Sample records for habitat loss protected

  1. Lowland tapir distribution and habitat loss in South America.

    PubMed

    Cordeiro, Jose Luis Passos; Fragoso, José M V; Crawshaw, Danielle; Oliveira, Luiz Flamarion B

    2016-01-01

    The development of species distribution models (SDMs) can help conservation efforts by generating potential distributions and identifying areas of high environmental suitability for protection. Our study presents a distribution and habitat map for lowland tapir in South America. We also describe the potential habitat suitability of various geographical regions and habitat loss, inside and outside of protected areas network. Two different SDM approaches, MAXENT and ENFA, produced relative different Habitat Suitability Maps for the lowland tapir. While MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient (when compared to the results by ENFA) at identifying the gradient of habitat suitability. MAXENT is a more multifaceted technique that establishes more complex relationships between dependent and independent variables. Our results demonstrate that for at least one species, the lowland tapir, the use of a simple consensual approach (average of ENFA and MAXENT models outputs) better reflected its current distribution patterns. The Brazilian ecoregions have the highest habitat loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19%) of the total area lost. The Amazon region contains the largest area under protection, and the most extensive remaining habitat for the tapir, but also showed high levels of habitat loss outside protected areas, which increases the importance of support for proper management.

  2. Lowland tapir distribution and habitat loss in South America

    PubMed Central

    Fragoso, José M.V.; Crawshaw, Danielle; Oliveira, Luiz Flamarion B.

    2016-01-01

    The development of species distribution models (SDMs) can help conservation efforts by generating potential distributions and identifying areas of high environmental suitability for protection. Our study presents a distribution and habitat map for lowland tapir in South America. We also describe the potential habitat suitability of various geographical regions and habitat loss, inside and outside of protected areas network. Two different SDM approaches, MAXENT and ENFA, produced relative different Habitat Suitability Maps for the lowland tapir. While MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient (when compared to the results by ENFA) at identifying the gradient of habitat suitability. MAXENT is a more multifaceted technique that establishes more complex relationships between dependent and independent variables. Our results demonstrate that for at least one species, the lowland tapir, the use of a simple consensual approach (average of ENFA and MAXENT models outputs) better reflected its current distribution patterns. The Brazilian ecoregions have the highest habitat loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19%) of the total area lost. The Amazon region contains the largest area under protection, and the most extensive remaining habitat for the tapir, but also showed high levels of habitat loss outside protected areas, which increases the importance of support for proper management. PMID:27672509

  3. Wanaket Wildlife Area Management Plan : Five-Year Plan for Protecting, Enhancing, and Mitigating Wildlife Habitat Losses for the McNary Hydroelectric Facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to continue to protect, enhance, and mitigate wildlife and wildlife habitat at the Wanaket Wildlife Area. The Wanaket Wildlife Area was approved as a Columbia River Basin Wildlife Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1993. This management plan will provide an update of the original management plan approved by BPA in 1995. Wanaket will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the McNary Hydroelectric facility on the Columbia River. By funding themore » enhancement and operation and maintenance of the Wanaket Wildlife Area, BPA will receive credit towards their mitigation debt. The purpose of the Wanaket Wildlife Area management plan update is to provide programmatic and site-specific standards and guidelines on how the Wanaket Wildlife Area will be managed over the next five years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management. Specific project objectives are related to protection and enhancement of wildlife habitats and are expressed in terms of habitat units (HU's). Habitat units were developed by the US Fish and Wildlife Service's Habitat Evaluation Procedures (HEP), and are designed to track habitat gains and/or losses associated with mitigation and/or development projects. Habitat Units for a given species are a product of habitat quantity (expressed in acres) and habitat quality estimates. Habitat quality estimates are developed using Habitat Suitability Indices (HSI). These indices are based on quantifiable habitat features such as

  4. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    PubMed

    Markle, Chantel E; Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  5. Northwest Montana Wildlife Mitigation Habitat Protection : Advance Design : Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Marilyn A.

    1993-02-01

    This report summarizes the habitat protection process developed to mitigate for certain wildlife and wildlife habitat losses due to construction of Hungry Horse and Libby dams in northwestern Montana.

  6. Loss and modification of habitat

    USGS Publications Warehouse

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.; Wilkinson, John W.; Heatwole, Harold

    2012-01-01

    water balance (Thorson and Svihla 1943; Brattstrom 1963; Tracy 1976). Hence, individuals require and seek specific microhabitats that maintain their preferred body temperature while at the same time reducing water loss or allowing individuals to re-hydrate. Amphibians also possess relatively few physical attributes that protect them from predators. Although they may avoid predators behaviourally or deter them by skin toxins, amphibians lack defensive shells or hardened cuticles, do not have protective teeth or claws, and most are insufficiently fast to escape predators. Hence, they are relatively dependent on sites that conceal or protect them from predation. Most amphibians also differ significantly from other vertebrates in possessing a complex two-phase life cycle: the pre-metamorphic larval (tadpole) stage and the post-metamorphic juvenile and adult stage (Wilbur 1980, 1984). Most amphibian species have two distinct econes (Heatwole 1989), each with different habitat requirements, the larvae being aquatic and the post-metamorphic animals more terrestrial. The habitats required by the two phases can differ greatly, but both are essential to the survival of a species. However, amphibian diversity is great and exceptions to this general pattern exist. For example, some species have direct development without going through a larval stage and are fully terrestrial, whereas the larvae of other species can reach sexual maturity without going through metamorphosis (i.e., neoteny) and are fully aquatic.

  7. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration

    PubMed Central

    Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada’s mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931–2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna. PMID:29444129

  8. Loss and modification of habitat: Chapter 1

    USGS Publications Warehouse

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.

    2012-01-01

    water balance (Thorson and Svihla 1943; Brattstrom 1963; Tracy 1976). Hence, individuals require and seek specific microhabitats that maintain their preferred body temperature while at the same time reducing water loss or allowing individuals to re-hydrate. Amphibians also possess relatively few physical attributes that protect them from predators. Although they may avoid predators behaviourally or deter them by skin toxins, amphibians lack defensive shells or hardened cuticles, do not have protective teeth or claws, and most are insufficiently fast to escape predators. Hence, they are relatively dependent on sites that conceal or protect them from predation. Most amphibians also differ significantly from other vertebrates in possessing a complex two-phase life cycle: the pre-metamorphic larval (tadpole) stage and the post-metamorphic juvenile and adult stage (Wilbur 1980, 1984). Most amphibian species have two distinct econes (Heatwole 1989), each with different habitat requirements, the larvae being aquatic and the post-metamorphic animals more terrestrial. The habitats required by the two phases can differ greatly, but both are essential to the survival of a species. However, amphibian diversity is great and exceptions to this general pattern exist. For example, some species have direct development without going through a larval stage and are fully terrestrial, whereas the larvae of other species can reach sexual maturity without going through metamorphosis (i.e., neoteny) and are fully aquatic.

  9. Demographic consequences of terrestrial habitat loss for pool-breeding amphibians: predicting extinction risks associated with inadequate size of buffer zones.

    PubMed

    Harper, Elizabeth B; Rittenhouse, Tracy A G; Semlitsch, Raymond D

    2008-10-01

    Much of the biodiversity associated with isolated wetlands requires aquatic and terrestrial habitat to maintain viable populations. Current federal wetland regulations in the United States do not protect isolated wetlands or extend protection to surrounding terrestrial habitat. Consequently, some land managers, city planners, and policy makers at the state and local levels are making an effort to protect these wetland and neighboring upland habitats. Balancing human land-use and habitat conservation is challenging, and well-informed land-use policy is hindered by a lack of knowledge of the specific risks of varying amounts of habitat loss. Using projections of wood frog (Rana sylvatica) and spotted salamander (Ambystoma maculatum) populations, we related the amount of high-quality terrestrial habitat surrounding isolated wetlands to the decline and risk of extinction of local amphibian populations. These simulations showed that current state-level wetland regulations protecting 30 m or less of surrounding terrestrial habitat are inadequate to support viable populations of pool-breeding amphibians. We also found that species with different life-history strategies responded differently to the loss and degradation of terrestrial habitat. The wood frog, with a short life span and high fecundity, was most sensitive to habitat loss and isolation, whereas the longer-lived spotted salamander with lower fecundity was most sensitive to habitat degradation that lowered adult survival rates. Our model results demonstrate that a high probability of local amphibian population persistence requires sufficient terrestrial habitat, the maintenance of habitat quality, and connectivity among local populations. Our results emphasize the essential role of adequate terrestrial habitat to the maintenance of wetland biodiversity and ecosystem function and offer a means of quantifying the risks associated with terrestrial habitat loss and degradation.

  10. Does Wyoming's Core Area Policy Protect Winter Habitats for Greater Sage-Grouse?

    PubMed

    Smith, Kurt T; Beck, Jeffrey L; Pratt, Aaron C

    2016-10-01

    Conservation reserves established to protect important habitat for wildlife species are used world-wide as a wildlife conservation measure. Effective reserves must adequately protect year-round habitats to maintain wildlife populations. Wyoming's Sage-Grouse Core Area policy was established to protect breeding habitats for greater sage-grouse (Centrocercus urophasianus). Protecting only one important seasonal habitat could result in loss or degradation of other important habitats and potential declines in local populations. The purpose of our study was to identify the timing of winter habitat use, the extent which individuals breeding in Core Areas used winter habitats, and develop resource selection functions to assess effectiveness of Core Areas in conserving sage-grouse winter habitats in portions of 5 Core Areas in central and north-central Wyoming during winters 2011-2015. We found that use of winter habitats occured over a longer period than current Core Area winter timing stipulations and a substantial amount of winter habitat outside of Core Areas was used by individuals that bred in Core Areas, particularly in smaller Core Areas. Resource selection functions for each study area indicated that sage-grouse were selecting habitats in response to landscapes dominated by big sagebrush and flatter topography similar to other research on sage-grouse winter habitat selection. The substantial portion of sage-grouse locations and predicted probability of selection during winter outside small Core Areas illustrate that winter requirements for sage-grouse are not adequately met by existing Core Areas. Consequently, further considerations for identifying and managing important winter sage-grouse habitats under Wyoming's Core Area Policy are warranted.

  11. Forest habitat loss, fragmentation, and red-cockaded woodpecker populations

    Treesearch

    Richard N. Conner; D. Craig Rudolph

    1991-01-01

    Loss of mature forest habitat was measured around Red-cockaded Woodpecker (Picoides borealis) cavity tree clusters (colonies) in three National Forests in eastern Texas. Forest removal results in a loss of foraging habitat and causes habitat fragmentation of the remaining mature forest. Habitat loss was negatively associated with woodpecker group size in small...

  12. Impact of long-term habitat loss on the Japanese eel Anguilla japonica

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Ze; Huang, Shiang-Lin; Han, Yu-San

    2014-12-01

    Since the 1970s, the loss of temperate-zone anguillid eels, particularly Anguilla anguilla, Anguilla rostrata, and Anguilla japonica, has exceeded 90% based on estimates of glass eel recruitment. The cause of this decline has not been conclusively determined, although many factors have been proposed. In East Asia, the consequences of long-term habitat loss and deterioration of habitat quality on the sustainability of Japanese eel resources are important. Impacts have already occurred and are expected to increase because hundreds of millions of people live near estuaries and rivers that have undergone, and further, are expected to continue to undergo, substantial changes in land use. Driven by economic growth, these landscape changes have resulted in, and may continue to produce, the large-scale destruction of eel habitats. We used chronological Landsat imagery to measure Japanese eel habitat reduction from human activities in 16 rivers in East Asia, including Japan, Korea, Taiwan, and China. On average, 76.8% of the effective habitat area (Ae) was lost in these 16 rivers from the 1970s-2010s. Taiwan and China had the highest percentages of Ae loss, with declines of 49.3% and 81.5%, respectively. Extensive habitat loss may play an important role, together with regional climate phenomena such as the ENSO and overfishing, in the decline of the Japanese eel in East Asia. Measures targeting habitat restoration and protection may need to be integrated into management planning for Japanese eel resources in an international rather than regional context.

  13. Tracking changes and preventing loss in critical tiger habitat.

    PubMed

    Joshi, Anup R; Dinerstein, Eric; Wikramanayake, Eric; Anderson, Michael L; Olson, David; Jones, Benjamin S; Seidensticker, John; Lumpkin, Susan; Hansen, Matthew C; Sizer, Nigel C; Davis, Crystal L; Palminteri, Suzanne; Hahn, Nathan R

    2016-04-01

    The global population of wild tigers remains dangerously low at fewer than 3500 individuals. Habitat loss, along with poaching, can undermine the international target recovery of doubling the number of wild tigers by 2022. Using a new satellite-based monitoring system, we analyzed 14 years of forest loss data within the 76 landscapes (ranging from 278 to 269,983 km(2)) that have been prioritized for conservation of wild tigers. Our analysis provides an update of the status of tiger habitat and describes new applications of technology to detect precisely where forest loss is occurring in order to curb future habitat loss. Across the 76 landscapes, forest loss was far less than anticipated (79,597 ± 22,629 km(2), 7.7% of remaining habitat) over the 14-year study period (2001-2014). Habitat loss was unevenly distributed within a subset of 29 landscapes deemed most critical for doubling wild tiger populations: 19 showed little change (1.5%), whereas 10 accounted for more than 98% (57,392 ± 16,316 km(2)) of habitat loss. Habitat loss in source population sites within 76 landscapes ranged from no loss to 435 ± 124 km(2) ([Formula: see text], SD = 89, total = 1676 ± 476 km(2)). Doubling the tiger population by 2022 requires moving beyond tracking annual changes in habitat. We highlight near-real-time forest monitoring technologies that provide alerts of forest loss at relevant spatial and temporal scales to prevent further erosion.

  14. Tracking changes and preventing loss in critical tiger habitat

    PubMed Central

    Joshi, Anup R.; Dinerstein, Eric; Wikramanayake, Eric; Anderson, Michael L.; Olson, David; Jones, Benjamin S.; Seidensticker, John; Lumpkin, Susan; Hansen, Matthew C.; Sizer, Nigel C.; Davis, Crystal L.; Palminteri, Suzanne; Hahn, Nathan R.

    2016-01-01

    The global population of wild tigers remains dangerously low at fewer than 3500 individuals. Habitat loss, along with poaching, can undermine the international target recovery of doubling the number of wild tigers by 2022. Using a new satellite-based monitoring system, we analyzed 14 years of forest loss data within the 76 landscapes (ranging from 278 to 269,983 km2) that have been prioritized for conservation of wild tigers. Our analysis provides an update of the status of tiger habitat and describes new applications of technology to detect precisely where forest loss is occurring in order to curb future habitat loss. Across the 76 landscapes, forest loss was far less than anticipated (79,597 ± 22,629 km2, 7.7% of remaining habitat) over the 14-year study period (2001–2014). Habitat loss was unevenly distributed within a subset of 29 landscapes deemed most critical for doubling wild tiger populations: 19 showed little change (1.5%), whereas 10 accounted for more than 98% (57,392 ± 16,316 km2) of habitat loss. Habitat loss in source population sites within 76 landscapes ranged from no loss to 435 ± 124 km2 (x¯=24km2, SD = 89, total = 1676 ± 476 km2). Doubling the tiger population by 2022 requires moving beyond tracking annual changes in habitat. We highlight near–real-time forest monitoring technologies that provide alerts of forest loss at relevant spatial and temporal scales to prevent further erosion. PMID:27051881

  15. Conserving Biogeography: Habitat Loss and Vicariant Patterns in Endemic Squamates of the Cerrado Hotspot

    PubMed Central

    de Mello, Pietro L. H.; Machado, Ricardo B.; Nogueira, Cristiano de C.

