetation that burned at high and low severity. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year-to-year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. These analyses suggest that interactions among fire, flow and stream habitat may increase inter-annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area. ?? 2009 Blackwell Publishing Ltd.

  7. In Search of Effective Scales for Stream Management: Does Agroecoregion, Watershed, or Their Intersection Best Explain the Variance in Stream Macroinvertebrate Communities?

    NASA Astrophysics Data System (ADS)

    Dovciak, A. L.; Perry, J. A.

    2002-09-01

    Our lack of understanding of relationships between stream biotic communities and surrounding landscape conditions makes it difficult to determine the spatial scale at which management practices are best assessed. We investigated these relationships in the Minnesota River Basin, which is divided into major watersheds and agroecoregions which are based on soil type, geologic parent material, landscape slope steepness, and climatic factors affecting crop productivity. We collected macroinvertebrate and stream habitat data from 68 tributaries among three major watersheds and two agroecoregions. We tested the effectiveness of the two landscape classification systems (i.e., watershed, agroecoregion) in explaining variance in habitat and macroinvertebrate metrics, and analyzed the relative influence on macroinvertebrates of local habitat versus regional characteristics. Macroinvertebrate community composition was most strongly influenced by local habitat; the variance in habitat conditions was best explained at the scale of intersection of major watershed and agroecoregion (i.e., stream habitat conditions were most homogeneous within the physical regions of intersection of these two landscape classification systems). Our results are consistent with findings of other authors that most variation in macroinvertebrate community data from large agricultural catchments is attributable to local physical conditions. Our results are the first to test the hypothesis and demonstrate that the scale of intersection best explains these variances. The results suggest that management practices adjusted for both watershed and ecoregion characteristics, with the goal of improving physical habitat characteristics of local streams, may lead to better basin-wide water quality conditions and stream biological integrity.

  8. Aquatic-macroinvertebrate communities of Prairie-Pothole wetlands and lakes under a changed climate

    USGS Publications Warehouse

    McLean, Kyle I.; Mushet, David M.; Renton, David A.; Stockwell, Craig A.

    2016-01-01

    Understanding how aquatic-macroinvertebrate communities respond to changes in climate is important for biodiversity conservation in the Prairie Pothole Region and other wetland-rich landscapes. We sampled macroinvertebrate communities of 162 wetlands and lakes previously sampled from 1966 to 1976, a much drier period compared to our 2012–2013 sampling timeframe. To identify possible influences of a changed climate and predation pressures on macroinvertebrates, we compared two predictors of aquatic-macroinvertebrate communities: ponded-water dissolved-ion concentration and vertebrate-predator presence/abundance. Further, we make inferences of how macroinvertebrate communities were structured during the drier period when the range of dissolved-ion concentrations was much greater and fish occurrence in aquatic habitats was rare. We found that aquatic-macroinvertebrate community structure was influenced by dissolved-ion concentrations through a complex combination of direct and indirect relationships. Ion concentrations also influenced predator occurrence and abundance, which indirectly affected macroinvertebrate communities. It is important to consider both abiotic and biotic gradients when predicting how invertebrate communities will respond to climate change. Generally, in the wetlands and lakes we studied, freshening of ponded water resulted in more homogenous communities than occurred during a much drier period when salinity range among sites was greater.

  9. [Effect of environmental factors on macroinvertebrate community structure in the Huntai River basin in the Huntai River basin].

    PubMed

    Li, Yan-li; Li, Yan-fen; Xu, Zong-xue

    2015-01-01

    In May-June 2012, macroinvertebrates were investigated at 66 sampling sites in the Huntai River basin in Northeast of China. A total of 72 macrobenthos species were collected, of which, 51 species (70.83%) were aquatic insects, 10 species (13.89%) were mollusks, 7 species (9.72%) were annelids, and 4 species (5.56%) were arthropods. First, 13 candidate metrics (EPT taxa, Dominant taxon%, Ephemeroptera%, Trichoptera%, mollusks%, Heptageniidae/Ephemeroptera; Hydropsychidae/ Trichoptera, Oligochaeta%, intolerant taxon% , tolerant taxon%, Collector%, Clingers%, Shannon-wiener index.) which belonged to six types were chosen to represent macroinvertebrate community structure by correlation analysis. Then, relationships between anthropogenic and physiography pressures and macroinvertebrate community structure variables were measured using redundancy analysis. Then, this study compared the relative influences of anthropogenic and physiographic pressures on macroinvertebrate community structure and the relative influences of anthropogenic pressures at reach, riparian and catchment scales by pRDA. The results showed all environmental factors explained 72.23% of the variation of macroinvertebrate community structure. In addition, a large proportion of the explained variability in macroinvertebrate community structure was related to anthropogenic pressures (48.9%) and to physiographic variables (11.8%), anthropogenic pressures at reach scale influenced most significantly macroinvertebrate community structure which explained 35.3% of the variation of macroinvertebrate community structure. pH, habitat, TN, CODMn, hardness, conductivity, total dissolved particle and ammonia influenced respectively explained 4%, 3.6%, 1.8%, 1.7%, 1.7%, 0.9%, 0.9% and 0.9% of the variation of macroinvertebrate community structure. The land use at riparian and catchment scale respectively explained 10% and 7% of the variation of macroinvertebrate community structure. Finally, the relationships of

  10. Characterization and analysis of temporal and spatial variations in habitat and macroinvertebrate community structure, Fountain Creek basin, Colorado Springs and vicinity, Colorado, 1998-2001

    USGS Publications Warehouse

    Bruce, James F.

    2002-01-01

    The Fountain Creek Basin in and around Colorado Springs, Colorado, is affected by various land- and water-use activities. Biological, hydrological, water-quality, and land-use data were collected at 10 sites in the Fountain Creek Basin from April 1998 through April 2001 to provide a baseline characterization of macroinvertebrate communities and habitat conditions for comparison in subsequent studies; and to assess variation in macroinvertebrate community structure relative to habitat quality. Analysis of variance results indicated that instream and riparian variables were not affected by season, but significant differences were found among sites. Nine metrics were used to describe and evaluate macroinvertebrate community structure. Statistical analysis indicated that for six of the nine metrics, significant variability occurred between spring and fall seasons for 60 percent of the sites. Cluster analysis (unweighted pair group method average) using macroinvertebrate presence-absence data showed a well-defined separation between spring and fall samples. Six of the nine metrics had significant spatial variation. Cluster analysis using Sorenson?s Coefficient of Community values computed from macroinvertebrate density (number of organisms per square meter) data showed that macroinvertebrate community structure was more similar among tributary sites than main-stem sites. Canonical correspondence analysis identified a substrate particle-size gradient from site-specific species-abundance data and environmental correlates that decreased the 10 sites to 5 site clusters and their associated taxa.

  11. Interactions of Amphibians, Fish, and Macroinvertebrates in a Southeastern Wetland

    NASA Astrophysics Data System (ADS)

    Schultheis, R. D.; Batzer, D. P.

    2005-05-01

    In fishless habitats, amphibians often compete with and are predators of macroinvertebrates. Unlike fish, the effects these interactions have on macroinvertebrate communities have been largely unexplored. We conducted an experiment in a semi-permanent oxbow wetland in the Piedmont region of Georgia to explore interactions between amphibians and macroinvertebrates. The predator community was dominated by Ambystoma opacum (Marbled Salamander) and Notophthalmus viridescens (Eastern Newt). Salamanders and newts were excluded from areas of wetland habitat using wire mesh cages (1.5M x 1.5M, 3mm mesh). The macroinvertebrate communities within the cages were then compared to the ambient habitat outside the cages. Fish, mostly Lepomis macrochirus (Bluegill) and Gambusia affinis (Mosquito Fish), colonized the wetland late in the first year of the study, and became common by year two. Also in year two, Rana catesbeiana (Bullfrog) became established. Thus, we were able to explore the variable effects on the macroinvertebrate community of a changing predator complex over a two year period.

  12. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    PubMed

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on

  13. Fish stomach contents in benthic macroinvertebrate assemblage assessments.

    PubMed

    Tupinambás, T H; Pompeu, P S; Gandini, C V; Hughes, R M; Callisto, M

    2015-01-01

    The choice of sampling gears to assess benthic macroinvertebrate communities depends on environmental characteristics, study objectives, and cost effectiveness. Because of the high foraging capacity and diverse habitats and behaviors of benthophagous fishes, their stomach contents may offer a useful sampling tool in studies of benthic macroinvertebrates, especially in large, deep, fast rivers that are difficult to sample with traditional sediment sampling gear. Our objective was to compare the benthic macroinvertebrate communities sampled from sediments with those sampled from fish stomachs. We collected benthic macroinvertebrates and fish from three different habitat types (backwater, beach, riffle) in the wet season, drying season, and dry season along a single reach of the Grande River (Paraná River Basin, southeast Brazil). We sampled sediments through use of a Petersen dredge (total of 216 grabs) and used gill nets to sample fish (total of 36 samples). We analyzed the stomach contents of three commonly occurring benthophagous fish species (Eigenmannia virescens, Iheringichthys labrosus, Leporinus amblyrhynchus). Chironomids dominated in both sampling methods. Macroinvertebrate taxonomic composition and abundances from fish stomachs differed from those from sediment samples, but less so from riffles than from backwater and beach habitats. Macroinvertebrate taxa from E. virescens stomachs were more strongly correlated with sediment samples from all three habitats than were those from the other two species. The species accumulation curves and higher mean dispersion values, compared with with sediment samples suggest that E. virescens is more efficient than sediment samples and the other fish studied at collecting benthic taxa. We conclude that by analyzing the stomach contents of benthophagous fishes it is possible to assess important characteristics of benthic communities (dispersion, taxonomic composition and diversity). This is especially true for studies

  14. Assessment of Instream Restoration in the Cache River, Illinois: Macroinvertebrate Community Structure on Rock Weirs Compared to Snag and Streambed Habitats

    NASA Astrophysics Data System (ADS)

    Walther, D. A.; Whiles, M. R.

    2005-05-01

    Rock weirs were constructed in a degraded section of the Cache River in southern Illinois in 2001 and 2003 to prevent channel incision and protect riparian wetlands. We sampled macroinvertebrates in two older weirs and in two sites downstream of the restored section in April 2003, October 2003, and April 2004 to evaluate differences in community structure between weir, snag, and streambed (scoured clay) habitats. Three recently constructed weirs were also sampled in April 2004. Functional composition differed among sample dates and habitats. Although collector-gatherers consistently dominated streambed habitats, functional composition on weirs and snags was more variable. Filterer and predator biomass was generally higher on weirs, and snags harbored the only shredders collected in the system (Pycnopsyche spp.). Weirs generally supported higher biomass of Ephemeroptera, Plecoptera, and Trichoptera than other habitats. For example, mean EPT biomass on weirs in 2003 (April=187 mgAFDM/m2; October=899 mgAFDM/m2) was 4 to 10-fold higher than EPT biomass in snag or streambed habitats. Late instar Pycnopsyche contributed 41% of snag biomass in April 2004, resulting in EPT biomass similar to rock weirs. Results indicate rock weirs provide suitable stable substrate for macroinvertebrates and may enhance populations of sensitive EPT taxa in degraded systems.

  15. Biomonitoring in the Boulder River watershed, Montana, USA: metal concentrations in biofilm and macroinvertebrates, and relations with macroinvertebrate assemblage

    USGS Publications Warehouse

    Rhea, D.T.; Harper, D.D.; Farag, A.M.; Brumbaugh, W.G.

    2006-01-01

    Portions of the Boulder River watershed contain elevated concentrations of arsenic, cadmium, copper, lead, and zinc in water, sediment, and biota. We measured concentrations of As, Cd, Cu, Pb, and Zn in biofilm and macroinvertebrates, and assessed macroinvertebrate assemblage and aquatic habitat with the objective of monitoring planned remediation efforts. Concentrations of metals were generally higher in downstream sites compared with upstream or reference sites, and two sites contained metal concentrations in macroinvertebrates greater than values reported to reduce health and survival of resident trout. Macroinvertebrate assemblage was correlated with metal concentrations in biofilm and macroinvertebrates. However, macroinvertebrate metrics were significantly correlated with a greater number of biofilm metals (8) than metals in invertebrates (4). Lead concentrations in biofilm appeared to have the most significant impact on macroinvertebrate assemblage. Metal concentrations in macroinvertebrates were directly proportional to concentrations in biofilm, indicating biofilm as a potential surrogate for monitoring metal impacts in aquatic systems. ?? Springer Science+Business Media, Inc. 2006.

  16. Influence of peak flow changes on the macroinvertebrate drift downstream of a Brazilian hydroelectric dam.

    PubMed

    Castro, D M P; Hughes, R M; Callisto, M

    2013-11-01

    Successive daily peak flows from hydropower plants can disrupt aquatic ecosystems and alter the composition and structure of macroinvertebrates downstream. We evaluated the influence of peak flow changes on macroinvertebrate drift downstream of a hydroelectric plant as a basis for determining ecological flows that might reduce the disturbance of aquatic biota. The aim of this study was to assess the influence of flow fluctuations on the seasonal and daily drift patterns of macroinvertebrates. We collected macroinvertebrates during fixed flow rates (323 m3.s-1 in the wet season and 111 m3.s-1 in the dry season) and when peak flows fluctuated (378 to 481 m3.s-1 in the wet season, and 109 to 173 m3.s-1 in the dry season) in 2010. We collected 31,924 organisms belonging to 46 taxa in the four sampling periods. Taxonomic composition and densities of drifting invertebrates differed between fixed and fluctuating flows, in both wet and dry seasons, but family richness varied insignificantly. We conclude that macroinvertebrate assemblages downstream of dams are influenced by daily peak flow fluctuations. When making environmental flow decisions for dams, it would be wise to consider drifting macroinvertebrates because they reflect ecological changes in downstream biological assemblages.

  17. Influence of Fish Predation on Assemblage Structure of Macroinvertebrates in an Intermittent Stream

    Treesearch

    Lance R. Williams; Christopher M. Taylor; Melvin L. Warren

    2003-01-01

    Despite considerable investigation of stream systems, the influence of fish predation on macroinvertebrate assemblages is still poorly understood and remains a controversial subject. We conducted a field experiment in an intermittent reach of Alum Creek in the Ouachita Mountains, Arkansas, to examine the effects of predatory fish on macroinvertebrate assemblages. We...

  18. Macroinvertebrate instream flow studies after 20 years: A role in stream management and restoration

    USGS Publications Warehouse

    Gore, James A.; Layzer, James B.; Mead, Jim

    2001-01-01

    Over the past two decades of refinement and application of instream flow evaluations, we have examined the hydraulic habitat of aquatic macroinvertebrates in a variety of conditions, along with the role of these macroinvertebrates in sustaining ecosystem integrity. Instream flow analyses assume that predictable changes in channel flow characteristics can, in turn, be used to predict the change in the density or distribution of lotic species or, more appropriately, the availability of useable habitat for those species. Five major hydraulic conditions most affect the distribution and ecological success of lotic biota: suspended load, bedload movement, and water column effects, such as turbulence, velocity profile, and substratum interactions (near-bed hydraulics). The interactions of these hydraulic conditions upon the morphology and behavior of the individual organisms govern the distribution of aquatic biota. Historically, management decisions employing the Physical Habitat Simulation (PHABSIM) have focused upon prediction of available habitat for life stages of target fish species. Regulatory agencies have rarely included evaluation of benthos for flow reservations. Although ‘taxonomic discomfort’ may be cited for the reluctant use or creation of benthic criteria, we suggest that a basic misunderstanding of the links between benthic macroinvertebrate and the fish communities is still a problem. This is derived from the lack of a perceived ‘value’ that can be assigned to macroinvertebrate species. With the exception of endangered mussel species (for which PHABSIM analysis is probably inappropriate), this is understandable. However, it appears that there is a greater ability to predict macroinvertebrate distribution (that is, a response to the change in habitat quality or location) and diversity without complex population models. Also, habitat suitability criteria for water quality indicator taxa (Ephemeroptera, Plecoptera, and Trichoptera; the so-called

  19. Seagrass habitat complexity and macroinvertebrate abundance in Lakshadweep coral reef lagoons, Arabian Sea

    NASA Astrophysics Data System (ADS)

    Ansari, Z. A.; Rivonker, C. U.; Ramani, P.; Parulekar, A. H.

    1991-09-01

    Macrofauna of seagrass community in the five Lakshadweep atolls were studied and compared. The associated epifaunal and infaunal taxa comprising nine major taxonomic groups, showed significant differences in the total number of individuals (1041 8411 m-2) among sites and habitats. The density of macrofauna was directly related to mean macrophytic biomass (405 895 g wet wt. m-2). The fauna was dominated by epifaunal polychaetes, amphipods and isopods in the vegetated areas. When compared with the density of nearby unvegetated areasleft( {bar x = 815{text{m }}^{ - 2} } right), seagrass meadows harbour a denser and richer macroinvertebrate assemblageleft( {bar x = 4023{text{m }}^{ - 2} } right).

  20. Spatial and temporal distribution of benthic macroinvertebrates in a Southeastern Brazilian river.

    PubMed

    Silveira, M P; Buss, D F; Nessimian, J L; Baptista, D F

    2006-05-01

    Benthic macroinvertebrate assemblages are structured according to physical and chemical parameters that define microhabitats, including food supply, shelter to escape predators, and other biological parameters that influence reproductive success. The aim of this study is to investigate spatial and temporal distribution of macroinvertebrate assemblages at the Macaé river basin, in Rio de Janeiro state, Southeastern Brazil. According to the "Habitat Assessment Field Data Sheet--High Gradient Streams" (Barbour et al., 1999), the five sampling sites are considered as a reference condition. Despite the differences in hydrological parameters (mean width, depth and discharge) among sites, the physicochemical parameters and functional feeding groups' general structure were similar, except for the less impacted area, which showed more shredders. According to the Detrended Correspondence Analysis based on substrates, there is a clear distinction between pool and riffle assemblages. In fact, the riffle litter substrate had higher taxa in terms of richness and abundance, but the pool litter substrate had the greatest number of exclusive taxa. A Cluster Analysis based on sampling sites data showed that temporal variation was the main factor in structuring macroinvertebrate assemblages in the studied habitats.

  1. Hydrologic Links Among Urbanization, Channel Morphology, Aquatic Habitat, and Macroinvertebrates in North Carolina Piedmont Streams

    NASA Astrophysics Data System (ADS)

    Giddings, E. M.

    2005-12-01

    Landscape changes associated with urbanization have been shown to alter flow regimes of streams that, in turn, alter channel morphology, aquatic habitat, and biological communities. In order to mitigate the effects of urbanization on biological communities, it is important to understand the hydrologic links between these interactions. As part of the U.S. Geological Survey's National Water-Quality Assessment Program, 30 stream sites in the Piedmont of North Carolina (including the cities Raleigh, Greensboro, and Winston-Salem) having a range of watershed urbanization were sampled. To measure urbanization intensity, a multimetric index of watershed and riparian land use, infrastructure, and socioeconomic conditions was used. Population density ranged from 24 to 3,276 people per square kilometer; 75 percent of the sites had less than 2,000 people per square kilometer. At each site, continuous discharge record was estimated for 1 year using continuous stream-stage data, instantaneous discharge measurements, and one-dimensional hydraulic modeling. Hydrologic variability metrics were calculated to compare the magnitude, frequency, and duration of high and low flows among sites. These metrics then were correlated with measures of channel morphology, habitat, a richness-based macroinvertebrate index, and the urban-intensity index. As urban intensity in the watershed increased, the frequency of quickly rising flows increased (R2=0.55, p<0.0001), and the duration of high flows decreased (R2=0.47, p=0.0001). Along with these changes, channels became more incised; bankfull channel depths (normalized by drainage area) increased as the frequency of quickly rising flows increased (R2=0.28, p=0.006) and the duration of high flows decreased (R2=0.17, p =0.04). Additionally, streams with higher frequencies of quickly rising flows had greater percentages of sand as a dominant substrate (R2=0.19, p=0.03) and greater differences between bankfull depth and low-flow depth at summer flows

  2. Influence of agricultural, industrial, and anthropogenic stresses on the distribution and diversity of macroinvertebrates in Juru River Basin, Penang, Malaysia.

    PubMed

    Al-Shami, Salman A; Md Rawi, Che Salmah; Ahmad, Abu Hassan; Abdul Hamid, Suhaila; Mohd Nor, Siti Azizah

    2011-07-01

    Abundance and diversity of benthic macroinvertebrates as well as physico-chemical parameters were investigated in five rivers of the Juru River Basin in northern Peninsula Malaysia: Ceruk Tok Kun River (CTKR), Pasir River (PR), Permatang Rawa River (PRR), Kilang Ubi River (KUR), and Juru River (JR). The physico-chemical parameters and calculated water quality index (WQI) were significantly different among the investigated rivers (ANOVA, P<0.05). The WQI classified CTKR, PR, and JR into class III (slightly polluted). However, PRR and KUR fell into class IV (polluted). High diversity and abundance of macroinvertebrates, especially the intolerant taxa, Ephemeroptera, Plecoptera, and Trichoptera, were observed in the least polluted river, CTKR. Decreasing abundance of macroinvertebrates followed the deterioration of river water quality with the least number of the most tolerant taxa collected from PR. On the basis of composition and sensitivity of macroinvertebrates to pollutants in each river, the highest Biological Monitoring Working Party (BMWP) index score of 93 was reported in CTKR (good water quality). BMWP scores in PRR and JR were 38.7 and 20.1, respectively, classifying both of them into "moderate water quality" category. Poor water quality was reported in PR and KUR. The outcome of the multivariate analysis (CCA) was highly satisfactory, explaining 43.32% of the variance for the assemblages of macroinvertebrates as influenced by 19 physical and chemical variables. According to the CCA model, we assert that there were three levels of stresses on macroinvertebrate communities in the investigated rivers: Level 1, characterized of undisturbed or slightly polluted as in the case of CTKR; Level 2, characterized by a lower habitat quality (the JR) compared to the CTKR; and Level 3 showed severe environmental stresses (PRR, PR, and KUR) primarily contributed by agricultural, industrial, and municipal discharges. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Longitudinal Changes in Physical Habitat and Macroinvertebrate Assemblages Along a Neotropical Stream Continuum

    NASA Astrophysics Data System (ADS)

    Colon-Gaud, C.; Whiles, M. R.

    2005-05-01

    Information on the structure and function of upland Neotropical streams is lacking compared to many other regions. We examined habitat characteristics and macroinvertebrate assemblages along an 8-km stretch of a stream originating on the continental divide in central Panama in order to examine patterns along a stream continuum. Wetted width and discharge ranged from 1 m and 18 L/s, respectively in the uppermost headwaters to 12 m and 1,580 L/s, respectively at the lowest reach examined. Percent substrate composition showed a decrease in fine particle sizes from upper headwater reaches (38%) to the lowest reach (10%). A total of 61 macroinvertebrate taxa were identified along the continuum, with more taxa present in lower reaches (45) compared to headwaters (28), but responses of individual groups varied. Trichoptera, Ephemeroptera, and Diptera richness increased from headwaters to the lowest site, whereas Hemiptera and Coleoptera richness decreased along the gradient. Collector-gatherers and predators were the dominant functional groups (~70% of total abundance) and changed little across sites. Shredder abundance was highest in headwaters (15% of total), while scrapers (20%) and collector/filterers (11%) peaked in the lower reaches. These patterns suggest that upland streams in this region follow basic tenets of the River Continuum Concept.

  4. Associations of benthic macroinvertebrate assemblages with environmental variables in the upper Clear Creek watershed, California

    USGS Publications Warehouse

    Brown, Larry R.; May, Jason T.; Wulff, Marissa

    2012-01-01

    Benthic macroinvertebrates are integral components of stream ecosystems and are often used to assess the ecological integrity of streams. We sampled streams in the upper Clear Creek drainage in the Klamath—Siskiyou Ecoregion of northwestern California in fall 2004 (17 sites) and 2005 (original 17 plus 4 new sites) with the objectives of documenting the benthic macroinvertebrate assemblages supported by the streams in the area, determining how those assemblages respond to environmental variables, assessing the biological condition of the streams using a benthic index of biotic integrity (IBI), and understanding the assemblages in the context of biodiversity of the ecoregion. We collected both reach-wide (RW) and targeted-riffle (TR) macroinvertebrate samples at each site. The macroinvertebrate assemblages were diverse, with over 150 genera collected for each sampling protocol. The macroinvertebrate assemblages appeared to be most responsive to a general habitat gradient based on stream size, gradient, flow, and dominance of riffles. A second important habitat gradient was based on elevation and dominance of riffles. A gradient in water quality based on concentrations of dissolved ions and metals was also important. Models based on these 3 gradients had Spearman's rank correlations with macroinvertebrate taxonomic composition of 0.60 and 0.50 for the TR and RW samples, respectively. The majority (>50%) of the sites were in good or very good biological condition based on IBI scores. The diversity of macroinvertebrate assemblages is associated with the diversity of habitats available in the Klamath—Siskiyou Ecoregion. Maintaining the aquatic habitats in good condition is important in itself but is also vital to maintaining biodiversity in this diverse and unique ecoregion.

  5. The influence of urbanisation on macroinvertebrate biodiversity in constructed stormwater wetlands.

    PubMed

    Mackintosh, Teresa J; Davis, Jenny A; Thompson, Ross M

    2015-12-01

    The construction of wetlands in urban environments is primarily carried out to assist in the removal of contaminants from wastewaters; however, these wetlands have the added benefit of providing habitat for aquatic invertebrates, fish and waterbirds. Stormwater quantity and quality is directly related to impervious area (roads, sealed areas, roofs) in the catchment. As a consequence, it would be expected that impervious area would be related to contaminant load and biodiversity in receiving waters such as urban wetlands. This study aimed to establish whether the degree of urbanisation and its associated changes to stormwater runoff affected macroinvertebrate richness and abundance within constructed wetlands. Urban wetlands in Melbourne's west and south east were sampled along a gradient of urbanisation. There was a significant negative relationship between total imperviousness (TI) and the abundance of aquatic invertebrates detected for sites in the west, but not in the south east. However macroinvertebrate communities were relatively homogenous both within and between all study wetlands. Chironomidae (non-biting midges) was the most abundant family recorded at the majority of sites. Chironomids are able to tolerate a wide array of environmental conditions, including eutrophic and anoxic conditions. Their prevalence suggests that water quality is impaired in these systems, regardless of degree of urbanisation, although the causal mechanism is unclear. These results show some dependency between receiving wetland condition and the degree of urbanisation of the catchment, but suggest that other factors may be as important in determining the value of urban wetlands as habitat for wildlife. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effects of Habitat Characteristics and Water Quality on Macroinvertebrate Communities along the Neversink Riverin Southeastern New York, 1991-2001

    USGS Publications Warehouse

    Ernst, Anne G.; Baldigo, Barry P.; Schuler, George E.; Apse, Colin D.; Carter, James L.; Lester, Gary T.

    2008-01-01

    The Neversink River, in the Catskill Mountains of southeastern New York State, feeds the Neversink Reservoir, which diverts 85 percent of the river?s flow to New York City. Acidification of several headwater reaches has affected macroinvertebrate assemblages throughout the river system above the reservoir, and the alteration of flow conditions below the reservoir dam has affected macroinvertebrate assemblages for at least 10 kilometers downstream from the reservoir. In 1999, the U.S. Geological Survey, in cooperation with The Nature Conservancy, compiled data from 30 stream reaches to quantify the effects of acidification and of the reservoir on the structure and function of macroinvertebrate assemblages throughout the Neversink River. Acidic headwater reaches supported greater numbers of acid-tolerant chironomid taxa and fewer numbers of acid-sensitive Ephemeroptera and Trichoptera than neutral reaches, and fewer scraper individuals and more shredder individuals. The 14 reaches below the reservoir, with sharply decreased flows and altered flow patterns compared to reaches above the reservoir, supported more Chironomidae and fewer Ephemeroptera and Trichoptera than the upper reaches; they also had greater numbers of shredder individuals and fewer scraper and filterer individuals than reaches above the reservoir. Water-quality variables such as pH and aluminum concentration appear to have affected macroinvertebrate assemblages more strongly in the headwaters than below the reservoir, whereas physical-habitat variables such as mean channel width and water temperature have affected these assemblages more strongly downstream from the reservoir than in the headwaters. The water-quality changes due to acidification, combined with the decreased flows and lowered water temperatures below the reservoir, have disrupted downstream continuum of macroinvertebrate communities that would normally be observed from the headwaters to the mouth. The information presented herein

  7. DEVELOPMENT OF MACROINVERTEBRATE INDICATORS FOR NONWADEABLE TRIBUTARIES TO THE OHIO AND MISSISSIPPI RIVERS

    EPA Science Inventory

    In 2004-02005, macroinvertebrates were sampled from selected large rivers of the upper Midwest to develop appropriate assessment indicators. Macroinvertebrates, habitat and water chemistry data were collected from 132 randomly selected sites across 6 rivers with varying land cove...

  8. Twenty years of stream restoration in Finland: little response by benthic macroinvertebrate communities.

    PubMed

    Louhi, Pauliina; Mykrä, Heikki; Paavola, Riku; Huusko, Ari; Vehanen, Teppo; Mäki-Petäys, Aki; Muotka, Timo

    2011-09-01

    The primary focus of many in-stream restoration projects is to enhance habitat diversity for salmonid fishes, yet the lack of properly designed monitoring studies, particularly ones with pre-restoration data, limits any attempts to assess whether restoration has succeeded in improving salmonid habitat. Even less is known about the impacts of fisheries-related restoration on other, non-target biota. We examined how restoration aiming at the enhancement of juvenile brown trout (Salmo trutta L.) affects benthic macroinvertebrates, using two separate data sets: (1) a before-after-control-impact (BACI) design with three years before and three after restoration in differently restored and control reaches of six streams; and (2) a space-time substitution design including channelized, restored, and near-natural streams with an almost 20-year perspective on the recovery of invertebrate communities. In the BACI design, total macroinvertebrate density differed significantly from before to after restoration. Following restoration, densities decreased in all treatments, but less so in the controls than in restored sections. Taxonomic richness also decreased from before to after restoration, but this happened similarly in all treatments. In the long-term comparative study, macroinvertebrate species richness showed no difference between the channel types. Community composition differed significantly between the restored and natural streams, but not between restored and channelized streams. Overall, the in-stream restoration measures used increased stream habitat diversity but did not enhance benthic biodiversity. While many macroinvertebrates may be dispersal limited, our study sites should not have been too distant to reach within almost two decades. A key explanation for the weak responses by macroinvertebrate communities may have been historical. When Fennoscandian streams were channelized for log floating, the loss of habitat heterogeneity was only partial. Therefore, habitat

  9. Scale-dependency of macroinvertebrate communities: responses to contaminated sediments within run-of-river dams.

    PubMed

    Colas, Fanny; Archaimbault, Virginie; Devin, Simon

    2011-03-01

    Due to their nutrient recycling function and their importance in food-webs, macroinvertebrates are essential for the functioning of aquatic ecosystems. These organisms also constitute an important component of biodiversity. Sediment evaluation and monitoring is an essential aspect of ecosystem monitoring since sediments represent an important component of aquatic habitats and are also a potential source of contamination. In this study, we focused on macroinvertebrate communities within run-of-river dams, that are prime areas for sediment and pollutant accumulation. Little is known about littoral macroinvertebrate communities within run-of-river dam or their response to sediment levels and pollution. We therefore aimed to evaluate the following aspects: the functional and structural composition of macroinvertebrate communities in run-of-river dams; the impact of pollutant accumulation on such communities, and the most efficient scales and tools needed for the biomonitoring of contaminated sediments in such environments. Two run-of-river dams located in the French alpine area were selected and three spatial scales were examined: transversal (banks and channel), transversal x longitudinal (banks/channel x tail/middle/dam) and patch scale (erosion, sedimentation and vegetation habitats). At the patch scale, we noted that the heterogeneity of littoral habitats provided many available niches that allow for the development of diversified macroinvertebrate communities. This implies highly variable responses to contamination. Once combined on a global 'banks' spatial scale, littoral habitats can highlight the effects of toxic disturbances. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. [Fresh water macroinvertebrates of Costa Rica I].

    PubMed

    Springer, Monika; Ramirez, Alonso; Hanson, Paul

    2010-12-01

    This is the first in a series of three volumes on the freshwater macroinvertebrates of Costa Rica. The present volume includes an introductory chapter summarizing the major types of freshwater environments, the biology of freshwater macroinvertebrates (habitats, food, respiration, osmoregulation, etc.), ecological and economic importance, conservation and a synopis of the major groups, followed by a simplified key. The next two chapters discuss collecting methods and biomonitoring. These are followed by chapters on mayflies (Ephemeroptera: 10 families), dragonflies (Odonata: 13 families), stoneflies (Plecoptera: 1 family) and caddisflies (Trichoptera: 15 families). Both in this volume and in those to follow, the chapters treating individual taxa include a summary of the natural history, importance, taxonomy, collecting methods, morphology and an illustrated key to the families; each family is discussed separately and an illustrated key to genera is provided; each chapter ends with a bibliography and a table listing all the genera with information on number of species, distribution, habitat and tolerance to water pollution. While the emphasis is on families and genera known from Costa Rica, additional taxa occurring elsewhere in Central America are mentioned. The present volume also includes numerous color plates of aquatic macroinvertebrates.

  11. Habitat use and tolerance levels of macroinvertebrates concerning hydraulic stress in hydropeaking rivers - A case study at the Ziller River in Austria.

    PubMed

    Leitner, P; Hauer, C; Graf, W

    2017-01-01

    Artificial flow fluctuations due to the operation of hydropower plants, frequently described as hydropeaking, result in a constant decrease of biomass of specific macrozoobenthos (MZB) taxa. For the presented case study, we assessed three reaches in the Ziller River catchment. At each sampling reach we performed the Multi-Habitat-Sampling (MHS) method with a Water Framework Directive (WFD) compliant AQEM/MHS net according to the Austrian guideline. Additionally, a hydraulic-specific sampling was conducted with a modified Box (Surber) sampler. As a basis for predictive habitat modelling of the MZB fauna, we measured abiotic parameters like mean (v 40 ) and bottom-near (v bottom ) flow rate or water depth respectively, for each box sample. In addition, the choriotope type, representing grain size classes, was determined. One of the main results is, that the national status assessment was not capable to reflect the impact of pulse release at the investigated river stretches on the basis of status classes. Moreover, we figured out that 1) habitats of stagnophilic macroinvertebrate taxa are minimized in channelized stretches affected by hydropeaking, leading to heavy quantitative losses for populations, becoming apparent in significant decreases in total individual numbers and biomass for many taxa. 2) The minor respond of the ecological status class in affected stretches by applying the WFD compliant national assessment method for macroinvertebrates owes to the tolerance of rheobiont or rheophilic taxa commonly classified as indicators for good conditions regarding saprobity or degradation score. 3) A development of a stressor-specific sampling design is required as the MHS method largely ignores vulnerable habitats. 4) The habitat suitability of selected species provides efficient expertise for impact assessment and mitigation measure design in terms of predictive habitat modelling. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Biological and physical conditions of macroinvertebrates in reference lowland streams

    NASA Astrophysics Data System (ADS)

    de Brouwer, Jan; Eekhout, Joris; Verdonschot, Piet

    2016-04-01

    Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Currently, stream restoration measures are being implemented in these degraded lowland streams, where design principles are often based on outdated relationships between biological and physical conditions. Little is known about the reference conditions in these streams. Therefore, the aim of this research is to quantify the relationships between biological and physical conditions of macroinvertebrates in reference lowland streams. The research was conducted in four near-natural lowland streams in Central Poland. Field data were obtained during a field campaign in 2011. The following data were obtained in a 50-m reach in each of the four streams: macroinvertebrate sampling, spatial habitat patterns, bathymetry, and flow-velocity. Furthermore, water level, light sensitivity and temperature sensors were installed to obtain the temporal dynamic of these streams. Macroinvertebrates were sampled in 9 different habitat types, i.e. sand, gravel, fine organic matter, stones, branches, leaves, silt, vegetation, and wood. Macroinvertebrates were determined to the highest taxonomic level possible. Data from the bathymetrical surveys were interpolated on a grid and bathymetrical metrics were determined. Flow velocity measurements were related to habitats and flow velocity metrics were determined. Analysis of the data shows that flow conditions vary among the different habitat, with a gradient from hard substrates towards soft substrates. Furthermore, the data show that stream as a unit best explains species composition, but also specific habitat conditions, such as substrate type and flow velocity, correlate with species composition. More specific, the data shows a strong effect of wood on species composition. These findings may have implications for stream restoration design, which

  13. LAND USE AND NATURAL HYDRAULIC CONTROLS ON STREAM SUBSTRATE AND MACROINVERTEBRATE ASSEMBLAGES IN REGIONAL SURVEYS

    EPA Science Inventory

    In large regions, human land uses typically overlay wide ranges of natural geomorphic factors that control stream habitat characteristics and benthic macroinvertebrate assemblages. Many macroinvertebrate measures of stream "health" show strong association with substrate size, a ...

  14. Influence of stormwater runoff on macroinvertebrates in a small urban river and a reservoir.

    PubMed

    Gołdyn, Ryszard; Szpakowska, Barbara; Świerk, Dariusz; Domek, Piotr; Buxakowski, Jan; Dondajewska, Renata; Barałkiewicz, Danuta; Sajnóg, Adam

    2018-06-01

    The impact of stormwater on benthic macroinvertebrates was studied in two annual cycles. Five small catchments drained by stormwater sewers to a small urban river and a small and shallow reservoir situated in its course were selected. These catchments were located in residential areas with single-family houses or blocks of flats as well as industrial areas, i.e., a car factory, a glassworks and showroom as well as the parking lots of a car dealer and servicing company. In addition to the five stations situated in the vicinity of the stormwater outlets, three stations not directly influenced by stormwater were also established. Macroinvertebrates were sampled in every season, four times per year. Both abundance and biomass were assessed. Stormwater from industrial areas associated with cars, whose catchments showed a high percentage of impervious areas, had the greatest impact on benthic macroinvertebrates. This was due to a large amount of stormwater and its contamination, including heavy metals. Stormwater outflow from residential multi-family houses exerted the least influence. Macroinvertebrates in the water reservoir were found to undergo more extensive changes than those in the river. The cascade of four reservoirs resulted in a marked improvement of water quality in the river, which was confirmed by species composition, abundance and biomass of macroinvertebrates and indicators calculated on their basis for the stations below the cascade in comparison to the stations above and in the first reservoir. These reservoirs replaced constructed wetlands or other measures, which should be undertaken for stormwater management prior to its discharge into urban rivers and other water bodies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Using macroinvertebrate assemblages and multiple stressors to infer urban stream system condition: A case study in the central US

    USGS Publications Warehouse

    Nichols, John W.; Hubbart, Jason A.; Poulton, Barry C.

    2016-01-01

    Characterizing the impacts of hydrologic alterations, pollutants, and habitat degradation on macroinvertebrate species assemblages is of critical value for managers wishing to categorize stream ecosystem condition. A combination of approaches including trait-based metrics and traditional bioassessments provides greater information, particularly in anthropogenic stream ecosystems where traditional approaches can be confounded by variously interacting land use impacts. Macroinvertebrates were collected from two rural and three urban nested study sites in central Missouri, USA during the spring and fall seasons of 2011. Land use responses of conventional taxonomic and trait-based metrics were compared to streamflow indices, physical habitat metrics, and water quality indices. Results show that biotic index was significantly different (p < 0.05) between sites with differences detected in 54 % of trait-based metrics. The most consistent response to urbanization was observed in size metrics, with significantly (p < 0.05) fewer small bodied organisms. Increases in fine streambed sediment, decreased submerged woody rootmats, significantly higher winter Chloride concentrations, and decreased mean suspended sediment particle size in lower urban stream reaches also influenced macroinvertebrate assemblages. Riffle habitats in urban reaches contained 21 % more (p = 0.03) multivoltine organisms, which was positively correlated to the magnitude of peak flows (r2 = 0.91, p = 0.012) suggesting that high flow events may serve as a disturbance in those areas. Results support the use of macroinvertebrate assemblages and multiple stressors to characterize urban stream system condition and highlight the need to better understand the complex interactions of trait-based metrics and anthropogenic aquatic ecosystem stressors.

  16. Aquatic Invertebrate Assemblages in Shallow Prairie Lakes: Fish and Environmental Influences

    USGS Publications Warehouse

    Paukert, C.P.; Willis, D.W.

    2003-01-01

    We sampled zooplankton and benthic macroinvertebrate assemblages in 30 shallow natural lakes to determine the effects of the environment (i.e., habitat and fish abundance) on invertebrates. Zooplankters were identified to genus, and up to 120 individuals per genus were measured. Macroinvertebrates were identified to order, class, or family. Fish communities were also sampled. Relative abundances of zooplankton and macroinvertebrates were low at increased chlorophyll a concentrations, although mean zooplankton length increased with total phosphorus, possibly because of an increased proportion of microzooplankton (rotifers and copepod nauplii) at higher phosphorus levels. Canonical correspondence analysis revealed that zooplankton and macroinvertebrate abundance was influenced by submersed vegetation coverage, whereas zooplankton abundance and size structure were also related to productivity (i.e., chlorophyll a and total phosphorus). However, relative abundance of fish species or fish feeding guilds was not strongly correlated with zooplankton or macroinvertebrate abundance or zooplankton size structure. Physical habitat (e.g., vegetation coverage) may exert substantial influences on invertebrate assemblages in these lakes, possibly providing a refuge from fish predation.

  17. Effects of hydrologic connectivity on aquatic macroinvertebrate assemblages in different marsh types

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Hydrologic connectivity can be an important driver of aquatic macroinvertebrate assemblages. Its effects on aquatic macroinvertebrate assemblages in coastal marshes, however, are relatively poorly studied. We evaluated the effects of lateral hydrologic connectivity (permanently connected ponds: PCPs; temporary connected ponds: TCPs), and other environmental variables on aquatic macroinvertebrate assemblages and functional feeding groups (FFGs) in freshwater, brackish, and saline marshes in Louisiana, USA. We hypothesized that (1) aquatic macroinvertebrate assemblages in PCPs would have higher assemblage metric values (density, biomass, Shannon-Wiener diversity) than TCPs and (2) the density and proportional abundance of certain FFGs (i.e. scrapers, shredders, and collectors) would be greater in freshwater marsh than brackish and saline marshes. The data in our study only partially supported our first hypothesis: while freshwater marsh PCPs had higher density and biomass than TCPs, assemblage metric values in saline TCPs were greater than saline PCPs. In freshwater TCPs, long duration of isolation limited access of macroinvertebrates from adjacent water bodies, which may have reduced assemblage metric values. However, the relatively short duration of isolation in saline TCPs provided more stable or similar habitat conditions, facilitating higher assemblage metric values. As predicted by our second hypothesis, freshwater PCPs and TCPs supported a greater density of scrapers, shredders, and collectors than brackish and saline ponds. Aquatic macroinvertebrate assemblages seem to be structured by individual taxa responses to salinity as well as pond habitat attributes.

  18. Response of Benthic Macroinvertebrate Communities to Increases in Sediment Supply from Dam Removal

    NASA Astrophysics Data System (ADS)

    Roark, J.; Podolak, C.

    2009-12-01

    There are approximately 85,000 dams in the United States that have an average age of 51 years and a typical design life of 50 years. An increasingly common management strategy for these dams is to decommission them but the information on environmental impact of releasing impounded sediment on the fresh water ecosystem downstream is unknown. It is expected that the increases in sediment supply could detrimentally impact communities downstream which indicates that a reliable measure of the impact is important in making management decisions. Benthic macroinvertebrate species have been proven as valid indicators of ecosystem health through their response to water quality conditions and have more recently been used to describe ecosystem health from habitat disturbances such as sediment deposition, flow regime changes, and trophic structure changes. The objective of this study is to investigate the use of benthic macroinvertebrate community response from geomorphologic change after a dam removal as a biological indicator of ecosystem health by comparing the results of the current field study to other studies on macroinvertebrate response to dam removal and by contributing to the general knowledge on ecosystem community response to increases in sediment supply. Increasing knowledge on this type of ecosystem response will improve ability to effectively manage dam removal for restoration purposes as well as help us understand ecosystem processes. In order to quantify macroinvertebrate response to sediment deposition for the field study, density and richness of benthic macroinvertebrate species were measured on the Sandy River in Oregon where it was known that stream bed changes had taken place from a dam removal and were quantified for the previous 3 years. It was found that there was a statistically significant difference in species richness among macroinvertebrate communities (p<0.0001, f=0.930) with old habitats richer than new habitats, but there were no significant

  19. Wetland macroinvertebrates of Prentiss Bay, Lake Huron, Michigan: diversity and functional group composition

    USGS Publications Warehouse

    Merritt, R.W.; Benbow, M.E.; Hudson, P.L.

    2002-01-01

    The Great Lakes support many fish and waterbirds that depend directly or indirectly on coastal wetlands during some portion of their life cycle. It is known that macroinvertebrates make up an important part of wetland food webs and ecosystem function; however, our understanding of species distribution within and among wetlands has only recently received attention. We investigated the macroinvertebrates of a freshwater marsh (Prentiss Bay) in the Les Chenaux Island Area of Northern Lake Huron, Michigan. Macroinvertebrate taxa diversity and functional feeding group composition were compared between two habitats. A shallow depositional habitat with higher vegetation diversity and little wave action was compared to a deeper erosional habitat with fewer plant species and more wave action. A total of 83 taxa were collected over the summer of 1996, representing two phyla (Arthropoda and Mollusca) and five classes (Arachnida, Bivalvia, Malacostraca, Gastropoda and Insecta). A total of 79 genera were identified, with 92% being insects (39 families composed of at least 73 genera). Of the total, 42 insect genera were common to both habitats,while relatively fewer were collected exclusively from the erosional compared the depositional habitat. When habitats were pooled, predators comprised about 50% of the functional group taxa, while gathering collectors and shredders each were about 20%. Filtering collectors and scrapers each represented < 10%. When comparing habitats, there was a relatively higher percentage of predators and shredders in the depositional habitat, while all other functional groups were lower. These data suggest that vegetation diversity, depth and wave action affect taxa composition and functional group organization of the Prentiss Bay marsh.

  20. Linkages between nutrients and assemblages of macroinvertebrates and fish in wadeable streams: Implication to nutrient criteria development

    USGS Publications Warehouse

    Wang, L.; Robertson, Dale M.; Garrison, P.J.

    2007-01-01

    We sampled 240 wadeable streams across Wisconsin for different forms of phosphorus and nitrogen, and assemblages of macroinvertebrates and fish to (1) examine how macroinvertebrate and fish measures correlated with the nutrients; (2) quantify relationships between key biological measures and nutrient forms to identify potential threshold levels of nutrients to support nutrient criteria development; and (3) evaluate the importance of nutrients in influencing biological assemblages relative to other physicochemical factors at different spatial scales. Twenty-three of the 35 fish and 18 of the 26 macroinvertebrate measures significantly correlated (P < 0.05) with at least one nutrient measure. Percentages of carnivorous, intolerant, and omnivorous fishes, index of biotic integrity, and salmonid abundance were fish measures correlated with the most nutrient measures and had the highest correlation coefficients. Percentages of Ephemeroptera-Plecoptera-Trichoptera individuals and taxa, Hilsenhoff biotic index, and mean tolerance value were macroinvertebrate measures that most strongly correlated with the most nutrient measures. Selected biological measures showed clear trends toward degradation as concentrations of phosphorus and nitrogen increased, and some measures showed clear thresholds where biological measures changed drastically with small changes in nutrient concentrations. Our selected environmental factors explained 54% of the variation in the fish assemblages. Of this explained variance, 46% was attributed to catchment and instream habitat, 15% to nutrients, 3% to other water quality measures, and 36% to the interactions among all the environmental variables. Selected environmental factors explained 53% of the variation in macroinvertebrate assemblages. Of this explained variance, 42% was attributed to catchment and instream habitat, 22% to nutrients, 5% to other water quality measures, and 32% to the interactions among all the environmental variables. ?? 2006

  1. Linkages Between Nutrients and Assemblages of Macroinvertebrates and Fish in Wadeable Streams: Implication to Nutrient Criteria Development

    NASA Astrophysics Data System (ADS)

    Wang, Lizhu; Robertson, Dale M.; Garrison, Paul J.

    2007-02-01

    We sampled 240 wadeable streams across Wisconsin for different forms of phosphorus and nitrogen, and assemblages of macroinvertebrates and fish to (1) examine how macroinvertebrate and fish measures correlated with the nutrients; (2) quantify relationships between key biological measures and nutrient forms to identify potential threshold levels of nutrients to support nutrient criteria development; and (3) evaluate the importance of nutrients in influencing biological assemblages relative to other physicochemical factors at different spatial scales. Twenty-three of the 35 fish and 18 of the 26 macroinvertebrate measures significantly correlated ( P < 0.05) with at least one nutrient measure. Percentages of carnivorous, intolerant, and omnivorous fishes, index of biotic integrity, and salmonid abundance were fish measures correlated with the most nutrient measures and had the highest correlation coefficients. Percentages of Ephemeroptera-Plecoptera-Trichoptera individuals and taxa, Hilsenhoff biotic index, and mean tolerance value were macroinvertebrate measures that most strongly correlated with the most nutrient measures. Selected biological measures showed clear trends toward degradation as concentrations of phosphorus and nitrogen increased, and some measures showed clear thresholds where biological measures changed drastically with small changes in nutrient concentrations. Our selected environmental factors explained 54% of the variation in the fish assemblages. Of this explained variance, 46% was attributed to catchment and instream habitat, 15% to nutrients, 3% to other water quality measures, and 36% to the interactions among all the environmental variables. Selected environmental factors explained 53% of the variation in macroinvertebrate assemblages. Of this explained variance, 42% was attributed to catchment and instream habitat, 22% to nutrients, 5% to other water quality measures, and 32% to the interactions among all the environmental variables.

  2. Macroinvertebrate Taxonomic and Functional Trait Compositions within Lotic Habitats Affected By River Restoration Practices

    NASA Astrophysics Data System (ADS)

    White, J. C.; Hill, M. J.; Bickerton, M. A.; Wood, P. J.

    2017-09-01

    The widespread degradation of lotic ecosystems has prompted extensive river restoration efforts globally, but many studies have reported modest ecological responses to rehabilitation practices. The functional properties of biotic communities are rarely examined within post-project appraisals, which would provide more ecological information underpinning ecosystem responses to restoration practices and potentially pinpoint project limitations. This study examines macroinvertebrate community responses to three projects which aimed to physically restore channel morphologies. Taxonomic and functional trait compositions supported by widely occurring lotic habitats (biotopes) were examined across paired restored and non-restored (control) reaches. The multivariate location (average community composition) of taxonomic and functional trait compositions differed marginally between control and restored reaches. However, changes in the amount of multivariate dispersion were more robust and indicated greater ecological heterogeneity within restored reaches, particularly when considering functional trait compositions. Organic biotopes (macrophyte stands and macroalgae) occurred widely across all study sites and supported a high alpha (within-habitat) taxonomic diversity compared to mineralogical biotopes (sand and gravel patches), which were characteristic of restored reaches. However, mineralogical biotopes possessed a higher beta (between-habitat) functional diversity, although this was less pronounced for taxonomic compositions. This study demonstrates that examining the functional and structural properties of taxa across distinct biotopes can provide a greater understanding of biotic responses to river restoration works. Such information could be used to better understand the ecological implications of rehabilitation practices and guide more effective management strategies.

  3. Macroinvertebrate community responses to gravel augmentation in a high-gradient, Southeastern regulated river

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A; Orth, Dr. Donald J; Dolloff, Dr. Charles A

    2013-01-01

    Sediment transport, one of the key processes of river systems, is altered or stopped by dams, leaving lower river reaches barren of sand and gravel, both of which are essential habitat for fish and macroinvertebrates. One way to compensate for losses in sediment is to supplement gravel to river reaches below impoundments. Because gravel addition has become a widespread practice, it is essential to evaluate the biotic response to restoration projects in order to improve the efficacy of future applications. The purpose of our study was to evaluate the response of the macroinvertebrate community to gravel addition in a high-gradient,more » regulated river in western North Carolina. We collected benthic macroinvertebrate samples from gravel-enhanced areas and unenhanced areas for 1 season before gravel addition, and for 4 seasons afterwards. Repeated measures multivariate analysis of variance indicated that the responses of macroinvertebrates to gravel addition were generally specific to individual taxa or particular functional feeding groups and did not lead to consistent patterns in overall family richness, diversity, density, or evenness. Non-metric multi-dimensional scaling showed that shifts in macroinvertebrate community composition were temporary and dependent upon site conditions and season. Correlations between macroinvertebrate response variables and substrate microhabitat variables existed with or without the inclusion of data from enhanced areas, which suggests that substrate-biotic relationships were present before gravel addition. A review of the current literature suggests that the responses of benthic macroinvertebrates to substrate restoration are inconsistent and dependent upon site conditions and the degree habitat improvement of pre-restoration site conditions.« less

  4. COMPARATIVE PERFORMANCE OF SIX DIFFERENT BENTHIC MACROINVERTEBRATE SAMPLING METHODS FOR RIVERINE ECOSYSTEMS

    EPA Science Inventory

    At each of 60 sites, we collected benthic macroinvertebrates using six different protocols (including the EMAP methods for non-wadeable rivers) and physical habitat data using the USEPA-EMAP-SW protocols for non-wadeable rivers. We used PCA with physical habitat data and DCA wit...

  5. Assessing ecological water quality with macroinvertebrates and fish: a case study from a small Mediterranean river.

    PubMed

    Cheimonopoulou, Maria Th; Bobori, Dimitra C; Theocharopoulos, Ioannis; Lazaridou, Maria

    2011-02-01

    Biological elements, such as benthic macroinvertebrates and fish, have been used in assessing the ecological quality of rivers according to the requirements of the Water Framework Directive. However, the concurrent use of multiple organism groups provides a broader perspective for such evaluations, since each biological element may respond differently to certain environmental variables. In the present study, we assessed the ecological quality of a Greek river (RM4 type), during autumn 2003 and spring 2004 at 10 sites, with benthic macroinvertebrates and fish. Hydromorphological and physicochemical parameters, habitat structure, and riparian vegetation were also considered. Pollution sensitive macroinvertebrate taxa were more abundant at headwaters, which had good/excellent water quality according to the Hellenic Evaluation System (HES). The main river reaches possessed moderate water quality, while downstream sites were mainly characterised as having bad or poor water quality, dominated by pollution-tolerant macroinvertebrate taxa. Macroinvertebrates related strongly to local stressors as chemical degradation (ordination analysis CCA) and riparian quality impairment (bivariate analysis) while fish did not. Fish were absent from the severely impacted lower river reaches. Furthermore, external pathological signs were observed in fish caught at certain sites. A combined use of both macroinvertebrates and fish in biomonitoring programs is proposed for providing a safer assessment of local and regional habitat impairment.

  6. The effect of an industrial effluent on an urban stream benthic community: water quality vs habitat quality.

    PubMed

    Nedeau, Ethan J; Merritt, Richard W; Kaufman, Michael G

    2003-01-01

    We studied the effect of an industrial effluent on the water quality, habitat quality, and benthic macroinvertebrates of an urban stream in southwestern Michigan (USA). The effluent affected water quality by raising in-stream temperatures 13-18 degree C during colder months and carrying high amounts of iron (> 20 x higher than ambient) that covered the streambed. The effluent also affected habitat conditions by increasing total stream discharge by 50-150%, causing a significant change in substrate and flow conditions. We used three methods to collect benthic macroinvertebrates in depositional and erosional habitats and to understand the relative importance of habitat quality and water quality alterations. Macroinvertebrate response variables included taxonomic richness, abundance, and proportional abundance of sensitive taxonomic groups. Results indicated that the effluent had a positive effect on macroinvertebrate communities by increasing the quantity of riffle habitat, but a negative effect on macroinvertebrate communities by reducing water quality. Results illustrated the need for careful consideration of habitat quality and water quality in restoration or remediation programs.

  7. Anthropogenic water bodies as drought refuge for aquatic macroinvertebrates and macrophytes.

    PubMed

    Dodemaide, David T; Matthews, Ty G; Iervasi, Dion; Lester, Rebecca E

    2018-03-01

    Ecological research associated with the importance of refuges has tended to focus on natural rather than anthropogenic water bodies. The frequency of disturbances, including drought events, is predicted to increase in many regions worldwide due to human-induced climate change. More frequent disturbance will affect freshwater ecosystems by altering hydrologic regimes, water chemistry, available habitat and assemblage structure. Under this scenario, many aquatic biota are likely to rely on permanent water bodies as refuge, including anthropogenic water bodies. Here, macroinvertebrate and macrophyte assemblages from waste-water treatment and raw-water storages (i.e. untreated potable water) were compared with nearby natural water bodies during autumn and winter 2013. We expected macroinvertebrate and macrophyte assemblages in raw-water storages to be representative of natural water bodies, while waste-water treatment storages would not, due to degraded water quality. However, water quality in natural water bodies differed from raw-water storages but was similar to waste-water treatment storages. Macroinvertebrate patterns matched those of water quality, with no differences occurring between natural water bodies and waste-water treatment storages, but assemblages in raw-water storages differed from the other two water bodies. Unexpectedly, differences associated with raw-water storages were attributable to low abundances of several taxa. Macrophyte assemblages in raw-water storages were representative of natural water bodies, but were less diverse and abundant in, or absent from, waste-water treatment storages. No clear correlations existed between any habitat variables and macroinvertebrate assemblages but a significant correlation between macrophyte assemblages and habitat characteristics existed. Thus, there were similarities in both water quality and macroinvertebrate assemblages between natural water bodies and waste-water treatment storages, and similarities in

  8. Differences found in the macroinvertebrate community composition in the presence or absence of the invasive alien crayfish, Orconectes hylas

    USGS Publications Warehouse

    Freeland-Riggert, Brandye T.; Cairns, Stefan H.; Poulton, Barry C.; Riggert, Chris M.

    2016-01-01

    Introductions of alien species into aquatic ecosystems have been well documented, including invasions of crayfish species; however, little is known about the effects of these introductions on macroinvertebrate communities. The woodland crayfish (Orconectes hylas (Faxon)) has been introduced into the St. Francis River watershed in southeast Missouri and has displaced populations of native crayfish. The effects of O. hylas on macroinvertebrate community composition were investigated in a fourth-order Ozark stream at two locations, one with the presence of O. hylas and one without. Significant differences between sites and across four sampling periods and two habitats were found in five categories of benthic macroinvertebrate metrics: species richness, percent/composition, dominance/diversity, functional feeding groups, and biotic indices. In most seasons and habitat combinations, the invaded site had significantly higher relative abundance of riffle beetles (Coleoptera: Elmidae), and significantly lower Missouri biotic index values, total taxa richness, and both richness and relative abundance of midges (Diptera: Chironomidae). Overall study results indicate that some macroinvertebrate community differences due to the O. hylas invasion were not consistent between seasons and habitats, suggesting that further research on spatial and temporal habitat use and feeding ecology of Ozark crayfish species is needed to improve our understanding of the effects of these invasions on aquatic communities.

  9. Differences Found in the Macroinvertebrate Community Composition in the Presence or Absence of the Invasive Alien Crayfish, Orconectes hylas

    PubMed Central

    Freeland-Riggert, Brandye T.

    2016-01-01

    Introductions of alien species into aquatic ecosystems have been well documented, including invasions of crayfish species; however, little is known about the effects of these introductions on macroinvertebrate communities. The woodland crayfish (Orconectes hylas (Faxon)) has been introduced into the St. Francis River watershed in southeast Missouri and has displaced populations of native crayfish. The effects of O. hylas on macroinvertebrate community composition were investigated in a fourth-order Ozark stream at two locations, one with the presence of O. hylas and one without. Significant differences between sites and across four sampling periods and two habitats were found in five categories of benthic macroinvertebrate metrics: species richness, percent/composition, dominance/diversity, functional feeding groups, and biotic indices. In most seasons and habitat combinations, the invaded site had significantly higher relative abundance of riffle beetles (Coleoptera: Elmidae), and significantly lower Missouri biotic index values, total taxa richness, and both richness and relative abundance of midges (Diptera: Chironomidae). Overall study results indicate that some macroinvertebrate community differences due to the O. hylas invasion were not consistent between seasons and habitats, suggesting that further research on spatial and temporal habitat use and feeding ecology of Ozark crayfish species is needed to improve our understanding of the effects of these invasions on aquatic communities. PMID:26986207

  10. Fish, benthic-macroinvertebrate, and stream-habitat data from two estuaries near Galveston Bay, Texas, 2000-2001

    USGS Publications Warehouse

    Hogan, Jennifer L.

    2002-01-01

    This report presents data on the status of fish, macroinvertebrates, and stream habitat collected from 10 sites in the lower (estuarine) parts of Armand and Dickinson Bayous near Galveston Bay, Texas, during summer 2000 and winter 2001. The total number of individual fish caught at the five Armand Bayou sites (2,091) was greater than at the five Dickinson Bayou sites (1,055), but the total number of fish species caught at Dickinson Bayou sites (37) was greater than at Armand Bayou sites (30). The total number of invertebrates (26,641) and the total number of invertebrate taxa (141) were both greater at Armand Bayou sites than at Dickinson Bayou sites (10,467 and 131, respectively). Among habitat data, the average sinuosity of Armand Bayou sites (1.31) was greater than that of Dickinson Bayou sites (1.14). Mean left-bank and right-bank slopes were greater at Armand Bayou sites than at Dickinson Bayou sites, although the Armand Bayou banks were lower and narrower than the Dickinson Bayou banks. The Dickinson Bayou channel was deeper at the sampling sites than the Armand Bayou channel.

  11. Macroinvertebrates as indicators of fish absence in naturally fishless lakes

    USGS Publications Warehouse

    Schilling, Emily Gaenzle; Loftin, C.S.; Huryn, Alexander D.

    2009-01-01

    1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish-containing lakes (n = 18) of similar size, location and maximum depth. We used non-metric multidimensional scaling to assess differences in community structure and t-tests for taxon-specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish-containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish-containing lakes, especially taxa that are large, active and free-swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus

  12. An evaluation of the relative quality of dike pools for benthic macroinvertebrates in the Lower Missouri River, USA

    USGS Publications Warehouse

    Poulton, B.C.; Allert, A.L.

    2012-01-01

    A habitat-based aquatic macroinvertebrate study was initiated in the Lower Missouri River to evaluate relative quality and biological condition of dike pool habitats. Water-quality and sediment-quality parameters and macroinvertebrate assemblage structure were measured from depositional substrates at 18 sites. Sediment porewater was analysed for ammonia, sulphide, pH and oxidation-reduction potential. Whole sediments were analysed for particle-size distribution, organic carbon and contaminants. Field water-quality parameters were measured at subsurface and at the sediment-water interface. Pool area adjacent and downstream from each dike was estimated from aerial photography. Macroinvertebrate biotic condition scores were determined by integrating the following indicator response metrics: % of Ephemeroptera (mayflies), % of Oligochaeta worms, Shannon Diversity Index and total taxa richness. Regression models were developed for predicting macroinvertebrate scores based on individual water-quality and sediment-quality variables and a water/sediment-quality score that integrated all variables. Macroinvertebrate scores generated significant determination coefficients with dike pool area (R2=0.56), oxidation–reduction potential (R2=0.81) and water/sediment-quality score (R2=0.71). Dissolved oxygen saturation, oxidation-reduction potential and total ammonia in sediment porewater were most important in explaining variation in macroinvertebrate scores. The best two-variable regression models included dike pool size + the water/sediment-quality score (R2=0.84) and dike pool size + oxidation-reduction potential (R2=0.93). Results indicate that dike pool size and chemistry of sediments and overlying water can be used to evaluate dike pool quality and identify environmental conditions necessary for optimizing diversity and productivity of important aquatic macroinvertebrates. A combination of these variables could be utilized for measuring the success of habitat enhancement

  13. Prey Distribution, Physical Habitat Features, and Guild Traits Interact to Produce Contrasting Shorebird Assemblages among Foraging Patches

    PubMed Central

    VanDusen, Beth M.; Fegley, Stephen R.; Peterson, Charles H.

    2012-01-01

    Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to develop more comprehensive guild- and community-level insights. We found that densities and community composition of foraging shorebirds varied substantially among elevations within some tidal flats and among five flats despite their proximity (all located within a 400-m stretch of natural, unmodified inlet shoreline). Non-dimensional multivariate analyses revealed that the changing composition of the shorebird community among flats and tidal elevations correlated significantly (ρs = 0.56) with the spatial structure of the benthic invertebrate prey community. Sediment grain-sizes affected shorebird community spatial patterns indirectly by influencing benthic macroinvertebrate community compositions. Furthermore, combining sediment and macroinvertebrate information produced a 27% increase in correlation (ρs = 0.71) with shorebird assemblage patterns over the correlation of the bird community with the macroinvertebrate community alone. Beyond its indirect effects acting through prey distributions, granulometry of the flats influenced shorebird foraging directly by modifying prey availability. Our study highlights the importance of habitat heterogeneity, showing that no single patch type was ideal for the entire shorebird community. Generally, shorebird density and diversity were greatest at lower elevations on flats when they became exposed; these areas are at risk

  14. Hydrologic controls on basin-scale distribution of benthic macroinvertebrates

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Ceola, S.; Singer, G. A.; Battin, T. J.; Montanari, A.; Rinaldo, A.

    2013-12-01

    The presentation deals with the role of streamflow variability on basin-scale distributions of benthic macroinvertebrates. Specifically, we present a probabilistic analysis of the impacts of the variability along the river network of relevant hydraulic variables on the density of benthic macroinvertebrate species. The relevance of this work is based on the implications of the predictability of macroinvertebrate patterns within a catchment on fluvial ecosystem health, being macroinvertebrates commonly used as sensitive indicators, and on the effects of anthropogenic activity. The analytical tools presented here outline a novel procedure of general nature aiming at a spatially-explicit quantitative assessment of how near-bed flow variability affects benthic macroinvertebrate abundance. Moving from the analytical characterization of the at-a-site probability distribution functions (pdfs) of streamflow and bottom shear stress, a spatial extension to a whole river network is performed aiming at the definition of spatial maps of streamflow and bottom shear stress. Then, bottom shear stress pdf, coupled with habitat suitability curves (e.g., empirical relations between species density and bottom shear stress) derived from field studies are used to produce maps of macroinvertebrate suitability to shear stress conditions. Thus, moving from measured hydrologic conditions, possible effects of river streamflow alterations on macroinvertebrate densities may be fairly assessed. We apply this framework to an Austrian river network, used as benchmark for the analysis, for which rainfall and streamflow time-series and river network hydraulic properties and macroinvertebrate density data are available. A comparison between observed vs "modeled" species' density in three locations along the examined river network is also presented. Although the proposed approach focuses on a single controlling factor, it shows important implications with water resources management and fluvial

  15. A longitudinal assessment of the aquatic macroinvertebrate community in the channelized lower Missouri River

    USGS Publications Warehouse

    Poulton, Barry C.; Wildhaber, Mark L.; Charbonneau, Collette S.; Fairchild, James F.; Mueller, Brad G.; Schmitt, Christopher J.

    2003-01-01

    We conducted an aquatic macroinvertebrate assessment in the channelized reach of the lower Missouri River, and used statistical analysis of individual metrics and multimetric scores to identify community response patterns and evaluate relative biological condition. We examined longitudinal site differences that are potentially associated with water qualityrelated factors originating from the Kansas City metropolitan area, using data from coarse rock substrate in flowing water habitats (outside river bends), and depositional mud substratein slack water habitats (dike fields). Three sites above rivermile (RM) 369 in Kansas City (Nebraska City, RM = 560; St. Joseph, RM = 530; Parkville, RM = 377) and three below (Lexington, RM = 319; Glasgow, RM = 228; Hermann, RM = 94) were sampled with rock basket artificial substrates, a qualitative kicknet method, and the Petite Ponar. We also compared the performance of the methods used. A total of 132 aquatic macroinvertebrate taxa were collected from the lower Missouri River; one third of these taxa belonged to the sensitiveEPOT insect orders (Ephemeroptera, Plecoptera, Odonata, and Trichoptera). Rock baskets had the highest mean efficiency (34.1%) of the methods, and the largest number of taxa was collected by Ponar (n = 69) and kicknet (n = 69) methods. Seven of the 15 metrics calculated from rock basket data, and five ofthe nine metrics calculated from Ponar data showed highly significant differences (ANOVA, P < 0.001) at one or more sitesbelow Kansas City. We observed a substantial reduction in net-spinning Trichoptera in rock habitats below Kansas City (Lexington), an increase in relative dominance of Oligochaeta in depositional habitats at the next site downstream (Glasgow), and lower relative condition scores in rock habitat at Lexingtonand depositional habitat at Glasgow. Collectively, these data indicate that some urban-related impacts on the aquatic macroinvertebrate community are occurring. Our results suggest that

  16. A COMPARISON OF BENTHIC MACROINVERTEBRATE SAMPLING METHODS ON SELECTED LARGE RIVER TRIBUTARIES TO THE MISSISSIPPI

    EPA Science Inventory

    We compared three benthic macroinvertebrate sampling methods on the St. Croix, Wisconsin and Scioto Rivers in summer 2004 and 2005. EPA's newly developed, multi-habitat Large River Bioassessment Protocol (LR-BP) was compared to the multi-habitat method of the Minnesota Pollution...

  17. [Spatial and temporal variation patterns in aquatic macroinvertebrates of Tecocomulco Lake, Hidalgo (México)].

    PubMed

    Rico-Sánchez, Axel Eduardo; Rodríguez-Romero, Alexis Joseph; López-López, Eugenia; Sedeño-Díaz, Jacinto Elías

    2014-04-01

    Lake Tecocomulco, Hidalgo, is a relic of the ancient lakes ofAnahuac, important for the conservation of resident and migratory birds. However, the composition of aquatic macroinvertebrates is unknown; this is an important gap in conservation as they play an important role in the food web. This study analyzed the spatial and temporal variations in macroinvertebrate assemblages and their relationship with habitat characteristics. We carried out four monitoring campaigns covering the rainy and dry seasons. The monitoring was conducted at six study sites (four in the littoral zone and two in the middle part of the lake), environmental factors were recorded at each study site, water samples were collected for their physical and chemical analysis and aquatic macroinvertebrates were collected. A principal component analysis (PCA) was used to group study sites based on physical and chemical characteristics. Richness of taxa was analysed with rarefaction. We assessed the importance value index of each taxon (considering their frequency of occurrence and abundance). Similarity analyzes were performed between study sites and similarity of taxa with indices of Jaccard and Bray-Curtis, respectively. We performed a canonical correspondence analysis (CCA) between environmental factors and macroinvertebrate taxa. The PCA showed a marked seasonal variation represented by warm periods, with high values of conductivity, alkalinity, hardness, sulfates, and macronutrients (N and P) and the cold period with low values. We found a total of 26 taxa of aquatic macroinvertebrates and the highest richness was found in August. The Jaccard similarity analysis found differences between the littoral area and the limnetic zone, which differ also in the composition of macrophytes. The littoral zone had the highest taxa richness of macroinvertebrates and macrophytes, while the lowest diversity was found in the offshore zone. The CCA related physicochemical characteristics of the water body with

  18. Combined effects of local habitat, anthropogenic stress, and dispersal on stream ecosystems: a mesocosm experiment.

    PubMed

    Turunen, Jarno; Louhi, Pauliina; Mykrä, Heikki; Aroviita, Jukka; Putkonen, Emmi; Huusko, Ari; Muotka, Timo

    2018-06-06

    The effects of anthropogenic stressors on community structure and ecosystem functioning can be strongly influenced by local habitat structure and dispersal from source communities. Catchment land uses increase the input of fine sediments into stream channels, clogging the interstitial spaces of benthic habitats. Aquatic macrophytes enhance habitat heterogeneity and mediate important ecosystem functions, being thus a key component of habitat structure in many streams. Therefore, the recovery of macrophytes following in-stream habitat modification may be prerequisite for successful stream restoration. Restoration success is also affected by dispersal of organisms from the source community, with potentially strongest responses in relatively isolated headwater sites that receive limited amount of dispersing individuals. We used a factorial design in a set of stream mesocosms to study the independent and combined effects of an anthropogenic stressor (sand sedimentation), local habitat (macrophytes, i.e. moss transplants) and enhanced dispersal (two levels: high vs. low) on organic matter retention, algal accrual rate, leaf decomposition and macroinvertebrate community structure. Overall, all responses were simple additive effects with no interactions between treatments. Sand reduced algal accumulation, total invertebrate density and density of a few individual taxa. Mosses reduced algal accrual rate and algae-grazing invertebrates, but enhanced organic matter retention and detritus- and filter-feeders. Mosses also reduced macroinvertebrate diversity by increasing the dominance by a few taxa. Mosses also reduced leaf-mass loss, possibly because the organic matter retained by mosses provided an additional food source for leaf-shredding invertebrates and thus reduced shredder aggregation into leaf packs. The effect of mosses on macroinvertebrate communities and ecosystem functioning was distinct irrespective of the level of dispersal, suggesting strong environmental

  19. Study on the influence of small hydropower stations on the macroinvertebrates community-Take Nanhe River as a case, China

    NASA Astrophysics Data System (ADS)

    Zhao, Weihua; Li, Qingyun; Guo, Weijie; Wang, Zhenhua

    2017-05-01

    This study take Nahan River as a case to research the impacts of small hydropower stations on macroinvertebrates community. Results showed that a total of 13 macroinvertebrate samples was collected and contained 56 taxa belonging to 18 families and 35 genera. The influence of runoff regulation was more seriously than hydrological period. There were obvious zoning phenomenon of macroinvertebrates between reservoir, downdam reaches and natural reaches. From reservoir, downdam reaches to natural reaches, species abundance increased in turn. There are the least species in reservoir, the most in natural rivers. The reservoirs had the highest biomass and were quite different from those in downdam and natural reaches. However, there was no significant difference between different periods of hydropower station.

  20. Louisiana waterthrush and benthic macroinvertebrate response to shale gas development

    USGS Publications Warehouse

    Wood, Petra; Frantz, Mack W.; Becker, Douglas A.