    2015-01-01

    Little is known about the threat levels and impacts of habitat loss over the Cerrado Squamate fauna. The region is under severe habitat loss due to mechanized agriculture, accelerated by changes in the Brazilian National Forest Code. The Squamate fauna of the Cerrado is rich in endemics and is intrinsically associated with its surrounding microhabitats, which make up a mosaic of phitophysiognomies throughout the region. Herein we evaluate current conservation status of Squamate biogeographic patterns in the Brazilian Cerrado, the single savanna among global biodiversity hotspots. To do so, we first updated point locality data on 49 endemic Squamates pertaining to seven non-random clusters of species ranges in the Cerrado. Each cluster was assumed to be representative of different biogeographic regions, holding its own set of species, herein mapped according to their extent of occurrence (EOO). We then contrasted these data in four different scenarios, according to the presence or absence of habitat loss and the presence or absence of the current protected area (PA) cover. We searched for non-random patterns of habitat loss and PA coverage among these biogeographic regions throughout the Cerrado. Finally, with the species EOO as biodiversity layers, we used Zonation to discuss contemporary PA distribution, as well as to highlight current priority areas for conservation within the Cerrado. We ran Zonation under all four conservation scenarios mentioned above. We observed that habitat loss and PA coverage significantly differed between biogeographic regions. The southernmost biogeographic region is the least protected and the most impacted, with priority areas highly scattered in small, disjunct fragments. The northernmost biogeographic region (Tocantins-Serra Geral) is the most protected and least impacted, showing extensive priority areas in all Zonation scenarios. Therefore, current and past deforestation trends are severely threatening biogeographic patterns in

  16. Freshwater Wetland Habitat Loss and Fragmentation: Implications for Aquatic Biodiversity Conservation

    NASA Astrophysics Data System (ADS)

    Wolaver, B. D.; Pierre, J. P.; Labay, B. J.; Ryberg, W. A.; Hibbits, T. J.; Prestridge, H. L.

    2015-12-01

    Anthropogenic land use changes have caused widespread wetland loss and fragmentation. This trend has important implications for aquatic biota conservation, including the semi-aquatic Western Chicken Turtle (Deirochelys reticularia miaria). This species inhabits seasonally inundated, ephemeral water bodies and adjacent uplands in the southeastern U.S. However, wetland conversion to agriculture and urbanization is thought to cause the species' decline, particularly in Texas, which includes the westernmost part of its range. Because the species moves only a few kilometers between wetlands, it particularly sensitive to habitat loss and fragmentation. Thus, as part of the only state-funded species research program, this study provides the U.S. Fish and Wildlife Service (FWS) with scientific data to determine if the species warrants protection under the Endangered Species Act (ESA). We use a species distribution model to map potentially suitable habitat for most of East Texas. We evaluate landscape-scale anthropogenic activities in this region which may be contributing to the species' decline. We identify areas of urbanization, agricultural expansion, forestry, and resulting wetland loss. We find that between 2001 and 2011 approximately 80 km2 of wetlands were lost in potentially suitable habitat, including the urbanizing Houston area. We use spatial geostatistics to quantify wetland habitat fragmentation. We also introduce the Habitat Alteration Index (HAI), which calculates total landscape alteration and mean probability of occurrence to identify high-quality habitat most at risk of recent anthropogenic alteration. Population surveys by biologists are targeting these areas and future management actions may focus on mitigating anthropogenic activities there. While this study focuses on D. r. miaria, this approach can evaluate wetland habitat of other aquatic organisms.

  17. Correspondence between the habitat of the threatened pudú (Cervidae) and the national protected-area system of Chile.

    PubMed

    Pavez-Fox, Melissa; Estay, Sergio A

    2016-01-07

    Currently, many species are facing serious conservation problems due to habitat loss. The impact of the potential loss of biodiversity associated with habitat loss is difficult to measure. This is particularly the case with inconspicuous species such as the threatened pudú (Pudu puda), an endemic Cervidae of temperate forests of Chile and Argentina. To evaluate the effectiveness of the Chilean protected-area system in protecting the habitat of the pudú, we measured the congruence between this specie's potential distribution and the geographical area occupied by the protected areas in central and southern Chile. The measurements of congruency were made using the Maxent modeling method. The potential habitat of the pudú was found to be poorly represented in the system (3-8%) and even the most suitable areas for the species are not currenly protected. According to these results, the protected area network cannot be considered as a key component of the conservation strategy for this species. The results presented here also serve as a guide for the reevaluation of current pudú conservation strategies, for the design of new field studies to detect the presence of this species in human-disturbed areas or remaining patches of native forest, and for the implementation of corridors to maximize the success of conservation efforts.

  18. Evolutionary consequences of habitat loss for Pacific anadromous salmonids

    PubMed Central

    McClure, Michelle M; Carlson, Stephanie M; Beechie, Timothy J; Pess, George R; Jorgensen, Jeffrey C; Sogard, Susan M; Sultan, Sonia E; Holzer, Damon M; Travis, Joseph; Sanderson, Beth L; Power, Mary E; Carmichael, Richard W

    2008-01-01

    Large portions of anadromous salmonid habitat in the western United States has been lost because of dams and other blockages. This loss has the potential to affect salmonid evolution through natural selection if the loss is biased, affecting certain types of habitat differentially, and if phenotypic traits correlated with those habitat types are heritable. Habitat loss can also affect salmonid evolution indirectly, by reducing genetic variation and changing its distribution within and among populations. In this paper, we compare the characteristics of lost habitats with currently accessible habitats and review the heritability of traits which show correlations with habitat/environmental gradients. We find that although there is some regional variation, inaccessible habitats tend to be higher in elevation, wetter and both warmer in the summer and colder in the winter than habitats currently available to anadromous salmonids. We present several case studies that demonstrate either a change in phenotypic or life history expression or an apparent reduction in genetic variation associated with habitat blockages. These results suggest that loss of habitat will alter evolutionary trajectories in salmonid populations and Evolutionarily Significant Units. Changes in both selective regime and standing genetic diversity might affect the ability of these taxa to respond to subsequent environmental perturbations. Both natural and anthropogenic and should be considered seriously in developing management and conservation strategies. PMID:25567633

  19. Urbanization, habitat loss, biodiversity decline:  solution pathways to break the cycle

    Treesearch

    Thomas Elmqvist; Wayne Zipperer; Burak  Güneralp

    2016-01-01

    The interactions between urbanization with biodiversity and ecosystem services that take place defy simple generalizations. There is increasing evidence for the negative impacts of urbanization on biodiversity, most directly in the form of habitat loss and fragmentation. Recent forecasts suggest that the amount of urban land near protected areas is expected to increase...

  20. Optimizing habitat protection using demographic models of population viability.

    Treesearch

    Robert G. Haight; Brian Cypher; Patrick A. Kelly; Scott Phillips; Hugh P. Possingham; Katherine Ralls; Anthony M. Starfield; P.J. White; Daniel Williams

    2002-01-01

    Expanding habitat protection is a common tactic for species conservation. When unprotected habitat is privately owned, decisions must be made about which areas to protect by land purchase or conservation easement. To address this problem, we developed an optimization framework for choosing the habitat protection strategy that minimizes the risk of population extinction...

  1. Modeling effects of conservation grassland losses on amphibian habitat

    USGS Publications Warehouse

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  2. Habitat-based conservation strategies cannot compensate for climate-change-induced range loss

    NASA Astrophysics Data System (ADS)

    Wessely, Johannes; Hülber, Karl; Gattringer, Andreas; Kuttner, Michael; Moser, Dietmar; Rabitsch, Wolfgang; Schindler, Stefan; Dullinger, Stefan; Essl, Franz

    2017-11-01

    Anthropogenic habitat fragmentation represents a major obstacle to species shifting their range in response to climate change. Conservation measures to increase the (meta-)population capacity and permeability of landscapes may help but the effectiveness of such measures in a warming climate has rarely been evaluated. Here, we simulate range dynamics of 51 species from three taxonomic groups (vascular plants, butterflies and grasshoppers) in Central Europe as driven by twenty-first-century climate scenarios and analyse how three habitat-based conservation strategies (establishing corridors, improving the landscape matrix, and protected area management) modify species' projected range size changes. These simulations suggest that the conservation strategies considered are unable to save species from regional extinction. For those persisting, they reduce the magnitude of range loss in lowland but not in alpine species. Protected area management and corridor establishment are more effective than matrix improvement. However, none of the conservation strategies evaluated could fully compensate the negative impact of climate change for vascular plants, butterflies or grasshoppers in central Europe.

  3. Simulated effects of habitat loss and fragmentation on a solitary, mustellid predator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jager, Yetta; Carr, Eric A; Efroymson, Rebecca Ann

    2005-01-01

    Brine spills associated with petroleum extraction can reduce the amount of suitable habitat and increase habitat fragmentation for many terrestrial animals. We conducted a simulation study to quantify the effects of habitat loss and fragmentation on a solitary mammal predator. To provide focus, we adopted biological attributes of the American badger (Taxidea taxus) and environmental attributes of the Tallgrass Prairie Preserve in Oklahoma. We simulated badger activities on landscapes with different degrees of habitat loss and fragmentation using a spatially explicit and individual-based population model. Both habitat loss and fragmentation increased the incidence of habitat-related mortality and decreased the proportionmore » of eligible females that mated, which decreased final population sizes and the likelihood of persistence. Parameter exploration suggested that steep, threshold-like, responses to habitat loss occurred when animals included high-risk habitat in their territories. Badger populations showed a steeper decline with increasing habitat loss on landscapes fragmented by spills than on less fragmented landscapes. Habitat fragmentation made it difficult for badgers to form high-quality territories, and exposed individuals to higher risk while seeking to establish a territory. Our simulations also suggest that an inability to find mates (an Allee effect) becomes increasingly important for landscapes that support a sparse distribution of territories. Thus, the presence of unmated females with territories may foreshadow population decline in solitary species that do not normally tolerate marginal adults.« less

  4. The remnants of restinga habitats in the brazilian Atlantic Forest of Rio de Janeiro state, Brazil: habitat loss and risk of disappearance.

    PubMed

    Rocha, C F D; Bergallo, H G; Van Sluys, M; Alves, M A S; Jamel, C E

    2007-05-01

    "Restingas" (herbaceous/shrubby coastal sand-dune habitats) used to cover most of Rio de Janeiro State coast, and have suffered extensive degradation over the last five centuries. Using satellite images and field work, we identified the remaining restingas in the State, recording the factors that might cause their degradation. We used two mosaics of Landsat 7 scenes (spatial resolution 15 and 30 m) to map and evaluate preliminarly the remaining areas and conservation status. Each remnant area was checked in the field, degraded areas within it were mapped and subtracted from the remnants. We identified 21 restinga remnants totalling 105,285 ha. The largest and smallest restinga remnants were Jurubatiba (25,141 ha) and Itaipu (23 ha), respectively. We identified 14 causes of degradation. The most important were vegetation removal for housing developments, establishment of exotic plant species, change of original substrate, and selective removal of species of economic importance for the horticultural industry. All restingas had disturbed parts under strong pressure due to human activities. Due to intense habitat loss, and occurrence of endemic/threatened vertebrate species in restinga habitats, we strongly indicate the implementation of new conservation units to protect these fragile remnants. This habitat is steadily decreasing and most remnants lack legal protection. Therefore, under the current human pressure most of this unique habitat is likely to be lost from the State within the next few years.

  5. Quantifying terrestrial habitat loss and fragmentation: A protocol

    Treesearch

    Kevin McGarigal; Samuel Cushman; Claudia Regan

    2005-01-01

    Anthropogenic habitat loss and fragmentation have been implicated as among the key drivers of the burgeoning global biodiversity crisis. In response, there is a growing mandate among natural resource managers to evaluate the impacts of proposed management actions on the extent and fragmentation of habitats. Unfortunately, few guidelines exist to help managers...

  6. Invariant polar bear habitat selection during a period of sea ice loss

    USGS Publications Warehouse

    Wilson, Ryan R.; Regehr, Eric V.; Rode, Karyn D.; St Martin, Michelle

    2016-01-01

    Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears.

  7. Invariant polar bear habitat selection during a period of sea ice loss.

    PubMed

    Wilson, Ryan R; Regehr, Eric V; Rode, Karyn D; St Martin, Michelle

    2016-08-17

    Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears. © 2016 The Author(s).

  8. Future land-use scenarios and the loss of wildlife habitats in the southeastern United States.

    PubMed

    Martinuzzi, Sebastián; Withey, John C; Pidgeon, Anna M; Plantinga, Andrew J; McKerrow, Alexa J; Williams, Steven G; Helmers, David P; Radeloff, Volker C

    2015-01-01

    Land-use change is a major cause of wildlife habitat loss. Understanding how changes in land-use policies and economic factors can impact future trends in land use and wildlife habitat loss is therefore critical for conservation efforts. Our goal here was to evaluate the consequences of future land-use changes under different conservation policies and crop market conditions on habitat loss for wildlife species in the southeastern United States. We predicted the rates of habitat loss for 336 terrestrial vertebrate species by 2051. We focused on habitat loss due to the expansion of urban, crop, and pasture. Future land-use changes following business-as-usual conditions resulted in relatively low rates of wildlife habitat loss across the entire Southeast, but some ecoregions and species groups experienced much higher habitat loss than others. Increased crop commodity prices exacerbated wildlife habitat loss in most ecoregions, while the implementation of conservation policies (reduced urban sprawl, and payments for land conservation) reduced the projected habitat loss in some regions, to a certain degree. Overall, urban and crop expansion were the main drivers of habitat loss. Reptiles and wildlife species associated with open vegetation (grasslands, open woodlands) were the species groups most vulnerable to future land-use change. Effective conservation of wildlife habitat in the Southeast should give special consideration to future land-use changes, regional variations, and the forces that could shape land-use decisions.

  9. Future land-use scenarios and the loss of wildlife habitats in the southeastern United States

    USGS Publications Warehouse

    Martinuzzi, Sebastián; Withey, John C.; Pidgeon, Anna M.; Plantinga, Andrew; McKerrow, Alexa; Williams, Steven G.; Helmers, David P.; Radeloff, Volker C.

    2015-01-01

    Land-use change is a major cause of wildlife habitat loss. Understanding how changes in land-use policies and economic factors can impact future trends in land use and wildlife habitat loss is therefore critical for conservation efforts. Our goal here was to evaluate the consequences of future land-use changes under different conservation policies and crop market conditions on habitat loss for wildlife species in the southeastern United States. We predicted the rates of habitat loss for 336 terrestrial vertebrate species by 2051. We focused on habitat loss due to the expansion of urban, crop, and pasture. Future land-use changes following business-as-usual conditions resulted in relatively low rates of wildlife habitat loss across the entire Southeast, but some ecoregions and species groups experienced much higher habitat loss than others. Increased crop commodity prices exacerbated wildlife habitat loss in most ecoregions, while the implementation of conservation policies (reduced urban sprawl, and payments for land conservation) reduced the projected habitat loss in some regions, to a certain degree. Overall, urban and crop expansion were the main drivers of habitat loss. Reptiles and wildlife species associated with open vegetation (grasslands, open woodlands) were the species groups most vulnerable to future land-use change. Effective conservation of wildlife habitat in the Southeast should give special consideration to future land-use changes, regional variations, and the forces that could shape land-use decisions.

  10. Forest Loss and the Biodiversity Threshold: An Evaluation Considering Species Habitat Requirements and the Use of Matrix Habitats

    PubMed Central

    Estavillo, Candelaria; Pardini, Renata; da Rocha, Pedro Luís Bernardo

    2013-01-01

    Habitat loss is the main driver of the current biodiversity crisis, a landscape-scale process that affects the survival of spatially-structured populations. Although it is well-established that species responses to habitat loss can be abrupt, the existence of a biodiversity threshold is still the cause of much controversy in the literature and would require that most species respond similarly to the loss of native vegetation. Here we test the existence of a biodiversity threshold, i.e. an abrupt decline in species richness, with habitat loss. We draw on a spatially-replicated dataset on Atlantic forest small mammals, consisting of 16 sampling sites divided between forests and matrix habitats in each of five 3600-ha landscapes (varying from 5% to 45% forest cover), and on an a priori classification of species into habitat requirement categories (forest specialists, habitat generalists and open-area specialists). Forest specialists declined abruptly below 30% of forest cover, and spillover to the matrix occurred only in more forested landscapes. Generalists responded positively to landscape heterogeneity, peaking at intermediary levels of forest cover. Open area specialists dominated the matrix and did not spillover to forests. As a result of these distinct responses, we observed a biodiversity threshold for the small mammal community below 30% forest cover, and a peak in species richness just above this threshold. Our results highlight that cross habitat spillover may be asymmetrical and contingent on landscape context, occurring mainly from forests to the matrix and only in more forested landscapes. Moreover, they indicate the potential for biodiversity thresholds in human-modified landscapes, and the importance of landscape heterogeneity to biodiversity. Since forest loss affected not only the conservation value of forest patches, but also the potential for biodiversity-mediated services in anthropogenic habitats, our work indicates the importance of proactive

  11. Wetland features and landscape context predict the risk of wetland habitat loss.

    PubMed

    Gutzwiller, Kevin J; Flather, Curtis H

    2011-04-01

    Wetlands generally provide significant ecosystem services and function as important harbors of biodiversity. To ensure that these habitats are conserved, an efficient means of identifying wetlands at risk of conversion is needed, especially in the southern United States where the rate of wetland loss has been highest in recent decades. We used multivariate adaptive regression splines to develop a model to predict the risk of wetland habitat loss as a function of wetland features and landscape context. Fates of wetland habitats from 1992 to 1997 were obtained from the National Resources Inventory for the U.S. Forest Service's Southern Region, and land-cover data were obtained from the National Land Cover Data. We randomly selected 70% of our 40 617 observations to build the model (n = 28 432), and randomly divided the remaining 30% of the data into five Test data sets (n = 2437 each). The wetland and landscape variables that were important in the model, and their relative contributions to the model's predictive ability (100 = largest, 0 = smallest), were land-cover/ land-use of the surrounding landscape (100.0), size and proximity of development patches within 570 m (39.5), land ownership (39.1), road density within 570 m (37.5), percent woody and herbaceous wetland cover within 570 m (27.8), size and proximity of development patches within 5130 m (25.7), percent grasslands/herbaceous plants and pasture/hay cover within 5130 m (21.7), wetland type (21.2), and percent woody and herbaceous wetland cover within 1710 m (16.6). For the five Test data sets, Kappa statistics (0.40, 0.50, 0.52, 0.55, 0.56; P < 0.0001), area-under-the-receiver-operating-curve (AUC) statistics (0.78, 0.82, 0.83, 0.83, 0.84; P < 0.0001), and percent correct prediction of wetland habitat loss (69.1, 80.4, 81.7, 82.3, 83.1) indicated the model generally had substantial predictive ability across the South. Policy analysts and land-use planners can use the model and associated maps to prioritize

  12. No net loss of fish habitat: a review and analysis of habitat compensation in Canada.

    PubMed

    Harper, D J; Quigley, J T

    2005-09-01

    The achievement of No Net Loss (NNL) through habitat compensation has rarely been assessed in Canada. Files relating to 124 Fisheries Act Section 35(2) authorizations issued by Fisheries and Oceans Canada for the harmful alteration, disruption, and destruction of fish habitat (HADD) were collected and reviewed. Data extracted from these files were pooled and analyzed to provide an indication of the types of HADDs that have been authorized in Canada, what habitats have been affected, and what habitat management approaches have been used when compensating for HADDs and monitoring and ensuring the success of the compensation. Determinations regarding the effectiveness of habitat compensation in achieving NNL were made. Impacts to 419,562 m2 of fish habitat from the 124 authorized HADDs were offset by 1,020,388 m2 of compensatory habitat. Eighty percent of the authorizations had compensation ratios (compensation area:HADD area) of 2:1 or less, and 25% of the authorizations had a compensation ratio that was less than 1:1. In-channel and riparian habitat were the most frequently impacted habitats. Urban development and roads and highways resulted in the greatest areal loss of habitat. The compensation option that was most often selected was the creation of in-kind habitat. The mean duration of post-construction monitoring programs was 3.7 years. Determinations of NNL could only be made for 17 authorizations as a result of poor proponent compliance with monitoring requirements and the qualitative assessment procedures used by the monitoring programs. Adequate resources, proper training, and standardized approaches to data management and monitoring programs are required to ensure that the conservation goal of NNL can be achieved in Canada.

  13. The relative effects of habitat loss, fragmentation, and degradation on population extinction

    EPA Science Inventory

    The most prominent conservation concerns are typically habitat loss and habitat fragmentation. The role of habitat degradation has received comparatively little attention. But research has shown that the quality of habitat patches can significantly influence wildlife population d...

  14. Implications of Habitat Loss on Seed Predation and Early Recruitment of a Keystone Palm in Anthropogenic Landscapes in the Brazilian Atlantic Rainforest.

    PubMed

    Soares, Leiza Aparecida S S; Faria, Deborah; Vélez-Garcia, Felipe; Vieira, Emerson M; Talora, Daniela C; Cazetta, Eliana

    2015-01-01

    Habitat loss is the main driver of the loss of global biodiversity. Knowledge on this subject, however, is highly concentrated on species richness and composition patterns, with little discussion on the consequences of habitat loss for ecological interactions. Therefore, a systemic approach is necessary to maximize the success of conservation efforts by providing more realistic information about the effects of anthropogenic disturbances on natural environmental processes. We investigated the implications of habitat loss for the early recruitment of Euterpe edulis Martius, a keystone palm in the Brazilian Atlantic Forest, in nine sampling sites located in landscapes with different percentages of forest cover (9%-83%). We conducted a paired experiment using E. Edulis seeds set up in experimental stations composed of a vertebrate exclosure versus an open treatment. We used ANCOVA models with treatments as factors to assess the influence of habitat loss on the number of germinated seeds, predation by vertebrates and invertebrates, infestation by fungi, and number of seedlings established. Habitat loss did not affect the probability of transition from a dispersed to a germinated seed. However, when seeds were protected from vertebrate removal, seedling recruitment showed a positive relationship with the amount of forest cover. Seed infestation by fungi was not significant, and seed predation was the main factor limiting seed recruitment. The loss of forest cover antagonistically affected the patterns of seed predation by vertebrates and invertebrates; predation by invertebrates was higher in less forested areas, and predation by vertebrates was higher in forested areas. When seeds were exposed to the action of all biotic mortality factors, the number of recruited seedlings was very low and unrelated to habitat loss. This result indicates that the opposite effects of seed predation by vertebrates and invertebrates mask a differential response of E. edulis recruitment to

  15. Implications of Habitat Loss on Seed Predation and Early Recruitment of a Keystone Palm in Anthropogenic Landscapes in the Brazilian Atlantic Rainforest

    PubMed Central

    Soares, Leiza Aparecida S. S.; Faria, Deborah; Vélez-Garcia, Felipe; Vieira, Emerson M.; Talora, Daniela C.; Cazetta, Eliana

    2015-01-01

    Habitat loss is the main driver of the loss of global biodiversity. Knowledge on this subject, however, is highly concentrated on species richness and composition patterns, with little discussion on the consequences of habitat loss for ecological interactions. Therefore, a systemic approach is necessary to maximize the success of conservation efforts by providing more realistic information about the effects of anthropogenic disturbances on natural environmental processes. We investigated the implications of habitat loss for the early recruitment of Euterpe edulis Martius, a keystone palm in the Brazilian Atlantic Forest, in nine sampling sites located in landscapes with different percentages of forest cover (9%-83%). We conducted a paired experiment using E. Edulis seeds set up in experimental stations composed of a vertebrate exclosure versus an open treatment. We used ANCOVA models with treatments as factors to assess the influence of habitat loss on the number of germinated seeds, predation by vertebrates and invertebrates, infestation by fungi, and number of seedlings established. Habitat loss did not affect the probability of transition from a dispersed to a germinated seed. However, when seeds were protected from vertebrate removal, seedling recruitment showed a positive relationship with the amount of forest cover. Seed infestation by fungi was not significant, and seed predation was the main factor limiting seed recruitment. The loss of forest cover antagonistically affected the patterns of seed predation by vertebrates and invertebrates; predation by invertebrates was higher in less forested areas, and predation by vertebrates was higher in forested areas. When seeds were exposed to the action of all biotic mortality factors, the number of recruited seedlings was very low and unrelated to habitat loss. This result indicates that the opposite effects of seed predation by vertebrates and invertebrates mask a differential response of E. edulis recruitment to

  16. Survival in patchy landscapes: the interplay between dispersal, habitat loss and fragmentation

    PubMed Central

    Niebuhr, Bernardo B. S.; Wosniack, Marina E.; Santos, Marcos C.; Raposo, Ernesto P.; Viswanathan, Gandhimohan M.; da Luz, Marcos G. E.; Pie, Marcio R.

    2015-01-01

    Habitat loss and fragmentation are important factors determining animal population dynamics and spatial distribution. Such landscape changes can lead to the deleterious impact of a significant drop in the number of species, caused by critically reduced survival rates for organisms. In order to obtain a deeper understanding of the threeway interplay between habitat loss, fragmentation and survival rates, we propose here a spatially explicit multi-scaled movement model of individuals that search for habitat. By considering basic ecological processes, such as predation, starvation (outside the habitat area), and competition, together with dispersal movement as a link among habitat areas, we show that a higher survival rate is achieved in instances with a lower number of patches of larger areas. Our results demonstrate how movement may counterbalance the effects of habitat loss and fragmentation in altered landscapes. In particular, they have important implications for conservation planning and ecosystem management, including the design of specific features of conservation areas in order to enhance landscape connectivity and population viability. PMID:26148488

  17. Assessment of Habitat and Streamflow Requirements for Habitat Protection, Usquepaug-Queen River, Rhode Island, 1999-2000

    USGS Publications Warehouse

    Armstrong, David S.; Parker, Gene W.

    2003-01-01

    The relations among stream habitat and hydrologic conditions were investigated in the Usquepaug?Queen River Basin in southern Rhode Island. Habitats were assessed at 13 sites on the mainstem and tributaries from July 1999 to September 2000. Channel types are predominantly low-gradient glides, pools, and runs that have a sand and gravel streambed and a forest or shrub riparian zone. Along the stream margins,overhanging brush, undercut banks supported by roots, and downed trees create cover; within the channel, submerged aquatic vegetation and woody debris create cover. These habitat features decrease in quality and availability with declining streamflows, and features along stream margins generally become unavailable once streamflows drop to the point at which water recedes from the stream banks. Riffles are less common, but were identified as critical habitat areas because they are among the first to exhibit habitat losses or become unavailable during low-flow periods. Stream-temperature data were collected at eight sites during summer 2000 to indicate the suitability of those reaches for cold-water fish communities. Data indicate stream temperatures provide suitable habitat for cold-water species in the Fisherville and Locke Brook tributaries and in the mainstem Queen River downstream of the confluence with Fisherville Brook. Stream temperatures in the Usquepaug River downstream from Glen Rock Reservoir are about 6?F warmer than in the Queen River upstream from the impoundment. These warmer temperatures may make habitat in the Usquepaug River marginal for cold-water species. Fish-community composition was determined from samples collected at seven sites on tributaries and at three sites on the mainstem Usquepaug?Queen River. Classification of the fish into habitat-use groups and comparison to target fish communities developed for the Quinebaug and Ipswich Rivers indicated that the sampled reaches of the Usquepaug?Queen River contained most of the riverine fish

  18. Experimental evidence for the effect of habitat loss on the dynamics of migratory networks.

    PubMed

    Betini, Gustavo S; Fitzpatrick, Mark J; Norris, D Ryan

    2015-06-01

    Migratory animals present a unique challenge for understanding the consequences of habitat loss on population dynamics because individuals are typically distributed over a series of interconnected breeding and non-breeding sites (termed migratory network). Using replicated breeding and non-breeding populations of Drosophila melanogaster and a mathematical model, we investigated three hypotheses to explain how habitat loss influenced the dynamics of populations in networks with different degrees of connectivity between breeding and non-breeding seasons. We found that habitat loss increased the degree of connectivity in the network and influenced population size at sites that were not directly connected to the site where habitat loss occurred. However, connected networks only buffered global population declines at high levels of habitat loss. Our results demonstrate why knowledge of the patterns of connectivity across a species range is critical for predicting the effects of environmental change and provide empirical evidence for why connected migratory networks are commonly found in nature. © 2015 John Wiley & Sons Ltd/CNRS.

  19. Duck Valley Habitat Enhancement and Protection, 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodson, Guy; Pero, Vincent

    The Duck Valley Indian Reservations' Habitat Enhancement project is an ongoing project designed to enhance and protect the critical riparian areas, natural springs, and native fish spawning areas on the Reservation. The project was begun in 1997 with the hiring of a fisheries biologist and the creation of a new department for the Tribes. The project's goals are to protect and enhance the springs, Owyhee River, its tributaries, and to develop a database that can be used by other fisheries professionals which includes information on water quality and fish composition, health, abundance, and genetic makeup. One habitat portion of themore » project is a focus on protection the numerous springs that provide clean, cool water to the Owyhee River. This will be accomplished through enclosure fences of the spring heads and water troughs to provide clean cool drinking water for wildlife and livestock. Another habitat portion of the project involves protecting headwater areas of streams with native fish populations. This is accomplished through enclosure fencing and riparian plantings on any eroded or degraded banks in the enclosure area. Finally, we monitor and evaluate the areas protected and enhanced. This is accomplished through biological sampling for temperature, Oxygen, sedimentation, and measurements of water depth, bank height and undercut, and width of stream. With the habitat and biological indices we will be able to evaluate how well protective measures are doing, and where to focus future efforts.« less

  20. Using landslide risk analysis to protect fish habitat

    Treesearch

    R. M. Rice

    1986-01-01

    The protection of anadromous fish habitat is an important water quslity concern in the Pacific Northwest. Sediment from logging-related debris avalanches can cause habitat degradation. Research on conditions associated with the sites where debris avalanches originate has resulted in a risk assessment methodology based on linear discriminant analysis. The probability...

  1. Shallow rocky nursery habitat for fish: Spatial variability of juvenile fishes among this poorly protected essential habitat.

    PubMed

    Cheminée, Adrien; Rider, Mary; Lenfant, Philippe; Zawadzki, Audrey; Mercière, Alexandre; Crec'hriou, Romain; Mercader, Manon; Saragoni, Gilles; Neveu, Reda; Ternon, Quentin; Pastor, Jérémy

    2017-06-15

    Coastal nursery habitats are essential for the renewal of adult fish populations. We quantified the availability of a coastal nursery habitat (shallow heterogeneous rocky bottoms) and the spatial variability of its juvenile fish populations along 250km of the Catalan coastline (France and Spain). Nurseries were present in 27% of the coastline, but only 2% of them benefited from strict protection status. For nine taxa characteristic of this habitat, total juvenile densities varied significantly between nursery sites along the coastline, with the highest densities being found on the northern sites. Recruitment level (i.e. a proxy of nursery value) was not explained by protection level, but it was moderately and positively correlated with an anthropization index. Patterns of spatial variations were taxa-specific. Exceptional observations of four juveniles of the protected grouper Epinephelus marginatus were recorded. Our data on habitat availability and recruitment levels provides important informations which help to focus MPA management efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Quantifying spatial habitat loss from hydrocarbon development through assessing habitat selection patterns of mule deer.