    2016-01-01

    Because shale gas development is occurring over large landscapes and consequently is affecting many headwater streams, an understanding of its effects on headwater-stream faunal communities is needed. We examined effects of shale gas development (well pads and associated infrastructure) on Louisiana waterthrush Parkesia motacilla and benthic macroinvertebrate communities in 12 West Virginia headwater streams in 2011. Streams were classed as impacted (n = 6) or unimpacted (n = 6) by shale gas development. We quantified waterthrush demography (nest success, clutch size, number of fledglings, territory density), a waterthrush Habitat Suitability Index, a Rapid Bioassessment Protocol habitat index, and benthic macroinvertebrate metrics including a genus-level stream-quality index for each stream. We compared each benthic metric between impacted and unimpacted streams with a Student's t-test that incorporated adjustments for normalizing data. Impacted streams had lower genus-level stream-quality index scores; lower overall and Ephemeroptera, Plecoptera, and Trichoptera richness; fewer intolerant taxa, more tolerant taxa, and greater density of 0–3-mm individuals (P ≤ 0.10). We then used Pearson correlation to relate waterthrush metrics to benthic metrics across the 12 streams. Territory density (no. of territories/km of stream) was greater on streams with higher genus-level stream-quality index scores; greater density of all taxa and Ephemeroptera, Plecoptera, and Trichoptera taxa; and greater biomass. Clutch size was greater on streams with higher genus-level stream-quality index scores. Nest survival analyses (n = 43 nests) completed with Program MARK suggested minimal influence of benthic metrics compared with nest stage and Habitat Suitability Index score. Although our study spanned only one season, our results suggest that shale gas development affected waterthrush and benthic communities in the headwater streams we studied. Thus, these ecological effects of

  1. Comparison of the spatial and temporal variability of macroinvertebrate and periphyton-based metrics in a macrophyte-dominated shallow lake

    NASA Astrophysics Data System (ADS)

    Zhang, Lulu; Liu, Jingling; Li, Yi

    2015-03-01

    The influence of spatial differences, which are caused by different anthropogenic disturbances, and temporal changes, which are caused by natural conditions, on macroinvertebrates with periphyton communities in Baiyangdian Lake was compared. Periphyton and macrobenthos assemblage samples were simultaneously collected on four occasions during 2009 and 2010. Based on the physical and chemical attributes in the water and sediment, the 8 sampling sites can be divided into 5 habitat types by using cluster analysis. According to coefficients variation analysis (CV), three primary conclusions can be drawn: (1) the metrics of Hilsenhoff Biotic Index (HBI), Percent Tolerant Taxa (PTT), Percent dominant taxon (PDT), and community loss index (CLI), based on macroinvertebrates, and the metrics of algal density (AD), the proportion of chlorophyta (CHL), and the proportion of cyanophyta (CYA), based on periphytons, were mostly constant throughout our study; (2) in terms of spatial variation, the CV values in the macroinvertebratebased metrics were lower than the CV values in the periphyton-based metrics, and these findings may be caused by the effects of changes in environmental factors; whereas, the CV values in the macroinvertebrate-based metrics were higher than those in the periphyton-based metrics, and these results may be linked to the influences of phenology and life history patterns of the macroinvertebrate individuals; and (3) the CV values for the functionalbased metrics were higher than those for the structuralbased metrics. Therefore, spatial and temporal variation for metrics should be considered when assessing applying the biometrics.

  2. Spatiotemporal patterns in community structure of macroinvertebrates inhabiting calcareous periphyton mats

    USGS Publications Warehouse

    Liston, S.E.; Trexler, J.C.

    2005-01-01

    Calcareous floating periphyton mats in the southern Everglades provide habitat for a diverse macroinvertebrate community that has not been well characterized. Our study described this community in an oligotrophic marsh, compared it with the macroinvertebrate community associated with adjacent epiphytic algae attached to macrophytes in the water column, and detected spatial patterns in density and community structure. The floating periphyton mat (floating mat) and epiphytic algae in the water column (submerged epiphyton) were sampled at 4 sites (???1 km apart) in northern Shark River Slough, Everglades National Park (ENP), in the early (July) and late (November) wet season. Two perpendicular 90-m transects were established at each site and ???100 samples were taken in a nested design. Sites were located in wet-prairie spikerush-dominated sloughs with similar water depths and emergent macrophyte communities. Floating mats were sampled by taking cores (6-cm diameter) that were sorted under magnification to enumerate infauna retained on a 250-??m-mesh sieve and with a maximum dimension >1 mm. Our results showed that floating mats provide habitat for a macroinvertebrate community with higher densities (no. animals/g ash-free dry mass) of Hyalella azteca, Dasyhelea spp., and Cladocera, and lower densities of Chironomidae and Planorbella spp. than communities associated with submerged epiphyton. Densities of the most common taxa increased 3x to 15x from early to late wet season, and community differences between the 2 habitat types became more pronounced. Floating-mat coverage and estimated floating-mat biomass increased 20 to 30%, and 30 to 110%, respectively, at most sites in the late wet season. Some intersite variation was observed in individual taxa, but no consistent spatial pattern in any taxon was detected at any scale (from 0.2 m to 3 km). Floating mats and their resident macroinvertebrate communities are important components in the Everglades food web. This

  3. [Research advances in macroinvertebrate ecology of the stream hyporheic zone].

    PubMed

    Zhang, Yue-Wei; Yuan, Xing-Zhong; Liu, Hong; Ren, Hai-Qing

    2014-11-01

    The stream hyporheic zone is an ecotone of surface water-ground water interactions, which is rich in biodiversity, and is an important component of stream ecosystem. The macroinvertebrates, which are at the top of food webs in the hyporheic zone to directly influence the matter and energy dynamics of the hyporheic zone, and are potential indicators of river ecological health to adjust the function of environment purification and ecological buffer. The macroinvertebrates in the hyporheic zone are divided into three categories: stygoxenes, stygophiles and stygobites. The key factors which influenced macroinvertebrates distribution in the hyporheic zone are physical size of interstitial spaces, interstitial current velocity, dissolved oxygen (DO), water temperature, available organic matter, hydraulic conductivity and hydraulic retention time. A suitable sampling method should be used for diverse research purposes in the special ecological interface. In the future, some necessary researches should focus on the life-history and life history strategy of the macroinvertebrates in the hyporheic zone, the quantitative analysis on the matter and energy dynamics in the ecological system of stream, the assessment systems of river ecological health based on the macroinvertebrates of the stream hyporheic zone, and the ecological significance of the hyporheic zone as a refuge for distribution and evolution of the macroinvertebrates.

  4. RESEARCH: Effects of Recent Volcanic Eruptions on Aquatic Habitat in the Drift River, Alaska, USA: Implications at Other Cook Inlet Region Volcanoes.

    PubMed

    DORAVA; MILNER

    1999-02-01

    / Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano. During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano. KEY WORDS: Aquatic habitat; Volcanoes; Lahars; Lahar-runout flows; Macroinvertebrates; Community structure; Community composition

  5. The influence of food abundance, food dispersion and habitat structure on territory selection and size of an Afrotropical terrestrial insectivore

    USGS Publications Warehouse

    Stanley, Thomas R.; Newmark, William D.

    2015-01-01

    Most tropical insectivorous birds, unlike their temperate counterparts, hold and defend a feeding and breeding territory year-around. However, our understanding of ecological factors influencing territory selection and size in tropical insectivores is limited. Here we examine three prominent hypotheses relating food abundance, food dispersion (spatial arrangement of food items), and habitat structure to territoriality in the Usambara Thrush Turdus roehli. We first compared leaf-litter macro-invertebrate abundance and dispersion, and habitat structure between territories and random sites. We then examined the relation between these same ecological factors and territory size. Invertebrate abundance and dispersion were sparsely and evenly distributed across our study system and did not vary between territories and random sites. In contrast, habitat structure did vary between territories and random sites indicating the Usambara Thrush selects territories with open understorey and closed overstorey habitat. Invertebrate abundance and dispersion within territories of the Usambara Thrush were not associated with habitat structure. We believe the most likely explanation for the Usambara Thrush’s preference for open understorey and closed overstorey habitat relates to foraging behavior. Using information-theoretic model selection we found that invertebrate abundance was the highest-ranked predictor of territory size and was inversely related, consistent with food value theory of territoriality.

  6. Water-quality, stream-habitat, and biological data for Highland and Marchand Bayous, Galveston County, Texas, 2006-07

    USGS Publications Warehouse

    Brown, Dexter W.; Mabe, Jeffrey A.; Turco, Michael J.

    2008-01-01

    Benthic macroinvertebrate and fish data were collected from the same five sites identified for habitat evaluation. Three assessments were done to account for seasonal differences in biotic distribution. Stream-habitat and aquatic biota (benthic macroinvertebrates and fish) were assessed at each site three times during the study to evaluate aquatic life use. A total of 5,126 macroinvertebrate individuals were identified at all sites. During the study, 34 species of fish representing 28 families were collected from all the sites. 

  7. ASSOCIATION AMONG INVERTEBRATES AND HABITAT INDICATORS FOR LARGE RIVERS IN THE MIDWEST

    EPA Science Inventory

    Six reaches in each of two large rivers (one each in Kentucky and Ohio) were sampled using a prototype benthic macroinvertebrate sampling technique. The intent was to better understand the relationship between large river macroinvertebrate assemblages and habitat features. This...

  8. Recovery of lotic macroinvertebrate communities from disturbance

    NASA Astrophysics Data System (ADS)

    Wallace, J. Bruce

    1990-09-01

    Ecosystem disturbances produce changes in macrobenthic community structure (abundances, biomass, and production) that persist for a few weeks to many decades. Examples of disturbances with extremely long-term effects on benthic communities include contamination by persistent toxic agents, physical changes in habitats, and altered energy inputs. Stream size, retention, and local geomorphology may ameliorate the influence of disturbances on invertebrates. Disturbances can alter food webs and may select for favorable genotypes (e.g., insecticidal resistance). Introductions of pesticides into lotic ecosystems, which do not result in major physical changes within habitats, illustrate several factors that influence invertebrate recovery time from disturbance. These include: (1) magnitude of original contamination, toxicity, and extent of continued use; (2) spatial scale of the disturbance; (3) persistence of the pesticide; (4) timing of the contamination in relation to the life history stages of the organisms; (5) vagility of populations influenced by pesticides; and (6) position within the drainage network. The ability of macroinvertebrates to recolonize denuded stream habitats may vary greatly depending on regional life histories, dispersal abilities, and position within the stream network (e.g., headwaters vs larger rivers). Although downstream drift is the most frequently cited mechanism of invertebrate recolonization following disturbance in middle- and larger-order streams, evidence is presented that shows aerial recolonization to be potentially important in headwater streams. There is an apparent stochastic element operating for aerial recolonization, depending on the timing of disturbance and flight periods of various taxa. Available evidence indicates that recolonization of invertebrate taxa without an aerial adult stage requires longer periods of time than for those that possess winged, terrestrial adult stages (i.e., most insects). Innovative, manipulative

  9. [Monthly changes in the benthic macro-invertebrate community structure in the habitats of Phragmites australis marsh in the Dongtan wetland of the Yangtze River estuary, China].

    PubMed

    Zhang, Heng; Ye, Jin Yu; Liang, Xiao Li; Zhu, Xiao Jing; Jin, Shao Fei; Chen, Yuan Ge; Zhang, Jia Rui; Dai, Yang

    2017-04-18

    Based on the data of the benthic macro-invertebrates community in the Phragmites australis marsh in the Dongtan Wetland of the Yangtze River estuary collected from May 2015 to April 2016, we evaluated the monthly variations in the species composition, biodiversity and community structure of the benthic macro-invertebrates. The results showed that the average height and degree of coverage for P. australis increased monthly from March to August, and then deceased from September. The density and aboveground biomass (dry mass, g) of P. australis peaked in July. A total of twenty species (including 2 species only identified to genus level and 2 species identified to family level) were found in the survey periods, including 11 Gastropoda, 5 Malacostraca, 2 Insecta and 2 Polychaeta. Three snail species (Assiminea latericea, Assiminea violacea and Cerithideopsis largillierti) dominated the benthic communities in terms of numerical abundance. The number of epifauna species was the most (11 species), followed by 5 burrowing species and 4 infauna species. There were significant monthly variations in the density and biomass of the macro-invertebrates. The density and biomass of benthic community reached the maximum in August. The Margalef's species richness index (D) and Shannon index (H) showed significant differences monthly, but Pielou's index (J) except in November. Three macro-zoobenthic assemblages were identified with the 42% similarity level. The non-Metric Multidimensional scaling plot indicates that the benthic community in May, October and November was distinct compared to that in the other months. The present study suggested the density of the benthic macro-invertebrates community in the P. australis marshes was somewhat correlated with water temperature, underground biomass and salinity. But those correlation were not significant (P>0.05). Because of the continuous impact of anthropogenic activities, the biodiversity of the benthic macro-invertebrate community has

  10. Effects of recent volcanic eruptions on aquatic habitat in the Drift River, Alaska, USA: Implications at other Cook Inlet region volcanoes

    USGS Publications Warehouse

    Dorava, J.M.; Milner, A.M.

    1999-01-01

    Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano: During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano.

  11. Differences in macroinvertebrate community structure in streams and rivers with different hydrologic regimes in the semi-arid Colorado Plateau

    USGS Publications Warehouse

    Miller, Matthew P.; Brasher, Anne M.D.

    2011-01-01

    Aquatic macroinvertebrates are sensitive to changes in their chemical and physical environment, and as such, serve as excellent indicators of overall ecosystem health. Moreover, temporal and spatial differences in macroinvertebrate community structure can be used to investigate broad issues in aquatic science, such as the hypothesis that changes in climate are likely to have disproportionately large effects on small, intermittent stream ecosystems. We quantified macroinvertebrate community structure and abiotic conditions at ten stream sites with different dominant hydrologic regimes in the Colorado Plateau, ranging from small, intermittent desert streams to large perennial mountain rivers. Considerable differences were observed in community structure between sites with differing hydrologic regimes. Quantitative results of non-metric multidimensional scaling (NMDS) ordination and Spearman rank correlations between physical habitat and macroinvertebrate resemblance matrices indicate that discharge, geomorphic channel unit type (% pools vs. % riffles), percent of substrate composed of sand, and velocity were the subset of measured habitat variables that best explained the differences in macroinvertebrate community structure among sites. Of the 134 taxa identified, nine taxa explained 95 % of the variability in community structure between sites. These results add to a growing base of knowledge regarding the functioning of lotic ecosystems in the Colorado Plateau, and provide timely information on anticipated changes in the structure and function of aquatic ecosystems in response to predicted future environmental conditions.

  12. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    USGS Publications Warehouse

    Holmquist, Jeffrey G.; Waddle, Terry J.

    2013-01-01

    We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.

  13. Relations of benthic macroinvertebrates to concentrations of trace elements in water, streambed sediments, and transplanted bryophytes and stream habitat conditions in nonmining and mining areas of the upper Colorado River basin, Colorado, 1995-98

    USGS Publications Warehouse

    Mize, Scott V.; Deacon, Jeffrey R.

    2002-01-01

    Intensive mining activity and highly mineralized rock formations have had significant impacts on surface-water and streambed-sediment quality and aquatic life within the upper reaches of the Uncompahgre River in western Colorado. A synoptic study by the U.S. Geological Survey National Water-Quality Assessment Program was completed in the upper Uncompahgre River Basin in 1998 to better understand the relations of trace elements (with emphasis on aluminum, arsenic, copper, iron, lead, and zinc concentrations) in water, streambed sediment, and aquatic life. Water-chemistry, streambed-sediment, and benthic macroinvertebrate samples were collected during low-flow conditions between October 1995 and July 1998 at five sites on the upper Uncompahgre River, all downstream from historical mining, and at three sites in drainage basins of the Upper Colorado River where mining has not occurred. Aquatic bryophytes were transplanted to all sites for 15 days of exposure to the water column during which time field parameters were measured and chemical water-quality and benthic macroinvertebrate samples were collected. Stream habitat characteristics also were documented at each site. Certain attributes of surface-water chemistry among streams were significantly different. Concentrations of total aluminum, copper, iron, lead, and zinc in the water column and concentrations of dissolved aluminum, copper, and zinc were significantly different between nonmining and mining sites. Some sites associated with mining exceeded Colorado acute aquatic-life standards for aluminum, copper, and zinc and exceeded Colorado chronic aquatic-life standards for aluminum, copper, iron, lead, and zinc. Concentrations of copper, lead, and zinc in streambed sediments were significantly different between nonmining and mining sites. Generally, concentrations of arsenic, copper, lead, and zinc in streambed sediments at mining sites exceeded the Canadian Sediment Quality Guidelines probable effect level (PEL

  14. Benthic Macroinvertebrate Assemblages and Environmental Correlates in Springs of the Ridge and Valley Province

    EPA Science Inventory

    Springs are unique features in the landscape that provide important habitat for benthic invertebrates, yet there are few studies characterizing the distribution of benthic macro invertebrates in springs. Benthic macroinvertebrate and water quality data were collected at 35 spring...

  15. L-Lake macroinvertebrate community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, W.L.

    1996-06-01

    To characterize the present benthic macroinvertebrate community of L-Lake, Regions 5 and 7 of the reservoir were sampled in September 1995 at the same locations sampled in 1988 and 1989 during the L-Lake monitoring program. The macroinvertebrate community of 1995 is compared to that of 1988 and 1989. The species composition of L-Lake`s macroinvertebrate community has changed considerably since 1988-1989, due primarily to maturation of the reservoir ecosystem. L-Lake contains a reasonably diverse macroinvertebrate community that is capable of supporting higher trophic levels, including a diverse assemblage of fish species. The L-Lake macroinvertebrate community is similar to those of manymore » other southeastern reservoirs, and there is no indication that the macroinvertebrate community is perturbed by chemical or physical stressors.« less

  16. LANDSCAPE INFLUENCES ON IN-STREAM BIOTIC INTEGRITY: USE OF MACROINVERTEBRATE METRICS TO IDENTIFY LANDSCAPE STRESSORS IN HEADWATER CATCHMENTS

    EPA Science Inventory

    The biotic integrity of streams is profoundly influenced by quantitative and qualitative features in the landscape of the surrounding catchment. In this study, aquatic macroinvertebrate metrics (e.g., relative abundance of Ephemeroptera, Trichoptera, and/or Plecoptera taxa, or t...

  17. Organic-matter retention and macroinvertebrate utilization of seasonally inundated bryophytes in a mid-order Piedmont River

    USGS Publications Warehouse

    Wood, James; Pattillo, Meryom; Freeman, Mary C.

    2016-01-01

    There is increased understanding of the role of bryophytes in supporting invertebrate biomass and for their influence on nutrient cycling and carbon balance in aquatic systems, but the structural and functional role of bryophytes growing in seasonally inundated habitats is substantially less studied. We conducted a study on the Middle Oconee River, near Athens, GA, to assess invertebrate abundance and organic-matter retention in seasonally inundated patches of the liverwort Porella pinnata, a species that tends to be submerged only when water levels in rivers are substantially above base flow. Aquatic invertebrate utilization of these seasonally inundated habitats has rarely been investigated. Macroinvertebrate biomass, insect density, and organic-matter content were significantly greater in patches of P. pinnata than on adjacent bare rock. Bryophyte biomass explained additional variation in organic matter, insect biomass, and density. The most abundant insects in P. pinnata patches were Dipterans and Plecopterans. Our results suggest an important structural role of seasonally inundated bryophyte habitats in riverine ecosystems.

  18. Benthic macroinvertebrate assemblages and their relations with environmental variables in the Sacramento and San Joaquin River drainages, California, 1993-1997

    USGS Publications Warehouse

    Brown, Larry R.; May, Jason T.

    2000-01-01

    Data were collected in the San Joaquin and Sacramento river drainages to evaluate associations between macroinvertebrate assemblages and environmental variables as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Samples were collected at 53 sites from 1993 to 1995 in the San Joaquin River drainage and in 1996 and 1997 in the Sacramento River drainage. Macroinvertebrates were collected from riffles or from large woody debris (snags) when riffles were absent. Macroinvertebrate taxa were aggregated to the family (or higher) level of taxonomic organization, resulting in 81 taxa for analyses. Only the 50 most common taxa were used for two-way indicator species analysis (TWINSPAN) and canonical correspondence analysis. TWINSPAN analysis defined four groups of riffle samples and four groups of snag samples based on macroinvertebrate assemblages. Analysis of variance identified differences in environmental and biotic characteristics of the groups. These results combined with the results of canonical correspondence analysis indicated that patterns in riffle sample assemblage structure were highly correlated with a gradient in physical and chemical conditions associated with elevation. The results also suggested that flow regulation associated with large storage reservoirs has negative effects on the total number of taxa and density of macroinvertebrates below foothill dams. Analysis of the snag samples showed that, although elevation remained a significant variable, mean dominant substrate size, gradient, specific conductance, water temperature, percentage of the basin in agricultural land use, and percentage of the basin in combined agricultural and urban land uses were more important factors in explaining assemblage structure. Macroinvertebrate assemblages on snags may be useful in family level bioassessments of environmental conditions in valley floor habitats. In the Sierra Nevada and its foothills, the strong influence of elevation

  19. Results of Macroinvertebrate Sampling Conducted at 33 SRS Stream Locations, July--August 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, W.L.

    1994-12-01

    In order to assess the health of the macroinvertebrate communities of SRS streams, the macroinvertebrate communities at 30 stream locations on SRS were sampled during the summer of 1993, using Hester-Dendy multiplate samplers. In addition, three off-site locations in the Upper Three Runs drainage were sampled in order to assess the potential for impact from off-site activities. In interpreting the data, it is important to recognize that these data were from a single set of collections. Macroinvertebrate communities often undergo considerable temporal variation, and are also greatly influenced by such factors as water depth, water velocity, and available habitat. Thesemore » stations were selected with the intent of developing an on-going sampling program at a smaller number of stations, with the selection of the stations to be based largely upon the results of this preliminary sampling program. When stations within a given stream showed similar results, fewer stations would be sampled in the future. Similarly, if a stream appeared to be perturbed, additional stations or chemical analyses might be added so that the source of the perturbation could be identified. In general, unperturbed streams will contain more taxa than perturbed streams, and the distribution of taxa among orders or families will differ. Some groups of macroinvertebrates, such as Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies), which are collectively called EPT taxa, are considered to be relatively sensitive to most kinds of stream perturbation; therefore a reduced number of EPT taxa generally indicates that the stream has been subject to chemical or physical stressors. In coastal plain streams, EPT taxa are generally less dominant than in streams with rocky substrates, while Chironomidae (midges) are more abundant. (Abstract Truncated)« less

  20. Macroinvertebrate Community responses to gravel addition in a Southeastern regulated river

    Treesearch

    Ryan A. McManamay; Donald J. Orth; A. Charles. Dolloff

    2013-01-01

    Sediment transport, one of the key processes of river systems, is altered or stopped by dams, leaving lower river reaches barren of sand and gravel, both of which are essential habitat for fish and macroinvertebrates. One way to compensate for losses in sediment is to supplement gravel to river reaches below impoundments. Because gravel addition has become a widespread...

  1. Oyster reef restoration in the Northern Gulf of Mexico: effect of artificial substrate and sge on nekton and benthic macroinvertebrate assemblage use

    USGS Publications Warehouse

    Brown, Laura A.; Furlong, Jessica N.; Brown, Kenneth M.; LaPeyre, Megan K.

    2013-01-01

    In the northern Gulf of Mexico (GOM), reefs built by eastern oysters, Crassostrea virginica, provide critical habitat within shallow estuaries, and recent efforts have focused on restoring reefs to benefit nekton and benthic macroinvertebrates. We compared nekton and benthic macroinvertebrate assemblages at historic, newly created (<5years) and old (>6years) shell and rock substrate reefs. Using crab traps, gill-nets, otter trawls, cast nets, and benthic macroinvertebrate collectors, 20 shallow reefs (<5m) in the northern GOM were sampled throughout the summer of 2011. We compared nekton and benthic assemblage abundance, diversity and composition across reef types. Except for benthic macroinvertebrate abundance, which was significantly higher on old rock reefs as compared to historic reefs, all reefs were similar to historic reefs, suggesting created reefs provide similar support of nekton and benthic assemblages as historic reefs. To determine refuge value of oyster structure for benthic macroinvertebrates compared to bare bottom, we tested preferences of juvenile crabs across depth and refuge complexity in the presence and absence of adult blue crabs (Callinectes sapidus). Juveniles were more likely to use deep water with predators present only when provided oyster structure. Provision of structural material to support and sustain development of benthic and mobile reef communities may be the most important factor in determining reef value to these assemblages, with biophysical characteristics related to reef location influencing assemblage patterns in areas with structure; if so, appropriately locating created reefs is critical.

  2. Interactive effects of temperature and habitat complexity on freshwater communities.

    PubMed

    Scrine, Jennifer; Jochum, Malte; Ólafsson, Jón S; O'Gorman, Eoin J

    2017-11-01

    Warming can lead to increased growth of plants or algae at the base of the food web, which may increase the overall complexity of habitat available for other organisms. Temperature and habitat complexity have both been shown to alter the structure and functioning of communities, but they may also have interactive effects, for example, if the shade provided by additional habitat negates the positive effect of temperature on understory plant or algal growth. This study explored the interactive effects of these two major environmental factors in a manipulative field experiment, by assessing changes in ecosystem functioning (primary production and decomposition) and community structure in the presence and absence of artificial plants along a natural stream temperature gradient of 5-18°C. There was no effect of temperature or habitat complexity on benthic primary production, but epiphytic production increased with temperature in the more complex habitat. Cellulose decomposition rate increased with temperature, but was unaffected by habitat complexity. Macroinvertebrate communities were less similar to each other as temperature increased, while habitat complexity only altered community composition in the coldest streams. There was also an overall increase in macroinvertebrate abundance, body mass, and biomass in the warmest streams, driven by increasing dominance of snails and blackfly larvae. Presence of habitat complexity, however, dampened the strength of this temperature effect on the abundance of macroinvertebrates in the benthos. The interactive effects that were observed suggest that habitat complexity can modify the effects of temperature on important ecosystem functions and community structure, which may alter energy flow through the food web. Given that warming is likely to increase habitat complexity, particularly at higher latitudes, more studies should investigate these two major environmental factors in combination to improve our ability to predict the

  3. Effects of grade control structures on the macroinvertebrate assemblage of an agriculturally impacted stream

    USGS Publications Warehouse

    Litvan, M.E.; Stewart, T.W.; Pierce, C.L.; Larson, C.J.

    2008-01-01

    Nearly 400 rock rip-rap grade control structures (hereafter GCS) were recently placed in streams of western Iowa, USA to reduce streambank erosion and protect bridge infrastructure and farmland. In this region, streams are characterized by channelized reaches, highly incised banks and silt and sand substrates that normally support low macroinvertebrate abundance and diversity. Therefore, GCS composed of rip-rap provide the majority of coarse substrate habitat for benthic macroinvertebrates in these streams. We sampled 20 sites on Walnut Creek, Montgomery County, Iowa to quantify macroinvertebrate assemblage characteristics (1) on GCS rip-rap and at sites located (2) 5-50 m upstream of GCS, (3) 5-50 m downstream of GCS and (4) at least 1 km from any GCS (five sites each). Macroinvertebrate biomass, numerical densities and diversity were greatest at sites with coarse substrates, including GCS sites and one natural riffle site and relatively low at remaining sites with soft substrates. Densities of macroinvertebrates in the orders Ephemeroptera, Trichoptera, Diptera, Coleoptera and Acariformes were abundant on GCS rip-rap. Increases in macroinvertebrate biomass, density and diversity at GCS may improve local efficiency of breakdown of organic matter and nutrient and energy flow, and provide enhanced food resources for aquatic vertebrates. However, lack of positive macroinvertebrate responses immediately upstream and downstream of GCS suggest that positive effects might be restricted to the small areas of streambed covered by GCS. Improved understanding of GCS effects at both local and ecosystem scales is essential for stream management when these structures are present. Copyright ?? 2007 John Wiley & Sons, Ltd.

  4. Indicators: Benthic Macroinvertebrates

    EPA Pesticide Factsheets

    Benthic (meaning “bottom-dwelling”) macroinvertebrates are small aquatic animals and the aquatic larval stages of insects. Benthic macroinvertebrates are commonly used as indicators of the biological condition of waterbodies.

  5. Response of macroinvertebrate communities to remediation-simulating conditions in Pennsylvania streams influenced by acid mine drainage

    USGS Publications Warehouse

    Ross, R.M.; Long, E.S.; Dropkin, D.S.

    2008-01-01

    We compared naturally alkaline streams with limestone lithology to freestone streams with and without acid mine drainage (AMD) to predict benthic macroinvertebrate community recovery from AMD in limestone-treated watersheds. Surrogate-recovered (limestone) and, in many cases, freestone systems had significantly higher macroinvertebrate densities; diversity; taxa richness; Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa; EPT/chironomid ratios; scraper/collector - gatherer ratios; herbivores; collector - filterers; and scrapers. AMD-influenced systems had significantly greater numbers of Diptera and collector - gatherers. An entire trophic level (herbivores) was 'restored' in surrogate-recovered streams, which also showed greater trophic specialization. Indicator analysis identified seven taxa (within Crustacea, Diptera, Nematoda, Trichoptera, and Ephemeroptera) as significant indicators of limestone systems and six taxa (within Ephemeroptera, Plecoptera, Tricoptera, Coleoptera, and Mollusca) as significant freestone indicators, all useful as biological indicators of recovery from AMD. ?? Springer Science+Business Media B.V. 2007.

  6. Aquatic macroinvertebrates associated with Eichhornia azurea (Swartz) Kunth and relationships with abiotic factors in marginal lentic ecosystems (São Paulo, Brazil).

    PubMed

    Silva, C V; Henry, R

    2013-02-01

    Marginal lakes are characterised by their having high biological diversity due to the presence of aquatic macrophytes in their coastal zones, providing habitats for refuge and food for animal community members. Among the fauna components associated with macrophytes, aquatic macroinvertebrates are important because they are an energy source for predators and fish. In six lakes and two different seasons (March and August 2009), the ecological attributes of aquatic macroinvertebrate community associated with Eichhornia azurea were compared and the controlling environmental factors were identified. Since the attributes of macroinvertebrate community are strictly associated with abiotic variables of each distinct habitat, our hypothesis was that each site associated with the same floating aquatic macrophyte (E. azurea) should have a typical composition and density of organisms. We identified 50 taxa of macroinvertebrates, with greater taxa richness for aquatic insects (37 taxa) divided into eight orders; the order Diptera being the most abundant in the two study periods. On the other hand, higher values of total taxa richness were recorded in August. Dissolved oxygen and pH presented the greatest number of significant positive correlations with the different taxa. The animals most frequently collected in the six lakes in March and August 2009 were Hirudinea, Oligochaeta, Hydrachnidae, Conchostraca, Ostracoda, Noteridae, Ceratopogonidae, Chironomidae, Culicidae, Caenidae, Pleidae, Aeshnidae, Libellulidae, Coenagrionidae and Nematoda. Only densities of Trichoptera, Ostracoda and Conchostraca presented the highest significant differences between lakes in both study periods and considering the composition of macroinvertebrates no significant differences were registered for macroinvertebrate composition.

  7. Freshwater macroinvertebrate research in western Louisiana: limitations of our knowledge base

    NASA Astrophysics Data System (ADS)

    Kaller, M.; Hudson, J. D.; Kelso, W. E.; Williams, L. R.

    2005-05-01

    Western Louisiana streams and rivers represent relatively uncharted waters with regard to their biota, particularly aquatic macroinvertebrates. Whereas statewide taxonomic surveys have been conducted for several taxa (Dryopid Coleoptera, Odonata, and Plecoptera), peer-reviewed studies on macroinvertebrate communities and their structuring factors are few. We present the findings of three different macroinvertebrate community studies in western Louisiana encompassing 1990-2004. These studies investigated large-scale forest cover removal and localized biotic influences on macroinvertebrate communities. These studies generally were inconclusive with regard to abiotic anthropogenic disturbances; instead, strong seasonal and spatial patterns combined with wide tolerances to stream physio-chemistry appeared to be more important factors. However, strong localized biotic effects did appear to significantly alter macroinvertebrate communities. Further, a paucity of classic shredding organisms was noted in each study suggesting a unique community composition in these streams in comparison to neighboring regions. We believe geologic phenomenon may have acted as an evolutionary filter that produced a macroinvertebrate community generally tolerant of abiotic disturbance, but not as of yet, tolerant to biotic disturbances.

  8. Aquatic macroinvertebrate assemblages of Ghana, West Africa: understanding the ecology of a neglected tropical disease.

    PubMed

    Eric Benbow, M; Kimbirauskas, Ryan; McIntosh, Mollie D; Williamson, Heather; Quaye, Charles; Boakye, Daniel; Small, Pamela L C; Merritt, Richard W

    2014-06-01

    Buruli ulcer (BU) is an emerging, but neglected tropical disease, where there has been a reported association with disturbed aquatic habitats and proposed aquatic macroinvertebrate vectors such as biting Hemiptera. An initial step in understanding the potential role of macroinvertebrates in the ecology of BU is to better understand the entire community, not just one or two taxa, in relation to the pathogen, Mycobacterium ulcerans, at a large spatial scale. For the first time at a country-wide scale this research documents that M. ulcerans was frequently detected from environmental samples taken from BU endemic regions, but was not present in 30 waterbodies of a non-endemic region. There were significant differences in macroinvertebrate community structure and identified potential indicator taxa in relation to pathogen presence. These results suggest that specific macroinvertebrate taxa or functional metrics may potentially be used as aquatic biological indicators of M. ulcerans. Developing ecological indicators of this pathogen is a first step for understanding the disease ecology of BU and should assist future studies of transmission.

  9. Substrate degradation and nutrient enrichment structuring macroinvertebrate assemblages in agriculturally dominated Lake Chaohu Basins, China.

    PubMed

    Zhang, You; Cheng, Long; Tolonen, Katri E; Yin, Hongbin; Gao, Junfeng; Zhang, Zhiming; Li, Kuanyi; Cai, Yongjiu

    2018-06-15

    Rapid agricultural development has induced severe environmental problems to freshwater ecosystems. In this study, we aimed to examine the structure and environmental determinants of macroinvertebrate assemblages in an agriculture dominated Lake Chaohu Basin, China. A cluster analysis of the macroinvertebrate communities identified four groups of sites that were characterized by significantly different macroinvertebrate species. These four groups of sites had concentric spatial distribution patterns that followed the variation in the environmental conditions from the less anthropogenically disturbed headwaters towards the more anthropogenically disturbed lower reaches of the rivers and the Lake Chaohu. Moreover, taxa richness decreased from the headwaters towards the Lake Chaohu. The increasing practice of agriculture has reduced the abundances and richness of pollution sensitive species while opposite effects on pollution tolerant species. The study identified substrate heterogeneity and nutrient concentrations as the key environmental factors regulating the changes in the macroinvertebrate communities. We propose that particular attentions should be paid to reduce the nutrient enrichment and habitat degradation in the Lake Chaohu Basin and similar agriculture dominated basins. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Influence of sediment chemistry and sediment toxicity on macroinvertebrate communities across 99 wadable streams of the Midwestern USA

    USGS Publications Warehouse

    Moran, Patrick W.; Nowell, Lisa H.; Kemble, Nile E.; Mahler, Barbara J.; Waite, Ian R.; Van Metre, Peter C.

    2017-01-01

    Simultaneous assessment of sediment chemistry, sediment toxicity, and macroinvertebrate communities can provide multiple lines of evidence when investigating relations between sediment contaminants and ecological degradation. These three measures were evaluated at 99 wadable stream sites across 11 states in the Midwestern United States during the summer of 2013 to assess sediment pollution across a large agricultural landscape. This evaluation considers an extensive suite of sediment chemistry totaling 274 analytes (polycyclic aromatic hydrocarbons, organochlorine compounds, polychlorinated biphenyls, polybrominated diphenyl ethers, trace elements, and current-use pesticides) and a mixture assessment based on the ratios of detected compounds to available effects-based benchmarks. The sediments were tested for toxicity with the amphipod Hyalella azteca (28-d exposure), the midge Chironomus dilutus (10-d), and, at a few sites, with the freshwater mussel Lampsilis siliquoidea (28-d). Sediment concentrations, normalized to organic carbon content, infrequently exceeded benchmarks for aquatic health, which was generally consistent with low rates of observed toxicity. However, the benchmark-based mixture score and the pyrethroid insecticide bifenthrin were significantly related to observed sediment toxicity. The sediment mixture score and bifenthrin were also significant predictors of the upper limits of several univariate measures of the macroinvertebrate community (EPT percent, MMI (Macroinvertebrate Multimetric Index) Score, Ephemeroptera and Trichoptera richness) using quantile regression. Multivariate pattern matching (Mantel-like tests) of macroinvertebrate species per site to identified contaminant metrics and sediment toxicity also indicate that the sediment mixture score and bifenthrin have weak, albeit significant, influence on the observed invertebrate community composition. Together, these three lines of evidence (toxicity tests, univariate metrics, and

  11. Response of benthic macroinvertebrates to whole-lake, non-native fish removals in mid-elevation lakes of the Trinity Alps, California

    Treesearch

    Karen Pope; Erin C. Hannelly

    2013-01-01

    Introduced fish reduce the abundance and diversity of native aquatic fauna, but the effect can be reduced in complex habitats. We manipulated fish populations in forested mountain lakes to determine whether or not fish affected benthic macroinvertebrate composition across lakes with differing habitat complexity. We compared abundance, biomass, body-length, and...

  12. Role of Podostemum certaphyllum Michx. in structuring benthic macroinvertebrate assemblages in southern Appalachian river

    Treesearch

    John J. Hutchens; J. Bruce Wallance

    2004-01-01

    Podostemum ceratophyllum Michx. has been associated with extremely high secondary production of benthic macroinvertebrates in open-canopy rapids. We conducted an experiment in the 7th-order Little Tennessee River, North Carolina, to test whether varying amounts of Podostemum influenced macroinvertebrate...

  13. Macroinvertebrate Response to Drought in Undisturbed Headwater Streams of Southwest Georgia.

    NASA Astrophysics Data System (ADS)

    Winn, R. T.; Griswold, M. W.; Golladay, S. W.; Crisman, T. L.

    2005-05-01

    Macroinvertebrates were sampled in four headwater streams for two years (2001-2003) to establish baseline conditions for a study evaluating forestry best management practices. The Palmer Drought Severity Index indicated that the study site experienced a prolonged moderate to severe drought prior to study initiation, with year one of the study characterized as a moderate drought, while year two encompassed drought and initial rainfall recovery. Benthic macroinvertebrates were collected in streams during year one (December 2001/February 2002) and year two (December 2002/February 2003) using a multi-habitat sampling procedure. Individuals were identified to the lowest practical taxonomic level (mostly genus), and metrics including abundance, total number of taxa, and Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa were calculated. Repeated measures ANOVA identified differences in macroinvertebrate assemblages due to sampling period, with lower values for December 2001 relative to February 2003. Abundance and EPT taxa showed an increasing relationship with average daily flow in successive samples of the study. Initiation of drought conditions prior to the study adversely affected species composition (low numbers of EPT taxa and long lived taxa) and trophic structure (co-dominance of shredders, collectors, and predators).

  14. Habitat selection by breeding waterbirds at ponds with size-structured fish populations

    NASA Astrophysics Data System (ADS)

    Kloskowski, Janusz; Nieoczym, Marek; Polak, Marcin; Pitucha, Piotr

    2010-07-01

    Fish may significantly affect habitat use by birds, either as their prey or as competitors. Fish communities are often distinctly size-structured, but the consequences for waterbird assemblages remain poorly understood. We examined the effects of size structure of common carp ( Cyprinus carpio) cohorts together with other biotic and abiotic pond characteristics on the distribution of breeding waterbirds in a seminatural system of monocultured ponds, where three fish age classes were separately stocked. Fish age corresponded to a distinct fish size gradient. Fish age and total biomass, macroinvertebrate and amphibian abundance, and emergent vegetation best explained the differences in bird density between ponds. Abundance of animal prey other than fish (aquatic macroinvertebrates and larval amphibians) decreased with increasing carp age in the ponds. Densities of ducks and smaller grebes were strongly negatively associated with fish age/size gradient. The largest of the grebes, the piscivorous great crested grebe ( Podiceps cristatus), was the only species that preferred ponds with medium-sized fish and was positively associated with total fish biomass. Habitat selection by bitterns and most rallids was instead strongly influenced by the relative amount of emergent vegetation cover in the ponds. Our results show that fish size structure may be an important cue for breeding habitat choice and a factor affording an opportunity for niche diversification in avian communities.

  15. Influence of salinity and prey presence on the survival of aquatic macroinvertebrates of a freshwater marsh

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2012-01-01

    Salinization of coastal freshwater environments is a global issue. Increased salinity from sea level rise, storm surges, or other mechanisms is common in coastal freshwater marshes of Louisiana, USA. The effects of salinity increases on aquatic macroinvertebrates in these systems have received little attention, despite the importance of aquatic macroinvertebrates for nutrient cycling, biodiversity, and as a food source for vertebrate species. We used microcosm experiments to evaluate the effects of salinity, duration of exposure, and prey availability on the relative survival of dominant aquatic macroinvertebrates (i.e., Procambarus clarkii Girard, Cambarellus puer Hobbs, Libellulidae, Dytiscidae cybister) in a freshwater marsh of southwestern Louisiana. We hypothesized that increased salinity, absence of prey, and increased duration of exposure would decrease survival of aquatic macroinvertebrates and that crustaceans would have higher survival than aquatic insect taxon. Our first hypothesis was only partially supported as only salinity increases combined with prolonged exposure duration affected aquatic macroinvertebrate survival. Furthermore, crustaceans had higher survival than aquatic insects. Salinity stress may cause mortality when acting together with other stressful conditions.

  16. POP bioaccumulation in macroinvertebrates of alpine freshwater systems.

    PubMed

    Bizzotto, E C; Villa, S; Vighi, M

    2009-12-01

    This study serves to investigate the uptake of POPs in the different trophic levels (scrapers, collectors, predators, shredders) of macroinvertebrate communities sampled from a glacial and a non-glacial stream in the Italian Alps. The presented results show that the contaminant concentrations in glacial communities are generally higher compared to those from non-glacial catchments, highlighting the importance of glaciers as temporary sinks of atmospherically transported pollutants. Moreover, the data also suggests that in mountain systems snow plays an important role in influencing macroinvertebrate contamination. The main chemical uptake process to the macroinvertebrates is considered to be bioconcentration from water, as similar contaminant profiles were observed between the different trophic levels. The role of biomagnification/bioaccumulation is thought to be absent or negligible. The enrichment of chemicals observed in the predators is likely to be related to their greater lipid content compared to that of other feeding groups.

  17. Environmental, geographic and trophic influences on methylmercury concentrations in macroinvertebrates from lakes and wetlands across Canada.

    PubMed

    Clayden, Meredith G; Kidd, Karen A; Chételat, John; Hall, Britt D; Garcia, Edenise

    2014-03-01

    Macroinvertebrates are a key vector in the transfer of methylmercury (MeHg) to fish. However, the factors that affect MeHg concentrations and bioaccumulation in these organisms are not as well understood as for fish, and studies on a broad geographic scale are lacking. In this study, we gathered published and unpublished MeHg and carbon (δ(13)C) and nitrogen (δ(15)N) stable isotope data for freshwater macroinvertebrates from 119 lakes and wetlands across seven Canadian provinces, along with selected physical, chemical and biological characteristics of these systems. Overall, water pH was the most important determinant of MeHg concentrations in both predatory and non-predatory invertebrates [[Formula: see text] = 0.32, p < 0.001; multivariate canonical redundancy analysis (RDA)]. The location of lakes explained additional variation in invertebrate MeHg (partial R(2) = 0.08 and 0.06 for latitude and longitude, respectively; RDA), with higher concentrations in more easterly and southerly regions. Both invertebrate foraging behaviour and trophic position (indicated by functional feeding groups and δ(15)N values, respectively) also predicted MeHg concentrations in the organisms. Collectively, results indicate that in addition to their feeding ecology, invertebrates accumulate more MeHg in acidic systems where the supply of MeHg to the food web is typically high. MeHg concentrations in macroinvertebrates may also be influenced by larger-scale geographic differences in atmospheric mercury deposition among regions.

  18. Effects of flow regime on benthic algae and macroinvertebrates - A comparison between regulated and unregulated rivers.

    PubMed

    Schneider, Susanne C; Petrin, Zlatko

    2017-02-01

    Natural fluctuations in flow are important for maintaining the ecological integrity of riverine ecosystems. However, the flow regime of many rivers has been modified. We assessed the impact of water chemistry, habitat and streamflow characteristics on macroinvertebrates and benthic algae, comparing 20 regulated with 20 unregulated sites. Flow regime, calculated from daily averaged discharge over the five years preceding sampling, was generally more stable at regulated sites, with higher relative discharges in winter, lower relative discharges in spring and smaller differences between upper and lower percentiles. However, no consistent differences in benthic algal or macroinvertebrate structural and functional traits occurred between regulated and unregulated sites. When regulated and unregulated sites were pooled, overall flow regime, calculated as principal components of discharge characteristics over the five years preceding sampling, affected macroinvertebrate species assemblages, but not indices used for ecosystem status assessment or functional feeding groups. This indicates that, while species identity shifted with changing flow regime, the exchanged taxa had similar feeding habits. In contrast to macroinvertebrates, overall flow regime did not affect benthic algae. Our results indicate that overall flow regime affected the species pool of macroinvertebrates from which recolonization after extreme events may occur, but not of benthic algae. When individual components of flow regime were analyzed separately, high June (i.e. three months before sampling) flow maxima were associated with low benthic algal taxon richness, presumably due to scouring. Macroinvertebrate taxon richness decreased with lower relative minimum discharges, presumably due to temporary drying of parts of the riverbed. However, recolonization after such extreme events presumably is fast. Generally, macroinvertebrate and benthic algal assemblages were more closely related to water physico

  19. Macroalgal Composition Determines the Structure of Benthic Assemblages Colonizing Fragmented Habitats.

    PubMed

    Matias, Miguel G; Arenas, Francisco; Rubal, Marcos; Pinto, Isabel S

    2015-01-01

    Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats.

  20. Setting limits: The development and use of factor-ceiling distributions for an urban assessment using macroinvertebrates

    USGS Publications Warehouse

    Carter, J.L.; Fend, S.V.

    2005-01-01

    Lotic habitats in urban settings are often more modified than in other anthropogenically influenced areas. The extent, degree, and permanency of these modifications compromise the use of traditional reference-based study designs to evaluate the level of lotic impairment and establish restoration goals. Directly relating biological responses to the combined effects of urbanization is further complicated by the nonlinear response often observed in common metrics (e.g., Ephemeroptera, Plecoptera, and Trichoptera [EPT] species richness) to measures of human influence (e.g., percentage urban land cover). A characteristic polygonal biological response often arises from the presence of a generalized limiting factor (i.e., urban land use) plus the influence of multiple additional stressors that are nonuniformly distributed throughout the urban environment. Benthic macroinvertebrates, on-site physical habitat and chemistry, and geographical information systems-derived land cover data for 85 sites were collected within the 1,600-km2 Santa Clara Valley (SCV), California urban area. A biological indicator value was derived from EPT richness and percentage EPT. Partitioned regression was used to define reference conditions and estimate the degree of site impairment. We propose that an upper-boundary condition (factor-ceiling) modeled by partitioned regression using ordinary least squares represents an attainable upper limit for biological condition in the SCV area. Indicator values greater than the factor-ceiling, which is monotonically related to existing land use, are considered representative of reference conditions under the current habitat conditions imposed by existing land cover and land use.

  1. Using Streamflow as a Predictor of Biotic Health in the Upper Oconee Watershed

    EPA Science Inventory

    Macroinvertebrates are commonly used as biological indicators of stream habitat and water quality. Chronic reduced streamflows can have a significant impact on biota, decreasing in-stream habitat and influencing water quality. Many aquatic macroinvertebrates are sensitive to chan...

  2. Response of benthic macroinvertebrate communities to highway construction in an Appalachian watershed

    USGS Publications Warehouse

    Hedrick, Lara B.; Welsh, S.A.; Anderson, James T.; Lin, L.-S.; Chen, Y.; Wei, X.

    2010-01-01

    Highway construction in mountainous areas can result in sedimentation of streams, negatively impacting stream habitat, water quality, and biotic communities. We assessed the impacts of construction of a segment of Corridor H, a four-lane highway, in the Lost River watershed, West Virginia, by monitoring benthic macroinvertebrate communities and water quality, before, during, and after highway construction and prior to highway use at upstream and downstream sites from 1997 through 2007. Data analysis of temporal impacts of highway construction followed a Before-After-Control-Impact (BACI) study design. Highway construction impacts included an increase in stream sedimentation during the construction phase. This was indicated by an increase in turbidity and total suspended solids. Benthic macroinvertebrate metrics indicated a community more tolerant during and after construction than in the period before construction. The percent of Chironomidae and the Hilsenhoff Biotic Index (HBI) increased, while percent of Ephemeroptera, Plecoptera, and Trichoptera (EPT) decreased. Our 10-year study addressed short-term impacts of highway construction and found that impacts were relatively minimal. A recovery of the number of EPT taxa collected after construction indicated that the benthic macroinvertebrate community may be recovering from impacts of highway construction. However, this study only addressed a period of 3 years before, 3 years during, and 4 years post construction. Inferences cannot be made concerning the long-term impacts of the highway, highway traffic, runoff, and other factors associated with highway use. Continual monitoring of the watershed is necessary to determine if the highway has a continual impact on stream habitat, water quality, and biotic integrity. ?? 2010 Springer Science+Business Media B.V.

  3. Determining the trophic guilds of fishes and macroinvertebrates in a seagrass food web

    USGS Publications Warehouse

    Luczkovich, J.J.; Ward, G.P.; Johnson, J.C.; Christian, R.R.; Baird, D.; Neckles, H.; Rizzo, W.M.

    2002-01-01

    We established trophic guilds of macroinvertebrate and fish taxa using correspondence analysis and a hierarchical clustering strategy for a seagrass food web in winter in the northeastern Gulf of Mexico. To create the diet matrix, we characterized the trophic linkages of macroinvertebrate and fish taxa present in Halodule wrightii seagrass habitat areas within the St. Marks National Wildlife Refuge (Florida) using binary data, combining dietary links obtained from relevant literature for macroinvertebrates with stomach analysis of common fishes collected during January and February of 1994. Heirarchical average-linkage cluster analysis of the 73 taxa of fishes and macroinvertebrates in the diet matrix yielded 14 clusters with diet similarity ??? 0.60. We then used correspondence analysis with three factors to jointly plot the coordinates of the consumers (identified by cluster membership) and of the 33 food sources. Correspondence analysis served as a visualization tool for assigning each taxon to one of eight trophic guilds: herbivores, detritivores, suspension feeders, omnivores, molluscivores, meiobenthos consumers, macrobenthos consumers, and piscivores. These trophic groups, cross-classified with major taxonomic groups, were further used to develop consumer compartments in a network analysis model of carbon flow in this seagrass ecosystem. The method presented here should greatly improve the development of future network models of food webs by providing an objective procedure for aggregating trophic groups.

  4. Determining the trophic guilds of fishes and macroinvertebrates in a seagrass food web

    USGS Publications Warehouse

    Luczkovich, J.J.; Ward, G.P.; Johnson, J.C.; Christian, R.R.; Baird, D.; Neckles, H.; Rizzo, W.M.

    2002-01-01

    We established trophic guilds of macroinvertebrate and fish taxa using correspondence analysis and a hierarchical clustering strategy for a seagrass food web in winter in the northeastern Gulf of Mexico. To create the diet matrix, we characterized the trophic linkages of macroinvertebrate and fish taxa. present in Hatodule wrightii seagrass habitat areas within the St. Marks National Wildlife Refuge (Florida) using binary data, combining dietary links obtained from relevant literature for macroinvertebrates with stomach analysis of common fishes collected during January and February of 1994. Heirarchical average-linkage cluster analysis of the 73 taxa of fishes and macroinvertebrates in the diet matrix yielded 14 clusters with diet similarity greater than or equal to 0.60. We then used correspondence analysis with three factors to jointly plot the coordinates of the consumers (identified by cluster membership) and of the 33 food sources. Correspondence analysis served as a visualization tool for assigning each taxon to one of eight trophic guilds: herbivores, detritivores, suspension feeders, omnivores, molluscivores, meiobenthos consumers, macrobenthos consumers, and piscivores. These trophic groups, cross-classified with major taxonomic groups, were further used to develop consumer compartments in a network analysis model of carbon flow in this seagrass ecosystem. The method presented here should greatly improve the development of future network models of food webs by providing an objective procedure for aggregating trophic groups.

  5. Aquatic macroinvertebrates collected at Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio, 1998

    USGS Publications Warehouse

    Tertuliani, John S.

    1999-01-01

    The results of a survey of macroinvertebrate communities in the Ravenna Army Ammunition Plant, were used as an indicator of disturbance in streams flowing through or near the training areas at the Plant. The data were interpreted using the Invertebrate Community Index (ICI), a multiple-metric index developed by the Ohio Environmental Protection Agency and based on the structural and functional characteristics of the macroinvertebrate community. Quantitative samples of the macroinvertebrate were collected for ICI determination from three streams South Fork Eagle Creek, Sand Creek, and Hinkley Creek flowing through the study area. These samples were collected using Hester-Dendy type artificial substrate samplers, which were placed in the streams during a 6-week sampling period, June 2 through July 15, 1998. A qualitative- dipnet sample from the natural substrates also was collected at each station on July 15, 1998, the last day of the sampling period. The macroinvertebrate communities at all three stations met the criterion designated for warmwater habitat aquatic life use, and communities at two of the three stations exceeded the criterion. The ICI scores were 42 at South Fork Eagle Creek, 50 at Sand Creek, and 48 at Hinkley Creek. The density of macroinvertebrates at South Fork Eagle Creek was 1,245 per square foot and represented 38 distinct taxa. The density at Sand Creek was 246 per square foot and represented 29 distinct taxa. The density at Hinkley Creek was 864 per square foot and represented 36 distinct taxa. Qualitative samples were also collected at 21 other sites using a D-framed dipnet. The qualitative sites encompassed three main environments: stream, pond, and swamp-wetland. All available habitat types in each environment were sampled until no new taxa were evident during coarse examination. The highest number of taxa were collected from the streams. The total number of taxa collected in streams ranged from 25 to 76; the mean was 60 and median 64. The

  6. Macroinvertebrate community change associated with the severity of streamflow alteration

    USGS Publications Warehouse

    Carlisle, Daren M.; Eng, Kenny; Nelson, S.M.

    2014-01-01

    Natural streamflows play a critical role in stream ecosystems, yet quantitative relations between streamflow alteration and stream health have been elusive. One reason for this difficulty is that neither streamflow alteration nor ecological responses are measured relative to their natural expectations. We assessed macroinvertebrate community condition in 25 mountain streams representing a large gradient of streamflow alteration, which we quantified as the departure of observed flows from natural expectations. Observed flows were obtained from US Geological Survey streamgaging stations and discharge records from dams and diversion structures. During low-flow conditions in September, samples of macroinvertebrate communities were collected at each site, in addition to measures of physical habitat, water chemistry and organic matter. In general, streamflows were artificially high during summer and artificially low throughout the rest of the year. Biological condition, as measured by richness of sensitive taxa (Ephemeroptera, Plecoptera and Trichoptera) and taxonomic completeness (O/E), was strongly and negatively related to the severity of depleted flows in winter. Analyses of macroinvertebrate traits suggest that taxa losses may have been caused by thermal modification associated with streamflow alteration. Our study yielded quantitative relations between the severity of streamflow alteration and the degree of biological impairment and suggests that water management that reduces streamflows during winter months is likely to have negative effects on downstream benthic communities in Utah mountain streams. 

  7. Influence of habitat degradation on fish replenishment

    NASA Astrophysics Data System (ADS)

    McCormick, M. I.; Moore, J. A. Y.; Munday, P. L.

    2010-09-01

    Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.

  8. Macroalgal Composition Determines the Structure of Benthic Assemblages Colonizing Fragmented Habitats

    PubMed Central

    Matias, Miguel G.; Arenas, Francisco; Rubal, Marcos; Pinto, Isabel S.

    2015-01-01

    Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats. PMID:26554924

  9. [Agricultural land use impacts on aquatic macroinvertebrates in small streams from La Vieja river (Valle del Cauca, Colombia].

    PubMed

    Giraldo, Lina Paola; Chará, Julián; Zúñiga, Maria del Carmen; Chará-Serna, Ana Marcela; Pedraza, Gloria

    2014-04-01

    The expansion of the agricultural frontier in Colombia has exerted significant pressure on its aquatic ecosystems during the last few decades. In order to determine the impacts of different agricultural land uses on the biotic and abiotic characteristics of first and second order streams of La Vieja river watershed, we evaluated 21 streams located between 1,060 and 1,534 m asl in the municipalities of Alcalá, Ulloa, and Cartago (Valle del Cauca, Colombia). Seven streams were protected by native vegetation buffers, eight had influence of coffee and plantain crops, and six were influenced by cattle ranching. Habitat conditions, channel dimensions, water quality, and aquatic macroinvertebrates were studied in each stream. Streams draining cattle ranching areas had significantly higher dissolved solids, higher phosphorus, higher alkalinity, higher conductivity, and lower dissolved oxygen than those covered by cropland and forests. Coarse substrates and diversity of flow regimes were significantly higher in cropland and protected streams when compared to streams affected by cattle ranching, whereas the percent of silt and slow currents was significantly higher in the latter. A total of 26,777 macroinvertebrates belonging to 17 orders, 72 families and 95 genera were collected. The most abundant groups were Diptera 62.8%, (Chironomidae 49.6%, Ceratopogonidae 6.7%), Mollusca 18.8% (Hydrobiidae 7.2%, Sphaeriidae 9.6%) and Trichoptera 5.7% (Hydropsychidae 3.7%). The Ephemeroptera, Trichoptera, and Plecoptera orders, known for their low tolerance to habitat perturbation, had high abundance in cropland and forested streams, whereas Diptera and Mollusca were more abundant in those impacted by cattle ranching. Results indicate that streams draining forests and croplands have better physical and biological conditions than those draining pastures, and highlight the need to implement protective measures to restore the latter.

  10. Land Use Influences Niche Size and the Assimilation of Resources by Benthic Macroinvertebrates in Tropical Headwater Streams

    PubMed Central

    Parreira de Castro, Diego Marcel; Reis de Carvalho, Débora; Pompeu, Paulo dos Santos; Moreira, Marcelo Zacharias; Nardoto, Gabriela Bielefeld; Callisto, Marcos

    2016-01-01

    It is well recognized that assemblage structure of stream macroinvertebrates changes with alterations in catchment or local land use. Our objective was to understand how the trophic ecology of benthic macroinvertebrate assemblages responds to land use changes in tropical streams. We used the isotope methodology to assess how energy flow and trophic relations among macroinvertebrates were affected in environments affected by different land uses (natural cover, pasture, sugar cane plantation). Macroinvertebrates were sampled and categorized into functional feeding groups, and available trophic resources were sampled and evaluated for the isotopic composition of 13C and 15N along streams located in the Cerrado (neotropical savanna). Streams altered by pasture or sugar cane had wider and more overlapped trophic niches, which corresponded to more generalist feeding habits. In contrast, trophic groups in streams with native vegetation had narrower trophic niches with smaller overlaps, suggesting greater specialization. Pasture sites had greater ranges of resources exploited, indicating higher trophic diversity than sites with natural cover and sugar cane plantation. We conclude that agricultural land uses appears to alter the food base and shift macroinvertebrate assemblages towards more generalist feeding behaviors and greater overlap of the trophic niches. PMID:26934113

  11. Land Use Influences Niche Size and the Assimilation of Resources by Benthic Macroinvertebrates in Tropical Headwater Streams.

    PubMed

    Parreira de Castro, Diego Marcel; Reis de Carvalho, Débora; Pompeu, Paulo dos Santos; Moreira, Marcelo Zacharias; Nardoto, Gabriela Bielefeld; Callisto, Marcos

    2016-01-01

    It is well recognized that assemblage structure of stream macroinvertebrates changes with alterations in catchment or local land use. Our objective was to understand how the trophic ecology of benthic macroinvertebrate assemblages responds to land use changes in tropical streams. We used the isotope methodology to assess how energy flow and trophic relations among macroinvertebrates were affected in environments affected by different land uses (natural cover, pasture, sugar cane plantation). Macroinvertebrates were sampled and categorized into functional feeding groups, and available trophic resources were sampled and evaluated for the isotopic composition of 13C and 15N along streams located in the Cerrado (neotropical savanna). Streams altered by pasture or sugar cane had wider and more overlapped trophic niches, which corresponded to more generalist feeding habits. In contrast, trophic groups in streams with native vegetation had narrower trophic niches with smaller overlaps, suggesting greater specialization. Pasture sites had greater ranges of resources exploited, indicating higher trophic diversity than sites with natural cover and sugar cane plantation. We conclude that agricultural land uses appears to alter the food base and shift macroinvertebrate assemblages towards more generalist feeding behaviors and greater overlap of the trophic niches.

  12. Assessment of Ecological Quality of the Tajan River in Iran Using a Multimetric Macroinvertebrate Index and Species Traits

    NASA Astrophysics Data System (ADS)

    Aazami, Jaber; Esmaili Sari, Abbas; Abdoli, Asghar; Sohrabi, Hormoz; Van den Brink, Paul J.

    2015-07-01

    The objectives of this study were to assess the biological water of the Iranian Tajan River using different metrics, i.e., a Multimetric Macroinvertebrate Index (MMI) and a traits-based method. Twenty-eight physico-chemical parameters, 10 habitat factors, and abundance of macroinvertebrates were obtained for 17 sites. The Shahid-Rajaie dam divides the Tajan River into an up- and downstream part, with different land uses. Eighteen metrics were used to represent four components of ecosystem quality, including tolerance (Hilsenhoff, SIGNAL), diversity (Margalef, Shannon-Wiener, Simpson, and Evenness), abundance (total number of taxa, individuals, Ephemeroptera, Plecoptera, Trichoptera, EPT, and Insects), and composition of assemblages (% Ephemeroptera, % Plecoptera, % Trichoptera, and % EPT Taxa). The integrated MMI was calculated by averaging the obtained scores of all indices. In the next step, we gathered information on 22 biological traits of macroinvertebrates to evaluate whether (group of) traits could be identified that are indicative for specific or general stress. Result showed a decrease in MMI from upstream (very good water quality) to downstream (bad) due to human activities. Industrial activities like pulping and papermaking operations or sand mining in the downstream part had more effects than agriculture and fish ponds in the upstream part. A redundancy analysis biplot showed the variation between the modalities of trait of macroinvertebrates and their correlation with physico-chemical parameters in Tajan River. The findings show that traits can be indicative for different kind of stress but that more effort has to be put in gathering data sets to disentangle the effect of habitat quality, pollution, and the physico-chemical properties of high- versus lowland rivers.

  13. Assessment of ecological quality of the Tajan River in Iran using a multimetric macroinvertebrate index and species traits.

    PubMed

    Aazami, Jaber; Esmaili Sari, Abbas; Abdoli, Asghar; Sohrabi, Hormoz; Van den Brink, Paul J

    2015-07-01

    The objectives of this study were to assess the biological water of the Iranian Tajan River using different metrics, i.e., a Multimetric Macroinvertebrate Index (MMI) and a traits-based method. Twenty-eight physico-chemical parameters, 10 habitat factors, and abundance of macroinvertebrates were obtained for 17 sites. The Shahid-Rajaie dam divides the Tajan River into an up- and downstream part, with different land uses. Eighteen metrics were used to represent four components of ecosystem quality, including tolerance (Hilsenhoff, SIGNAL), diversity (Margalef, Shannon-Wiener, Simpson, and Evenness), abundance (total number of taxa, individuals, Ephemeroptera, Plecoptera, Trichoptera, EPT, and Insects), and composition of assemblages (% Ephemeroptera, % Plecoptera, % Trichoptera, and % EPT Taxa). The integrated MMI was calculated by averaging the obtained scores of all indices. In the next step, we gathered information on 22 biological traits of macroinvertebrates to evaluate whether (group of) traits could be identified that are indicative for specific or general stress. Result showed a decrease in MMI from upstream (very good water quality) to downstream (bad) due to human activities. Industrial activities like pulping and papermaking operations or sand mining in the downstream part had more effects than agriculture and fish ponds in the upstream part. A redundancy analysis biplot showed the variation between the modalities of trait of macroinvertebrates and their correlation with physico-chemical parameters in Tajan River. The findings show that traits can be indicative for different kind of stress but that more effort has to be put in gathering data sets to disentangle the effect of habitat quality, pollution, and the physico-chemical properties of high- versus lowland rivers.

  14. Natural-channel-design restorations that changed geomorphology have little effect on macroinvertebrate communities in headwater streams

    USGS Publications Warehouse

    Ernst, Anne G.; Warren, Dana R.; Baldigo, Barry P.

    2012-01-01

    Stream restorations that increase geomorphic stability can improve habitat quality, which should benefit selected species and local aquatic ecosystems. This assumption is often used to define primary restoration goals; yet, biological responses to restoration are rarely monitored or evaluated methodically. Macroinvertebrate communities were inventoried at 6 study reaches within 5 Catskill Mountain streams between 2002 and 2006 to characterize their responses to natural-channel-design (NCD) restoration. Although bank stability increased significantly at most restored reaches, analyses of variation showed that NCD restorations had no significant effect on 15 of 16 macroinvertebrate community metrics. Multidimensional scaling ordination indicated that communities from all reach types within a stream were much more similar to each other within any given year than they were in the same reaches across years or within any type of reach across streams. These findings indicate that source populations and watershed-scale factors were more important to macroinvertebrate community characteristics than were changes in channel geomorphology associated with NCD restoration. Furthermore, the response of macroinvertebrates to restoration cannot always be used to infer the response of other stream biota to restoration. Thus, a broad perspective is needed to characterize and evaluate the full range of effects that restoration can have on stream ecosystems.

  15. Downstream effects of hydropower production on aquatic macroinvertebrate assemblages in two rivers in Costa Rica.

    PubMed

    Chaves-Ulloa, Ramsa; Umaña-Villalobos, Gerardo; Springer, Monika

    2014-04-01

    Despite the fact that little is known about the consequences of hydropower production in tropical areas, many large dams (> 15 m high) are currently under construction or consideration in the tropics. We researched the effects of large hydroelectric dams on aquatic macroinvertebrate assemblages in two Costa Rican rivers. We measured physicochemical characteristics and sampled aquatic macroinvertebrates from March 2003 to March 2004 in two dammed rivers, Peñas Blancas and San Lorenzo, as well as in the undammed Chachagua River. Sites above and below the dam had differences in their physicochemical variables, with wide variation and extreme values in variables measured below the dam in the San Lorenzo River. Sites below the dams had reduced water discharges, velocities, and depths when compared with sites above the dams, as well as higher temperatures and conductivity. Sites above dams were dominated by collector-gatherer-scrapers and habitat groups dominated by swimmer-clingers, while sites below dams had a more even representation of groups. In contrast, a comparison between two sites at different elevation in the undammed river maintained a similar assemblage composition. Tributaries might facilitate macroinvertebrate recovery above the turbine house, but the assemblage below the turbine house resembled the one below the dam. A massive sediment release event from the dam decreased the abundance per sample and macroinvertebrate taxa below the dam in the Peñas Blancas River. Our study illustrates the effects of hydropower production on neotropical rivers, highlighting the importance of using multiple measures of macroinvertebrate assemblage structure for assessing this type of environmental impact.

  16. Assessing condition of macroinvertebrate communities and sediment toxicity in the St. Lawrence River at Massena Area-of-Concern

    USGS Publications Warehouse

    Duffy, Brian T.; Baldigo, Barry P.; Smith, Alexander J.; George, Scott D.; David, Anthony M.

    2016-01-01

    In 1972, the USA and Canada agreed to restore the chemical, physical, and biological integrity of the Great Lakes ecosystem under the first Great Lakes Water Quality Agreement. In subsequent amendments, part of the St. Lawrence River at Massena, New York and segments of three tributaries, were designated as an Area of Concern (AOC) due to the effects of polychlorinated biphenyls (PCBs), lead and copper contamination, and habitat degradation and resulting impairment to several beneficial uses. Because sediments have been largely remediated, the present study was initiated to evaluate the current status of the benthic macroinvertebrate (benthos) beneficial use impairment (BUI). Benthic macroinvertebrate communities and sediment toxicity tests using Chironomus dilutus were used to test the hypotheses that community condition and sediment toxicity at AOC sites were not significantly different from those of adjacent reference sites. Grain size was found to be the main driver of community composition and macroinvertebrate assemblages, and bioassessment metrics did not differ significantly between AOC and reference sites of the same sediment class. Median growth of C. dilutus and its survival in three of the four river systems did not differ significantly in sediments from AOC and reference sites. Comparable macroinvertebrate assemblages and general lack of toxicity across most AOC and reference sites suggest that the quality of sediments should not significantly impair benthic macroinvertebrate communities in most sites in the St. Lawrence River AOC.

  17. Long-term macroinvertebrate response to flow abstraction at Alpine water intakes

    NASA Astrophysics Data System (ADS)

    Gabbud, Chrystelle; Savioz, Amélie; Lane, Stuart

    2016-04-01

    The natural flow hydrological characteristics of Alpine streams, dominated by snowmelt and glacier melt, have been established for many years. More recently, the ecosystems that they sustain have been described and explained, following the hydrological, biochemical, morphodynamic, and biotic elements specific to Alpine streams. However, natural Alpine flow regimes may be strongly modified by hydroelectric power production, which impacts upon both river discharge and sediment transfer, and hence on downstream flora and fauna. These kinds of impacts are well studied where river are regulated by dams, with sediments retained behind walls, but they are much less focus on water intakes, whose storage capacity is very smaller and thus have to flush flow and sediment regularly. Here we focus on the impacts of flow abstraction on macroinvertebrates, the most widely ecological group used in freshwater biomonitoring as they act typically as indicators of environmental health. Some key generalizations can be made. For instance, in European glacially fed river systems, Plecoptera, Chironomidae, Ephemeroptera, Simuliidae, and Diptera are the main taxa found in spring as they are better adapted to cold conditions. Petts and Bickerton (1994) published macroinvertebrate samples from the upper part of the glacial stream system the Borgne d'Arolla (Valais, Switzerland), highlighting that: (1) taxa variability and productivity decline in the river because of flow abstraction, (2) 60 % of the communities were provided by tributaries, (3) there is migration upstream of the species in response to the passage from a dominant ice-melt to a snow-melt regime, (4) the colonisation is difficult because of a significant modification of the habitat in the river by sediment transport, until it becomes warmer, clearer and more stable further downstream. In order to establish the long-term impacts of flow abstraction upon instream ecology where sediment delivery is maintained but transport

  18. Macroinvertebrate diversity loss in urban streams from tropical forests.

    PubMed

    Docile, Tatiana N; Figueiró, Ronaldo; Portela, Clayton; Nessimian, Jorge L

    2016-04-01

    The increase of human activities in recent years has significantly interfered and affected aquatic ecosystems. In this present study, we investigate the effects of urbanization in the community structure of aquatic macroinvertebrates from Atlantic Forest streams. The sampling was conducted in the mountainous region of the State of Rio de Janeiro, Brazil in 10 urban and 10 preserved streams during the dry season (August-September) of 2012. The streams were characterized for its environmental integrity conditions and physico-chemical properties of water. The macroinvertebrates were sampled on rocky substrates with a kicknet. A total of 5370 individuals were collected from all streams and were distributed among Ephemeroptera, Odonata, Plecoptera, Hemiptera, Megaloptera, Coleoptera, Trichoptera, Lepidoptera, and Diptera. In urban sites, all those orders were found, except Megaloptera, while only Mollusca was not found in preserved streams. We performed a non-metric multidimensional scaling (NMDS) analysis that separated two groups distributed among sites in urban communities and another group outside this area. The dominance was significantly higher at urban sites, while the α diversity and equitability were greater in preserved sites. A canonical correspondence analysis (CCA) was also performed, indicating that most taxa associated with high values of the Habitat Integrity Index (HII) and a few genus of the order Diptera with the high values of ammonia, total nitrogen, associated to streams in urban sites. Urban and preserved streams differ by physical-chemical variables and aquatic macroinvertebrates. In urban streams, there is most dominance, while α diversity and equitability are higher in preserved streams.

  19. Combined effects of water stress and pollution on macroinvertebrate and fish assemblages in a Mediterranean intermittent river.

    PubMed

    Kalogianni, Eleni; Vourka, Aikaterini; Karaouzas, Ioannis; Vardakas, Leonidas; Laschou, Sofia; Skoulikidis, Nikolaos Th

    2017-12-15

    Water stress is a key stressor in Mediterranean intermittent rivers exacerbating the negative effects of other stressors, such as pollutants, with multiple effects on different river biota. The current study aimed to determine the response of macroinvertebrate and fish assemblages to instream habitat and water chemistry, at the microhabitat scale and at different levels of water stress and pollution, in an intermittent Mediterranean river. Sampling was conducted at high and low summer discharge, at two consecutive years, and included four reaches that were targeted for their different levels of water stress and pollution. Overall, the macroinvertebrate fauna of Evrotas River indicated high resilience to intermittency, however, variation in community structure and composition occurred under acute water stress, due to habitat alteration and change in water physico-chemistry, i.e. water temperature increase. The combined effects of pollution and high water stress had, however, pronounced effects on species richness, abundance and community structure in the pollution impacted reach, where pollution sensitive taxa were almost extirpated. Fish response to drought, in reaches free of pollution, consisted of an increase in the abundance of the two small limnophilic species, coupled with their shift to faster flowing riffle habitats, and a reduction in the abundance of the larger, rheophilic species. In the pollution impacted reach, however, the combination of pollution and high water stress led to hypoxic conditions assumed to be the leading cause of the almost complete elimination of the fish assemblage. In contrast, the perennial Evrotas reaches with relatively stable physicochemical conditions, though affected hydrologically by drought, appear to function as refugia for fish during high water stress. When comparing the response of the two biotic groups to combined acute water stress and pollution, it is evident that macroinvertebrates were negatively impacted, but fish

  20. Habitat type and Permanence determine local aquatic invertebrate community structure in the Madrean Sky Islands

    Treesearch

    Michael T. Bogan; Oscar Gutierrez-Ruacho; J. Andres Alvarado-Castro; David A. Lytle

    2013-01-01

    Aquatic environments in the Madrean Sky Islands (MSI) consist of a matrix of perennial and intermittent stream segments, seasonal ponds, and human-built cattle trough habitats that support a diverse suite of aquatic macroinvertebrates. Although environmental conditions and aquatic communities are generally distinct in lotic and lentic habitats, MSI streams are...

  1. Selecting a distributional assumption for modelling relative densities of benthic macroinvertebrates

    USGS Publications Warehouse

    Gray, B.R.