    PubMed

    Northrup, Joseph M; Anderson, Charles R; Wittemyer, George

    2015-11-01

    Extraction of oil and natural gas (hydrocarbons) from shale is increasing rapidly in North America, with documented impacts to native species and ecosystems. With shale oil and gas resources on nearly every continent, this development is set to become a major driver of global land-use change. It is increasingly critical to quantify spatial habitat loss driven by this development to implement effective mitigation strategies and develop habitat offsets. Habitat selection is a fundamental ecological process, influencing both individual fitness and population-level distribution on the landscape. Examinations of habitat selection provide a natural means for understanding spatial impacts. We examined the impact of natural gas development on habitat selection patterns of mule deer on their winter range in Colorado. We fit resource selection functions in a Bayesian hierarchical framework, with habitat availability defined using a movement-based modeling approach. Energy development drove considerable alterations to deer habitat selection patterns, with the most substantial impacts manifested as avoidance of well pads with active drilling to a distance of at least 800 m. Deer displayed more nuanced responses to other infrastructure, avoiding pads with active production and roads to a greater degree during the day than night. In aggregate, these responses equate to alteration of behavior by human development in over 50% of the critical winter range in our study area during the day and over 25% at night. Compared to other regions, the topographic and vegetative diversity in the study area appear to provide refugia that allow deer to behaviorally mediate some of the impacts of development. This study, and the methods we employed, provides a template for quantifying spatial take by industrial activities in natural areas and the results offer guidance for policy makers, mangers, and industry when attempting to mitigate habitat loss due to energy development. © 2015 The Authors

  3. Migratory connectivity magnifies the consequences of habitat loss from sea-level rise for shorebird populations.

    PubMed

    Iwamura, Takuya; Possingham, Hugh P; Chadès, Iadine; Minton, Clive; Murray, Nicholas J; Rogers, Danny I; Treml, Eric A; Fuller, Richard A

    2013-06-22

    Sea-level rise (SLR) will greatly alter littoral ecosystems, causing habitat change and loss for coastal species. Habitat loss is widely used as a measurement of the risk of extinction, but because many coastal species are migratory, the impact of habitat loss will depend not only on its extent, but also on where it occurs. Here, we develop a novel graph-theoretic approach to measure the vulnerability of a migratory network to the impact of habitat loss from SLR based on population flow through the network. We show that reductions in population flow far exceed the proportion of habitat lost for 10 long-distance migrant shorebirds using the East Asian-Australasian Flyway. We estimate that SLR will inundate 23-40% of intertidal habitat area along their migration routes, but cause a reduction in population flow of up to 72 per cent across the taxa. This magnifying effect was particularly strong for taxa whose migration routes contain bottlenecks-sites through which a large fraction of the population travels. We develop the bottleneck index, a new network metric that positively correlates with the predicted impacts of habitat loss on overall population flow. Our results indicate that migratory species are at greater risk than previously realized.

  4. Land Use Compounds Habitat Losses under Projected Climate Change in a Threatened California Ecosystem

    PubMed Central

    Riordan, Erin Coulter; Rundel, Philip W.

    2014-01-01

    Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21st century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the

  5. Land use compounds habitat losses under projected climate change in a threatened California ecosystem.

    PubMed

    Riordan, Erin Coulter; Rundel, Philip W

    2014-01-01

    Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21(st) century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize

  6. Habitat Design Optimization and Analysis

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Hull, Patrick V.; Tinker, Michael L.

    2006-01-01

    Long-duration surface missions to the Moon and Mars will require habitats for the astronauts. The materials chosen for the habitat walls play a direct role in the protection against the harsh environments found on the surface. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Advanced optimization techniques are necessary for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat design optimization tool utilizing genetic algorithms has been developed. Genetic algorithms use a "survival of the fittest" philosophy, where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multi-objective formulation of structural analysis, heat loss, radiation protection, and meteoroid protection. This paper presents the research and development of this tool.

  7. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss.

    PubMed

    Bommarco, Riccardo; Biesmeijer, Jacobus C; Meyer, Birgit; Potts, Simon G; Pöyry, Juha; Roberts, Stuart P M; Steffan-Dewenter, Ingolf; Ockinger, Erik

    2010-07-07

    Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species-area slope (z = 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z = 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities.

  8. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss

    PubMed Central

    Bommarco, Riccardo; Biesmeijer, Jacobus C.; Meyer, Birgit; Potts, Simon G.; Pöyry, Juha; Roberts, Stuart P. M.; Steffan-Dewenter, Ingolf; Öckinger, Erik

    2010-01-01

    Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species–area slope (z = 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z = 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities. PMID:20219735

  9. Habitat Design Considerations for Implementing Solar Particle Event Radiation Protection

    NASA Technical Reports Server (NTRS)

    Simon, Mathew A.; Clowdsley, Martha S.; Walker, Steven A.

    2013-01-01

    Radiation protection is an important habitat design consideration for human exploration missions beyond Low Earth Orbit. Fortunately, radiation shelter concepts can effectively reduce astronaut exposure for the relatively low proton energies of solar particle events, enabling moderate duration missions of several months before astronaut exposure (galactic cosmic ray and solar particle event) approaches radiation exposure limits. In order to minimize habitat mass for increasingly challenging missions, design of radiation shelters must minimize dedicated, single-purpose shielding mass by leveraging the design and placement of habitat subsystems, accommodations, and consumables. NASA's Advanced Exploration Systems RadWorks Storm Shelter Team has recently designed and performed radiation analysis on several low dedicated mass shelter concepts for a year-long mission. This paper describes habitat design considerations identified during the study's radiation analysis. These considerations include placement of the shelter within a habitat for improved protection, integration of human factors guidance for sizing shelters, identification of potential opportunities for habitat subsystems to compromise on individual subsystem performances for overall vehicle mass reductions, and pre-configuration of shelter components for reduced deployment times.

  10. Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities

    NASA Astrophysics Data System (ADS)

    Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.

    2017-10-01

    Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of

  11. The Areal Extent of Brown Shrimp Habitat Suitability in Mobile Bay, Alabama USA: Targeting Vegetated Habitat Restoration

    EPA Science Inventory

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the U.S. Protection and management of these vital GOM habitats are critical t...

  12. Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective.

    PubMed

    He, Chunyang; Liu, Zhifeng; Tian, Jie; Ma, Qun

    2014-09-01

    China's extensive urbanization has resulted in a massive loss of natural habitat, which is threatening the nation's biodiversity and socioeconomic sustainability. A timely and accurate understanding of natural habitat loss caused by urban expansion will allow more informed and effective measures to be taken for the conservation of biodiversity. However, the impact of urban expansion on natural habitats is not well-understood, primarily due to the lack of accurate spatial information regarding urban expansion across China. In this study, we proposed an approach that can be used to accurately summarize the dynamics of urban expansion in China over two recent decades (1992-2012), by integrating data on nighttime light levels, a vegetation index, and land surface temperature. The natural habitat loss during the time period was evaluated at the national, ecoregional, and local scales. The results revealed that China had experienced extremely rapid urban growth from 1992 to 2012 with an average annual growth rate of 8.74%, in contrast with the global average of 3.20%. The massive urban expansion has resulted in significant natural habitat loss in some areas in China. Special attention needs to be paid to the Pearl River Delta, where 25.79% or 1518 km(2) of the natural habitat and 41.99% or 760 km(2) of the local wetlands were lost during 1992-2012. This raises serious concerns about species viability and biodiversity. Effective policies and regulations must be implemented and enforced to sustain regional and national development in the context of rapid urbanization. © 2014 John Wiley & Sons Ltd.

  13. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  14. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  15. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  16. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  17. Wetland habitats for wildlife of the Chesapeake Bay

    USGS Publications Warehouse

    Perry, M.C.; Majumdar, S.K.; Miller, E.W.; Brenner, Fred J.

    1998-01-01

    The wetlands of Chesapeake Bay have provided the vital habitats that have sustained the impressive wildlife populations that have brought international fame to the Bay. As these wetland habitats decrease in quantity and quality we will continue to see the decline in the wildlife populations that started when European settlers first came to this continent. These declines have accelerated significantly in this century. As the human population continues to increase in the Bay watershed, one can expect that wetland habitats will continue to decline, resulting in declines in species diversity and population numbers. Although federal, state, and local governments are striving for 'no net loss' of wetlands, the results to date are not encouraging. It is unrealistic to believe that human populations and associated development can continue to increase and not adversely affect the wetland resources of the Bay. Restrictions on human population growth in the Chesapeake area is clearly the best way to protect wetland habitats and the wildlife that are dependent on these habitats. In addition, there should be more aggressive approaches to protect wetland habitats from continued perturbations from humans. More sanctuary areas should be created and there should be greater use of enhancement and management techniques that will benefit the full complement of species that potentially exist in these wetlands. The present trend in wetland loss can be expected to continue as human populations increase with resultant increases in roads, shopping malls, and housing developments. Creation of habitat for mitigation of these losses will not result in 'no net loss'. More innovative approaches should be employed to reverse the long-term trend in wetland loss by humans.

  18. Lunar Habitat Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.

    2007-01-01

    Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.

  19. 75 FR 18482 - Stanford University Habitat Conservation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... includes the federally listed as threatened California tiger salamander (Ambystoma californiense... preserved as needed. A 315-acre ``California Tiger Salamander Reserve'' also would be established at the... habitat within the Reserve would be permanently protected to offset any loss of tiger salamander habitat...

  20. Forest owner incentives to protect riparian habitat.

    Treesearch

    Jeffrey D. Kline; Ralph J. Alig; Rebecca L. Johnson

    2000-01-01

    Private landowners increasingly are asked to cooperate with landscape-level management to protect or enhance ecological resources. We examine the willingness of nonindustrial private forest owners in the Pacific Northwest (USA) to forego harvesting within riparian areas to improve riparian habitat. An empirical model is developed describing owners' willingness to...

  1. Patterns of houses and habitat loss from 1937 to 1999 in northern Wisconsin, USA.

    PubMed

    Gonzalez-Abraham, Charlotte E; Radeloff, Volker C; Hawbaker, Todd J; Hammer, Roger B; Stewart, Susan I; Clayton, Murray K

    2007-10-01

    Rural America is witnessing widespread housing development, which is to the detriment of the environment. It has been suggested to cluster houses so that their disturbance zones overlap and thus cause less habitat loss than is the case for dispersed development. Clustering houses makes intuitive sense, but few empirical studies have quantified the spatial pattern of houses in real landscapes, assessed changes in their patterns over time, and quantified the resulting habitat loss. We addressed three basic questions: (1) What are the spatial patterns of houses and how do they change over time; (2) How much habitat is lost due to houses, and how is this affected by spatial pattern of houses; and (3) What type of habitat is most affected by housing development. We mapped 27 419 houses from aerial photos for five time periods in 17 townships in northern Wisconsin and calculated the terrestrial land area remaining after buffering each house using 100- and 500-m disturbance zones. The number of houses increased by 353% between 1937 and 1999. Ripley's K test showed that houses were significantly clustered at all time periods and at all scales. Due to the clustering, the rate at which habitat was lost (176% and 55% for 100- and 500-m buffers, respectively) was substantially lower than housing growth rates, and most land area was undisturbed (95% and 61% for 100-m and 500-m buffers, respectively). Houses were strongly clustered within 100 m of lakes. Habitat loss was lowest in wetlands but reached up to 60% in deciduous forests. Our results are encouraging in that clustered development is common in northern Wisconsin, and habitat loss is thus limited. However, the concentration of development along lakeshores causes concern, because these may be critical habitats for many species. Conservation goals can only be met if policies promote clustered development and simultaneously steer development away from sensitive ecosystems.

  2. The Relationship between Habitat Loss and Fragmentation during Urbanization: An Empirical Evaluation from 16 World Cities.

    PubMed

    Liu, Zhifeng; He, Chunyang; Wu, Jianguo

    2016-01-01

    Urbanization results in habitat loss and habitat fragmentation concurrently, both influencing biodiversity and ecological processes. To evaluate these impacts, it is important to understand the relationships between habitat loss and habitat fragmentation per se (HLHF) during urbanization. The objectives of this study were two-fold: 1) to quantify the different forms of the HLHF relationship during urbanization using multiple landscape metrics, and 2) to test the validity of the HLHF relations reported in the literature. Our analysis was based on a long-term urbanization dataset (1800-2000) of 16 large cities from around the world. Habitat area was represented as the percentage of non-built-up area in the landscape, while habitat fragmentation was measured using several landscape metrics. Our results show that the relationship between habitat loss and habitat fragmentation during urbanization is commonly monotonic-linear, exponential, or logarithmic, indicating that the degree of habitat fragmentation per se increases with habitat loss in general. We compared our results with 14 hypothesized HLHF relationships based on simulated landscapes found in the literature, and found that four of them were consistent with those of urbanization, whereas the other ten were not. Also, we identified six new HLHF relationships when fragmentation was measured by total core area, normalized total core area, patch density, edge density and landscape shape index, respectively. In addition, our study demonstrated that the "space-for-time" approach, frequently used in ecology and geography, generated specious HLHF relationships, suggesting that this approach is largely inappropriate for analyses of urban landscapes that are highly heterogeneous in space and unusually contingent in dynamics. Our results show both generalities and idiosyncrasies of the HLHF relationship, providing new insights for assessing ecological effects of urbanization.

  3. The Relationship between Habitat Loss and Fragmentation during Urbanization: An Empirical Evaluation from 16 World Cities

    PubMed Central

    He, Chunyang

    2016-01-01

    Urbanization results in habitat loss and habitat fragmentation concurrently, both influencing biodiversity and ecological processes. To evaluate these impacts, it is important to understand the relationships between habitat loss and habitat fragmentation per se (HLHF) during urbanization. The objectives of this study were two-fold: 1) to quantify the different forms of the HLHF relationship during urbanization using multiple landscape metrics, and 2) to test the validity of the HLHF relations reported in the literature. Our analysis was based on a long-term urbanization dataset (1800–2000) of 16 large cities from around the world. Habitat area was represented as the percentage of non-built-up area in the landscape, while habitat fragmentation was measured using several landscape metrics. Our results show that the relationship between habitat loss and habitat fragmentation during urbanization is commonly monotonic—linear, exponential, or logarithmic, indicating that the degree of habitat fragmentation per se increases with habitat loss in general. We compared our results with 14 hypothesized HLHF relationships based on simulated landscapes found in the literature, and found that four of them were consistent with those of urbanization, whereas the other ten were not. Also, we identified six new HLHF relationships when fragmentation was measured by total core area, normalized total core area, patch density, edge density and landscape shape index, respectively. In addition, our study demonstrated that the “space-for-time” approach, frequently used in ecology and geography, generated specious HLHF relationships, suggesting that this approach is largely inappropriate for analyses of urban landscapes that are highly heterogeneous in space and unusually contingent in dynamics. Our results show both generalities and idiosyncrasies of the HLHF relationship, providing new insights for assessing ecological effects of urbanization. PMID:27124180

  4. Groundwater management institutions to protect riparian habitat

    NASA Astrophysics Data System (ADS)

    Orr, Patricia; Colby, Bonnie

    2004-12-01

    Groundwater pumping affects riparian habitat when it causes the water table to drop beyond the reach of riparian plants. Riparian habitat provides services that are not directly traded in markets, as is the case with many environmental amenities. There is no direct market where one may buy or sell the mix of services provided by a riparian corridor. The objective of this article is to review groundwater management mechanisms and assess their strengths and weaknesses for preserving the ecological integrity of riparian areas threatened by groundwater pumping. Policy instruments available to those concerned with the effects of groundwater pumping on riparian areas fall into three broad categories: (1) command and control (CAC), (2) incentive-based economic instruments, and (3) cooperative/suasive strategies. The case of the San Pedro River illustrates multiple and overlapping strategies applied in an ongoing attempt to reverse accumulating damage to a riparian ecosystem. Policy makers in the United States can choose among a broad menu of policy options to protect riparian habitat from groundwater pumping. They can capitalize on the clarity of command-and-control strategies, the flexibility and less obtrusive nature of incentive-based economic strategies, and the benefits that collaborative efforts can bring in the form of mutual consideration. While collaborative problem solving and market-based instruments are important policy tools, experience indicates that a well-formulated regulatory structure to limit regional groundwater pumping is an essential component of an effective riparian protection strategy.