    2005-01-01

    The selection of a distributional assumption suitable for modelling macroinvertebrate density data is typically challenging. Macroinvertebrate data often exhibit substantially larger variances than expected under a standard count assumption, that of the Poisson distribution. Such overdispersion may derive from multiple sources, including heterogeneity of habitat (historically and spatially), differing life histories for organisms collected within a single collection in space and time, and autocorrelation. Taken to extreme, heterogeneity of habitat may be argued to explain the frequent large proportions of zero observations in macroinvertebrate data. Sampling locations may consist of habitats defined qualitatively as either suitable or unsuitable. The former category may yield random or stochastic zeroes and the latter structural zeroes. Heterogeneity among counts may be accommodated by treating the count mean itself as a random variable, while extra zeroes may be accommodated using zero-modified count assumptions, including zero-inflated and two-stage (or hurdle) approaches. These and linear assumptions (following log- and square root-transformations) were evaluated using 9 years of mayfly density data from a 52 km, ninth-order reach of the Upper Mississippi River (n = 959). The data exhibited substantial overdispersion relative to that expected under a Poisson assumption (i.e. variance:mean ratio = 23 ??? 1), and 43% of the sampling locations yielded zero mayflies. Based on the Akaike Information Criterion (AIC), count models were improved most by treating the count mean as a random variable (via a Poisson-gamma distributional assumption) and secondarily by zero modification (i.e. improvements in AIC values = 9184 units and 47-48 units, respectively). Zeroes were underestimated by the Poisson, log-transform and square root-transform models, slightly by the standard negative binomial model but not by the zero-modified models (61%, 24%, 32%, 7%, and 0%, respectively

  2. Relationships among rotational and conventional grazing systems, stream channels, and macroinvertebrates

    USGS Publications Warehouse

    Raymond, K.L.; Vondracek, B.

    2011-01-01

    Cattle grazing in riparian areas can reduce water quality, alter stream channel characteristics, and alter fish and macroinvertebrate assemblage structure. The U.S. Department of Agriculture, Natural Resources Conservation Services has recommended Rotational Grazing (RG) as an alternative management method on livestock and dairy operations to protect riparian areas and water quality. We evaluated 13 stream channel characteristics, benthic macroinvertebrate larvae (BML), and chironomid pupal exuviae (CPE) from 18 sites in the Upper Midwest of the United States in relation to RG and conventional grazing (CG). A Biotic Composite Score comprised of several macroinvertebrate metrics was developed for both the BML assemblage and the CPE assemblage. Multi-Response Permutation Procedures (MRPP) indicated a significant difference in stream channel characteristics between RG and CG. Nonmetric Multidimensional Scaling indicated that RG sites were associated with more stable stream banks, higher quality aquatic habitat, lower soil compaction, and larger particles in the streambed. However, neither MRPP nor Mann-Whitney U tests demonstrated a difference in Biotic Composite Scores for BML or CPE along RG and CG sites. The BML and CPE metrics were significantly correlated, indicating that they were likely responding to similar variables among the study sites. Although stream channel characteristics appeared to respond to grazing management, BML and CPE may have responded to land use throughout the watershed, as well as local land use. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  3. Habitat selection by postbreeding female diving ducks: Influence of habitat attributes and conspecifics

    USGS Publications Warehouse

    Austin, Jane E.; O'Neil, Shawn T.; Warren, Jeffrey M.

    2017-01-01

    Habitat selection studies of postbreeding waterfowl have rarely focused on within-wetland attributes such as water depth, escape cover, and food availability. Flightless waterfowl must balance habitat selection between avoiding predation risks and feeding. Reproductively successful female ducks face the greatest challenges because they begin the definitive prebasic molt at or near the end of brood rearing, when their body condition is at a low point. We assessed the relative importance of habitat attributes and group effects in habitat selection by postbreeding female lesser scaup Aythya affinis on a 2332-ha montane wetland complex during the peak flightless period (August) over seven years. Hypothesis-based habitat attributes included percent open water, open water:emergent edge density, water depth, percent flooded bare substrate, fetch (distance wind can travel unobstructed), group size, and several interactions representing functional responses to interannual variation in water levels. Surveys of uniquely marked females were conducted within randomly ordered survey blocks. We fitted two-part generalized linear mixed-effects models to counts of marked females within survey blocks, which allowed us to relate habitat attributes to relative probability of occurrence and, given the presence of a marked female, abundance of marked individuals. Postbreeding female scaup selected areas with water depths > 40 cm, large open areas, and intermediate edge densities but showed no relation to flooded bare substrate, suggesting their habitat preferences were more influenced by avoiding predation risks and disturbances than in meeting foraging needs. Grouping behavior by postbreeding scaup suggests habitat selection is influenced in part by behavioral components and/or social information, conferring energetic and survival benefits (predation and disturbance risks) but potentially also contributing to competition for food resources. This study demonstrates the importance of

  4. Habitat and Biodiversity of On-Farm Water Storages: A Case Study in Southeast Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Markwell, Kim A.; Fellows, Christine S.

    2008-02-01

    On-farm water storages (locally known as farm dams or farm ponds) are an important part of many agricultural landscapes, as they provide a reliable source of water for irrigation and stock. Although these waterbodies are artificially constructed and morphologically simple, there is increasing interest in their potential role as habitat for native flora and fauna. In this article, we present results from a case study which examined the habitat characteristics (such as water physical and chemical parameters, benthic metabolism, and macrophyte cover) and the macrophyte and macroinvertebrate biodiversity of eight farm ponds on four properties in the Stanley Catchment, Southeast Queensland, Australia. Each landowner was interviewed to allow a comparison of the management of the ponds with measured habitat and biodiversity characteristics, and to understand landowners’ motivations in making farm pond management decisions. The physical and chemical water characteristics of the study ponds were comparable to the limited number of Australian farm ponds described in published literature. Littoral zones supported forty-five macroinvertebrate families, with most belonging to the orders Hemiptera, Coleoptera, Odonata, and Diptera. Invertebrate community composition was strongly influenced by littoral zone macrophyte structure, with significant differences between ponds with high macrophyte cover compared to those with bare littoral zones. The importance of littoral zone macrophytes was also suggested by a significant positive relationship between invertebrate taxonomic richness and macrophyte cover. The landowners in this study demonstrated sound ecological knowledge of their farm ponds, but many had not previously acknowledged them as having high habitat value for native flora and fauna. If managed for aquatic organisms as well as reliable water sources, these artificial habitats may help to maintain regional biodiversity, particularly given the large number of farm ponds

  5. Freshwater Macroinvertebrates.

    ERIC Educational Resources Information Center

    Nalepa, T. F.

    1978-01-01

    Presents a literature review of freshwater biology particularly freshwater macroinvertebrates and their effect on water pollution, covering publications of 1976-77. A list of 158 references is also presented. (HM)

  6. Effects of coal mining, forestry, and road construction on southern Appalachian stream invertebrates and habitats.

    PubMed

    Gangloff, Michael M; Perkins, Michael; Blum, Peter W; Walker, Craig

    2015-03-01

    Coal has been extracted via surface and sub-surface mining for decades throughout the Appalachian Mountains. New interest in ridge-top mining has raised concerns about possible waterway impacts. We examined effects of forestry, mining, and road construction-based disturbance on physico-chemistry and macroinvertebrate communities in east-central Tennessee headwater streams. Although 11 of 30 sites failed Tennessee's biocriteria scoring system, invertebrate richness was moderately high and we did not find significant differences in any water chemistry or habitat parameters between sites with passing and failing scores. However, conductivity and dissolved solid concentrations appeared elevated in the majority of study streams. Principal components (PCs) analysis indicated that six PCs accounted for ~77 % of among-site habitat variability. One PC associated with dissolved oxygen and specific conductance explained the second highest proportion of among-site variability after catchment area. Specific conductance was not correlated with catchment area but was strongly correlated with mining activity. Composition and success of multivariate models using habitat PCs to predict macroinvertebrate metrics was highly variable. PC scores associated with water chemistry and substrate composition were most frequently included in significant models. These results suggest that impacts of historical and current coal mining remain a source of water quality and macroinvertebrate community impairment in this region, but effects are subtle. Our results suggest that surface mining may have chronic and system-wide effects on habitat conditions and invertebrate communities in Cumberland Plateau streams.

  7. Impacts of rapid urbanization on the water quality and macroinvertebrate communities of streams: A case study in Liangjiang New Area, China.

    PubMed

    Luo, Kun; Hu, Xuebin; He, Qiang; Wu, Zhengsong; Cheng, Hao; Hu, Zhenlong; Mazumder, Asit

    2018-04-15

    Rapid urbanization in China has dramatically deteriorated the water quality of streams and threatening aquatic ecosystem health. This study aims to 1) assess the impacts of urbanization on water quality and macroinvertebrate composition and 2) address the question of how urbanization affects macroinvertebrate distribution patterns. Environmental variables over multispatial scales and macroinvertebrate community data were collected on April (dry season) and September (wet season) of 2014 and 2015 at 19 sampling sites, of which nine had a high urbanization level (HUL), six had moderate urbanization level (MUL) and four had low urbanization level (LUL), in the Liangjiang New Area. The results of this study showed that macroinvertebrate assemblages significantly varied across the three urbanization levels. The sensitive species (e.g., EPT taxa) were mainly centralized at LUL sites, whereas tolerant species, such as Tubificidae (17.3%), Chironomidae (12.1%), and Physidae (4.61%), reached highest relative abundance at LUL sites. The values of family biotic index (FBI) and biological monitoring working party (BMWP) indicated the deterioration of water quality along urbanization gradient. Seasonal and inter - annual changes in macroinvertebrate communities were not observed. The results of variation partitioning analyses (CCAs) showed that habitat scale variables explained the major variation in macroinvertebrate community composition. Specifically, the increased nutrient concentrations favored tolerant species, whereas high water flow and substrate coarseness benefitted community taxa richness, diversity and EPT richness. Considering the interactions between scale-related processes, the results of this study suggested that urbanization resulted in less diverse and more tolerant stream macroinvertebrate assemblages mainly via increased nutrient concentrations and reduced substrate coarseness. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem

    PubMed Central

    Muposhi, Victor K.; Gandiwa, Edson; Chemura, Abel; Bartels, Paul; Makuza, Stanley M.; Madiri, Tinaapi H.

    2016-01-01

    An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i) surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii) habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii) spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana) for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats. PMID:27680673

  9. Effects of Benthic Barriers on Macroinvertebrate Communities

    DTIC Science & Technology

    1993-10-01

    Aquatic Plant Control Research Program Effects of Benthic Barriers on Macroinvertebrate Communities by Barry S. Payne, Andrew C. Miller Environmental...Plant Control Technical Report A-93-5Resear h Program Oct ber 1993 Effects of Benthic Barriers on Macroinvertebrate Communities by Barry S. Payne...Effects of benthic barriers on macroinvertebrate communities / by Barry S. Payne, Andrew C. Miller, [and] Thomas Ussery ; prepared for U.S. Army Corps of

  10. Long–term functional group recovery of lotic macroinvertebrates from logging disturbance.Canadian Journal of Fisheries and Aquatic Sciences

    Treesearch

    Damon T. Ely; J. Bruce Wallace

    2010-01-01

    Clear-cut logging rapidly affects stream macroinvertebrates through substantial alteration of terrestrial–aquatic resource linkages; however, lesser known are the long-term influences of forest succession on benthic macroinvertebrate assemblages, which play key roles in stream ecosystem function. We compared secondary production and standing crops of detritus in two...

  11. Macroinvertebrate Mayhem.

    ERIC Educational Resources Information Center

    Science Activities, 1995

    1995-01-01

    Presents a Project WET water education activity. Through a game of tag that simulates the effects of environmental stressors on macroinvertebrate populations, students relate the concept of biodiversity to the health of an ecosystem. (LZ)

  12. Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities

    NASA Astrophysics Data System (ADS)

    Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.

    2017-10-01

    Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of

  13. Implementation of artificial neural networks (ANNs) to analysis of inter-taxa communities of benthic microorganisms and macroinvertebrates in a polluted stream.

    PubMed

    Kim, Byunghyuk; Lee, Se-Eun; Song, Mi-Young; Choi, Jung-Hye; Ahn, Soon-Mo; Lee, Kun-Seop; Cho, Eungchun; Chon, Tae-Soo; Koh, Sung-Cheol

    2008-02-01

    This study was performed to gain an understanding of the structural and functional relationships between inter-taxa communities (macroinvertebrates as consumers, and microbes as decomposers or preys for the invertebrates) in a polluted stream using artificial neural networks techniques. Sediment samples, carrying microorganisms (eubacteria) and macroinvertebrates, were seasonally collected from similar habitats in streams with different levels of pollution. Microbial community taxa and densities were determined using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rDNA sequence analysis techniques. The identity and density of macroinvertebrates were concurrently determined. In general, differences were observed on grouping by self-organizing map (SOM) in polluted, clean and recovering sites based on the microbial densities, while the community patterns were partly dependent on the sampling period. A Spearman rank order correlation analysis revealed correlations of several eubacterial species with those of macroinvertebrates: a negative correlation was observed between Acidovorax sp. (from polluted sites) and Gammaridae (mostly from the clean site), while Herbaspirillum sp. and Janthinobacterium sp. appeared to have positive correlations with some macroinvertebrate species. The population dynamics of the tolerant texa, Tubificidae and Chironomidae, appeared to be related with changes in the densities of Acidovorax sp. This study revealed community relationships between macroinvertebrates and microorganisms, reflecting the connectivity between the two communities via the food chain. A further physio-ecological and symbiological study on the invertebrate-microorganism relationships will be required to understand the degradation and utilization of detritus in aquatic ecosystems as well as to elucidate the roles of the inter-taxa in the recovery of polluted aquatic environments.

  14. Temporal Patterns and Environmental Correlates of Macroinvertebrate Communities in Temporary Streams.

    PubMed

    Botwe, Paul K; Barmuta, Leon A; Magierowski, Regina; McEvoy, Paul; Goonan, Peter; Carver, Scott

    2015-01-01

    Temporary streams are characterised by short periods of seasonal or annual stream flow after which streams contract into waterholes or pools of varying hydrological connectivity and permanence. Although these streams are widespread globally, temporal variability of their ecology is understudied, and understanding the processes that structure community composition in these systems is vital for predicting and managing the consequences of anthropogenic impacts. We used multivariate and univariate approaches to investigate temporal variability in macroinvertebrate compositional data from 13 years of sampling across multiple sites from autumn and spring, in South Australia, the driest state in the driest inhabited continent in the world. We examined the potential of land-use, geographic and environmental variables to predict the temporal variability in macroinvertebrate assemblages, and also identified indicator taxa, that is, those highly correlated with the most significantly associated physical variables. Temporal trajectories of macroinvertebrate communities varied within site in both seasons and across years. A combination of land-use, geographic and environmental variables accounted for 24% of the variation in community structure in autumn and 27% in spring. In autumn, community composition among sites were more closely clustered together relative to spring suggesting that communities were more similar in autumn than in spring. In both seasons, community structure was most strongly correlated with conductivity and latitude, and community structure was more associated with cover by agriculture than urban land-use. Maintaining temporary streams will require improved catchment management aimed at sustaining seasonal flows and critical refuge habitats, while also limiting the damaging effects from increased agriculture and urban developments.

  15. Temporal Patterns and Environmental Correlates of Macroinvertebrate Communities in Temporary Streams

    PubMed Central

    Botwe, Paul K.; Barmuta, Leon A.; Magierowski, Regina; McEvoy, Paul; Goonan, Peter; Carver, Scott

    2015-01-01

    Temporary streams are characterised by short periods of seasonal or annual stream flow after which streams contract into waterholes or pools of varying hydrological connectivity and permanence. Although these streams are widespread globally, temporal variability of their ecology is understudied, and understanding the processes that structure community composition in these systems is vital for predicting and managing the consequences of anthropogenic impacts. We used multivariate and univariate approaches to investigate temporal variability in macroinvertebrate compositional data from 13 years of sampling across multiple sites from autumn and spring, in South Australia, the driest state in the driest inhabited continent in the world. We examined the potential of land-use, geographic and environmental variables to predict the temporal variability in macroinvertebrate assemblages, and also identified indicator taxa, that is, those highly correlated with the most significantly associated physical variables. Temporal trajectories of macroinvertebrate communities varied within site in both seasons and across years. A combination of land-use, geographic and environmental variables accounted for 24% of the variation in community structure in autumn and 27% in spring. In autumn, community composition among sites were more closely clustered together relative to spring suggesting that communities were more similar in autumn than in spring. In both seasons, community structure was most strongly correlated with conductivity and latitude, and community structure was more associated with cover by agriculture than urban land-use. Maintaining temporary streams will require improved catchment management aimed at sustaining seasonal flows and critical refuge habitats, while also limiting the damaging effects from increased agriculture and urban developments. PMID:26556711

  16. Analytical approaches used in stream benthic macroinvertebrate biomonitoring programs of State agencies in the United States

    USGS Publications Warehouse

    Carter, James L.; Resh, Vincent H.

    2013-01-01

    Biomonitoring programs based on benthic macroinvertebrates are well-established worldwide. Their value, however, depends on the appropriateness of the analytical techniques used. All United States State, benthic macroinvertebrate biomonitoring programs were surveyed regarding the purposes of their programs, quality-assurance and quality-control procedures used, habitat and water-chemistry data collected, treatment of macroinvertebrate data prior to analysis, statistical methods used, and data-storage considerations. State regulatory mandates (59 percent of programs), biotic index development (17 percent), and Federal requirements (15 percent) were the most frequently reported purposes of State programs, with the specific tasks of satisfying the requirements for 305b/303d reports (89 percent), establishment and monitoring of total maximum daily loads, and developing biocriteria being the purposes most often mentioned. Most states establish reference sites (81 percent), but classify them using State-specific methods. The most often used technique for determining the appropriateness of a reference site was Best Professional Judgment (86 percent of these states). Macroinvertebrate samples are almost always collected by using a D-frame net, and duplicate samples are collected from approximately 10 percent of sites for quality assurance and quality control purposes. Most programs have macroinvertebrate samples processed by contractors (53 percent) and have identifications confirmed by a second taxonomist (85 percent). All States collect habitat data, with most using the Rapid Bioassessment Protocol visual-assessment approach, which requires ~1 h/site. Dissolved oxygen, pH, and conductivity are measured in more than 90 percent of programs. Wide variation exists in which taxa are excluded from analyses and the level of taxonomic resolution used. Species traits, such as functional feeding groups, are commonly used (96 percent), as are tolerance values for organic pollution

  17. Aquatic macroinvertebrates of the lower Missouri River

    USGS Publications Warehouse

    Poulton, Barry C.

    2010-01-01

    The U.S. Geological Survey (USGS) Columbia Environmental Research Center (CERC), in cooperation with the U.S. Environmental Protection Agency (USEPA), the U.S. Fish & Wildlife Service (USFWS), and the Missouri Department of Natural Resources (MDNR), has been conducting research on the aquatic macroinvertebrates of the lower Missouri River since the mid-1990s. This research was initiated in response to the need for comprehensive characterization of biological communities inhabiting aquatic habitats in large river systems that have historically been poorly studied. The USGS Status and Trends of Biological Resources Program provided partial funding for pilot studies that began in 1993 when the CERC was part of the USFWS. The purpose of this fact sheet is to provide stakeholders, scientists, management, and the general public with a basic summary of results from studies conducted by the CERC since that time period.

  18. [Relationship between leaf litter decomposition and colonization of benthic macroinvertebrates during early frost period in a headwater stream in the Changbai Mountains, Northeast China].

    PubMed

    Wang, Lu; Yang, Hai Jun; Li, Ling; Nan, Xiao Fei; Zhang, Zhen Xing; Li, Kun

    2017-11-01

    Annually, about 70% of the streams in the Changbai Mountains are frosted during November to April, with manifest seasonal freeze-thaw characters. By using monoculture and mixing leaf litters of Tilia amurensis, Acer mono and Quecus mongolica, this research attempted to disentangle the relationship between leaf litter decomposition and colonization of macroinvertebrates in the stream during early frost period. A 35-day investigation was carried out in a headwater stream of the Changbai Mountains. Nylon bags with two hole sizes (5 mm and 0.3 mm) were used to examine decomposition of the litters. The results showed that the mass losses were significantly different among the three kinds of leaf litters in monoculture, whose decomposition rates descended as A. mono, T. amurensis, and Q. mongolica, however, there existed no significant difference among the litter mixing. Mass losses in both mesh bags all showed little difference, except T. amurensis and the mixed litters. Litter mixing effects occurred in the coarse mesh bags with A. mono and Q. mongolica, but no mixture effects for others. Community structures of the macroinvertebrates colonizing in the litter bags differed with each other, but shredders' density had no significant difference among the three litters, and the mixing effects on shredders were poor. Our results implied that microbes play the major decomposers of leaf litters, and macroinvertebrates contribute little to the decomposition in the early frost period. Despite shredder's density is lower, they determine the mixing effects of litters. Macroinvertebrates are selective to food and habitats, however, due to the short term colonizing, and the influence of leaf litters on shredders is still unsure. Our results might contribute to understanding the cold season ecological processes and related management issues of headwater stream ecosystem.

  19. EVALUATING MACROINVERTEBRATE COMMUNITY ...

    EPA Pesticide Factsheets

    Since 2010, new construction in California is required to include stormwater detention and infiltration that is designed to capture rainfall from the 85th percentile of storm events in the region, preferably through green infrastructure. This study used recent macroinvertebrate community monitoring data to determine the ecological threshold for percent impervious cover prior to large scale adoption of green infrastructure using Threshold Indicator Taxa Analysis (TITAN). TITAN uses an environmental gradient and biological community data to determine individual taxa change points with respect to changes in taxa abundance and frequency across that gradient. Individual taxa change points are then aggregated to calculate the ecological threshold. This study used impervious cover data from National Land Cover Datasets and macroinvertebrate community data from California Environmental Data Exchange Network and Southern California Coastal Water Research Project. Preliminary TITAN runs for California’s Chaparral region indicated that both increasing and decreasing taxa had ecological thresholds of <1% watershed impervious cover. Next, TITAN will be used to determine shifts in the ecological threshold after the implementation of green infrastructure on a large scale. This presentation for the Society for Freshwater Scientists will discuss initial evaluation of community and taxa-specific thresholds of impairment for macroinvertebrates in California streams along

  20. Does diet influence consumer nutrient cycling? Macroinvertebrate and fish excretion in streams

    Treesearch

    Ryan McManamay; Jackson Webster; H. Valett; C. Dolloff

    2011-01-01

    Consumer nutrient cycling supplies limiting elements to autotrophic and heterotrophic organisms in aquatic systems. However, the role of consumers in supplying nutrients may change depending on their diet and their own stoichiometry. We evaluated the stoichiometry, N and P excretion, and diets of the dominant macroinvertebrates and fish at 6 stream sites to determine...

  1. Macroinvertebrate diets reflect tributary inputs and turbidity-driven changes in food availability in the Colorado River downstream of Glen Canyon Dam

    USGS Publications Warehouse

    Wellard Kelly, Holly A.; Rosi-Marshall, Emma J.; Kennedy, Theodore A.; Hall, Robert O.; Cross, Wyatt F.; Baxter, Colden V.

    2013-01-01

    Physical changes to rivers associated with large dams (e.g., water temperature) directly alter macroinvertebrate assemblages. Large dams also may indirectly alter these assemblages by changing the food resources available to support macroinvertebrate production. We examined the diets of the 4 most common macroinvertebrate taxa in the Colorado River through Glen and Grand Canyons, seasonally, at 6 sites for 2.5 y. We compared macroinvertebrate diet composition to the composition of epilithon (rock and cliff faces) communities and suspended organic seston to evaluate the degree to which macroinvertebrate diets tracked downstream changes in resource availability. Diets contained greater proportions of algal resources in the tailwater of Glen Canyon Dam and more terrestrial-based resources at sites downstream of the 1st major tributary. As predicted, macroinvertebrate diets tracked turbidity-driven changes in resource availability, and river turbidity partially explained variability in macroinvertebrate diets. The relative proportions of resources assimilated by macroinvertebrates ranged from dominance by algae to terrestrial-based resources, despite greater assimilation efficiencies for algal than terrestrial C. Terrestrial resources were most important during high turbidity conditions, which occurred during the late-summer monsoon season (July–October) when tributaries contributed large amounts of organic matter to the mainstem and suspended sediments reduced algal production. Macroinvertebrate diets were influenced by seasonal changes in tributary inputs and turbidity, a result suggesting macroinvertebrate diets in regulated rivers may be temporally dynamic and driven by tributary inputs.

  2. Predator Diet and Trophic Position Modified with Altered Habitat Morphology

    PubMed Central

    Tewfik, Alexander; Bell, Susan S.; McCann, Kevin S.; Morrow, Kristina

    2016-01-01

    Empirical patterns that emerge from an examination of food webs over gradients of environmental variation can help to predict the implications of anthropogenic disturbance on ecosystems. This “dynamic food web approach” is rarely applied at the coastal margin where aquatic and terrestrial systems are coupled and human development activities are often concentrated. We propose a simple model of ghost crab (Ocypode quadrata) feeding that predicts changing dominant prey (Emerita talpoida, Talorchestia sp., Donax variablis) along a gradient of beach morphology and test this model using a suite of 16 beaches along the Florida, USA coast. Assessment of beaches included quantification of morphological features (width, sediments, slope), macrophyte wrack, macro-invertebrate prey and active ghost crab burrows. Stable isotope analysis of carbon (13C/12C) and nitrogen (15N/14N) and the SIAR mixing model were used to determine dietary composition of ghost crabs at each beach. The variation in habitat conditions displayed with increasing beach width was accompanied by quantifiable shifts in ghost crab diet and trophic position. Patterns of ghost crab diet were consistent with differences recorded across the beach width gradient with respect to the availability of preferred micro-habitats of principal macro-invertebrate prey. Values obtained for trophic position also suggests that the generalist ghost crab assembles and augments its diet in fundamentally different ways as habitat morphology varies across a highly dynamic ecosystem. Our results offer support for a functional response in the trophic architecture of a common food web compartment (ghost crabs, macro-invertebrate prey) across well-known beach morphologies. More importantly, our “dynamic food web approach” serves as a basis for evaluating how globally wide-spread sandy beach ecosystems should respond to a variety of anthropogenic impacts including beach grooming, beach re-nourishment, introduction of non

  3. Impacts of acidification on macroinvertebrate communities in streams of the western Adirondack Mountains, New York, USA

    USGS Publications Warehouse

    Baldigo, Barry P.; Lawrence, G.B.; Bode, R.W.; Simonin, H.A.; Roy, K.M.; Smith, A.J.

    2009-01-01

    Limited stream chemistry and macroinvertebrate data indicate that acidic deposition has adversely affected benthic macroinvertebrate assemblages in numerous headwater streams of the western Adirondack Mountains of New York. No studies, however, have quantified the effects that acidic deposition and acidification may have had on resident fish and macroinvertebrate communities in streams of the region. As part of the Western Adirondack Stream Survey, water chemistry from 200 streams was sampled five times and macroinvertebrate communities were surveyed once from a subset of 36 streams in the Oswegatchie and Black River Basins during 2003-2005 and evaluated to: (a) document the effects that chronic and episodic acidification have on macroinvertebrate communities across the region, (b) define the relations between acidification and the health of affected species assemblages, and (c) assess indicators and thresholds of biological effects. Concentrations of inorganic Al in 66% of the 200 streams periodically reached concentrations toxic to acid-tolerant biota. A new acid biological assessment profile (acidBAP) index for macroinvertebrates, derived from percent mayfly richness and percent acid-tolerant taxa, was strongly correlated (R2 values range from 0.58 to 0.76) with concentrations of inorganic Al, pH, ANC, and base cation surplus (BCS). The BCS and acidBAP index helped remove confounding influences of natural organic acidity and to redefine acidification-effect thresholds and biological-impact categories. AcidBAP scores indicated that macroinvertebrate communities were moderately or severely impacted by acidification in 44-56% of 36 study streams, however, additional data from randomly selected streams is needed to accurately estimate the true percentage of streams in which macroinvertebrate communities are adversely affected in this, or other, regions. As biologically relevant measures of impacts caused by acidification, both BCS and acidBAP may be useful

  4. Spatiotemporal variation of macroinvertebrates in relation to canopy cover and other environmental factors in Eriora River, Niger Delta, Nigeria.

    PubMed

    Arimoro, Francis O; Obi-Iyeke, Grace E; Obukeni, Prince J O

    2012-10-01

    Canopy cover is well known to influence the distribution of macroinvertebrates in temperate streams. Very little is known about how this factor influences stream communities in Afrotropical streams. The effects and possible interactions of environmental factors and canopy cover on macroinvertebrate community structure (abundance, richness, and diversity) were examined in four stations in Eriora River, southern Nigeria bimonthly from May to November 2010. The river supported diverse macroinvertebrates in which the upstream sampling stations with dense canopy cover were dominated by Decapoda, Ephemeroptera, Odonata, Gastropoda, Trichoptera, and Coleoptera while Diptera and Coleoptera were the benthic organisms found predominant at downstream stations with less canopy cover. Some caddisfly species such as Agapetus agilis, Trichosetodes species and the stonefly Neoperla species were present upstream and were found to be potential bioindicators for a clean ecosystem. The blood worm Chironomus species and Tabanus sp. were abundant at the downstream of the river and are considered potential bioindicators for an organically degrading ecosystem. Some environmental factors varied temporally with significantly higher macroinvertebrate abundance and richness in May. We found out that canopy cover and environmental factors affected macroinvertebrates abundance, diversity, and richness and that the individual taxon had varying responses to these factors. These results help identify the mechanisms underlying the effects of canopy cover and other environmental factors on Afrotropical stream invertebrate communities.

  5. Dry creek long-term watershed study: assessment of immediate response of aquatic macroinvertebrates to watershed level harvesting and thinning of streamside management zones

    Treesearch

    M.W. Griswold; R.T. Winn; T.L. Crisman; W.R. White

    2006-01-01

    Streamside Management Zones (SMZs) are meant to protect riparian habitat and the stream ecosystem. Benthic macroinvertebrates are recognized bioindicators of water quality in streams, typically occupying multiple trophic levels in these systems and providing food for vertebrates. Thus, it is important to understand the effects of harvest within and adjacent to the SMZ...

  6. Effects of near-bed turbulence and micro-topography on macroinvertebrate movements across contrasting gravel-bed surfaces (Invited)

    NASA Astrophysics Data System (ADS)

    Buffin-Belanger, T. K.; Rice, S. P.; Reid, I.; Lancaster, J.

    2009-12-01

    Fluvial habitats can be described from a series of physical variables but to adequately address the habitat quality it becomes necessary to develop an understanding that combines the physical variables with the behaviour of the inhabitating organisms. The hypothesis of flow refugia provide a rational that can explain the persistence of macroinvertebrate communities in gravel-bed rivers when spates occur. The movement behaviour of macroinvertebrates is a key element to the flow refugia hypothesis, but little is known about how local near-bed turbulence and bed microtopography may affect macroinvertebrate movements. We reproduced natural gravel-bed substrates with contrasting gravel bed textures in a large flume where we were able to document the movement behaviour of the cased caddisfly Potamophylax latipennis for a specific discharge. The crawling paths and drift events of animals were analysed from video recordings. Characteristics of movements differ from one substrate to another. The crawling speed is higher for the small grain-size substrates but the mean travel distance remains approximately the same between substrates. For each substrate, the animals tended to follow consistent paths across the surface. The number of drift events and mean distance drifted is higher for the small grain-size substrate. ADV measurements close to the boundary allow detailed characterisation of near-bed hydraulic variables, including : skewness coefficients, TKE, UV correlation coefficients and integral time scales from autocorrelation analysis. For these variables, the vertical patterns of turbulence parameters are similar between the substrates but the amplitude of the average values and standard errors vary significantly. The spatial distribution of this variability is considered in relation to the crawling paths. It appears that the animals tend to crawl within areas of the substrate where low flow velocities and low turbulent kinetic energies are found, while sites that

  7. Comparison of fish and macroinvertebrates as bioindicators of Neotropical streams.

    PubMed

    Ruaro, Renata; Gubiani, Éder André; Cunico, Almir Manoel; Moretto, Yara; Piana, Pitágoras Augusto

    2016-01-01

    The biomonitoring of aquatic ecosystems in developing countries faces several limitations, especially related to gathering resources. The present study aimed at comparing the responses of fish and benthic macroinvertebrates to environmental change, to identify which group best indicates the differences between reference and impacted streams in southern Brazil. We determined reference and impacted sites based on physical and chemical variables of the water. For the analysis and comparison of biological responses, we calculated 22 metrics and submitted them to a discriminant analysis. We selected from this analysis only six metrics, which showed that the two studied assemblages respond differently to environmental change. A larger number of metrics were selected for macroinvertebrates than for fish in the separate analysis. The metrics selected for macroinvertebrates in the pooled analysis (i.e., fish and macroinvertebrates together) were different from those selected in the separate analysis for macroinvertebrates alone. However, the metrics selected for fish in the pooled analysis were the same selected in the separate analysis for fish alone. The macroinvertebrate assemblage was more effective for distinguishing reference from impacted sites. We suggest the use of macroinvertebrates as bioindicators of Neotropical streams, especially in situations in which time and money are short.

  8. Response of aquatic macro-invertebrate diversity to environmental factors along the Lower Komati River in Swaziland

    NASA Astrophysics Data System (ADS)

    Dlamini, Vuyisile; Hoko, Zvikomborero; Murwira, Amon; Magagula, Cebisile

    This paper assessed macro-invertebrates diversity as an indicator of aquatic ecosystem health in the Lower Komati River. It also investigated whether this diversity is a function of physico-chemical water quality parameters along an area with major agricultural activities. Bio-assessment of aquatic macro-invertebrates present in the Lower Komati River was carried out at seven sites on the river over 3 months. Water samples were also collected at these sites and analysed for pH, dissolved oxygen, electrical conductivity, turbidity, nitrates, ammonia and ortho-phosphates according to standard methods. It was found out that species diversity along agricultural fields was not significantly different ( p > 0.05) between successive sites. However, nitrate and turbidity among the physico-chemical parameters indicated a significant variation of mean values ( p < 0.05) between sites. With the exception of turbidity, no significant relationship ( p > 0.05) was found between diversity and water quality parameters. Principal Component Analysis also demonstrated the influence of turbidity in the sub-catchments as it was the only parameter that showed a significant loading in all Principal Components. Turbidity seems to be the main parameter influencing aquatic macro-invertebrate diversity in the Lower Komati River at the time of study. The study recommends further studies to determine the seasonal variation of the impact of water quality on macro-invertebrates diversity.

  9. Disturbance caused by freshwater releases of different magnitude on the aquatic macroinvertebrate communities of two coastal lagoons

    NASA Astrophysics Data System (ADS)

    Cañedo-Argüelles, Miguel; Rieradevall, Maria

    2010-06-01

    The response of the aquatic macroinvertebrate communities to freshwater releases of different magnitude and persistence was investigated in two Mediterranean coastal lagoons (Ca l'Arana and Ricarda). The study was carried out during 14 months (June 2004-July 2005) in which different environmental variables and the macroinvertebrate communities associated with two different habitats, the Phragmites australis belt and the deep area of the lagoons, were sampled monthly. Additionally, potential colonizing sources were identified through the analysis of Chironomidae pupal exuviae. The initial response of the communities to the freshwater releases was similar, being characterized by a peak of opportunistic taxa (mainly Naididae), but the late response was different for each lagoon. In the Ca l'Arana, the magnitude of the freshwater release was higher (salinity dropped below five, which is the limit commonly established for most freshwater species) and its persistence was also higher, allowing the colonization of the lagoon by new insect taxa, which replaced the brackish water species. In the Ricarda, the salinity never dropped beyond five and pre-disturbance conditions were rapidly re-established. This, together with the acclimatizing mechanisms showed by the species Chironomus riparius and Hediste diversicolor, permitted the recovery of the pre-disturbance macroinvertebrate community.

  10. [Effects of cascading hydropower dams operation on the structure and distribution pattern of benthic macroinvertebrate assemblages in Manwan Reservoir, Southwest China].

    PubMed

    Li, Jin Peng; Dong, Shi Kui; Peng, Ming Chun; Wu, Xuan; Zhou, Fang; Yu, Yin

    2017-12-01

    Benthic macroinvertebrate assemblages are one of the biological groups in aquatic ecosystem most sensitive to the habitat change and degradation, and can be a biological indicator for the aquatic ecosystem change and succession in cascading hydropower dam reservoir. The middle and lower reaches of the Lancang River are key spot for international biodiversity conservation and ecological studies on the effects of cascading hydropower dam exploitation. In this study, the reservoir of Manwan hydropower dam, the first dam in Lancang-Mekong river main stream, was selected as the study site. The benthic macroinvertebrate assemblages were sampled in 2011 and 2016 respectively. Meanwhile, the survey data before impounding (natural river, 1996) and early stage of single dam (1997) were collected to conduct the overall analysis for structure, distribution pattern and evolution of benthic macroinvertebrate assemblages. The results showed that the dominant biological group was gradually changed from the Oligochaeta and Insecta to the Mollusca. Along the longitudinal gradient, the density and biomass of the benthic macroinvertebrate assemblages were remarkably increased in reservoir, especially in the lacustrine zone. As for the functional feeding group, the predator and gatherer-collector changed into filter-collector predominantly in lacustrine zone. With the cascading dams operation, the biotic index indicated that the water quality of reservoir in 2016 was better than in 2011. The evolution of benthic macroinvertebrate assemblages in the Manwan Reservoir was related to the operation of Xiaowan dam in the upper reach, the hydrological regime and siltation in the reservoir, and would continue with dynamic changes with the operation of the cascading hydropower dam.

  11. Baseline assessment of fish communities, benthic macroinvertebrate communities, and stream habitat and land use, Big Thicket National Preserve, Texas, 1999-2001

    USGS Publications Warehouse

    Moring, J. Bruce

    2003-01-01

    The Big Thicket National Preserve comprises 39,300 hectares in the form of nine preserve units connected by four stream corridor units (with two more corridor units proposed) distributed over the lower Neches and Trinity River Basins of southeastern Texas. Fish and benthic macroinvertebrate data were collected at 15 stream sites (reaches) in the preserve during 1999–2001 for a baseline assessment and a comparison of communities among stream reaches. The fish communities in the preserve were dominated by minnows (family Cyprinidae) and sunfishes (family Centrarchidae). Reaches with smaller channel sizes generally had higher fish species richness than the larger reaches in the Neches River and Pine Island Bayou units of the preserve. Fish communities in geographically adjacent reaches were most similar in overall community structure. The blue sucker, listed by the State as a threatened species, was collected in only one reach—a Neches River reach a few miles downstream from the Steinhagen Lake Dam. Riffle beetles (family Elmidae) and midges (family Chironomidae) dominated the aquatic insect communities at the 14 reaches sampled for aquatic insects in the preserve. The Ephemeroptera, Plecoptera and Trichoptera (EPT) Index, an index sensitive to water-quality degradation, was smallest at the Little Pine Island Bayou near Beaumont reach that is in a State 303(d)-listed stream segment on Little Pine Island Bayou. Trophic structure of the aquatic insect communities is consistent with the river continuum concept with shredder and scraper insect taxa more abundant in reaches with smaller stream channels and filter feeders more abundant in reaches with larger channels. Aquatic insect community metrics were not significantly correlated to any of the stream-habitat or land-use explanatory variables. The percentage of 1990s urban land use in the drainage areas upstream from 12 bioassessment reaches were negatively correlated to the reach structure index, which indicates

  12. The influence of partial timber harvesting in riparian buffers on macroinvertebrate and fish communities in small streams in Minnesota, USA

    USGS Publications Warehouse

    Chizinski, Christopher J.; Vondracek, Bruce C.; Blinn, Charles R.; Newman, Raymond M.; Atuke, Dickson M.; Fredricks, Keith; Hemstad, Nathaniel A.; Merten, Eric C.; Schlesser, Nicholas

    2010-01-01

    Relatively few evaluations of aquatic macroinvertebrate and fish communities have been published in peer-reviewed literature detailing the effect of varying residual basal area (RBA) after timber harvesting in riparian buffers. Our analysis investigated the effects of partial harvesting within riparian buffers on aquatic macroinvertebrate and fish communities in small streams from two experiments in northern Minnesota northern hardwood-aspen forests. Each experiment evaluated partial harvesting within riparian buffers. In both experiments, benthic macroinvertebrates and fish were collected 1 year prior to harvest and in each of 3 years after harvest. We observed interannual variation for the macroinvertebrate abundance, diversity and taxon richness in the single-basin study and abundance and diversity in the multiple-basin study, but few effects related to harvest treatments in either study. However, interannual variation was not evident in the fish communities and we detected no significant changes in the stream fish communities associated with partially harvested riparian buffers in either study. This would suggest that timber harvesting in riparian management zones along reaches ≤200 m in length on both sides of the stream that retains RBA ≥ 12.4 ± 1.3 m2 ha−1 or on a single side of the stream that retains RBA ≥ 8.7 ± 1.6 m2 ha−1 may be adequate to protect macroinvertebrate and fish communities in our Minnesota study systems given these specific timber harvesting techniques.

  13. Effects of brine contamination from energy development on wetland macroinvertebrate community structure in the Prairie Pothole Region.

    PubMed

    Preston, Todd M; Borgreen, Michael J; Ray, Andrew M

    2018-08-01

    Wetlands in the Prairie Pothole Region (PPR) of North America support macroinvertebrate communities that are integral to local food webs and important to breeding waterfowl. Macroinvertebrates in PPR wetlands are primarily generalists and well adapted to within and among year changes in water permanence and salinity. The Williston Basin, a major source of U.S. energy production, underlies the southwest portion of the PPR. Development of oil and gas results in the coproduction of large volumes of highly saline, sodium chloride dominated water (brine) and the introduction of brine can alter wetland salinity. To assess potential effects of brine contamination on macroinvertebrate communities, 155 PPR wetlands spanning a range of hydroperiods and salinities were sampled between 2014 and 2016. Brine contamination was documented in 34 wetlands with contaminated wetlands having significantly higher chloride concentrations, specific conductance and percent dominant taxa, and significantly lower taxonomic richness, Shannon diversity, and Pielou evenness scores compared to uncontaminated wetlands. Non-metric multidimensional scaling found significant correlations between several water quality parameters and macroinvertebrate communities. Chloride concentration and specific conductance, which can be elevated in naturally saline wetlands, but are also associated with brine contamination, had the strongest correlations. Five wetland groups were identified from cluster analysis with many of the highly contaminated wetlands located in a single cluster. Low or moderately contaminated wetlands were distributed among the remaining clusters and had macroinvertebrate communities similar to uncontaminated wetlands. While aggregate changes in macroinvertebrate community structure were observed with brine contamination, systematic changes were not evident, likely due to the strong and potentially confounding influence of hydroperiod and natural salinity. Therefore, despite the observed

  14. Effects of brine contamination from energy development on wetland macroinvertebrate community structure in the Prairie Pothole Region

    USGS Publications Warehouse

    Preston, Todd M.; Borgreen, Michael J.; Ray, Andrew M.

    2018-01-01

    Wetlands in the Prairie Pothole Region (PPR) of North America support macroinvertebrate communities that are integral to local food webs and important to breeding waterfowl. Macroinvertebrates in PPR wetlands are primarily generalists and well adapted to within and among year changes in water permanence and salinity. The Williston Basin, a major source of U.S. energy production, underlies the southwest portion of the PPR. Development of oil and gas results in the coproduction of large volumes of highly saline, sodium chloride dominated water (brine) and the introduction of brine can alter wetland salinity. To assess potential effects of brine contamination on macroinvertebrate communities, 155 PPR wetlands spanning a range of hydroperiods and salinities were sampled between 2014 and 2016. Brine contamination was documented in 34 wetlands with contaminated wetlands having significantly higher chloride concentrations, specific conductance and percent dominant taxa, and significantly lower taxonomic richness, Shannon diversity, and Pielou evenness scores compared to uncontaminated wetlands. Non-metric multidimensional scaling found significant correlations between several water quality parameters and macroinvertebrate communities. Chloride concentration and specific conductance, which can be elevated in naturally saline wetlands, but are also associated with brine contamination, had the strongest correlations. Five wetland groups were identified from cluster analysis with many of the highly contaminated wetlands located in a single cluster. Low or moderately contaminated wetlands were distributed among the remaining clusters and had macroinvertebrate communities similar to uncontaminated wetlands. While aggregate changes in macroinvertebrate community structure were observed with brine contamination, systematic changes were not evident, likely due to the strong and potentially confounding influence of hydroperiod and natural salinity. Therefore, despite the observed

  15. Water-quality, stream-habitat, and biological data for West Fork Double Bayou, Cotton Bayou, and Hackberry Gully, Chambers County, Texas, 2006-07

    USGS Publications Warehouse

    Brown, Dexter W.; Turco, Michael J.

    2009-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Houston-Galveston Area Council and the Texas Commission on Environmental Quality, collected water-quality, stream-habitat, and biological data from two sites at West Fork Double Bayou, two sites at Cotton Bayou, and one site at Hackberry Gully in Chambers County, Texas, during July 2006-August 2007. Water-quality data-collection surveys consisted of synoptic 24-hour continuous measurements of water temperature, pH, specific conductance, and dissolved oxygen at the five sites and periodically collected samples at four sites analyzed for several properties and constituents of interest. Stream-habitat data were collected at each of four sites three times during the study. At each site, a representative stream reach was selected and within this reach, five evenly spaced stream transects were determined. At each transect, stream attributes (wetted channel width, water depth, bottom material, instream cover) and riparian attributes (bank slope and erosion potential, width of natural vegetation, type of vegetation, percentage tree canopy) were measured. Benthic macroinvertebrate and fish data were collected from the same reaches identified for habitat evaluation. A total of 2,572 macroinvertebrate individuals were identified from the four reaches; insect taxa were more abundant than non-insect taxa at all reaches. A total of 1,082 fish, representing 30 species and 13 families, were collected across all reaches. Stream-habitat and aquatic biota (benthic macroinvertebrates and fish) were assessed at the four sites to evaluate aquatic life use. Habitat quality index scores generally indicated 'intermediate' aquatic life use at most reaches. Benthic macroinvertebrate metrics scores indicated generally 'intermediate' aquatic life use for the West Fork Double Bayou reaches and generally 'high' aquatic life use for the Cotton Bayou and Hackberry Gully reaches. Index of biotic integrity scores for fish indicated generally

  16. Patterns of food abundance for breeding waterbirds in the san luis valley of Colorado

    USGS Publications Warehouse

    Gammonley, J.H.; Laubhan, M.K.

    2002-01-01

    We measured the amount and distribution of macroinvertebrates and seeds in four wetland habitats (short emergent, seasonal open water, semipermanent/permanent open water, and saltgrass [Distichlis spicata]) used by breeding ducks and shorebirds at a wetland complex in the San Luis Valley, Colorado, USA. Density of macroinvertebrates did not differ among habitats or sampling periods (P = 0.45), but dry mass, crude protein, and gross energy production were greater (P < 0.05) in short emergent than in other habitats. These differences were largely due to the greater dry mass of gastropods in short emergent than in other habitats. Total seed density, dry mass, crude protein, and gross energy differed among habitats and periods with interaction effects (P <0.01). Although seed abundance varied among habitats and sampling periods, abundance was greatest in short emergent during all sampling periods. Breeding waterbirds consumed a variety of macroinvertebrates and seeds on the study area. Patterns of abundance among habitats of macroinvertebrates and seeds consumed by six waterbird species were not consistent with patterns of foraging habitat use by most ducks and shorebirds at this wetland complex. Our results indicate that estimates of food or nutrient abundance are useful in assessing the functional role of broad habitat types, but factors other than food abundance also influence avian selection of wetland foraging habitats. ?? 2002, The Society of Wetland Scientists.

  17. Does habitat fragmentation influence nest predation in the shortgrass prairie?

    USGS Publications Warehouse

    Howard, M.N.; Skagen, S.K.; Kennedy, P.L.

    2001-01-01

    We examined the effects of habitat fragmentation and vegetation structure of shortgrass prairie and Conservation Reserve Program (CRP) lands on predation rates of artificial and natural nests in northeastern Colorado. The CRP provides federal payments to landowners to take highly erodible cropland out of agricultural production. In our study area, CRP lands have been reseeded primarily with non-native grasses, and this vegetation is taller than native shortgrass prairie. We measured three indices of habitat fragmentation (patch size, degree of matrix fragmentation, and distance from edge), none of which influenced mortality rates of artificial or natural nests. Vegetation structure did influence predation rates of artificial nests; daily mortality decreased significantly with increasing vegetation height. Vegetation structure did not influence predation rates of natural nests. CRP lands and shortgrass sites did not differ with respect to mortality rates of artificial nests. Our study area is only moderately fragmented; 62% of the study area is occupied by native grassland. We conclude that the extent of habitat fragmentation in our study area does not result in increased predation in remaining patches of shortgrass prairie habitat.

  18. The influence of sawmill wood wastes on the distribution and population of macroinvertebrates at Benin River, Niger Delta area, Nigeria.

    PubMed

    Arimoro, Francis O; Osakwe, Emeka I

    2006-05-01

    The impact of sawmill wood wastes on the distribution of benthic macroinvertebrates at the Sapele section of Benin River, Niger Delta, Nigeria, was investigated from March 2005 to August 2005. A total of 434 individuals were collected by kick-sampling method, representing 21 taxa of benthic macroinvertebrates. Three stations, 1, 2, and 3, were selected from upstream of the site, receiving wood wastes discharge, the impacted site and its down stream, respectively. Among the water quality variables, conductivity, dissolved oxygen, biochemical oxigen demand (BOD(5)), nitrate-nitrogen, phosphate-phosphorus, transparency, and alkalinity were significantly different (P<0.05) among the stations. Orthogonal comparison by Duncan's multiple range test showed that station 2 (the impacted site) was the cause of the difference. More sensitive species such as Ephemeroptera or Plecoptera were completely absent from station 2, the impacted site. Species abundance was similar in station 1 and 3, indicating that the wood wastes must have adversely affected the distribution of these macroinvertebrates, especially the intolerant species. The wood waste discharge not only altered the water chemistry, but also stimulated the abundance of less-sensitive macroinvertebrate species.

  19. Evaluation of Macroinvertebrate Data Based on Autoecological Information

    NASA Astrophysics Data System (ADS)

    Juhász, I.

    2016-12-01

    Various data (biological, chemical, hydrological and morphological) have been gathered within the frame of the monitoring of the Water Framework Directive from 2007 in Hungary. This data only used a status assessment of certain water bodies in Hungary. The macroinvertebrates indicate many environmental factors well; therefore, they are very useful in detecting changes in the status of an environment. The main aim in this research was to investigate changes in environmental variables and decide how these variables cause big changes in the macroinvertebrate fauna. The macroinvertebrate data was processed using the ASTERICS 4.0.4 program. The program calculated some important metrics (i.e., microhabitat distributions, longitudinal zonation, functional feeding guilds, etc.). These metrics were compared with the chemical and hydrological data. The main conclusion is that if we have enough of a frequency and quality of macroinvertebrate data, we can understand changes in the environment of an ecosystem.

  20. Characterization of Macroinvertebrate Communities in the Hyporheic Zone of River Ecosystems Reflects the Pump-Sampling Technique Used

    PubMed Central

    Dole-Olivier, Marie-José; Galassi, Diana M. P.; Hogan, John-Paul; Wood, Paul J.

    2016-01-01

    The hyporheic zone of river ecosystems provides a habitat for a diverse macroinvertebrate community that makes a vital contribution to ecosystem functioning and biodiversity. However, effective methods for sampling this community have proved difficult to establish, due to the inaccessibility of subsurface sediments. The aim of this study was to compare the two most common semi-quantitative macroinvertebrate pump-sampling techniques: Bou-Rouch and vacuum-pump sampling. We used both techniques to collect replicate samples in three contrasting temperate-zone streams, in each of two biogeographical regions (Atlantic region, central England, UK; Continental region, southeast France). Results were typically consistent across streams in both regions: Bou-Rouch samples provided significantly higher estimates of taxa richness, macroinvertebrate abundance, and the abundance of all UK and eight of 10 French common taxa. Seven and nine taxa which were rare in Bou-Rouch samples were absent from vacuum-pump samples in the UK and France, respectively; no taxon was repeatedly sampled exclusively by the vacuum pump. Rarefaction curves (rescaled to the number of incidences) and non-parametric richness estimators indicated no significant difference in richness between techniques, highlighting the capture of more individuals as crucial to Bou-Rouch sampling performance. Compared to assemblages in replicate vacuum-pump samples, multivariate analyses indicated greater distinction among Bou-Rouch assemblages from different streams, as well as significantly greater consistency in assemblage composition among replicate Bou-Rouch samples collected in one stream. We recommend Bou-Rouch sampling for most study types, including rapid biomonitoring surveys and studies requiring acquisition of comprehensive taxon lists that include rare taxa. Despite collecting fewer macroinvertebrates, vacuum-pump sampling remains an important option for inexpensive and rapid sample collection. PMID:27723819

  1. The effect of phorate on wetland macroinvertebrates

    USGS Publications Warehouse

    Dieter, Charles D.; Flake, Lester D.; Duffy, Walter G.

    1996-01-01

    The effects of phorate, an organophosphorus insecticide, on aquatic macroinvertebrates was studied in littoral mesocosms in South Dakota wetlands. In 1991 and 1992, four mesocosms were constructed in each of three wetlands. In each wetland, one mesocosm was a reference and phorate concentrations of 1.2, 2.4, and 4.8 kg/ha were applied to treatment mesocosms. Phorate caused mortality to amphipods and chironomids throughout the study. Leeches and snails were resistant to phorate. Few living macroinvertebrates were present in mesocosms after phorate treatment and populations recovered only slightly after 1 month. Macroinvertebrate taxa that were sensitive to phorate included: Odonata, Hemiptera, Culicidae, Heliidae, Ephemeroptera, Acarina, Coleoptera, Stratio-myidae, and Hydracarina. Taxa that were tolerant to phorate included: Hirudinea, Gastropoda, Oligochaeta, and Ostracoda.

  2. Factors influencing habitat selection by arboreal pit vipers.

    PubMed

    Sawant, Nitin S; Jadhav, Trupti D

    2013-01-01

    We studied factors influencing habitat selection by two arboreal species of pit viper, namely Trimeresurus malabaricus (Malabar pit viper) and T. gramineus (Bamboo pit viper). The macrohabitat of these species was classified as forest, forest edge, or open habitat. To determine microhabitat selection, a variety of features at every other snake location were measured. Whether or not the animal was found in a tree, the tree species, its height of perch, position on the branch (distal/ apical/middle), diameter of the branch, the tree canopy (thick/sparse) and vegetation of the area (thick/sparse) were recorded. Assessment of habitat was done to determine how patterns of habitat use vary seasonally. Shaded ambient (air) temperatures and humidity were recorded. Data pertaining to 90 individuals of T. malabaricus and 100 individuals of T. gramineus were recorded. Trimeresurus malabaricus selected home ranges that included areas with thick vegetation and were encountered at regions of higher altitude. Neither of the species was found in open habitats. Both of the species preferred diverse habitats and were spread over the entire available space during the monsoon; they did not show any preference for the perch height during different seasons. Males had a positive correlation between body mass and preferred perch diameter. The present study suggests that several factors play an important role in habitat selection by these arboreal pit vipers, thus making them highly habitat-specific.

  3. A study of the effects of implementing agricultural best management practices and in-stream restoration on suspended sediment, stream habitat, and benthic macroinvertebrates at three stream sites in Surry County, North Carolina, 2004-2007-Lessons learned

    USGS Publications Warehouse

    Smith, Douglas G.; Ferrell, G.M.; Harned, Douglas A.; Cuffney, Thomas F.

    2011-01-01

    Creek site indicated a statistically significant (p<0.05) decrease in suspended-sediment discharge following in-stream restoration. Stream habitat characteristics were similar at the Bull Creek and Hogan Creek reaches. However, the Pauls Creek reach was distinguished from the other two sites by a lack of pools, greater bankfull widths, greater streamflow and velocity, and larger basin size. Historical changes in the stream channel in the vicinity of the Pauls Creek streamgage are evident in aerial photographs dating from 1936 to 2005 and could have contributed to stream-channel instability. The duration of this study likely was inadequate for detecting changes in stream habitat characteristics. Benthic macroinvertebrate assemblages differed by site and changed during the course of the study. Bull Creek, the best management practices site, stood out as the site having the poorest overall conditions and the greatest improvement in benthic macroinvertebrate communities during the study period. Richness and diversity metrics indicated that benthic macroinvertebrate community conditions at the Hogan Creek and Pauls Creek sites declined during the study, although the status was excellent based on the North Carolina Index of Biotic Integrity. Experiences encountered during this study exemplify the difficulties of attempting to assess the short-term effects of stream-improvement efforts on a watershed scale and, in particular, the difficulty of finding similar basins for a comparative study. Data interpretation was complicated by dry climatic conditions and unanticipated land disturbances that occurred during the study in each of the three study basins. For example, agricultural best management practices were implemented in the drainage basin of the control site prior to and during the study. An impoundment on Bull Creek upstream from the streamgaging station probably influenced water-quality conditions and streamflow. Road construction in the vicinity of the Pauls Creek site

  4. Compliance of secondary production and eco-exergy as indicators of benthic macroinvertebrates assemblages' response to canopy cover conditions in Neotropical headwater streams.

    PubMed

    Linares, Marden Seabra; Callisto, Marcos; Marques, João Carlos

    2018-02-01

    Riparian vegetation cover influences benthic assemblages structure and functioning in headwater streams, as it regulates light availability and autochthonous primary production in these ecosystems.Secondary production, diversity, and exergy-based indicators were applied in capturing how riparian cover influences the structure and functioning of benthic macroinvertebrate assemblages in tropical headwater streams. Four hypotheses were tested: (1) open canopy will determine the occurrence of higher diversity in benthic macroinvertebrate assemblages; (2) streams with open canopy will exhibit more complex benthic macroinvertebrate communities (in terms of information embedded in the organisms' biomass); (3) in streams with open canopy benthic macroinvertebrate assemblages will be more efficient in using the available resources to build structure, which will be reflected by higher eco-exergy values; (4) benthic assemblages in streams with open canopy will exhibit more secondary productivity. We selected eight non-impacted headwater streams, four shaded and four with open canopy, all located in the Neotropical savannah (Cerrado) of southeastern Brazil. Open canopy streams consistently exhibited significantly higher eco-exergy and instant secondary production values, exemplifying that these streams may support more complex and productive benthic macroinvertebrate assemblages. Nevertheless, diversity indices and specific eco-exergy were not significantly different in shaded and open canopy streams. Since all the studied streams were selected for being considered as non-impacted, this suggests that the potential represented by more available food resources was not used to build a more complex dissipative structure. These results illustrate the role and importance of the canopy cover characteristics on the structure and functioning of benthic macroinvertebrate assemblages in tropical headwater streams, while autochthonous production appears to play a crucial role as food

  5. Influence of habitat on behavior of Towndsend's ground squirrels (Spermophilus townsendii)

    USGS Publications Warehouse

    Sharpe, Peter B.; Van Horne, Beatrice

    1998-01-01

    Trade-offs between foraging and predator avoidance may affect an animal's survival and reproduction. These trade-offs may be influenced by differences in vegetative cover, especially if foraging profitability and predation risk differ among habitats. We examined above-ground activity of Townsend's ground squirrels (Spermophilus townsendii) in four habitats in the Snake River Birds of Prey National Conservation Area in southwestern Idaho to determine if behavior of ground squirrels varied among habitats, and we assessed factors that might affect perceived predation risk (i. e. predator detectability, predation pressure, population density). The proportion of time spent in vigilance by ground squirrels in winterfat (Krascheninnikovia lanata) and mosaic habitats of winterfat-sagebrush (Artemisia tridentata) was more than twice that of ground squirrels in burned and unburned sagebrush habitats. We found no evidence for the 'many-eyes' hypothesis as an explanation for differences in vigilance among habitats. Instead, environmental heterogeneity, especially vegetation structure, likely influenced activity budgets of ground squirrels. Differences in vigilance may have been caused by differences in predator detectability and refuge availability, because ground squirrels in the winterfat and mosaic habitats also spent more time in upright vigilant postures than ground squirrels in burned-sagebrush or sagebrush habitats. Such postures may enhance predator detection in low-growing winterfat.

  6. [Distribution and species composition of hyporheic macroinvertebrates in a mountain stream].

    PubMed

    Zhang, Yue-wei; Yuan, Xing-zhong; Liu, Hong; Ren, Hai-qing; Deng, Wei; Wang, Xiao-feng

    2015-09-01

    Hyporheic macroinvertebrates are an important component of stream ecosystem. The composition and distribution of the hyporheic macroinvertebrates were investigated using artificial substrates in the upper reaches of Heishuitan River in August, December 2013 and April 2014. The results indicated that a total of 27 microinvertbrate species were identified in all three seasons. In summer, 22 species were identified, accounting for 81.8% of aquatic insects. 16 species were identified both in winter and spring, accounting for 75.0% and 62.5% of aquatic insects, respectively. The density of macroinvertebrate assemblage was significantly lower in summer than in winter and spring, and was the highest in spring. The biomass of macroinvertebrate assemblage was significantly higher in winter than in summer and spring, and was the lowest in summer. Species richness, Shannon index and Pielou index all had no significant difference among the three seasons. The density and richness of macroinvertebrates decreased with bed depth, and the maximum invertebrate density was found within the top 20 cm of the stream bed. Collector-filterer and collector-gatherer were the dominant functional feeding group in all three seasons. The community structure and temporal-spatial distribution of macroinvertebrates were determined by interactions and life history strategy of macroinvertebrates, and physical-chemical factors of hyporheic zone.

  7. Multimetric Macroinvertebrate Indices for Mid-continent US Great Rivers

    EPA Science Inventory

    We developed a set of great river macroinvertebrate indices of condition (GRMICs) for the mid-continent great rivers. We used a multiscale (site, reach, landscape) multimetric abiotic stressor gradient to select macroinvertebrate assemblage metrics sensitive to human disturbance ...

  8. Do priority effects outweigh environmental filtering in a guild of dominant freshwater macroinvertebrates?

    PubMed

    Little, Chelsea J; Altermatt, Florian

    2018-04-11

    Abiotic conditions have long been considered essential in structuring freshwater macroinvertebrate communities. Ecological drift, dispersal and biotic interactions also structure communities, and although these mechanisms are more difficult to detect, they may be of equal importance in natural communities. Here, we hypothesized that in 10 naturally replicated headwater streams in eastern Switzerland, locally dominant amphipod species would be associated with differences in environmental conditions. We conducted repeated surveys of amphipods and used a hierarchical joint species distribution model to assess the influence of different drivers on species co-occurrences. The species had unique environmental requirements, but a distinct spatial structure in their distributions was unrelated to habitat. Species co-occurred much less frequently than predicted by the model, which was surprising because laboratory and field evidence suggests they are capable of coexisting in equal densities. We suggest that niche preemption may limit their distribution and that a blocking effect related to the specific linear configuration of streams determines which species colonizes and dominates a given stream catchment, thus suggesting a new solution a long-standing conundrum in freshwater ecology. © 2018 The Author(s).

  9. Macroinvertebrate community assembly on deep-sea wood falls in Monterey Bay is strongly influenced by wood type.

    PubMed

    Judge, Jenna; Barry, James P

    2016-11-01

    Environmental filtering, including the influence of environmental constraints and biological interactions on species' survival, is known to significantly affect patterns of community assembly in terrestrial ecosystems. However, its role in regulating patterns and processes of community assembly in deep-sea environments is poorly studied. Here we investigated the role of wood characteristics in the assembly of deep-sea wood fall communities. Ten different wood species (substrata) that varied in structural complexity were sunk to a depth of 3,100 m near Monterey Bay, CA. In total, 28 wood parcels were deployed on the deep-sea bed. After 2 yr, the wood parcels were recovered with over 7,000 attached or colonizing macroinvertebrates. All macroinvertebrates were identified to the lowest taxonomic level possible, and included several undescribed species. Diversity indices and multivariate analyses of variance detected significant variation in the colonizing community assemblages among different wood substrata. Structural complexity seemed to be the primary factor altering community composition between wood substrata. For example, wood-boring clams were most abundant on solid logs, while small arthropods and limpets were more abundant on bundles of branches that provided more surface area and small, protected spaces to occupy. Other factors such as chemical defenses, the presence of bark, and wood hardness likely also played a role. Our finding that characteristics of woody debris entering the marine realm can have significant effects on community assembly supports the notion of ecological and perhaps evolutionarily significant links between land and sea. © 2016 by the Ecological Society of America.

  10. A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and Biota

    PubMed Central

    Kail, Jochem; Guse, Björn; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Kleinhans, Maarten; Schuurman, Filip; Fohrer, Nicola; Hering, Daniel; Wolter, Christian

    2015-01-01

    River biota are affected by global reach-scale pressures, but most approaches for predicting biota of rivers focus on river reach or segment scale processes and habitats. Moreover, these approaches do not consider long-term morphological changes that affect habitat conditions. In this study, a modelling framework was further developed and tested to assess the effect of pressures at different spatial scales on reach-scale habitat conditions and biota. Ecohydrological and 1D hydrodynamic models were used to predict discharge and water quality at the catchment scale and the resulting water level at the downstream end of a study reach. Long-term reach morphology was modelled using empirical regime equations, meander migration and 2D morphodynamic models. The respective flow and substrate conditions in the study reach were predicted using a 2D hydrodynamic model, and the suitability of these habitats was assessed with novel habitat models. In addition, dispersal models for fish and macroinvertebrates were developed to assess the re-colonization potential and to finally compare habitat suitability and the availability / ability of species to colonize these habitats. Applicability was tested and model performance was assessed by comparing observed and predicted conditions in the lowland Treene River in northern Germany. Technically, it was possible to link the different models, but future applications would benefit from the development of open source software for all modelling steps to enable fully automated model runs. Future research needs concern the physical modelling of long-term morphodynamics, feedback of biota (e.g., macrophytes) on abiotic habitat conditions, species interactions, and empirical data on the hydraulic habitat suitability and dispersal abilities of macroinvertebrates. The modelling framework is flexible and allows for including additional models and investigating different research and management questions, e.g., in climate impact research as well

  11. The occurrence of trace elements in bed sediment collected from areas of varying land use and potential effects on stream macroinvertebrates in the conterminous western United States, Alaska, and Hawaii, 1992-2000

    USGS Publications Warehouse

    Paul, Angela P.; Paretti, Nicholas V.; MacCoy, Dorene E.; Brasher, Anne M.D.

    2012-01-01

    . Generally, Hg concentrations were below the sediment-quality guideline for this trace element but appeared elevated in urbanized areas and at sites contaminated by historic mining practices. Lastly, although there was no distinctive pattern in Se concentrations with land use, median bed-sediment concentrations were slightly elevated in urbanized areas.Macroinvertebrate community structure was influenced by topographic, geologic, climatic, and in-stream characteristics. To account for inherent distribution patterns resulting from these influences, samples of macroinvertebrates were stratified by ecoregion to assess the influence of trace elements on community structure. Cumulative toxic units (CTUs) were used to evaluate gradients in trace-element concentrations in mixture. Correlation analyses among the trace elements under different land-use conditions indicate that trace-element mixtures vary among bed sediment and can have a marked influence on CTU composition. Macroinvertebrate response to bed-sediment trace-element exposure was evident only at the most highly contaminated sites, notably at sites classified as contaminated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as a result of historic mining activities. Results of this study agree with the findings of other studies evaluating trace-element exposure to in-stream macroinvertebrate community structure in that generally lower richness metrics and taxa dominance occur in streams where high trace-element enrichment occurs; however, not all streams in all areas have the same characterizing taxa. In the mountain and xeric ecosystems, the mayfly, Baetis sp.; the Diptera, Simulium sp.; caddisflies in the family Hydropsychiidae; midges in the family Orthocladiinae; and the worms belonging to Turbellaria and Naididae all demonstrated resilience to trace-element exposure and, in some cases, possible changes in physical habitat within stream ecosystems. The taxa characteristics within

  12. Understanding the relationships among phytoplankton, benthic macroinvertebrates, and water quality variables in peri-urban river systems.

    PubMed

    Pinto, Uthpala; Maheshwari, Basant L; Morris, E Charles

    2014-12-01

    In this article, using the Hawkesbury-Nepean River as a case study, the spatial and temporal trends of water quality variables over three sampling surveys in a peri-urban situation are examined for their effect on benthic macroinvertebrate communities and phytoplankton communities and whether phytoplankton and benthic macroinvertebrate species can be used as indicators for river health assessment. For this, the authors monitored the spatial and temporal difference of 10 water quality parameters: temperature, turbidity, pH, dissolved oxygen, electrical conductivity, oxidation reduction potential, total nitrogen, total phosphorus, manganese, and suspended solids. The variability in water quality parameters clearly indicated a complex pattern, depending on the season (interaction p = 0.001), which highlighted how the river condition is stressed at multiple points as a result of anthropogenic effects. In particular, the downstream locations indicated an accumulation of nutrients, the presence of increased sediments, and phytoplankton related variables such as total counts, bio-volumes, chlorophyll-a, and total phosphorus. The patterns of phytoplankton communities varied in a complex way depending on the season (interaction p = 0.001). Abundances of phytoplankton were also found in low concentrations where the water column is not severely disturbed by flow and tide. However, when the water clarity drops resulting from tidal cycles, inflows from tributaries, and intense boating activities, the phytoplankton abundances also increased considerably. On the other hand, benthic macroinvertebrates compositions were significantly different between locations (p = 0.001) with increased abundances associated with upstream sites. Aphanocapsa holsatica and chironomid larvae appeared as the important indicators for upstream and downstream site differences in water quality. Water temperature influenced the phytoplankton community pattern (ρ(w) = 0.408), whereas pH influenced the

  13. Macroinvertebrate assemblage recovery following a catastrophic flood and debris flows in an Appalachian mountain stream

    USGS Publications Warehouse

    Snyder, C.D.; Johnson, Z.B.

    2006-01-01

    In June 1995, heavy rains caused severe flooding and massive debris flows on the Staunton River, a 3rd-order stream in the Blue Ridge Mountains (Virginia, USA). Scouring caused the loss of the riparian zone and repositioned the stream channel of the lower 2.1 km of the stream. Between 1998 and 2001, we conducted seasonal macroinvertebrate surveys at sites on the Staunton River and on White Oak Canyon Run, a reference stream of similar size and geology that was relatively unaffected by the flood. Our study was designed to determine the extent to which flood-induced changes to the stream channel and riparian habitats caused long-term changes to macroinvertebrate community structure and composition. Sites within the impacted zone of the Staunton River supported diverse stable benthic macroinvertebrate assemblages 3 y after the flood despite dramatic and persistent changes in environmental factors known to be important controls on stream ecosystem function. However, significant differences in total macroinvertebrate density and trophic structure could be attributed to the flood. In autumn, densities of most feeding guilds, including shredders, were higher at impacted-zone sites than at all other sites, suggesting higher overall productivity in the impacted zone. Higher shredder density in the impacted zone was surprising in light of expected decreases in leaf-litter inputs because of removal of riparian forests. In contrast, in spring, we observed density differences in only one feeding guild, scrapers, which showed higher densities at impacted-zone sites than at all other sites. This result conformed to a priori expectations that reduced shading in the impacted zone would lead to increased light and higher instream primary production. We attribute the seasonal differences in trophic structure to the effects of increased temperatures on food quality and to the relationship between the timing of our sampling and the emergence patterns of important taxa. ?? 2006 by The

  14. Variation in habitat soundscape characteristics influences settlement of a reef-building coral.

    PubMed

    Lillis, Ashlee; Bohnenstiehl, DelWayne; Peters, Jason W; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata , was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  15. Historical assessments and comparisons of benthic communities and physical habitat in two agricultural streams in California's San Joaquin watershed.

    PubMed

    Hall, Lenwood W; Killen, William D

    2006-01-01

    This study was designed to assess trends in physical habitat and benthic communities (macroinvertebrates) annually in two agricultural streams (Del Puerto Creek and Salt Slough) in California's San Joaquin Valley from 2001 to 2005, determine the relationship between benthic communities and both water quality and physical habitat from both streams over the 5-year period, and compare benthic communities and physical habitat in both streams from 2001 to 2005. Physical habitat, measured with 10 metrics and a total score, was reported to be fairly stable over 5 years in Del Puerto Creek but somewhat variable in Salt Slough. Benthic communities, measured with 18 metrics, were reported to be marginally variable over time in Del Puerto Creek but fairly stable in Salt Slough. Rank correlation analysis for both water bodies combined showed that channel alteration, embeddedness, riparian buffer, and velocity/depth/diversity were the most important physical habitat metrics influencing the various benthic metrics. Correlations of water quality parameters and benthic community metrics for both water bodies combined showed that turbidity, dissolved oxygen, and conductivity were the most important water quality parameters influencing the different benthic metrics. A comparison of physical habitat metrics (including total score) for both water bodies over the 5-year period showed that habitat metrics were more positive in Del Puerto Creek when compared to Salt Slough. A comparison of benthic metrics in both water bodies showed that approximately one-third of the metrics were significantly different between the two water bodies. Generally, the more positive benthic metric scores were reported in Del Puerto Creek, which suggests that the communities in this creek are more robust than Salt Slough.

  16. Development of a local-scale urban stream assessment method using benthic macroinvertebrates: An example from the Santa Clara Basin, California

    USGS Publications Warehouse

    Carter, J.L.; Purcell, A.H.; Fend, S.V.; Resh, V.H.

    2009-01-01

    Research that explores the biological response to urbanization on a site-specific scale is necessary for management of urban basins. Recent studies have proposed a method to characterize the biological response of benthic macroinvertebrates along an urban gradient for several climatic regions in the USA. Our study demonstrates how this general framework can be refined and applied on a smaller scale to an urbanized basin, the Santa Clara Basin (surrounding San Jose, California, USA). Eighty-four sampling sites on 14 streams in the Santa Clara Basin were used for assessing local stream conditions. First, an urban index composed of human population density, road density, and urban land cover was used to determine the extent of urbanization upstream from each sampling site. Second, a multimetric biological index was developed to characterize the response of macroinvertebrate assemblages along the urban gradient. The resulting biological index included metrics from 3 ecological categories: taxonomic composition ( Ephemeroptera, Plecoptera, and Trichoptera), functional feeding group (shredder richness), and habit ( clingers). The 90th-quantile regression line was used to define the best available biological conditions along the urban gradient, which we define as the predicted biological potential. This descriptor was then used to determine the relative condition of sites throughout the basin. Hierarchical partitioning of variance revealed that several site-specific variables (dissolved O2 and temperature) were significantly related to a site's deviation from its predicted biological potential. Spatial analysis of each site's deviation from its biological potential indicated geographic heterogeneity in the distribution of impaired sites. The presence and operation of local dams optimize water use, but modify natural flow regimes, which in turn influence stream habitat, dissolved O2, and temperature. Current dissolved O2 and temperature regimes deviate from natural

  17. A METHODS COMPARISON FOR COLLECTING MACROINVERTEBRATES IN THE OHIO RIVER

    EPA Science Inventory

    Collection of representative benthic macroinvertebrate samples from large rivers has been challenging researchers for many years. The objective of our study was to develop an appropriate method(s) for sampling macroinvertebrates from the Ohio River. Four existing sampling metho...