  5. Pollution, habitat loss, fishing, and climate change as critical threats to penguins.

    PubMed

    Trathan, Phil N; García-Borboroglu, Pablo; Boersma, Dee; Bost, Charles-André; Crawford, Robert J M; Crossin, Glenn T; Cuthbert, Richard J; Dann, Peter; Davis, Lloyd Spencer; De La Puente, Santiago; Ellenberg, Ursula; Lynch, Heather J; Mattern, Thomas; Pütz, Klemens; Seddon, Philip J; Trivelpiece, Wayne; Wienecke, Barbara

    2015-02-01

    Cumulative human impacts across the world's oceans are considerable. We therefore examined a single model taxonomic group, the penguins (Spheniscidae), to explore how marine species and communities might be at risk of decline or extinction in the southern hemisphere. We sought to determine the most important threats to penguins and to suggest means to mitigate these threats. Our review has relevance to other taxonomic groups in the southern hemisphere and in northern latitudes, where human impacts are greater. Our review was based on an expert assessment and literature review of all 18 penguin species; 49 scientists contributed to the process. For each penguin species, we considered their range and distribution, population trends, and main anthropogenic threats over the past approximately 250 years. These threats were harvesting adults for oil, skin, and feathers and as bait for crab and rock lobster fisheries; harvesting of eggs; terrestrial habitat degradation; marine pollution; fisheries bycatch and resource competition; environmental variability and climate change; and toxic algal poisoning and disease. Habitat loss, pollution, and fishing, all factors humans can readily mitigate, remain the primary threats for penguin species. Their future resilience to further climate change impacts will almost certainly depend on addressing current threats to existing habitat degradation on land and at sea. We suggest protection of breeding habitat, linked to the designation of appropriately scaled marine reserves, including in the High Seas, will be critical for the future conservation of penguins. However, large-scale conservation zones are not always practical or politically feasible and other ecosystem-based management methods that include spatial zoning, bycatch mitigation, and robust harvest control must be developed to maintain marine biodiversity and ensure that ecosystem functioning is maintained across a variety of scales. © 2014 The Authors. Conservation Biology

  6. Modeled Tradeoffs between Developed Land Protection and Tidal Habitat Maintenance during Rising Sea Levels

    PubMed Central

    Cadol, Daniel; Elmore, Andrew J.; Guinn, Steven M.; Engelhardt, Katharina A. M.; Sanders, Geoffrey

    2016-01-01

    Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested. PMID:27788209

  7. Modeled Tradeoffs between Developed Land Protection and Tidal Habitat Maintenance during Rising Sea Levels.

    PubMed

    Cadol, Daniel; Elmore, Andrew J; Guinn, Steven M; Engelhardt, Katharina A M; Sanders, Geoffrey

    2016-01-01

    Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested.

  8. The ecological and evolutionary consequences of noise-induced acoustic habitat loss

    NASA Astrophysics Data System (ADS)

    Tennessen, Jennifer Beissinger

    Anthropogenic threats are facilitating rapid environmental change and exerting novel pressures on the integrity of ecological patterns and processes. Currently, habitat loss is the leading factor contributing to global biodiversity loss. Noise created by human activities is nearly ubiquitous in terrestrial and marine systems, and causes acoustic habitat loss by interfering with species' abilities to freely send and receive critical acoustic biological information. My dissertation investigates how novel sounds from human activities affect ecological and evolutionary processes in space and time in marine and terrestrial systems, and how species may cope with this emerging novel pressure. Using species from both marine and terrestrial systems, I present results from a theoretical investigation, and four acoustic playback experiments combining laboratory studies and field trials, that reveal a range of eco-evolutionary consequences of noiseinduced acoustic habitat loss. First, I use sound propagation modeling to assess how marine shipping noise reduces communication space between mother-calf pairs of North Atlantic right whales (Eubalaena glacialis ), an important unit of an endangered species. I show that shipping noise poses significant challenges for mother-calf pairs, but that vocal compensation strategies can substantially improve communication space. Next, in a series of acoustic playback experiments I show that road traffic noise impairs breeding migration behavior and physiology of wood frogs (Lithobates sylvaticus ). This work reveals the first evidence that traffic noise elicits a physiological stress response and suppresses production of antimicrobial peptides (a component of the innate immune response) in anurans. Further, wood frogs from populations with a history of inhabiting noisy sites mounted reduced physiological stress responses to continuous traffic noise exposure. This research using wood frogs suggests that chronic traffic noise exposure has

  9. Habitat loss and modification due to gas development in the Fayetteville shale.

    PubMed

    Moran, Matthew D; Cox, A Brandon; Wells, Rachel L; Benichou, Chloe C; McClung, Maureen R

    2015-06-01

    Hydraulic fracturing and horizontal drilling have become major methods to extract new oil and gas deposits, many of which exist in shale formations in the temperate deciduous biome of the eastern United States. While these technologies have increased natural gas production to new highs, they can have substantial environmental effects. We measured the changes in land use within the maturing Fayetteville Shale gas development region in Arkansas between 2001/2002 and 2012. Our goal was to estimate the land use impact of these new technologies in natural gas drilling and predict future consequences for habitat loss and fragmentation. Loss of natural forest in the gas field was significantly higher compared to areas outside the gas field. The creation of edge habitat, roads, and developed areas was also greater in the gas field. The Fayetteville Shale gas field fully developed about 2% of the natural habitat within the region and increased edge habitat by 1,067 linear km. Our data indicate that without shale gas activities, forest cover would have increased slightly and edge habitat would have decreased slightly, similar to patterns seen recently in many areas of the southern U.S. On average, individual gas wells fully developed about 2.5 ha of land and modified an additional 0.5 ha of natural forest. Considering the large number of wells drilled in other parts of the eastern U.S. and projections for new wells in the future, shale gas development will likely have substantial negative effects on forested habitats and the organisms that depend upon them.

  10. High gene flow in epiphytic ferns despite habitat loss and fragmentation.

    PubMed

    Winkler, Manuela; Koch, Marcus; Hietz, Peter

    2011-01-01

    Tropical montane forests suffer from increasing fragmentation and replacement by other types of land-use such as coffee plantations. These processes are known to affect gene flow and genetic structure of plant populations. Epiphytes are particularly vulnerable because they depend on their supporting trees for their entire life-cycle. We compared population genetic structure and genetic diversity derived from AFLP markers of two epiphytic fern species differing in their ability to colonize secondary habitats. One species, Pleopeltis crassinervata , is a successful colonizer of shade trees and isolated trees whereas the other species, Polypodium rhodopleuron , is restricted to forests with anthropogenic separation leading to significant isolation between populations. By far most genetic variation was distributed within rather than among populations in both species, and a genetic admixture analysis did not reveal any clustering. Gene flow exceeded by far the benchmark of one migrant per generation to prevent genetic divergence between populations in both species. Though populations are threatened by habitat loss, long-distance dispersal is likely to support gene flow even between distant populations, which efficiently delays genetic isolation. Consequently, populations may rather be threatened by ecological consequences of habitat loss and fragmentation.

  11. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  12. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  13. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  14. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  15. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  16. Newly Discovered Orangutan Species Requires Urgent Habitat Protection.

    PubMed

    Sloan, Sean; Supriatna, Jatna; Campbell, Mason J; Alamgir, Mohammed; Laurance, William F

    2018-05-03

    Nater, et al.[1] recently identified a new orangutan species (Pongo tapanuliensis) in northern Sumatra, Indonesia-just the seventh described species of living great ape. The population of this critically-endangered species is perilously small, at only ∼800 individuals [1], ranking it among the planet's rarest fauna. We assert that P. tapanuliensis is highly vulnerable to extinction because its remaining habitat is small, fragmented, and poorly protected. While road incursions within its habitat are modest-road density is only one-eighth that of northern Sumatra-over one-fifth of its habitat is zoned for agricultural conversion or is comprised of mosaic agricultural and regrowth/degraded forest. Additionally, a further 8% will be affected by flooding and infrastructure development for a hydroelectric project. We recommend urgent steps to increase the chance that P. tapanuliensis will persist in the wild. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    USGS Publications Warehouse

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  18. Habitat selection by juvenile Mojave Desert tortoises

    USGS Publications Warehouse

    Todd, Brian D; Halstead, Brian J.; Chiquoine, Lindsay P.; Peaden, J. Mark; Buhlmann, Kurt A.; Tuberville, Tracey D.; Nafus, Melia G.

    2016-01-01

    Growing pressure to develop public lands for renewable energy production places several protected species at increased risk of habitat loss. One example is the Mojave desert tortoise (Gopherus agassizii), a species often at the center of conflicts over public land development. For this species and others on public lands, a better understanding of their habitat needs can help minimize negative impacts and facilitate protection or restoration of habitat. We used radio-telemetry to track 46 neonate and juvenile tortoises in the Eastern Mojave Desert, California, USA, to quantify habitat at tortoise locations and paired random points to assess habitat selection. Tortoise locations near burrows were more likely to be under canopy cover and had greater coverage of perennial plants (especially creosote [Larrea tridentata]), more coverage by washes, a greater number of small-mammal burrows, and fewer white bursage (Ambrosia dumosa) than random points. Active tortoise locations away from burrows were closer to washes and perennial plants than were random points. Our results can help planners locate juvenile tortoises and avoid impacts to habitat critical for this life stage. Additionally, our results provide targets for habitat protection and restoration and suggest that diverse and abundant small-mammal populations and the availability of creosote bush are vital for juvenile desert tortoises in the Eastern Mojave Desert.

  19. Housing growth in and near United States protected areas limits their conservation value

    Treesearch

    Volker. C. Radeloff; Susan I. Stewart; Todd J. Hawbaker; Urs Gimmi; Anna M. Pidgeon; Curtis H. Flather; Roger. B. Hammer; David P. Helmers

    2010-01-01

    Protected areas are crucial for biodiversity conservation because they provide safe havens for species threatened by land-use change and resulting habitat loss. However, protected areas are only effective when they stop habitat loss within their boundaries, and are connected via corridors to other wild areas. The effectiveness of protected areas is threatened by...

  20. Habitat models to assist plant protection efforts in Shenandoah National Park, Virginia, USA

    USGS Publications Warehouse

    Van Manen, F.T.; Young, J.A.; Thatcher, C.A.; Cass, W.B.; Ulrey, C.

    2005-01-01

    During 2002, the National Park Service initiated a demonstration project to develop science-based law enforcement strategies for the protection of at-risk natural resources, including American ginseng (Panax quinquefolius L.), bloodroot (Sanguinaria canadensis L.), and black cohosh (Cimicifuga racemosa (L.) Nutt. [syn. Actaea racemosa L.]). Harvest pressure on these species is increasing because of the growing herbal remedy market. We developed habitat models for Shenandoah National Park and the northern portion of the Blue Ridge Parkway to determine the distribution of favorable habitats of these three plant species and to demonstrate the use of that information to support plant protection activities. We compiled locations for the three plant species to delineate favorable habitats with a geographic information system (GIS). We mapped potential habitat quality for each species by calculating a multivariate statistic, Mahalanobis distance, based on GIS layers that characterized the topography, land cover, and geology of the plant locations (10-m resolution). We tested model performance with an independent dataset of plant locations, which indicated a significant relationship between Mahalanobis distance values and species occurrence. We also generated null models by examining the distribution of the Mahalanobis distance values had plants been distributed randomly. For all species, the habitat models performed markedly better than their respective null models. We used our models to direct field searches to the most favorable habitats, resulting in a sizeable number of new plant locations (82 ginseng, 73 bloodroot, and 139 black cohosh locations). The odds of finding new plant locations based on the habitat models were 4.5 (black cohosh) to 12.3 (American ginseng) times greater than random searches; thus, the habitat models can be used to improve the efficiency of plant protection efforts, (e.g., marking of plants, law enforcement activities). The field searches also

  1. Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas.

    PubMed

    Christianen, Marjolijn J A; Herman, Peter M J; Bouma, Tjeerd J; Lamers, Leon P M; van Katwijk, Marieke M; van der Heide, Tjisse; Mumby, Peter J; Silliman, Brian R; Engelhard, Sarah L; van de Kerk, Madelon; Kiswara, Wawan; van de Koppel, Johan

    2014-02-22

    Marine protected areas (MPAs) are key tools for combatting the global overexploitation of endangered species. The prevailing paradigm is that MPAs are beneficial in helping to restore ecosystems to more 'natural' conditions. However, MPAs may have unintended negative effects when increasing densities of protected species exert destructive effects on their habitat. Here, we report on severe seagrass degradation in a decade-old MPA where hyper-abundant green turtles adopted a previously undescribed below-ground foraging strategy. By digging for and consuming rhizomes and roots, turtles create abundant bare gaps, thereby enhancing erosion and reducing seagrass regrowth. A fully parametrized model reveals that the ecosystem is approaching a tipping point, where consumption overwhelms regrowth, which could potentially lead to complete collapse of the seagrass habitat. Seagrass recovery will not ensue unless turtle density is reduced to nearly zero, eliminating the MPA's value as a turtle reserve. Our results reveal an unrecognized, yet imminent threat to MPAs, as sea turtle densities are increasing at major nesting sites and the decline of seagrass habitat forces turtles to concentrate on the remaining meadows inside reserves. This emphasizes the need for policy and management approaches that consider the interactions of protected species with their habitat.

  2. Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas

    PubMed Central

    Christianen, Marjolijn J. A.; Herman, Peter M. J.; Bouma, Tjeerd J.; Lamers, Leon P. M.; van Katwijk, Marieke M.; van der Heide, Tjisse; Mumby, Peter J.; Silliman, Brian R.; Engelhard, Sarah L.; van de Kerk, Madelon; Kiswara, Wawan; van de Koppel, Johan

    2014-01-01

    Marine protected areas (MPAs) are key tools for combatting the global overexploitation of endangered species. The prevailing paradigm is that MPAs are beneficial in helping to restore ecosystems to more ‘natural’ conditions. However, MPAs may have unintended negative effects when increasing densities of protected species exert destructive effects on their habitat. Here, we report on severe seagrass degradation in a decade-old MPA where hyper-abundant green turtles adopted a previously undescribed below-ground foraging strategy. By digging for and consuming rhizomes and roots, turtles create abundant bare gaps, thereby enhancing erosion and reducing seagrass regrowth. A fully parametrized model reveals that the ecosystem is approaching a tipping point, where consumption overwhelms regrowth, which could potentially lead to complete collapse of the seagrass habitat. Seagrass recovery will not ensue unless turtle density is reduced to nearly zero, eliminating the MPA's value as a turtle reserve. Our results reveal an unrecognized, yet imminent threat to MPAs, as sea turtle densities are increasing at major nesting sites and the decline of seagrass habitat forces turtles to concentrate on the remaining meadows inside reserves. This emphasizes the need for policy and management approaches that consider the interactions of protected species with their habitat. PMID:24403341

  3. Insertion Loss of Personal Protective Clothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shull D.J.; Biesel, V.B.; Cunefare, K.A.

    1999-05-13

    'The use of personal protective clothing that covers the head is a common practice in many industries. Such personal protective clothing will impact the sound pressure level and the frequency content of sounds to which the wearer will be exposed. The use of such clothing, then, may impact speech and alarm audibility. A measure of the impact of such clothing is its insertion loss. Insertion loss measurements were performed on four types of personal protective clothing in use by Westinghouse Savannah River Company personnel which utilize cloth and plastic hood configurations to protect the head. All clothing configurations tested atmore » least partially cover the ears. The measurements revealed that insertion loss of the items tested was notable at frequencies above 1000 Hz only and was a function of material stiffness and acoustic flanking paths to the ear. Further, an estimate of the clothing''s noise reduction rating reveals poor performance in that regard, even though the insertion loss of the test articles was significant at frequencies at and above 1000 Hz.'« less

  4. Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receivemore » credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.« less

  5. Using Remote Sensing Data to Evaluate Habitat Loss in the Mobile, Galveston, and Tampa Bay Watersheds

    NASA Technical Reports Server (NTRS)

    Steffen, Morgan; Estes, Maurice G.; Al-Hamdan, Mohammad

    2010-01-01

    The Gulf of Mexico has experienced dramatic wetland habitat area losses over the last two centuries. These losses not only damage species diversity, but contribute to water quality, flood control, and aspects of the Gulf coast economy. Overall wetland losses since the 1950s were examined using land cover/land use (LCLU) change analysis in three Gulf coast watershed regions: Mobile Bay, Galveston Bay, and Tampa Bay. Two primary causes of this loss, LCLU change and climate change, were then assessed using LCLU maps, U.S. census population data, and available current and historical climate data from NOAA. Sea level rise, precipitation, and temperature effects were addressed, with emphasis on analysis of the effects of sea level rise on salt marsh degradation. Ecological impacts of wetland loss, including fishery depletion, eutrophication, and hypoxia were addressed using existing literature and data available from NOAA. These ecological consequences in turn have had an affect on the Gulf coast economy, which was analyzed using fishery data and addressing public health impacts of changes in the environment caused by wetland habitat loss. While recent federal and state efforts to reduce wetland habitat loss have been relatively successful, this study implies a need for more aggressive action in the Gulf coast area, as the effects of wetland loss reach far beyond individual wetland systems themselves to the Gulf of Mexico as a whole.