  18. The value of enduring environmental surrogates as predictors of estuarine benthic macroinvertebrate assemblages

    NASA Astrophysics Data System (ADS)

    Wildsmith, Michelle D.; Valesini, Fiona J.; Robinson, Samuel F.

    2017-10-01

    This study tested the extent to which spatial differences in the benthic macroinvertebrate assemblages of a temperate microtidal estuary were 'explained' by the enduring (biophysical) vs non-enduring (water and sediment quality) environmental attributes of a diverse range of habitats, and thus the potential of those environmental surrogates to support faunal prediction. Species composition differed significantly among habitats in each season, with the greatest differences occurring in winter and spring and the least in summer. The pattern of habitat differences, as defined by their enduring environmental characteristics, was significantly and well matched with that in the fauna in each season. In contrast, significant matches between the non-enduring environmental and faunal data were only detected in winter and/or spring, and to a lesser extent. Field validation of the faunal prediction capacity of the biophysical surrogate framework at various 'test' sites throughout the estuary showed good agreement between the actual vs predicted key species. These findings demonstrate that enduring environmental criteria, which can be readily measured from mapped data, provide a better and more cost-effective surrogate for explaining spatial differences in the invertebrate fauna of this system than non-enduring criteria, and are thus a promising basis for faunal prediction. The approaches developed in this study are also readily adapted to any estuary worldwide.

  19. The role of macroinvertebrates for conservation of freshwater systems.

    PubMed

    Nieto, Carolina; Ovando, Ximena M C; Loyola, Rafael; Izquierdo, Andrea; Romero, Fátima; Molineri, Carlos; Rodríguez, José; Rueda Martín, Paola; Fernández, Hugo; Manzo, Verónica; Miranda, María José

    2017-07-01

    Freshwater ecosystems are the most threatened ecosystems worldwide. Argentinian-protected areas have been established mainly to protect vertebrates and plants in terrestrial ecosystems. In order to create a comprehensive biodiverse conservation plan, it is crucial to integrate both aquatic and terrestrial systems and to include macroinvertebrates. Here, we address this topic by proposing priority areas of conservation including invertebrates, aquatic ecosystems, and their connectivity and land uses. Northwest of Argentina. We modeled the ecological niches of different taxa of macroinvertebrates such as Coleoptera, Ephemeroptera, Hemiptera, Megaloptera, Lepidoptera, Odonata, Plecoptera, Trichoptera, Acari, and Mollusca. Based on these models, we analyzed the contribution of currently established protected areas in the conservation of the aquatic biodiversity and we propose a spatial prioritization taking into account possible conflict regarding different land uses. Our analysis units were the real watersheds, to which were added longitudinal connectivity up and down the rivers. A total of 132 species were modeled in the priority area analyses. The analysis 1 showed that only an insignificant percentage of the macroinvertebrates distribution is within the protected areas in the North West of Argentina. The analyses 2 and 3 recovered similar values of protection for the macroinvertebrate species. The upper part of Bermejo, Salí-Dulce, San Francisco, and the Upper part of Juramento basins were identified as priority areas of conservation. The aquatic ecosystems need special protection and 10% or even as much as 17% of land conservation is insufficient for species of macroinvertebrates. In turn the protected areas need to combine the aquatic and terrestrial systems and need to include macroinvertebrates as a key group to sustain the biodiversity. In many cases, the land uses are in conflict with the conservation of biodiversity; however, it is possible to apply the

  20. Variation in habitat soundscape characteristics influences settlement of a reef-building coral

    PubMed Central

    Bohnenstiehl, DelWayne; Peters, Jason W.; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata, was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species. PMID:27761342

  1. Fishing in the Water: Effect of Sampled Water Volume on Environmental DNA-Based Detection of Macroinvertebrates.

    PubMed

    Mächler, Elvira; Deiner, Kristy; Spahn, Fabienne; Altermatt, Florian

    2016-01-05

    Accurate detection of organisms is crucial for the effective management of threatened and invasive species because false detections directly affect the implementation of management actions. The use of environmental DNA (eDNA) as a species detection tool is in a rapid development stage; however, concerns about accurate detections using eDNA have been raised. We evaluated the effect of sampled water volume (0.25 to 2 L) on the detection rate for three macroinvertebrate species. Additionally, we tested (depending on the sampled water volume) what amount of total extracted DNA should be screened to reduce uncertainty in detections. We found that all three species were detected in all volumes of water. Surprisingly, however, only one species had a positive relationship between an increased sample volume and an increase in the detection rate. We conclude that the optimal sample volume might depend on the species-habitat combination and should be tested for the system where management actions are warranted. Nevertheless, we minimally recommend sampling water volumes of 1 L and screening at least 14 μL of extracted eDNA for each sample to reduce uncertainty in detections when studying macroinvertebrates in rivers and using our molecular workflow.

  2. Stream macroinvertebrate communities across a gradient of natural gas development in the Fayetteville Shale.

    PubMed

    Johnson, Erica; Austin, Bradley J; Inlander, Ethan; Gallipeau, Cory; Evans-White, Michelle A; Entrekin, Sally

    2015-10-15

    Oil and gas extraction in shale plays expanded rapidly in the U.S. and is projected to expand globally in the coming decades. Arkansas has doubled the number of gas wells in the state since 2005 mostly by extracting gas from the Fayetteville Shale with activity concentrated in mixed pasture-deciduous forests. Concentrated well pads in close proximity to streams could have adverse effects on stream water quality and biota if sedimentation associated with developing infrastructure or contamination from fracturing fluid and waste occurs. Cumulative effects of gas activity and local habitat conditions on macroinvertebrate communities were investigated across a gradient of gas well activity (0.2-3.6 wells per km(2)) in ten stream catchments in spring 2010 and 2011. In 2010, macroinvertebrate density was positively related to well pad inverse flowpath distance from streams (r=0.84, p<0.001). Relatively tolerant mayflies Baetis and Caenis (r=0.64, p=0.04), filtering hydropsychid caddisflies (r=0.73, p=0.01), and chironomid midge densities (r=0.79, p=0.008) also increased in streams where more well pads were closer to stream channels. Macroinvertebrate trophic structure reflected environmental conditions with greater sediment and primary production in streams with more gas activity close to streams. However, stream water turbidity (r=0.69, p=0.02) and chlorophyll a (r=0.89, p<0.001) were the only in-stream variables correlated with gas well activities. In 2011, a year with record spring flooding, a different pattern emerged where mayfly density (p=0.74, p=0.01) and mayfly, stonefly, and caddisfly richness (r=0.78, p=0.008) increased in streams with greater well density and less silt cover. Hydrology and well pad placement in a catchment may interact to result in different relationships between biota and catchment activity between the two sample years. Our data show evidence of different macroinvertebrate communities expressed in catchments with different levels of gas

  3. Re-meandering of lowland streams: will disobeying the laws of geomorphology have ecological consequences?

    PubMed

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of

  4. Re-Meandering of Lowland Streams: Will Disobeying the Laws of Geomorphology Have Ecological Consequences?

    PubMed Central

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of

  5. A macroinvertebrate assessment of Ozark streams located in lead-zinc mining areas of the Viburnum Trend in southeastern Missouri, USA

    USGS Publications Warehouse

    Poulton, Barry C.; Allert, Ann L.; Besser, John M.; Schmitt, Christopher J.; Brumbaugh, William G.; Fairchild, James F.

    2010-01-01

    The Viburnum Trend lead-zinc mining subdistrict is located in the southeast Missouri portion of the Ozark Plateau. In 2003 and 2004, we assessed the ecological effects of mining in several watersheds in the region. We included macroinvertebrate surveys, habitat assessments, and analysis of metals in sediment, pore water, and aquatic biota. Macroinvertebrates were sampled at 21 sites to determine aquatic life impairment status (full, partial, or nonsupport) and relative biotic condition scores. Macroinvertebrate biotic condition scores were significantly correlated with cadmium, nickel, lead, zinc, and specific conductance in 2003 (r = -0.61 to -0.68) and with cadmium, lead, and pore water toxic units in 2004 (r = -0.55 to -0.57). Reference sites were fully supporting of aquatic life and had the lowest metals concentrations and among the highest biotic condition scores in both years. Sites directly downstream from mining and related activities were partially supporting, with biotic condition scores 10% to 58% lower than reference sites. Sites located greater distances downstream from mining activities had intermediate scores and concentrations of metals. Results indicate that elevated concentrations of metals originating from mining activities were the underlying cause of aquatic life impairment in several of the streams studied. There was general concurrence among the adversely affected sites in how the various indicators responded to mining activities during the overall study.

  6. Weak Concordance between Fish and Macroinvertebrates in Mediterranean Streams

    PubMed Central

    Larsen, Stefano; Mancini, Laura; Pace, Giorgio; Scalici, Massimiliano; Tancioni, Lorenzo

    2012-01-01

    Although anthropogenic degradation of riverine systems stimulated a multi-taxon bioassessment of their ecological integrity in EU countries, specific responses of different taxonomic groups to human pressure are poorly investigated in Mediterranean rivers. Here, we assess if richness and composition of macroinvertebrate and fish assemblages show concordant variation along a gradient of anthropogenic pressure in 31 reaches across 13 wadeable streams in central Italy. Fish and invertebrate taxonomic richness was not correlated across sites. However, Mantel test showed that the two groups were significantly, albeit weakly, correlated even after statistically controlling for the effect of environmental variables and site proximity. Variance partitioning with partial Canonical Correspondence Analysis showed that the assemblages of the two groups were influenced by different set of environmental drivers: invertebrates were influenced by water organic content, channel and substratum features, while fish were related to stream temperature (mirroring elevation) and local land-use. Variance partitioning revealed the importance of biotic interactions between the two groups as a possible mechanisms determining concordance. Although significant, the congruence between the groups was weak, indicating that they should not be used as surrogate of each other for environmental assessments in these Mediterranean catchments. Indeed, both richness and patterns in nestedness (i.e. where depauperate locations host only a subset of taxa found in richer locations) appeared influenced by different environmental drivers suggesting that the observed concordance did not result from a co-loss of taxa along similar environmental gradients. As fish and macroinvertebrates appeared sensitive to different environmental factors, we argue that monitoring programmes should consider a multi-assemblage assessment, as also required by the Water Framework Directive. PMID:23251432

  7. First steps in developing a multimetric macroinvertebrate index for the Ohio River

    USGS Publications Warehouse

    Applegate, J.M.; Baumann, P.C.; Emery, E.B.; Wooten, M.S.

    2007-01-01

    The causes of degradation of aquatic systems are often complex and stem from a variety of human influences. Comprehensive, multimetric biological indices have been developed to quantify this degradation and its effect on aquatic communities, and measure subsequent recovery from anthropogenic stressors. Traditionally, such indices have concentrated on small-to medium-sized streams. Recently, however, the Ohio River Fish Index (ORFIn) was created to assess biotic integrity in the Ohio River. The goal of the present project was to begin developing a companion Ohio River multimetric index using benthic macroinvertebrates. Hester-Dendy multiplate samplers were used to evaluate benthic macroinvertebrate assemblages in relation to a gradient of water quality disturbance, represented by varying distances downstream of industrial and municipal wastewater outfalls in the Ohio River. In August 1999 and 2000, samplers were set every 100 m downstream of outfalls (12 outfalls in 1999, 22 in 2000) for 300-1000 m, as well as at upstream reference sites. Candidate metrics (n = 55) were examined to determine which have potential to detect changes in water quality downstream of outfalls. These individual measures of community structure were plotted against distance downstream of each outfall to determine their response to water quality disturbance. Values at reference and outfall sites were also compared. Metrics that are ecologically relevant and showed a response to outfall disturbance were identified as potentially valuable in a multimetric index. Multiple box plots of index scores indicated greater response to outfall disturbance during periods of low-flow, and longitudinal river-wide trends. Evaluation of other types of anthropogenic disturbance, as well as continued analysis of the effects of chemical water quality on macroinvertebrate communities in future years will facilitate further development of a multimetric benthic macroinvertebrate index to evaluate biotic integrity in

  8. Available benthic habitat type may influence predation risk in larval lampreys

    USGS Publications Warehouse

    Smith, Dustin M.; Welsh, Stuart A.; Turk, Philip J.

    2012-01-01

    Population declines of lamprey species have largely been attributed to habitat degradation, yet there still remain many unanswered questions about the relationships between lampreys and their habitats (Torgensen & Close 2004; Smith et al. 2011). One scarcely researched area of lamprey ecology is the effect of predation on lampreys (Cochran 2009). Specifically, the influence of available habitat on predation risk has not been documented for larval lampreys but may be important to the management and conservation of lamprey populations.

  9. Predator identity influences the effect of habitat management on nest predation.

    PubMed

    Lyons, Timothy P; Miller, James R; Debinski, Diane M; Engle, David M

    2015-09-01

    Predation is the leading cause of nest failure for many passerines and considerable effort is devoted to identifying the habitat characteristics and management practices that influence nest loss. The habitat components associated with nest loss are strongly influenced by the ecology of nest predators and differ among predator species as a result. Nevertheless, there is a tendency to generalize about the effects of habitat features and management on nest failure without considering how resulting patterns are influenced by nest predators. We examined how predator-specific patterns of nest loss differed among predators and in response to grassland management with fire and grazing by cattle (Bos taurus). We used video cameras to monitor and identify predators at nests of the Grasshopper Sparrow (Ammodramus savannarum), a species of conservation concern throughout its range. We observed predation by 15 different species that differed in their response to management and the habitat characteristics associated with nests they preyed on. Losses to mammals and snakes were more likely at nests with greater amounts of litter cover and tall fescue (Schedonorus phoenix). Mammals were less likely to prey on nests surrounded by greater forb cover. Nest predation by snakes was lower in burned areas, whereas predation by mammals and Brown-headed Cowbirds (Molothrus ater) was unaffected by the use of fire. Neither vegetation density at the nest, nor landscape context was related to nest loss by any predator taxon. Although there were many similarities, we identified important differences in the species composing the nest predator community between our. study and other published research. These differences are likely to be responsible for geographic variation in the influence of habitat features and management actions on nest success. Our results demonstrate the need for natural resource managers to incorporate knowledge of local nest predators and their ecology when developing

  10. Habitat heterogeneity influences restoration efficacy: Implications of a habitat-specific management regime for an invaded marsh

    NASA Astrophysics Data System (ADS)

    Tang, Long; Gao, Yang; Wang, Cheng-Huan; Li, Bo; Chen, Jia-Kuan; Zhao, Bin

    2013-07-01

    Invasive species have to be managed to prevent adverse consequences. Spartina alterniflora has invaded many marshes where salinity and inundation are often key factors affecting vegetation. The former was surface clipped twice and native Phragmites australis was planted in invaded zones to examine the effects of habitat properties on the efficacy of invader control and native restoration. The results showed that two clipping treatments almost eliminated S. alterniflora in the zones with long inundation periods of 80 h/15 d but stimulated compensatory growth of S. alterniflora in the zones with short inundation periods. Transplanted P. australis performed better over time in zones with low salinity (<10.5 psu) but performed poorly in high-salinity zones, indicating that the efficacy of invader management and native restoration activities changes significantly along habitat gradients. With a progression from the dyke to the seaward side of the studied marsh, there was a long then short then long inundation period whereas salinity increased consistently. The study indicates that the high-frequency removal of the above-ground parts of S. alterniflora should be used only in the middle tidal zones and that native vegetation should be planted in zones above the mean high water level while the others zones in the saltmarsh should be restored to mud flats. Usually, invasive plants can flourish in highly heterogeneous habitats, which can influence management efficacy by influencing the re-growth of treated invaders and the performance of restored native species. Therefore, habitat-specific management regimes for invasive species can be expected to be more efficient because of their dependence on specific habitats.

  11. Climate-change influences on the response of macroinvertebrate communities to pesticide contamination in the Sacramento River, California watershed.

    PubMed

    Chiu, Ming-Chih; Hunt, Lisa; Resh, Vincent H

    2017-03-01

    Limited studies have addressed how future climate-change scenarios may alter the effects of pesticides on biotic assemblages or the effects of exposures to repeated pulses of pesticide mixtures. We used reported pesticide-use data as input to a hydrological fate and transport model (Soil and Water Assessment Tool) under multiple climate-change scenarios to simulate spatiotemporal dynamics of pesticides mixtures in streams on a daily time-step in the Sacramento River watershed of California. We predicted that there will be increased pesticide application with warming across the watershed, especially in upstream areas. Using a statistical model describing the relationship between macroinvertebrate communities and pesticide dynamics, we found that compared to the baseline period of 1970-1999: (1) most climate-change scenarios predicted increased rainfall and warming across the watershed during 2070-2099; and (2) increasing pesticide contamination and increased impact on macroinvertebrates will likely occur in most areas of the watershed by 2070-2099; and (3) lower increases in effects of pesticides on macroinvertebrates were predicted for the downstream areas with intensive agriculture compared to some upstream areas with less-intensive agriculture. Future efforts on practical adaptation and mitigation strategies can be improved by awareness of altered threats of pesticide mixtures under future climate-change conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The influence of partial timber harvest in riparian management zones on macroinvertebrate and fish communities on first- and second-order streams in northern Minnesota

    USGS Publications Warehouse

    Chizinski, Christopher J.; Vondracek, Bruce C.; Blinn, Charles R.; Newman, Raymond M.; Atuke, Dickson M.; Fredricks, Keith; Hemstad, Nathaniel A.; Merten, Eric; Schlesser, Nicholas

    2010-01-01

    Relatively few evaluations of aquatic macroinvertebrate and fish communities have been published in peer-reviewed literature detailing the effect of varying residual basal area (RBA) after timber harvesting in riparian buffers. Our analysis investigated the effects of partial harvesting within riparian buffers on aquatic macroinvertebrate and fish communities in small streams from two experiments in northern Minnesota northern hardwood-aspen forests. Each experiment evaluated partial harvesting within riparian buffers. In both experiments, benthic macroinvertebrates and fish were collected 1 year prior to harvest and in each of 3 years after harvest. We observed interannual variation for the macroinvertebrate abundance, diversity and taxon richness in the single-basin study and abundance and diversity in the multiple-basin study, but few effects related to harvest treatments in either study. However, interannual variation was not evident in the fish communities and we detected no significant changes in the stream fish communities associated with partially harvested riparian buffers in either study. This would suggest that timber harvesting in riparian management zones along reaches ≤200 m in length on both sides of the stream that retains RBA ≥ 12.4 ± 1.3 m2 ha−1 or on a single side of the stream that retains RBA ≥ 8.7 ± 1.6 m2 ha−1 may be adequate to protect macroinvertebrate and fish communities in our Minnesota study systems given these specific timber harvesting techniques.

  13. A Stream Multimetric Macroinvertebrate Index (MMI) for the Sand Hills Ecoregion of the Southeastern Plains, USA

    NASA Astrophysics Data System (ADS)

    Kosnicki, Ely; Sefick, Stephen A.; Paller, Michael H.; Jerrell, Miller S.; Prusha, Blair A.; Sterrett, Sean C.; Tuberville, Tracey D.; Feminella, Jack W.

    2016-10-01

    A macroinvertebrate multimetric index is an effective tool for assessing the biological integrity of streams. However, data collected under a single protocol may not be available for an entire region. We sampled macroinvertebrates from the full extent of the Sand Hills ecoregion Level IV of the Southeastern Plains with a standard protocol during the summers of 2010-2012. We evaluated the performance of 94 metrics through a series of screening criteria and built 48 macroinvertebrate multimetric indexs with combinations of the best performing metrics, representing richness, habit, functional feeding guild, sensitivity, and community composition. A series of narrative-response tests for each macroinvertebrate multimetric index was used to find the best performing macroinvertebrate multimetric index which we called the Sand Hills macroinvertebrate multimetric index. The Sand Hills macroinvertebrate multimetric index consisted of the measures Biotic Index, % Shredder taxa, Clinger taxa2/total taxa, Plecoptera and Trichoptera richness, and Tanytarsini taxa2/Chironomidae taxa. Comparison of the Sand Hills macroinvertebrate multimetric index with existing assessment tools calculated with our data indicated that the Sand Hills macroinvertebrate multimetric index performs at a high level with regard to identifying degraded sites and in its response to stress gradients.

  14. Influence of habitat and intrinsic characteristics on survival of neonatal pronghorn

    USGS Publications Warehouse

    Jacques, Christopher N.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.

    2015-01-01

    Increased understanding of the influence of habitat (e.g., composition, patch size) and intrinsic (e.g., age, birth mass) factors on survival of neonatal pronghorn (Antilocapra americana) is a prerequisite to successful management programs, particularly as they relate to population dynamics and the role of population models in adaptive species management. Nevertheless, few studies have presented empirical data quantifying the influence of habitat variables on survival of neonatal pronghorn. During 2002–2005, we captured and radiocollared 116 neonates across two sites in western South Dakota. We documented 31 deaths during our study, of which coyote (Canis latrans) predation (n = 15) was the leading cause of mortality. We used known fate analysis in Program MARK to investigate the influence of intrinsic and habitat variables on neonatal survival. We generated a priori models that we grouped into habitat and intrinsic effects. The highest-ranking model indicated that neonate mortality was best explained by site, percent grassland, and open water habitat; 90-day survival (0.80; 90% CI = 0.71–0.88) declined 23% when grassland and water increased from 80.1 to 92.3% and 0.36 to 0.40%, respectively, across 50% natal home ranges. Further, our results indicated that grassland patch size and shrub density were important predictors of neonate survival; neonate survival declined 17% when shrub density declined from 5.0 to 2.5 patches per 100 ha. Excluding the site covariates, intrinsic factors (i.e., sex, age, birth mass, year, parturition date) were not important predictors of survival of neonatal pronghorns. Further, neonatal survival may depend on available land cover and interspersion of habitats. We have demonstrated that maintaining minimum and maximum thresholds for habitat factors (e.g., percentages of grassland and open water patches, density of shrub patches) throughout natal home ranges will in turn, ensure relatively high (>0.50) neonatal survival rates

  15. Evaluation of an alternate method for sampling benthic macroinvertebrates in low-gradient streams sampled as part of the National Rivers and Streams Assessment.

    PubMed

    Flotemersch, Joseph E; North, Sheila; Blocksom, Karen A

    2014-02-01

    Benthic macroinvertebrates are sampled in streams and rivers as one of the assessment elements of the US Environmental Protection Agency's National Rivers and Streams Assessment. In a 2006 report, the recommendation was made that different yet comparable methods be evaluated for different types of streams (e.g., low gradient vs. high gradient). Consequently, a research element was added to the 2008-2009 National Rivers and Streams Assessment to conduct a side-by-side comparison of the standard macroinvertebrate sampling method with an alternate method specifically designed for low-gradient wadeable streams and rivers that focused more on stream edge habitat. Samples were collected using each method at 525 sites in five of nine aggregate ecoregions located in the conterminous USA. Methods were compared using the benthic macroinvertebrate multimetric index developed for the 2006 Wadeable Streams Assessment. Statistical analysis did not reveal any trends that would suggest the overall assessment of low-gradient streams on a regional or national scale would change if the alternate method was used rather than the standard sampling method, regardless of the gradient cutoff used to define low-gradient streams. Based on these results, the National Rivers and Streams Survey should continue to use the standard field method for sampling all streams.

  16. [Studies on Latin American freshwater macroinvertebrates: recent advances and future directions].

    PubMed

    Ramírez, Alonso; Gutiérrez-Fonseca, Pablo E

    2014-04-01

    Latin America is an active scientific research area, in particular with respect to the study of freshwater macroinvertebrates. The present serves as an introduction to a special issue that highlights recent research projects on macroinvertebrates in Latin America. As part of this introduction, we conducted a literature analysis of the last 14 years of publications from the region that highlights the steady increase in publications on macroinvertebrates. Most studies from 2000-2013 were conducted in Brazil, Colombia, Argentina, and Costa Rica, and were focused on taxonomy and different issues related to biodiversity and distribution. There was a tendency for the use of local low-impact journals, but high impact publications were also found. This special issue contributes with 18 studies conducted in eight different countries. Two major topics are covered in the special issue, the ecology and natural history of aquatic macroinvertebrates and their use in the evaluation of anthropogenic impacts to aquatic ecosystems. Based on the literature review and contributions included in the issue, we discuss research needs for the region. Identified needs include: (1) to continue emphasizing taxonomic research, (2) assess mechanisms responsible for changes in biodiversity, (3) assess the role of macroinvertebrates in ecosystem processes and function, (4) improve biomonitoring efforts beyond unimetric indices, (5) the need for an ecosystem perspective, and (6) establishing long-term studies. This special issue is an initial effort to advance our knowledge on freshwater macroinvertebrates in Latin America.

  17. Development of an Index of Ecological Condition Based on Macroinvertebrate Assemblages

    EPA Science Inventory

    We developed a set of great river macroinvertebrate indices of condition (GRMICs) for the mid-continent great rivers (Missouri, Upper Mississippi, and Ohio). We used a multiscale (site, reach, landscape) multimetric abiotic stressor gradient to select macroinvertebrate assemblage...

  18. Influence of food availability on the spatial distribution of juvenile fish within soft sediment nursery habitats

    NASA Astrophysics Data System (ADS)

    Tableau, A.; Brind'Amour, A.; Woillez, M.; Le Bris, H.

    2016-05-01

    Soft sediments in coastal shallow waters constitute nursery habitats for juveniles of several flatfishes. The quality of a nursery is defined by its capacity to optimize the growth and the survival of juvenile fish. The influence of biotic factors, such as food availability, is poorly studied at the scale of a nursery ground. Whether food availability limits juvenile survival is still uncertain. A spatial approach is used to understand the influence of food availability on the distribution of juvenile fish of various benthic and demersal species in the Bay of Vilaine (France), a productive nursery ground. We quantified the spatial overlap between benthic macro-invertebrates and their predators (juvenile fish) to assess if the latter were spatially covering the most productive areas of the Bay. Three scenarios describing the shapes of the predator-prey spatial relationship were tested to quantify the strength of the relationship and consequently the importance of food availability in determining fish distribution. Our results underline that both food availability and fish densities vary greatly over the nursery ground. When considering small organisational levels (e.g., a single fish species), the predator-prey spatial relationship was not clear, likely because of additional environmental effects not identified here; but at larger organisational level (the whole juvenile fish community), a strong overlap between the fish predators and their prey was identified. The evidence that fish concentrate in sectors with high food availability suggests that either food is the limiting factor in that nursery or/and fish display behavioural responses by optimising their energetic expenditures associated with foraging. Further investigations are needed to test the two hypotheses and to assess the impact of benthic and demersal juvenile fish in the food web of coastal nurseries.

  19. ASSESSING THE IMPACT OF ENVIRONMENTAL STRESSORS ON MACROINVERTEBRATE INDICATORS IN OHIO

    EPA Science Inventory

    Macroinvertebrate indicators are used as assessment endpoints for surface water quality monitoring in Ohio. The purpose of this study is to explain and predict the impact of environmental stressors on macroinvertebrate communities as measured by the Ohio Environmental Protection...

  20. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin.

    PubMed

    Gao, Xin; Niu, Cuijuan; Chen, Yushun; Yin, Xuwang

    2014-04-01

    Understanding the effects of watershed land uses (e.g., agriculture, urban industry) on stream ecological conditions is important for the management of large river basins. A total of 41 and 56 stream sites (from first to fourth order) that were under a gradient of watershed land uses were monitored in 2009 and 2010, respectively, in the Liao River Basin, Northeast China. The monitoring results showed that a total of 192 taxa belonging to four phyla, seven classes, 21 orders and 91 families were identified. The composition of macroinvertebrate community in the Liao River Basin was dominated by aquatic insect taxa (Ephemeroptera and Diptera), Oligochaeta and Molluscs. The functional feeding group GC (Gatherer/Collector) was dominant in the whole basin. Statistical results showed that sites with less watershed impacts (lower order sites) were characterized by higher current velocity and habitat score, more sensitive taxa (e.g., Ephemeroptera), and the substrate was dominated by high percentage of cobble and pebble. The sites with more impacts from agriculture and urban industry (higher order sites) were characterized by higher biochemical (BOD5) and chemical oxygen demand (COD), more tolerant taxa (e.g., Chironominae), and the substrate was dominated by silt and sand. Agriculture and urban-industry activities have reduced habitat condition, increased organic pollutants, reduced macroinvertebrate abundance, diversity, and sensitive taxa in streams of the lower Liao River Basin. Restoration of degraded habitat condition and control of watershed organic pollutants could be potential management priorities for the Basin.

  1. Assessing marine debris in deep seafloor habitats off California.

    PubMed

    Watters, Diana L; Yoklavich, Mary M; Love, Milton S; Schroeder, Donna M

    2010-01-01

    Marine debris is a global concern that pollutes the world's oceans, including deep benthic habitats where little is known about the extent of the problem. We provide the first quantitative assessment of debris on the seafloor (20-365 m depth) in submarine canyons and the continental shelf off California, using the Delta submersible. Fishing activities were the most common contributors of debris. Highest densities occurred close to ports off central California and increased significantly over the 15-year study period. Recreational monofilament fishing line dominated this debris. Debris was less dense and more diverse off southern than central California. Plastic was the most abundant material and will likely persist for centuries. Disturbance to habitat and organisms was low, and debris was used as habitat by some fishes and macroinvertebrates. Future trends in human activities on land and at sea will determine the type and magnitude of debris that accumulates in deep water. Published by Elsevier Ltd.

  2. DEVELOPMENT OF BENTHIC MACROINVERTEBRATE INDEX FOR MEASURING THE CONDITION OF STREAMS AT A REGIONAL SCALE

    EPA Science Inventory

    A multimetric macroinvertebrate index of stream condition was developed for the Mid-Atlantic Highlands Region of the United States. Benthic macroinvertebrate samples were collected from 562 first through third order streams between 1993 and 1995. Macroinvertebrates were collect...

  3. Seasonal comparison of aquatic macroinvertebrate assemblages in a flooded coastal freshwater marsh

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Marsh flooding and drying may be important factors affecting aquatic macroinvertebrate density and distribution in coastal freshwater marshes. Limited availability of water as a result of drying in emergent marsh may decrease density, taxonomic diversity, and taxa richness. The principal objectives of this study are to characterize the seasonal aquatic macroinvertebrate assemblage in a freshwater emergent marsh and compare aquatic macroinvertebrate species composition, density, and taxonomic diversity to that of freshwater marsh ponds. We hypothesize that 1) freshwater emergent marsh has lower seasonal density and taxonomic diversity compared to that of freshwater marsh ponds; and 2) freshwater emergent marsh has lower taxa richness than freshwater marsh ponds. Seasonal aquatic macroinvertebrate density in freshwater emergent marsh ranged from 0 organisms/m2 (summer 2009) to 91.1 ± 20.53 organisms/m2 (mean ± SE; spring 2009). Density in spring was higher than in all other seasons. Taxonomic diversity did not differ and there were no unique species in the freshwater emergent marsh. Our data only partially support our first hypothesis as aquatic macroinvertebrate density and taxonomic diversity between freshwater emergent marsh and ponds did not differ in spring, fall, and winter but ponds supported higher macroinvertebrate densities than freshwater emergent marsh during summer. However, our data did not support our second hypothesis as taxa richness between freshwater emergent marsh and ponds did not statistically differ.

  4. Disentangling the effects of low pH and metal mixture toxicity on macroinvertebrate diversity

    USGS Publications Warehouse

    Fornaroli, Riccardo; Ippolito, Alessio; Tolkkinen, Mari J.; Mykrä, Heikki; Muotka, Timo; Balistrieri, Laurie S.; Schmidt, Travis S.

    2018-01-01

    One of the primary goals of biological assessment of streams is to identify which of a suite of chemical stressors is limiting their ecological potential. Elevated metal concentrations in streams are often associated with low pH, yet the effects of these two potentially limiting factors of freshwater biodiversity are rarely considered to interact beyond the effects of pH on metal speciation. Using a dataset from two continents, a biogeochemical model of the toxicity of metal mixtures (Al, Cd, Cu, Pb, Zn) and quantile regression, we addressed the relative importance of both pH and metals as limiting factors for macroinvertebrate communities. Current environmental quality standards for metals proved to be protective of stream macroinvertebrate communities and were used as a starting point to assess metal mixture toxicity. A model of metal mixture toxicity accounting for metal interactions was a better predictor of macroinvertebrate responses than a model considering individual metal toxicity. We showed that the direct limiting effect of pH on richness was of the same magnitude as that of chronic metal toxicity, independent of its influence on the availability and toxicity of metals. By accounting for the direct effect of pH on macroinvertebrate communities, we were able to determine that acidic streams supported less diverse communities than neutral streams even when metals were below no-effect thresholds. Through a multivariate quantile model, we untangled the limiting effect of both pH and metals and predicted the maximum diversity that could be expected at other sites as a function of these variables. This model can be used to identify which of the two stressors is more limiting to the ecological potential of running waters.

  5. Geologic influences on Apache trout habitat in the White Mountains of Arizona

    Treesearch

    Jonathan W. Long; Alvin L. Medina

    2006-01-01

    Geologic variation has important influences on habitat quality for species of concern, but it can be difficult to evaluate due to subtle variations, complex terminology, and inadequate maps. To better understand habitat of the Apache trout (Onchorhynchus apache or O. gilae apache Miller), a threatened endemic species of the White...

  6. Colonization and development of stream communities across a 200-year gradient in Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Milner, Alexander M.; Knudsen, E. Eric; Soiseth, Chad; Robertson, Anne L.; Schell, Don; Phillips, Ian T.; Magnusson, Katrina

    2000-01-01

    In May 1997, physical and biological variables were studied in 16 streams of different ages and contrasting stages of development following glacial recession in Glacier Bay National Park, southeast Alaska. The number of microcrustacean and macroinvertebrate taxa and juvenile fish abundance and diversity were significantly greater in older streams. Microcrustacean diversity was related to the amount of instream wood and percent pool habitat, while the number of macroinvertebrate taxa was related to bed stability, amount of instream wood, and percent pool habitat. The percent contribution of Ephemeroptera to stream benthic communities increased significantly with stream age and the amount of coarse benthic organic matter. Juvenile Dolly Varden (Salvelinus malma) were dominant in the younger streams, but juvenile coho salmon (Oncorhynchus kisutch) abundance was greater in older streams associated with increased pool habitat. Upstream lakes significantly influenced channel stability, percent Chironomidae, total macroinvertebrate and meiofaunal abundance, and percent fish cover. Stable isotope analyses indicated nitrogen enrichment from marine sources in macroinvertebrates and juvenile fish in older streams with established salmon runs. The findings are encapsulated in a conceptual summary of stream development that proposes stream assemblages to be determined by direct interactions with the terrestrial, marine, and lake ecosystems.

  7. Appendix C: GLEES Macroinvertebrates

    Treesearch

    B. C. Kondratieff

    1994-01-01

    This Appendix identifies macroinvertebrate species found in streams and lakes at GLEES during a preliminary qualitative survey conducted in the summer of 1988 by Dr. Boris Kondratieff. The littoral zones of each lake and each stream were sampled by hand-picking and with a triangle net. Insect voucher specimens are maintained in the Gillette Entomological Museum at...

  8. A Terrestrial Vacuum Sampler for Macroinvertebrates

    Treesearch

    Craig A. Harper; David C. Gurnn

    1998-01-01

    Macroinvertebrates (hereafter invertebrates) are a vital component in the diets of upland game birds (Kimmel and Samuel 1984, Healy 1985, Landers and Mueller 1986), providing a rich source of protein and calcium.

  9. Optimal flow for brown trout: Habitat - prey optimization.

    PubMed

    Fornaroli, Riccardo; Cabrini, Riccardo; Sartori, Laura; Marazzi, Francesca; Canobbio, Sergio; Mezzanotte, Valeria

    2016-10-01

    The correct definition of ecosystem needs is essential in order to guide policy and management strategies to optimize the increasing use of freshwater by human activities. Commonly, the assessment of the optimal or minimum flow rates needed to preserve ecosystem functionality has been done by habitat-based models that define a relationship between in-stream flow and habitat availability for various species of fish. We propose a new approach for the identification of optimal flows using the limiting factor approach and the evaluation of basic ecological relationships, considering the appropriate spatial scale for different organisms. We developed density-environment relationships for three different life stages of brown trout that show the limiting effects of hydromorphological variables at habitat scale. In our analyses, we found that the factors limiting the densities of trout were water velocity, substrate characteristics and refugia availability. For all the life stages, the selected models considered simultaneously two variables and implied that higher velocities provided a less suitable habitat, regardless of other physical characteristics and with different patterns. We used these relationships within habitat based models in order to select a range of flows that preserve most of the physical habitat for all the life stages. We also estimated the effect of varying discharge flows on macroinvertebrate biomass and used the obtained results to identify an optimal flow maximizing habitat and prey availability. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Using aquatic macroinvertebrate species traits to build test batteries for sediment toxicity assessment: accounting for the diversity of potential biological responses to toxicants.

    PubMed

    Ducrot, Virginie; Usseglio-Polatera, Philippe; Péry, T Alexandre R R; Mouthon, Jacques; Lafont, Michel; Roger, Marie-Claude; Garric, Jeanne; Férard, Jean-François

    2005-09-01

    An original species-selection method for the building of test batteries is presented. This method is based on the statistical analysis of the biological and ecological trait patterns of species. It has been applied to build a macroinvertebrate test battery for the assessment of sediment toxicity, which efficiently describes the diversity of benthic macroinvertebrate biological responses to toxicants in a large European lowland river. First, 109 potential representatives of benthic communities of European lowland rivers were selected from a list of 479 taxa, considering 11 biological traits accounting for the main routes of exposure to a sediment-bound toxicant and eight ecological traits providing an adequate description of habitat characteristics used by the taxa. Second, their biological and ecological trait patterns were compared using coinertia analysis. This comparison allowed the clustering of taxa into groups of organisms that exhibited similar life-history characteristics, physiological and behavioral features, and similar habitat use. Groups exhibited various sizes (7-35 taxa), taxonomic compositions, and biological and ecological features. Main differences among group characteristics concerned morphology, substrate preferendum and habitat utilization, nutritional features, maximal size, and life-history strategy. Third, the best representatives of the mean biological and ecological characteristics of each group were included in the test battery. The final selection was composed of Chironomus riparius (Insecta: Diptera), Branchiura sowerbyi (Oligochaeta: Tubificidae), Lumbriculus variegatus (Oligochaeta: Lumbriculidae), Valvata piscinalis (Gastropoda: Valvatidae), and Sericostoma personatum (Trichoptera: Sericostomatidae). This approach permitted the biological and ecological variety of the battery to be maximized. Because biological and ecological traits of taxa determine species sensitivity, such maximization should permit the battery to better account

  11. Efficiency of Different Sampling Tools for Aquatic Macroinvertebrate Collections in Malaysian Streams

    PubMed Central

    Ghani, Wan Mohd Hafezul Wan Abdul; Rawi, Che Salmah Md; Hamid, Suhaila Abd; Al-Shami, Salman Abdo

    2016-01-01

    This study analyses the sampling performance of three benthic sampling tools commonly used to collect freshwater macroinvertebrates. Efficiency of qualitative D-frame and square aquatic nets were compared to a quantitative Surber sampler in tropical Malaysian streams. The abundance and diversity of macroinvertebrates collected using each tool evaluated along with their relative variations (RVs). Each tool was used to sample macroinvertebrates from three streams draining different areas: a vegetable farm, a tea plantation and a forest reserve. High macroinvertebrate diversities were recorded using the square net and Surber sampler at the forested stream site; however, very low species abundance was recorded by the Surber sampler. Relatively large variations in the Surber sampler collections (RVs of 36% and 28%) were observed for the vegetable farm and tea plantation streams, respectively. Of the three sampling methods, the square net was the most efficient, collecting a greater diversity of macroinvertebrate taxa and a greater number of specimens (i.e., abundance) overall, particularly from the vegetable farm and the tea plantation streams (RV<25%). Fewer square net sample passes (<8 samples) were sufficient to perform a biological assessment of water quality, but each sample required a slightly longer processing time (±20 min) compared with those gathered via the other samplers. In conclusion, all three apparatuses were suitable for macroinvertebrate collection in Malaysian streams and gathered assemblages that resulted in the determination of similar biological water quality classes using the Family Biotic Index (FBI) and the Biological Monitoring Working Party (BMWP). However, despite a slightly longer processing time, the square net was more efficient (lowest RV) at collecting samples and more suitable for the collection of macroinvertebrates from deep, fast flowing, wadeable streams with coarse substrates. PMID:27019685

  12. Influence of habitat characteristics on shore-spawning kokanee

    USGS Publications Warehouse

    Whitlock, Steven L.; Quist, Michael C.; Dux, Andrew M.

    2014-01-01

    Sockeye Salmon Oncorhynchus nerka and kokanee (lacustrine Sockeye Salmon) commonly spawn in both lentic and lotic environments; however, the habitat requirements of shore spawners are virtually unknown relative to those of stream spawners. A laboratory experiment and an in situ incubation study were conducted to better understand the influence of habitat characteristics on the shoreline incubation success of kokanee. The laboratory experiment assessed kokanee intragravel survival, fry emergence, and fry condition in response to eight substrate treatments. The in situ study, conducted at three major shoreline spawning sites in Lake Pend Oreille, Idaho, evaluated the effect of depth, substrate composition, dissolved oxygen, shoreline slope, and groundwater on intragravel survival. Substrate size composition was generally a poor predictor of survival in both the laboratory experiment and in situ study; although, fry condition and counts of emerged fry in the laboratory were lowest for the substrate treatment that had the highest proportion of fine sediment. Results of the in situ study suggest that groundwater flow plays an important role in enhancing intragravel survival in habitats generally considered unsuitable for spawning.

  13. Temporal Variability of Stream Macroinvertebrate Abundance and Biomass Following Pesticide Disturbance

    Treesearch

    John J. Hutchens; Keun Chung; J. Bruce Wallace

    1998-01-01

    We determined the extent of macroinvertebrate recovery in a former pesticide-treated stream (FTS) relative to a reference stream (RS) by examining macroinvertebrate colonizing red maple (Acer rubrum L.) litter bags between 5 to 10 y following pesticide treatment. Mean abundance and biomass, varibility in abundance and biomass (using the coefficient...

  14. The Detroit River: Effects of contaminants and human activities on aquatic plants and animals and their habitats

    USGS Publications Warehouse

    Manny, Bruce A.; Kenaga, David

    1991-01-01

    Despite the extensive urbanization of its watershed, the Detroit River still supports diverse fish and wildlife populations. Conflicting uses of the river for waste disposal, water withdrawals, shipping, recreation, and fishing require innovative management. Chemicals added by man to the Detroit River have adversely affected the health and habitats of the river's plants and animals. In 1985, as part of an Upper Great Lakes Connecting Channels Study sponsored by Environment Canada and the U.S. Environmental Protection Agency, researchers exposed healthy bacteria, plankton, benthic macroinvertebrates, fish, and birds to Detroit River sediments and sediment porewater. Negative impacts included genetic mutations in bacteria; death of macroinvertebrates; accumulation of contaminants in insects, clams, fish, and ducks; and tumor formation in fish. Field surveys showed areas of the river bottom that were otherwise suitable for habitation by a variety of plants and animals were contaminated with chlorinated hydrocarbons and heavy metals and occupied only by pollution-tolerant worms. Destruction of shoreline wetlands and disposal of sewage and toxic substances in the Detroit River have reduced habitat and conflict with basic biological processes, including the sustained production of fish and wildlife. Current regulations do not adequately control pollution loadings. However, remedial actions are being formulated by the U.S. and Canada to restore degraded benthic habitats and eliminate discharges of toxic contaminants into the Detroit River.

  15. The relative influence of habitat amount and configuration on genetic structure across multiple spatial scales

    PubMed Central

    Millette, Katie L; Keyghobadi, Nusha

    2015-01-01

    Despite strong interest in understanding how habitat spatial structure shapes the genetics of populations, the relative importance of habitat amount and configuration for patterns of genetic differentiation remains largely unexplored in empirical systems. In this study, we evaluate the relative influence of, and interactions among, the amount of habitat and aspects of its spatial configuration on genetic differentiation in the pitcher plant midge, Metriocnemus knabi. Larvae of this species are found exclusively within the water-filled leaves of pitcher plants (Sarracenia purpurea) in a system that is naturally patchy at multiple spatial scales (i.e., leaf, plant, cluster, peatland). Using generalized linear mixed models and multimodel inference, we estimated effects of the amount of habitat, patch size, interpatch distance, and patch isolation, measured at different spatial scales, on genetic differentiation (FST) among larval samples from leaves within plants, plants within clusters, and clusters within peatlands. Among leaves and plants, genetic differentiation appears to be driven by female oviposition behaviors and is influenced by habitat isolation at a broad (peatland) scale. Among clusters, gene flow is spatially restricted and aspects of both the amount of habitat and configuration at the focal scale are important, as is their interaction. Our results suggest that both habitat amount and configuration can be important determinants of genetic structure and that their relative influence is scale dependent. PMID:25628865

  16. The relative influence of habitat amount and configuration on genetic structure across multiple spatial scales.

    PubMed

    Millette, Katie L; Keyghobadi, Nusha

    2015-01-01

    Despite strong interest in understanding how habitat spatial structure shapes the genetics of populations, the relative importance of habitat amount and configuration for patterns of genetic differentiation remains largely unexplored in empirical systems. In this study, we evaluate the relative influence of, and interactions among, the amount of habitat and aspects of its spatial configuration on genetic differentiation in the pitcher plant midge, Metriocnemus knabi. Larvae of this species are found exclusively within the water-filled leaves of pitcher plants (Sarracenia purpurea) in a system that is naturally patchy at multiple spatial scales (i.e., leaf, plant, cluster, peatland). Using generalized linear mixed models and multimodel inference, we estimated effects of the amount of habitat, patch size, interpatch distance, and patch isolation, measured at different spatial scales, on genetic differentiation (F ST) among larval samples from leaves within plants, plants within clusters, and clusters within peatlands. Among leaves and plants, genetic differentiation appears to be driven by female oviposition behaviors and is influenced by habitat isolation at a broad (peatland) scale. Among clusters, gene flow is spatially restricted and aspects of both the amount of habitat and configuration at the focal scale are important, as is their interaction. Our results suggest that both habitat amount and configuration can be important determinants of genetic structure and that their relative influence is scale dependent.

  17. King County Nearshore Habitat Mapping Data Report: Picnic Point to Shilshole Bay Marina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Dana L.; Farley, Paul J.; Borde, Amy B.

    2000-12-31

    The objective of this study is to provide accurate, georeferenced maps of benthic habitats to assist in the siting of a new wastewater treatment plant outfall and the assessment of habitats of endangered, threatened, and economically important species. The mapping was conducted in the fall of 1999 using two complementary techniques: side-scan sonar and underwater videography. Products derived from these techniques include geographic information system (GIS) compatible polygon data of substrate type and vegetation cover, including eelgrass and kelp. Additional GIS overlays include underwater video track line data of total macroalgae, selected macroalgal species, fish, and macroinvertebrates. The combined toolsmore » of geo-referenced side-scan sonar and underwater video is a powerful technique for assessing and mapping of nearshore habitat in Puget Sound. Side-scan sonar offers the ability to map eelgrass with high spatial accuracy and resolution, and provides information on patch size, shape, and coverage. It also provides information on substrate change and location of specific targets (e.g., piers, docks, pilings, large boulders, debris piles). The addition of underwater video is a complementary tool providing both groundtruthing for the sonar and additional information on macro fauna and flora. As a groundtruthing technique, the video was able to confirm differences between substrate types, as well as detect subtle spatial changes in substrate. It also verified information related to eelgrass, including the density classification categories and the type of substrate associated with eelgrass, which could not be determined easily with side- scan sonar. Video is also a powerful tool for mapping the location of macroalgae, (including kelp and Ulva), fish and macroinvertebrates. The ability to geo-locate these resources in their functional habitat provides an added layer of information and analytical potential.« less

  18. Trait Characteristics Determine Pyrethroid Sensitivity in Nonstandard Test Species of Freshwater Macroinvertebrates: A Reality Check.

    PubMed

    Wiberg-Larsen, Peter; Graeber, Daniel; Kristensen, Esben A; Baattrup-Pedersen, Annette; Friberg, Nikolai; Rasmussen, Jes J

    2016-05-17

    We exposed 34 species of stream macroinvertebrates, representing 29 families, to a 90 min pulse of the pyrethroid λ-cyhalothrin. For 28 of these species, no pyrethroid ecotoxicity data exist. We recorded mortality rates 6 days post-exposure, and the behavioral response to pyrethroid exposure was recorded using automated video tracking. Most arthropod species showed mortality responses to the exposure concentrations (0.01-10 μg L(-1)), whereas nonarthropod species remained unaffected. LC50 varied by at least a factor of 1000 among arthropod species, even within the same family. This variation could not be predicted using ecotoxicity data from closely related species, nor using species-specific indicator values from traditional ecological quality indices. Moreover, LC50 was not significantly correlated to effect thresholds for behavioral responses. Importantly, however, the measured surface area-weight ratio and the preference for coarse substrates significantly influenced the LC50 for arthropod species, with the combination of small individuals and strong preference for coarse substrates indicating higher pyrethroid sensitivity. Our study highlights that existing pesticide ecotoxicity data should be extrapolated to untested species with caution and that actual body size (not maximum potential body size, as is usually available in traits databases) and habitat preference are central parameters determining species sensitivities to pyrethroids.

  19. [Spatial patterns in communities of aquatic macroinvertebrates of Argentinean Puna].

    PubMed

    Nieto, Carolina; Malizia, Agustina; Carilla, Julieta; Izquierdo, Andrea; Rodríguez, José; Cuello, Soledad; Zannier, Martín; Grau, H Ricardo

    2016-06-01

    Spatial patterns in communities of aquatic macroinvertebrates of Argentinean Puna. The macroinvertebrates are a vital component of freshwater ecosystems as they contribute to the process of organic matter while serving as food for other organisms such as fish and amphibians. Unfortunately, the knowledge of the aquatic diversity is poor in the high Andean systems (between 3 200 and 5 200 m.a.s.l. and rainfall below 300 mm per year), especially in the Argentinean peatbogs, a fact which has made difficult the interpretation of spatial patterns on a regional scale. The present study aimed to describe the composition of aquatic macroinvertebrates in seven peatbogs in the Argentinean Puna, and to analyze for the first time their spatial patterns. For this, we studied the relationship of these organisms with the environment, and obtained information about the surrounding vegetation and water physico-chemical characteristics. A total of 3 131 specimens of aquatic macroinvertebrates were collected, representing 25 taxa belonging to 22 families and 24 genera. In addition, 62 species of vascular plants were recorded, belonging to 20 families. The most abundant life form were the tufted grasses, followed by cushions. By using an NMDS (Non-Metrical Multidimensional Scaling) statistical analysis, the sampling sites were ordered in each peatbog as follows. The peatbogs located furthest West and South with higher water temperature were grouped on axis 1, whereas those with higher conductivity, whole water dissolved solids and salt concentration were grouped on axis 2. The water temperature was higher than air temperature at all times, and we found no association between temperature and altitude. The altitude had no correlation with the abundance of macroinvertebrates or with plant richness. Life forms such as scattered graminoids, trailing and prostrate herbs (in many cases they get into the channel) and aquatic plants were more abundant in peatbogs 4, 5 and 7 and they had a

  20. Large-scale climatic phenomena drive fluctuations in macroinvertebrate assemblages in lowland tropical streams, Costa Rica: The importance of ENSO events in determining long-term (15y) patterns

    PubMed Central

    Ramírez, Alonso; Pringle, Catherine M.

    2018-01-01

    Understanding how environmental variables influence the distribution and density of organisms over relatively long temporal scales is a central question in ecology given increased climatic variability (e.g., precipitation, ENSO events). The primary goal of our study was to evaluate long-term (15y time span) patterns of climate, as well as environmental parameters in two Neotropical streams in lowland Costa Rica, to assess potential effects on aquatic macroinvertebrates. We also examined the relative effects of an 8y whole-stream P-enrichment experiment on macroinvertebrate assemblages against the backdrop of this long-term study. Climate, environmental variables and macroinvertebrate samples were measured monthly for 7y and then quarterly for an additional 8y in each stream. Temporal patterns in climatic and environmental variables showed high variability over time, without clear inter-annual or intra-annual patterns. Macroinvertebrate richness and abundance decreased with increasing discharge and was positively related to the number of days since the last high discharge event. Findings show that fluctuations in stream physicochemistry and macroinvertebrate assemblage structure are ultimately the result of large-scale climatic phenomena, such as ENSO events, while the 8y P-enrichment did not appear to affect macroinvertebrates. Our study demonstrates that Neotropical lowland streams are highly dynamic and not as stable as is commonly presumed, with high intra- and inter-annual variability in environmental parameters that change the structure and composition of freshwater macroinvertebrate assemblages. PMID:29420548

  1. Disentangling the effects of low pH and metal mixture toxicity on macroinvertebrate diversity.

    PubMed

    Fornaroli, Riccardo; Ippolito, Alessio; Tolkkinen, Mari J; Mykrä, Heikki; Muotka, Timo; Balistrieri, Laurie S; Schmidt, Travis S

    2018-04-01

    One of the primary goals of biological assessment of streams is to identify which of a suite of chemical stressors is limiting their ecological potential. Elevated metal concentrations in streams are often associated with low pH, yet the effects of these two potentially limiting factors of freshwater biodiversity are rarely considered to interact beyond the effects of pH on metal speciation. Using a dataset from two continents, a biogeochemical model of the toxicity of metal mixtures (Al, Cd, Cu, Pb, Zn) and quantile regression, we addressed the relative importance of both pH and metals as limiting factors for macroinvertebrate communities. Current environmental quality standards for metals proved to be protective of stream macroinvertebrate communities and were used as a starting point to assess metal mixture toxicity. A model of metal mixture toxicity accounting for metal interactions was a better predictor of macroinvertebrate responses than a model considering individual metal toxicity. We showed that the direct limiting effect of pH on richness was of the same magnitude as that of chronic metal toxicity, independent of its influence on the availability and toxicity of metals. By accounting for the direct effect of pH on macroinvertebrate communities, we were able to determine that acidic streams supported less diverse communities than neutral streams even when metals were below no-effect thresholds. Through a multivariate quantile model, we untangled the limiting effect of both pH and metals and predicted the maximum diversity that could be expected at other sites as a function of these variables. This model can be used to identify which of the two stressors is more limiting to the ecological potential of running waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A comparison of the macrophyte cover and macroinvertebrate fauna at three sites on the River Kennet in the mid 1970s and late 1990s.

    PubMed

    Wright, J F; Gunn, R J M; Winder, J M; Wiggers, R; Vowles, K; Clarke, R T; Harris, I

    2002-01-23

    drought, many macroinvertebrate families at Savernake showed a rapid response to the new conditions and the assemblages reverted to those expected in a fast-flowing cretaceous chalk stream. Continued monitoring through the next drought is advisable to provide a greater understanding of the interplay between water quality, the discharge regime, habitat quality (including macrophyte growth) and the response of the macroinvertebrate fauna.

  3. Macroinvertebrate distribution and aquatic ecology in the Ruoergai (Zoige) Wetland, the Yellow River source region

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Xu, Mengzhen; Li, Zhiwei; Wang, Zhaoyin; Zhou, Hanmi

    2017-09-01

    The Ruoergai (Zoige) Wetland, the largest plateau peatland in the world, is located in the Yellow River source region. The discharge of the Yellow River increases greatly after flowing through the Ruoergai Wetland. The aquatic ecosystem of the Ruoergai Wetland is crucial to the whole Yellow River basin. The Ruoergai wetland has three main kinds of water bodies: rivers, oxbow lakes, and marsh wetlands. In this study, macroinvertebrates were used as indicators to assess the aquatic ecological status because their assemblage structures indicate long-term changes in environments with high sensitivity. Field investigations were conducted in July, 2012 and in July, 2013. A total of 72 taxa of macroinvertebrates belonging to 35 families and 67 genera were sampled and identified. Insecta was the dominant group in the Ruoergai Basin. The alpha diversity of macroinvertebrates at any single sampling site was low, while the alpha diversity on a basin-wide scale was much higher. Macroinvertebrate assemblages in rivers, oxbow lakes, and marsh wetlands differ markedly. Hydrological connectivity was a primary factor causing the variance of the bio-community. The river channels had the highest alpha diversity of macroinvertebrates, followed by marsh wetlands and oxbow lakes. The density and biomass of Gastropoda, collector filterers, and scrapers increased from rivers to oxbow lakes and then to marsh wetlands. The river ecology was particular in the Ruoergai Wetland with the high beta diversity of macroinvertebrates, the low alpha diversity of macroinvertebrates, and the low taxa richness, density, and biomass of EPT (Ephemeroptera, Plecoptera, Trichoptera). To maintain high alpha diversity of macroinvertebrates macroinvertebrates in the Ruoergai Wetland, moderate connectivity of oxbow lakes and marsh wetlands with rivers and measures to control headwater erosion are both crucial.

  4. Short-term influence of tank tracks on vegetation and microphytic crusts in shrubsteppe habitat

    USGS Publications Warehouse

    Watts, Stephen E.

    1998-01-01

    Artemisia tridentata Nutt.) habitat within the Idaho Army National Guard Orchard Training Area in southwestern Idaho. The purpose of this study was to determine the short-term (1a??2 years) influence of tank tracks on vegetation and microphytic crusts in shrubsteppe habitat. The two types of tank tracks studied were divots (area where one track has been stopped or slowed to make a sharp turn) and straight-line tracks. Divots generally had a stronger influence on vegetation and microphytic crusts than did straight-line tracks. Tank tracks increased cover of bare ground, litter, and exotic annuals, and reduced cover of vegetation, perennial native grasses, sagebrush, and microphytic crusts. Increased bare ground and reduced cover of vegetation and microphytic crusts caused by tank tracks increase the potential for soil erosion and may reduce ecosystem productivity. Reduced sagebrush cover caused by tank tracks may reduce habitat quality for rodents. Tank tracks may also facilitate the invasion of exotic annuals into sagebrush habitat, increasing the potential for wildfire and subsequent habitat degradation. Thus, creation of divots and movement through sagebrush habitat by tanks should be minimized.

  5. Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat.

    PubMed

    Bertin, Angeline; Gouin, Nicolas; Baumel, Alex; Gianoli, Ernesto; Serratosa, Juan; Osorio, Rodomiro; Manel, Stephanie

    2017-01-01

    Positive species-genetic diversity correlations (SGDCs) are often thought to result from the parallel influence of neutral processes on genetic and species diversity. Yet, confounding effects of non-neutral mechanisms have not been explored. Here, we investigate the impact of non-neutral genetic diversity on SGDCs in high Andean wetlands. We compare correlations between plant species diversity and genetic diversity (GD) calculated with and without loci potentially under selection (outlier loci). The study system includes 2188 specimens from five species (three common aquatic macroinvertebrate and two dominant plant species) that were genotyped for 396 amplified fragment length polymorphism loci. We also appraise the importance of neutral processes on SGDCs by investigating the influence of habitat fragmentation features. Significant positive SGDCs were detected for all five species (mean SGDC = 0.52 ± 0.05). While only a few outlier loci were detected in each species, they resulted in significant decreases in GD and in SGDCs. This supports the hypothesis that neutral processes drive species-genetic diversity relationships in high Andean wetlands. Unexpectedly, the effects on genetic diversity GD of the habitat fragmentation characteristics in this study increased with the presence of outlier loci in two species. Overall, our results reveal pitfalls in using habitat features to infer processes driving SGDCs and show that a few loci potentially under selection are enough to cause a significant downward bias in SGDC. Investigating confounding effects of outlier loci thus represents a useful approach to evidence the contribution of neutral processes on species-genetic diversity relationships. © 2016 John Wiley & Sons Ltd.

  6. Macroinvertebrate and organic matter export from headwater tributaries of a Central Appalachian stream

    EPA Science Inventory

    Headwater streams export organisms and other materials to their receiving streams and macroinvertebrate drift can shape colonization dynamics in downstream reaches while providing food for downstream consumers. Spring-time macroinvertebrate drift and organic matter export was me...

  7. When is the best time to sample aquatic macroinvertebrates in ponds for biodiversity assessment?

    PubMed

    Hill, M J; Sayer, C D; Wood, P J

    2016-03-01

    Ponds are sites of high biodiversity and conservation value, yet there is little or no statutory monitoring of them across most of Europe. There are clear and standardised protocols for sampling aquatic macroinvertebrate communities in ponds, but the most suitable time(s) to undertake the survey(s) remains poorly specified. This paper examined the aquatic macroinvertebrate communities from 95 ponds within different land use types over three seasons (spring, summer and autumn) to determine the most appropriate time to undertake sampling to characterise biodiversity. The combined samples from all three seasons provided the most comprehensive record of the aquatic macroinvertebrate taxa recorded within ponds (alpha and gamma diversity). Samples collected during the autumn survey yielded significantly greater macroinvertebrate richness (76% of the total diversity) than either spring or summer surveys. Macroinvertebrate diversity was greatest during autumn in meadow and agricultural ponds, but taxon richness among forest and urban ponds did not differ significantly temporally. The autumn survey provided the highest measures of richness for Coleoptera, Hemiptera and Odonata. However, richness of the aquatic insect order Trichoptera was highest in spring and lowest in autumn. The results illustrate that multiple surveys, covering more than one season, provide the most comprehensive representation of macroinvertebrate biodiversity. When sampling can only be undertaken on one occasion, the most appropriate time to undertake surveys to characterise the macroinvertebrate community biodiversity is during autumn, although this may need to be modified if other floral and faunal groups need to be incorporated into the sampling programme.

  8. How do dispersal costs and habitat selection influence realized population connectivity?

    PubMed

    Burgess, Scott C; Treml, Eric A; Marshall, Dustin J

    2012-06-01

    Despite the importance of dispersal for population connectivity, dispersal is often costly to the individual. A major impediment to understanding connectivity has been a lack of data combining the movement of individuals and their survival to reproduction in the new habitat (realized connectivity). Although mortality often occurs during dispersal (an immediate cost), in many organisms costs are paid after dispersal (deferred costs). It is unclear how such deferred costs influence the mismatch between dispersal and realized connectivity. Through a series of experiments in the field and laboratory, we estimated both direct and indirect deferred costs in a marine bryozoan (Bugula neritina). We then used the empirical data to parameterize a theoretical model in order to formalize predictions about how dispersal costs influence realized connectivity. Individuals were more likely to colonize poor-quality habitat after prolonged dispersal durations. Individuals that colonized poor-quality habitat performed poorly after colonization because of some property of the habitat (an indirect deferred cost) rather than from prolonged dispersal per se (a direct deferred cost). Our theoretical model predicted that indirect deferred costs could result in nonlinear mismatches between spatial patterns of potential and realized connectivity. The deferred costs of dispersal are likely to be crucial for determining how well patterns of dispersal reflect realized connectivity. Ignoring these deferred costs could lead to inaccurate predictions of spatial population dynamics.

  9. Ecological Responses to Trout Habitat Rehabilitation in a Northern Michigan Stream

    NASA Astrophysics Data System (ADS)

    Rosi-Marshall, Emma J.; Moerke, Ashley H.; Lamberti, Gary A.

    2006-07-01

    Monitoring of stream restoration projects is often limited and success often focuses on a single taxon (e.g., salmonids), even though other aspects of stream structure and function may also respond to restoration activities. The Ottawa National Forest (ONF), Michigan, conducted a site-specific trout habitat improvement to enhance the trout fishery in Cook’s Run, a 3rd-order stream that the ONF determined was negatively affected by past logging. Our objectives were to determine if the habitat improvement increased trout abundances and enhanced other ecological variables (overall habitat quality, organic matter retention, seston concentration, periphyton abundance, sediment organic matter content, and macroinvertebrate abundance and diversity) following rehabilitation. The addition of skybooms (underbank cover structures) and k-dams (pool-creating structures) increased the relative abundance of harvestable trout (>25 cm in total length) as intended but not overall trout abundances. Both rehabilitation techniques also increased maximum channel depth and organic matter retention, but only k-dams increased overall habitat quality. Neither approach significantly affected other ecological variables. The modest ecological response to this habitat improvement likely occurred because the system was not severely degraded beforehand, and thus small, local changes in habitat did not measurably affect most physical and ecological variables measured. However, increases in habitat volume and in organic matter retention may enhance stream biota in the long term.

  10. Influence of riparian canopy on macroinvertebrate composition and food habits of juvenile salmonids in several Oregon streams.

    Treesearch

    William R. Meehan

    1996-01-01

    The community composition of macroinvertebrates and the feeding habits of juvenile salmonids were studied in eight Oregon streams. Benthic, drift, sticky trap, and water trap samples were taken over a 3-year period, along with stomach samples of the fish. Samples were taken in stream reaches with and without riparian canopy. Both main effects—fish diet versus...

  11. In situ effects of titanium dioxide nanoparticles on community structure of freshwater benthic macroinvertebrates.

    PubMed

    Jovanović, Boris; Milošević, Djuradj; Piperac, Milica Stojković; Savić, Ana

    2016-06-01

    For the first time in the current literature, the effect of titanium dioxide (TiO2) nanoparticles on the community structure of macroinvertebrates has been investigated in situ. Macroinvertebrates were exposed for 100 days to an environmentally relevant concentration of TiO2 nanoparticles, 25 mg kg(-1) in sediment. Czekanowski's index was 0.61, meaning 39% of the macroinvertebrate community structure was affected by the TiO2 treatment. Non-metric multidimensional scaling (NMDS) visualized the qualitative and quantitative variability of macroinvertebrates at the community level among all samples. A distance-based permutational multivariate analysis of variance (PERMANOVA) revealed the significant effect of TiO2 on the macroinvertebrate community structure. The indicator value analysis showed that the relative frequency and abundance of Planorbarius corneus and Radix labiata were significantly lower in the TiO2 treatment than in the control. Meanwhile, Ceratopogonidae, showed a significantly higher relative frequency and abundance in the TiO2 treatment than in the control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Comparison of the Abiotic Preferences of Macroinvertebrates in Tropical River Basins

    PubMed Central

    Everaert, Gert; De Neve, Jan; Boets, Pieter; Dominguez-Granda, Luis; Mereta, Seid Tiku; Ambelu, Argaw; Hoang, Thu Huong; Goethals, Peter L. M.; Thas, Olivier

    2014-01-01

    We assessed and compared abiotic preferences of aquatic macroinvertebrates in three river basins located in Ecuador, Ethiopia and Vietnam. Upon using logistic regression models we analyzed the relationship between the probability of occurrence of five macroinvertebrate families, ranging from pollution tolerant to pollution sensitive, (Chironomidae, Baetidae, Hydroptilidae, Libellulidae and Leptophlebiidae) and physical-chemical water quality conditions. Within the investigated physical-chemical ranges, nine out of twenty-five interaction effects were significant. Our analyses suggested river basin dependent associations between the macroinvertebrate families and the corresponding physical-chemical conditions. It was found that pollution tolerant families showed no clear abiotic preference and occurred at most sampling locations, i.e. Chironomidae were present in 91%, 84% and 93% of the samples taken in Ecuador, Ethiopia and Vietnam. Pollution sensitive families were strongly associated with dissolved oxygen and stream velocity, e.g. Leptophlebiidae were only present in 48%, 2% and 18% of the samples in Ecuador, Ethiopia and Vietnam. Despite some limitations in the study design, we concluded that associations between macroinvertebrates and abiotic conditions can be river basin-specific and hence are not automatically transferable across river basins in the tropics. PMID:25279673

  13. Biodiversity of benthic macroinvertebrates in Air Terjun Asahan, Asahan, Melaka, Malaysia

    NASA Astrophysics Data System (ADS)

    Nurhafizah-Azwa, S.; Ahmad A., K.

    2016-11-01

    A study on benthic macroinvertebrate diversity was conducted at Air Terjun Asahan, Asahan, Melaka. Five stations were selected with distance intervals of approximately 500 metres. Three replicates of benthic macroinvertebrate and water samples were taken. Results classified Air Terjun Asahan in class II, which indicated good water quality based on WQI recommended by the Department of Environment. A total of 1 phylum, 2 classes, 6 order, 30 families, and 2183 individuals were successfully sampled and recorded. The analysis showed that the average value of Shannon Diversity Index, H' (2.19), Pielou Evenness Index, J' (0.30), and Margaleff Richness Index, DMG (3.77) described that Air Terjun Asahan was in moderate condition and the distribution of macroinvertebrates was uniform between stations. Correlation test showed that the WQI had a strong relationship with the diversity indices involved. BMWP, and FBI showed that Air Terjun Asahan was in good water quality. CCA test was conducted to show environmental factors towards benthic macroinvertebrate distribution. The presence of Leptophlebiidae, Baetidae, Heptageniidae and Chironomidae with high abundance of the families showed the potential as biological indicators of a clean ecosystem.

  14. Comparison of the abiotic preferences of macroinvertebrates in tropical river basins.

    PubMed

    Everaert, Gert; De Neve, Jan; Boets, Pieter; Dominguez-Granda, Luis; Mereta, Seid Tiku; Ambelu, Argaw; Hoang, Thu Huong; Goethals, Peter L M; Thas, Olivier

    2014-01-01

    We assessed and compared abiotic preferences of aquatic macroinvertebrates in three river basins located in Ecuador, Ethiopia and Vietnam. Upon using logistic regression models we analyzed the relationship between the probability of occurrence of five macroinvertebrate families, ranging from pollution tolerant to pollution sensitive, (Chironomidae, Baetidae, Hydroptilidae, Libellulidae and Leptophlebiidae) and physical-chemical water quality conditions. Within the investigated physical-chemical ranges, nine out of twenty-five interaction effects were significant. Our analyses suggested river basin dependent associations between the macroinvertebrate families and the corresponding physical-chemical conditions. It was found that pollution tolerant families showed no clear abiotic preference and occurred at most sampling locations, i.e. Chironomidae were present in 91%, 84% and 93% of the samples taken in Ecuador, Ethiopia and Vietnam. Pollution sensitive families were strongly associated with dissolved oxygen and stream velocity, e.g. Leptophlebiidae were only present in 48%, 2% and 18% of the samples in Ecuador, Ethiopia and Vietnam. Despite some limitations in the study design, we concluded that associations between macroinvertebrates and abiotic conditions can be river basin-specific and hence are not automatically transferable across river basins in the tropics.

  15. Habitat size modulates the influence of heterogeneity on species richness patterns in a model zooplankton community.

    PubMed

    Schuler, Matthew S; Chase, Jonathan M; Knight, Tiffany M

    2017-06-01

    Habitat heterogeneity is a primary mechanism influencing species richness. Despite the general expectation that increased heterogeneity should increase species richness, there is considerable variation in the observed relationship, including many studies that show negative effects of heterogeneity on species richness. One mechanism that can create such disparate results is the predicted trade-off between habitat area and heterogeneity, sometimes called the area-heterogeneity-trade-off (AHTO) hypothesis. The AHTO hypothesis predicts positive effects of heterogeneity on species richness in large habitats, but negative effects in small habitats. We examined the interplay between habitat size and habitat heterogeneity in experimental mesocosms that mimic freshwater ponds, and measured responses in a species-rich zooplankton community. We used the AHTO hypothesis and related mechanisms to make predictions about how heterogeneity would affect species richness and diversity in large compared to small habitats. We found that heterogeneity had a positive influence on species richness in large, but not small habitats, and that this likely resulted because habitat specialists were able to persist only when habitat size was sufficiently large, consistent with the predictions of the AHTO hypothesis. Our results emphasize the importance of considering context (e.g., habitat size in this case) when investigating the relative importance of ecological drivers of diversity, like heterogeneity. © 2017 by the Ecological Society of America.

  16. Monitoring and assessment of water health quality in the Tajan River, Iran using physicochemical, fish and macroinvertebrates indices.

    PubMed

    Aazami, Jaber; Esmaili-Sari, Abbas; Abdoli, Asghar; Sohrabi, Hormoz; Van den Brink, Paul J

    2015-01-01

    Nowadays, aquatic organisms are used as bio-indicators to assess ecological water quality in western regions, but have hardly been used in an Iranian context. We, therefore, evaluated the suitability of several indices to assess the water quality for an Iranian case study. Measured data on biotic (fish and macroinvertebrates) and abiotic elements (28 physicochemical and habitat parameters), were used to calculate six indices for assessment of water quality and the impact of human activities in the Tajan river, Iran. GIS, uni- and multivariate statistics were used to assess the correlations between biological and environmental endpoints. The results showed that ecological condition and water quality were reduced from up- to downstream. The reduced water quality was revealed by the biotic indices better than the abiotic ones which were linked to a variety of ecological water quality scales. The fish index showed a strong relationship with long-term database of physicochemical parameters (12 years (94%)), whereas macroinvertebrates index is more correlated with short-term data (76%). Meanwhile, the biotic and abiotic elements in this study were also classified well by PCA. Pulp and wood plants and sand mining are indicated to have the most negative effects on the river ecosystem.