  6. A novel habitat-based approach to predict impacts of marine protected areas on fishers.

    PubMed

    Teixeira, João B; Moura, Rodrigo L; Mills, Morena; Klein, Carissa; Brown, Christopher J; Adams, Vanessa M; Grantham, Hedley; Watts, Matthew; Faria, Deborah; Amado-Filho, Gilberto M; Bastos, Alex C; Lourival, Reinaldo; Possingham, Hugh P

    2017-06-24

    While marine protected areas (MPAs) can simultaneously contribute to biodiversity conservation and fisheries management, the global network is biased towards particular ecosystem types, as it was largely established in an ad hoc fashion. The optimization of trade-offs between biodiversity benefits and socio-economic values increases implementation success and minimizes enforcement costs in the long run, but is often neglected in marine spatial planning (MSP). Although the acquisition of spatially explicit socioeconomic data is often perceived as a costly/secondary step in MSP, it is critical to account for lost opportunities by people whose activities will be restricted, especially fishers. Here we present an easily-reproducible habitat-based approach to estimate the spatial distribution of opportunity cost to fishers in data poor regions, assuming that the most accessible areas have higher values and their designation as no-take zones represents increased loss of fishing opportunities. Our method requires only habitat and bathymetric maps, a list of target species, the location of ports, and the relative importance for each port and/or vessel/gear type. The potential distribution of fishing resources is estimated from bathymetric ranges and benthic habitat distribution, while the relative importance of the different resources is estimated for each port, considering total catches (kg), revenues and/or stakeholder perception. Finally, the model can combine different cost layers to produce a comprehensive cost layer, and also allows for the evaluation of tradeoffs. The development of FishCake was based on data from a contentious conservation-planning arena (Abrolhos Bank, Brazil) in which attempts to expand MPA coverage failed due to fishers' resistance. The opportunity cost approach that we introduce herein allows for the incorporation of economic interests of different stakeholders and evaluation of tradeoffs among different stakeholder groups. The novel approach

  7. Salmonella in Wild Birds Utilizing Protected and Human Impacted Habitats, Uganda.

    PubMed

    Afema, Josephine Azikuru; Sischo, William M

    2016-09-01

    As human populations in Africa expand, humans encroach and modify wildlife habitats for farming, fishing, tourism, or settlement. Anthropogenic activities in shared environments may promote transmission of zoonotic pathogens between humans, domestic animals, and wildlife. Between July 2012 and February 2014, we evaluated Salmonella prevalence, serovars, genotypes, and antibiotic resistant phenotypes in resident and migratory birds utilizing human-impacted habitats in northwestern Lake Victoria and protected habitats in Queen Elisabeth National Park. Salmonella occurrence in the urban environment was assessed by sampling storm-water and wastewater from a channel that drains Kampala City into Lake Victoria. Salmonella was detected in 4.3% pooled bird fecal samples, and 57.1% of environmental samples. While birds in impacted and protected areas shared serovars, the genotypes were distinct. We found distinct strains in birds and the environment suggesting some strains in birds are host adapted, and strains circulating in the environment may not necessarily disseminate to birds. Conversely, birds in both impacted and protected areas shared strains with the urban environment, suggesting Salmonella disseminates between impacted environments and birds across sites. Overall, more strains were observed in the urban environment compared to birds, and poses risk of Salmonella reemergence in birds and transmission across species and space.

  8. Integrating habitat status, human population pressure, and protection status into biodiversity conservation priority setting

    USGS Publications Warehouse

    Shi, Hua; Singh, Ashbindu; Kant, S.; Zhu, Zhiliang; Waller, E.

    2005-01-01

    Priority setting is an essential component of biodiversity conservation. Existing methods to identify priority areas for conservation have focused almost entirely on biological factors. We suggest a new relative ranking method for identifying priority conservation areas that integrates both biological and social aspects. It is based on the following criteria: the habitat's status, human population pressure, human efforts to protect habitat, and number of endemic plant and vertebrate species. We used this method to rank 25 hotspots, 17 megadiverse countries, and the hotspots within each megadiverse country. We used consistent, comprehensive, georeferenced, and multiband data sets and analytical remote sensing and geographic information system tools to quantify habitat status, human population pressure, and protection status. The ranking suggests that the Philippines, Atlantic Forest, Mediterranean Basin, Caribbean Islands, Caucasus, and Indo-Burma are the hottest hotspots and that China, the Philippines, and India are the hottest megadiverse countries. The great variation in terms of habitat, protected areas, and population pressure among the hotspots, the megadiverse countries, and the hotspots within the same country suggests the need for hotspot- and country-specific conservation policies.

  9. Restoring habitat corridors in fragmented landscapes using optimization and percolation models

    Treesearch

    Justin C. Williams; Stephanie A. Snyder

    2005-01-01

    Landscape fragmentation and habitat loss are significant threats to the conservation of biological diversity. Creating and restoring corridors between isolated habitat patches can help mitigate or reverse the impacts of fragmentation. It is important that restoration and protection efforts be undertaken in the most efficient and effective way possible because...

  10. Battelle developing reefs to ease habitat losses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-04-01

    Artificial reefs may be the answer to solving a worldwide problem of declining fish habitats, or they may only be good for creating fishing spots. Researchers at Battelle's Ocean Sciences Laboratory in Duxbury, Massachusetts, are studying artificial reefs in the Delaware River to determine if they are a solution to habitat losses in estuaries and coastal regions. [open quotes]Right now, we don't know if the fish are using the reefs simply as a grazing land, and then moving on, or if they're using the areas to colonize,[close quotes] said researcher Karen Foster. [open quotes]Ultimately, we hope to find they aremore » colonizing.[close quotes] In 1989, Battelle researchers placed 16 prefabricated concrete reefs 45 feet deep in Delaware Bay. The reefs were placed in clusters of four, and monitoring began the following year. The federal government ordered the reefs placed in the bay as a mitigation technique for fish habitat that was lost when the river was dredged for navigational purposes. Researchers examined the reefs twice last summer. It will take five years, Foster said, before researchers can determine if the reefs are increasing the fish population. Early tests show, however, the populations of mussels, sponges, corals, and anemones increased by up to 150 percent over an area of bay bottom where the reefs were placed. Divers take crustacean samples from the reefs, and fish are caught near the reefs for examination. Researchers dissect the fish stomachs and analyze the contents to determine if they have been feeding at the reefs. [open quotes]If we find blue mussels in the stomach of the fish, that's great because we know that blue mussels are growing on the reef,[close quotes] Foster said.« less

  11. Threshold effect of habitat loss on bat richness in cerrado-forest landscapes.

    PubMed

    Muylaert, Renata L; Stevens, Richard D; Ribeiro, Milton C

    2016-09-01

    Understanding how animal groups respond to contemporary habitat loss and fragmentation is essential for development of strategies for species conservation. Until now, there has been no consensus about how landscape degradation affects the diversity and distribution of Neotropical bats. Some studies demonstrate population declines and species loss in impacted areas, although the magnitude and generality of these effects on bat community structure are unclear. Empirical fragmentation thresholds predict an accentuated drop in biodiversity, and species richness in particular, when less than 30% of the original amount of habitat in the landscape remains. In this study, we tested whether bat species richness demonstrates this threshold response, based on 48 sites distributed across 12 landscapes with 9-88% remaining forest in Brazilian cerrado-forest formations. We also examined the degree to which abundance was similarly affected within four different feeding guilds. The threshold value for richness, below which bat diversity declines precipitously, was estimated at 47% of remaining forest. To verify if the response of bat abundance to habitat loss differed among feeding guilds, we used a model selection approach based on Akaike's information criterion. Models accounted for the amount of riparian forest, semideciduous forest, cerrado, tree plantations, secondary forest, and the total amount of forest in the landscape. We demonstrate a nonlinear effect of the contribution of tree plantations to frugivores, and a positive effect of the amount of cerrado to nectarivores and animalivores, the groups that responded most to decreases in amount of forest. We suggest that bat assemblages in interior Atlantic Forest and cerrado regions of southeastern Brazil are impoverished, since we found lower richness and abundance of different groups in landscapes with lower amounts of forest. The relatively higher threshold value of 47% suggests that bat communities have a relatively lower

  12. The Habitat Connection.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  13. The loss of behavioral diversity as a consequence of anthropogenic habitat disturbance: the social interactions of black howler monkeys.

    PubMed

    Negrín, Ariadna Rangel; Fuentes, Alejandro Coyohua; Espinosa, Domingo Canales; Dias, Pedro Américo Duarte

    2016-01-01

    To date, no study has investigated how human disturbance affects the size of the behavioral repertoire of a species. The aim of the present study is to illustrate how measurement of behavioral diversity assists in documenting biodiversity loss, demonstrating that human disturbance has a negative effect on behavioral diversity. We studied the social interaction repertoire of 41 adult black howler monkeys (Alouatta pigra) belonging to 10 groups living in different habitats in Campeche (Mexico), and related repertoire size to a proxy of human-induced habitat disturbance, habitat size. The social interaction repertoire of groups living in habitats with higher human-induced disturbance included lower number of behavioral types, and in particular, fewer energy-demanding behaviors. Thus, in addition to a loss in biodiversity, measured through organismal diversity, the disturbance of black howler monkeys' habitats is accompanied by a loss in behavioral diversity. We believe that the study of behavioral diversity as an element of biodiversity will become an increasingly important research topic, as it will improve our understanding of the behavioral strategies displayed by wildlife facing anthropogenic disturbance.

  14. Specializing on vulnerable habitat: Acropora selectivity among damselfish recruits and the risk of bleaching-induced habitat loss

    NASA Astrophysics Data System (ADS)

    Bonin, M. C.

    2012-03-01

    Coral reef habitats are increasingly being degraded and destroyed by a range of disturbances, most notably climate-induced coral bleaching. Habitat specialists, particularly those associated with susceptible coral species, are clearly among the most vulnerable to population decline or extinction. However, the degree of specialization on coral microhabitats is still unclear for one of the most ubiquitous, abundant and well studied of coral reef fish families—the damselfishes (Pomacentridae). Using high taxonomic resolution surveys of microhabitat use and availability, this study provides the first species-level description of patterns of Acropora selectivity among recruits of 10 damselfish species in order to determine their vulnerability to habitat degradation. In addition, surveys of the bleaching susceptibility of 16 branching coral species revealed which preferred recruitment microhabitats are at highest risk of decline as a result of chronic coral bleaching. Four species (i.e., Chrysiptera parasema, Pomacentrus moluccensis, Dascyllus melanurus and Chromis retrofasciata) were identified as highly vulnerable because they used only branching hard corals as recruitment habitat and primarily associated with only 2-4 coral species. The bleaching surveys revealed that five species of Acropora were highly susceptible to bleaching, with more than 50% of colonies either severely bleached or already dead. These highly susceptible corals included two of the preferred microhabitats of the specialist C. parasema and represented a significant proportion of its total recruitment microhabitat. In contrast, highly susceptible corals were rarely used by another specialist, P. moluccensis, suggesting that this species faces a lower risk of bleaching-induced habitat loss compared to C. parasema. As degradation to coral reef habitats continues, specialists will increasingly be forced to use alternative recruitment microhabitats, and this is likely to reduce population

  15. Flood protection diversification to reduce probabilities of extreme losses.

    PubMed

    Zhou, Qian; Lambert, James H; Karvetski, Christopher W; Keisler, Jeffrey M; Linkov, Igor

    2012-11-01

    Recent catastrophic losses because of floods require developing resilient approaches to flood risk protection. This article assesses how diversification of a system of coastal protections might decrease the probabilities of extreme flood losses. The study compares the performance of portfolios each consisting of four types of flood protection assets in a large region of dike rings. A parametric analysis suggests conditions in which diversifications of the types of included flood protection assets decrease extreme flood losses. Increased return periods of extreme losses are associated with portfolios where the asset types have low correlations of economic risk. The effort highlights the importance of understanding correlations across asset types in planning for large-scale flood protection. It allows explicit integration of climate change scenarios in developing flood mitigation strategy. © 2012 Society for Risk Analysis.

  16. Influence of habitat and number of nestlings on partial brood loss in red-cockaded woodpeckers

    Treesearch

    James R. McCormick; Richard N. Conner; D. Brent Burt; Daniel Saenz

    2004-01-01

    Partial brood loss in red-cockaded woodpeckers (Picoides borealis) was studied during 2 breeding seasons in eastern Texas. The timing of partial brood loss, group size, number of initial nestlings, number of birds fledged, and habitat characteristics of the group's cavity-tree cluster were examined for 37 woodpecker groups in loblolly- (

  17. Effects of habitat loss and fragmentation on amphibians: A review and prospectus

    Treesearch

    Samuel A. Cushman

    2006-01-01

    Habitat loss and fragmentation are among the largest threats to amphibian populations. However, most studies have not provided clear insights into their population-level implications. There is a critical need to investigate the mechanisms that underlie patterns of distribution and abundance. In order to understand the population- and species-level implications of...

  18. Wildlife and Wildlife Habitat Loss Assessment at Green Peter-Foster Project; Middle Fork Santiam River, Oregon, 1985 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noyes, J.H.

    1986-02-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Green Peter-Foster Dam and Reservoir Project on the Middle Fork Santiam River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types at the project site were mapped based on aerial photographs from 1955, 1972, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Eleven wildlife target species were selected to represent a cross-section of species groupsmore » affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Green Peter-Foster Project extensively altered or affected 7873 acres of land and river in the Santiam River drainage. Impacts to wildlife centered around the loss of 1429 acres of grass-forb vegetation, 768 acres of shrubland, and 717 acres of open conifer forest cover types. Impacts resulting from the Green Peter-Foster Project included the loss of critical winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, upland game birds, river otter, beaver, pileated woodpecker, and many other wildlife species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Green Peter-Foster Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.« less

  19. Impacts of habitat loss, climate change and pesticide exposure on kit fox populations

    EPA Science Inventory

    Background / Question / Methods The San Joaquin kit fox is an endangered sub-species in decline due primarily to loss of habitat. This small, desert-adapted fox was once widely distributed across the floor of the southern San Joaquin Valley, but agriculture and development have ...

  20. Wetland features and landscape context predict the risk of wetland habitat loss

    Treesearch

    Kevin J. Gutzwiller; Curtis H. Flather

    2011-01-01

    Wetlands generally provide significant ecosystem services and function as important harbors of biodiversity. To ensure that these habitats are conserved, an efficient means of identifying wetlands at risk of conversion is needed, especially in the southern United States where the rate of wetland loss has been highest in recent decades. We used multivariate adaptive...

  1. Vegetated Riprap Installation Techniques for Steambank Protection, Fish and Wildlife Habitat Creation

    NASA Astrophysics Data System (ADS)

    Raymond, Pierre

    2014-05-01

    Vegetated riprap is a cost effective alternative to conventional riprap erosion protection. Terra Erosion Control has experimented with the vegetation of riprap over the past ten years. As a result we have adapted a technique that can successfully establish vegetation during the installation of riprap structures. This presentation will demonstrate innovative ways of installing vegetated riprap for the protection of access roads on industrial sites and urban infrastructure such as storm water outfalls, bridge approaches and pedestrian pathways within public areas. This vegetation will provide additional bank protection, soften the rock appearance and enhance fish, wildlife and urban habitat along the shoreline. Vegetated riprap incorporates a combination of rock and native vegetation in the form of live cuttings. These are planted in conjunction with the placement of rock used to armour the banks of watercourses. Establishment of native vegetation will improve fish habitat by creating shade, cover and an input of small organic debris to stream banks. In most cases it will negate the need for the regulator (Canadian Department of Fisheries and Oceans) to require habitat alteration compensation. It will also provide added bank protection through the development of root mass. Adding vegetation to riprap provides a softer, more natural appearance to the installed rocks. This presentation will detail the processes involved in the installation of vegetated riprap such as the harvesting and soaking of live material, site preparation of the stream bank, placement of riprap in conjunction with live material and the use of burlap/coir fabric and soil amendments. It will also discuss the innovative method of using wooden boards to protect live cuttings during construction and to direct precipitation and/or irrigation water to the root zone during the establishment phase of the vegetation. These boards will eventually biodegrade within the rock. This approach was applied over

  2. Evaluating relative impacts of habitat loss and invasive species on an endemic songbird using spatially explicit population models

    EPA Science Inventory

    Island ecosystems maintain greater endemic biodiversity such that changes in land cover can have dramatic impacts on wildlife populations that depend on unique and limited habitat. Sustainable land use decisions that minimize habitat loss require multi-faceted evaluation of cost...