  17. Studying the movement behavior of benthic macroinvertebrates with automated video tracking.

    PubMed

    Augusiak, Jacqueline; Van den Brink, Paul J

    2015-04-01

    Quantifying and understanding movement is critical for a wide range of questions in basic and applied ecology. Movement ecology is also fostered by technological advances that allow automated tracking for a wide range of animal species. However, for aquatic macroinvertebrates, such detailed methods do not yet exist. We developed a video tracking method for two different species of benthic macroinvertebrates, the crawling isopod Asellus aquaticus and the swimming fresh water amphipod Gammarus pulex. We tested the effects of different light sources and marking techniques on their movement behavior to establish the possibilities and limitations of the experimental protocol and to ensure that the basic handling of test specimens would not bias conclusions drawn from movement path analyses. To demonstrate the versatility of our method, we studied the influence of varying population densities on different movement parameters related to resting behavior, directionality, and step lengths. We found that our method allows studying species with different modes of dispersal and under different conditions. For example, we found that gammarids spend more time moving at higher population densities, while asellids rest more under similar conditions. At the same time, in response to higher densities, gammarids mostly decreased average step lengths, whereas asellids did not. Gammarids, however, were also more sensitive to general handling and marking than asellids. Our protocol for marking and video tracking can be easily adopted for other species of aquatic macroinvertebrates or testing conditions, for example, presence or absence of food sources, shelter, or predator cues. Nevertheless, limitations with regard to the marking protocol, material, and a species' physical build need to be considered and tested before a wider application, particularly for swimming species. Data obtained with this approach can deepen the understanding of population dynamics on larger spatial scales and

  18. Studying the movement behavior of benthic macroinvertebrates with automated video tracking

    PubMed Central

    Augusiak, Jacqueline; Van den Brink, Paul J

    2015-01-01

    Quantifying and understanding movement is critical for a wide range of questions in basic and applied ecology. Movement ecology is also fostered by technological advances that allow automated tracking for a wide range of animal species. However, for aquatic macroinvertebrates, such detailed methods do not yet exist. We developed a video tracking method for two different species of benthic macroinvertebrates, the crawling isopod Asellus aquaticus and the swimming fresh water amphipod Gammarus pulex. We tested the effects of different light sources and marking techniques on their movement behavior to establish the possibilities and limitations of the experimental protocol and to ensure that the basic handling of test specimens would not bias conclusions drawn from movement path analyses. To demonstrate the versatility of our method, we studied the influence of varying population densities on different movement parameters related to resting behavior, directionality, and step lengths. We found that our method allows studying species with different modes of dispersal and under different conditions. For example, we found that gammarids spend more time moving at higher population densities, while asellids rest more under similar conditions. At the same time, in response to higher densities, gammarids mostly decreased average step lengths, whereas asellids did not. Gammarids, however, were also more sensitive to general handling and marking than asellids. Our protocol for marking and video tracking can be easily adopted for other species of aquatic macroinvertebrates or testing conditions, for example, presence or absence of food sources, shelter, or predator cues. Nevertheless, limitations with regard to the marking protocol, material, and a species’ physical build need to be considered and tested before a wider application, particularly for swimming species. Data obtained with this approach can deepen the understanding of population dynamics on larger spatial scales

  19. Idea Habitats: How the Prevalence of Environmental Cues Influences the Success of Ideas

    ERIC Educational Resources Information Center

    Berger, Jonah A.; Heath, Chip

    2005-01-01

    We investigate 1 factor that influences the success of ideas or cultural representations by proposing that they have a habitat, that is, a set of environmental cues that encourages people to recall and transmit them. We test 2 hypotheses: (a) fluctuation: the success of an idea will vary over time with fluctuations in its habitat, and (b)…

  20. Water-quality, biological, and habitat assessment of the Boeuf River Basin, southeastern Arkansas, 1994-96

    USGS Publications Warehouse

    Barks, C. Shane; Petersen, James C.; Usrey, Faron D.

    2002-01-01

    Water-quality and biological samples were collected at several sites in the Boeuf River Basin between November 1994 and December 1996. Water-quality and benthic macroinvertebrate community samples were collected and habitat was measured once at 25 ambient monitoring sites during periods of seasonal low flow. Water-quality storm-runoff samples were collected during 11 storm events at two sites (one draining a cotton field and one draining a forested area). Water-quality samples were collected at one site during the draining of a catfish pond. Water-quality samples from the 25 ambient sites indicate that streams in the Boeuf River Basin typically are turbid and nutrient enriched in late fall during periods of relatively low flow. Most suspended solids concentrations ranged from about 50 to 200 milligrams per liter (mg/L), most total nitrogen concentrations ranged from about 1.1 to 1.8 mg/L, and most total phosphorus concentrations ranged from about 0.25 to 0.40 mg/L. Suspended solids, total nitrogen, total ammonia plus organic nitrogen, total phosphorus, and dissolved orthophosphorus concentrations from samples collected during storm events were typically higher at the cotton field site than at the forested site. Estimated annual yields of suspended solids, nitrogen, and phosphorus were substantially higher from the cotton field than from the forested area. Dissolved chloride concentrations typically were higher at the forested site than from the cotton field site. Typically, the suspended solids and nutrient concentrations from the 25 ambient sites were lower than concentrations in runoff from the cotton field but higher than concentrations in runoff from the forest area. Concentrations of sulfate, chloride, suspended solids, and some nutrients in samples from the catfish pond generally were greater than concentrations in samples from other sites. Total phosphorus, orthophosphorus, and fecal coliform bacteria concentrations from the catfish pond generally were lower

  1. Relationships of sedimentation and benthic macroinvertebrate assemblages in headwater streams using systematic longitudinal sampling at the reach scale.

    PubMed

    Longing, S D; Voshell, J R; Dolloff, C A; Roghair, C N

    2010-02-01

    Investigating relationships of benthic invertebrates and sedimentation is challenging because fine sediments act as both natural habitat and potential pollutant at excessive levels. Determining benthic invertebrate sensitivity to sedimentation in forested headwater streams comprised of extreme spatial heterogeneity is even more challenging, especially when associated with a background of historical and intense watershed disturbances that contributed unknown amounts of fine sediments to stream channels. This scenario exists in the Chattahoochee National Forest where such historical timber harvests and contemporary land-uses associated with recreation have potentially affected the biological integrity of headwater streams. In this study, we investigated relationships of sedimentation and the macroinvertebrate assemblages among 14 headwater streams in the forest by assigning 30, 100-m reaches to low, medium, or high sedimentation categories. Only one of 17 assemblage metrics (percent clingers) varied significantly across these categories. This finding has important implications for biological assessments by showing streams impaired physically by sedimentation may not be impaired biologically, at least using traditional approaches. A subsequent multivariate cluster analysis and indicator species analysis were used to further investigate biological patterns independent of sedimentation categories. Evaluating the distribution of sedimentation categories among biological reach clusters showed both within-stream variability in reach-scale sedimentation and sedimentation categories generally variable within clusters, reflecting the overall physical heterogeneity of these headwater environments. Furthermore, relationships of individual sedimentation variables and metrics across the biological cluster groups were weak, suggesting these measures of sedimentation are poor predictors of macroinvertebrate assemblage structure when using a systematic longitudinal sampling design

  2. Social Insects Dominate Eastern US Temperate Hardwood Forest Macroinvertebrate Communities in Warmer Regions

    PubMed Central

    King, Joshua R.; Warren, Robert J.; Bradford, Mark A.

    2013-01-01

    Earthworms, termites, and ants are common macroinvertebrates in terrestrial environments, although for most ecosystems data on their abundance and biomass is sparse. Quantifying their areal abundance is a critical first step in understanding their functional importance. We intensively sampled dead wood, litter, and soil in eastern US temperate hardwood forests at four sites, which span much of the latitudinal range of this ecosystem, to estimate the abundance and biomass m−2 of individuals in macroinvertebrate communities. Macroinvertebrates, other than ants and termites, differed only slightly among sites in total abundance and biomass and they were similar in ordinal composition. Termites and ants were the most abundant macroinvertebrates in dead wood, and ants were the most abundant in litter and soil. Ant abundance and biomass m−2 in the southernmost site (Florida) were among the highest values recorded for ants in any ecosystem. Ant and termite biomass and abundance varied greatly across the range, from <1% of the total macroinvertebrate abundance (in the northern sites) to >95% in the southern sites. Our data reveal a pronounced shift to eusocial insect dominance with decreasing latitude in a temperate ecosystem. The extraordinarily high social insect relative abundance outside of the tropics lends support to existing data suggesting that ants, along with termites, are globally the most abundant soil macroinvertebrates, and surpass the majority of other terrestrial animal (vertebrate and invertebrate) groups in biomass m−2. Our results provide a foundation for improving our understanding of the functional role of social insects in regulating ecosystem processes in temperate forest. PMID:24116079

  3. Effects of land use, stream habitat, and water quality on biological communities of wadeable streams in the Illinois River Basin of Arkansas, 2011 and 2012

    USGS Publications Warehouse

    Petersen, James C.; Justus, B.G.; Meredith, Bradley J.

    2014-01-01

    The Illinois River Basin includes an area of diverse land use in northwestern Arkansas. Land-use data collected in 2006 indicate that most of the land in the basin is agricultural. The agricultural land is used primarily for production of poultry and cattle. Eighteen sites were selected from the list of candidate sites based on drainage area, land use, presence or absence of an upstream wastewater-treatment plant, water quality, and other information gathered during the reconnaissance. An important consideration in the process was to select sites along gradients of forest to urban land use and forest to agricultural land use. Water-quality samples were collected for analysis of nutrients, and a multiparameter field meter was used to measure water temperature, specific conductance, pH, and dissolved oxygen. Streamflow was measured immediately following the water-quality sampling. Macroalgae coverage was estimated and periphyton, macroinvertebrate, and fish communities were sampled at each site. Stream habitat also was assessed. Many types of land-use, water-quality, and habitat factors affected one or more aspects of the biological communities. Several macroinvertebrate and fish metrics changed in response to changes in percent forest; sites that would be considered most disturbed, based on these metrics, are sites with the highest percentages of urban land use in their associated basins. The presence of large mats of macroalgae was one of the most noticeable biological characteristics in several streams within the Illinois River Basin. The highest macroalgae percent cover values were recorded at four sites downstream from wastewater-treatment plants. Macroalgae percent cover was strongly correlated only with bed substrate size, canopy closure, and specific conductance. Periphyton metrics were most often and most strongly correlated with riparian shading, specific conductance, substrate turbidity, percent agriculture, poultry house density, and unpaved road density

  4. ASSESSMENT OF LARGE RIVER MACROINVERTEBRATE ASSEMBLAGES

    EPA Science Inventory

    During the summer of 2001, twelve sites were sampled for macroinvertebrates, six each on the Great Miami and Kentucky Rivers. Sites were chosen in each river from those sampled in the 1999 methods comparison study to reflect a disturbance gradient. At each site, a total distanc...

  5. Concordance between macrophytes and macroinvertebrates in a Mediterranean river of central Apennine region.

    PubMed

    Traversetti, Lorenzo; Scalici, Massimiliano; Ginepri, Valeria; Manfrin, Alessandro; Ceschin, Simona

    2014-05-01

    The main aim of this study was to improve the knowledge about the concordance among macrophytes and macroinvertebrates to provide complementary information and facilitate the procedures for quality assessment of river ecosystems. Macrophytes and macroinvertebrates were collected in 11 sampling sites along a central Apennine calcareous river in October 2008 and June 2009. The concordance between the two biomonitoring groups was tested according to several environmental parameters. The comparison of data matrix similarities by Mantel test showed differences in the assemblage of macrophytes and macroinvertebrates along the river since correlation values were 0.04, p > 0.05 in October 2008 and 0.39, p > 0.05 in June 2009. The study revealed lack of concordance between the two groups, emphasizing that the information provided by macrophytes and macroinvertebrates does not overlap in terms of response to environmental parameters. Indeed, the two different biological groups resulted useful descriptors of different parameters. Together, they could represent a complementary tool to reflect the river environmental quality.

  6. Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon richness of macroinvertebrate species.

    PubMed

    Moorhouse, Tom P; Poole, Alison E; Evans, Laura C; Bradley, David C; Macdonald, David W

    2014-02-01

    Invasive species are a major cause of species extinction in freshwater ecosystems, and crayfish species are particularly pervasive. The invasive American signal crayfish Pacifastacus leniusculus has impacts over a range of trophic levels, but particularly on benthic aquatic macroinvertebrates. Our study examined the effect on the macroinvertebrate community of removal trapping of signal crayfish from UK rivers. Crayfish were intensively trapped and removed from two tributaries of the River Thames to test the hypothesis that lowering signal crayfish densities would result in increases in macroinvertebrate numbers and taxon richness. We removed 6181 crayfish over four sessions, resulting in crayfish densities that decreased toward the center of the removal sections. Conversely in control sections (where crayfish were trapped and returned), crayfish density increased toward the center of the section. Macroinvertebrate numbers and taxon richness were inversely correlated with crayfish densities. Multivariate analysis of the abundance of each taxon yielded similar results and indicated that crayfish removals had positive impacts on macroinvertebrate numbers and taxon richness but did not alter the composition of the wider macroinvertebrate community. Synthesis and applications: Our results demonstrate that non-eradication-oriented crayfish removal programmes may lead to increases in the total number of macroinvertebrates living in the benthos. This represents the first evidence that removing signal crayfish from riparian systems, at intensities feasible during control attempts or commercial crayfishing, may be beneficial for a range of sympatric aquatic macroinvertebrates.

  7. Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon richness of macroinvertebrate species

    PubMed Central

    Moorhouse, Tom P; Poole, Alison E; Evans, Laura C; Bradley, David C; Macdonald, David W

    2014-01-01

    Invasive species are a major cause of species extinction in freshwater ecosystems, and crayfish species are particularly pervasive. The invasive American signal crayfish Pacifastacus leniusculus has impacts over a range of trophic levels, but particularly on benthic aquatic macroinvertebrates. Our study examined the effect on the macroinvertebrate community of removal trapping of signal crayfish from UK rivers. Crayfish were intensively trapped and removed from two tributaries of the River Thames to test the hypothesis that lowering signal crayfish densities would result in increases in macroinvertebrate numbers and taxon richness. We removed 6181 crayfish over four sessions, resulting in crayfish densities that decreased toward the center of the removal sections. Conversely in control sections (where crayfish were trapped and returned), crayfish density increased toward the center of the section. Macroinvertebrate numbers and taxon richness were inversely correlated with crayfish densities. Multivariate analysis of the abundance of each taxon yielded similar results and indicated that crayfish removals had positive impacts on macroinvertebrate numbers and taxon richness but did not alter the composition of the wider macroinvertebrate community. Synthesis and applications: Our results demonstrate that non-eradication-oriented crayfish removal programmes may lead to increases in the total number of macroinvertebrates living in the benthos. This represents the first evidence that removing signal crayfish from riparian systems, at intensities feasible during control attempts or commercial crayfishing, may be beneficial for a range of sympatric aquatic macroinvertebrates. PMID:24634733

  8. Pathways of organic matter through food webs of diverse habitats in the regulated Nakdong River estuary (Korea)

    NASA Astrophysics Data System (ADS)

    Choy, Eun Jung; An, Soonmo; Kang, Chang-Keun

    2008-06-01

    The benthic macroinvertebrates of the Nakdong River estuary were sampled at three different habitats: two salt marsh ( Scirpus triqueter and Phragmites australis) beds and a bare intertidal flat. Fishes were sampled in the main channel. The trophic importance of marsh vascular plants, microphytobenthos, and riverine and channel particulate organic matter to macroinvertebrate and fish production was studied using stable carbon and nitrogen isotope tracers. There was a dramatic change in coverage of macrophytes (salt marshes and seagrass) after the construction of an estuarine barrage in 1987 in the Nakdong River estuary, with the S. triqueter bed increasing, the P. australis bed decreasing, and Zostera marina habitats being nearly lost. Although the invertebrate δ 13C were within a narrower range than those of the primary producers, the values varied considerably among consumers in these habitats. However, the isotope signatures of consumers showed similarities among different habitats. Cluster analysis based on their isotopic similarity suggested that the isotope variability among species was related more to functional feeding groups than to habitats or taxonomic groups. While δ 13C values of suspension feeders were close to that of the channel POM (mainly phytoplankton), other benthic feeders and predators had δ 13C similar to that of microphytobenthos. Isotopic mixing model estimates suggest that algal sources, including microphytobenthos and phytoplankton, play an important role in supporting the benthic food web. Despite the huge productivity of emergent salt marshes, the contribution of the marsh-derived organic matter to the estuarine food webs appears to be limited to some nutrition for some invertebrates just within marsh habitats, with little on the bare intertidal flats or in the channel fish communities. Isotope signatures of the channel fishes also confirm that algal sources are important in supporting fish nutrition. Our findings suggest that

  9. Habitat, biota, and sediment characteristics at selected stations in the lower Illinois River Basin, Illinois, 1996-98

    USGS Publications Warehouse

    Adolphson, Debbie L.; Fazio, David J.; Harris, Mitchell A.

    2001-01-01

    Data collection for the lower Illinois River Basin (LIRB) National Water-Quality Assessment (NAWQA) program began in 1996. Data on habitat, fish, benthic macroinvertebrates, and sediment were collected at eight stations on six streams in the basin--Illinois River, Panther Creek, Mackinaw River, Indian Creek, Sangamon River, and La Moine River. These streams typically flow through agricultural lands with very low gradients. Substrates typically are clay to gravel with areas of cobble. Banks are high, steep, and sparsely vegetated. Topographic surveys provide illustrations of the geometry that promote understanding of channel geometry and a data set that, in the future, can be used by others to assess stream changes. Suspended-sediment particle size, woody debris, and stream velocity are important to fish and benthic macroinvertebrate communities. Fine particles (silts and clays) were abundant in suspended sediment and stream banks, and fish insectivorous cyprinid community composition increased with decreases in the concentration of these suspended fines. Suckers were prevalent in stream reaches with abundant woody-snag cover, whereas sunfish communities were most abundant in areas with slow water velocities. Hydropsychidae, Chironomidae, and Baetidae were the most abundant benthic macroinvertebrate families collected throughout the region, but stream size and water velocity were important to benthic macroinvertebrate community composition. Tricorythodes mayflies and Elmidae had higher relative abundance at sites in small- and moderate-size drainage basins, and Baetidae density was greatest in reaches with highest water velocity.

  10. Taxonomic diversity and structure of benthic macroinvertebrates in Aby Lagoon (Ivory Coast, West Africa).

    PubMed

    Kouadio, K N; Diomandé, D; Ouattara, A; Koné, Y J M; Gourène, G

    2008-09-15

    The benthic macroinvertebrates of Aby lagoon (West Africa: Ivory coast) was studied during four seasons (high dry season, high rainy season, low dry season and low rainy season, respectively) from June 2006 to March 2007. The distribution of the benthic macroinvertebrates species was recorded at 13 stations on the whole of the lagoon. A total of 62 taxa of benthic macroinvertebrates belonging to 28 families and 10 orders were listed. The molluscs and crustaceans dominate qualitatively by adding up 51 and 24%, respectively of the total number of organisms. Five taxa (Corbula trigona (20%), Pachymelania aurita (12%), Clibernhardius cooki (7%), Oligochaeta (7%) and Crassostrea gasar (6%) accounted for 52% of total abundance. Classification analysis used to perform the characterisation of the lagoon on the basis of benthic macroinvertebrates showed the existence of four main clusters in which the seasonal pattern in benthic macroinvertebrates were very similar in the four seasons. In contrast the species richness and diversity indices were significantly different. Furthermore these indices where higher in the stations closer to the sea and surrounded by mangrove trees (southern area) compared to the inland ones.

  11. Can animal habitat use patterns influence their vulnerability to extreme climate events? An estuarine sportfish case study.

    PubMed

    Boucek, Ross E; Heithaus, Michael R; Santos, Rolando; Stevens, Philip; Rehage, Jennifer S

    2017-10-01

    Global climate forecasts predict changes in the frequency and intensity of extreme climate events (ECEs). The capacity for specific habitat patches within a landscape to modulate stressors from extreme climate events, and animal distribution throughout habitat matrices during events, could influence the degree of population level effects following the passage of ECEs. Here, we ask (i) does the intensity of stressors of an ECE vary across a landscape? And (ii) Do habitat use patterns of a mobile species influence their vulnerability to ECEs? Specifically, we measured how extreme cold spells might interact with temporal variability in habitat use to affect populations of a tropical, estuarine-dependent large-bodied fish Common Snook, within Everglades National Park estuaries (FL US). We examined temperature variation across the estuary during cold disturbances with different degrees of severity, including an extreme cold spell. Second, we quantified Snook distribution patterns when the passage of ECEs is most likely to occur from 2012 to 2016 using passive acoustic tracking. Our results revealed spatial heterogeneity in the intensity of temperature declines during cold disturbances, with some habitats being consistently 3-5°C colder than others. Surprisingly, Snook distributions during periods of greatest risk to experience an extreme cold event varied among years. During the winters of 2013-2014 and 2014-2015 a greater proportion of Snook occurred in the colder habitats, while the winters of 2012-2013 and 2015-2016 featured more Snook observed in the warmest habitats. This study shows that Snook habitat use patterns could influence vulnerability to extreme cold events, however, whether Snook habitat use increases or decreases their vulnerability to disturbance depends on the year, creating temporally dynamic vulnerability. Faunal global change research should address the spatially explicit nature of extreme climate events and animal habitat use patterns to identify

  12. Associations Between Macroinvertebrates and Paralemanea mexicana, an Endemic Freshwater Red Alga from a Mountain River in Central Mexico.

    PubMed

    Caro-Borrero, A; Carmona-Jiménez, J

    2016-12-01

    Macrophytes are common inhabitants of lotic environments and, depending on their morphological traits, possess adaptations that provide shelter to aquatic invertebrates against strong river flow and predators. They may also be used as a food source by macroinvertebrates. The main goal of this study was to determine the relationship between the red alga Paralemanea mexicana and its role as a shelter and/or food source for lotic macroinvertebrates. We also conducted research on the role of microhabitat and morphological variations of the alga in determining macroinvertebrate taxon abundance, diversity, and functional group composition in a high-current velocity river. Results showed that changes in cover and morphology of P. mexicana were mostly correlated with river current velocity, irradiance, and seasonal variation. In turn, these were related to changes in abundance and diversity of the associated macroinvertebrate community. In addition, six macroinvertebrate functional feeding groups were evaluated for associations with the red alga: filtering and gathering collectors, piercers, scrapers, herbivore shredders, and predators. The results showed that the Trichoptera Hydroptilidae genera Ochrotrichia and Metrichia use P. mexicana as a food source and case-building material. The Trichoptera Glossosomatidae Mortoniella uses the alga as a substrate. The biotic interactions between P. mexicana and associated macroinvertebrates reveal the importance of macrophytes as purveyors of substrate, as food and shelter for macroinvertebrates, and also as promoters of macroinvertebrate community diversity. In addition, it was shown that macroinvertebrate herbivory likely facilitates vegetative propagation of the red alga through increased release and germination of carpospores and new gametophytes.

  13. Biological and Physical Conditions at a Newly Placed Gravel Bar Habitat in the Tombigbee River.

    DTIC Science & Technology

    1988-03-01

    much lower than values reported for other lotic systems. The lowest biomass estimate in Table 7 (1.395 g AFDW/m2 for the Pine River, Mich.) is over twice...that were close to dense macroinvertebrate communities. The habitat at Columbus is unique because the riffles were constructed from barren substrates...AFDW/m Reference Pine River, Mich. Barber and Kevern natural, trout stream, 61.625 1.395 1973 Jun-Oct Mink Creek, Idaho 6.907* 10.811 Minshall 1981

  14. The impact of an industrial effluent on the water quality, submersed macrophytes and benthic macroinvertebrates in a dammed river of Central Spain.

    PubMed

    Gonzalo, Cristina; Camargo, Julio A

    2013-10-01

    This research was conducted in the middle Duratón River (Central Spain), in the vicinity of Burgomillodo Reservoir. An industrial effluent enters the river 300 m downstream from the dam. Fluoride and turbidity levels significantly increased downstream from the effluent, these levels being to some extent affected by differential water releases from the dam. The community of submersed macrophytes exhibited slighter responses and, accordingly, lower discriminatory power than the community of benthic macroinvertebrates, this indicating that metrics and indices based on macroinvertebrates may be more suitable for the biological monitoring of water pollution and habitat degradation in dammed rivers receiving industrial effluents. However, in relation to fluoride bioaccumulation at the organism level, macrophytes (Fontinalis antipyretica and Potamogeton pectinatus) were as suitable bioindicators of fluoride pollution as macroinvertebrates (Ancylus fluviatilis and Pacifastacus leniusculus). Fluoride bioaccumulation in both hard and soft tissues of these aquatic organisms could be used as suitable bioindicator of fluoride pollution (even lower than 1 mg F(-)L(-1)) in freshwater ecosystems. Echinogammarus calvus exhibited a great sensitivity to the toxicity of fluoride ions, with a 96 h LC₅₀ of 7.5 mg F(-)L(-1) and an estimated safe concentration of 0.56 mg F(-)L(-1). The great capacity of E. calvus to take up and retain fluoride during exposures to fluoride ions would be a major cause of its great sensitivity to fluoride toxicity. It is concluded that the observed fluoride pollution might be partly responsible for the absence of this native amphipod downstream from the industrial effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Distribution and diversity of aquatic macroinvertebrate assemblages in a semi-arid region earmarked for shale gas exploration (Eastern Cape Karoo, South Africa)

    PubMed Central

    Bird, Matthew S.; Perissinotto, Renzo

    2017-01-01

    This study aims to investigate macroinvertebrate assemblage structure and composition across the three major waterbody types (temporary rivers, depression wetlands and semi-permanent dams) of the Eastern Cape Karoo, and to identify important environmental and spatial correlates of macroinvertebrate assemblage composition in the region. A total of 33 waterbodies (9 dams, 13 depression wetlands and 11 rivers) were sampled. Altogether, 91 taxa were recorded in November 2014 and 82 in April 2015. Twenty-seven taxa were common to all three waterbody types (across both sampling occasions), with 17 of these observed in November and 19 in April. The ANOSIM tests revealed significant differences in assemblage composition between the depression wetlands and rivers for both sampling occasions, but dams did not differ from the other waterbody types. SIMPER analyses indicated that the notonectid Anisops varia and the corixid Micronecta scutellaris were abundant across all three waterbody types during both sampling occasions. The mayfly Cloeon africanum and the damselfly Pseudagrion sp. were abundant in river habitats during both sampling occasions, while the gastropod mollusc Bulinus tropicus and the copepod Lovenula falcifera best characterised depression wetlands on both occasions. Non-metric multidimensional scaling ordination highlighted a clear separation of assemblages between November and April, while distance-based Redundancy Analysis revealed that conductivity, altitude, turbidity and pH were the most important variables explaining the variation in macroinvertebrate assemblage patterns. These results provide baseline information which is important for future biological monitoring of impacts associated with hydraulic fracturing activities and climatic changes in the region. PMID:28575059

  16. Distribution and diversity of aquatic macroinvertebrate assemblages in a semi-arid region earmarked for shale gas exploration (Eastern Cape Karoo, South Africa).

    PubMed

    Mabidi, Annah; Bird, Matthew S; Perissinotto, Renzo

    2017-01-01

    This study aims to investigate macroinvertebrate assemblage structure and composition across the three major waterbody types (temporary rivers, depression wetlands and semi-permanent dams) of the Eastern Cape Karoo, and to identify important environmental and spatial correlates of macroinvertebrate assemblage composition in the region. A total of 33 waterbodies (9 dams, 13 depression wetlands and 11 rivers) were sampled. Altogether, 91 taxa were recorded in November 2014 and 82 in April 2015. Twenty-seven taxa were common to all three waterbody types (across both sampling occasions), with 17 of these observed in November and 19 in April. The ANOSIM tests revealed significant differences in assemblage composition between the depression wetlands and rivers for both sampling occasions, but dams did not differ from the other waterbody types. SIMPER analyses indicated that the notonectid Anisops varia and the corixid Micronecta scutellaris were abundant across all three waterbody types during both sampling occasions. The mayfly Cloeon africanum and the damselfly Pseudagrion sp. were abundant in river habitats during both sampling occasions, while the gastropod mollusc Bulinus tropicus and the copepod Lovenula falcifera best characterised depression wetlands on both occasions. Non-metric multidimensional scaling ordination highlighted a clear separation of assemblages between November and April, while distance-based Redundancy Analysis revealed that conductivity, altitude, turbidity and pH were the most important variables explaining the variation in macroinvertebrate assemblage patterns. These results provide baseline information which is important for future biological monitoring of impacts associated with hydraulic fracturing activities and climatic changes in the region.

  17. Macroinvertebrates as Indicators of Stream Health.

    ERIC Educational Resources Information Center

    McDonald, Brook S.; And Others

    1991-01-01

    Describes Ohio's Scenic Rivers Monitoring Program that uses benthic macroinvertebrates, such as the stonefly, mayfly, and water penny beetle larva, as key indicators of water quality and stream health. Presents a three-category scheme for invertebrates based upon their tolerance to pollution. Students can collect samples of these organisms,…

  18. Benthic macroinvertebrates in lake ecological assessment: A review of methods, intercalibration and practical recommendations.

    PubMed

    Poikane, Sandra; Johnson, Richard K; Sandin, Leonard; Schartau, Ann Kristin; Solimini, Angelo G; Urbanič, Gorazd; Arbačiauskas, Kęstutis; Aroviita, Jukka; Gabriels, Wim; Miler, Oliver; Pusch, Martin T; Timm, Henn; Böhmer, Jürgen

    2016-02-01

    Legislation in Europe has been adopted to determine and improve the ecological integrity of inland and coastal waters. Assessment is based on four biotic groups, including benthic macroinvertebrate communities. For lakes, benthic invertebrates have been recognized as one of the most difficult organism groups to use in ecological assessment, and hitherto their use in ecological assessment has been limited. In this study, we review and intercalibrate 13 benthic invertebrate-based tools across Europe. These assessment tools address different human impacts: acidification (3 methods), eutrophication (3 methods), morphological alterations (2 methods), and a combination of the last two (5 methods). For intercalibration, the methods were grouped into four intercalibration groups, according to the habitat sampled and putative pressure. Boundaries of the 'good ecological status' were compared and harmonized using direct or indirect comparison approaches. To enable indirect comparison of the methods, three common pressure indices and two common biological multimetric indices were developed for larger geographical areas. Additionally, we identified the best-performing methods based on their responsiveness to different human impacts. Based on these experiences, we provide practical recommendations for the development and harmonization of benthic invertebrate assessment methods in lakes and similar habitats. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Relationships between environmental characteristics and macroinvertebrate communities in seasonal woodland ponds of Minnesota

    Treesearch

    Darold P. Batzer; Brian J. Palik; Richard Buech

    2004-01-01

    We related macroinvertebrate communities and environmental variables in 66 small seasonal woodland ponds of northern Minnesota, USA. These wetlands were relatively pristine, being embedded in 50- to 100-y-old 2nd-growth forests. Macroinvertebrate taxon richness in ponds increased as hydroperiods lengthened, tree canopies opened, water pH declined, and litter input...

  20. Influence of habitat structure on fish assemblage of an artificial reef in southern Brazil.

    PubMed

    Hackradt, Carlos Werner; Félix-Hackradt, Fabiana Cézar; García-Charton, José Antonio

    2011-12-01

    Habitat complexity strongly influences reef fish community composition. An understanding of the underlying reasons for this relationship is important for evaluating the suitability of artificial reef (AR) habitats as a marine resource management tool. We studied the influence of AR habitat structure on fish assemblage composition off the southern coast of Brazil. We found that reef blocks with greater area and number of holes possessed the greatest fish species richness and abundance. Reef blocks with greater complexity had higher abundance of almost 30% of fish species present. Natural reef (NR) and AR were different in their fish species composition, trophic structure and categories of water column occupancy by fish (spatial categories). Although NR was more diverse and harboured more trophic levels, AR presented the higher abundances and the presence of distinct fish species that underlined their importance at a regional scale. The greater availability of sheltering habitat where hard substrate is scarce, together with their frequent use by economically important species, make AR a useful tool for coastal management when certain ecological conditions are met. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The inland water macro-invertebrate occurrences in Flanders, Belgium.

    PubMed

    Vannevel, Rudy; Brosens, Dimitri; Cooman, Ward De; Gabriels, Wim; Frank Lavens; Mertens, Joost; Vervaeke, Bart

    2018-01-01

    The Flanders Environment Agency (VMM) has been performing biological water quality assessments on inland waters in Flanders (Belgium) since 1989 and sediment quality assessments since 2000. The water quality monitoring network is a combined physico-chemical and biological network, the biological component focusing on macro-invertebrates. The sediment monitoring programme produces biological data to assess the sediment quality. Both monitoring programmes aim to provide index values, applying a similar conceptual methodology based on the presence of macro-invertebrates. The biological data obtained from both monitoring networks are consolidated in the VMM macro-invertebrates database and include identifications at family and genus level of the freshwater phyla Coelenterata, Platyhelminthes, Annelida, Mollusca, and Arthropoda. This paper discusses the content of this database, and the dataset published thereof: 282,309 records of 210 observed taxa from 4,140 monitoring sites located on 657 different water bodies, collected during 22,663 events. This paper provides some background information on the methodology, temporal and spatial coverage, and taxonomy, and describes the content of the dataset. The data are distributed as open data under the Creative Commons CC-BY license.

  2. Fire in the eastern United States: influence on wildlife habitat

    Treesearch

    D. H. Van Lear; R. F. Harlow

    2002-01-01

    Fire is a major influence shaping wildlife habitats in the eastern United States. Lightning- and Indian-ignited fires burned frequently and extensively over the pre-Columbian landscape and shaped the character of numerous ecosystems. Depending upon the frequency, intensity, and severity of the fires, various assemblages of plants developed along environmental gradients...

  3. Relation of macroinvertebrate community impairment to catchment characteristics in New Jersey streams

    USGS Publications Warehouse

    Kennen, J.G.

    1999-01-01

    The level of macroinvertebrate community impairment was statistically related to selected basin and water-quality characteristics in New Jersey streams. More than 700 ambient biomonitoring stations were chosen to evaluate potential and known anthropogenic effects. Macroinvertebrate communities were assessed with a modified rapid-bioassessment approach using three impairment ratings (nonimpaired, moderately impaired, and severely impaired). Maximum-likelihood multiple logistic-regression analysis was used to develop equations defining the probability of community impairment above predetermined impairment levels. Seven of the original 140 explanatory variables were highly related to the level of community impairment. Explanatory variables found to be most useful for predicting severe macroinvertebrate community impairment were the amount of urban land and total flow of municipal effluent. Area underlain by the Reading Prong physiographic region and amount of forested land were inversely related to severe impairment. Nonparametric analysis of variance on rank-transformed bioassessment scores was used to evaluate differences in level of impairment among physiographic regions and major drainage areas simultaneously. Rejection of the null hypothesis indicated that the levels of impairment among all six physiographic regions and five major drainage areas were not equal. Physiographic regions located in the less urbanized northwest portion of New Jersey were not significantly different from each other and had the lowest occurrence of severely impaired macroinvertebrate communities. Physiographic regions containing urban centers had a higher probability of exhibiting a severely impaired macroinvertebrate community. Analysis of major drainage areas indicates that levels of impairment in the Atlantic Coastal Rivers drainage area differed significantly from those in the Lower Delaware River drainage area.

  4. Science foundation Chapter 5 Appendix 5.1: Case study marsh macroinvertebrates

    USGS Publications Warehouse

    Brusati, Elizabeth; Woo, Isa

    2015-01-01

    This case study includes representative macroinvertebrates that live in the marsh plain, its associated channels and pannes (ponds), and the marsh-upland transition zone. While less visible than animals such as birds, invertebrates play important roles in physical and biological processes (e.g., burrowing activity and channel bank erosion, and detritivores breaking down organic matter) and are important food resources for higher trophic animals. Common invertebrates in these habitats include plant-hopper (Prokelisia marginata), beach hopper (Traskorchestia traskiana), pygmy blue butterfly (Brephidium exilis), inchworm moth (Perizoma custodiata), western tanarthus beetle (Tanarthus occidentalis), salt marsh mosquitoes (Aedes spp.; Maffei 2000a, Maffei 2000b, Maffei 2000c), crabs (native Hemigrapsus oregonensis and introduced Carcinus maenas), copepods, snails (e.g. native California horn snail Cerithidea californica and introduced Ilyanassa obsoleta, Myosotella myosotis), polychaetes (e.g. Capitella spp., Eteone californica, Neanthes brandti), small clams (Macoma petalum/M. balthica), and corophiid amphipods (Cohen 2011, Race 1982, Robinson et al. 2011). Some common species were described in detail in the San Francisco Bay Goals Project Species and Community Profiles (Goals Project 2000).

  5. Stream macroinvertebrate drift response to pulsed exposure of the synthetic pyrethroid lambda-cyhalothrin.

    PubMed

    Lauridsen, Rasmus B; Friberg, Nikolai

    2005-10-01

    Outdoor experimental channels were used to study the behavioral changes of stream macroinvertebrates exposed to a pulse of the pyrethroid insecticide lambda-cyhalothrin. The primary end point was the number of macroinvertebrates drifting, but the mobility of macroinvertebrates caught in the drift also was assessed. A specified number of two insect species, Baetis rhodani and Leuctra fusca/digitata, and of the amphipod Gammarus pulex were introduced into small replicated subsections of the experimental channels. Macroinvertebrates were allowed to acclimatize for 26 h prior to a 60-min pulsed exposure to lambda-cyhalothrin. Measurement was initiated 2 h before pesticide application and continued for the following 24 h. Pulse concentrations of lambda-cyhalothrin of 0.001, 0.01, 0.1, and 1.0 microg L(-1) were applied, and each experiment was replicated 8 times. All three species responded to the pesticide pulse with catastrophic drift. The 0.001 microg L(-1) treatment caused a significant increase in the drift of Gammarus, whereas the drift response threshold was 0.01 microg L(-1) for the two insect species. Drift response onset followed the applied pulse concentration, with the highest concentrations resulting in more individuals of all species entering drift at an early stage. The majority of individuals caught in drift samples during low concentrations showed no change in mobility. At the two highest concentrations, however, both Baetis and Leuctra were in the process of being immobilized, with Leuctra the more sensitive of the two. In contrast, only a few of the Gammarus individuals caught showed changes in mobility after the high-concentration treatments. The present study shows that lambda-cyhalothrin is a potential hazard for macroinvertebrate populations in headwater streams. The clear species-specific responses indicate that sublethal doses have the potential to change the macroinvertebrate community structure. (c) 2005 Wiley Periodicals, Inc.

  6. The influence of habitat on the evolution of plants: a case study across Saxifragales

    PubMed Central

    de Casas, Rafael Rubio; Mort, Mark E.; Soltis, Douglas E.

    2016-01-01

    Background and Aims Organismal evolution tends to be closely associated with ecological conditions. However, the extent to which this association constrains adaptation or diversification into new habitats remains unclear. We studied habitat evolution in the hyper-diverse angiosperm clade Saxifragales. Methods We used species-level phylogenies for approx. 950 species to analyse the evolution of habitat shifts as well as their influence on plant diversification. We combined habitat characterization based on floristic assignments and state-of-the art phylogenetic comparative methods to estimate within- and across-habitat diversification patterns. Key Results Our analyses showed that Saxifragales diversified into multiple habitats from a forest-inhabiting ancestor and that this diversification is governed by relatively rare habitat shifts. Lineages are likely to stay within inferred ancestral ecological conditions. Adaptation to some habitat types (e.g. aquatic, desert) may be canalizing events that lineages do not escape. Although associations between increased diversification rates and shifts in habitat preferences are occasionally observed, extreme macroevolutionary rates are closely associated with specific habitats. Lineages occurring in shrubland, and especially tundra and rock cliffs, exhibit comparatively high diversification, whereas forest, grassland, desert and aquatic habitats are associated with low diversification. Conclusions The likelihood of occupation of new habitats appears to be asymmetric. Shifts to aquatic and desert habitats may be canalizing events. Other habitats, such as tundra, might act as evolutionary sources, while forests provide the only habitat seemingly colonized easily by lineages originating elsewhere. However, habitat shifts are very rare, and any major environmental alteration is expected to have dramatic evolutionary consequences. PMID:27551029

  7. Impact assessment of agricultural driven stressors on benthic macroinvertebrates using simulated data.

    PubMed

    Stefanidis, K; Panagopoulos, Y; Mimikou, M

    2016-01-01

    Agricultural land use poses a significant threat to the ecological integrity of rivers in Europe. Particularly in the Mediterranean, water abstraction and nutrient application are anthropogenic pressures that have a significant impact on aquatic habitats and biodiversity. In this article, we assessed the effects of agricultural management practices on benthic macroinvertebrates in a large river basin of central Greece using simulated data based on the application of SWAT (Soil Water Assessment Tool) model. Physicochemical and hydrological output variables of the model were used as predictors of the ASPT (Average Score Per Taxon) metric based on a correlated component regression analysis (CCR) built on empirical data. The estimation of ASPT was performed for the wet and dry seasons within a 20-year period for a total of 47 subbasins under the baseline conditions and after implementing three management scenarios that reduced: a) irrigation water applied to crops by 30%, b) chemical fertilization applied to crops by 30% and c) both irrigation and fertilization by 30%. The results revealed that application of the reduced irrigation resulted to a slight increase of the simulated dissolved inorganic nitrogen concentration (DIN), which in turn decreased the mean ASPT in 21 of the 47 subbasins implying a negative effect on the macroinvertebrate communities. On the contrary, the reduction of fertilization as well as the combined scenario decreased both the simulated DIN and phosphate concentration causing an increase of the mean ASPT for a total of 40 of the 47 subbasins. Based on these results, we suggest that the best management option is a combined practice of deficit irrigation and fertilization reduction since it improved water quality, increased ASPT values and saved a considerable amount of water. Overall, this work demonstrates a simple methodology that can efficiently assess the effects of agricultural management practices on biotic indicators. Copyright © 2015

  8. The influence of natural and anthropic environmental variables on the structure and spatial distribution along longitudinal gradient of macroinvertebrate communities in southern Brazilian streams

    PubMed Central

    Batalla Salvarrey, Andrea Vanessa; Kotzian, Carla Bender; Spies, Márcia Regina; Braun, Bruna

    2014-01-01

    Abstract Southern Brazilian rivers and streams have been intensively affected by human activities, especially agriculture and the release of untreated domestic sewage. However, data about the aquatic macroinvertebrates in these streams are scarce and limited to only certain groups. In addition, studies focusing on the structure and spatial distribution of these communities are lacking. This study analyzed the effects of natural and anthropic variables on the community structure of macroinvertebrates along a longitudinal gradient in three microbasins located in a region of landscape transition in the state of Rio Grande do Sul, Brazil. Sampling was conducted in the Vacacaí-Mirim River (August 2008) and in the Ibicuí-Mirim and Tororaipí rivers (August 2009) following an environmental gradient including 1 st , 2 nd , 3 rd , and 4 th order segments. Local natural factors that were analyzed include water temperature, pH, electrical conductivity, dissolved oxygen, substrate granulometry, and the presence of aquatic vegetation. Anthropic variables that were analyzed include including bank erosion, land use, urbanization, riparian deforestation, and fine sediments input. A total of 42 families and 129 taxa were found, with predominance of environmentally tolerant taxa. Geological context (landscape transition and large hydrographic basins) tended to influence natural environmental factors along the rivers’ longitudinal gradients. However, changes in anthropic variables were not affected by these geological differences and therefore did not correlate with patterns of spatial distribution in macroinvertebrate communities. Only 1 st order stream segments showed a community composition with high richness of taxa intolerant to anthropic disturbance. Richness as a whole tended to be higher in 3 rd to 4 th order set of segments, but this trend was a result of local anthropic environmental disturbances. Future inventories conducted in similar landscape transition regions of

  9. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    Treesearch

    Gretchen H. Roffler; Michael K. Schwartz; Kristine Pilgrim; Sandra L. Talbot; George K. Sage; Layne G. Adams; Gordon Luikart

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is...

  10. Short-term effects of visitor trampling on macroinvertebrates in karst streams in an ecotourism region.

    PubMed

    Escarpinati, Suzana Cunha; Siqueira, Tadeu; Medina, Paulino Barroso; de Oliveira Roque, Fabio

    2014-03-01

    In order to evaluate the potential risks of human visitation on macroinvertebrate communities in streams, we investigated the effect of trampling using two short-term experiments conducted in a Brazilian ecotourism karst region. We asked three questions: (a) Does trampling increase the drift rate of aquatic macroinvertebrates and organic matter? (b) Does trampling change the macroinvertebrate community organization? (c) If trampling alters the community structure, is a short time (5 days, a between weekends interval - peaks of tourism activities) sufficient for community restructuring? Analysis of variance of richness, total abundance, abundance of the most abundant genus (e.g., Simothraulopsis and Callibaetis), and community composition showed that trampling immediately affects macroinvertebrate community and that the intervals between the peaks of visitation (5 days) are not sufficient to complete community restructuring. Considering that bathing areas receive thousands of visitors every year and that intervals of time without visitation are nearly nonexistent, we suspect that the negative effects on the macroinvertebrate community occur in a cumulative way. Finally, we discuss some simple procedures that could potentially be used for reducing trampling impacts in lotic environments.

  11. Hydrologic modification to improve habitat in riverine lakes: Management objectives, experimental approach, and initial conditions

    USGS Publications Warehouse

    Johnson, Barry L.; Barko, John W.; Gerasimov, Yuri; James, William F.; Litvinov, Alexander; Naimo, Teresa J.; Wiener, James G.; Gaugush, Robert F.; Rogala, James T.; Rogers, Sara J.; Schoettger, R.A.

    1996-01-01

    The Finger Lakes habitat-rehabilitation project is intended to improve physical and chemical conditions for fish in six connected back water lakes in Navigation Pool 5 of the upper Missouri River. The primary management objective is to improve water temperature, dissolved oxygen concentration and current velocity during winter for bluegills, Lepomis macrochirus, and black crappies, Pomoxis nigromaculatus, two of the primary sport fishes in the lakes. The lakes will be hydrologically altered by Installing culverts to Introduce controlled flows of oxygenated water into four lakes, and an existing unregulated culvert on a fifth lake will be equipped with a control gate to regulate inflow. These habitat modifications constitute a manipulative field experiment that will compare pre-project (1991 to summer 1993) and post-project (fall 1993 to 1996) conditions in the lakes, including hydrology, chemistry, rooted vegetation, and fish and macroinvertebrate communities. Initial data indicate that the Finger Lakes differ in water chemistry, hydrology, and macrophyte abundance. Macroinvertebrate communities also differed among lakes: species diversity was highest in lakes with dense aquatic macrophytes. The system seems to support a single fish community, although some species concentrated in individual lakes at different times. The introduction of similar flows into five of the lakes will probably reduce the existing physical and chemical differences among lakes. However, our ability to predict the effects of hydrologic modification on fish populations is limited by uncertainties concerning both the interactions of temperature, oxygen and current in winter and the biological responses of primary and secondary producers. Results from this study should provide guidance for similar habitat-rehabilitation projects in large rivers.

  12. Environmental stressors as a driver of the trait composition of benthic macroinvertebrate assemblages in polluted Iberian rivers.

    PubMed

    Kuzmanovic, Maja; Dolédec, Sylvain; de Castro-Catala, Nuria; Ginebreda, Antoni; Sabater, Sergi; Muñoz, Isabel; Barceló, Damià

    2017-07-01

    We used the trait composition of macroinvertebrate communities to identify the effects of pesticides and multiple stressors associated with urban land use at different sites of four rivers in Spain. Several physical and chemical stressors (high metal pollution, nutrients, elevated temperature and flow alterations) affected the urban sites. The occurrence of multiple stressors influenced aquatic assemblages at 50% of the sites. We hypothesized that the trait composition of macroinvertebrate assemblages would reflect the strategies that the assemblages used to cope with the respective environmental stressors. We used RLQ and fourth corner analysis to address the relationship between stressors and the trait composition of benthic macroinvertebrates. We found a statistically significant relationship between the trait composition and the exposure of assemblages to environmental stressors. The first RLQ dimension, which explained most of the variability, clearly separated sites according to the stressors. Urban-related stressors selected taxa that were mainly plurivoltine and fed on deposits. In contrast, pesticide impacted sites selected taxa with high levels of egg protection (better egg survival), indicating a potentially higher risk for egg mortality. Moreover, the trait diversity of assemblages at urban sites was low compared to that observed in pesticide impacted sites, suggesting the homogenization of assemblages in urban areas. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. The influence of habitat on the evolution of plants: a case study across Saxifragales.

    PubMed

    de Casas, Rafael Rubio; Mort, Mark E; Soltis, Douglas E

    2016-12-01

    Organismal evolution tends to be closely associated with ecological conditions. However, the extent to which this association constrains adaptation or diversification into new habitats remains unclear. We studied habitat evolution in the hyper-diverse angiosperm clade Saxifragales. We used species-level phylogenies for approx. 950 species to analyse the evolution of habitat shifts as well as their influence on plant diversification. We combined habitat characterization based on floristic assignments and state-of-the art phylogenetic comparative methods to estimate within- and across-habitat diversification patterns. Our analyses showed that Saxifragales diversified into multiple habitats from a forest-inhabiting ancestor and that this diversification is governed by relatively rare habitat shifts. Lineages are likely to stay within inferred ancestral ecological conditions. Adaptation to some habitat types (e.g. aquatic, desert) may be canalizing events that lineages do not escape. Although associations between increased diversification rates and shifts in habitat preferences are occasionally observed, extreme macroevolutionary rates are closely associated with specific habitats. Lineages occurring in shrubland, and especially tundra and rock cliffs, exhibit comparatively high diversification, whereas forest, grassland, desert and aquatic habitats are associated with low diversification. The likelihood of occupation of new habitats appears to be asymmetric. Shifts to aquatic and desert habitats may be canalizing events. Other habitats, such as tundra, might act as evolutionary sources, while forests provide the only habitat seemingly colonized easily by lineages originating elsewhere. However, habitat shifts are very rare, and any major environmental alteration is expected to have dramatic evolutionary consequences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  14. Abiotic vs. biotic influences on habitat selection of coexisting species: Climate change impacts?

    USGS Publications Warehouse

    Martin, T.E.

    2001-01-01

    Species are commonly segregated along gradients of microclimate and vegetation. I explore the question of whether segregation is the result of microhabitat partitioning (biotic effects) or choice of differing microclimates (abiotic effects). I explored this question for four ground-nesting bird species that are segregated along a microclimate and vegetation gradient in Arizona. Birds shifted position of their nests on the microhabitat and microclimate gradient in response to changing precipitation over nine years. Similarly, annual bird abundance varied with precipitation across 12 yr. Those shifts in abundance and nesting microhabitat with changing precipitation demonstrate the importance of abiotic influences on bird distributions and habitat choice. However, nest-site shifts and microhabitat use also appear to be influenced by interactions among coexisting species. Moreover, shifts in habitat use by all species caused nest predation (i.e., biotic) costs that increased with increasing distance along the microclimate gradient. These results indicate that abiotic and biotic costs can strongly interact to influence microhabitat choice and abundances of coexisting species. Global climate change impacts have been considered largely in terms of simple distributional shifts, but these results indicate that shifts can also increase biotic costs when species move into habitat types for which they are poorly adapted or that create new biotic interactions.

  15. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    USGS Publications Warehouse

    Roffler, Gretchen H.; Schwartz, Michael K.; Pilgrim, Kristy L.; Talbot, Sandra L.; Sage, Kevin; Adams, Layne G.; Luikart, Gordon

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is important to consider explicit assumptions and spatial scales of measurement. We calculated pairwise genetic distance among 301 Dall's sheep (Ovis dalli dalli) in southcentral Alaska using an intensive noninvasive sampling effort and 15 microsatellite loci. We used multiple regression of distance matrices to assess the correlation of pairwise genetic distance and landscape resistance derived from an RSF, and combinations of landscape features hypothesized to influence dispersal. Dall's sheep gene flow was positively correlated with steep slopes, moderate peak normalized difference vegetation indices (NDVI), and open land cover. Whereas RSF covariates were significant in predicting genetic distance, the RSF model itself was not significantly correlated with Dall's sheep gene flow, suggesting that certain habitat features important during summer (rugged terrain, mid-range elevation) were not influential to effective dispersal. This work underscores that consideration of both habitat selection and landscape genetics models may be useful in developing management strategies to both meet the immediate survival of a species and allow for long-term genetic connectivity.

  16. Feeding habitats of nesting wading birds: Spatial use and social influences

    USGS Publications Warehouse

    Erwin, R. Michael

    1983-01-01

    In an effort to relate social interactions to feeding-habitat use, I observed six species of wading birds near a major colony site in coastal North Carolina. Three spatial scales of habitat use were considered: the general orientation to and from the colony (coarsest level), the habitat "patch," and (at the finest level) the microhabitat. Departure-arrival directions of Great Egrets (Casmerodius albus), Snowy Egrets (Egretta thula), Cattle Egrets (Bubulcus ibis), Little Blue Herons (Egretta caerulea), Tricolored Herons (Egretta tricolor), and Glossy Ibises (Plegadis falcinellus) were monitored at the colony site to document coarse patterns of feeding-habitat use. Added to these data were observations made at five different wetland sites to monitor between-habitat and within-habitat patterns for the five aquatic-feeding species. The results indicated a broad and variable use of feeding habitat over time. At the coarsest scale (i.e. orientation at the colony), diffuse patterns, influenced little by either inter- or intraspecific social interaction, were found for all species. At the next level (habitat "patch"), only one of five wetland sites was relatively consistent in attracting feeding birds, and its use increased from May to June. Few groups were seen at four of the five sites. At the one "attractive" site, the within-habitat patterns again were spatially variable over time, except for those of the abundant Snowy Egret, whose microhabitat preference was fairly consistent. Glossy Ibises and Snowy Egrets frequently formed mixed-species groups, Little Blue Herons were the least social, and Great Egrets and Tricolored Herons generally occurred in groups of less than 10 birds but rarely in groups larger than 30. The close association between Snowy Egrets and Glossy Ibises appeared to be based on a "beater-follower" relationship, wherein the probing, nonvisually feeding ibises make prey more available to the followers. In the study area, local enhancement appeared to

  17. The influence of fine-scale habitat features on regional variation in population performance of alpine White-tailed Ptarmigan

    USGS Publications Warehouse

    Fedy, B.; Martin, K.

    2011-01-01

    It is often assumed (explicitly or implicitly) that animals select habitat features to maximize fitness. However, there is often a mismatch between preferred habitats and indices of individual and population measures of performance. We examined the influence of fine-scale habitat selection on the overall population performance of the White-tailed Ptarmigan (Lagopus leucura), an alpine specialist, in two subdivided populations whose habitat patches are configured differently. The central region of Vancouver Island, Canada, has more continuous and larger habitat patches than the southern region. In 2003 and 2004, using paired logistic regression between used (n = 176) and available (n = 324) sites, we identified food availability, distance to standing water, and predator cover as preferred habitat components . We then quantified variation in population performance in the two regions in terms of sex ratio, age structure (n = 182 adults and yearlings), and reproductive success (n = 98 females) on the basis of 8 years of data (1995-1999, 2002-2004). Region strongly influenced females' breeding success, which, unsuccessful hens included, was consistently higher in the central region (n = 77 females) of the island than in the south (n = 21 females, P = 0.01). The central region also had a much higher proportion of successful hens (87%) than did the south (55%, P < 0.001). In light of our findings, we suggest that population performance is influenced by a combination of fine-scale habitat features and coarse-scale habitat configuration. ?? The Cooper Ornithological Society 2011.

  18. Yeast and Macroinvertebrate Communities Associated with Leaf Litter Decomposition in a Second Order Stream

    NASA Astrophysics Data System (ADS)

    Sampaio, Ana; Cortes, Rui; Leão, Cecília

    2004-11-01

    The composition of yeast and macroinvertebrate communities was studied on black alder, blue gum eucalyptus and English oak leaves decaying in a stream during a six-month period. ANOVA analysis showed significantly different values (p < 0.0001) of yeast and macroinvertebrate densities among the three leaf litters. Some yeast species such as Cryptococcus albidus (Saito), C. laurentii (Kufferath), Rhodothorula glutinis (Fresenius), R. colostri (Castelli), and Debaryomyces hansenii (Lodder and Kreger-van Rij) were present in all litter types. Other yeasts were restricted to a specific type of litter. Macroinvertebrates were dominated by collectors-gatherers on oak and eucalyptus leaves. Shredders reached highest densities in alder leaves. (

  19. Variation in biotic assemblages and stream-habitat data with sampling strategy and method in tidal segments of Highland and Marchand Bayous, Galveston County, Texas, 2007

    USGS Publications Warehouse

    Mabe, Jeffrey A.; Moring, J. Bruce

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Houston-Galveston Area Council and the Galveston Bay Estuary Program under the authority of the Texas Commission on Environmental Quality, did a study in 2007 to assess the variation in biotic assemblages (benthic macroinvertebrate and fish communities) and stream-habitat data with sampling strategy and method in tidal segments of Highland Bayou and Marchand Bayou in Galveston County. Data were collected once in spring and once in summer 2007 from four stream sites (reaches) (short names Hitchcock, Fairwood, Bayou Dr, and Texas City) of Highland Bayou and from one reach (short name Marchand) in Marchand Bayou. Only stream-habitat data from summer 2007 samples were used for this report. Additional samples were collected at the Hitchcock, Fairwood, and Bayou Dr reaches (multisample reaches) during summer 2007 to evaluate variation resulting from sampling intensity and location. Graphical analysis of benthic macroinvertebrate community data using a multidimensional scaling technique indicates there are taxonomic differences between the spring and summer samples. Seasonal differences in communities primarily were related to decreases in the abundance of chironomids and polychaetes in summer samples. Multivariate Analysis of Similarities tests of additional summer 2007 benthic macroinvertebrate samples from Hitchcock, Fairwood, and Bayou Dr indicated significant taxonomic differences between the sampling locations at all three reaches. In general, the deepwater samples had the smallest numbers for benthic macroinvertebrate taxa richness and abundance. Graphical analysis of species-level fish data indicates no consistent seasonal difference in fish taxa across reaches. Increased seining intensity at the multisample reaches did not result in a statistically significant difference in fish communities. Increased seining resulted in some changes in taxa richness and community diversity metrics. Diversity increases

  20. Noxious newts and their natural enemies: Experimental effects of tetrodotoxin exposure on trematode parasites and aquatic macroinvertebrates.

    PubMed

    Calhoun, Dana M; Bucciarelli, Gary M; Kats, Lee B; Zimmer, Richard K; Johnson, Pieter T J

    2017-10-01

    The dermal glands of many amphibian species secrete toxins or other noxious substances as a defense strategy against natural enemies. Newts in particular possess the potent neurotoxin tetrodotoxin (TTX), for which the highest concentrations are found in species within the genus Taricha. Adult Taricha are hypothesized to use TTX as a chemical defense against vertebrate predators such as garter snakes (Thamnophis spp.). However, less is known about how TTX functions to defend aquatic-developing newt larvae against natural enemies, including trematode parasites and aquatic macroinvertebrates. Here we experimentally investigated the effects of exogenous TTX exposure on survivorship of the infectious stages (cercariae) of five species of trematode parasites that infect larval amphibians. Specifically, we used dose-response curves to test the sensitivity of trematode cercariae to progressively increasing concentrations of TTX (0.0 [control], 0.63, 3.13, 6.26, 31.32, and 62.64 nmol L -1 ) and how this differed among parasite species. We further compared these results to the effects of TTX exposure (0 and 1000 nmolL -1 ) over 24 h on seven macroinvertebrate taxa commonly found in aquatic habitats with newt larvae. TTX significantly reduced the survivorship of trematode cercariae for all species, but the magnitude of such effects varied among species. Ribeiroia ondatrae - which causes mortality and limb malformations in amphibians - was the least sensitive to TTX, whereas the kidney-encysting Echinostoma trivolvis was the most sensitive. Among the macroinvertebrate taxa, only mayflies (Ephemeroptera) showed a significant increase in mortality following exogenous TTX exposure, despite the use of a concentration 16x higher than the maximum used for trematodes. Our results suggest that maternal investment of TTX into larval newts may provide protection against certain trematode infections and highlight the importance of future work assessing the effects of newt toxicity on

  1. ASSESSMENT OF LARGE RIVER BENTHIC MACROINVERTEBRATE ASSEMBLAGES

    EPA Science Inventory

    During the summer of 2001, twelve sites were sampled for macroinvertebrates, six each on the Great Miami and Kentucky Rivers. Sites were chosen in each river from those sampled in the 1999 methods comparison study to reflect a disturbance gradient. At each site, a total distanc...

  2. STANDARDIZED ASSESSMENT METHOD (SAM) FOR RIVERINE MACROINVERTEBRATES

    EPA Science Inventory

    During the summer of 2001, twelve sites were sampled for macroinvertebrates, six each on the Great Miami and Kentucky Rivers. Sites were chosen in each river from those sampled in the 1999 methods comparison study to reflect a disturbance gradient. At each site, a total distanc...

  3. Protocols for collection of streamflow, water-quality, streambed-sediment, periphyton, macroinvertebrate, fish, and habitat data to describe stream quality for the Hydrobiological Monitoring Program, Equus Beds Aquifer Storage and Recovery Program, city of Wichita, Kansas

    USGS Publications Warehouse

    Stone, Mandy L.; Rasmussen, Teresa J.; Bennett, Trudy J.; Poulton, Barry C.; Ziegler, Andrew C.

    2012-01-01

    The city of Wichita, Kansas uses the Equus Beds aquifer, one of two sources, for municipal water supply. To meet future water needs, plans for artificial recharge of the aquifer have been implemented in several phases. Phase I of the Equus Beds Aquifer Storage and Recovery (ASR) Program began with injection of water from the Little Arkansas River into the aquifer for storage and subsequent recovery in 2006. Construction of a river intake structure and surface-water treatment plant began as implementation of Phase II of the Equus Beds ASR Program in 2010. An important aspect of the ASR Program is the monitoring of water quality and the effects of recharge activities on stream conditions. Physical, chemical, and biological data provide the basis for an integrated assessment of stream quality. This report describes protocols for collecting streamflow, water-quality, streambed-sediment, periphyton, macroinvertebrate, fish, and habitat data as part of the city of Wichita's hydrobiological monitoring program (HBMP). Following consistent and reliable methods for data collection and processing is imperative for the long-term success of the monitoring program.

  4. INTERMITTENT AND PERENNIAL STREAM MACROINVERTEBRATE COMMUNITY RESPONSE TO IMPERVIOUS COVER: THRESHOLD INDICATOR TAXA ANALYSIS AND PERMUTATIONS

    EPA Science Inventory

    The urban stream syndrome and the impact of impervious cover on macroinvertebrate communities is well-documented, but many exclude intermittent streams despite their prevalence. This study investigated macroinvertebrate communities of intermittent and perennial streams separately...

  5. Cryptic biodiversity in streams - a comparison of macroinvertebrate communities based on morphological and DNA barcode identifications

    EPA Science Inventory

    Aquatic ecologists and entomologists have long known that species-level identifications were difficult, if not impossible, for many larval macroinvertebrates collected in streams. This study describes macroinvertebrate (primarily insect) communities from five coastal streams dist...

  6. Cryptic biodiversity in streams: a comparison of macroinvertebrate communities based on morphological and DNA barcode identifications

    EPA Science Inventory

    Species-level identifications are difficult or impossible for many larval aquatic macroinvertebrates. We described the taxonomic composition of macroinvertebrate communities from 5 coastal streams in 3 neighboring catchments in southern California. We compared taxonomic identific...

  7. Clinch River remedial investigation task 9 -- benthic macroinvertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, E.M. Jr.

    1994-08-01

    This report summarizes the results of Task 9 of the TVA/Department of Energy (DOE) Interagency Agreement supporting DOE`s Clinch River Remedial Investigation. Species lists and densities (numbers/m{sup 2}) of benthic macroinvertebrates sampled at 16 sites in the Clinch River and Poplar Creek embayments of upper Watts Bar Reservoir near Oak Ridge, Tennessee, in March, 1994, are presented and briefly discussed. Data are also analyzed to assess and compare quality of benthic communities at each site, according to methods developed for TVA`s Reservoir Vital Signs Monitoring Program. Results of this study will be incorporated with other program tasks in a comprehensivemore » report prepared by Oak Ridge National Laboratory in 1995, which will, in part, assess the effect of sediment contaminants on benthic macroinvertebrate communities in Watts Bar Reservoir.« less

  8. A STANDARDIZED ASSESSMENT METHOD (SAM) FOR RIVERINE MACROINVERTEBRATES

    EPA Science Inventory

    A macroinvertebrate sampling method for large rivers based on desirable characteristics of existing nonwadeable methods was developed and tested. Six sites each were sampled on the Great Miami and Kentucky Rivers, reflecting a human disturbance gradient. Samples were collected ...

  9. Responses of Aquatic Saproxylic Macroinvertebrates to Reduced-Impact Logging in Central Amazonia.

    PubMed

    Roque, F O; Escarpinati, S C; Valente-Neto, F; Hamada, N

    2015-08-01

    Reduced-impact logging (RIL) is an alternative land use because it reduces damage to forest cover in comparison with clear-cut practices. However, management practices adopted in RIL can affect wood availability and, consequently, fauna associated with dead wood during part of their life cycle (saproxylic). In this study, we evaluated whether aquatic saproxylic macroinvertebrates are affected by reduced-impact logging in Central Amazonia. We selected six streams in areas under reduced-impacted logging and six in primary forest areas and collected submerged woody debris. We did not find any differences in water pH, conductivity, and wood availability between reduced-impacted forest and primary forest streams. We found 248 saproxylic aquatic macroinvertebrates belonging to 37 taxa. We found five wood specialist (Dryops, Lutrochus, Stenochironomus, Oukuriella, and Endotribelos) and 32 generalists, totalling 98 and 150 individuals, respectively. In general, our results show that reduced-impact logging does not affect richness, abundance, and composition of saproxylic macroinvertebrates. The main explanation for this pattern is that management practices do not change important macroinvertebrate niche dimensions, including wood availability and the water's chemical and physical variables. Thus, controlled logging, such as applied in the area of the Central Amazonian streams studied, opens a new prospect for insect conservation and commercial exploitation of wood, which is not possible when clear-cut practices are adopted.

  10. Responses of benthic macroinvertebrates to urbanization in nine metropolitan areas of the conterminous United States

    USGS Publications Warehouse

    Cuffney, T.F.; McMahon, G.; Kashuba, R.; May, J.T.; Waite, I.R.

    2009-01-01

    The effects of urbanization on benthic macroinvertebrates were investigated in nine metropolitan areas (Boston, MA; Raleigh, NC; Atlanta, GA; Birmingham, AL; Milwaukee–Green Bay, WI; Denver, CO; Dallas–Fort Worth, TX; Salt Lake City, UT; and Portland, OR) as a part of the U.S. Geological Survey National Water Quality Assessment Program. Several invertebrate metrics showed strong, linear responses to urbanization when forest or shrublands were developed. Responses were difficult to discern in areas where urbanization was occurring on agricultural lands because invertebrate assemblages were already severely degraded. There was no evidence that assemblages showed any initial resistance to urbanization. Ordination scores, EPT taxa richness, and the average tolerance of organisms were the best indicators of changes in assemblage condition at a site. Richness metrics were better indicators than abundance metrics, and qualitative samples were as good as quantitative samples. A common set of landscape variables (population density, housing density, developed landcover, impervious surface, and roads) were strongly correlated with urbanization and invertebrate responses in all non-agricultural areas. The instream environmental variables (hydrology, water chemistry, habitat, and temperature) that were strongly correlated with urbanization and invertebrate responses were influenced by environmental setting (e.g., dominant ecoregion) and varied widely among metropolitan areas. Multilevel hierarchical regression models were developed that predicted invertebrate responses using only two landcover variables—basinscale landcover (percentage of basin area in developed land) and regional-scale landcover (antecedent agricultural land).

  11. Assessment of aquatic macroinvertebrate communities in the Autauga Creek watershed, Autauga County, Alabama, 2009

    USGS Publications Warehouse

    Mooty, Will S.; Gill, Amy C.

    2011-01-01

    Only four families within the Ephemeroptera, Plecoptera, and Trichoptera orders were found during a 1999 survey of aquatic macroinvertebrates in Autauga Creek, Autauga County, Alabama, by the Alabama Department of Environmental Management. The low number of taxa of Ephemeroptera, Plecoptera, and Trichoptera families indicated that the aquatic macroinvertebrate community was in poor condition, and the creek was placed on the Alabama Department of Environmental Management 303(d) list. The U.S. Geological Survey conducted a study in 2009 to provide data for the Alabama Department of Environmental Management and other water management agencies to re-evaluate aquatic macroinvertebrate communities in Autauga Creek to see if they meet Alabama Department of Environmental Management water-quality criteria. Aquatic macroinvertebrate communities were evaluated at three sites in the Autauga Creek watershed. Macroinvertebrates were sampled at two sites on Autauga Creek and one on Bridge Creek, the largest tributary to Autauga Creek. Water-quality field parameters were assessed at 11 sites. During the 2009 sampling, 12 families within the orders of Ephemeroptera, Plecoptera, Trichoptera were found at the Alabama Department of Environmental Management's assessment site whereas only four were found in 1999. The upstream site on Autauga Creek had consistently higher numbers of taxa than the Bridge Creek site and the lower site on Autauga Creek which is the Alabama Department of Environmental Management's assessment site. Chironomid richness was noticeably higher on the two Autauga Creek sites than the Bridge Creek site.

  12. Predation and infanticide influence ideal free choice by a parrot occupying heterogeneous tropical habitats.

    PubMed

    Bonebrake, Timothy C; Beissinger, Steven R

    2010-06-01

    The ideal free distribution (IFD) predicts that organisms will disperse to sites that maximize their fitness based on availability of resources. Habitat heterogeneity underlies resource variation and influences spatial variation in demography and the distribution of populations. We relate nest site productivity at multiple scales measured over a decade to habitat quality in a box-nesting population of Forpus passerinus (green-rumped parrotlets) in Venezuela to examine critical IFD assumptions. Variation in reproductive success at the local population and neighborhood scales had a much larger influence on productivity (fledglings per nest box per year) than nest site or female identity. Habitat features were reliable cues of nest site quality. Nest sites with less vegetative cover produced greater numbers of fledglings than sites with more cover. However, there was also a competitive cost to nesting in high-quality, low-vegetative cover nest boxes, as these sites experienced the most infanticide events. In the lowland local population, water depth and cover surrounding nest sites were related with F. passerinus productivity. Low vegetative cover and deeper water were associated with lower predation rates, suggesting that predation could be a primary factor driving habitat selection patterns. Parrotlets also demonstrated directional dispersal. Pairs that changed nest sites were more likely to disperse from poor-quality nest sites to high-quality nest sites rather than vice versa, and juveniles were more likely to disperse to, or remain in, the more productive of the two local populations. Parrotlets exhibited three characteristics fundamental to the IFD: habitat heterogeneity within and between local populations, reliable habitat cues to productivity, and active dispersal to sites of higher fitness.

  13. Characterization of the Kootenai River Aquatic Macroinvertebrate Community before and after Experimental Nutrient Addition, 2003-2006. [Chapter 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holderman, Charlie

    2009-02-19

    The Kootenai River ecosystem has experienced numerous ecological changes since the early 1900s. Some of the largest impacts to habitat, biological communities, and ecological function resulted from levee construction along the 120 km of river upstream from Kootenay Lake, completed by the 1950s, and the construction and operation of Libby Dam, completed in 1972 on the river near Libby Montana. Levee construction isolated tens of thousands of hectares of historic functioning floodplain habitat from the river channel, eliminating nutrient production and habitat diversity crucial to the functioning of a large river-floodplain ecosystem. Libby Dam continues to create large changes inmore » the timing, duration, and magnitude of river flows, and greatly reduces sediment and nutrient transport to downstream river reaches. These changes have contributed to the ecological collapse of the post-development Kootenai River ecosystem and its native biological communities. In response to this artificial loss of nutrients, experimental nutrient addition was initiated in the Kootenay Lake's North Arm in 1992, the South Arm in 2004, and in the Kootenai River at the Idaho-Montana border during 2005. This report characterizes the macroinvertebrate community in the Kootenai River and its response to experimental nutrient addition during 2005 and 2006. This report also provides an initial evaluation of cascading trophic interactions in response to nutrient addition. Macroinvertebrates were sampled at 12 sites along a 325 km section of the Kootenai River, representing an upriver unimpounded reference reach, treatment and control canyon reach sites, and braided and meandering reach sites, all downstream from Libby Dam. Principle component analysis revealed that richness explained the greatest amount of variability in response to nutrient addition as did taxa from Acari, Coleoptera, Ephemeroptera, Plecoptera, and Trichoptera. Analysis of variance revealed that nutrient addition had a

  14. Abundance and distribution of benthic macroinvertebrates in offshore soft sediments in Western Lake Huron, 2001-2007

    USGS Publications Warehouse

    French, J. R. P.; Schaeffer, J.S.; Roseman, E.F.; Kiley, C.S.; Fouilleroux, A.

    2009-01-01

    Invasive species have had major impacts on the Great Lakes. This is especially true of exotic dreissenid mussels which are associated with decreased abundance of native macroinvertebrates and changes in food availability for fish. Beginning in 2001, we added a benthic macroinvertebrate survey to the USGS-Great Lakes Science Center's annual fall prey fish assessment of Lake Huron to monitor abundance of macrobenthos. Mean abundance of Diporeia, the most abundant benthic taxon in Lake Huron reported by previous investigators, declined greatly between 2001 and 2007. Diporeia was virtually absent at 27-m sites by 2001, decreased and was lost completely from 46-m depths by 2006, but remained present at reduced densities at 73-m sites. Dreissenids in our samples were almost entirely quagga mussels Dreissena bugensis. Zebra mussels Dreissena polymorpha were virtually absent from our samples, suggesting that they were confined to nearshore areas shallower than we sampled. Loss of Diporeia at individual sites was associated with arrival of quagga mussels, even when mussel densities were low. Quagga mussel density peaked during 2002, then decreased thereafter. During the study quagga mussels became established at most 46-m sites, but remained rare at 73-m sites. Length frequency distributions suggest that initial widespread recruitment may have occurred during 2001-2002. Like other Great Lakes, Lake Huron quagga mussels were associated with decreased abundance of native taxa, but negative effects occurred even though dreissenid densities were much lower. Dreissenid effects may extend well into deep oligotrophic habitats of Lake Huron.

  15. COMPARISON OF MACROINVERTEBRATE SAMPLING METHODS FOR NONWADEABLE STREAMS

    EPA Science Inventory

    The bioassessment of nonwadeable streams in the United States is increasing, but methods for these systems are not as well developed as for wadeable streams. In this study, we compared six benthic macroinvertebrate field sampling methods for nonwadeable streams based on those us...

  16. COMPARING RESPONSES OF MACROINVERTEBRATE METRICS TO INCREASING STRESS

    EPA Science Inventory

    Metrics characterizing the benthic macroinvertebrate assemblages in wadeable streams in the Mid-Atlantic region of the United States were analyzed to explore the relative responses of the metrics to different types of anthropogenic stress. The data used in our study were collecte...

  17. Coastal habitat and biological community response to dam removal on the Elwha River

    USGS Publications Warehouse

    Foley, Melissa M.; Warrick, Jonathan A.; Ritchie, Andrew C.; Stevens, Andrew; Shafroth, Patrick B.; Duda, Jeff; Beirne, Matthew M.; Paradis, Rebecca; Gelfenbaum, Guy R.; McCoy, Randall; Cubley, Erin S.

    2017-01-01

    Habitat diversity and heterogeneity play a fundamental role in structuring ecological communities. Dam emplacement and removal can fundamentally alter habitat characteristics, which in turn can affect associated biological communities. Beginning in the early 1900s, the Elwha and Glines Canyon dams in Washington, USA, withheld an estimated 30 million tonnes of sediment from river, coastal, and nearshore habitats. During the staged removal of these dams—the largest dam removal project in history—over 14 million tonnes of sediment were released from the former reservoirs. Our interdisciplinary study in coastal habitats—the first of its kind—shows how the physical changes to the river delta and estuary habitats during dam removal were linked to responses in biological communities. Sediment released during dam removal resulted in over a meter of sedimentation in the estuary and over 400 m of expansion of the river mouth delta landform. These changes increased the amount of supratidal and intertidal habitat, but also reduced the influx of seawater into the pre-removal estuary complex. The effects of these geomorphic and hydrologic changes cascaded to biological systems, reducing the abundance of macroinvertebrates and fish in the estuary and shifting community composition from brackish to freshwater-dominated species. Vegetation did not significantly change on the delta, but pioneer vegetation increased during dam removal, coinciding with the addition of newly available habitat. Understanding how coastal habitats respond to large-scale human stressors—and in some cases the removal of those stressors—is increasingly important as human uses and restoration activities increase in these habitats.

  18. Effects of Temperature, Salinity and Fish in Structuring the Macroinvertebrate Community in Shallow Lakes: Implications for Effects of Climate Change

    PubMed Central

    Brucet, Sandra; Boix, Dani; Nathansen, Louise W.; Quintana, Xavier D.; Jensen, Elisabeth; Balayla, David; Meerhoff, Mariana; Jeppesen, Erik

    2012-01-01

    Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes. PMID:22393354

  19. Macroinvertebrate assemblages in agricultural, mining, and urban tropical streams: implications for conservation and management.

    PubMed

    Mwedzi, Tongayi; Bere, Taurai; Mangadze, Tinotenda

    2016-06-01

    The study evaluated the response of macroinvertebrate assemblages to changes in water quality in different land-use settings in Manyame catchment, Zimbabwe. Four land-use categories were identified: forested commercial farming, communal farming, Great Dyke mining (GDM) and urban areas. Macroinvertebrate community structure and physicochemical variables data were collected in two seasons from 41 sites following standard methods. Although not environmentally threatening, urban and GDM areas were characterised by higher conductivity, total dissolved solids, salinity, magnesium and hardness. Chlorides, total phosphates, total nitrogen, calcium, potassium and sodium were significantly highest in urban sites whilst dissolved oxygen (DO) was significantly higher in the forested commercial faming and GDM sites. Macroinvertebrate communities followed the observed changes in water quality. Macroinvertebrates in urban sites indicated severe pollution (e.g. Chironomidae) whilst those in forested commercial farming sites and GDM sites indicated relatively clean water (e.g. Notonemouridae). Forested watersheds together with good farm management practices are important in mitigating impacts of urbanisation and agriculture. Strategies that reduce oxygen-depleting substances must be devised to protect the health of Zimbabwean streams. The study affirms the wider applicability of the South African Scoring System in different land uses.

  20. Metal contamination in benthic macroinvertebrates in a sub-basin in the southeast of Brazil.

    PubMed

    Chiba, W A C; Passerini, M D; Tundisi, J G

    2011-05-01

    Benthic macroinvertebrates have many useful properties that make possible the use of these organisms as sentinel in biomonitoring programmes in freshwater. Combined with the characteristics of the water and sediment, benthic macroinvertebrates are potential indicators of environmental quality. Thus, the spatial occurrence of potentially toxic metals (Al, Zn, Cr, Co, Cu, Fe, Mn and Ni) in the water, sediment and benthic macroinvertebrates samples were investigated in a sub-basin in the southeast of Brazil in the city of São Carlos, São Paulo state, with the aim of verifying the metals and environment interaction with benthic communities regarding bioaccumulation. Hypothetically, there can be contamination by metals in the aquatic environment in the city due to lack of industrial effluent treatment. All samples were analysed by the USEPA adapted method and processed in an atomic absorption spectrophotometer. The sub-basin studied is contaminated by toxic metals in superficial water, sediment and benthic macroinvertebrates. The Bioaccumulation Factor showed a tendency for metal bioaccumulation by the benthic organisms for almost all the metal species. The results show a potential human and ecosystem health risk, contributing to metal contamination studies in aquatic environments in urban areas.

  1. Relationships between ecosystem metabolism, benthic macroinvertebrate densities, and environmental variables in a sub-arctic Alaskan river

    USGS Publications Warehouse

    Benson, Emily R.; Wipfli, Mark S.; Clapcott, Joanne E.; Hughes, Nicholas F.

    2013-01-01

    Relationships between environmental variables, ecosystem metabolism, and benthos are not well understood in sub-arctic ecosystems. The goal of this study was to investigate environmental drivers of river ecosystem metabolism and macroinvertebrate density in a sub-arctic river. We estimated primary production and respiration rates, sampled benthic macroinvertebrates, and monitored light intensity, discharge rate, and nutrient concentrations in the Chena River, interior Alaska, over two summers. We employed Random Forests models to identify predictor variables for metabolism rates and benthic macroinvertebrate density and biomass, and calculated Spearman correlations between in-stream nutrient levels and metabolism rates. Models indicated that discharge and length of time between high water events were the most important factors measured for predicting metabolism rates. Discharge was the most important variable for predicting benthic macroinvertebrate density and biomass. Primary production rate peaked at intermediate discharge, respiration rate was lowest at the greatest time since last high water event, and benthic macroinvertebrate density was lowest at high discharge rates. The ratio of dissolved inorganic nitrogen to soluble reactive phosphorus ranged from 27:1 to 172:1. We found that discharge plays a key role in regulating stream ecosystem metabolism, but that low phosphorous levels also likely limit primary production in this sub-arctic stream.

  2. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    PubMed

    Kweka, Eliningaya J; Zhou, Guofa; Munga, Stephen; Lee, Ming-Chieh; Atieli, Harrysone E; Nyindo, Mramba; Githeko, Andrew K; Yan, Guiyun

    2012-01-01

    Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya. A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60%) and An.arabiensis (18.34%), the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024) and An. arabiensis (P = 0.002) larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001), grass cover (P≤0.001), while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001). The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001) when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002). When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines. These findings suggest that implementation of effective larval control programme should be targeted with larval habitats

  3. Reach-scale stream restoration in agricultural streams of southern Minnesota alters structural and functional responses of macroinvertebrates

    USGS Publications Warehouse

    Dolph, Christine L.; Eggert, Susan L.; Magner, Joe; Ferrington, Leonard C.; Vondracek, Bruce C.

    2015-01-01

    Recent studies suggest that stream restoration at the reach scale may not increase stream biodiversity, raising concerns about the utility of this conservation practice. We examined whether reach-scale restoration in disturbed agricultural streams was associated with changes in macroinvertebrate community structure (total macroinvertebrate taxon richness, total macroinvertebrate density, Ephemeroptera, Plecoptera, Trichoptera [EPT] taxon richness, % abundance of EPT taxa) or secondary production (macroinvertebrate biomass over time). We collected macroinvertebrate samples over the course of 1 y from restored and unrestored reaches of 3 streams in southern Minnesota and used generalized least-square (GLS) models to assess whether measures of community structure were related to reach type, stream site, or sampling month. After accounting for effects of stream site and time, we found no significant difference in total taxon richness or % abundance of EPT taxa between restored and unrestored reaches. However, the number of EPT taxa and macroinvertebrate density were significantly higher in restored than in unrestored reaches. We compared secondary production estimates among study reaches based on 95th-percentile confidence intervals generated via bootstrapping. In each study stream, secondary production was significantly (2–3×) higher in the restored than in the unrestored reach. Higher productivity in the restored reaches was largely a result of the disproportionate success of a few dominant, tolerant taxa. Our findings suggest that reach-scale restoration may have ecological effects that are not detected by measures of total taxon richness alone.

  4. An evaluation of benthic macroinvertebrate biomass methodology : Part 1. Laboratory analytical methods.

    PubMed

    Mason, W T; Lewis, P A; Weber, C I

    1983-03-01

    Evaluation of analytical methods employed for wet weight (live or preserved samples) of benthic macroinvertebrates reveals that centrifugation at 140 x gravity for one minute yields constant biomass estimates. Less relative centrifugal force increases chance of incomplete removal of body moisture and results in weighing error, while greater force may rupture fragile macroinvertebrates, such as mayflies. Duration of specimen exposure in ethanol, formalin, and formol (formaling-ethanol combinations) causes significant body weight loss with within 48 hr formalin and formol cause less body weight loss than ethanol. However, as all preservatives tested cause body weight loss, preservation time of samples collected for comparative purposes should be treated uniformly. Dry weight estimates of macroinvertebrates are not significantly affected by kind of preservative or duration of exposure. Constant dry weights are attained by oven drying at 103 °C at a minimum of four hours or vacuum oven drying (15 inches of mercury pressure) at 103 °C for a minimum of one hour. Although requiring more time in preparation than oven drying and inalterably changing specimen body shape, freeze drying (10 microns pressure, -55 °C, 24 hr) provides constant dry weights and is advantageous for long term sample storage by minimizing curatorial attention. Constant ash-free dry weights of macroinvertebrate samples are attained by igniting samples at 500-550 °C for a minimum of one hour with slow cooling to room temperature in desiccators before weighing.

  5. Macroinvertebrate community assembly in pools created during peatland restoration.

    PubMed

    Brown, Lee E; Ramchunder, Sorain J; Beadle, Jeannie M; Holden, Joseph

    2016-11-01

    Many degraded ecosystems are subject to restoration attempts, providing new opportunities to unravel the processes of ecological community assembly. Restoration of previously drained northern peatlands, primarily to promote peat and carbon accumulation, has created hundreds of thousands of new open water pools. We assessed the potential benefits of this wetland restoration for aquatic biodiversity, and how communities reassemble, by comparing pool ecosystems in regions of the UK Pennines on intact (never drained) versus restored (blocked drainage-ditches) peatland. We also evaluated the conceptual idea that comparing reference ecosystems in terms of their compositional similarity to null assemblages (and thus the relative importance of stochastic versus deterministic assembly) can guide evaluations of restoration success better than analyses of community composition or diversity. Community composition data highlighted some differences in the macroinvertebrate composition of restored pools compared to undisturbed peatland pools, which could be used to suggest that alternative end-points to restoration were influenced by stochastic processes. However, widely used diversity metrics indicated no differences between undisturbed and restored pools. Novel evaluations of restoration using null models confirmed the similarity of deterministic assembly processes from the national species pool across all pools. Stochastic elements were important drivers of between-pool differences at the regional-scale but the scale of these effects was also similar across most of the pools studied. The amalgamation of assembly theory into ecosystem restoration monitoring allows us to conclude with more certainty that restoration has been successful from an ecological perspective in these systems. Evaluation of these UK findings compared to those from peatlands across Europe and North America further suggests that restoring peatland pools delivers significant benefits for aquatic fauna by

  6. DEVELOPMENT OF A STREAM BENTHIC MACROINVERTEBRATE INTEGRITY INDEX (SBMII) FOR WADEABLE STREAMS IN THE MID-ATLANTIC HIGHLANDS REGION

    EPA Science Inventory

    The Stream Benthic Macroinvertebrate Integrity Index (SBMII), a multimetric biotic index for assessing biological conditions of wadeable streams, was developed using seven macroinvertebrate metrics (Ephemeroptera richness, Plecoptera richness, Trichoptera richness, Collector-Filt...

  7. Macroinvertebrate communities evaluated prior to and following a channel restoration project in Silver Creek, Blaine County, Idaho, 2001-16

    USGS Publications Warehouse

    MacCoy, Dorene E.; Short, Terry M.

    2017-11-22

    The U.S. Geological Survey, in cooperation with Blaine County and The Nature Conservancy, evaluated the status of macroinvertebrate communities prior to and following a channel restoration project in Silver Creek, Blaine County, Idaho. The objective of the evaluation was to determine whether 2014 remediation efforts to restore natural channel conditions in an impounded area of Silver Creek caused declines in local macroinvertebrate communities. Starting in 2001 and ending in 2016, macroinvertebrates were sampled every 3 years at two long-term trend sites and sampled seasonally (spring, summer, and autumn) in 2013, 2015, and 2016 at seven synoptic sites. Trend-site communities were collected from natural stream-bottom substrates to represent locally established macroinvertebrate assemblages. Synoptic site communities were sampled using artificial (multi-plate) substrates to represent recently colonized (4–6 weeks) assemblages. Statistical summaries of spatial and temporal patterns in macroinvertebrate taxonomic composition at both trend and synoptic sites were completed.The potential effect of the restoration project on resident macroinvertebrate populations was determined by comparing the following community assemblage metrics:Total taxonomic richness (taxa richness);Total macroinvertebrate abundance (total abundance);Ephemeroptera, Plecoptera, Trichoptera (EPT) richness;EPT abundance;Simpson’s diversity; andSimpson’s evenness for periods prior to and following restoration.A significant decrease in one or more metric values in the period following stream channel restoration was the basis for determining impairment to the macroinvertebrate communities in Silver Creek.Comparison of pre-restoration (2001–13) and post‑restoration (2016) macroinvertebrate community composition at trend sites determined that no significant decreases occurred in any metric parameter for communities sampled in 2016. Taxa and EPT richness of colonized assemblages at synoptic sites

  8. Evaluating regional differences in macroinvertebrate communities from forested depressional wetlands across eastern and central North America

    Treesearch

    Darold P. Batzer; Susan E. Dietz-Brantley; Barbara E. Taylor; Adrienne E. DeBiase

    2005-01-01

    Forested depressional wetlands are an important seasonal wetland type across eastern and central North America. Macroinvertebrates are crucial ecosystem components of most forested depressional wetlands, but community compositions can vary widely across the region. We evaluated variation in macroinvertebrate faunas across eastern and central North America using 5...

  9. ANALYSIS OF LOTIC MACROINVERTEBRATE ASSEMBLAGES IN CALIFORNIA'S CENTRAL VALLEY

    EPA Science Inventory

    Using multivariate and cluster analyses, we examined the relaitonships between chemical and physical characteristics and macroinvertebrate assemblages at sites sampled by R-EMAP in California's Central Valley. By contrasting results where community structure was summarized as met...

  10. The distribution and diversity of benthic macroinvertebrate fauna in Pondicherry mangroves, India

    PubMed Central

    2013-01-01

    Background Species distribution, abundance and diversity of mangrove benthic macroinvertebrate fauna and the relationships to environmental conditions are important parts of understanding the structure and function of mangrove ecosystems. In this study seasonal variation in the distribution of macrobenthos and related environmental parameters were explored at four mangrove stations along the Pondicherry coast of India, from September 2008 to July 2010. Multivariate statistical analyses, including cluster analysis, principal component analysis and non-multidimensional scales plot were employed to help define trophic status, water quality and benthic characteristic at the four monitoring stations. Results Among the 528 samples collected over 168 ha of mangrove forest 76 species of benthic macroinvertebrate fauna were identified. Macrofauna were mainly composed of deposit feeders, dominated numerically by molluscs and crustaceans. Statistical analyses yielded the following descriptors of benthic macroinvertebrate fauna species distribution: densities between 140–1113 ind. m-2, dominance 0.17-0.50, diversity 1.80-2.83 bits ind-1, richness 0.47-0.74 and evenness 0.45-0.72, equitability 0.38-0.77, berger parker 0.31-0.77 and fisher alpha 2.46-5.70. Increases of species diversity and abundance were recorded during the post monsoon season at station 1 and the lowest diversity was recorded at station 2 during the monsoon season. The pollution indicator organisms Cassidula nucleus, Melampus ceylonicus, Sphaerassiminea minuta were found only at the two most polluted regions, i.e. stations 3 and 4. Benthic macroinvertebrate fauna abundances were inversely related to salinity at the four stations, Based on Bray-Curtis similarity through hierarchical clustering implemented in PAST, it was possible to define three distinct benthic assemblages at the stations. Conclusions From a different multivariate statistical analysis of the different environmental parameters regarding

  11. Impacts of urban landuse on macroinvertebrate communities in southeastern Wisconsin streams

    USGS Publications Warehouse

    Stepenuck, K.F.; Crunkilton, R.L.; Wang, L.

    2002-01-01

    Macroinvertebrates were used to assess the impact of urbanization on stream quality across a gradient of watershed imperviousness in 43 southeastern Wisconsin streams. The percentage of watershed connected imperviousness was chosen as the urbanization indicator to examine impact of urban land uses on macroinvertebrate communities. Most urban land uses were negatively correlated with the Shannon diversity index, percent of pollution intolerant Ephemeroptera, Plecoptera, and Trichoptera individuals, and generic richness. Nonurban land uses were positively correlated with these same metrics. The Hilsenhoff biotic index indicated that stream quality declined with increased urbanization. Functional feeding group metrics varied across a gradient of urbanization, suggesting changes in stream quality. Proportions of collectors and gatherers increased, while proportions of filterers, scrapers, and shredders decreased with increased watershed imperviousness. This study demonstrated that urbanization severely degraded stream macroinvertebrate communities, hence stream quality. Good stream quality existed where imperviousness was less than 8 percent, but less favorable assessments were inevitable where imperviousness exceeded 12 to 20 percent. Levels of imperviousness between 8 and 12 percent represented a threshold where minor increases in urbanization were associated with sharp declines in stream quality.

  12. Systematic review of the influence of foraging habitat on red-cockaded woodpecker reproductive success.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garabedian, James E.

    Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides borealis (RCW) in the USA as immediate nesting constraints are mitigated. Several researchers have characterized resource selection by foraging RCWs, but emerging research linking reproductive success (e.g. clutch size, nestling and fledgling production, and group size) and foraging habitat features has yet to be synthesized. Therefore, we reviewed peer-refereed scientific literature and technicalmore » resources (e.g. books, symposia proceedings, and technical reports) that examined RCW foraging ecology, foraging habitat, or demography to evaluate evidence for effects of the key foraging habitat features described in the species’ recovery plan on group reproductive success. Fitness-based habitat models suggest foraging habitat with low to intermediate pine Pinus spp. densities, presence of large and old pines, minimal midstory development, and herbaceous groundcover support more productive RCW groups. However, the relationships between some foraging habitat features and RCW reproductive success are not well supported by empirical data. In addition, few regression models account for > 30% of variation in reproductive success, and unstandardized multiple and simple linear regression coefficient estimates typically range from -0.100 to 0.100, suggesting ancillary variables and perhaps indirect mechanisms influence reproductive success. These findings suggest additional research is needed to address uncertainty in relationships between foraging habitat features and RCW reproductive success and in the mechanisms underlying those relationships.« less

  13. Comparison of watershed disturbance predictive models for stream benthic macroinvertebrates for three distinct ecoregions in western US

    USGS Publications Warehouse

    Waite, Ian R.; Brown, Larry R.; Kennen, Jonathan G.; May, Jason T.; Cuffney, Thomas F.; Orlando, James L.; Jones, Kimberly A.

    2010-01-01

    The successful use of macroinvertebrates as indicators of stream condition in bioassessments has led to heightened interest throughout the scientific community in the prediction of stream condition. For example, predictive models are increasingly being developed that use measures of watershed disturbance, including urban and agricultural land-use, as explanatory variables to predict various metrics of biological condition such as richness, tolerance, percent predators, index of biotic integrity, functional species traits, or even ordination axes scores. Our primary intent was to determine if effective models could be developed using watershed characteristics of disturbance to predict macroinvertebrate metrics among disparate and widely separated ecoregions. We aggregated macroinvertebrate data from universities and state and federal agencies in order to assemble stream data sets of high enough density appropriate for modeling in three distinct ecoregions in Oregon and California. Extensive review and quality assurance of macroinvertebrate sampling protocols, laboratory subsample counts and taxonomic resolution was completed to assure data comparability. We used widely available digital coverages of land-use and land-cover data summarized at the watershed and riparian scale as explanatory variables to predict macroinvertebrate metrics commonly used by state resource managers to assess stream condition. The “best” multiple linear regression models from each region required only two or three explanatory variables to model macroinvertebrate metrics and explained 41–74% of the variation. In each region the best model contained some measure of urban and/or agricultural land-use, yet often the model was improved by including a natural explanatory variable such as mean annual precipitation or mean watershed slope. Two macroinvertebrate metrics were common among all three regions, the metric that summarizes the richness of tolerant macroinvertebrates (RICHTOL) and

  14. Human disturbance and stage-specific habitat requirements influence snowy plover site occupancy during the breeding season

    PubMed Central

    Webber, Alyson F; Heath, Julie A; Fischer, Richard A

    2013-01-01

    Habitat use has important consequences for avian reproductive success and survival. In coastal areas with recreational activity, human disturbance may limit use of otherwise suitable habitat. Snowy plovers Charadrius nivosus have a patchy breeding distribution along the coastal areas on the Florida Panhandle, USA. Our goal was to determine the relative effects of seasonal human disturbance and habitat requirements on snowy plover habitat use. We surveyed 303 sites for snowy plovers, human disturbance, and habitat features between January and July 2009 and 2010. We made multiple visits during three different sampling periods that corresponded to snowy plover breeding: pre-breeding, incubation, and brood-rearing and used multi-season occupancy models to examine whether human disturbance, habitat features, or both influenced site occupancy, colonization (probability of transition from an unoccupied site to an occupied site), and extinction (probability of transition from an occupied site to an unoccupied site). Snowy plover site occupancy and colonization was negatively associated with human disturbance and site extinction was positively associated with human disturbance. Interdune vegetation had a negative effect on occupancy and colonization, indicating that plovers were less likely to use areas with uniform, dense vegetation among dunes. Also, dune shape, beach debris, and access to low-energy foraging areas influenced site occupancy, colonization, and extinction. Plovers used habitat based on beach characteristics that provided stage-specific resource needs; however, human disturbance was the strongest predictor of site occupancy. In addition, vegetation plantings used to enhance dune rehabilitation may negatively impact plover site occupancy. Management actions that decrease human disturbance, such as symbolic fencing and signage, may increase the amount of breeding habitat available to snowy plovers on the Florida Panhandle and in other areas with high human

  15. SAMPLING LARGE RIVERS FOR ALGAE, BENTHIC MACROINVERTEBRATES AND FISH

    EPA Science Inventory

    Multiple projects are currently underway to increase our understanding of the effects of different sampling methods and designs used for the biological assessment and monitoring of large (boatable) rivers. Studies include methods used to assess fish, benthic macroinvertebrates, ...

  16. Spawning distribution of sockeye salmon in a glacially influenced watershed: The importance of glacial habitats

    USGS Publications Warehouse

    Young, Daniel B.; Woody, C.A.

    2007-01-01

    The spawning distribution of sockeye salmon Oncorhynchus nerka was compared between clear and glacially turbid habitats in Lake Clark, Alaska, with the use of radiotelemetry. Tracking of 241 adult sockeye salmon to 27 spawning locations revealed both essential habitats and the relationship between spawn timing and seasonal turbidity cycles. Sixty-six percent of radio-tagged sockeye salmon spawned in turbid waters (???5 nephelometric turbidity units) where visual observation was difficult. Spawning in turbid habitats coincided with seasonal temperature declines and associated declines in turbidity and suspended sediment concentration. Because spawn timing is heritable and influenced by temperature, the observed behavior suggests an adaptive response to glacier-fed habitats, as it would reduce embryonic exposure to the adverse effects of fine sediments. ?? Copyright by the American Fisheries Society 2007.

  17. Bioaccumulation of human pharmaceuticals in fish across habitats of a tidally influenced urban bayou.

    PubMed

    Du, Bowen; Haddad, Samuel P; Luek, Andreas; Scott, W Casan; Saari, Gavin N; Burket, S Rebekah; Breed, Christopher S; Kelly, Martin; Broach, Linda; Rasmussen, Joseph B; Chambliss, C Kevin; Brooks, Bryan W

    2016-04-01

    Though pharmaceuticals and other contaminants of emerging concern are increasingly observed in inland water bodies, the occurrence and bioaccumulation of pharmaceuticals in estuaries and coastal ecosystems are poorly understood. In the present study, bioaccumulation of select pharmaceuticals and other contaminants of emerging concern was examined in fish from Buffalo Bayou, a tidally influenced urban ecosystem that receives effluent from a major (∼200 million gallons per day) municipal wastewater treatment plant in Houston, Texas, USA. Using isotope dilution liquid chromatography-tandem mass spectrometry, various target analytes were observed in effluent, surface water, and multiple fish species. The trophic position of each species was determined using stable isotope analysis. Fish tissue levels of diphenhydramine, which represented the only pharmaceutical detected in all fish species, did not significantly differ between freshwater and marine fish predominantly inhabiting benthic habitats; however, saltwater fish with pelagic habitat preferences significantly accumulated diphenhydramine to the highest levels observed in the present study. Consistent with previous observations from an effluent-dependent freshwater river, diphenhydramine did not display trophic magnification, which suggests site-specific, pH-influenced inhalational uptake to a greater extent than dietary exposure in this tidally influenced urban ecosystem. The findings highlight the importance of understanding differential bioaccumulation and risks of ionizable contaminants of emerging concern in habitats of urbanizing coastal systems. © 2015 SETAC.

  18. Impact of lambda-cyhalothrin on a macroinvertebrate assemblage in outdoor experimental channels: implications for ecosystem functioning.

    PubMed

    Rasmussen, Jes Jessen; Friberg, Nikolai; Larsen, Soren E

    2008-11-21

    In this study, the impact of a single pulse of the pyrethroid lambda-cyhalothrin was tested on a macroinvertebrate assemblage consisting of Gammarus pulex, Leuctra nigra, Heptagenia sulphurea and Ancylus fluviatilis in outdoor experimental stream channels. Channels (4m long, 0.1m wide) were groundwater fed and had natural substratum. Macroinvertebrates were exposed to 10.65 or 106.5 ng L(-1) lambda cyhalothrin for 90 min in the laboratory and after 24h introduced to the experimental stream channels with four replicates of each treatment and controls. Drift samples were taken with 24-h interval for 10 days and behaviour of drifted macroinvertebrates was assessed. Microalgae biomass was measured on days 1, 5, 8 and 10 along with leaf litter decomposition using leaf packs of beech (Fagus sylvatica). Numbers of drifting G. pulex and L. nigra with reduced mobility increased significantly with concentration of lambda-cyhalothrin. Increase of algal biomass was significantly greater in stream channels with macroinvertebrates exposed to 106.5 ng L(-1) compared to controls and 10.65 ng L(-1) treatments. Accrual of microalgal biomass was significantly higher in the high concentration treatment and decomposition of leaf litter was significantly greater in control channels compared to channels with exposed macroinvertebrates. This study may apply valuable knowledge to the understanding and assessment of how pyrethroids impact ecosystem functioning in streams.

  19. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning.

    PubMed

    Terrado, Marta; Sabater, Sergi; Chaplin-Kramer, Becky; Mandle, Lisa; Ziv, Guy; Acuña, Vicenç

    2016-01-01

    There is a growing pressure of human activities on natural habitats, which leads to biodiversity losses. To mitigate the impact of human activities, environmental policies are developed and implemented, but their effects are commonly not well understood because of the lack of tools to predict the effects of conservation policies on habitat quality and/or diversity. We present a straightforward model for the simultaneous assessment of terrestrial and aquatic habitat quality in river basins as a function of land use and anthropogenic threats to habitat that could be applied under different management scenarios to help understand the trade-offs of conservation actions. We modify the InVEST model for the assessment of terrestrial habitat quality and extend it to freshwater habitats. We assess the reliability of the model in a severely impaired basin by comparing modeled results to observed terrestrial and aquatic biodiversity data. Estimated habitat quality is significantly correlated with observed terrestrial vascular plant richness (R(2)=0.76) and diversity of aquatic macroinvertebrates (R(2)=0.34), as well as with ecosystem functions such as in-stream phosphorus retention (R(2)=0.45). After that, we analyze different scenarios to assess the suitability of the model to inform changes in habitat quality under different conservation strategies. We believe that the developed model can be useful to assess potential levels of biodiversity, and to support conservation planning given its capacity to forecast the effects of management actions in river basins. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effects of sea lamprey substrate modification and carcass nutrients on macroinvertebrate assemblages in a small Atlantic coastal stream

    USGS Publications Warehouse

    Weaver, Daniel M.; Coghlan, Stephen M.; Zydlewski, Joseph D.

    2018-01-01

    Aquatic macroinvertebrates respond to patch dynamics arising from interactions of physical and chemical disturbances across space and time. Anadromous fish, such as sea lamprey, Petromyzon marinus, migrate from the ocean and alter physical and chemical properties of recipient spawning streams. Sea lamprey disturb stream benthos physically through nest construction and spawning, and enrich food webs through nutrient deposition from decomposing carcasses. Sea lamprey spawning nests support greater macroinvertebrate abundance than adjacent reference areas, but concurrent effects of stream bed modification and nutrient supplementation have not been examined sequentially. We added carcasses and cleared substrate experimentally to mimic the physical disturbance and nutrient enrichment associated with lamprey spawning, and characterized effects on macroinvertebrate assemblage structure. We found that areas receiving cleared substrate and carcass nutrients were colonized largely by Simuliidae compared to upstream and downstream control areas that were colonized largely by Hydropsychidae, Philopotamidae, and Chironomidae. Environmental factors such as stream flow likely shape assemblages by physically constraining macroinvertebrate establishment and feeding. Our results indicate potential changes in macroinvertebrate assemblages from the physical and chemical changes to streams brought by spawning populations of sea lamprey.

  1. Are biotic indices sensitive to river toxicants? A comparison of metrics based on diatoms and macro-invertebrates.

    PubMed

    Blanco, S; Bécares, E

    2010-03-01

    Biotic indices based on macro-invertebrates and diatoms are frequently used to diagnose ecological quality in watercourses, but few published works have assessed their effectiveness as biomonitors of the concentration of micropollutants. A biological survey performed at 188 sites in the basin of the River Duero in north-western Spain. Nineteen diatom and six macro-invertebrate indices were calculated and compared with the concentrations of 37 different toxicants by means of a correlation analysis. Several chemical variables analysed correlated significantly with at least one biotic index. Sládecek's diatom index and the number of macro-invertebrate families exhibited particularly high correlation coefficients. Methods based on macro-invertebrates performed better in detecting biocides, while diatom indices showed stronger correlations with potentially toxic elements such as heavy metals. All biotic indices, and particularly diatom indices, were especially sensitive to the concentration of fats and oils and trichloroethene. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Effects of urbanization on benthic macroinvertebrate communities in streams, Anchorage, Alaska

    USGS Publications Warehouse

    Ourso, Robert T.

    2001-01-01

    The effect of urbanization on stream macroinvertebrate communities was examined by using data gathered during a 1999 reconnaissance of 14 sites in the Municipality of Anchorage, Alaska. Data collected included macroinvertebrate abundance, water chemistry, and trace elements in bed sediments. Macroinvertebrate relative-abundance data were edited and used in metric and index calculations. Population density was used as a surrogate for urbanization. Cluster analysis (unweighted-paired-grouping method) using arithmetic means of macroinvertebrate presence-absence data showed a well-defined separation between urbanized and nonurbanized sites as well as extracted sites that did not cleanly fall into either category. Water quality in Anchorage generally declined with increasing urbanization (population density). Of 59 variables examined, 31 correlated with urbanization. Local regression analysis extracted 11 variables that showed a significant impairment threshold response and 6 that showed a significant linear response. Significant biological variables for determining the impairment threshold in this study were the Margalef diversity index, Ephemeroptera-Plecoptera-Trichoptera taxa richness, and total taxa richness. Significant thresholds were observed in the water-chemistry variables conductivity, dissolved organic carbon, potassium, and total dissolved solids. Significant thresholds in trace elements in bed sediments included arsenic, iron, manganese, and lead. Results suggest that sites in Anchorage that have ratios of population density to road density greater than 70, storm-drain densities greater than 0.45 miles per square mile, road densities greater than 4 miles per square mile, or population densities greater than 125-150 persons per square mile may require further monitoring to determine if the stream has become impaired. This population density is far less than the 1,000 persons per square mile used by the U.S. Census Bureau to define an urban area.

  3. Habitat Restoration and Monitoring in Urban Streams: The Case of Tryon Creek in Portland, OR

    NASA Astrophysics Data System (ADS)

    Rios Touma, B. P.; Prescott, C.; Axtell, S.; Kondolf, G. M.

    2013-12-01

    Habitat enhancement in urban streams can be important for threatened species but challenging, because of altered catchment hydrology and urban encroachment on floodplains and channel banks. In Portland (OR) restoration actions have been undertaken at the watershed scale (e.g.: storm water management, protection of sites with high watershed value) to improve water quality, and at reach scale, when water quality and quantity are adequate, to increase habitat heterogeneity and stabilize banks. To evaluate reach-scale restoration projects in the Tryon Creek watershed, we sampled benthic macroinvertebrates and conducted habitat quality surveys pre-project and over 4 years post- project. Species sensitive to pollution and diversity of trophic groups increased after restoration. Although taxonomical diversity increased after restoration, but was still low compared to reference streams. We found no significant changes in trait proportions and functional diversity. Functional diversity, proportion of shredders and semivoltine invertebrates were significantly higher in reference streams than the restored stream reaches. We hypothesized that inputs of coarse particulate organic matter and land use at watershed scale may explain the differences in biodiversity between restored and reference stream reaches. Variables such as substrate composition, canopy cover or large wood pieces did not change from pre- to post-project, so could not explain the changes in the community. This may have been partly attributable to insensitivity of the visual estimate methods used, but likely also reflects an importance influence of watershed variables on aquatic biota - suggesting watershed actions may be more effective for the ecological recovery of streams. For future projects, we recommend multihabitat benthic sampling supported by studies of channel geomorphology to better understand stream response to restoration actions.

  4. Influence of habitat amount, arrangement, and use on population trend estimates of male Kirtland's warblers

    USGS Publications Warehouse

    Donner, D.M.; Probst, J.R.; Ribic, C.A.

    2008-01-01

    Kirtland's warblers (Dendroica kirtlandii) persist in a naturally patchy environment of young, regenerating jack pine forests (i.e., 5-23 years old) created after wildfires and human logging activities. We examined how changing landscape structure from 26 years of forest management and wildfire disturbances influenced population size and spatial dispersion of male Kirtland's warblers within their restricted breeding range in northern Lower Michigan, USA. The male Kirtland's warbler population was six times larger in 2004 (1,322) compared to 1979 (205); the change was nonlinear with 1987 and 1994 identified as significant points of change. In 1987, the population trend began increasing after a slowly declining trend prior to 1987, and the rate of increase appeared to slow after 1994. Total amount of suitable habitat and the relative area of wildfire-regenerated habitat were the most important factors explaining population trend. Suitable habitat increased 149% primarily due to increasing plantations from forest management. The relative amount and location of wildfire-regenerated habitat modified the distribution of males among various habitat types, and the spatial variation in their abundance across the primary breeding range. These findings indicate that the Kirtland's warbler male population shifted its use of habitat types temporally and spatially as the population increased and as the relative availability of habitats changed through time. We demonstrate that researchers and managers need to consider not only habitat quality, but the temporal and the spatial context of habitat availability and population levels when making habitat restoration decisions. ?? 2008 Springer Science+Business Media B.V.

  5. Risk assessment of imidacloprid use in forest settings on the aquatic macroinvertebrate community.

    PubMed

    Benton, Elizabeth P; Grant, Jerome F; Nichols, Rebecca J; Webster, R Jesse; Schwartz, John S; Bailey, Joseph K

    2017-11-01

    The isolated effects of a single insecticide can be difficult to assess in natural settings because of the presence of numerous pollutants in many watersheds. Imidacloprid use for suppressing hemlock woolly adelgid, Adelges tsugae (Annand) (Hemiptera: Adelgidae), in forests offers a rare opportunity to assess potential impacts on aquatic macroinvertebrates in relatively pristine landscapes. Aquatic macroinvertebrate communities were assessed in 9 streams in Great Smoky Mountains National Park (southern Appalachian Mountains, USA). The streams flow through hemlock conservation areas where imidacloprid soil drench treatments were applied for hemlock woolly adelgid suppression. Sites were located upstream and downstream of the imidacloprid treatments. Baseline species presence data (pre-imidacloprid treatment) were available from previous sample collections at downstream sites. Downstream and upstream sites did not vary in numerous community measures. Although comparisons of paired upstream and downstream sites showed differences in diversity in 7 streams, higher diversity was found more often in downstream sites. Macroinvertebrate functional feeding groups and life habits were similar between downstream and upstream sites. Downstream and baseline stream samples were similar. While some functional feeding group and life habit species richness categories varied, variations did not indicate poorer quality downstream communities. Imidacloprid treatments applied according to US Environmental Protection Agency federal restrictions did not result in negative effects to aquatic macroinvertebrate communities, which indicates that risks of imidacloprid use in forest settings are low. Environ Toxicol Chem 2017;36:3108-3119. © 2017 SETAC. © 2017 SETAC.

  6. Relations between benthic community structure and metals concentrations in aquatic macroinvertebrates: Clark Fork River, Montana

    USGS Publications Warehouse

    1995-01-01

    We sampled macroinvertebrate communities at six sites on the upper Clark Fork River, Montana, to determine relations between macroinvertebrate community structure and metals in invertebrates and the best benthic community metrics to use for ranking sites based on the relative severity of the effects of metals. Concentrations (μg/g) of six metals in invertebrates were determined: Al (range = 591–4193), As (2.7–34.1), Cd (0.13–8.38), Cu (26–1382), Pb (0.54–67.1), and Zn (212–1665). Concentrations of As, Cd, Cu, Pb, and total metals were significantly correlated with at least one benthic metric. Copper (r = 0.88–0.94) and total metals (r = 0.90–0.97) provided the most highly significant correlations. Based on longitudinal site comparisons of metals in invertebrates, benthic community structure, and differences between proportionally scaled ranks, five benthic metrics provided the best indicators of relative impact: taxa richness, Ephemeroptera-Plecoptera-Trichoptera (EPT) richness, chironomid richness, percentage of the most dominant taxon, and density. The two sites with the highest accumulations of invertebrate metals also demonstrated the greatest relative degree of impact based on these parameters. The most meaningful combinations of metrics indicate that the benthic community at the most upstream site is being severely impacted by metals. Two sites demonstrated little or no negative impact, and three sites demonstrated low or moderate levels of negative impacts, which may be due to a combination of metals and other factors such as organic enrichment. We recommend that benthic community structure and metals in invertebrates collected from riffle habitats be used to determine relative impacts in metals-contaminated river systems, owing to their close relation to metal availability and transfer to higher trophic levels.

  7. Influence of dietary carbon on mercury bioaccumulation in streams of the Adirondack Mountains of New York and the Coastal Plain of South Carolina, USA

    USGS Publications Warehouse

    Riva-Murray, Karen; Bradley, Paul M.; Chasar, Lia C.; Button, Daniel T.; Brigham, Mark E.; Eikenberry, Barbara C. Scudder; Journey, Celeste A.; Lutz, Michelle A.

    2013-01-01

    We studied lower food webs in streams of two mercury-sensitive regions to determine whether variations in consumer foraging strategy and resultant dietary carbon signatures accounted for observed within-site and among-site variations in consumer mercury concentration. We collected macroinvertebrates (primary consumers and predators) and selected forage fishes from three sites in the Adirondack Mountains of New York, and three sites in the Coastal Plain of South Carolina, for analysis of mercury (Hg) and stable isotopes of carbon (δ13C) and nitrogen (δ15N). Among primary consumers, scrapers and filterers had higher MeHg and more depleted δ13C than shredders from the same site. Variation in δ13C accounted for up to 34 % of within-site variation in MeHg among primary consumers, beyond that explained by δ15N, an indicator of trophic position. Consumer δ13C accounted for 10 % of the variation in Hg among predatory macroinvertebrates and forage fishes across these six sites, after accounting for environmental aqueous methylmercury (MeHg, 5 % of variation) and base-N adjusted consumer trophic position (Δδ15N, 22 % of variation). The δ13C spatial pattern within consumer taxa groups corresponded to differences in benthic habitat shading among sites. Consumers from relatively more-shaded sites had more enriched δ13C that was more similar to typical detrital δ13C, while those from the relatively more-open sites had more depleted δ13C. Although we could not clearly attribute these differences strictly to differences in assimilation of carbon from terrestrial or in-channel sources, greater potential for benthic primary production at more open sites might play a role. We found significant variation among consumers within and among sites in carbon source; this may be related to within-site differences in diet and foraging habitat, and to among-site differences in environmental conditions that influence primary production. These observations suggest that different

  8. Environmental factors and habitat use influence body condition of individuals in a species at risk, the grizzly bear.

    PubMed

    Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B; Janz, David M

    2014-01-01

    Metrics used to quantify the condition or physiological states of individuals provide proactive mechanisms for understanding population dynamics in the context of environmental factors. Our study examined how anthropogenic disturbance, habitat characteristics and hair cortisol concentrations interpreted as a sex-specific indicator of potential habitat net-energy demand affect the body condition of grizzly bears (n = 163) in a threatened population in Alberta, Canada. We quantified environmental variables by modelling spatial patterns of individual habitat use based on global positioning system telemetry data. After controlling for gender, age and capture effects, we assessed the influence of biological and environmental variables on body condition using linear mixed-effects models in an information theoretical approach. Our strongest model suggested that body condition was improved when patterns of habitat use included greater vegetation productivity, increased influence of forest harvest blocks and oil and gas well sites, and a higher percentage of regenerating and coniferous forest. However, body condition was negatively affected by habitat use in close proximity to roads and in areas where potential energetic demands were high. Poor body condition was also associated with increased selection of parks and protected areas and greater seasonal vegetation productivity. Adult females, females with cubs-of-year, juvenile females and juvenile males were in poorer body condition compared with adult males, suggesting that intra-specific competition and differences in habitat use based on gender and age may influence body condition dynamics. Habitat net-energy demand also tended to be higher in areas used by females which, combined with observed trends in body condition, could affect reproductive success in this threatened population. Our results highlight the importance of considering spatiotemporal variability in environmental factors and habitat use when assessing

  9. Flow variations and macroinvertebrate community responses in a small groundwater-dominated stream in south east England

    USGS Publications Warehouse

    Bendix, J.; Hupp, C.R.

    2000-01-01

    Changes in the macroinvertebrate community in response to flow variations in the Little Stour River, Kent, UK, were examined over a 6 year period (1992-1997). This period included the final year of the 1988-1992 drought, followed by some of the wettest conditions recorded this century and a second period of drought between 1996 and 1997. Each year, samples were collected from 15 sites during late-summer base-flow conditions. Correspondence analysis identified clear differences between samples from upstream and downstream sites, and between drought and non-drought years. Step-wise multiple regression was used to identify hydrological indicators of community variation. Several different indices were used to describe the macroinvertebrate community, including macroinvertebrate community abundance, number of families and species, and individual species. Site characteristics were fundamental in accounting for variation in the unstandardized macroinvertebrate community. However, when differences between sites were controlled, hydrological conditions were found to play a dominant role in explaining ecological variation. Indices of high discharge (or their absence), 4-7 months prior to sampling (i.e. winter-spring), were found to be the most important variables for describing the late-summer community The results are discussed in relation to the role of flow variability in shaping instream communities and management implications. Copyright ?? 2000 John Wiley & Sons, Ltd.Changes in the macroinvertebrate community in response to flow variations in the Little Stour River, Kent, UK, were examined over a 6 year period (1992-1997). This period included the final year of the 1988-1992 drought, followed by some of the wettest conditions recorded this century and a second period of drought between 1996 and 1997. Each year, samples were collected from 15 sites during late-summer base-flow conditions. Correspondence analysis identified clear differences between samples from upstream

  10. Metallothionein Induction as Indicator of Low Level Metal Exposure to Aquatic Macroinvertebrates from a Relatively Unimpacted River System in South Africa.

    PubMed

    Kemp, M; Wepener, V; de Kock, K N; Wolmarans, C T

    2017-12-01

    The Marico River is relatively unaffected by anthropogenic activities. However, metal concentrations-mainly from natural sources-occasionally exceed environmental quality guidelines. Macroinvertebrates are capable to react to these metals through processes such as the induction of metallothioneins (MTs). The aims of this study were to determine whether the induction of MTs can be used as indicator of natural metal exposure in not anthropogenically impacted systems and whether there are relationships between metal concentrations in water, sediment and macroinvertebrates and concomitant MT levels. Positive correlations were found between metals in sediment and macroinvertebrates, while there were no correlations between metal concentrations in water and macroinvertebrates. Even in a not anthropogenically impacted system, a positive correlation existed between trace metal bioaccumulation (e.g. Ni, Pb, Zn) in macroinvertebrates and the induction of MTs. There were, however, no correlations between MTs and bioaccumulation of earth metals (e.g. Al, Fe, Mn, Ti).

  11. Legacy of a Chemical Factory Site: Contaminated Groundwater Impacts Stream Macroinvertebrates.

    PubMed

    Rasmussen, Jes J; McKnight, Ursula S; Sonne, Anne Th; Wiberg-Larsen, Peter; Bjerg, Poul L

    2016-02-01

    Legislative and managing entities of EU member states face a comprehensive task because the chemical and ecological impacts of contaminated sites on surface waters must be assessed. The ecological assessment is further complicated by the low availability or, in some cases, absence of ecotoxicity data for many of the compounds occurring at contaminated sites. We studied the potential impact of a contaminated site, characterised by chlorinated solvents, sulfonamides, and barbiturates, on benthic macroinvertebrates in a receiving stream. Most of these compounds are characterised by low or unknown ecotoxicity, but they are continuously discharged into the stream by way of a long-lasting source generating long-term chronic exposure of the stream biota. Our results show that taxonomical density and diversity of especially sediment dwelling taxa were reduced by >50 % at the sampling sites situated in the primary inflow zone of the contaminated GW. Moreover, macroinvertebrate communities at these sampling sites could be distinguished from those at upstream control sites and sites situated along a downstream dilution gradient using multidimensional scaling. Importantly, macroinvertebrate indices currently used did not identify this impairment, thus underpinning an urgent need for developing suitable tools for the assessment of ecological effects of contaminated sites in streams.

  12. Effects of watershed and in-stream liming on macroinvertebrate communities in acidified tributaries to an Adirondack lake

    USGS Publications Warehouse

    George, Scott D.; Baldigo, Barry P.; Lawrence, Gregory B.; Fuller, Randall L.

    2018-01-01

    Liming techniques are being explored as a means to accelerate the recovery of aquatic biota from decades of acid deposition in many regions. The preservation or restoration of native sportfish populations has typically been the impetus for liming programs, and as such, less attention has been given to its effects on other biological assemblages such as macroinvertebrates. Furthermore, the differing effects of various lime application strategies such as in-stream and watershed applications are not well understood. In 2012, a program was initiated using in-stream and aerial (whole-watershed) liming to improve water quality and Brook Trout (Salvelinus fontinalis) recruitment in three acidified tributaries of a high-elevation Adirondack lake in New York State. Concurrently, macroinvertebrates were sampled annually between 2013 and 2016 at 3 treated sites and 3 untreated reference sites to assess the effects of each liming technique on this community. Despite improvements in water chemistry in all three limed streams, our results generally suggest that neither liming technique succeeded in improving the condition of macroinvertebrate communities. The watershed application caused an immediate and unsustained decrease in the density of macroinvertebrates and increase in the proportion of sensitive taxa. These changes were driven primarily by a one-year 71 percent reduction of the acid-tolerant Leuctra stoneflies and likely represent an initial chemistry shock from the lime application rather than a recovery response. The in-stream applications appeared to reduce the density of macroinvertebrates, particularly in one stream where undissolved lime covered the natural substrate. The close proximity of our study sites to the in-stream application points (50 and 1230 m) may partly explain these negative effects. Our results are consistent with prior studies of in-stream liming which indicate that this technique often fails to restore macroinvertebrate communities to a pre

  13. Development of a regional littoral benthic macroinvertebrate multi-metric index (MMI) for lakes from the National Lakes Assessment

    EPA Science Inventory

    During the 2007 National Lakes Assessment (NLA) benthic macroinvertebrate samples were collected from the lake littoral zone. The purpose of the sampling was to assess the feasibility of a multi-metric index (MMI) to assess the condition of the littoral benthic macroinvertebrate...

  14. Testing the risk of predation hypothesis: the influence of recolonizing wolves on habitat use by moose.

    PubMed

    Nicholson, Kerry L; Milleret, Cyril; Månsson, Johan; Sand, Håkan

    2014-09-01

    Considered as absent throughout Scandinavia for >100 years, wolves (Canis lupus) have recently naturally recolonized south-central Sweden. This recolonization has provided an opportunity to study behavioral responses of moose (Alces alces) to wolves. We used satellite telemetry locations from collared moose and wolves to determine whether moose habitat use was affected by predation risk based on wolf use distributions. Moose habitat use was influenced by reproductive status and time of day and showed a different selection pattern between winter and summer, but there was weak evidence that moose habitat use depended on predation risk. The seemingly weak response may have several underlying explanations that are not mutually exclusive from the long term absence of non-human predation pressure: intensive harvest by humans during the last century is more important than wolf predation as an influence on moose behavior; moose have not adapted to recolonizing wolves; and responses may include other behavioral adaptations or occur at finer temporal and spatial levels than investigated.

  15. Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat

    NASA Astrophysics Data System (ADS)

    Ince, Rebecca; Hyndes, Glenn A.; Lavery, Paul S.; Vanderklift, Mathew A.

    2007-08-01

    Beach-cast wrack is a prominent feature of beaches of south-western Australia. We examined the fauna of these beaches to explore the generalisation [Polis, G.A., Hurd, S.D., 1995. Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Ecology 92, 4382-4386] that beach-cast wrack from highly productive marine ecosystems subsidises low productivity of terrestrial ecosystems, to establish whether this generalisation is relevant to oligotrophic marine systems. We sampled three beaches with high and three beaches with low volumes of beach-cast wrack to determine if: (1) the presence of wrack influences the abundance of macroinvertebrates; (2) wrack acts as a food source for beach macroinvertebrates; and (3) the influence of wrack varies between zones above the high water mark. We measured wrack volume and composition, sediment characteristics, the abundance of different epibenthic and infaunal macroinvertebrates taxa, and δ13C and δ15N of macrophytes and macroinvertebrates. The mean volume of wrack on high-wrack beaches was 0.27-1.07 m 3 wrack m -2 compared to 0.00-0.09 m 3 wrack m -2 on low-wrack beaches. There were no significant differences in sediment grain size, moisture content or loss on ignition between the two types of beaches or zones. Epibenthic fauna and infauna were consistently abundant on high-wrack beaches (20-291 and 0.5-3.5 individuals 0.64 m -2, respectively), but either absent or extremely rare in low-wrack beaches (0-3 and 0-0.1 individuals 0.64 m -2, respectively). Within high-wrack beaches, there were no significant differences in the abundance of epifauna or infauna among beaches or between zones. The δ13C values of macroinvertebrates at all sites were most similar to red and brown algae, with the exception of beetles from two beaches, which were closest to seagrasses. Mixing model (Isosource) results for mesograzing amphipods and dipteran flies suggested carbon

  16. Temperature influences habitat preference of coral reef fishes: Will generalists become more specialised in a warming ocean?

    PubMed

    Matis, Paloma A; Donelson, Jennifer M; Bush, Stephen; Fox, Rebecca J; Booth, David J

    2018-07-01

    Climate change is expected to pose a significant risk to species that exhibit strong behavioural preferences for specific habitat types, with generalist species assumed to be less vulnerable. In this study, we conducted habitat choice experiments to determine how water temperature influences habitat preference for three common species of coral reef damselfish (Pomacentridae) that differ in their levels of habitat specialisation. The lemon damselfish Pomacentrus moluccensis, a habitat specialist, consistently selected complex coral habitat across all temperature treatments (selected based on local average seasonal temperatures naturally experienced in situ: ambient winter 22°C; ambient summer 28°C; and elevated 31°C). Unexpectedly, the neon damselfish Pomacentrus coelestis and scissortail sergeant Abudefduf sexfasciatus, both of which have more generalist habitat associations, developed strong habitat preferences (for complex coral and boulder habitat, respectively) at the elevated temperature treatment (31°C) compared to no single preferred habitat at 22°C or 28°C. The observed shifts in habitat preference with temperature suggest that we may be currently underestimating the vulnerability of some habitat generalists to climate change and highlight that the ongoing loss of complex live coral through coral bleaching could further exacerbate resource overlap and species competition in ways not currently considered in climate change models. © 2018 John Wiley & Sons Ltd.

  17. ASSESSMENT OF LARGE RIVER MACROINVERTEBRATES: HOW FAR IS ENOUGH?

    EPA Science Inventory

    During the summer of 2001, twelve sites were sampled for macroinvertebrates, six each on the Great Miami and Kentucky Rivers. Sites were chosen to reflect a disturbance gradient in each river using sites sampled in a 1999 methods comparison study. Our sampling protocol improves...

  18. Ecological opportunities, habitat, and past climatic fluctuations influenced the diversification of modern turtles.

    PubMed

    Rodrigues, João Fabrício Mota; Diniz-Filho, José Alexandre Felizola

    2016-08-01

    Habitat may be viewed as an important life history component potentially related to diversification patterns. However, differences in diversification rates between aquatic and terrestrial realms are still poorly explored. Testudines is a group distributed worldwide that lives in aquatic and terrestrial environments, but until now no-one has evaluated the diversification history of the group as a whole. We aim here to investigate the diversification history of turtles and to test if habitat influenced speciation rate in these animals. We reconstructed the phylogeny of the modern species of chelonians and estimated node divergence dates using molecular markers and a Bayesian approach. Then, we used Bayesian Analyses of Macroevolutionary Mixtures to evaluate the diversification history of turtles and evaluate the effect of habitat on this pattern. Our reconstructed phylogeny covered 300 species (87% of the total diversity of the group). We found that the emydid subfamily Deirochelyinae, which forms the turtle hotspot in south-eastern United States, had an increase in its speciation rate, and that Galapagos tortoises had similar increases. Current speciation rates are lower in terrestrial turtles, contradicting studies supporting the idea terrestrial animals diversify more than aquatic species. Our results suggest that habitat, ecological opportunities, island invasions, and climatic factors are important drivers of diversification in modern turtles and reinforce the importance of habitat as a diversification driver. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The relative influence of nutrients and habitat on stream metabolism in agricultural streams

    USGS Publications Warehouse

    Frankforter, J.D.; Weyers, H.S.; Bales, J.D.; Moran, P.W.; Calhoun, D.L.

    2010-01-01

    Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79-0.91) and CR-24 (r 2 = 0.76-0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP. ?? 2009 The Author(s).

  20. Rainbow trout movement behavior and habitat occupancy are influenced by sex and Pacific salmon presence in an Alaska river system

    USGS Publications Warehouse

    Fraley, Kevin M.; Falke, Jeffrey A.; McPhee, Megan V.; Prakash, Anupma

    2018-01-01

    We used spatially continuous field-measured and remotely-sensed aquatic habitat characteristics paired with weekly ground-based telemetry tracking and snorkel surveys to describe movements and habitat occupancy of adult rainbow trout (N = 82) in a runoff-fed, salmon-influenced southcentral Alaska river system. We found that during the ice-free feeding season (June through September) rainbow trout occurrence was associated more with fine-scale (channel unit) characteristics relative to coarse-scale (stream reach) variables. The presence of Pacific salmon (which provide an important seasonal food subsidy), and habitat size were particularly useful predictors. Weekly movement distance differed between pre- and post- spawning salmon arrival, but did not vary by sex. Habitat quality, season, and the arrival of spawning salmon influenced the likelihood of rainbow trout movement, and fish moved farther to seek out higher quality habitats. Because rainbow trout respond to habitat factors at multiple scales and seek out salmon-derived subsidies, it will be important to take a multiscale approach in protecting trout and salmon populations and managing the associated fisheries.

  1. Biomonitoring of water quality of the Osumi, Devolli, and Shkumbini rivers through benthic macroinvertebrates and chemical parameters.

    PubMed

    Duka, Sonila; Pepa, Bledar; Keci, Erjola; Paparisto, Anila; Lazo, Pranvera

    2017-04-16

    Environmental monitoring of river water quality in Albania, using biological and chemical parameters, is a fast and effective way to assess the quality of water bodies.The aim of this study was to investigate Ephemeroptera, Plecoptera and Trichoptera (EPT), Biotic index-Richness using macroinvertebrates to assess the water quality, with special reference to nutrient (phosphorus and nitrogen) levels in the Devolli, Shkumbini and Osumi rivers. Our objective was to investigate the relationships between the measures of benthic macroinvertebrate communities and nutrient concentrations to assess water quality. The rivers' benthic macroinvertebrates were collected during different seasons in 2012. The biological and chemical parameters used in the current study identified them as quick indicators of water quality assessment. The total number of macroinvertebrate individuals (n = 15,006) (Osumi river: n = 5,546 organisms; Devolli river: n = 3,469 organisms; and Shkumbini river: n = 5,991 organisms), together with the EPT group (Ephemeroptera, Plecoptera, and Trichoptera), showed that the water quality at the river stations during the above-mentioned period belonged to Classes II and III (fair water quality and good water quality, respectively). The classification of the water quality was also based on the nitrogen and total phosphorus contents. The pollution tolerance levels of macroinvertebrate taxa varied from the non-tolerating forms encountered in environments with low pollution levels to the tolerating forms that are typical of environments with considerable pollution levels.

  2. Shifting stream planform state decreases stream productivity yet increases riparian animal production.

    PubMed

    Venarsky, Michael P; Walters, David M; Hall, Robert O; Livers, Bridget; Wohl, Ellen

    2018-05-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging < 200 years ago) are single-channeled with mostly erosional habitat. We tested how these opposing stream states influenced organic matter, benthic macroinvertebrate secondary production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m -2 ), but values were 2 ×-21 × higher in undisturbed reaches per unit of stream valley (m -1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream-riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  3. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    USGS Publications Warehouse

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging < 200 years ago) are single-channeled with mostly erosional habitat. We tested how these opposing stream states influenced organic matter, benthic macroinvertebrate secondary production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  4. COMPARISON OF USEPA FIELD SAMPLING METHODS FOR BENTHIC MACROINVERTEBRATE STUDIES

    EPA Science Inventory

    Two U.S. Environmental Protection Agency (USEPA) macroinvertebrate sampling protocols were compared in the Mid-Atlantic Highlands region. The Environmental Monitoring and Assessment Program (EMAP) wadeable streams protocol results in a single composite sample from nine transects...

  5. Temperature threshold models for benthic macroinvertebrates in Idaho wadeable streams and neighboring ecoregions.

    PubMed

    Richards, David C; Lester, Gary; Pfeiffer, John; Pappani, Jason

    2018-02-07

    Water temperatures are warming throughout the world including the Pacific Northwest, USA. Benthic macroinvertebrates are one of the most important and widely used indicators of freshwater impairment; however, their response to increased water temperatures and their use for monitoring water temperature impairment has been hindered by lack of knowledge of temperature occurrences, threshold change points, or indicator taxa. We present new analysis of a large macroinvertebrate database provided by Idaho Department of Environmental Quality from wadeable streams in Idaho that is to be used in conjunction with our previous analyses. This new analysis provides threshold change points for over 400 taxa along an increasing temperature gradient and provides a list of statistically important indicator taxa. The macroinvertebrate assemblage temperature change point for the taxa that decreased with increased temperatures was determined to be about 20.5 °C and for the taxa assemblage that increased with increased temperatures was about 11.5 °C. Results of this new analysis combined with our previous analysis will also be useful for others in neighboring regions where these taxa occur.

  6. Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages.

    PubMed

    Fierro, Pablo; Bertrán, Carlos; Tapia, Jaime; Hauenstein, Enrique; Peña-Cortés, Fernando; Vergara, Carolina; Cerna, Cindy; Vargas-Chacoff, Luis

    2017-12-31

    Land-use change is a principal factor affecting riparian vegetation and river biodiversity. In Chile, land-use change has drastically intensified over the last decade, with native forests converted to exotic forest plantations and agricultural land. However, the effects thereof on aquatic ecosystems are not well understood. Closing this knowledge gap first requires understanding how human perturbations affect riparian and stream biota. Identified biological indicators could then be applied to determine the health of fluvial ecosystems. Therefore, this study investigated the effects of land-use change on the health of riparian and aquatic ecosystems by assessing riparian vegetation, water quality, benthic macroinvertebrate assemblages, and functional feeding groups. Twenty-one sites in catchment areas with different land-uses (i.e. pristine forests, native forests, exotic forest plantations, and agricultural land) were selected and sampled during the 2010 to 2012 dry seasons. Riparian vegetation quality was highest in pristine forests. Per the modified Macroinvertebrate Family Biotic Index for Chilean species, the best conditions existed in native forests and the worst in agricultural catchments. Water quality and macroinvertebrate assemblages significantly varied across land-use areas, with forest plantations and agricultural land having high nutrient concentrations, conductivity, suspended solids, and apparent color. Macroinvertebrate assemblage diversity was lowest for agricultural and exotic forest plantation catchments, with notable non-insect representation. Collector-gatherers were the most abundant functional feeding group, suggesting importance independent of land-use. Land-use areas showed no significant differences in functional feeding groups. In conclusion, anthropogenic land-use changes were detectable through riparian quality, water quality, and macroinvertebrate assemblages, but not through functional feeding groups. These data, particularly the

  7. Effects of organic pollution and physical stress on benthic macroinvertebrate communities from two intermittently closed and open coastal lagoons (ICOLLs)

    NASA Astrophysics Data System (ADS)

    Coelho, Susana; Pérez-Ruzafa, Angel; Gamito, Sofia

    2015-12-01

    Benthic macroinvertebrate communities and environmental conditions were studied in two intermittently closed and open coastal lakes and lagoons (ICOLLs), located in southern Algarve (Foz do Almargem e Salgados), with the purpose of evaluating the effects of organic pollution, originated mainly from wastewater discharges, and the physical stress caused by the irregular opening of the lagoons. Most of the year, lagoons were isolated from the sea, receiving the freshwater inputs from small rivers and in Salgados, also from the effluents of a wastewater plant. According to environmental and biotic conditions, Foz do Almargem presented a greater marine influence and a lower trophic state (mesotrophic) than Salgados (hypereutrophic). Benthic macroinvertebrate communities in the lagoons were distinct, just as their relations with environmental parameters. Mollusca were the most abundant macroinvertebrates in Foz do Almargem, while Insecta, Oligochaeta and Crustacea were more relevant in Salgados. Corophium multisetosum occurred exclusively in Salgados stations and, just as Chironomus sp., other Insecta and Oligochaeta, densities were positively related to total phosphorus, clay content and chlorophyll a concentration in the sediment, chlorophyll a concentration in water and with total dissolved inorganic nitrogen. Abra segmentum, Cerastoderma glaucum, Peringia ulvae and Ecrobia ventrosa occurred only in Foz do Almargem, with lower values of the above mentioned parameters. Both lagoons were dominated by deposit feeders and taxa tolerant to environmental stress, although in Salgados there was a greater occurrence of opportunistic taxa associated to pronounced unbalanced situations, due to excess organic matter enrichment.

  8. A NULL MODEL FOR THE EXPECTED MACROINVERTEBRATE ASSEMBLAGE IN STREAMS

    EPA Science Inventory

    Predictive models such as River InVertebrate Prediction And Classification System (RIVPACS) and AUStralian RIVer Assessment System (AUSRIVAS) model the natural variation across geographic regions in the occurrences of macroinvertebrate taxa in data from streams that are in refere...

  9. Estuarine Macroinvertebrate Pollution Indicator Species in the Virginian Biogeographic Province

    EPA Science Inventory

    Macroinvertebrates are commonly used as biomonitors to detect pollution impacts in estuaries. In this study we identified estuarine benthic invertebrates that could be used to detect presence or absence of pollution in the Virginian Biogeographic Province using available monitor...

  10. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    NASA Astrophysics Data System (ADS)

    Tullos, D. D.; Walter, C.; Dunham, J.

    2016-12-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: 1) the velocities considered to be representative of habitat units; 2) patterns of use of the hydraulic environment by fish; and 3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution, reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  11. Biodiversity patterns of macrophyte and macroinvertebrate communities in two lagoons of Western Greece.

    NASA Astrophysics Data System (ADS)

    Fyttis, G.; Reizopoulou, S.; Papastergiadou, E.

    2012-04-01

    Aquatic macrophytes and benthic macroinvertebrates were studied seasonally (Spring, Autumn, Summer) between the years 2009 - 2011 in two coastal lagoons (Kotychi and Prokopos) located in Peloponnese, Greece, in order to investigate spatial and temporal biodiversity trends related to hydrological processes (degree of confinement, nitrates, phosphates, chl-a, total suspended materials, light irradiance, pH, salinity, temperature and dissolved oxygen). Kotychi lagoon presents a better communication with the sea, while Prokopos has a high degree of confinement. Both ecosystems seasonally receive freshwater input from streams. The submerged aquatic macrophytes constituted a major component of the ecosystems studied. In total, 22 taxa of aquatic macrophytes (angiosperms and macroalgae), 16 taxa for Kotychi (2 Rhodophyta, 8 Chlorophyta, 5 Magnoliophyta, 1 Streptophyta) and 14 taxa for Prokopos (1 Rhodophyta, 5 Chlorophyta, 5 Magnoliophyta, 3 Streptophyta) were found. Ruppia cirrhosa, and Potamogeton pectinatus were dominant in both lagoons. Kotychi lagoon was also dominated by Zostera noltii and Prokopos by Zannichellia pallustris ssp. pedicellata, while the biomass of aquatic species peaked during the summer periods, in both lagoons. The total number of macroinvertebrates found in the lagoons was 28 taxa for Kotychi and 19 for Prokopos. Chironomidae were dominant in both lagoons, while Kotychi was also dominated by Lekanesphaera monodi and Monocorophium insidiosum, and Prokopos by Ostracoda and Lekanesphaera monodi. Benthic diversity ranged from 1.33 to 2.57 in Kotychi and from 0.67 to 2.48 in Prokopos. Species richness, diversity, and abundance of benthic macroinvertebrates were strongly related to aquatic vegetation and to the degree of communication with the marine environment. Moreover, species richness and abundance of both macrophytes and macroinvertebrates were mainly dependent on depth, temperature, pH and concentration of total suspended materials (TSM). Results

  12. The Influence of Mitigation on Sage-Grouse Habitat Selection within an Energy Development Field

    PubMed Central

    Fedy, Bradley C.; Kirol, Christopher P.; Sutphin, Andrew L.; Maechtle, Thomas L.

    2015-01-01

    Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may

  13. The influence of mitigation on sage-grouse habitat selection within an energy development field.

    PubMed

    Fedy, Bradley C; Kirol, Christopher P; Sutphin, Andrew L; Maechtle, Thomas L

    2015-01-01

    Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may

  14. Length-mass relationships for transitional water benthic macroinvertebrates in Mediterranean and Black Sea ecosystems

    NASA Astrophysics Data System (ADS)

    Rosati, I.; Barbone, E.; Basset, A.

    2012-11-01

    Length-mass relationships are potentially useful tools to estimate individual biomass, assuming a relative invariance within and among populations and, sometimes, among species pertaining to a same family or order. Here, we present a field test of these assumptions in guilds of benthic macroinvertebrates colonising transitional water ecosystems. To this aim, we are analysing length-mass relationships of benthic macroinvertebrates of transitional water ecosystems and assessing their variability among populations of a same species and among species of a same family and/or order. Data are from synoptic studies carried out at four oligohaline transitional water ecosystems, from the Southern Italy and the Danube delta ecoregions; they refer to 40 macroinvertebrate taxa selected from the overall species pool according to absolute and relative density requirements. Species composition differed widely among ecoregions while length-mass relationships of the species occurring in both ecoregions did not; the variability of length-mass parameters of these species among ecosystems was lower than 10%. Length-mass regressions were relatively conservative also with respect to taxonomic resolution; significant differences were observed among species within 5 out of the 7 orders tested but differences in slopes and intercepts were on average lower than 15%. Therefore, our results, representing one of the first efforts to catalogue length-mass relationships for benthic macroinvertebrates in transitional waters, support the assumption of relative invariance of length-mass relationships and their use in studies where gross estimates of population biomasses are required.

  15. Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore.

    PubMed

    Bjørneraas, Kari; Herfindal, Ivar; Solberg, Erling Johan; Sæther, Bernt-Erik; van Moorter, Bram; Rolandsen, Christer Moe

    2012-01-01

    Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.

  16. Development of a regional macroinvertebrate index for large river bioassessment

    EPA Science Inventory

    Large river bioassessment protocols lag far behind those of wadeable streams and often rely on fish assemblages of individual rivers. We developed a regional macroinvertebrate index and assessed relative condition of six large river tributaries to the upper Mississippi and Ohio r...

  17. Elk migration patterns and human activity influence wolf habitat use in the Greater Yellowstone Ecosystem.

    PubMed

    Nelson, Abigail A; Kauffman, Matthew J; Middleton, Arthur D; Jimenez, Michael D; McWhirter, Douglas E; Barber, Jarrett; Gerow, Kenneth

    2012-12-01

    Identifying the ecological dynamics underlying human-wildlife conflicts is important for the management and conservation of wildlife populations. In landscapes still occupied by large carnivores, many ungulate prey species migrate seasonally, yet little empirical research has explored the relationship between carnivore distribution and ungulate migration strategy. In this study, we evaluate the influence of elk (Cervus elaphus) distribution and other landscape features on wolf (Canis lupus) habitat use in an area of chronic wolf-livestock conflict in the Greater Yellowstone Ecosystem, USA. Using three years of fine-scale wolf (n = 14) and elk (n = 81) movement data, we compared the seasonal habitat use of wolves in an area dominated by migratory elk with that of wolves in an adjacent area dominated by resident elk. Most migratory elk vacate the associated winter wolf territories each summer via a 40-60 km migration, whereas resident elk remain accessible to wolves year-round. We used a generalized linear model to compare the relative probability of wolf use as a function of GIS-based habitat covariates in the migratory and resident elk areas. Although wolves in both areas used elk-rich habitat all year, elk density in summer had a weaker influence on the habitat use of wolves in the migratory elk area than the resident elk area. Wolves employed a number of alternative strategies to cope with the departure of migratory elk. Wolves in the two areas also differed in their disposition toward roads. In winter, wolves in the migratory elk area used habitat close to roads, while wolves in the resident elk area avoided roads. In summer, wolves in the migratory elk area were indifferent to roads, while wolves in resident elk areas strongly avoided roads, presumably due to the location of dens and summering elk combined with different traffic levels. Study results can help wildlife managers to anticipate the movements and establishment of wolf packs as they expand into areas

  18. Elk migration patterns and human activity influence wolf habitat use in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Nelson, Abigail; Kauffman, Matthew J.; Middleton, Arthur D.; Jimenez, Mike; McWhirter, Douglas; Barber, Jarrett; Gerow, Ken

    2012-01-01

    Identifying the ecological dynamics underlying human–wildlife conflicts is important for the management and conservation of wildlife populations. In landscapes still occupied by large carnivores, many ungulate prey species migrate seasonally, yet little empirical research has explored the relationship between carnivore distribution and ungulate migration strategy. In this study, we evaluate the influence of elk (Cervus elaphus) distribution and other landscape features on wolf (Canis lupus) habitat use in an area of chronic wolf–livestock conflict in the Greater Yellowstone Ecosystem, USA. Using three years of fine-scale wolf (n = 14) and elk (n = 81) movement data, we compared the seasonal habitat use of wolves in an area dominated by migratory elk with that of wolves in an adjacent area dominated by resident elk. Most migratory elk vacate the associated winter wolf territories each summer via a 40–60 km migration, whereas resident elk remain accessible to wolves year-round. We used a generalized linear model to compare the relative probability of wolf use as a function of GIS-based habitat covariates in the migratory and resident elk areas. Although wolves in both areas used elk-rich habitat all year, elk density in summer had a weaker influence on the habitat use of wolves in the migratory elk area than the resident elk area. Wolves employed a number of alternative strategies to cope with the departure of migratory elk. Wolves in the two areas also differed in their disposition toward roads. In winter, wolves in the migratory elk area used habitat close to roads, while wolves in the resident elk area avoided roads. In summer, wolves in the migratory elk area were indifferent to roads, while wolves in resident elk areas strongly avoided roads, presumably due to the location of dens and summering elk combined with different traffic levels. Study results can help wildlife managers to anticipate the movements and establishment of wolf packs as they expand into

  19. Tolerance values of benthic macroinvertebrates for stream biomonitoring: assessment of assumptions underlying scoring systems worldwide.

    PubMed

    Chang, Feng-Hsun; Lawrence, Justin E; Rios-Touma, Blanca; Resh, Vincent H

    2014-04-01

    Tolerance values (TVs) based on benthic macroinvertebrates are one of the most widely used tools for monitoring the biological impacts of water pollution, particularly in streams and rivers. We compiled TVs of benthic macroinvertebrates from 29 regions around the world to test 11 basic assumptions about pollution tolerance, that: (1) Arthropoda are < tolerant than non-Arthropoda; (2) Insecta < non-Insecta; (3) non-Oligochaeta < Oligochaeta; (4) other macroinvertebrates < Oligochaeta + Chironomidae; (5) other macroinvertebrate taxa < Isopoda + Gastropoda + Hirudinea; (6) Ephemeroptera + Plecoptera + Trichoptera (EPT) < Odonata + Coleoptera + Heteroptera (OCH); (7) EPT < non-EPT insects; (8) Diptera < Insecta; (9) Bivalvia < Gastropoda; (10) Baetidae < other Ephemeroptera; and (11) Hydropsychidae < other Trichoptera. We found that the first eight of these 11 assumptions were supported despite regional variability. In addition, we examined the effect of Best Professional Judgment (BPJ) and non-independence of TVs among countries by performing all analyses using subsets of the original dataset. These subsets included a group based on those systems using TVs that were derived from techniques other than BPJ, and groups based on methods used for TV assignment. The results obtained from these subsets and the entire dataset are similar. We also made seven a priori hypotheses about the regional similarity of TVs based on geography. Only one of these was supported. Development of TVs and the reporting of how they are assigned need to be more rigorous and be better described.

  20. Assessment tools for urban catchments: developing biological indicators based on benthic macroinvertebrates

    USGS Publications Warehouse

    Purcell, A.H.; Bressler, D.W.; Paul, M.J.; Barbour, M.T.; Rankin, E.T.; Carter, J.L.; Resh, V.H.

    2009-01-01

    Biological indicators, particularly benthic macroinvertebrates, are widely used and effective measures of the impact of urbanization on stream ecosystems. A multimetric biological index of urbanization was developed using a large benthic macroinvertebrate dataset (n = 1,835) from the Baltimore, Maryland, metropolitan area and then validated with datasets from Cleveland, Ohio (n = 79); San Jose, California (n = 85); and a different subset of the Baltimore data (n = 85). The biological metrics used to develop the multimetric index were selected using several criteria and were required to represent ecological attributes of macroinvertebrate assemblages including taxonomic composition and richness (number of taxa in the insect orders of Ephemeroptera, Plecoptera, and Trichoptera), functional feeding group (number of taxa designated as filterers), and habit (percent of individuals which cling to the substrate). Quantile regression was used to select metrics and characterize the relationship between the final biological index and an urban gradient (composed of population density, road density, and urban land use). Although more complex biological indices exist, this simplified multimetric index showed a consistent relationship between biological indicators and urban conditions (as measured by quantile regression) in three climatic regions of the United States and can serve as an assessment tool for environmental managers to prioritize urban stream sites for restoration and protection.