  3. Buffer strip design for protecting water quality and fish habitat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belt, G.H.; O'Laughlin, J.

    1994-04-01

    Buffer strips are protective areas adjacent to streams or lakes. Among other functions, they protect water quality and fish habitat. A typical buffer strip is found in western Oregon, where they are called Riparian Management Areas (RMAs). The authors use the term buffer strip to include functional descriptions such as filter, stabilization, or leave strips, and administrative designations such as Idaho's Stream Protection Zone (SPZ), Washington's Riparian Management Zone (RMZ), and the USDA Forest Service's Streamside Management Zone (SMZ). They address water quality and fishery protective functions of buffer strips on forestlands, pointing out improvements in buffer strip design possiblemore » through research or administrative changes. Buffer strip design requirements found in some western Forest Practices Act (FPA) regulations are also compared and related to findings in the scientific literature.« less

  4. Habitat monitoring and conservation prioritisation of protected areas in Western Ghats, Kerala, India.

    PubMed

    Athira, K; Reddy, C Sudhakar; Saranya, K R L; Joseph, Shijo; Jaishanker, R

    2017-06-01

    Spatially explicit approach is essential to prioritise the ecosystems for biodiversity conservation. In the present study, the conservation status of 20 protected areas of the Western Ghats of Kerala, India, was analysed based on long-term changes in forests (1975-1985-1995-2005-2013), landscape level changes in fragmentation and forest fires (2005-2015). This study has shown that a significant forest loss occurred in protected areas before declaration. Idukki is one of the major protected areas which showed a drastic reduction (18.83%) in its forest cover. During 1985-1995, Periyar tiger reserve had lost 24.19 km 2 core 3 forest area followed by Peppara (18.54 km 2 ), Parambikulam (17.93 km 2 ), Chimmony (17.71 km 2 ), Peechi-Vazhani (12.31 km 2 ) and Neyyar (11.67 km 2 ). An area of 71.33 km 2 of the protected area was affected by fires in 2014. Overall protected area-wise decadal analysis indicates Periyar has the highest number of fire incidences followed by Wayanad, Kurinjimala, Silent Valley and Eravikulam. Disturbances in the form of fires and fragmentation still exist and may have significant conservation threat to flora and fauna. Among protected areas, many are having a probability to go under threat or dynamic stage. Chinnar, Thattekkad and Kurinjimala sanctuaries are representing high levels of vulnerability, or they are near to decline stage. Habitat level monitoring of the anthropogenic disturbances can be efficiently useful for the strategic conservation planning. The present study has provided geospatial database on spatial patterns of deforestation, fragmentation and forest fires in protected areas of Kerala. Conservation prioritization approach based on these parameters will be useful for the strategic planning in the state of Kerala.

  5. 30 CFR 285.803 - How must I conduct my approved activities to protect essential fish habitats identified and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protect essential fish habitats identified and described under the Magnuson-Stevens Fishery Conservation... fish habitats identified and described under the Magnuson-Stevens Fishery Conservation and Management Act? (a) If, during the conduct of your approved activities, MMS finds that essential fish habitat or...

  6. Aerobic Marine Habitat Loss During the Late Permian Extinction

    NASA Astrophysics Data System (ADS)

    Penn, J. L.; Deutsch, C.; Payne, J.; Sperling, E. A.

    2016-12-01

    Rapid climate change at the end of the Permian is thought to have triggered the most severe mass extinction in Earth's history, but the precise mechanism of biodiversity loss is unknown. Geological evidence points to lethally hot equatorial temperatures and an expansion of anoxic ocean waters as likely culprits. However, previous climate model simulations of the warm Early Triassic exhibit weak tropical warming, and anoxic conditions require a massive and unconstrained increase in the ocean nutrient reservoir. Reconciling model predictions with the geologic record remains a key challenge to identifying the kill-mechanism, which must also take into account the role of animal physiology. Here we apply a recently developed index for the metabolic scope of marine animals to the first global climate simulations of the Permian-Triassic transition to quantify the effects of ocean warming and oxygen (O2) depletion on aerobic habitat availability. Forcing with extreme CO2 concentrations warms the surface ocean by over 10oC, consistent with paleoproxies for upper ocean temperature change. Warming depletes global O2, with greatest losses occuring in tropical deep waters as a result of their reduced ventilation. Together warming and deoxygenation would have constricted the occurrence of marine habitat by 80% globally, by decreasing the metabolic index of the Permian ocean. These changes are most pronounced in the tropics where the fossil record suggests recovery was severely inhibited. Fossil deposits also record changes in animal body size across the extinction. We find that adaptation via body size reductions can compensate for increasing hypoxia at high latitudes, and even prevent extinction there, but cannot maintain the habitability of the tropics.

  7. NOAA to develop strategy to protect coral and sponge habitat

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. National Marine Fisheries Service (NMFS) will develop a strategy to address research, conservation, and management issues regarding deep-ocean coral and sponge habitat, the agency indicated in an 11 July Federal Register notice. The Service, which is a unit of the National Oceanic and Atmospheric Administration, indicated that this strategy “eventually may result in rulemaking for some fisheries” but that “emergency rulemaking is not warranted.”The NMFS announcement is in response to a 24 March 2004 petition to the Commerce Department filed by Oceana, a non-governmental organization. That petition urged the department through NMFS to “initiate immediate rulemaking” to protect coral and sponge habitats in the U.S. exclusive economic zone through mapping, monitoring, research, and enforcement measures.

  8. NOAA to develop strategy to protect coral and sponge habitat

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. National Marine Fisheries Service (NMFS) will develop a strategy to address research, conservation, and management issues regarding deep-ocean coral and sponge habitat, the agency indicated in an 11 July Federal Register notice. The Service, which is a unit of the National Oceanic and Atmospheric Administration, indicated that this strategy "eventually may result in rulemaking for some fisheries" but that "emergency rulemaking is not warranted."The NMFS announcement is in response to a 24 March 2004 petition to the Commerce Department filed by Oceana, a non-governmental organization. That petition urged the department through NMFS to "initiate immediate rulemaking" to protect coral and sponge habitats in the U.S. exclusive economic zone through mapping, monitoring, research, and enforcement measures.

  9. Projected gains and losses of wildlife habitat from bioenergy-induced landscape change

    USGS Publications Warehouse

    Tarr, Nathan M.; Rubino, Matthew J.; Costanza, Jennifer K.; McKerrow, Alexa; Collazo, Jaime A.; Abt, Robert C.

    2016-01-01

    Domestic and foreign renewable energy targets and financial incentives have increased demand for woody biomass and bioenergy in the southeastern United States. This demand is expected to be met through purpose-grown agricultural bioenergy crops, short-rotation tree plantations, thinning and harvest of planted and natural forests, and forest harvest residues. With results from a forest economics model, spatially explicit state-and-transition simulation models, and species–habitat models, we projected change in habitat amount for 16 wildlife species caused by meeting a renewable fuel target and expected demand for wood pellets in North Carolina, USA. We projected changes over 40 years under a baseline ‘business-as-usual’ scenario without bioenergy production and five scenarios with unique feedstock portfolios. Bioenergy demand had potential to influence trends in habitat availability for some species in our study area. We found variation in impacts among species, and no scenario was the ‘best’ or ‘worst’ across all species. Our models projected that shrub-associated species would gain habitat under some scenarios because of increases in the amount of regenerating forests on the landscape, while species restricted to mature forests would lose habitat. Some forest species could also lose habitat from the conversion of forests on marginal soils to purpose-grown feedstocks. The conversion of agricultural lands on marginal soils to purpose-grown feedstocks increased habitat losses for one species with strong associations with pasture, which is being lost to urbanization in our study region. Our results indicate that landscape-scale impacts on wildlife habitat will vary among species and depend upon the bioenergy feedstock portfolio. Therefore, decisions about bioenergy and wildlife will likely involve trade-offs among wildlife species, and the choice of focal species is likely to affect the results of landscape-scale assessments. We offer general principals

  10. Periodic habitat loss alters the competitive coexistence between brown trout and bullheads in a small stream over 34 years.

    PubMed

    Elliott, J M

    2006-01-01

    1. Changes in the population density of juvenile sea trout Salmo trutta L. and bullheads Cottus gobio L. were compared in a small stream over 34 years. Both species have a similar diet and obviously live in the same general habitat. Habitat loss was most marked in seven summer droughts: severest in 1976, 1983, 1984, 1995, and less severe but followed by autumn droughts in 1969, 1989 and 1993. The contrasting effects of habitat loss on the two species were examined. 2. For both species, the Ricker curvilinear model significantly fit (P < 0.001) the relationship between initial egg density and survivor density for successive life stages, even though egg densities were much lower for bullheads than trout. These analyses provided evidence for density-dependent population regulation and also identified extreme outliers, most being for year-classes affected by summer droughts. 3. The variable effects of changes in habitable area (= % wettable area in sampling section) were quantified by using the residuals, each residual being the absolute value expressed as a percentage of the expected value from the Ricker curve. Significant relationships between the residuals and habitable area showed that habitat loss had a marked effect on survivor density, this being negative for 0+ and 1+ trout, and positive for 0+, 1+ and 2+/3+ bullheads. 4. Therefore, during periods of habitat loss in the summer months, bullhead density increased at the expense of trout density. Low flows and a decrease in wettable area were associated with a marked reduction in habitat quality for drift-feeding trout and an increase in habitat quality, and perhaps also quantity, for benthic-feeding bullheads. This case study shows that, during a major perturbation, the relationship between the densities of two species can change markedly in favour of the less numerous species. The competitive coexistence between the two species is therefore a dynamic process that changes through time with periodic changes in

  11. Effects of sea-level rise and anthropogenic development on priority bird species habitats in coastal Georgia, USA.

    PubMed

    Brittain, Ross A; Craft, Christopher B

    2012-02-01

    We modeled changes in area of five habitats, tidal-freshwater forest, salt marsh, maritime shrub-scrub (shrub), maritime broadleaf forest (oak) and maritime narrowleaf (pine) forest, in coastal Georgia, USA, to evaluate how simultaneous habitat loss due to predicted changes in sea level rise (SLR) and urban development will affect priority bird species of the south Atlantic coastal plain by 2100. Development rates, based on regional growth plans, were modeled at 1% and 2.5% annual urban growth, while SLR rates, based on the Intergovernmental Panel on Climate Change's A1B mean and maximum scenarios, were modeled at 52 cm and 82 cm, respectively. SLR most greatly affected the shrub habitat with predicted losses of 35-43%. Salt marsh and tidal forest also were predicted to lose considerable area to SLR (20-45 and 23-35%, respectively), whereas oak and pine forests had lesser impact from SLR, 18-22% and 11-15%, respectively. Urban development resulted in losses of considerable pine (48-49%) and oak (53-55%) habitat with lesser loss of shrub habitat (21-24%). Under maximum SLR and urban growth, shrub habitat may lose up to 59-64% compared to as much as 62-65% pine forest and 74-75% oak forest. Conservation efforts should focus on protection of shrub habitat because of its small area relative to other terrestrial habitats and use by Painted Buntings (Passerina ciris), a Partners In Flight (PIF) extremely high priority species. Tidal forests also deserve protection because they are a likely refuge for forest species, such as Northern Parula and Acadian Flycatcher, with the decline of oak and pine forests due to urban development.

  12. Libby/Hungry Horse Dams Wildlife Mitigation : Montana Wildlife Habitat Protection : Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Marilyn

    1992-12-01

    The purpose of this project was to develop and obtain information necessary to evaluate and undertake specific wildlife habitat protection/enhancement actions in northwest Montana as outlined in the Columbia River Basin Fish and Wildlife Program. Three waterfowl projects were evaluated between September 1989 and June 1990. Weaver's Slough project involved the proposed acquisition of 200 acres of irrigated farmland and a donated conservation easement on an additional 213 acres. The proposal included enhancement of the agricultural lands by conversion to upland nesting cover. This project was rated the lowest priority based on limited potential for enhancement and no further actionmore » was pursued. The Crow Creek Ranch project involved the proposed acquisition of approximately 1830 acres of grazing and dryland farming lands. The intent would be to restore drained potholes and provide adjacent upland nesting cover to increase waterfowl production. This project received the highest rating based on the immediate threat of subdivision, the opportunity to restore degraded wetlands, and the overall benefits to numerous species besides waterfowl. Ducks Unlimited was not able to participate as a cooperator on this project due to the jurisdiction concerns between State and tribal ownership. The USFWS ultimately acquired 1,550 acres of this proposed project. No mitigation funds were used. The Ashley Creek project involved acquisition of 870 acres adjacent to the Smith Lake Waterfowl Production Area. The primary goal was to create approximately 470 acres of wetland habitat with dikes and subimpoundments. This project was rated second in priority due to the lesser threat of loss. A feasibility analysis was completed by Ducks Unlimited based on a concept design. Although adequate water was available for the project, soil testing indicated that the organic soils adjacent to the creek would not support the necessary dikes. The project was determined not feasible for mitigation

  13. Beam Loss Monitoring for LHC Machine Protection

    NASA Astrophysics Data System (ADS)

    Holzer, Eva Barbara; Dehning, Bernd; Effnger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Hajdu, Csaba; Jackson, Stephen; Kurfuerst, Christoph; Marsili, Aurelien; Misiowiec, Marek; Nagel, Markus; Busto, Eduardo Nebot Del; Nordt, Annika; Roderick, Chris; Sapinski, Mariusz; Zamantzas, Christos

    The energy stored in the nominal LHC beams is two times 362 MJ, 100 times the energy of the Tevatron. As little as 1 mJ/cm3 deposited energy quenches a magnet at 7 TeV and 1 J/cm3 causes magnet damage. The beam dumps are the only places to safely dispose of this beam. One of the key systems for machine protection is the beam loss monitoring (BLM) system. About 3600 ionization chambers are installed at likely or critical loss locations around the LHC ring. The losses are integrated in 12 time intervals ranging from 40 μs to 84 s and compared to threshold values defined in 32 energy ranges. A beam abort is requested when potentially dangerous losses are detected or when any of the numerous internal system validation tests fails. In addition, loss data are used for machine set-up and operational verifications. The collimation system for example uses the loss data for set-up and regular performance verification. Commissioning and operational experience of the BLM are presented: The machine protection functionality of the BLM system has been fully reliable; the LHC availability has not been compromised by false beam aborts.

  14. Primates Living Outside Protected Habitats Are More Stressed: The Case of Black Howler Monkeys in the Yucatán Peninsula

    PubMed Central

    Rangel-Negrín, Ariadna; Coyohua-Fuentes, Alejandro; Chavira, Roberto; Canales-Espinosa, Domingo; Dias, Pedro Américo D.

    2014-01-01

    The non-invasive monitoring of glucocorticoid hormones allows for the assessment of the physiological effects of anthropogenic disturbances on wildlife. Variation in glucocorticoid levels of the same species between protected and unprotect areas seldom has been measured, and the available evidence suggests that this relationship may depend on species-specific habitat requirements and biology. In the present study we focused on black howler monkeys (Alouatta pigra), a canopy-dwelling primate species, as a case study to evaluate the physiological consequences of living in unprotected areas, and relate them with intragroup competition and competition with extragroup individuals. From February 2006 to September 2007 we collected 371 fecal samples from 21 adults belonging to five groups (two from protected and three from unprotected areas) in Campeche, Mexico. We recorded agonistic interactions within groups and encounters with other groups (1,200 h of behavioral observations), and determined fecal glucocorticoid metabolite (FGM) concentrations with radioimmunoassays. We used linear mixed models and Akaike's information criterion to choose the best model explaining variation in FGM concentrations between protected and unprotected areas calculated from five categorical variables: habitat type (protected vs. unprotected), participation in agonistic interactions, intergroup encounters, sex and female reproductive state, and season. The best model included habitat type, the interaction between habitat type and agonism, and the interaction between habitat type and season. FGM concentrations were higher in unprotected habitats, particularly when individuals were involved in agonistic interactions; seasonal variation in FGM concentrations was only detected in protected habitats. High FGM concentrations in black howler monkeys living in unprotected habitats are associated with increased within-group food competition and probably associated with exposure to anthropogenic

  15. Primates living outside protected habitats are more stressed: the case of black howler monkeys in the Yucatán Peninsula.