  1. The Value of the Freshwater Snail Dip Scoop Sampling Method in Macroinvertebrates Bioassessment of Sugar Mill Wastewater Pollution in Mbandjock, Cameroon

    PubMed Central

    Takougang, Innocent; Barbazan, Phillipe; Tchounwou, Paul B.; Noumi, Emmanuel

    2008-01-01

    Macroinvertebrates identification and enumeration may be used as a simple and affordable alternative to chemical analysis in water pollution monitoring. However, the ecological responses of various taxa to pollution are poorly known in resources-limited tropical countries. While freshwater macroinvertebrates have been used in the assessment of water quality in Europe and the Americas, investigations in Africa have mainly focused on snail hosts of human parasites. There is a need for sampling methods that can be used to assess both snails and other macroinvertebrates. The present study was designed to evaluate the usefulness of the freshwater snail dip scoop method in the study of macroinvertebrates for the assessment of the SOSUCAM sugar mill effluents pollution. Standard snail dip scoop samples were collected upstream and downstream of the factory effluent inputs, on the Mokona and Mengoala rivers. The analysis of the macroinvertebrate communities revealed the absence of Ephemeroptera and Trichoptera, and the thriving of Syrphidae in the sections of the rivers under high effluent load. The Shannon & Weaver diversity index was lower in these areas. The dip scoop sampling protocol was found to be a useful method for macroinvertebrates collection. Hence, this method is recommended as a simple, cost-effective and efficient tool for the bio-assessment of freshwater pollution in developing countries with limited research resources. PMID:18441407

  2. The value of the freshwater snail dip scoop sampling method in macroinvertebrates bioassessment of sugar mill wastewater pollution in Mbandjock, Cameroon.

    PubMed

    Takougang, Innocent; Barbazan, Phillipe; Tchounwou, Paul B; Noumi, Emmanuel

    2008-03-01

    Macroinvertebrates identification and enumeration may be used as a simple and affordable alternative to chemical analysis in water pollution monitoring. However, the ecological responses of various taxa to pollution are poorly known in resources-limited tropical countries. While freshwater macroinvertebrates have been used in the assessment of water quality in Europe and the Americas, investigations in Africa have mainly focused on snail hosts of human parasites. There is a need for sampling methods that can be used to assess both snails and other macroinvertebrates. The present study was designed to evaluate the usefulness of the freshwater snail dip scoop method in the study of macroinvertebrates for the assessment of the SOSUCAM sugar mill effluents pollution. Standard snail dip scoop samples were collected upstream and downstream of the factory effluent inputs, on the Mokona and Mengoala rivers. The analysis of the macroinvertebrate communities revealed the absence of Ephemeroptera and Trichoptera, and the thriving of Syrphidae in the sections of the rivers under high effluent load. The Shannon & Weaver diversity index was lower in these areas. The dip scoop sampling protocol was found to be a useful method for macroinvertebrates collection. Hence, this method is recommended as a simple, cost-effective and efficient tool for the bio-assessment of freshwater pollution in developing countries with limited research resources.

  3. Shallow Water Habitat Mapping in Cape Cod National Seashore: A Post-Hurricane Sandy Study

    NASA Astrophysics Data System (ADS)

    Borrelli, M.; Smith, T.; Legare, B.; Mittermayr, A.

    2017-12-01

    Hurricane Sandy had a dramatic impact along coastal areas in proximity to landfall in late October 2012, and those impacts have been well-documented in terrestrial coastal settings. However, due to the lack of data on submerged marine habitats, similar subtidal impact studies have been limited. This study, one of four contemporaneous studies commissioned by the US National Park Service, developed maps of submerged shallow water marine habitats in and around Cape Cod National Seashore, Massachusetts. All four studies used similar methods of data collection, processing and analysis for the production of habitat maps. One of the motivations for the larger study conducted in the four coastal parks was to provide park managers with a baseline inventory of submerged marine habitats, against which to measure change after future storm events and other natural and anthropogenic phenomena. In this study data from a phase-measuring sidescan sonar, bottom grab samples, seismic reflection profiling, and sediment coring were all used to develop submerged marine habitat maps using the Coastal and Marine Ecological Classification Standard (CMECS). Vessel-based acoustic surveys (n = 76) were conducted in extreme shallow water across four embayments from 2014-2016. Sidescan sonar imagery covering 83.37 km2 was collected, and within that area, 49.53 km2 of co-located bathymetric data were collected with a mean depth of 4.00 m. Bottom grab samples (n = 476) to sample macroinvertebrates and sediments (along with other water column and habitat data) were collected, and these data were used along with the geophysical and coring data to develop final habitat maps using the CMECS framework.

  4. Microbial biogeography of arctic streams: exploring influences of lithology and habitat.

    PubMed

    Larouche, Julia R; Bowden, William B; Giordano, Rosanna; Flinn, Michael B; Crump, Byron C

    2012-01-01

    Terminal restriction fragment length polymorphism and 16S rRNA gene sequencing were used to explore the community composition of bacterial communities in biofilms on sediments (epipssamon) and rocks (epilithon) in stream reaches that drain watersheds with contrasting lithologies in the Noatak National Preserve, Alaska. Bacterial community composition varied primarily by stream habitat and secondarily by lithology. Positive correlations were detected between bacterial community structure and nutrients, base cations, and dissolved organic carbon. Our results showed significant differences at the stream habitat, between epipssamon and epilithon bacterial communities, which we expected. Our results also showed significant differences at the landscape scale that could be related to different lithologies and associated stream biogeochemistry. These results provide insight into the bacterial community composition of little known and pristine arctic stream ecosystems and illustrate how differences in the lithology, soils, and vegetation community of the terrestrial environment interact to influence stream bacterial taxonomic richness and composition.

  5. Microbial Biogeography of Arctic Streams: Exploring Influences of Lithology and Habitat

    PubMed Central

    Larouche, Julia R.; Bowden, William B.; Giordano, Rosanna; Flinn, Michael B.; Crump, Byron C.

    2012-01-01

    Terminal restriction fragment length polymorphism and 16S rRNA gene sequencing were used to explore the community composition of bacterial communities in biofilms on sediments (epipssamon) and rocks (epilithon) in stream reaches that drain watersheds with contrasting lithologies in the Noatak National Preserve, Alaska. Bacterial community composition varied primarily by stream habitat and secondarily by lithology. Positive correlations were detected between bacterial community structure and nutrients, base cations, and dissolved organic carbon. Our results showed significant differences at the stream habitat, between epipssamon and epilithon bacterial communities, which we expected. Our results also showed significant differences at the landscape scale that could be related to different lithologies and associated stream biogeochemistry. These results provide insight into the bacterial community composition of little known and pristine arctic stream ecosystems and illustrate how differences in the lithology, soils, and vegetation community of the terrestrial environment interact to influence stream bacterial taxonomic richness and composition. PMID:22936932

  6. Variability of Lekanesphaera monodi metabolic rates with habitat trophic status

    NASA Astrophysics Data System (ADS)

    Vignes, Fabio; Fedele, Marialaura; Pinna, Maurizio; Mancinelli, Giorgio; Basset, Alberto

    2012-05-01

    Regulation of metabolism is a common strategy used by individuals to respond to a changing environment. The mechanisms underlying the variability of metabolic rates in macroinvertebrates are of primary importance in studying benthic-pelagic energy transfer in transitional water ecosystems. Lekanesphaera monodi is an isopod endemic to transitional water ecosystems that can modify its metabolic rate in response to environmental changes. Therefore it is a useful model in studying the influence of environmental factors on metabolism. This study focused on the interpopulation variability of standard metabolic rates (SMR) in L. monodi populations sampled in three transitional water ecosystems differing in their trophic status. The standard metabolic rates of L. monodi individuals across the same range of body size spectra were inferred from oxygen consumption measurements in a flow-through respirometer in the three populations and a body condition index was assessed for each population. Habitat trophic status was evaluated by monthly measurement of the basic physical-chemical parameters of the water column in the ecosystems for one year. Standard metabolic rates showed high variability, ranging from 0.27 to 10.14 J d-1. Body size accounted for more than 38% of total variability. In terms of trophic status, individuals from the eutrophic ecosystem had significantly higher standard metabolic rates than individuals from the other ecosystems (SMR = 2.3 J d-1 in Spunderati Sud vs. 1.36 J d-1 in Alimini and 0.69 J d-1 in Acquatina). The body conditions index was also higher in the population from the eutrophic ecosystem. Results show that standard metabolic rates and growth rates are directly related to habitat productivity in accordance with the expectations of the food habits hypothesis. A possible extension of this hypothesis to benthic invertebrates is proposed.

  7. A benthic-macroinvertebrate index of biotic integrity and assessment of conditions in selected streams in Chester County, Pennsylvania, 1998-2009

    USGS Publications Warehouse

    Reif, Andrew G.

    2012-01-01

    The Stream Conditions of Chester County Biological Monitoring Network (Network) was established by the U.S. Geological Survey and the Chester County Water Resources Authority in 1969. Chester County encompasses 760 square miles in southeastern Pennsylvania and has a rapidly expanding population. Land-use change has occurred in response to this continual growth, as open space, agricultural lands, and wooded lands have been converted to residential and commercial lands. In 1998, the Network was modified to include 18 fixed-location sites and 9 flexible-location sites. Sites were sampled annually in the fall (October-November) during base-flow conditions for water chemistry, instream habitat, and benthic macroinvertebrates. A new set of 9 flexible-location sites was selected each year. From 1998 to 2009, 213 samples were collected from the 18 fixed-location sites and 107 samples were collected from the 84 flexible-location sites. Eighteen flexible-location sites were sampled more than once over the 12-year period; 66 sites were sampled only once. Benthic-macroinvertebrate data from samples collected during 1998-2009 were used to establish the Chester County Index of Biotic Integrity (CC-IBI). The CC-IBI was based on the methods and metrics outlined in the Pennsylvania Department of Environmental Protection's "A Benthic Index of Biotic Integrity for Wadeable Freestone Streams in Pennsylvania." The resulting CC-IBI consists of scores for benthic-macroinvertebrate samples collected from sites in the Network that related to reference conditions in Chester County. Mean CC-IBI scores for 18 fixed-location sites ranged from 37.21 to 88.92. Thirty-nine percent of the 213 samples collected at the 18 fixed-location sites had a CC-IBI score less than 50; 33 percent, 50 to 70; 28 percent, greater than 70. CC-IBI scores from the 107 flexible-location samples ranged from 23.48 to 99.96. Twenty-five percent of the 107 samples collected at the flexible-location sites had a CC

  8. DEVELOPMENT AND EVALUATION OF A MACROINVERTEBRATE BENTHOS INTEGRITY INDEX (SBII) FOR BIOASSESSMENT OF STREAMS IN THE MID-ATLANTIC HIGHLANDS REGION

    EPA Science Inventory

    A multimetric macroinvertebrate index called the Stream Benthos Integrity Index (SBII) was developed for the Mid-Atlantic Highlands Region of the United States. The SBII was developed for assessing biological conditions of wadeable streams and was based on benthic macroinvertebr...

  9. Assessing the ecological status of the Cisadane River’s headwaters using benthic macroinvertebrates

    NASA Astrophysics Data System (ADS)

    Krisanti, M.; Wardiatno, Y.; Anzani, Y. M.

    2017-01-01

    Benthic macroinvertebrates are commonly used in river health biomonitoring. In monitoring program biotic indices are now widely established in water quality monitoring around the world, including in the tropical countries. The aim of this study was to reveal the ecological status of Cisadane River’s headwaters in inside and outside of Mount Halimun-Salak National Park by using benthic macroinvertebrates. The research was conducted in the headwaters of Cisadane River located in Mount Halimun-Salak National Park. Macroinvertebrates were collected from four sites, i.e. inside the park (station 1, 2, 3, and 4) and from two sites outside the park (station 5 and 6). Collections were made twice a month, starting from April to June 2015 by means of Surber sampler (frame area 30x30 cm). A total of 65 genera from 38 families and 11 orders were found in the river. The results showed that based on diversity index, Lincoln Quality Index (LQI), Family Biotic Index (FBI), and Stream Invertebrate Grade Number Average Level 2 (SIGNAL 2), stations located within national park were ecologically better than those outside national park. Rivers with well-preserved riverside vegetation, as in the national park area have greater ecological status.

  10. Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal

    USGS Publications Warehouse

    Tomsic, C.A.; Granata, T.C.; Murphy, R.P.; Livchak, C.J.

    2007-01-01

    A habitat suitability index (HSI) model was developed for a water quality sensitive fish (Greater Redhorse) and macroinvertebrate (Plecoptera) species to determine the restoration success of the St. John Dam removal for the Sandusky River (Ohio). An ArcGIS?? model was created for pre- and post-dam removal scenarios. Inputs to the HSI model consist of substrate distributions from river surveys, and water level and velocity time series, outputs from a hydrodynamic model. The ArcGIS?? model predicted habitat suitability indices at 45 river cross-sections in the hydrodynamic model. The model was programmed to produce polygon layers, using graphical user interfaces that were displayed in the ArcGIS?? environment. The results of the model clearly show an increase of habitat suitability from pre- to post-dam removal periods and in the former reservoir. The change in suitability of the model is attributed mostly to the change in depth in the river following the dam removal for both the fish and invertebrate species. The results of the invertebrate model followed the same positive trend as species enumerations from the river basin. ?? 2007 Elsevier B.V. All rights reserved.

  11. RIVERINE ASSESSMENT USING MACROINVERTEBRATES: ALL METHODS ARE NOT CREATED EQUAL

    EPA Science Inventory

    In 1999, we compared six benthic macroinvertebrate field sampling methods for nonwadeable streams based on those developed for three major programs (EMAP-SW, NAWQA, and Ohio EPA), at each of sixty sites across four tributaries to the Ohio River. Water chemistry samples and physi...

  12. Benthic Macroinvertebrate Assemblages in the Near Coastal Zone of Lake Erie

    EPA Science Inventory

    Benthic macroinvertebrate assemblages have been used as indicators of ecological condition because their responses integrate localized environmental conditions of the sediments and overlying water. Assemblages of benthic invertebrates in the near coastal region are of particular...

  13. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    USGS Publications Warehouse

    Tullos, Desiree D.; Walter, Cara; Dunham, Jason B.

    2016-01-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: (1) the velocities considered to be representative of habitat units; (2) patterns of use of the hydraulic environment by fish; and (3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution (grid spacing from 10 to 100 cm), reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  14. Spatial and seasonal distribution of macroinvertebrates in high altitude reservoir (Beyler Reservoir, Turkey)

    NASA Astrophysics Data System (ADS)

    Findik, Özlem

    2013-09-01

    A highland reservoir in the West Black Sea region of Turkey which belongs to the Mediterranean climatic zone was examined. Both littoral and profundal zones were sampled from October 2009 to September 2010, to determine taxonomic composition, biodiversity and abundance of benthic invertebrates as well as the seasonal variation of these measures. A total of 35 taxa were identified, of which 12 belong to Chironomidae and 10 to Oligochaeta groups. The highest diversity and abundance of benthic macroinvertebrates were found at the littoral stations. Macroinvertebrates showed significant positive correlations with water temperature and NO2 and NO3 concentrations, and negative correlation with dissolved oxygen.

  15. Does fluoride influence oviposition of Anopheles stephensi in stored water habitats in an urban setting?

    PubMed

    Thomas, Shalu; Ravishankaran, Sangamithra; Johnson Amala Justin, N A; Asokan, Aswin; Maria Jusler Kalsingh, T; Mathai, Manu Thomas; Valecha, Neena; Eapen, Alex

    2016-11-09

    The physico-chemical characteristics of lentic aquatic habitats greatly influence mosquito species in selecting suitable oviposition sites; immature development, pupation and adult emergence, therefore are considerations for their preferred ecological niche. Correlating water quality parameters with mosquito breeding, as well as immature vector density, are useful for vector control operations in identifying and targeting potential breeding habitats. A total of 40 known habitats of Anopheles stephensi, randomly selected based on a vector survey in parallel, were inspected for the physical and chemical nature of the aquatic environment. Water samples were collected four times during 2013, representing four seasons (i.e., ten habitats per season). The physico-chemical variables and mosquito breeding were statistically analysed to find their correlation with immature density of An. stephensi and also co-inhabitation with other mosquito species. Anopheles stephensi prefer water with low nitrite content and high phosphate content. Parameters such as total dissolved solids, electrical conductivity, total hardness, chloride, fluoride and sulfate had a positive correlation in habitats with any mosquito species breeding (p < 0.05) and also in habitats with An. stephensi alone breeding. Fluoride was observed to have a strong positive correlation with immature density of An. stephensi in both overhead tanks and wells. Knowledge of larval ecology of vector mosquitoes is a key factor in risk assessment and for implementing appropriate and sustainable vector control operations. The presence of fluoride in potential breeding habitats and a strong positive correlation with An. stephensi immature density is useful information, as fluoride can be considered an indicator/predictor of vector breeding. Effective larval source management can be focussed on specified habitats in vulnerable areas to reduce vector abundance and malaria transmission.

  16. ASSESSMENT OF LARGE RIVER MACROINVERTEBRATE ASSEMBLAGES: HOW FAR IS ENOUGH?

    EPA Science Inventory

    During the summer of 2001, twelve sites were sampled for macroinvertebrates, six each on the Great Miami and Kentucky Rivers. Sites were chosen in each river from those sampled in the 1999 methods comparison study to reflect a disturbance gradient. At each site, a total distanc...

  17. Macroinvertebrate Responses to Constructed Riffles in the Cache River, Illinois, USA

    NASA Astrophysics Data System (ADS)

    Walther, Denise A.; Whiles, Matt R.

    2008-04-01

    Stream restoration practices are becoming increasingly common, but biological assessments of these improvements are still limited. Rock weirs, a type of constructed riffle, were implemented in the upper Cache River in southern Illinois, USA, in 2001 and 2003-2004 to control channel incision and protect high quality riparian wetlands as part of an extensive watershed-level restoration. Construction of the rock weirs provided an opportunity to examine biological responses to a common in-stream restoration technique. We compared macroinvertebrate assemblages on previously constructed rock weirs and newly constructed weirs to those on snags and scoured clay streambed, the two dominant substrates in the unrestored reaches of the river. We quantitatively sampled macroinvertebrates on these substrates on seven occasions during 2003 and 2004. Ephemeroptera, Plecoptera, and Trichoptera (EPT) biomass and aquatic insect biomass were significantly higher on rock weirs than the streambed for most sample periods. Snags supported intermediate EPT and aquatic insect biomass compared to rock weirs and the streambed. Nonmetric multidimensional scaling (NMDS) ordinations for 2003 and 2004 revealed distinct assemblage groups for rock weirs, snags, and the streambed. Analysis of similarity supported visual interpretation of NMDS plots. All pair-wise substrate comparisons differed significantly, except recently constructed weirs versus older weirs. Results indicate positive responses by macroinvertebrate assemblages to in-stream restoration in the Cache River. Moreover, these responses were not evident with more common measures of total density, biomass, and diversity.

  18. Habitat surrounding patch reefs influences the diet and nutrition of the western rock lobster

    EPA Science Inventory

    In this study the influence of habitat on the diet and nutrition of a common reef-associated generalist consumer, the western rock lobster Panulirus cygnus, was tested. Stable isotopes (13C/12C and 15N/14N) and gut contents were used to assess the diet of lobsters collected from ...

  19. Influence of Mowing Artemisia tridentata ssp. wyomingensis on Winter Habitat for Wildlife

    NASA Astrophysics Data System (ADS)

    Davies, Kirk W.; Bates, Jonathan D.; Johnson, Dustin D.; Nafus, Aleta M.

    2009-07-01

    Mowing is commonly implemented to Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh (Wyoming big sagebrush) plant communities to improve wildlife habitat, increase forage production for livestock, and create fuel breaks for fire suppression. However, information detailing the influence of mowing on winter habitat for wildlife is lacking. This information is crucial because many wildlife species depended on A. tridentata spp. wyomingensis plant communities for winter habitat and consume significant quantities of Artemisia during this time . Furthermore, information is generally limited describing the recovery of A. tridentata spp. wyomingensis to mowing and the impacts of mowing on stand structure. Stand characteristics and Artemisia leaf tissue crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF) concentrations were measured in midwinter on 0-, 2-, 4-, and 6-year-old fall-applied mechanical (mowed at 20 cm height) treatments and compared to adjacent untreated (control) areas. Mowing compared to the control decreased Artemisia cover, density, canopy volume, canopy elliptical area, and height ( P < 0.05), but all characteristics were recovering ( P < 0.05). Mowing A. tridentata spp. wyomingensis plant communities slightly increases the nutritional quality of Artemisia leaves ( P < 0.05), but it simultaneously results in up to 20 years of decrease in Artemisia structural characteristics. Because of the large reduction in A. tridentata spp. wyomingensis for potentially 20 years following mowing, mowing should not be applied in Artemisia facultative and obligate wildlife winter habitat. Considering the decline in A. tridentata spp. wyomingensis-dominated landscapes, we caution against mowing these communities.

  20. Macroinvertebrate short-term responses to flow variation and oxygen depletion: A mesocosm approach.

    PubMed

    Calapez, Ana R; Branco, Paulo; Santos, José M; Ferreira, Teresa; Hein, Thomas; Brito, António G; Feio, Maria João

    2017-12-01

    In Mediterranean rivers, water scarcity is a key stressor with direct and indirect effects on other stressors, such as water quality decline and inherent oxygen depletion associated with pollutants inputs. Yet, predicting the responses of macroinvertebrates to these stressors combination is quite challenging due to the reduced available information, especially if biotic and abiotic seasonal variations are taken under consideration. This study focused on the response of macroinvertebrates by drift to single and combined effects of water scarcity and dissolved oxygen (DO) depletion over two seasons (winter and spring). A factorial design of two flow velocity levels - regular and low (vL) - with three levels of oxygen depletion - normoxia, medium depletion (dM) and higher depletion (dH) - was carried out in a 5-artificial channels system, in short-term experiments. Results showed that both stressors individually and together had a significant effect on macroinvertebrate drift ratio for both seasons. Single stressor effects showed that macroinvertebrate drift decreased with flow velocity reduction and increased with DO depletion, in both winter and spring experiments. Despite single stressors opposing effects in drift ratio, combined stressors interaction (vL×dM and vL×dH) induced a positive synergistic drift effect for both seasons, but only in winter the drift ratio was different between the levels of DO depletion. Stressors interaction in winter seemed to intensify drift response when reached lower oxygen saturation. Also, drift patterns were different between seasons for all treatments, which may depend on individual's life stage and seasonal behaviour. Water scarcity seems to exacerbate the oxygen depletion conditions resulting into a greater drifting of invertebrates. The potential effects of oxygen depletion should be evaluated when addressing the impacts of water scarcity on river ecosystems, since flow reductions will likely contribute to a higher oxygen

  1. Stream macroinvertebrate response models for bioassessment metrics: addressing the issue of spatial scale

    USGS Publications Warehouse

    White, Ian R.; Kennen, Jonathan G.; May, Jason T.; Brown, Larry R.; Cuffney, Thomas F.; Jones, Kimberly A.; Orlando, James L.

    2014-01-01

    We developed independent predictive disturbance models for a full regional data set and four individual ecoregions (Full Region vs. Individual Ecoregion models) to evaluate effects of spatial scale on the assessment of human landscape modification, on predicted response of stream biota, and the effect of other possible confounding factors, such as watershed size and elevation, on model performance. We selected macroinvertebrate sampling sites for model development (n = 591) and validation (n = 467) that met strict screening criteria from four proximal ecoregions in the northeastern U.S.: North Central Appalachians, Ridge and Valley, Northeastern Highlands, and Northern Piedmont. Models were developed using boosted regression tree (BRT) techniques for four macroinvertebrate metrics; results were compared among ecoregions and metrics. Comparing within a region but across the four macroinvertebrate metrics, the average richness of tolerant taxa (RichTOL) had the highest R2 for BRT models. Across the four metrics, final BRT models had between four and seven explanatory variables and always included a variable related to urbanization (e.g., population density, percent urban, or percent manmade channels), and either a measure of hydrologic runoff (e.g., minimum April, average December, or maximum monthly runoff) and(or) a natural landscape factor (e.g., riparian slope, precipitation, and elevation), or a measure of riparian disturbance. Contrary to our expectations, Full Region models explained nearly as much variance in the macroinvertebrate data as Individual Ecoregion models, and taking into account watershed size or elevation did not appear to improve model performance. As a result, it may be advantageous for bioassessment programs to develop large regional models as a preliminary assessment of overall disturbance conditions as long as the range in natural landscape variability is not excessive.

  2. Stream Macroinvertebrate Response Models for Bioassessment Metrics: Addressing the Issue of Spatial Scale

    PubMed Central

    Waite, Ian R.; Kennen, Jonathan G.; May, Jason T.; Brown, Larry R.; Cuffney, Thomas F.; Jones, Kimberly A.; Orlando, James L.

    2014-01-01

    We developed independent predictive disturbance models for a full regional data set and four individual ecoregions (Full Region vs. Individual Ecoregion models) to evaluate effects of spatial scale on the assessment of human landscape modification, on predicted response of stream biota, and the effect of other possible confounding factors, such as watershed size and elevation, on model performance. We selected macroinvertebrate sampling sites for model development (n = 591) and validation (n = 467) that met strict screening criteria from four proximal ecoregions in the northeastern U.S.: North Central Appalachians, Ridge and Valley, Northeastern Highlands, and Northern Piedmont. Models were developed using boosted regression tree (BRT) techniques for four macroinvertebrate metrics; results were compared among ecoregions and metrics. Comparing within a region but across the four macroinvertebrate metrics, the average richness of tolerant taxa (RichTOL) had the highest R2 for BRT models. Across the four metrics, final BRT models had between four and seven explanatory variables and always included a variable related to urbanization (e.g., population density, percent urban, or percent manmade channels), and either a measure of hydrologic runoff (e.g., minimum April, average December, or maximum monthly runoff) and(or) a natural landscape factor (e.g., riparian slope, precipitation, and elevation), or a measure of riparian disturbance. Contrary to our expectations, Full Region models explained nearly as much variance in the macroinvertebrate data as Individual Ecoregion models, and taking into account watershed size or elevation did not appear to improve model performance. As a result, it may be advantageous for bioassessment programs to develop large regional models as a preliminary assessment of overall disturbance conditions as long as the range in natural landscape variability is not excessive. PMID:24675770

  3. Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use.

    PubMed

    Valeix, M; Loveridge, A J; Chamaillé-Jammes, S; Davidson, Z; Murindagomo, F; Fritz, H; Macdonald, D W

    2009-01-01

    Predators may influence their prey populations not only through direct lethal effects, but also through indirect behavioral changes. Here, we combined spatiotemporal fine-scale data from GPS radio collars on lions with habitat use information on 11 African herbivores in Hwange National Park (Zimbabwe) to test whether the risk of predation by lions influenced the distribution of herbivores in the landscape. Effects of long-term risk of predation (likelihood of lion presence calculated over four months) and short-term risk of predation (actual presence of lions in the vicinity in the preceding 24 hours) were contrasted. The long-term risk of predation by lions appeared to influence the distributions of all browsers across the landscape, but not of grazers. This result strongly suggests that browsers and grazers, which face different ecological constraints, are influenced at different spatial and temporal scales in the variation of the risk of predation by lions. The results also show that all herbivores tend to use more open habitats preferentially when lions are in their vicinity, probably an effective anti-predator behavior against such an ambush predator. Behaviorally induced effects of lions may therefore contribute significantly to structuring African herbivore communities, and hence possibly their effects on savanna ecosystems.

  4. A COMPARISON OF TWO RAPID BIOLOGICAL ASSESSMENT SAMPLING METHODS FOR MACROINVERTEBRATES

    EPA Science Inventory

    In 2003, the Office of Research and Developments (ORD's) National Exposure Research Laboratory initiated a collaborative research effort with U.S. EPA Region 3 to conduct a study comparing two rapid biological assessment methods for collecting stream macroinvertebrates. One metho...

  5. Response of macroinvertebrate communities to temporal dynamics of pesticide mixtures: A case study from the Sacramento River watershed, California.

    PubMed

    Chiu, Ming-Chih; Hunt, Lisa; Resh, Vincent H

    2016-12-01

    Pesticide pollution from agricultural field run-off or spray drift has been documented to impact river ecosystems worldwide. However, there is limited data on short- and long-term effects of repeated pulses of pesticide mixtures on biotic assemblages in natural systems. We used reported pesticide application data as input to a hydrological fate and transport model (Soil and Water Assessment Tool) to simulate spatiotemporal dynamics of pesticides mixtures in streams on a daily time-step. We then applied regression models to explore the relationship between macroinvertebrate communities and pesticide dynamics in the Sacramento River watershed of California during 2002-2013. We found that both maximum and average pesticide toxic units were important in determining impacts on macroinvertebrates, and that the compositions of macroinvertebrates trended toward taxa having higher resilience and resistance to pesticide exposure, based on the Species at Risk pesticide (SPEAR pesticides ) index. Results indicate that risk-assessment efforts can be improved by considering both short- and long-term effects of pesticide mixtures on macroinvertebrate community composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Habitat shifts in rainbow trout: competitive influences of brown trout.

    PubMed

    Gatz, A J; Sale, M J; Loar, J M

    1987-11-01

    We compared habitat use by rainbow trout sympatric (three streams) and allopatric (two streams) with brown trout to determine whether competition occurred between these two species in the southern Appalachian Mountains. We measured water depth, water velocity, substrate, distance to overhead vegetation, sunlight, and surface turbulence both where we collected trout and for the streams in general. This enabled us to separate the effects of habitat availability from possible competitive effects. The results provided strong evidence for asymmetrical interspecific competition. Habitat use varied significantly between allopatric and sympatric rainbow trout in 68% of the comparisons made. Portions of some differences refelected differences in habitats available in the several streams. However, for all habitat variables measured except sunlight, rainbow trout used their preferred habitats less in sympatry with brown trout than in allopatry if brown trout also preferred the same habitats. Multivariate analysis indicated that water velocity and its correlates (substrate particle size and surface turbulence) were the most critical habitat variables in the interaction between the species, cover in the form of shade and close overhead vegetation was second most important, and water depth was least important.

  7. Considering direct and indirect habitat influences on stream biota in eco-geomorphology research to better understand, model, and manage riverine ecosystems

    NASA Astrophysics Data System (ADS)

    Cienciala, P.; Nelson, A. D.

    2017-12-01

    The field of fluvial eco-geomorphology strives to improve the understanding of interactions between physical and biological processes in running waters. This body of research has greatly contributed to the advancement of integrated river science and management. Arguably, the most popular research themes in eco-geomorphology include hydrogemorphic controls of habitat quality and effects of disturbances such as floods, sediment transport events or sediment accumulation. However, in contrast to the related field of ecology, the distinction between direct and indirect mechanisms which may affect habitat quality and biotic response to disturbance has been poorly explored in eco-geomorphic research. This knowledge gap poses an important challenge for interpretations of field observations and model development. In this research, using the examples of benthic invertebrates and fish, we examine the importance of direct and indirect influences that geomorphic and hydraulic processes may exert on stream biota. We also investigate their implications for modeling of organism-habitat relationships. To achieve our goal, we integrate field and remote sensing data from montane streams in the Pacific Northwest region with habitat models. Preliminary results indicate that indirect hydrogeomorphic influences of stream organisms, such as those mediated by altered availability of food resources, can be as important as direct influences (e.g. physical disturbance). We suggest that these findings may also have important implications for modeling of riverine habitat.

  8. Habitat-dependent changes in vigilance behaviour of Red-crowned Crane influenced by wildlife tourism.

    PubMed

    Li, Donglai; Liu, Yu; Sun, Xinghai; Lloyd, Huw; Zhu, Shuyu; Zhang, Shuyan; Wan, Dongmei; Zhang, Zhengwang

    2017-11-30

    The Endangered Red-crowned Crane (Grus japonensis) is one of the most culturally iconic and sought-after species by wildlife tourists. Here we investigate how the presence of tourists influence the vigilance behaviour of cranes foraging in Suaeda salsa salt marshes and S. salsa/Phragmites australis mosaic habitat in the Yellow River Delta, China. We found that both the frequency and duration of crane vigilance significantly increased in the presence of wildlife tourists. Increased frequency in crane vigilance only occurred in the much taller S. salsa/P. australis mosaic vegetation whereas the duration of vigilance showed no significant difference between the two habitats. Crane vigilance declined with increasing distance from wildlife tourists in the two habitats, with a minimum distance of disturbance triggering a high degree of vigilance by cranes identified at 300 m. The presence of wildlife tourists may represent a form of disturbance to foraging cranes but is habitat dependent. Taller P. australis vegetation serves primarily as a visual obstruction for cranes, causing them to increase the frequency of vigilance behaviour. Our findings have important implications for the conservation of the migratory red-crowned crane population that winters in the Yellow River Delta and can help inform visitor management.

  9. Community-level response of fishes and aquatic macroinvertebrates to stream restoration in a third-order tributary of the Potomac River, USA

    USGS Publications Warehouse

    Selego, Stephen M.; Rose, Charnee L.; Merovich, George T.; Welsh, Stuart A.; Anderson, James T.

    2012-01-01

    Natural stream channel design principles and riparian restoration practices were applied during spring 2010 to an agriculturally impaired reach of the Cacapon River, a tributary of the Potomac River which flows into the Chesapeake Bay. Aquatic macroinvertebrates and fishes were sampled from the restoration reach, two degraded control, and two natural reference reaches prior to, concurrently with, and following restoration (2009 through 2010). Collector filterers and scrapers replaced collector gatherers as the dominant macroinvertebrate functional feeding groups in the restoration reach. Before restoration, based on indices of biotic integrity (IBI), the restoration reach fish and macroinvertebrate communities closely resembled those sampled from the control reaches, and after restoration more closely resembled those from the reference reaches. Although the macroinvertebrate community responded more favorably than the fish community, both communities recovered quickly from the temporary impairment caused by the disturbance of restoration procedures and suggest rapid improvement in local ecological conditions.

  10. Reproductive constraints influence habitat accessibility, segregation, and preference of sympatric albatross species.

    PubMed

    Kappes, Michelle A; Shaffer, Scott A; Tremblay, Yann; Foley, David G; Palacios, Daniel M; Bograd, Steven J; Costa, Daniel P

    2015-01-01

    The spatiotemporal distribution of animals is dependent on a suite of factors, including the distribution of resources, interactions within and between species, physiological limitations, and requirements for reproduction, dispersal, or migration. During breeding, reproductive constraints play a major role in the distribution and behavior of central place foragers, such as pelagic seabirds. We examined the foraging behavior and marine habitat selection of Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses throughout their eight month breeding cycle at Tern Island, Northwest Hawaiian Islands to evaluate how variable constraints of breeding influenced habitat availability and foraging decisions. We used satellite tracking and light-based geolocation to determine foraging locations of individuals, and applied a biologically realistic null usage model to generate control locations and model habitat preference under a case-control design. Remotely sensed oceanographic data were used to characterize albatross habitats in the North Pacific. Individuals of both species ranged significantly farther and for longer durations during incubation and chick-rearing compared to the brooding period. Interspecific segregation of core foraging areas was observed during incubation and chick-rearing, but not during brooding. At-sea activity patterns were most similar between species during brooding; neither species altered foraging effort to compensate for presumed low prey availability and high energy demands during this stage. Habitat selection during long-ranging movements was most strongly associated with sea surface temperature for both species, with a preference for cooler ocean temperatures compared to overall availability. During brooding, lower explanatory power of habitat models was likely related to the narrow range of ocean temperatures available for selection. Laysan and black-footed albatrosses differ from other albatross species in that they breed

  11. Classifying the health of Connecticut streams using benthic macroinvertebrates with implications for water management.

    PubMed

    Bellucci, Christopher J; Becker, Mary E; Beauchene, Mike; Dunbar, Lee

    2013-06-01

    Bioassessments have formed the foundation of many water quality monitoring programs throughout the United States. Like many state water quality programs, Connecticut has developed a relational database containing information about species richness, species composition, relative abundance, and feeding relationships among macroinvertebrates present in stream and river systems. Geographic Information Systems can provide estimates of landscape condition and watershed characteristics and when combined with measurements of stream biology, provide a useful visual display of information that is useful in a management context. The objective of our study was to estimate the stream health for all wadeable stream kilometers in Connecticut using a combination of macroinvertebrate metrics and landscape variables. We developed and evaluated models using an information theoretic approach to predict stream health as measured by macroinvertebrate multimetric index (MMI) and identified the best fitting model as a three variable model, including percent impervious land cover, a wetlands metric, and catchment slope that best fit the MMI scores (adj-R (2) = 0.56, SE = 11.73). We then provide examples of how modeling can augment existing programs to support water management policies under the Federal Clean Water Act such as stream assessments and anti-degradation.

  12. Fine-Scale Habitat Heterogeneity Influences Occupancy in Terrestrial Mammals in a Temperate Region of Australia

    PubMed Central

    Stirnemann, Ingrid; Mortelliti, Alessio; Gibbons, Philip; Lindenmayer, David B.

    2015-01-01

    Vegetation heterogeneity is an inherent feature of most ecosystems, characterises the structure of habitat, and is considered an important driver of species distribution patterns. However, quantifying fine-scale heterogeneity of vegetation cover can be time consuming, and therefore it is seldom measured. Here, we determine if heterogeneity is worthwhile measuring, in addition to the amount of cover, when examining species distribution patterns. Further, we investigated the effect of the surrounding landscape heterogeneity on species occupancy. We tested the effect of cover and heterogeneity of trees and shrubs, and the context of the surrounding landscape (number of habitats and distance to an ecotone) on site occupancy of three mammal species (the black wallaby [Wallabia bicolor], the long-nosed bandicoot [Perameles nasuta], and the bush rat [Rattus fuscipes]) within a naturally heterogeneous landscape in a temperate region of Australia. We found that fine-scale heterogeneity of vegetation attributes is an important driver of mammal occurrence of two of these species. Further, we found that, although all three species responded positively to vegetation heterogeneity, different mammals vary in their response to different types of vegetation heterogeneity measurement. For example, the black wallaby responded to the proximity of an ecotone, and the bush rat and the long-nosed bandicoot responded to fine-scale heterogeneity of small tree cover, whereas none of the mammals responded to broad scale heterogeneity (i.e., the number of habitat types). Our results highlight the influence of methodological decisions, such as how heterogeneity vegetation is measured, in quantifying species responses to habitat structures. The findings confirm the importance of choosing meaningful heterogeneity measures when modelling the factors influencing occupancy of the species of interest. PMID:26394327

  13. The Influence of Social Structure, Habitat, and Host Traits on the Transmission of Escherichia coli in Wild Elephants

    PubMed Central

    Chiyo, Patrick I.; Grieneisen, Laura E.; Wittemyer, George; Moss, Cynthia J.; Lee, Phyllis C.; Douglas-Hamilton, Iain; Archie, Elizabeth A.

    2014-01-01

    Social structure is proposed to influence the transmission of both directly and environmentally transmitted infectious agents. However in natural populations, many other factors also influence transmission, including variation in individual susceptibility and aspects of the environment that promote or inhibit exposure to infection. We used a population genetic approach to investigate the effects of social structure, environment, and host traits on the transmission of Escherichia coli infecting two populations of wild elephants: one in Amboseli National Park and another in Samburu National Reserve, Kenya. If E. coli transmission is strongly influenced by elephant social structure, E. coli infecting elephants from the same social group should be genetically more similar than E. coli sampled from members of different social groups. However, we found no support for this prediction. Instead, E. coli was panmictic across social groups, and transmission patterns were largely dominated by habitat and host traits. For instance, habitat overlap between elephant social groups predicted E. coli genetic similarity, but only in the relatively drier habitat of Samburu, and not in Amboseli, where the habitat contains large, permanent swamps. In terms of host traits, adult males were infected with more diverse haplotypes, and males were slightly more likely to harbor strains with higher pathogenic potential, as compared to adult females. In addition, elephants from similar birth cohorts were infected with genetically more similar E. coli than elephants more disparate in age. This age-structured transmission may be driven by temporal shifts in genetic structure of E. coli in the environment and the effects of age on bacterial colonization. Together, our results support the idea that, in elephants, social structure often will not exhibit strong effects on the transmission of generalist, fecal-oral transmitted bacteria. We discuss our results in the context of social, environmental

  14. The influence of social structure, habitat, and host traits on the transmission of Escherichia coli in wild elephants.

    PubMed

    Chiyo, Patrick I; Grieneisen, Laura E; Wittemyer, George; Moss, Cynthia J; Lee, Phyllis C; Douglas-Hamilton, Iain; Archie, Elizabeth A

    2014-01-01

    Social structure is proposed to influence the transmission of both directly and environmentally transmitted infectious agents. However in natural populations, many other factors also influence transmission, including variation in individual susceptibility and aspects of the environment that promote or inhibit exposure to infection. We used a population genetic approach to investigate the effects of social structure, environment, and host traits on the transmission of Escherichia coli infecting two populations of wild elephants: one in Amboseli National Park and another in Samburu National Reserve, Kenya. If E. coli transmission is strongly influenced by elephant social structure, E. coli infecting elephants from the same social group should be genetically more similar than E. coli sampled from members of different social groups. However, we found no support for this prediction. Instead, E. coli was panmictic across social groups, and transmission patterns were largely dominated by habitat and host traits. For instance, habitat overlap between elephant social groups predicted E. coli genetic similarity, but only in the relatively drier habitat of Samburu, and not in Amboseli, where the habitat contains large, permanent swamps. In terms of host traits, adult males were infected with more diverse haplotypes, and males were slightly more likely to harbor strains with higher pathogenic potential, as compared to adult females. In addition, elephants from similar birth cohorts were infected with genetically more similar E. coli than elephants more disparate in age. This age-structured transmission may be driven by temporal shifts in genetic structure of E. coli in the environment and the effects of age on bacterial colonization. Together, our results support the idea that, in elephants, social structure often will not exhibit strong effects on the transmission of generalist, fecal-oral transmitted bacteria. We discuss our results in the context of social, environmental

  15. Morphological Characteristics and Habitats of Red Seaweed Gracilaria spp. (Gracilariaceae, Rhodophyta) in Santubong and Asajaya, Sarawak, Malaysia.

    PubMed

    Othman, Muhammad Nur Arif; Hassan, Ruhana; Harith, Mohd Nasarudin; Sah, Amir Shah Ruddin Md

    2018-03-01

    Red seaweed Gracilaria , one of the largest genus in Division Rhodophyta inhabits Sarawak coastal water. This study was designed to identify the species of Gracilaria using morphological approach and to assess selected water quality parameters in Gracilaria habitats. Three field samplings were carried out in Santubong and Asajaya, Sarawak from November 2013 to December 2014. Overall, three species were identified namely Gracilaria changii , G. blodgettii and G. coronopifolia , attached to net of cage culture in Santubong and root of mangrove trees in Asajaya. In addition, three different taxa of aquatic macroinvertebrates (polychaete, small crab, bivalve) and single species of red seaweed ( Acanthophora sp.) were observed in Gracilaria assemblages. An estimate of 37% to 40% of the upper part of the cage net in Santubong was covered by seaweeds and only 16% to 20% in Asajaya's mangrove. The study had provided better information on identification of Gracilaria and their habitat in Sarawak. Future work involving DNA barcoding of each species is in progress.

  16. Morphological Characteristics and Habitats of Red Seaweed Gracilaria spp. (Gracilariaceae, Rhodophyta) in Santubong and Asajaya, Sarawak, Malaysia

    PubMed Central

    Othman, Muhammad Nur Arif; Hassan, Ruhana; Harith, Mohd Nasarudin; Sah, Amir Shah Ruddin Md

    2018-01-01

    Red seaweed Gracilaria, one of the largest genus in Division Rhodophyta inhabits Sarawak coastal water. This study was designed to identify the species of Gracilaria using morphological approach and to assess selected water quality parameters in Gracilaria habitats. Three field samplings were carried out in Santubong and Asajaya, Sarawak from November 2013 to December 2014. Overall, three species were identified namely Gracilaria changii, G. blodgettii and G. coronopifolia, attached to net of cage culture in Santubong and root of mangrove trees in Asajaya. In addition, three different taxa of aquatic macroinvertebrates (polychaete, small crab, bivalve) and single species of red seaweed (Acanthophora sp.) were observed in Gracilaria assemblages. An estimate of 37% to 40% of the upper part of the cage net in Santubong was covered by seaweeds and only 16% to 20% in Asajaya’s mangrove. The study had provided better information on identification of Gracilaria and their habitat in Sarawak. Future work involving DNA barcoding of each species is in progress. PMID:29644017

  17. Benthic macroinvertebrate field sampling effort required to ...

    EPA Pesticide Factsheets

    This multi-year pilot study evaluated a proposed field method for its effectiveness in the collection of a benthic macroinvertebrate sample adequate for use in the condition assessment of streams and rivers in the Neuquén Province, Argentina. A total of 13 sites, distributed across three rivers, were sampled. At each site, benthic macroinvertebrates were collected at 11 transects. Each sample was processed independently in the field and laboratory. Based on a literature review and resource considerations, the collection of 300 organisms (minimum) at each site was determined to be necessary to support a robust condition assessment, and therefore, selected as the criterion for judging the adequacy of the method. This targeted number of organisms was collected at all sites, at a minimum, when collections from all 11 transects were combined. Subsequent bootstrapping analysis of data was used to estimate whether collecting at fewer transects would reach the minimum target number of organisms for all sites. In a subset of sites, the total number of organisms frequently fell below the target when fewer than 11 transects collections were combined.Site conditions where <300 organisms might be collected are discussed. These preliminary results suggest that the proposed field method results in a sample that is adequate for robust condition assessment of the rivers and streams of interest. When data become available from a broader range of sites, the adequacy of the field

  18. The relative influence of road characteristics and habitat on adjacent lizard populations in arid shrublands

    USGS Publications Warehouse

    Hubbard, Kaylan A.; Chalfoun, Anna D.; Gerow, Kenneth G.

    2016-01-01

    As road networks continue to expand globally, indirect impacts to adjacent wildlife populations remain largely unknown. Simultaneously, reptile populations are declining worldwide and anthropogenic habitat loss and fragmentation are frequently cited causes. We evaluated the relative influence of three different road characteristics (surface treatment, width, and traffic volume) and habitat features on adjacent populations of Northern Sagebrush Lizards (Sceloporus graciosus graciosus), Plateau Fence Lizards (S. tristichus), and Greater Short-Horned Lizards (Phrynosoma hernandesi) in mixed arid shrubland habitats in southwest Wyoming. Neither odds of lizard presence nor relative abundance was significantly related to any of the assessed road characteristics, although there was a trend for higher Sceloporus spp. abundance adjacent to paved roads. Sceloporus spp. relative abundance did not vary systematically with distance to the nearest road. Rather, both Sceloporus spp. and Greater Short-Horned Lizards were associated strongly with particular habitat characteristics adjacent to roads. Sceloporus spp. presence and relative abundance increased with rock cover, relative abundance was associated positively with shrub cover, and presence was associated negatively with grass cover. Greater Short-Horned Lizard presence increased with bare ground and decreased marginally with shrub cover. Our results suggest that habitat attributes are stronger correlates of lizard presence and relative abundance than individual characteristics of adjacent roads, at least in our system. Therefore, an effective conservation approach for these species may be to consider the landscape through which new roads and their associated development would occur, and the impact that placement could have on fragment size and key habitat elements.

  19. Community-level response of fishes and aquatic macroinvertebrates to stream restoration in a third-order tributary of the Potomac River, USA

    USGS Publications Warehouse

    Selego, S.M.; Rose, C.L.; Merovich, G.T.; Welsh, S.A.; Anderson, James T.

    2012-01-01

    Natural stream channel design principles and riparian restoration practices were applied during spring 2010 to an agriculturally impaired reach of the Cacapon River, a tributary of the Potomac River which flows into the Chesapeake Bay. Aquatic macroinvertebrates and fishes were sampled from the restoration reach, two degraded control, and two natural reference reaches prior to, concurrently with, and following restoration (2009 through 2010). Collector filterers and scrapers replaced collector gatherers as the dominant macroinvertebrate functional feeding groups in the restoration reach. Before restoration, based on indices of biotic integrity (IBI), the restoration reach fish and macroinvertebrate communities closely resembled those sampled from the control reaches, and after restoration more closely resembled those from the reference reaches. Although the macroinvertebrate community responded more favorably than the fish community, both communities recovered quickly from the temporary impairment caused by the disturbance of restoration procedures and suggest rapid improvement in local ecological conditions. Copyright ?? 2012 Stephen M. Selego et al.

  20. USING LONG-TERM CHEMICAL AND BIOLOGICAL INDICATORS TO ASSESS STREAM HEALTH IN THE UPPER OCONEE RIVER WATERSHED

    EPA Science Inventory

    Macroinvertebrates are commonly used as biological indicators of stream habitat and water quality. Chemical variables, such as dissolved oxygen (DO), specific conductance (SC), and turbidity are used to measure stream water quality. Many aquatic macroinvertebrates are sensitive...

  1. Effects of a crude oil spill on the benthic invertebrate community in the Gasconade River, Missouri

    USGS Publications Warehouse

    Poulton, Barry C.; Finger, Susan E.; Humphrey, S.A.

    1997-01-01

    Effects of a 3.3-million–L crude oil spill on the benthic macroinvertebrate community of the Gasconade River, a large river in Missouri, were evaluated by comparing several macroinvertebrate community indices in riffle and backwater habitats above and below the spill. Concentrations of total petroleum hydrocarbons (TPH) in sediments decreased dramatically in riffle habitats within 6 months of the spill, but elevated hydrocarbon levels (TPH = 80–270 μg/g) were still present in backwater habitats at the end of the study. Correspondingly, riffle macroinvertebrate communities recovered rapidly, but overall benthic diversity continued to be reduced in backwater areas until the end of the study 18 months after the spill. In addition, statistical analysis of benthic functional feeding groups revealed that both scrapers and shredders were reduced in backwater habitats below the oil spill. Decreased abundance of shredders and scrapers in these habitats is likely caused by oil contamination of aquatic sediments and associated organic matter required by these groups for food and substrate. Results of this study suggest that the persistence of oil in backwater habitats has a negative effect on the benthic community in large rivers.

  2. Assessing combined impacts of agrochemicals: Aquatic macroinvertebrate population responses in outdoor mesocosms.

    PubMed

    Barmentlo, S Henrik; Schrama, Maarten; Hunting, Ellard R; Heutink, Roel; van Bodegom, Peter M; de Snoo, Geert R; Vijver, Martina G

    2018-08-01

    Agricultural ditches host a diverse community of species. These species often are unwarrantedly exposed to fertilizers and a wide-array of pesticides (hereafter: agrochemicals). Standardized ecotoxicological research provides valuable information to predict whether these pesticides possibly pose a threat to the organisms living within these ditches, in particular macro-invertebrates. However, knowledge on how mixtures of these agrochemicals affect macro-invertebrates under realistic abiotic conditions and with population and community complexity is mostly lacking. Therefore we examined here, using a full factorial design, the population responses of macroinvertebrate species assemblages exposed to environmentally relevant concentrations of three commonly used agrochemicals (for 35days) in an outdoor experiment. The agrochemicals selected were an insecticide (imidacloprid), herbicide (terbuthylazine) and nutrients (NPK), all having a widespread usage and often detected together in watersheds. Effects on species abundance and body length caused by binary mixture combinations could be described from single substance exposure. However, when agrochemicals were applied as tertiary mixtures, as they are commonly found in agricultural waters, species' abundance often deviated from expectations made based on the three single treatments. This indicates that pesticide-mixture induced toxicity to population relevant endpoints are difficult to extrapolate to field conditions. As in agricultural ditches often a multitude (approx. up to 7) of agrochemicals residues are detected, we call other scientist to verify the ecological complexity of non-additive induced shifts in natural aquatic invertebrate populations and aquatic species assemblages. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates.

    PubMed

    Chin, Krista S; Lento, Jennifer; Culp, Joseph M; Lacelle, Denis; Kokelj, Steven V

    2016-08-01

    Intensification of permafrost thaw has increased the frequency and magnitude of large permafrost slope disturbances (mega slumps) in glaciated terrain of northwestern Canada. Individual thermokarst disturbances up to 40 ha in area have made large volumes of previously frozen sediments available for leaching and transport to adjacent streams, significantly increasing sediment and solute loads in these systems. To test the effects of this climate-sensitive disturbance regime on the ecology of Arctic streams, we explored the relationship between physical and chemical variables and benthic macroinvertebrate communities in disturbed and undisturbed stream reaches in the Peel Plateau, Northwest Territories, Canada. Highly disturbed and undisturbed stream reaches differed with respect to taxonomic composition and invertebrate abundance. Minimally disturbed reaches were not differentiated by these variables but rather were distributed along a disturbance gradient between highly disturbed and undisturbed sites. In particular, there was evidence of a strong negative relationship between macroinvertebrate abundance and total suspended solids, and a positive relationship between abundance and the distance from the disturbance. Increases in both sediments and nutrients appear to be the proximate cause of community differences in highly disturbed streams. Declines in macroinvertebrate abundance in response to slump activity have implications for the food webs of these systems, potentially leading to negative impacts on higher trophic levels, such as fish. Furthermore, the disturbance impacts on stream health can be expected to intensify as climate change increases the frequency and magnitude of thermokarst. © 2016 John Wiley & Sons Ltd.

  4. INFLUENCE OF FRESHWATER INPUT ON THE HABITAT VALUE OF OYSTER REEFS IN THREE SOUTHWEST FLORIDA ESTUARIES.

    EPA Science Inventory

    In order to examine the influence of freshwater input on the habitat value of oyster reefs, a spatiotemporal comparison of reef-resident fishes and decapod crustaceans was conducted during three seasonally dry and three seasonally wet months in three Southwest Florida estuaries: ...

  5. Numerical Response of Migratory Shorebirds to Prey Distribution in a Large Temperate Arid Wetland, China

    PubMed Central

    Wen, Li

    2016-01-01

    Wuliangsuhai Lake provides important breeding and stopover habitats for shorebirds. The health of this wetland ecosystem is rapidly deteriorating due to eutrophication and water pollution and environmental management is urgently needed. To explore the connections among ecosystem health, prey density, and shorebird populations, we conducted surveys of both the benthic macroinvertebrates and shorebirds in the shorebird habitat of the wetland during the 2011 autumn migration season. The abundance of both shorebirds and benthic macroinvertebrates varied significantly in both space and time. Our data showed a clear association between shorebird populations and the density of benthic macroinvertebrates, which explained 53.63% of the variation in shorebird abundance. The prey density was strongly affected by environmental factors, including water and sediment quality. Chironomidae were mainly found at sites with higher total phosphorus, but with lower sediment concentrations of Cu. Lymnaeidae were mainly found at sites with a higher pH, lower salinity, and lower concentrations of total phosphorus and Cu. Habitats with very high concentrations of total phosphorus, heavy metals, or salinity were not suitable for benthic macroinvertebrates. Our findings suggest that the reductions of nutrient and heavy metal loadings are crucial in maintaining the ecological function of Wuliangsuhai as a stopover habitat for migratory shorebirds. PMID:28070447

  6. Influence of forest and rangeland management on anadromous fish habitat in Western North America: impacts of natural events.

    Treesearch

    Douglas N. Swanston

    1980-01-01

    Natural events affecting vegetative cover and the hydrology and stability of a stream and its parent watershed are key factors influencing the quality of anadromous fish habitat. High intensity storms, drought, soil mass movement, and fire have the greatest impacts. Wind, stream icing, and the influence of insects and disease are important locally...

  7. Effects of anthropogenic salinization on biological traits and community composition of stream macroinvertebrates.

    PubMed

    Szöcs, Eduard; Coring, Eckhard; Bäthe, Jürgen; Schäfer, Ralf B

    2014-01-15

    Salinization of rivers resulting from industrial discharge or road-deicing can adversely affect macroinvertebrates. Trait-based approaches are a promising tool in ecological monitoring and may perform better than taxonomy-based approaches. However only little is known how and which biological traits are affected by salinization. We investigated the effects of anthropogenic salinization on macroinvertebrate communities and biological traits in the Werra River, Germany and compared the taxonomic and trait response. We found a change in macroinvertebrate community and trait composition. Communities at saline sites were characterized by the three exotic species Gammarus tigrinus, Apocorophium lacustre and Potamopyrgus antipodarum. The frequencies of trait modalities long life cycle duration, respiration by gill, ovoviviparity, shredder and multivoltinism were statistically significantly increased at saline sites. The trait-based ordination resulted in a higher explained variance than the taxonomy-based ordination, indicating a better performance of the trait-based approach, resulting in a better discrimination between saline and non-saline sites. Our results are in general agreement with other studies from Europe, indicating a trait convergence for saline streams, being dominated by the traits ovoviviparity and multivoltinism. Three further traits (respiration by gill, life cycle duration and shredders) responded strongly to salinization, but this may primarily be attributed to the dominance of a single invasive species, G. tigrinus, at the saline sites in the Werra River. © 2013 Elsevier B.V. All rights reserved.

  8. Wildfire Impacts on Water Quality, Macroinvertebrates and Trout: An Initial Survey After the West Fork Complex Fire in the Upper Rio Grande

    NASA Astrophysics Data System (ADS)

    Rust, A.; Knipper, K. R.; Randall, J.; Hogue, T. S.

    2014-12-01

    Forest fires affect water quality in the disrupted watershed, which can devastate the aquatic ecosystem including sensitive trout (Salmonidae) and macroinvertebrate species. The West Fork Fire Complex consumed 88,724 acres of forest in the state of Colorado during the summer of 2013. The majority (88%) of the burn area was comprised of Engelmann spruce (Picea engelmanii) trees killed previously by Spruce Beetle (Ips spp.). Damage to the soils was of moderate to high severity in the majority of the area (60%). The recent fire surrounded the Rio Grande, affecting water quality and habitat critical to insects and fish. The water quality of the Rio Grande (above and below the burn) and some of the effected tributaries is currently being monitored for both quality and quantity. Parameters important to the survival of aquatic life, such as flow, temperature, dissolved oxygen, pH, conductivity, total dissolved solids, total suspended solids, turbidity, nutrients, and suspended and dissolved metals are being monitored along the Rio Grande and in tributaries. Macroinvertebrate and fish populations are sampled in the same locations. First year observations showed the ecosystem to be relatively resilient, with stable water quality and survival of insects and fish. However, an intense monsoon season this summer is driving extensive sediments into tributaries from steep, severely burned hillslopes. These monsoon events have caused acute and dramatic fish kills, where hundreds of trout were reported killed in one tributary in a single day event. Turbidity was observed as high as 488 NTU in the impacted stream with fish kill, whereas the turbidity was 25 NTU in a neighboring tributary outside of the burn area. Salmonids can be negatively impacted by relatively low turbidity, with prior studies noting that the turbidity threshold for rainbow trout is 70 NTU. Continued monitoring of water quality, macroinvertebrate populations, and fish populations is being undertaken to determine

  9. Monitoring exposure of brown bullheads and benthic macroinvertebrates to sediment contaminants in the Ashtabula River before, during, and after remediation.

    PubMed

    Meier, John R; Lazorchak, James M; Mills, Marc; Wernsing, Paul; Baumann, Paul C

    2015-06-01

    In 2007, approximately 420,500 cubic meters of contaminated sediment were removed from the Ashtabula River by dredging. The primary objective of the present study was to monitor contaminant exposure in fish and macroinvertebrates before, during, and after dredging. This was done by measuring tissue concentrations of polychlorinated biphenyl (PCB) and polycyclic aromatic hydrocarbon (PAH) in brown bullhead catfish (Ameriurus nebulosa) and in benthic macroinvertebrates, assessing changes in DNA damage in fish liver and blood, and scoring external and histopathological lesions and anomalies in the fish. In surficial sediment PCBs and PAHs were also quantified in conjunction with the biological sampling. The results show a significant reduction in contaminant levels in both fish and macroinvertebrates following dredging, indicating the effectiveness of the remediation in reducing exposure of biota to the primary contaminants of concern. Similarly, DNA damage levels in fish collected from the Ashtabula River significantly declined following dredging; however, a similar reduction in DNA damage over time was seen in fish collected from a reference site (Conneaut Creek), making interpretation difficult. Macroinvertebrate PCB concentrations were reflective of the sediment concentrations in the areas where Hester-Dendy samplers were deployed for macroinvertebrate collection. The present study demonstrates that these methods can be used to evaluate and assess the effectiveness of remediation techniques at contaminated sediment sites. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  10. SELECTING DISCRIMINANT FUNCTION MODELS FOR PREDICTING THE EXPECTED RICHNESS OF AQUATIC MACROINVERTEBRATES

    EPA Science Inventory

    1. The predictive modelling approach to bioassessment estimates the macroinvertebrate assemblage expected at a stream site if it were in a minimally disturbed reference condition. The difference between expected and observed assemblages then measures the departure of the site fro...

  11. Work Element B: 157. Sampling in Fish-Bearing Reaches [Variation in Productivity in Headwater Reaches of the Wenatchee Subbasin], Final Report for PNW Research Station.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polivka, Karl; Bennett, Rita L.

    2009-03-31

    We studied variation in productivity in headwater reaches of the Wenatchee subbasin for multiple field seasons with the objective that we could develop methods for monitoring headwater stream conditions at the subcatchment and stream levels, assign a landscape-scale context via the effects of geoclimatic parameters on biological productivity (macroinvertebrates and fish) and use this information to identify how variability in productivity measured in fishless headwaters is transmitted to fish communities in downstream habitats. In 2008, we addressed this final objective. In collaboration with the University of Alaska Fairbanks we found some broad differences in the production of aquatic macroinvertebrates andmore » in fish abundance across categories that combine the effects of climate and management intensity within the subbasin (ecoregions). From a monitoring standpoint, production of benthic macroinvertebrates was not a good predictor of drifting macroinvertebrates and therefore might be a poor predictor of food resources available to fish. Indeed, there is occasionally a correlation between drifting macroinvertebrate abundance and fish abundance which suggests that headwater-derived resources are important. However, fish in the headwaters appeared to be strongly food-limited and there was no evidence that fishless headwaters provided a consistent subsidy to fish in reaches downstream. Fish abundance and population dynamics in first order headwaters may be linked with similar metrics further down the watershed. The relative strength of local dynamics and inputs into productivity may be constrained or augmented by large-scale biogeoclimatic control. Headwater streams are nested within watersheds, which are in turn nested within ecological subregions; thus, we hypothesized that local effects would not necessarily be mutually exclusive from large-scale influence. To test this we examined the density of primarily salmonid fishes at several spatial and temporal

  12. Long-term benthic macroinvertebrate community monitoring to assess pollution abatement effectiveness.

    PubMed

    Smith, John G; Brandt, Craig C; Christensen, Sigurd W

    2011-06-01

    The benthic macroinvertebrate community of East Fork Poplar Creek (EFPC) in East Tennessee was monitored for 18 years to evaluate the effectiveness of a water pollution control program implemented at a major United States (U.S.) Department of Energy facility. Several actions were implemented to reduce and control releases of pollutants into the headwaters of the stream. Four of the most significant actions were implemented during different time periods, which allowed assessment of each action. Macroinvertebrate samples were collected annually in April from three locations in EFPC (EFK24, EFK23, and EFK14) and two nearby reference streams from 1986 through 2003. Significant improvements occurred in the macroinvertebrate community at the headwater sites (EFK24 and EFK23) after implementation of each action, while changes detected 9 km further downstream (EFK14) could not be clearly attributed to any of the actions. Because the stream was impacted at its origin, invertebrate recolonization was primarily limited to aerial immigration, thus, recovery has been slow. As recovery progressed, abundances of small pollution-tolerant taxa (e.g., Orthocladiinae chironomids) decreased and longer lived taxa colonized (e.g., hydropsychid caddisflies, riffle beetles, Baetis). While assessments lasting three to four years may be long enough to detect a response to new pollution controls at highly impacted locations, more time may be needed to understand the full effects. Studies on the effectiveness of pollution controls can be improved if impacted and reference sites are selected to maximize spatial and temporal trending, and if a multidisciplinary approach is used to broadly assess environmental responses (e.g., water quality trends, invertebrate and fish community assessments, toxicity testing, etc.).

  13. Long-Term Benthic Macroinvertebrate Community Monitoring to Assess Pollution Abatement Effectiveness

    NASA Astrophysics Data System (ADS)

    Smith, John G.; Brandt, Craig C.; Christensen, Sigurd W.

    2011-06-01

    The benthic macroinvertebrate community of East Fork Poplar Creek (EFPC) in East Tennessee was monitored for 18 years to evaluate the effectiveness of a water pollution control program implemented at a major United States (U.S.) Department of Energy facility. Several actions were implemented to reduce and control releases of pollutants into the headwaters of the stream. Four of the most significant actions were implemented during different time periods, which allowed assessment of each action. Macroinvertebrate samples were collected annually in April from three locations in EFPC (EFK24, EFK23, and EFK14) and two nearby reference streams from 1986 through 2003. Significant improvements occurred in the macroinvertebrate community at the headwater sites (EFK24 and EFK23) after implementation of each action, while changes detected 9 km further downstream (EFK14) could not be clearly attributed to any of the actions. Because the stream was impacted at its origin, invertebrate recolonization was primarily limited to aerial immigration, thus, recovery has been slow. As recovery progressed, abundances of small pollution-tolerant taxa (e.g., Orthocladiinae chironomids) decreased and longer lived taxa colonized (e.g., hydropsychid caddisflies, riffle beetles, Baetis). While assessments lasting three to four years may be long enough to detect a response to new pollution controls at highly impacted locations, more time may be needed to understand the full effects. Studies on the effectiveness of pollution controls can be improved if impacted and reference sites are selected to maximize spatial and temporal trending, and if a multidisciplinary approach is used to broadly assess environmental responses (e.g., water quality trends, invertebrate and fish community assessments, toxicity testing, etc.).

  14. Long-Term Benthic Macroinvertebrate Community Monitoring to Assess Pollution Abatement Effectiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, John G; Brandt, Craig C; Christensen, Sigurd W

    2011-01-01

    The benthic macroinvertebrate community of East Fork Poplar Creek (EFPC) in East Tennessee was monitored for 18 years to evaluate the effectiveness of a water pollution control program implemented at a major United States (U.S.) Department of Energy facility. Several actions were implemented to reduce and control releases of pollutants into the headwaters of the stream. Four of the most significant actions were implemented during different time periods, which allowed assessment of each action. Macroinvertebrate samples were collected annually in April from three locations in EFPC (EFK24, EFK23, and EFK14) and two nearby reference streams from 1986 through 2003. Significantmore » improvements occurred in the macroinvertebrate community at the headwater sites (EFK24 and EFK23) after implementation of each action, while changes detected 9 km further downstream (EFK14) could not be clearly attributed to any of the actions. Because the stream was impacted at its origin, invertebrate recolonization was primarily limited to aerial immigration, thus, recovery has been slow. As recovery progressed, abundances of small pollution-tolerant taxa (e.g., Orthocladiinae chironomids) decreased and longer lived taxa colonized (e.g., hydropsychid caddisflies, riffle beetles, Baetis). While assessments lasting three to four years may be long enough to detect a response to new pollution controls at highly impacted locations, more time may be needed to understand the full effects. Studies on the effectiveness of pollution controls can be improved if impacted and reference sites are selected to maximize spatial and temporal trending, and if a multidisciplinary approach is used to broadly assess environmental responses (e.g., water quality trends, invertebrate and fish community assessments, toxicity testing, etc.).« less

  15. Water-quality, sediment-quality, stream-habitat, and biological data for Mustang Bayou near Houston, Texas, 2004-05

    USGS Publications Warehouse

    Sneck-Fahrer, Debra A.; East, Jeffery W.

    2007-01-01

    the stream bottom at M1 and analyzed for concentrations of trace elements (metals), polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls. No organochlorine pesticides or polychlorinated biphenyls were detected. No concentrations of metals exceeded State screening levels. Measurable concentrations of 11 polycyclic aromatic hydrocarbon (PAH) compounds were detected, and three other PAH compounds were detected but not quantified by the laboratory. Stream habitat and aquatic biota (benthic macroinvertebrates and fish) were surveyed at each site three times during the study to evaluate aquatic life use. Characteristics of habitat measured during each survey were scored using a habitat quality index. Average aquatic-life-use scores were 'limited' for M3-M6 and 'intermediate' for M1 and M2. A total of 2,557 macroinvertebrate individuals were identified from Mustang Bayou. Benthic macroinvertebrate assemblages were scored using indexes specified by the Texas Commission on Environmental Quality. Average aquatic-life-use scores were 'limited' at M1, 'intermediate' at M3-M6, and 'high' at M2. Forty-six species of fish representing 20 families were collected from Mustang Bayou. A total of 4,115 fish were collected. Sunfish (Centrarchidae) was the most abundant family, accounting for about 28 percent. Aquatic-life-use scores at sites in Mustang Bayou were determined using the regional index of biotic integrity for ecoregion 34 and were 'high' for all sites.

  16. USING LONG-TERM CHEMICAL AND BIOLOGICAL INDICATORS TO ASSESS STREAM HEALTH IN THE UPPER OCONEE RIVER WATERSHED

    EPA Science Inventory

    Macroinvertebrates are commonly used as biological indicators of stream water and habitat quality. Sediment is a common pollutant in streams, and high levels of sediment are linked with decreased dissolved oxygen (DO) in stream ecosystems. Many aquatic macroinvertebrates are se...

  17. Modelling the Influence of Long-Term Hydraulic Conditions on Juvenile Salmon Habitats in AN Upland Scotish River

    NASA Astrophysics Data System (ADS)

    Fabris, L.; Malcolm, I.; Millidine, K. J.; Buddendorf, B.; Tetzlaff, D.; Soulsby, C.

    2015-12-01

    Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream

  18. Benthic macroinvertebrate and fish communities in Lake Huron are linked to submerged groundwater vents

    USGS Publications Warehouse

    Garrison, Sanders T.; Biddanda, B.A.; Stricker, C.A.; Nold, S.C.

    2011-01-01

    Groundwater can be an important source of nutrients and energy to aquatic ecosystems, but quantifying the inputs and biogeochemical importance remains challenging. A series of submerged groundwater vents in northern Lake Huron were examined to determine the linkage between groundwater nutrients and aquatic food webs. We collected samples of key food-web components from groundwater vent and reference habitats and analyzed them for 13C, 15N, and 34S isotopes. Dissolved inorganic carbon (DIC) in the groundwater was depleted in 13C, while aqueous sulfate was enriched in 34S (mean differences between groundwater and reference sites were -3.9% and +12.0%, respectively). Benthic primary producers, macroinvertebrates, and benthivorous fish had significantly lower ??13C values in groundwater environments, and benthivorous fish were somewhat depleted (-2.5%) in ??34S at groundwater sites compared to reference sites. However, ??15N values were not different between groundwater and reference sites, and pelagic components of the ecosystems (plankton and planktivorous and piscivorous fish) were similar in both ??13C and ??15N. These data suggest benthic metazoan communities surrounding groundwater vents are partially linked to groundwater-derived benthic primary production, while planktivorous and piscivorous communities not directly associated with the benthos do not rely on groundwater nutrients. ?? Inter-Research 2011.

  19. Riverine habitat dynamics

    USGS Publications Warehouse

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  20. Biological Assessment to Support Ecological Recovery of a Degraded Headwater System

    NASA Astrophysics Data System (ADS)

    Longing, Scott D.; Haggard, Brian E.

    2010-09-01

    An assessment of the benthic macroinvertebrate community was conducted to characterize the ecological recovery of a channelized main stem and two small tributaries at the Watershed Research and Education Center (WREC, Arkansas, USA). Three other headwater streams in the same basin were also sampled as controls and for biological reference information. A principal components analysis produced stream groupings along an overall gradient of physical habitat integrity, with degraded reaches showing lower RBP habitat scores, reduced flow velocities, smaller substrate sizes, greater conductivity, and higher percentages of sand and silt substrate. The benthic macroinvertebrate assemblage at WREC was dominated by fast-reproducing dipteran larvae (midge and mosquito larvae) and physid snails, which comprised 71.3% of the total macroinvertebrate abundance over three sampling periods. Several macroinvertebrate assemblage metrics should provide effective targets for monitoring overall improvements in the invertebrate assemblage including recovery towards a more complex food web (e.g., total number of taxa, number of EPT taxa, percent 2 dominant taxa). However, current habitat conditions and the extent of existing degradation, system isolation and surrounding urban or agricultural land-uses might affect the level of positive change to the system. We therefore suggest a preliminary restoration strategy involving the addition of pool habitats in the system. At one pool we collected a total of 29 taxa (dominated by water beetle predators), which was 59% of total number of taxa collected at WREC. Maintaining water-retentive pools to collect flows and maintain water permanence focuses on enhancing known biology and habitat, thus reducing the effects of abiotic filters on macroinvertebrate assemblage recovery. Furthermore, biological assessment prior to restoration supports a strategy primarily focused on improving the existing macroinvertebrate community in the current context of the

  1. Short-term disturbance effects of outdoor education stream classes on aquatic macroinvertebrates

    USDA-ARS?s Scientific Manuscript database

    Outdoor education stream classes provide students with an opportunity to gain hands-on experience with sampling methods for evaluating stream water quality. Student trampling as a result of stream classes may disrupt the substrate and negatively impact aquatic macroinvertebrates. The impact of stude...

  2. ANALYSIS OF MACROINVERTEBRATE ASSEMBLAGES IN RELATION TO ENVIRONMENTAL GRADIENTS IN ROCKY MOUNTAIN STREAMS

    EPA Science Inventory

    Using redundancy analysis (RDA) and canonical correspondence analysis (CCA), we assessed relationships among chemical and physical characteristics and macroinvertebrate assemblages at stream sites sampled by the Regional Environmental Monitoring and Assessment Program (R-EMAP) in...

  3. Effects of human-induced environmental changes on benthic macroinvertebrate assemblages of wetlands in Lake Tana Watershed, Northwest Ethiopia.

    PubMed

    Gezie, Ayenew; Anteneh, Wassie; Dejen, Eshete; Mereta, Seid Tiku

    2017-04-01

    Wetlands of Lake Tana Watershed provide various ecological and socioeconomic functions. However, they are losing their vigor at alarming rate due to unwise management. Hence, there is an urgent need to monitor and assess these resources so as to identify the major drivers of its degradation and to provide information for management decisions. In this context, we aimed to assess the effects of human activities on macroinvertebrate assemblages of wetlands in Lake Tana Watershed. Biotic and abiotic data were collected from 46 sampling sites located in eight wetlands. A total of 2568 macroinvertebrates belonging to 46 families were recorded. Macroinvertebrate metrics such as Biological Monitoring Working Party score, Shannon diversity index, Ephemeroptera and odonata family richness, and total family richness portrayed a clear pattern of decreasing with increasing in human disturbances, whereas Family biotic index score, which is an indicator of organic pollution, increased with increasing in human disturbances. The regression analysis also revealed that livestock grazing, leather tanning, and eucalyptus plantation were important predictors of macroinvertebrate metrics (p < 0.05). In conclusion, human activities in and around the wetlands such as farming, leather tanning, solid waste dumping, and effluent discharges were contributed to the degradation of water quality and decreasing in the macroinvertebrate richness and diversity. These alterations could also reduce the availability of wetland products (sedges, craft materials, etc.) and the related ecosystem services. This in turn has an adverse effect on food security and poverty alleviation with considerable impact on communities who heavily depend on wetland products for their livelihood. Therefore, it is essential to formulate wetland policy for achieving wise use goals and necessary legal and institutional backup for sustainable wetland management in Ethiopia.

  4. Pesticides in agricultural headwater streams in southwestern Germany and effects on macroinvertebrate populations.

    PubMed

    Weber, Gero; Christmann, Nicole; Thiery, Ann-Cathrin; Martens, Dieter; Kubiniok, Jochen

    2018-04-01

    Pesticides are a major burden for stream ecosystems in the central European cultivated landscape. The objective of the present study was to investigate the applicability of ecological indicator methods in relation to toxicity of pesticides under the specific hydro-morphological conditions in small water bodies. Thus, an association of toxicity evaluating methods with different ecological indicators was to be attempted. Based on three random samples taken within the 2016 vegetation period, 23 headwater areas in the Saarland were investigated to test for pesticides and their metabolites. The macroinvertebrate population was also surveyed in 16 of these streams. Evidence was found of 41 substances in total. Most dominant substances include atrazine, isoproturone, quinmerac and tebuconazol as well as metabolites of dimethenamid, chloridazon and metazachlor. At 9 of the 23 sampling points, over 10 plant protection products and metabolites were found. Only 17% of the water bodies investigated contained fewer than 5 substances. Around half of the bodies of water investigated show noticeably high concentrations of metabolites of plant protection products. Maximum concentrations exceeding environmental quality standards or the Health-oriented Guideline Values were measured for 13 substances at individual sampling points. Analysis of the biological data for only 4 of the water bodies investigated resulted in the Ecological Status Class (ESC) "good". All others fell short of the quality target, although they were classified as "good" or "very good" according to the Saprobic index. SPEAR pesticides as a measurement of the sensitivity of the biocoenosis to pesticides shows their influence in a few water bodies. Likewise, high toxic unit values have also been calculated, indicating the presence of toxic substances at relevant concentrations. However, an actual correlation between SPEAR pesticides and toxic unit could not be derived. Clearly in these very headwater streams other

  5. Vacant habitats in the Universe.

    PubMed

    Cockell, Charles S

    2011-02-01

    The search for life on other planets usually makes the assumption that where there is a habitat, it will contain life. On the present-day Earth, uninhabited habitats (or vacant habitats) are rare, but might occur, for example, in subsurface oils or impact craters that have been thermally sterilized in the past. Beyond Earth, vacant habitats might similarly exist on inhabited planets or on uninhabited planets, for example on a habitable planet where life never originated. The hypothesis that vacant habitats are abundant in the Universe is testable by studying other planets. In this review, I discuss how the study of vacant habitats might ultimately inform an understanding of how life has influenced geochemical conditions on Earth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Endothermy in African platypleurine cicadas: the influence of body size and habitat (Hemiptera: Cicadidae).

    PubMed

    Sanborn, Allen F; Villet, Martin H; Phillips, Polly K

    2004-01-01

    The platypleurine cicadas have a wide distribution across Africa and southern Asia. We investigate endothermy as a thermoregulatory strategy in 11 South African species from five genera, with comparisons to the lone ectothermic platypleurine we found, in an attempt to ascertain any influence that habitat and/or body size have on the expression of endothermy in the platypleurine cicadas. Field measurements of body temperature (T(b)) show that these animals regulate T(b) through endogenous heat production. Heat production in the laboratory elevated T(b) to the same range as in animals active in the field. Maximum T(b) measured during calling activity when there was no access to solar radiation ranged from 13.2 degrees to 22.3 degrees C above ambient temperature in the five species measured. The mean T(b) during activity without access to solar radiation did not differ from the mean T(b) during diurnal activity. All platypleurines exhibit a unique behavior for cicadas while warming endogenously, a temperature-dependent telescoping pulsation of the abdomen that probably functions in ventilation. Platypleurines generally call from trunks and branches within the canopy and appear to rely on endothermy even when the sun is available to elevate T(b), in contrast to the facultative endothermy exhibited by New World endothermic species. The two exceptions to this generalization we found within the platypleurines are Platypleura wahlbergi and Albanycada albigera, which were the smallest species studied. The small size of P. wahlbergi appears to have altered their thermoregulatory strategy to one of facultative endothermy, whereby they use the sun when it is available to facilitate increases in T(b). Albanycada albigera is the only ectothermic platypleurine we found. The habitat and host plant association of A. albigera appear to have influenced the choice of ectothermy as a thermoregulatory strategy, as the species possesses the metabolic machinery to elevate to the T

  7. Variability in Lotic Communities in Three Contrasting Stream Environments in the Santa Ana River Basin, California, 1999-2001

    USGS Publications Warehouse

    Burton, Carmen A.

    2008-01-01

    Biotic communities and environmental conditions can be highly variable between natural ecosystems. The variability of natural assemblages should be considered in the interpretation of any ecological study when samples are either spatially or temporally distributed. Little is known about biotic variability in the Santa Ana River Basin. In this report, the lotic community and habitat assessment data from ecological studies done as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program are used for a preliminary assessment of variability in the Santa Ana Basin. Habitat was assessed, and benthic algae, benthic macroinvertebrate, and fish samples were collected at four sites during 1999-2001. Three of these sites were sampled all three years. One of these sites is located in the San Bernardino Mountains, and the other two sites are located in the alluvial basin. Analysis of variance determined that the three sites with multiyear data were significantly different for 41 benthic algae metrics and 65 macroinvertebrate metrics and fish communities. Coefficients of variation (CVs) were calculated for the habitat measurements, metrics of benthic algae, and macroinvertebrate data as measures of variability. Annual variability of habitat data was generally greater at the mountain site than at the basin sites. The mountain site had higher CVs for water temperature, depth, velocity, canopy angle, streambed substrate, and most water-quality variables. In general, CVs of most benthic algae metrics calculated from the richest-targeted habitat (RTH) samples were greater at the mountain site. In contrast, CVs of most benthic algae metrics calculated from depositional-targeted habitat (DTH) samples were lower at the mountain site. In general, CVs of macroinvertebrate metrics calculated from qualitative multihabitat (QMH) samples were lower at the mountain site. In contrast, CVs of many metrics calculated from RTH samples were greater at the mountain site

  8. Host Life History Strategy, Species Diversity, and Habitat Influence Trypanosoma cruzi Vector Infection in Changing Landscapes

    PubMed Central

    Gottdenker, Nicole L.; Chaves, Luis Fernando; Calzada, José E.; Saldaña, Azael; Carroll, C. Ronald

    2012-01-01

    Background Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama. Methodology/Principal Findings R. pallescens vectors (N = 643) were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3%) vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3%) dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas) were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as rmax, the maximum intrinsic rate of population increase), and habitat type (forest fragments and peridomiciliary sites) were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of rmax were positively associated with higher vector infection rate at a site. Conclusions/Significance In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially

  9. Habitat complexity influences fine scale hydrological processes and the incidence of stormwater runoff in managed urban ecosystems.

    PubMed

    Ossola, Alessandro; Hahs, Amy Kristin; Livesley, Stephen John

    2015-08-15

    Urban ecosystems have traditionally been considered to be pervious features of our cities. Their hydrological properties have largely been investigated at the landscape scale and in comparison with other urban land use types. However, hydrological properties can vary at smaller scales depending upon changes in soil, surface litter and vegetation components. Management practices can directly and indirectly affect each of these components and the overall habitat complexity, ultimately affecting hydrological processes. This study aims to investigate the influence that habitat components and habitat complexity have upon key hydrological processes and the implications for urban habitat management. Using a network of urban parks and remnant nature reserves in Melbourne, Australia, replicate plots representing three types of habitat complexity were established: low-complexity parks, high-complexity parks, and high-complexity remnants. Saturated soil hydraulic conductivity in low-complexity parks was an order of magnitude lower than that measured in the more complex habitat types, due to fewer soil macropores. Conversely, soil water holding capacity in low-complexity parks was significantly higher compared to the two more complex habitat types. Low-complexity parks would generate runoff during modest precipitation events, whereas high-complexity parks and remnants would be able to absorb the vast majority of rainfall events without generating runoff. Litter layers on the soil surface would absorb most of precipitation events in high-complexity parks and high-complexity remnants. To minimize the incidence of stormwater runoff from urban ecosystems, land managers could incrementally increase the complexity of habitat patches, by increasing canopy density and volume, preserving surface litter and maintaining soil macropore structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Water Quality, Physical Habitat, and Biology of the Kijik River Basin, Lake Clark National Park and Preserve, Alaska, 2004-2005

    USGS Publications Warehouse

    Brabets, Timothy P.; Ourso, Robert T.

    2006-01-01

    The U.S. Geological Survey and the National Park Service conducted a water-quality investigation of the Kijik River Basin in Lake Clark National Park and Preserve from June 2004 to March 2005. The Kijik River Basin was studied because it has a productive sockeye salmon run that is important to the larger Kvichak River watershed. Water-quality, physical habitat, and biological characteristics were assessed. Water type throughout the Kijik River Basin is calcium bicarbonate although Little Kijik River above Kijik Lake does have slightly higher concentrations of sulfate and chloride. Alkalinity concentrations are generally less than 28 milligrams per liter, indicating a low buffering capacity of these waters. Lachbuna Lake traps much of the suspended sediment from the glacier streams in the headwaters of the basin as evidenced by low secchi-disc transparency of 1 to 2 meters and low suspended sediment concentrations in the Kijik River downstream from the lake. Kijik Lake is a fed by clearwater streams and has secchi-disc readings ranging from 11 to 15 meters. Streambed sediments collected from four surface sites analyzed for trace elements indicated that arsenic concentrations at all sites were above proposed guidelines. However, arsenic concentrations are due to the local geology, not anthropogenic factors. Benthic macroinvertebrate qualitative multi-habitat samples collected from two sites on the Little Kijik River and two sites on the main stem of the Kijik River indicated a total of 69 taxa present among the four sites. The class Insecta, made up the largest percentage of macroinvertebrates, totaling 70 percent of the families found. The insects were comprised of four orders; Diptera (flies and midges), Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). One-hundred twenty-two species of periphytic algae were identified in qualitative multi-habitat samples collected at the four stream sites. Eight species of non-motile, diatoms were

  11. Degree of adaptive response in urban tolerant birds shows influence of habitat-of-origin

    PubMed Central

    2014-01-01

    Urban exploiters and adapters are often coalesced under a term of convenience as ‘urban tolerant’. This useful but simplistic characterisation masks a more nuanced interplay between and within assemblages of birds that are more or less well adapted to a range of urban habitats. I test the hypotheses that objectively-defined urban exploiter and suburban adapter assemblages within the broad urban tolerant grouping in Melbourne vary in their responses within the larger group to predictor variables, and that the most explanatory predictor variables vary between the two assemblages. A paired, partitioned analysis of exploiter and adapter preferences for points along the urban–rural gradient was undertaken to decompose the overall trend into diagnosable parts for each assemblage. In a similar way to that in which time since establishment has been found to be related to high urban densities of some bird species and biogeographic origin predictive of urban adaptation extent, habitat origins of members of bird assemblages influence the degree to which they become urban tolerant. Bird species that objectively classify as urban tolerant will further classify as either exploiters or adapters according to the degree of openness of their habitats-of-origin. PMID:24688881

  12. Linkages between benthic macroinvertebrate assemblages and landscape stressors in the US Great Lakes

    EPA Science Inventory

    We used multiple linear regression analysis to investigate relationships between benthic macroinvertebrate assemblages in the nearshore region of the Laurentian Great Lakes and landscape characteristics in adjacent watersheds. Benthic invertebrate data were obtained from the 201...

  13. Macroinvertebrate and diatom metrics as indicators of water-quality conditions in connected depression wetlands in the Mississippi Alluvial Plain

    USGS Publications Warehouse

    Justus, Billy; Burge, David; Cobb, Jennifer; Marsico, Travis; Bouldin, Jennifer

    2016-01-01

    Methods for assessing wetland conditions must be established so wetlands can be monitored and ecological services can be protected. We evaluated biological indices compiled from macroinvertebrate and diatom metrics developed primarily for streams to assess their ability to indicate water quality in connected depression wetlands. We collected water-quality and biological samples at 24 connected depressions dominated by water tupelo (Nyssa aquatica) or bald cypress (Taxodium distichum) (water depths = 0.5–1.0 m). Water quality of the least-disturbed connected depressions was characteristic of swamps in the southeastern USA, which tend to have low specific conductance, nutrient concentrations, and pH. We compared 162 macroinvertebrate metrics and 123 diatom metrics with a water-quality disturbance gradient. For most metrics, we evaluated richness, % richness, abundance, and % relative abundance values. Three of the 4 macroinvertebrate metrics that were most beneficial for identifying disturbance in connected depressions decreased along the disturbance gradient even though they normally increase relative to stream disturbance. The negative relationship to disturbance of some taxa (e.g., dipterans, mollusks, and crustaceans) that are considered tolerant in streams suggests that the tolerance scale for some macroinvertebrates can differ markedly between streams and wetlands. Three of the 4 metrics chosen for the diatom index reflected published tolerances or fit the usual perception of metric response to disturbance. Both biological indices may be useful in connected depressions elsewhere in the Mississippi Alluvial Plain Ecoregion and could have application in other wetland types. Given the paradoxical relationship of some macroinvertebrate metrics to dissolved O2 (DO), we suggest that the diatom metrics may be easier to interpret and defend for wetlands with low DO concentrations in least-disturbed conditions.

  14. Variable role of aquatic macroinvertebrates in initial breakdown of seasonal leaf litter inputs to a cold-desert river

    USGS Publications Warehouse

    Nelson, S.M.; Andersen, D.C.

    2007-01-01

    We used coarse-mesh and fine-mesh leafpacks to examine the importance of aquatic macroinvertebrates in the breakdown of floodplain tree leaf litter that seasonally entered a sand-bedded reach of the sixth-order Yampa River in semiarid Colorado. Leafpacks were positioned off the easily mobilized channel bed, mimicking litter trapped in debris piles. Organic matter (OM) loss was fastest for leaves collected from the floodplain and placed in the river in spring (k = 0.029/day) and slowest for leaves collected and placed in the river in winter (0.006/day). Macroinvertebrates were most abundant in winter and spring leaves, but seemed important to processing only in spring, when exclusion by fine mesh reduced OM loss by 25% and nitrogen loss by 65% in spring leaves. Macroinvertebrates seemed to have little role in processing of autumn, winter, or summer leaves over the 50-day to 104-day monitoring periods. Desiccation during bouts of low discharge and sediment deposition on leaves limited invertebrate processing in summer and autumn, whereas processing of winter leaves, which supported relatively large numbers of shredders, might have been restricted by ice formation and low water temperatures. These results were consistent with the concept that microbial processing dominates in higher-order rivers, but suggested that macroinvertebrate processing can be locally important in higher-order desert rivers in seasons or years with favorable discharge and water quality conditions.

  15. Impact of extreme oxygen consumption by pollutants on macroinvertebrate assemblages in plain rivers of the Ziya River Basin, north China.

    PubMed

    Ding, Yuekui; Rong, Nan; Shan, Baoqing

    2016-07-01

    The aim of the study was to estimate the impact of oxygen depletion on macroinvertebrate community structure in benthic space. Macroinvertebrate assemblages and potential of dissolved oxygen (DO) consumption were investigated simultaneously in the plain rivers of the Ziya River Basin. The degree of DO depletion was represented by sediment oxygen demand (SOD) and DO, chemical oxygen demand (CODCr), and ammonia nitrogen (NH4 (+)-N) in the overlying water. The results showed an all-around hypoxia environment formed, and the values of DO, SOD, CODCr, and NH4 (+)-N were separately 0.11-4.03 mg L(-1), 0.41-2.60 g m(-2) day(-1), 27.50-410.00 mg L(-1), and 1.79-101.41 mg L(-1). There was an abnormal macroinvertebrate assemblage, and only 3 classes, Insecta, Gastropoda, and Oligochaeta, were found, which included 9 orders, 30 families, and 54 genera. The biodiversity was at a low level, and Shannon-Wiener index was 0.00-1.72. SOD, and NH4 (+)-N had major impact on the macroinvertebrate community, and the former had negative effect on most taxa, for instance, Nais, Branchiura, Paraleptophlebia, etc., which were sensitive or had a moderate-high tolerance to pollution. NH4 (+)-N had both positive and negative impacts on benthic animals, for instance, Dicrotendipes, Gomphus, Cricotopus, etc., for the former, and Procladius, Limnodrilus, Hippeutis, etc., for the latter. They all had a moderate-high tolerance to pollution. It is significant to improve DO condition and macroinvertebrate diversity in river harnessing and management.

  16. Assessing macroinvertebrate biodiversity in freshwater ecosystems: advances and challenges in DNA-based approaches

    EPA Science Inventory

    Assessing the biodiversity of macroinvertebrate faunas in freshwater ecosystems is an essential component of both basic ecological inquiry and applied ecological assessments. Aspects of taxonomic diversity and composition in freshwater communities are widely used to quantify wate...

  17. Echinoid associations with coral habitats differ with taxon in the deep sea and the influence of other echinoids, depth, and fishing history on their distribution

    NASA Astrophysics Data System (ADS)

    Stevenson, Angela; Davies, Jaime S.; Williams, Alan; Althaus, Franziska; Rowden, Ashley A.; Bowden, David A.; Clark, Malcolm R.; Mitchell, Fraser J. G.

    2018-03-01

    Patterns of habitat use by animals and knowledge of the environmental factors affecting these spatial patterns are important for understanding the structure and dynamics of ecological communities. Both aspects are poorly known for deep-sea habitats. The present study investigates echinoid distributions within cold water coral (CWC) habitats on continental margins off France, Australia, and New Zealand. It further examines the influence of habitat-related variables that might help explain the observed distribution of echinoid taxa. Six echinoid taxa were examined from video and photographic transects to reveal taxon-specific distribution patterns and habitat-related influences. The Echinoidea were found in all habitats studied, but tended to aggregate in architecturally complex habitats associated with living cold-water corals. However, a taxon-specific investigation found that such associations were largely an artefact of the dominant taxa observed in a specific region. Despite the food and shelter resources offered to echinoids by matrix-forming coral habitats, not all taxa were associated with these habitats, and some had a random association with the habitats examined, while others displayed non-random associations. Echinoid distribution was correlated with several variables; the presence of other echinoids, depth, and fishing history were the most influential factors. This study indicates that image data can be a useful tool to detect trends in echinoid habitat associations. It also suggests that refinement of the methods, in particular with studies conducted at a more precise taxon and habitat scale, would facilitate better quantitative analyses of habitat associations and paint a more realistic picture of a population's ecology. Most deep-sea ecological studies to date have been conducted at a relatively coarse taxonomic and habitat resolution, and lack sufficient resolution to provide useful information for the conservation of vulnerable deep-sea habitats.

  18. Pollution-induced community tolerance in benthic macroinvertebrates of a mildly lead-contaminated lake.

    PubMed

    Oguma, Andrew Y; Klerks, Paul L

    2017-08-01

    Pollution-induced community tolerance (PICT) has been used to demonstrate effects of sediment contamination on microbes and meiofauna. Our study explored the potential to detect PICT in benthic macroinvertebrates of a lake with long-term mild lead (Pb) contamination. We collected macrobenthos from two areas in Caddo Lake, Texas, a control area (CO) with a mean sediment Pb level of 11 μg/g and Goose Prairie (GP) where sediment Pb levels averaged 74 μg/g. Upon return to the laboratory, we exposed macroinvertebrates to a lethal lead concentration and assessed 48-h mortality. Mortality of CO macrobenthos was significantly higher than that of GP macrobenthos, providing evidence that these communities differed in their tolerance to lead. A comparison of macrobenthos community composition between the areas showed that the GP macrobenthos lacked metal-sensitive taxa such as gastropods and amphipods (which were present at CO). Similarly, a higher proportion of the GP benthos belonged to metal-tolerant taxa such as isopods and chironomids. Thus, changes in community composition appeared to be at least partly responsible for differences in community tolerance. Our results showed that a sediment Pb concentration below effect-based sediment quality guidelines had a measurable impact on macrobenthos, thus demonstrating that results from single-species toxicity tests may underestimate impacts on communities. This study also confirms that the PICT approach with macroinvertebrates is a feasible and potentially powerful approach for detecting contaminant impacts.

  19. Habitat models to predict wetland bird occupancy influenced by scale, anthropogenic disturbance, and imperfect detection

    USGS Publications Warehouse

    Glisson, Wesley J.; Conway, Courtney J.; Nadeau, Christopher P.; Borgmann, Kathi L.

    2017-01-01

    Understanding species–habitat relationships for endangered species is critical for their conservation. However, many studies have limited value for conservation because they fail to account for habitat associations at multiple spatial scales, anthropogenic variables, and imperfect detection. We addressed these three limitations by developing models for an endangered wetland bird, Yuma Ridgway's rail (Rallus obsoletus yumanensis), that examined how the spatial scale of environmental variables, inclusion of anthropogenic disturbance variables, and accounting for imperfect detection in validation data influenced model performance. These models identified associations between environmental variables and occupancy. We used bird survey and spatial environmental data at 2473 locations throughout the species' U.S. range to create and validate occupancy models and produce predictive maps of occupancy. We compared habitat-based models at three spatial scales (100, 224, and 500 m radii buffers) with and without anthropogenic disturbance variables using validation data adjusted for imperfect detection and an unadjusted validation dataset that ignored imperfect detection. The inclusion of anthropogenic disturbance variables improved the performance of habitat models at all three spatial scales, and the 224-m-scale model performed best. All models exhibited greater predictive ability when imperfect detection was incorporated into validation data. Yuma Ridgway's rail occupancy was negatively associated with ephemeral and slow-moving riverine features and high-intensity anthropogenic development, and positively associated with emergent vegetation, agriculture, and low-intensity development. Our modeling approach accounts for common limitations in modeling species–habitat relationships and creating predictive maps of occupancy probability and, therefore, provides a useful framework for other species.

  20. The relative influence of geographic location and reach-scale habitat on benthic invertebrate assemblages in six ecoregions

    EPA Science Inventory

    The objective of this study was to determine the relative influence of reach-specific habitat variables and geographic location on benthic invertebrate assemblages within six ecoregions across the Western USA. This study included 417 sites from six ecoregions. A total of 301 ta...

  1. Evaluation of Deposited Sediment and Macroinvertebrate Metrics Used to Quantify Biological Response to Excessive Sedimentation in Agricultural Streams

    NASA Astrophysics Data System (ADS)

    Sutherland, Andrew B.; Culp, Joseph M.; Benoy, Glenn A.

    2012-07-01

    The objective of this study was to evaluate which macroinvertebrate and deposited sediment metrics are best for determining effects of excessive sedimentation on stream integrity. Fifteen instream sediment metrics, with the strongest relationship to land cover, were compared to riffle macroinvertebrate metrics in streams ranging across a gradient of land disturbance. Six deposited sediment metrics were strongly related to the relative abundance of Ephemeroptera, Plecoptera and Trichoptera and six were strongly related to the modified family biotic index (MFBI). Few functional feeding groups and habit groups were significantly related to deposited sediment, and this may be related to the focus on riffle, rather than reach-wide macroinvertebrates, as reach-wide sediment metrics were more closely related to human land use. Our results suggest that the coarse-level deposited sediment metric, visual estimate of fines, and the coarse-level biological index, MFBI, may be useful in biomonitoring efforts aimed at determining the impact of anthropogenic sedimentation on stream biotic integrity.

  2. Evaluation of deposited sediment and macroinvertebrate metrics used to quantify biological response to excessive sedimentation in agricultural streams.

    PubMed

    Sutherland, Andrew B; Culp, Joseph M; Benoy, Glenn A

    2012-07-01

    The objective of this study was to evaluate which macroinvertebrate and deposited sediment metrics are best for determining effects of excessive sedimentation on stream integrity. Fifteen instream sediment metrics, with the strongest relationship to land cover, were compared to riffle macroinvertebrate metrics in streams ranging across a gradient of land disturbance. Six deposited sediment metrics were strongly related to the relative abundance of Ephemeroptera, Plecoptera and Trichoptera and six were strongly related to the modified family biotic index (MFBI). Few functional feeding groups and habit groups were significantly related to deposited sediment, and this may be related to the focus on riffle, rather than reach-wide macroinvertebrates, as reach-wide sediment metrics were more closely related to human land use. Our results suggest that the coarse-level deposited sediment metric, visual estimate of fines, and the coarse-level biological index, MFBI, may be useful in biomonitoring efforts aimed at determining the impact of anthropogenic sedimentation on stream biotic integrity.

  3. A COMPARISON OF SIX BENTHIC MACROINVERTEBRATE SAMPLING METHODS IN FOUR LARGE RIVERS

    EPA Science Inventory

    In 1999, a study was conducted to compare six macroinvertebrate sampling methods in four large (boatable) rivers that drain into the Ohio River. Two methods each were adapted from existing methods used by the USEPA, USGS and Ohio EPA. Drift nets were unable to collect a suffici...

  4. Habitat selection of two gobies (Microgobius gulosus, Gobiosoma robustum): influence of structural complexity, competitive interactions and presence of a predator

    USGS Publications Warehouse

    Schofield, P.J.

    2003-01-01

    Herein I compare the relative importance of preference for structurally complex habitat against avoidance of competitors and predators in two benthic fishes common in the Gulf of Mexico. The code goby Gobiosoma robustum Ginsburg and clown goby Microgobius gulosus (Girard) are common, ecologically similar fishes found throughout the Gulf of Mexico and in the southeastern Atlantic Ocean. In Florida Bay, these fishes exhibit habitat partitioning: G. robustum is most abundant in seagrass-dominated areas while M. gulosus is most abundant in sparsely vegetated habitats. In a small-scale field survey, I documented the microhabitat use of these species where their distributions overlap. In a series of laboratory experiments, I presented each species with structured (artificial seagrass) versus nonstructured (bare sand) habitats and measured their frequency of choosing either habitat type. I then examined the use of structured versus nonstructured habitats when the two species were placed together in a mixed group. Finally, I placed a predator (Opsanus beta) in the experimental aquaria to determine how its presence influenced habitat selection. In the field, G. robustum was more abundant in seagrass and M. gulosus was more abundant in bare mud. In the laboratory, both species selected grass over sand in allopatry. However, in sympatry, M. gulosus occupied sand more often when paired with G. robustum than when alone. G. robustum appears to directly influence the habitat choice of M. gulosus: It seems that M. gulosus is pushed out of the structured habitat that is the preferred habitat of G. robustum. Thus, competition appears to modify the habitat selection of these species when they occur in sympatry. Additionally, the presence of the toadfish was a sufficient stimulus to provoke both M. gulosus and G. robustum to increase their selection for sand (compared to single-species treatments). Distribution patterns of M. gulosus and G. robustum

  5. DEVELOPMENT OF STANDARDIZED LARGE RIVER BIOASSESSMENT PROTOCOLS (LR-BP) FOR BENTHIC MACROINVERTEBRATE ASSEMBLAGES

    EPA Science Inventory

    We conducted research comparing several methods currently in use for the bioassessment and monitoring of fish and benthic macroinvertebrate assemblages of large rivers. Fish data demonstrate that electrofishing 1000 m of shoreline is sufficient for bioassessments on boatable riv...

  6. The invertebrate ecology of the Chalk aquifer in England (UK)

    NASA Astrophysics Data System (ADS)

    Maurice, L.; Robertson, A. R.; White, D.; Knight, L.; Johns, T.; Edwards, F.; Arietti, M.; Sorensen, J. P. R.; Weitowitz, D.; Marchant, B. P.; Bloomfield, J. P.

    2016-03-01

    The Chalk is an important water supply aquifer, yet ecosystems within it remain poorly understood. Boreholes (198) in seven areas of England (UK) were sampled to determine the importance of the Chalk aquifer as a habitat, and to improve understanding of how species are distributed. Stygobitic macro-invertebrates were remarkably common, and were recorded in 67 % of boreholes in unconcealed Chalk, although they were not recorded in Chalk that is concealed by low-permeability strata and thus likely to be confined. Most species were found in shallow boreholes (<21 m) and boreholes with deep (>50 m) water tables, indicating that the habitat is vertically extensive. Stygobites were present in more boreholes in southern England than northern England (77 % compared to 38 %). Only two species were found in northern England compared to six in southern England, but overall seven of the eight stygobitic macro-invertebrate species found in England were detected in the Chalk. Two species are common in southern England, but absent from northern England despite the presence of a continuous habitat prior to the Devensian glaciation. This suggests that either they did not survive glaciations in the north where glaciers were more extensive, or dispersal rates are slow and they have never colonised northern England. Subsurface ecosystems comprising aquatic macro-invertebrates and meiofauna, as well as the microbial organisms they interact with, are likely to be widespread in the Chalk aquifer. They represent an important contribution to biodiversity, and may influence biogeochemical cycles and provide other ecosystem services.

  7. An evaluation of a bed instability index as an indicator of habitat quality in mountain streams of the northwestern United States

    USGS Publications Warehouse

    Kusnierz, Paul C.; Holbrook, Christopher; Feldman, David L.

    2015-01-01

    Managers of aquatic resources benefit from indices of habitat quality that are reproducible and easy to measure, demonstrate a link between habitat quality and biota health, and differ between human-impacted (i.e., managed) and reference (i.e., nonimpacted or minimally impacted) conditions. The instability index (ISI) is an easily measured index that describes the instability of a streambed by relating the tractive force of a stream at bankfull discharge to the median substrate size. Previous studies have linked ISI to biological condition but have been limited to comparisons of sites within a single stream or among a small number of streams. We tested ISI as an indicator of human impact to habitat and biota in mountain streams of the northwestern USA. Among 1428 sites in six northwestern states, ISI was correlated with other habitat measures (e.g., residual pool depth, percent fine sediment) and indices of biotic health (e.g., number of intolerant macroinvertebrate taxa, fine sediment biotic index) and differed between managed and reference sites across a range of stream types and ecoregions. While ISI could be useful in mountain streams throughout the world, this index may be of particular interest to aquatic resource managers in the northwestern USA where a large dataset, from which ISI can be calculated, exists.

  8. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2015-12-01

    Salmon are a valuable cultural and economic resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  9. Use of macroinvertebrates to identify cultivated wetlands in the Prairie Pothole Region

    USGS Publications Warehouse

    Euliss, Ned H.; Mushet, David M.; Johnson, Douglas H.

    2001-01-01

    We evaluated the use of macroinvertebrates as a potential tool to identify dry and intensively farmed temporary and seasonal wetlands in the Prairie Pothole Region. The techniques we designed and evaluated used the dried remains of invertebrates or their egg banks in soils as indicators of wetlands. For both the dried remains of invertebrates and their egg banks, we weighted each taxon according to its affinity for wetlands or uplands. Our study clearly demonstrated that shells, exoskeletons, head capsules, eggs, and other remains of macroinvertebrates can be used to identify wetlands, even when they are dry, intensively farmed, and difficult to identify as wetlands using standard criteria (i.e., hydrology, hydrophytic vegetation, and hydric soils). Although both dried remains and egg banks identified wetlands, the combination was more useful, especially for identifying drained or filled wetlands. We also evaluated the use of coarse taxonomic groupings to stimulate use of the technique by nonspecialists and obtained satisfactory results in most situations.

  10. Effects of spatial habitat heterogeneity on habitat selection and annual fecundity for a migratory forest songbird

    USGS Publications Warehouse

    Cornell, K.L.; Donovan, T.M.

    2010-01-01

    Understanding how spatial habitat patterns influence abundance and dynamics of animal populations is a primary goal in landscape ecology. We used an information-theoretic approach to investigate the association between habitat patterns at multiple spatial scales and demographic patterns for black-throated blue warblers (Dendroica caerulescens) at 20 study sites in west-central Vermont, USA from 2002 to 2005. Sites were characterized by: (1) territory-scale shrub density, (2) patch-scale shrub density occurring within 25 ha of territories, and (3) landscape-scale habitat patterns occurring within 5 km radius extents of territories. We considered multiple population parameters including abundance, age ratios, and annual fecundity. Territory-scale shrub density was most important for determining abundance and age ratios, but landscape-scale habitat structure strongly influenced reproductive output. Sites with higher territory-scale shrub density had higher abundance, and were more likely to be occupied by older, more experienced individuals compared to sites with lower shrub density. However, annual fecundity was higher on sites located in contiguously forested landscapes where shrub density was lower than the fragmented sites. Further, effects of habitat pattern at one spatial scale depended on habitat conditions at different scales. For example, abundance increased with increasing territory-scale shrub density, but this effect was much stronger in fragmented landscapes than in contiguously forested landscapes. These results suggest that habitat pattern at different spatial scales affect demographic parameters in different ways, and that effects of habitat patterns at one spatial scale depends on habitat conditions at other scales. ?? Springer Science+Business Media B.V. 2009.

  11. Habitat-specific foraging of prothonotary warblers: Deducing habitat quality

    USGS Publications Warehouse

    Lyons, J.E.

    2005-01-01

    Foraging behavior often reflects food availability in predictable ways. For example, in habitats where food availability is high, predators should attack prey more often and move more slowly than in habitats where food availability is low. To assess relative food availability and habitat quality, I studied the foraging behavior of breeding Prothonotary Warblers (Protonotaria citrea) in two forest habitat types, cypress-gum swamp forest and coastal-plain levee forest. I quantified foraging behavior with focal animal sampling and continuous recording during foraging bouts. I measured two aspects of foraging behavior: 1) prey attack rate (attacks per minute), using four attack maneuvers (glean, sally, hover, strike), and 2) foraging speed (movements per minute), using three types of movement (hop, short flight [???1 m], long flight [>1 m]). Warblers attacked prey more often in cypress-gum swamp forest than in coastal-plain levee forest. Foraging speed, however, was not different between habitats. I also measured foraging effort (% time spent foraging) and relative frequency of attack maneuvers employed in each habitat; neither of these variables was influenced by forest type. I conclude that Prothonotary Warblers encounter more prey when foraging in cypress-gum swamps than in coastal-plain levee forest, and that greater food availability results in higher density and greater reproductive success for birds breeding in cypress-gum swamp.

  12. Targeted gene enrichment and high-throughput sequencing for environmental biomonitoring: a case study using freshwater macroinvertebrates.

    PubMed

    Dowle, Eddy J; Pochon, Xavier; C Banks, Jonathan; Shearer, Karen; Wood, Susanna A

    2016-09-01

    Recent studies have advocated biomonitoring using DNA techniques. In this study, two high-throughput sequencing (HTS)-based methods were evaluated: amplicon metabarcoding of the cytochrome C oxidase subunit I (COI) mitochondrial gene and gene enrichment using MYbaits (targeting nine different genes including COI). The gene-enrichment method does not require PCR amplification and thus avoids biases associated with universal primers. Macroinvertebrate samples were collected from 12 New Zealand rivers. Macroinvertebrates were morphologically identified and enumerated, and their biomass determined. DNA was extracted from all macroinvertebrate samples and HTS undertaken using the illumina miseq platform. Macroinvertebrate communities were characterized from sequence data using either six genes (three of the original nine were not used) or just the COI gene in isolation. The gene-enrichment method (all genes) detected the highest number of taxa and obtained the strongest Spearman rank correlations between the number of sequence reads, abundance and biomass in 67% of the samples. Median detection rates across rare (<1% of the total abundance or biomass), moderately abundant (1-5%) and highly abundant (>5%) taxa were highest using the gene-enrichment method (all genes). Our data indicated primer biases occurred during amplicon metabarcoding with greater than 80% of sequence reads originating from one taxon in several samples. The accuracy and sensitivity of both HTS methods would be improved with more comprehensive reference sequence databases. The data from this study illustrate the challenges of using PCR amplification-based methods for biomonitoring and highlight the potential benefits of using approaches, such as gene enrichment, which circumvent the need for an initial PCR step. © 2015 John Wiley & Sons Ltd.

  13. Depth-related response of macroinvertebrates to the reversal of eutrophication in a Mediterranean lake: Implications for ecological assessment.

    PubMed

    Bazzanti, Marcello; Mastrantuono, Luciana; Pilotto, Francesca

    2017-02-01

    A better management of nutrient inflows into lakes has led to an improvement in their conditions (i.e. reversal of eutrophication) and the effects of this on macroinvertebrate communities that inhabit different lake-depth zones is largely unknown. This paper reports a comparison of macroinvertebrate communities living in the eulittoral, infralittoral and sublittoral/profundal zones of Lake Nemi (Central Italy) before and after its natural recovery from eutrophication following the deviation of domestic wastewater. The infralittoral zone responded more rapidly than the other two depth-zones to the improved ecological conditions, as shown by larger differences in community composition between the two periods. In the eulittoral sand, the combined effects of hydromorphological pressures and reversal of eutrophication hindered the biotic response. In the eulittoral and infralittoral zones, typical taxa of mesotrophic waters appeared or increased their abundances after the eutrophication reversal. Benthic invertebrate response was slower in the sublittoral/profundal zone due to deoxygenation that continued to prevail in the deepest area of the lake during summer. However, both tolerant and more sensitive taxa were collected there for the first time. After the reversal of eutrophication, the percentage of molluscan+large crustaceans increased in the infralittoral zone, whereas the oligochaete/chironomid ratio decreased in both sublittoral/profundal and infralittoral zones. Functional feeding metrics (percentages of filter-feeders, collector-gatherers, miners and scrapers/grazers) differently tracked the reversal of eutrophication in the three depth-zones probably according to the effects of the reduction of nutrients on food-web structure influencing macroinvertebrates. Biological Monitoring Working Party (BMWP) and the Average Score Per Taxon (ASPT) seemed to respond to eutrophication reversal only in the sublittoral/profundal zone, where deoxygenation plays a major role

  14. Macroinvertebrate community response to pulse exposure with the insecticide lambda-cyhalothrin using in-stream mesocosms.

    PubMed

    Heckmann, Lars-Henrik; Friberg, Nikolai

    2005-03-01

    Pesticides are constantly being applied to agricultural catchments, but little is known about their impact on aquatic biota during natural exposure. In the present study, the impact of the pyrethroid lambda-cyhalothrin was studied in an in-stream mesocosm setup. Twice during the summer of 2002, the natural macroinvertebrate community was exposed in situ to a 30-min pulse of lambda-cyhalothrin. Pyrethroid doses were released through a modified drip set with nominal concentrations of 0.10, 1.00, and 10.0 microg L(-1) during the first exposure and 0.05, 0.50, and 5.00 microg L(-1) in the second exposure. Before, during, and after exposure, drifting macroinvertebrates were caught in nets. Quantitative benthic samples were taken both before and on two occasions after exposure. Macroinvertebrate drift increased immediately after the pulse exposure, with total drift being significantly higher at all concentrations. Gammarus pulex, various Ephemeroptera, Leuctra sp., and Simuliidae were some of the taxa showing the most pronounced drift response. Structural change in the community was found only at 5.00 and 10.0 microg L(-1), and recovery occurred within approximately two weeks. The present study may be valuable in assessing extrapolations based on laboratory results as well as in evaluating pyrethroid impact on natural freshwater environments.

  15. RESEARCH IN SUPPORT OF CRITERIA FOR HABITAT ALTERATIONS

    EPA Science Inventory

    Many anthropogenic activities exert their influence on fish, shellfish and aquatic-dependent wildlife by affecting habitats. In fact, habitat alteration is one of the most important contributors to declines in ecological resources in North America. Habitat loss and degradation ar...

  16. The influence of fire on lepidopteran abundance and community structure in forested habitats of eastern Texas

    Treesearch

    D. Craig Rudolph; Charles A. Ely

    2000-01-01

    Transect surveys were used to examine the influence of fire on lepidopteran communities (Papilionoidea and Hesperioidea) in forested habitats in eastern Texas. Lepidopteran abundance was greater in pine forests where prescribed fire maintained an open mid- and understory compared to forests where fire had less impact on forest structure. Ahundance of nectar sources...

  17. Responses of aquatic organisms to metal pollution in a lowland river in Flanders: a comparison of diatoms and macroinvertebrates.

    PubMed

    De Jonge, Maarten; Van de Vijver, Bart; Blust, Ronny; Bervoets, Lieven

    2008-12-15

    The role of macroinvertebrates and diatoms as indicator for metal pollution was investigated by assessing both biota along a metal gradient in the Belgian river the Dommel. Macroinvertebrates and diatoms were sampled in summer and winter and physical-chemical characteristics of the water were measured at four different sample periods and related to sediment characteristics. Although metal concentrations, except cadmium, in the water nowhere exceeded water quality standards, high metal concentrations were measured in the sediment, indicating historical contamination of the Dommel. At the sites that were situated downstream of the pollution source, high levels of conductivity and chloride were measured in the water. Redundancy Analysis (RDA) indicated pH, phosphate and zinc as the significant environmental variables explaining each respectively 7.7%, 11.6% and 22.6% of the macroinvertebrate community composition. Two clusters could be separated, with Gammarus pulex, Leptocerus interruptus, Baetis rhodani and Cloeon dipterum associated with low zinc concentrations and Tubificidae, Asellus aquaticus, Erpobdella sp. and Chironomus thummi-plumosus associated with higher zinc concentrations. Ammonium (10.6%), conductivity (16.5%), chloride (11.4%) and zinc (5.9%) turned out to be significant variables explaining the diatom community structure. Based on physical-chemical differences and species composition, three different groups could be separated. With this Tabellaria flocculosa and Fragilaria capucina var. rumpens were associated with low metal concentrations, Gomphonema parvulum and Nitzschia palea with elevated concentrations and Eolimna minima and Sellaphora seminulum with high zinc concentrations. In conclusion, the diatom community best reflected the metal gradient. With regard to water quality indices, those based on macroinvertebrates best followed the metal pollution gradient and were most strongly correlated with physical-chemical variables of water and

  18. Final report (2002-2004): Benthic macroinvertebrate communities of reconstructed freshwater tidal wetlands in the Anacostia River, Washington, D.C

    USGS Publications Warehouse

    Brittingham, K.D.; Hammerschlag, R.S.

    2006-01-01

    Considerable work has been conducted on the benthic communities of inland aquatic systems, but there remains a paucity of effort on freshwater tidal wetlands. This study characterized the benthic macroinvertebrate communities of recently reconstructed urban freshwater tidal wetlands along the Anacostia River in Washington, D.C. The focus of the study was on the two main areas of Kingman Marsh, which were reconstructed by the U.S. Army Corps of Engineers in 2000 using Anacostia dredge material. Populations from this 'new' marsh were compared to those of similarly reconstructed Kenilworth Marsh (1993) just one half mile upstream, the relic reference Dueling Creek Marsh in the upper Anacostia estuary and the outside reference Patuxent freshwater tidal marsh in an adjacent watershed. Benthic macro invertebrate organisms were collected using selected techniques for evaluation including the Ekman bottom grab sampler, sediment corer, D-net and Hester-Dendy sampler. Samples were collected at least seasonally from tidal channels, tidal mudflats, three vegetation/sediment zones (low, middle and high marsh), and pools over a 3-year period (late 2001-2004). The macroinvertebrate communities present at the marsh sites proved to be good indicators of disturbance and stress (Kingman Marsh), pollution, urban vs. rural location (Kenilworth and Patuxent), and similarities between reconstructed and remnant wetlands (Kenilworth and Dueling Creek). Macroinvertebrate density was significantly greater at Kingman Marsh than Kenilworth Marsh due to more numerous chironomids and oligochaetes. This may reflect an increase in unvegetated sediments at Kingman (even at elevations above natural mudflat) due to grazing pressure from over-abundant resident Canada geese. Unvegetated sediments yielded greater macroinvertebrate abundance but lower richness than vegetated marsh sites. Data collected from this study provides information on the extent that benthic macroinvertebrate communities can serve

  19. COASTAL SUBMERGED VEGETATION: AQUATIC HABITAT RESEARCH

    EPA Science Inventory

    Aquatic vegetation is one of the most widespread and important types of aquatic habitat, in part because of the exceptional productivity of the plants. Aquatic vegetation also strongly influences local physical and chemical habitat conditions of significance to fish and shellfis...

  20. Ecosystem engineering by invasive exotic beavers reduces in-stream diversity and enhances ecosystem function in Cape Horn, Chile.

    PubMed

    Anderson, Christopher B; Rosemond, Amy D

    2007-11-01

    Species invasions are of global significance, but predicting their impacts can be difficult. Introduced ecosystem engineers, however, provide an opportunity to test the underlying mechanisms that may be common to all invasive engineers and link relationships between changes in diversity and ecosystem function, thereby providing explanatory power for observed ecological patterns. Here we test specific predictions for an invasive ecosystem engineer by quantifying the impacts of habitat and resource modifications caused by North American beavers (Castor canadensis) on aquatic macroinvertebrate community structure and stream ecosystem function in the Cape Horn Biosphere Reserve, Chile. We compared responses to beavers in three habitat types: (1) forested (unimpacted) stream reaches, (2) beaver ponds, and (3) sites immediately downstream of beaver dams in four streams. We found that beaver engineering in ponds created taxonomically simplified, but more productive, benthic macroinvertebrate assemblages. Specifically, macroinvertebrate richness, diversity and number of functional feeding groups were reduced by half, while abundance, biomass and secondary production increased three- to fivefold in beaver ponds compared to forested sites. Reaches downstream of beaver ponds were very similar to natural forested sections. Beaver invasion effects on both community and ecosystem parameters occurred predominantly via increased retention of fine particulate organic matter, which was associated with reduced macroinvertebrate richness and diversity (via homogenization of benthic microhabitat) and increased macroinvertebrate biomass and production (via greater food availability). Beaver modifications to macroinvertebrate community structure were largely confined to ponds, but increased benthic production in beaver-modified habitats adds to energy retention and flow for the entire stream ecosystem. Furthermore, the effects of beavers on taxa richness (negative) and measures of

  1. Assessing the status of sediment toxicity and macroinvertebrate communities in the Eighteenmile Creek Area of Concern, New York

    USGS Publications Warehouse

    George, Scott D.; Duffy, Brian T.; Baldigo, Barry P.

    2017-01-01

    In 1972, the governments of Canada and the United States committed to restoring the physical, chemical, and biological integrity of the Laurentian Great Lakes under the Great Lakes Water Quality Agreement. Through this framework, the downstream-most section of Eighteenmile Creek, a tributary to the south shore of Lake Ontario in New York, was designated as an Area of Concern (AOC) because water quality and bed sediments were contaminated by past industrial and municipal discharges, waste disposal, and pesticide usage. Five beneficial use impairments (BUIs) have been identified in the AOC including the degradation of the “benthos”, or the benthic macroinvertebrate community. This investigation used sediment toxicity testing and macroinvertebrate community assessments to determine if the toxicity of bed sediments in the AOC differed from that of an unimpacted reference stream. Results from 10-day toxicity tests indicated that survival and growth of the dipteran Chironomus dilutus and the amphipod Hyalella azteca did not differ significantly between sediments from the AOC and reference area. Analyses of benthic macroinvertebrate community integrity and structure also indicated that macroinvertebrate communities, while impacted across most sites on both streams, were generally similar between the AOC and reference area. Despite these findings, the upstream-most AOC site consistently scored poorly in all analyses, which suggests that localized sediment toxicity may exist in the AOC, even if large scale differences between the AOC and a comparable reference stream are minimal.

  2. Proof of concept for the use of macroinvertebrates as indicators of polychlorinated biphenyls (PCB) contamination in Lake Hartwell.

    PubMed

    Lazorchak, James M; Griffith, Michael B; Mills, Marc; Schubauer-Berigan, Joseph; McCormick, Frank; Brenner, Richard; Zeller, Craig

    2015-06-01

    The US Environmental Protection Agency (USEPA) develops methods and tools for evaluating risk management strategies for sediments contaminated with polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and other legacy pollutants. Monitored natural recovery is a risk management alternative that relies on existing physical, chemical, and biological processes to contain, destroy, and/or reduce the bioavailability or toxicity of in-place contaminants. These naturally occurring processes are monitored to ensure that management and recovery are progressing as expected. One approach frequently used to evaluate the recovery of contaminated sediments and associated biota is the assessment of contaminant tissue levels, or body burden concentrations, in top trophic level fish. In the present study, aquatic invertebrates were examined as an indicator of recent exposure to PCBs. The approach aimed to determine whether invertebrates collected using artificial substrates (i.e., Hester-Dendy samplers) could be used to discriminate among contaminated sites through the analyses of PCBs in whole homogenates of macroinvertebrates. Macroinvertebrates were sorted, preserved, and analyzed for total PCBs (t-PCBs), by summing 107 PCB congeners. Macroinvertebrate body burden concentrations showed similar trends to sediment t-PCB concentrations at the sites sampled. The results indicate that macroinvertebrates can be used to assess sediment contamination among sites that have different PCB contamination levels. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  3. Long-Term Impacts on Macroinvertebrates Downstream of Reclaimed Mountaintop Mining Valley Fills in Central Appalachia

    NASA Astrophysics Data System (ADS)

    Pond, Gregory J.; Passmore, Margaret E.; Pointon, Nancy D.; Felbinger, John K.; Walker, Craig A.; Krock, Kelly J. G.; Fulton, Jennifer B.; Nash, Whitney L.

    2014-10-01

    Recent studies have documented adverse effects to biological communities downstream of mountaintop coal mining and valley fills (VF), but few data exist on the longevity of these impacts. We sampled 15 headwater streams with VFs reclaimed 11-33 years prior to 2011 and sampled seven local reference sites that had no VFs. We collected chemical, habitat, and benthic macroinvertebrate data in April 2011; additional chemical samples were collected in September 2011. To assess ecological condition, we compared VF and reference abiotic and biotic data using: (1) ordination to detect multivariate differences, (2) benthic indices (a multimetric index and an observed/expected predictive model) calibrated to state reference conditions to detect impairment, and (3) correlation and regression analysis to detect relationships between biotic and abiotic data. Although VF sites had good instream habitat, nearly 90 % of these streams exhibited biological impairment. VF sites with higher index scores were co-located near unaffected tributaries; we suggest that these tributaries were sources of sensitive taxa as drifting colonists. There were clear losses of expected taxa across most VF sites and two functional feeding groups (% scrapers and %shredders) were significantly altered. Percent VF and forested area were related to biological quality but varied more than individual ions and specific conductance. Within the subset of VF sites, other descriptors (e.g., VF age, site distance from VF, the presence of impoundments, % forest) had no detectable relationships with biological condition. Although these VFs were constructed pursuant to permits and regulatory programs that have as their stated goals that (1) mined land be reclaimed and restored to its original use or a use of higher value, and (2) mining does not cause or contribute to violations of water quality standards, we found sustained ecological damage in headwaters streams draining VFs long after reclamation was completed.

  4. Benthic macroinvertebrate community structural and functional group response to cooling water discharge in the Savannah River and a coastal plain tributary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poff, N.L.; Matthews, R.A.

    1984-01-01

    Benthic macroinvertebrate community structure and functional groups on leaf detritus in a thermal, post-thermal and an undisturbed stream, and in the Savannah River immediately downstream from each stream mouth, were compared over a 7 wk (48d) period from December 1982 to February 1983. Ambient temperatures n the post-thermal and undisturbed streams ranged from 4 to 8 and 4 to 11/sup 0/C, respectively, and from 7 to 12/sup 0/C in the Savannah River. Temperatures in the thermal stream fluctuated irregularly between 7 to 31/sup 0/C and in the river below this stream mouth between 7 to 22/sup 0/C. A total ofmore » 13,993 macroinvertebrates representing at least 51 families and 84 genera was collected. Numbers of organisms and taxa were depressed at the thermal stream site, whereas numbers of both organisms and taxa increased at the river site receiving thermal influence. Chironomids of the subfamily Orthocladiinae comprised 46 to 60% of the fauna at all sites except in the thermal stream, where they comprised 5%. Physa (Gastropoda), Ablabesmyia (Tanypodinae) and Tanytarsus (Chironominae) each contributed over 20% of the fauna at the thermal stream. Cheumatopsyche (Trichoptera) represented 12 to 13% of the riverine fauna at the ambient sites, but 25% at the thermally-perturbed site. Collectors (mostly gatherers) contributed 51 to 75% at all sites except the thermal stream where scrapers dominated with 39%. Filterer relative abundance increased from 16 to 19% at the ambient river sites to 29% at the thermally-perturbed river site, suggesting that suspended carbon transport from the thermal stream occurred and subsidized the macroinvertebrate community in the Savannah River. 48 references, 3 figures, 2 tables.« less

  5. The influence of landscape's dynamics on the Oriental Migratory Locust habitat change based on the time-series satellite data.

    PubMed

    Shi, Yue; Huang, Wenjiang; Dong, Yingying; Peng, Dailiang; Zheng, Qiong; Yang, Puyun

    2018-07-15

    Landscape structure and vegetation coverage are important habitat conditions for Oriental Migratory Locust infestation in East Asia. Characterizing the landscape's dynamics of locust habitat is meaningful for reducing the occupation of locusts and limiting potential risks. To better understand causes and consequences of landscape pattern and locust habitat, it is not enough to simply detect locust habitat of each year. Rather, landcover transitions causing the change of locust habitat area must also be explored. This paper proposes an integrated implement to quantify the influence of landscape's dynamics on locust habitat changes based on three tenets: 1) temporal context can provide insight into the land cover transitions, 2) the detection of locust habitat area is operated on patches rather than pixels with full consideration of landscape's ecology, 3) the modeling must be flexible and unsupervised. These ideas have not been previously explored in demonstrating the possible role of changes in landscape characteristics to drive locust habitat transitions. The case study focuses on the Dagang district, a hot spot of locust infestation of China, from 2000 to 2015. Firstly, the seasonal characteristics of typical landcovers in NDVI, TVI, and LST were extracted from fused Landsat-MODIS surface reflectance imagery. Subsequently, a landscape membership-based random forest (LMRF) algorithm was proposed to quantify the landscape structure and hydrological regimen of locust habitat at the patch level. Finally, we investigated the correlations between the specific landcover transitions and habitat changes. Within the 16 years observations, our findings suggest that the sparse reeds and weeds in the vicinity of beach land, riverbanks, and wetlands are the dominant landscape structure associated with locust habitat change (R 2  > 0.68), and the fluctuation in the water level is a key ecological factor to facilitate the locust habitat change (R 2  > 0.61). These

  6. Hydrologic Reconnaissance of Wetland-Bird Habitat in Areas With Potential to be Influenced by Water Produced During Coalbed Methane Production in the Northern Powder River Basin, MT

    NASA Astrophysics Data System (ADS)

    Custer, S. G.; Sojda, R. S.

    2003-12-01

    The removal and disposal of ground water during production of coalbed methane has the potential to influence wetland-bird habitat in the Powder River Basin. Office analysis of wetland areas was conducted on National Wetland Inventory maps and Digital Orthophoto Quadrangles along the Tongue and Powder rivers in the northern Powder River Basin, Montana. Selected sites were palustrine emergent, large enough to be important to waterbirds, part of a wetland complex, not dependent on artificial water regimes, in an area with high potential for coalbed methane production, and judged to be accessible in the field. Several promising wetland areas were selected for field examination. Field investigation suggests that the most promising wetlands in oxbow cutoffs would not be productive sites. Only facultative not obligate wetland plants were observed, the topographic position of the wetlands suggested that flooding would be infrequent, and the stream flow would likely dilute the effect of produced water adjacent to these rivers. Fortuitously wetland-bird habitat not recognized on the National Wetland Inventory maps and Digital Orthophoto Quadrangles was observed along Rosebud Creek during the field reconnaissance. This habitat is not continuous. The lack of continuity is reflected in the soil surveys as well as in the reconnaissance field nvestigation. The Alluvial Land soil series corresponds to observed wetland areas but the extent of the wetland-bird habitat varies substantially within the soil unit. When the Korchea series is present, extensive wetland-bird habitat is not observed. Field and aerial photo analysis suggests that the presence of the habitat may be controlled by beaver, and/or by stratigraphic and structural elements that influence stream erosion. Human modification of the stream for irrigation purposes may impact habitat continuity in some areas. The "Rosebud" type wetland-bird habitat may have the potential to be influenced by coalbed methane water

  7. Spring-fen habitat islands in a warming climate: Partitioning the effects of mesoclimate air and water temperature on aquatic and terrestrial biota.

    PubMed

    Horsák, Michal; Polášková, Vendula; Zhai, Marie; Bojková, Jindřiška; Syrovátka, Vít; Šorfová, Vanda; Schenková, Jana; Polášek, Marek; Peterka, Tomáš; Hájek, Michal

    2018-09-01

    Climate warming and associated environmental changes lead to compositional shifts and local extinctions in various ecosystems. Species closely associated with rare island-like habitats such as groundwater-dependent spring fens can be severely threatened by these changes due to a limited possibility to disperse. It is, however, largely unknown to what extent mesoclimate affects species composition in spring fens, where microclimate is buffered by groundwater supply. We assembled an original landscape-scale dataset on species composition of the most waterlogged parts of isolated temperate spring fens in the Western Carpathian Mountains along with continuously measured water temperature and hydrological, hydrochemical, and climatic conditions. We explored a set of hypotheses about the effects of mesoclimate air and local spring-water temperature on compositional variation of aquatic (macroinvertebrates), semi-terrestrial (plants) and terrestrial (land snails) components of spring-fen biota, categorized as habitat specialists and other species (i.e. matrix-derived). Water temperature did not show a high level of correlation with mesoclimate. For all components, fractions of compositional variation constrained to temperature were statistically significant and higher for habitat specialists than for other species. The importance of air temperature at the expense of water temperature and its fluctuation clearly increased with terrestriality, i.e. from aquatic macroinvertebrates via vegetation (bryophytes and vascular plants) to land snails, with January air temperature being the most important factor for land snails and plant specialists. Some calcareous-fen specialists with a clear distribution centre in temperate Europe showed a strong affinity to climatically cold sites in our study area and may hence be considered as threatened by climate warming. We conclude that prediction models solely based on air temperature may provide biased estimates of future changes in

  8. Global Scale Variation in the Salinity Sensitivity of Riverine Macroinvertebrates: Eastern Australia, France, Israel and South Africa

    PubMed Central

    Kefford, Ben J.; Hickey, Graeme L.; Gasith, Avital; Ben-David, Elad; Dunlop, Jason E.; Palmer, Carolyn G.; Allan, Kaylene; Choy, Satish C.; Piscart, Christophe

    2012-01-01

    Salinity is a key abiotic property of inland waters; it has a major influence on biotic communities and is affected by many natural and anthropogenic processes. Salinity of inland waters tends to increase with aridity, and biota of inland waters may have evolved greater salt tolerance in more arid regions. Here we compare the sensitivity of stream macroinvertebrate species to salinity from a relatively wet region in France (Lorraine and Brittany) to that in three relatively arid regions eastern Australia (Victoria, Queensland and Tasmania), South Africa (south-east of the Eastern Cape Province) and Israel using the identical experimental method in all locations. The species whose salinity tolerance was tested, were somewhat more salt tolerant in eastern Australia and South Africa than France, with those in Israel being intermediate. However, by far the greatest source of variation in species sensitivity was between taxonomic groups (Order and Class) and not between the regions. We used a Bayesian statistical model to estimate the species sensitivity distributions (SSDs) for salinity in eastern Australia and France adjusting for the assemblages of species in these regions. The assemblage in France was slightly more salinity sensitive than that in eastern Australia. We therefore suggest that regional salinity sensitivity is therefore likely to depend most on the taxonomic composition of respective macroinvertebrate assemblages. On this basis it would be possible to screen rivers globally for risk from salinisation. PMID:22567097

  9. Influence of forest and rangeland management on anadromous fish habitat in Western North America: timber harvest.

    Treesearch

    T.W. Chamberlin

    1982-01-01

    The water and land-system processes through which timber harvesting affects anadromous fish habitat in western North America are discussed. The effects of timber harvesting on the water balance that regulates streamflow are evaluated, as are direct influences of harvesting on slope stability, erosion, and the introduction of debris in to stream channels. The effects of...

  10. Water or sediment? Partitioning the role of water column and sediment chemistry as drivers of macroinvertebrate communities in an austral South African stream.

    PubMed

    Dalu, Tatenda; Wasserman, Ryan J; Tonkin, Jonathan D; Mwedzi, Tongayi; Magoro, Mandla L; Weyl, Olaf L F

    2017-12-31

    Water pollution is a critical management issue, with many rivers and streams draining urban areas being polluted by the disposal of untreated solid waste and wastewater discharge, storm water and agricultural runoff. This has implications for biodiversity, and many rivers in the developing world are now considered compromised. We investigated benthic macroinvertebrate community structure and composition in relation to physico-chemical conditions of the water column and sediments. The study was conducted in an Austral catchment subject to both urban and agricultural pollutants in two different seasons. We assessed whether sediment characteristics were more important drivers of macroinvertebrate community composition than water column characteristics. We expected clear differences in macroinvertebrate community composition and in the associated community metrics due to distinct flow conditions between the two seasons. A combination of multivariate analyses (canonical correspondence analysis (CCA)) and biological indicator analysis were used to examine these patterns. Chironomidae was the most abundant family (>60%) in the upper mainstem river and stream sites. Stream sites were positively associated with CCA axis 2, being characterised by high turbidity and lower pH, salinity, phosphate concentration, channel width and canopy cover. Canopy cover, channel width, substrate embeddedness, phosphate concentration, pH, salinity and turbidity all had a significant effect on macroinvertebrate community composition. Using CCA variation partitioning, water quality was, however, a better predictor of benthic macroinvertebrate composition than sediment chemical conditions. Furthermore, our results suggest that seasonality had little effect on structuring benthic macroinvertebrate communities in this south-eastern zone of South Africa, despite clear changes in sediment chemistry. This likely reflects the relative lack of major variability in water chemistry compared to sediment

  11. Ghosts of habitats past: Contribution of landscape change to current habitats used by shrubland birds

    USGS Publications Warehouse

    Knick, Steven T.; Rotenberry, J.T.

    2000-01-01

    Models of habitat associations for species often are developed with an implicit assumption that habitats are static, even though recent disturbance may have altered the landscape. We tested our hypothesis that trajectory and magnitude of habitat change influenced observed distribution and abundance of passerine birds breeding in shrubsteppe habitats of southwestern Idaho. Birds in this region live in dynamic landscapes undergoing predominantly large-scale, radical, and unidirectional habitat change because wildfires are converting shrublands into expanses of exotic annual grasslands. We used data from field surveys and satellite image analyses in a series of redundancy analyses to partition variances and to determine the relative contribution of habitat change and current landscapes. Although current habitats explained a greater proportion of total variation, changes in habitat and measures of habitat richness and texture also contributed to variation in abundance of Horned Larks (Eremophila alpestris), Brewera??s Sparrows (Spizella breweri), and Sage Sparrows (Amphispiza belli). Abundance of birds was insensitive to scale for nonspatial habitat variables. In contrast, spatial measures of habitat richness and texture in the landscape were significant only at large spatial scales. Abundance of Horned Larks, Western Meadowlarks (Sturnella neglecta), and Brewera??s Sparrows, but not Sage Thrashers (Oreoscoptes montanus) or Sage Sparrows, was positively correlated with changes toward stable habitats. Because dominant habitat changes were toward less stable conditions, regional declines of those birds in shrubsteppe habitats reflect current landscapes as well as the history, magnitude, and trajectory of habitat change.

  12. Staying cool in a changing landscape: the influence of maximum daily ambient temperature on grizzly bear habitat selection.

    PubMed

    Pigeon, Karine E; Cardinal, Etienne; Stenhouse, Gordon B; Côté, Steeve D

    2016-08-01

    To fulfill their needs, animals are constantly making trade-offs among limiting factors. Although there is growing evidence about the impact of ambient temperature on habitat selection in mammals, the role of environmental conditions and thermoregulation on apex predators is poorly understood. Our objective was to investigate the influence of ambient temperature on habitat selection patterns of grizzly bears in the managed landscape of Alberta, Canada. Grizzly bear habitat selection followed a daily and seasonal pattern that was influenced by ambient temperature, with adult males showing stronger responses than females to warm temperatures. Cutblocks aged 0-20 years provided an abundance of forage but were on average 6 °C warmer than mature conifer stands and 21- to 40-year-old cutblocks. When ambient temperatures increased, the relative change (odds ratio) in the probability of selection for 0- to 20-year-old cutblocks decreased during the hottest part of the day and increased during cooler periods, especially for males. Concurrently, the probability of selection for 21- to 40-year-old cutblocks increased on warmer days. Following plant phenology, the odds of selecting 0- to 20-year-old cutblocks also increased from early to late summer while the odds of selecting 21- to 40-year-old cutblocks decreased. Our results demonstrate that ambient temperatures, and therefore thermal requirements, play a significant role in habitat selection patterns and behaviour of grizzly bears. In a changing climate, large mammals may increasingly need to adjust spatial and temporal selection patterns in response to thermal constraints.

  13. Species richness at the guild level: effects of species pool and local environmental conditions on stream macroinvertebrate communities.

    PubMed

    Grönroos, Mira; Heino, Jani

    2012-05-01

    1. A fundamental question in ecology is which factors determine species richness. Here, we studied the relative importance of regional species pool and local environmental characteristics in determining local species richness (LSR). Typically, this question has been studied using whole communities or a certain taxonomic group, although including species with widely varying biological traits in the same analysis may hinder the detection of ecologically meaningful patterns. 2. We studied the question above for whole stream macroinvertebrate community and within functional feeding guilds. We defined the local scale as a riffle site and the regional scale (i.e. representing the regional species pool) as a stream. Such intermediate-sized regional scale is rarely studied in this context. 3. We sampled altogether 100 sites, ten riffles (local scale) in each of ten streams (regional scale). We used the local-regional richness regression plots to study the overall effect of regional species pool on LSR. Variation partitioning was used to determine the relative importance of regional species pool and local environmental conditions for species richness. 4. The local-regional richness relationship was mainly linear, suggesting strong species pool effects. Only one guild showed some signs of curvilinearity. However, variation partitioning showed that local environmental characteristics accounted for a larger fraction of variance in LSR than regional species pool. Also, the relative importance of the fractions differed between the whole community and guilds, as well as among guilds. 5. This study indicates that the importance of the local and regional processes may vary depending on feeding guild and trophic level. We conclude that both the size of the regional species pool and local habitat characteristics are important in determining LSR of stream macroinvertebrates. Our results are in agreement with recent large-scale studies conducted in highly different study

  14. Weak Effects of Urbanization on Macroinvertebrate Assemblages in Mid-continent, USA, Great Rivers

    EPA Science Inventory

    Effects of urbanization on rivers are not well studied in the US, especially for our largest rivers. We compared the macroinvertebrate assemblages on snags and in the littoral benthos between urban and non-urban reaches of the Upper Mississippi and Lower Missouri Rivers. We used ...

  15. Oceanographic connectivity between right whale critical habitats in Canada and its influence on whale abundance indices during 1987-2009

    NASA Astrophysics Data System (ADS)

    Davies, Kimberley T. A.; Vanderlaan, Angelia S. M.; Smedbol, R. Kent; Taggart, Christopher T.

    2015-10-01

    The Roseway and Grand Manan basins on the Canadian Atlantic coast are neighboring late-summer critical feeding habitats for endangered North Atlantic right whales. Although in late summer these habitats regularly contain thick aggregations of right whale food - the copepod Calanus spp. - right whales periodically abandon one or both habitats in the same year. The causes of abandonments, their relationship to food supply, and the locations of whales during abandonment periods are unclear. The goals of this study were to explain variation in right whale abundance indices from a habitat perspective, and to determine whether or not oceanographic variation in the habitats influences occupancy. Four indices of whale abundance and habitat occupancy, including sightings per unit effort (SPUE), photographic sightings of known individuals, population size and habitat transition probabilities, were analyzed in relation to unique datasets of Calanus concentration and water mass characteristics in each basin over the period 1987 through 2009. Calanus concentration, water mass sources and various hydrographic properties each varied coherently between basins. Calanus concentration showed an increasing trend over time in each habitat, although a short-lived reduction in Calanus may have caused right whales to abandon Roseway Basin during the mid-1990s. Food supply explained variation in right whale sightings and population size in Roseway Basin, but not in Grand Manan Basin, suggesting that the Grand Manan Basin has important habitat characteristics in addition to food supply. Changes in the distribution of whale abundance indices during years when oceanographic conditions were associated with reduced food supply in the Scotia-Fundy region suggest that other suitable feeding habitats may not have existed during such years and resulted in negative effects on whale health and reproduction.

  16. Organic contaminants in western pond turtles in remote habitat in California.

    PubMed

    Meyer, Erik; Eskew, Evan A; Chibwe, Leah; Schrlau, Jill; Massey Simonich, Staci L; Todd, Brian D

    2016-07-01

    Remote aquatic ecosystems are exposed to an assortment of semivolatile organic compounds (SOCs) originating from current and historic uses, of local and global origin. Here, a representative suite of 57 current- and historic-use pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons were surveyed in the plasma of the western pond turtle (Emys marmorata) and their potential prey items and habitat. California study sites included Sequoia National Park, Whiskeytown National Recreation Area, and Six Rivers National Forest. Each was downstream of undeveloped watersheds and varied in distance from agricultural and urban pollution sources. SOCs were detected frequently in all sites with more found in turtle plasma and aquatic macroinvertebrates in the two sites closest to agricultural and urban sources. Summed PCBs were highest in Whiskeytown National Recreation Area turtle plasma (mean; 1.56 ng/g ww) compared to plasma from Sequoia National Park (0.16 ng/g ww; p = 0.002) and Six Rivers National Forest (0.07 ng/g ww; p = 0.001). While no current-use pesticides were detected in turtle plasma at any site, both current- and historic-use pesticides were found prominently in sediment and macroinvertebrates at the Sequoia National Park site, which is immediately downwind of Central Valley agriculture. SOC classes associated with urban and industrial pollution were found more often and at higher concentrations at Whiskeytown National Recreation Area. These findings demonstrate a range of SOC exposure in a turtle species with current and proposed conservation status and shed additional light on the fate of environmental contaminants in remote watersheds. Published by Elsevier Ltd.

  17. Effects of restoration burns on macroinvertebrates in southern Appalachian pine-oak forests

    Treesearch

    Jason P. Love; James M. Vose; Katherine J. Elliott

    2007-01-01

    Cover board arrays were used to measure the relative abundance of macroinvertebrates and terrestrial salamanders on prescribed burn and control sites in xeric southern Appalachians of northern Georgia and southeastern Tennessee pine-oak forests. Three microsite variables were measured at each cover board: cover board moisture level, temperature under the cover board,...

  18. Assessment of river quality in a subtropical Austral river system: a combined approach using benthic diatoms and macroinvertebrates

    NASA Astrophysics Data System (ADS)

    Nhiwatiwa, Tamuka; Dalu, Tatenda; Sithole, Tatenda

    2017-12-01

    River systems constitute areas of high human population densities owing to their favourable conditions for agriculture, water supply and transportation network. Despite human dependence on river systems, anthropogenic activities severely degrade water quality. The main aim of this study was to assess the river health of Ngamo River using diatom and macroinvertebrate community structure based on multivariate analyses and community metrics. Ammonia, pH, salinity, total phosphorus and temperature were found to be significantly different among the study seasons. The diatom and macroinvertebrate taxa richness increased downstream suggesting an improvement in water as we moved away from the pollution point sources. Canonical correspondence analyses identified nutrients (total nitrogen and reactive phosphorus) as important variables structuring diatom and macroinvertebrate community. The community metrics and diversity indices for both bioindicators highlighted that the water quality of the river system was very poor. These findings indicate that both methods can be used for water quality assessments, e.g. sewage and agricultural pollution, and they show high potential for use during water quality monitoring programmes in other regions.

  19. The Areal Extent of Brown Shrimp Habitat Suitability in Mobile Bay, Alabama USA: Targeting Vegetated Habitat Restoration

    EPA Science Inventory

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the U.S. Protection and management of these vital GOM habitats are critical t...

  20. Stable isotopes of algae and macroinvertebrates in streams respond to watershed urbanization, inform management goals, and indicate food web relationships.

    PubMed

    Smucker, Nathan J; Kuhn, Anne; Cruz-Quinones, Carlos J; Serbst, Jonathan R; Lake, James L

    2018-01-07

    Watershed development and anthropogenic sources of nitrogen are among leading causes of negative impacts to aquatic ecosystems around the world. The δ 15 N of aquatic biota can be used as indicators of anthropogenic sources of nitrogen enriched in 15 N, but this mostly has been done at small spatial extents or to document effects of point sources. In this study, we sampled 77 sites along a forest to urban land cover gradient to examine food webs and the use of δ 15 N of periphyton and macroinvertebrate functional feeding groups (FFGs) as indicators of watershed development and nitrogen effects on streams. Functional feeding groups had low δ 15 N variability among taxa within sites. Mean absolute differences between individual taxa and their respective site FFG means were < 0.55‰, whereas site means of δ 15 N of FFGs had ranges of approximately 7-12‰ among sites. The δ 15 N of periphyton and macroinvertebrate FFGs distinguished least disturbed streams from those with greater watershed urbanization, and they were strongly correlated with increasing nitrogen concentrations and watershed impervious cover. Nonmetric multidimensional scaling, using δ 15 N of taxa, showed that changes in macroinvertebrate assemblages as a whole were associated with forest-to-urban and increasing nitrogen gradients. Assuming an average +3.4‰ per trophic level increase, δ 15 N of biota indicated that detrital pathways likely were important to food web structure, even in streams with highly developed watersheds. We used periphyton and macroinvertebrate FFG δ 15 N to identify possible management goals that can inform decisions affecting nutrients and watershed land use. Overall, the δ 15 N of periphyton and macroinvertebrates were strong indicators of watershed urban development effects on stream ecosystems, and thus, also could make them useful for quantifying the effectiveness of nitrogen, stream, and watershed management efforts.