    PubMed

    Rangel-Negrín, Ariadna; Coyohua-Fuentes, Alejandro; Chavira, Roberto; Canales-Espinosa, Domingo; Dias, Pedro Américo D

    2014-01-01

    The non-invasive monitoring of glucocorticoid hormones allows for the assessment of the physiological effects of anthropogenic disturbances on wildlife. Variation in glucocorticoid levels of the same species between protected and unprotect areas seldom has been measured, and the available evidence suggests that this relationship may depend on species-specific habitat requirements and biology. In the present study we focused on black howler monkeys (Alouatta pigra), a canopy-dwelling primate species, as a case study to evaluate the physiological consequences of living in unprotected areas, and relate them with intragroup competition and competition with extragroup individuals. From February 2006 to September 2007 we collected 371 fecal samples from 21 adults belonging to five groups (two from protected and three from unprotected areas) in Campeche, Mexico. We recorded agonistic interactions within groups and encounters with other groups (1,200 h of behavioral observations), and determined fecal glucocorticoid metabolite (FGM) concentrations with radioimmunoassays. We used linear mixed models and Akaike's information criterion to choose the best model explaining variation in FGM concentrations between protected and unprotected areas calculated from five categorical variables: habitat type (protected vs. unprotected), participation in agonistic interactions, intergroup encounters, sex and female reproductive state, and season. The best model included habitat type, the interaction between habitat type and agonism, and the interaction between habitat type and season. FGM concentrations were higher in unprotected habitats, particularly when individuals were involved in agonistic interactions; seasonal variation in FGM concentrations was only detected in protected habitats. High FGM concentrations in black howler monkeys living in unprotected habitats are associated with increased within-group food competition and probably associated with exposure to anthropogenic

  16. Evaluating effects of habitat loss and land-use continuity on ant species richness in seminatural grassland remnants.

    PubMed

    Dauber, Jens; Bengtsson, Jan; Lenoir, Lisette

    2006-08-01

    Seminatural grasslands in Europe are susceptible to habitat destruction and fragmentation that result in negative effects on biodiversity because of increased isolation and area effects on extinction rate. However even small habitatpatches of seminatural grasslands might be of value for conservation and restoration of species richness in a landscape with a long history of management, which has been argued to lead to high species richness. We tested whether ant communities have been negatively affected by habitat loss and increased isolation of seminatural grasslands during the twentieth century. We examined species richness and community composition in seminatural grasslands of different size in a mosaic landscape in Central Sweden. Grasslands managed continuously over centuries harbored species-rich and ecologically diverse ant communities. Grassland remnant size had no effect on ant species richness. Small grassland remnants did not harbor a nested subset of the ant species of larger habitats. Community composition of ants was mainly affected by habitat conditions. Our results suggest that the abandonment of traditional land use and the encroachment of trees, rather than the effects of fragmentation, are important for species composition in seminatural grasslands. Our results highlight the importance of considering land-use continuity and dispersal ability of thefocal organisms when examining the effects of habitat loss and fragmentation on biodiversity. Landscape history should be considered in conservation programs focusing on effects of land-use change.

  17. Partitioning loss rates of early juvenile blue crabs from seagrass habitats into mortality and emigration

    USGS Publications Warehouse

    Etherington, L.L.; Eggleston, D.B.; Stockhausen, W.T.

    2003-01-01

    Determining how post-settlement processes modify patterns of settlement is vital in understanding the spatial and temporal patterns of recruitment variability of species with open populations. Generally, either single components of post-settlement loss (mortality or emigration) are examined at a time, or else the total loss is examined without discrimination of mortality and emigration components. The role of mortality in the loss of early juvenile blue crabs, Callinectes sapidus, has been addressed in a few studies; however, the relative contribution of emigration has received little attention. We conducted mark-recapture experiments to examine the relative contribution of mortality and emigration to total loss rates of early juvenile blue crabs from seagrass habitats. Loss was partitioned into emigration and mortality components using a modified version of Jackson's (1939) square-within-a-square method. The field experiments assessed the effects of two size classes of early instars (J1-J2, J3-J5), two densities of juveniles (low: 16 m-2, high: 64 m-2), and time of day (day, night) on loss rates. In general, total loss rates of experimental juveniles and colonization rates by unmarked juveniles were extremely high (range = 10-57 crabs m-2/6 h and 17-51 crabs m-2/6 h, for loss and colonization, respectively). Total loss rates were higher at night than during the day, suggesting that juveniles (or potentially their predators) exhibit increased nocturnal activity. While colonization rates did not differ by time of day, J3-J5 juveniles demonstrated higher rates of colonization than J1-J2 crabs. Overall, there was high variability in both mortality and emigration, particularly for emigration. Average probabilities of mortality across all treatment combinations ranged from 0.25-0.67/6 h, while probabilities of emigration ranged from 0.29-0.72/6 h. Although mean mortality rates were greater than emigration rates in most treatments, the proportion of experimental trials

  18. Factors affecting coastal wetland loss and restoration

    USGS Publications Warehouse

    Cahoon, D.R.; Phillips, S.W.

    2007-01-01

    Opening paragraph: Tidal and nontidal wetlands in the Chesapeake Bay watershed provide vital hydrologic, water-quality, and ecological functions. Situated at the interface of land and water, these valuable habitats are vulnerable to alteration and loss by human activities including direct conversion to non-wetland habitat by dredge-and-fill activities from land development, and to the effects of excessive nutrients, altered hydrology and runoff, contaminants, prescribed fire management, and invasive species. Processes such as sea-level rise and climate change also impact wetlands. Although local, State, and Federal regulations provide for protection of wetland resources, the conversion and loss of wetland habitats continue in the Bay watershed. Given the critical values of wetlands, the Chesapeake 2000 Agreement has a goal to achieve a net gain in wetlands by restoring 25,000 acres of tidal and nontidal wetlands by 2010. The USGS has synthesized findings on three topics: (1) sea-level rise and wetland loss, (2) wetland restoration, and (3) factors affecting wetland diversity.

  19. Forest Loss in Protected Areas and Intact Forest Landscapes: A Global Analysis

    PubMed Central

    Heino, Matias; Kummu, Matti; Makkonen, Marika; Mulligan, Mark; Verburg, Peter H.; Jalava, Mika; Räsänen, Timo A.

    2015-01-01

    In spite of the high importance of forests, global forest loss has remained alarmingly high during the last decades. Forest loss at a global scale has been unveiled with increasingly finer spatial resolution, but the forest extent and loss in protected areas (PAs) and in large intact forest landscapes (IFLs) have not so far been systematically assessed. Moreover, the impact of protection on preserving the IFLs is not well understood. In this study we conducted a consistent assessment of the global forest loss in PAs and IFLs over the period 2000–2012. We used recently published global remote sensing based spatial forest cover change data, being a uniform and consistent dataset over space and time, together with global datasets on PAs’ and IFLs’ locations. Our analyses revealed that on a global scale 3% of the protected forest, 2.5% of the intact forest, and 1.5% of the protected intact forest were lost during the study period. These forest loss rates are relatively high compared to global total forest loss of 5% for the same time period. The variation in forest losses and in protection effect was large among geographical regions and countries. In some regions the loss in protected forests exceeded 5% (e.g. in Australia and Oceania, and North America) and the relative forest loss was higher inside protected areas than outside those areas (e.g. in Mongolia and parts of Africa, Central Asia, and Europe). At the same time, protection was found to prevent forest loss in several countries (e.g. in South America and Southeast Asia). Globally, high area-weighted forest loss rates of protected and intact forests were associated with high gross domestic product and in the case of protected forests also with high proportions of agricultural land. Our findings reinforce the need for improved understanding of the reasons for the high forest losses in PAs and IFLs and strategies to prevent further losses. PMID:26466348

  20. Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn; Tohtz, Joel

    The construction of Hungry Horse Dam inundated 125 km of adfluvial trout habitat in the South Fork of the Flathead River and its tributaries, impacting natural fish reproduction and rearing. Rapid residential and commercial growth in the Flathead Watershed now threaten the best remaining habitats and restrict our opportunities to offset natural resource losses. Hydropower development and other land disturbances caused severe declines in the range and abundance of our focal resident fish species, bull trout and westslope cutthroat trout. Bull trout were listed as threatened in 1998 under the Endangered Species Act and westslope cutthroat were petitioned for listingmore » under ESA. Westslope cutthroat are a species of special concern in Montana and a species of special consideration by the Confederated Salish and Kootenai Tribes. The Secure & Protect Fisheries Habitat project follows the logical progression towards habitat restoration outlined in the Hungry Horse Dam Fisheries Mitigation Implementation Plan approved by the NWPPC in 1993. This project is also consistent with the 2000 Fish and Wildlife Program and the Flathead River Subbasin Plan that identifies the protection of habitats for these populations as one of the most critical needs in the subbasin and directs actions to offset habitat losses. The Flathead basin is one of the fastest growing human population centers in Montana. Riparian habitats are being rapidly developed and subdivided, causing habitat degradation and altering ecosystem functions. Remaining critical habitats in the Flathead Watershed need to be purchased or protected with conservation easements if westslope cutthroat and bull trout are to persist and expand within the subbasin. In addition, habitats degraded by past land uses need to be restored to maximize the value of remaining habitats and offset losses caused by the construction of Hungry Horse Dam. Securing and restoring remaining riparian habitat will benefit fish by shading and

  1. Protection Enhances Community and Habitat Stability: Evidence from a Mediterranean Marine Protected Area

    PubMed Central

    Fraschetti, Simonetta; Guarnieri, Giuseppe; Bevilacqua, Stanislao; Terlizzi, Antonio; Boero, Ferdinando

    2013-01-01

    Rare evidences support that Marine Protected Areas (MPAs) enhance the stability of marine habitats and assemblages. Based on nine years of observation (2001–2009) inside and outside a well managed MPA, we assessed the potential of conservation and management actions to modify patterns of spatial and/or temporal variability of Posidonia oceanica meadows, the lower midlittoral and the shallow infralittoral rock assemblages. Significant differences in both temporal variations and spatial patterns were observed between protected and unprotected locations. A lower temporal variability in the protected vs. unprotected assemblages was found in the shallow infralittoral, demonstrating that, at least at local scale, protection can enhance community stability. Macrobenthos with long-lived and relatively slow-growing invertebrates and structurally complex algal forms were homogeneously distributed in space and went through little fluctuations in time. In contrast, a mosaic of disturbed patches featured unprotected locations, with small-scale shifts from macroalgal stands to barrens, and harsh temporal variations between the two states. Opposite patterns of spatial and temporal variability were found for the midlittoral assemblages. Despite an overall clear pattern of seagrass regression through time, protected meadows showed a significantly higher shoot density than unprotected ones, suggesting a higher resistance to local human activities. Our results support the assumption that the exclusion/management of human activities within MPAs enhance the stability of the structural components of protected marine systems, reverting or arresting threat-induced trajectories of change. PMID:24349135

  2. Detroit River habitat inventory

    USGS Publications Warehouse

    Manny, Bruce A.

    2003-01-01

    This inventory complements a previous survey of habitat in Ontario waters of the Detroit River (OMNR,1993). It is a starting point for balanced and sustained use of the river for natural resource conservation and economic development. The objectives of the inventory were to: (1) locate candidate sites for protection and restoration of fish and wildlife habitat in Michigan waters of the Detroit River; (2) describe the ownership and size of each site, as well as its potential for habitat protection and restoration; and (3) subjectively assess the extent to which existing habitat along the river is productive of fish and wildlife and protected from land uses that have degraded or destroyed such habitat.

  3. Modeling the effectiveness of tree planting to mitigate habitat loss in blue oak woodlands

    Treesearch

    Richard B. Standiford; Douglas McCreary; William Frost

    2002-01-01

    Many local conservation policies have attempted to mitigate the loss of oak woodland habitat resulting from conversion to urban or intensive agricultural land uses through tree planting. This paper models the development of blue oak (Quercus douglasii) stand structure attributes over 50 years after planting. The model uses a single tree, distance...

  4. Artificial coastal lagoons at solar salt-working sites: A network of habitats for specialised, protected and alien biodiversity

    NASA Astrophysics Data System (ADS)

    Herbert, Roger J. H.; Broderick, Lee G.; Ross, Kathryn; Moody, Chris; Cruz, Tamira; Clarke, Leo; Stillman, Richard A.

    2018-04-01

    There are concerns that novel structures might displace protected species, facilitate the spread of non-indigenous species, or modify native habitats. It is also predicted that ocean warming and the associated effects of climate change will significantly increase biodiversity loss within coastal regions. Resilience is to a large extent influenced by the magnitude of dispersal and level of connectivity within and between populations. Therefore it is important to investigate the distribution and ecological significance of novel and artificial habitats, the presence of protected and alien species and potential vectors of propagule dispersal. The legacy of solar salt-making in tropical and warm temperate regions is regionally extensive areas of artificial hypersaline ponds, canals and ditches. Yet the broad-scale contribution of salt-working to a network of benthic biodiversity has not been fully established. Artisanal, abandoned and historic salt-working sites were investigated along the Atlantic coast of Europe between southern England (50°N) and Andalucía, Spain (36°N). Natural lagoons are scarce along this macrotidal coast and are vulnerable to environmental change; however it is suspected that avian propagule dispersal is important in maintaining population connectivity. During bird migration periods, benthic cores were collected for infauna from 70 waterbodies across 21 salt-working sites in 5 coastal regions. Bird ringing data were used to investigate potential avian connectivity between locations. Lagoonal specialist species, some of international conservation importance, were recorded across all regions in the storage reservoirs and evaporation ponds of continental salinas, yet few non-indigenous species were observed. Potential avian propagule transport and connectivity within and between extant salt-working sites is high and these artificial habitats are likely to contribute significantly to a network of coastal lagoon biodiversity in Europe.

  5. Habitat Evaluation Procedure (HEP) Report for the Pend Oreille Wetlands Wildlife Project, Technical Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, Darren

    The Habitat Evaluation Procedure (HEP), developed in 1980 by the U.S. Fish and Wildlife Service (USFWS 1980a, USFWS 1980b), uses a habitat/species based approach to assessing project impacts, and is a convenient tool to document the predicted effects of proposed management actions. The Northwest Power Planning Council (NPPC) endorsed the use of HEP in its Columbia River Basin Fish and Wildlife Program to evaluate wildlife benefits and impacts associated with the development and operation of the federal Columbia River Basin hydroelectric system (NPPC 1994). The Albeni Falls Interagency Work Group (AFIWG) used HEP in 1987 to evaluate wildlife habitat lossesmore » attributed to the Albeni Falls hydroelectric facility (Martin et al. 1988). In 1992, the AFIWG (Idaho Department of Fish and Game; Kalispel, Coeur d'Alene, and Kootenai Tribes) began implementing activities to mitigate these losses. Implementation activities include protecting, restoring and enhancing wildlife habitat. HEPs are used extensively within the NPPC's Columbia River Basin Fish and Wildlife Program. Wildlife managers use HEP to determine habitat lost from the construction of the federal hydroelectric projects and habitat gained through NPPC mitigation program. Habitat Suitability Index (HSI) models for each of the seven target species are used to determine habitat quality and quantity losses for representative habitat cover types for this project. Target species include Bald Eagle, black-capped chickadee, Canada goose, mallard, muskrat, white-tailed deer and yellow warbler. In 2002, a HEP team determined the habitat condition of the 436-acre Pend Oreille Wetlands Wildlife Project (Figure 1). The HEP team consisted of the following members and agencies: Roy Finley, Kalispel Natural Resource Department (KNRD); Neil Lockwood, KNRD; Brian Merson, KNRD; Sonny Finley, KNRD; Darren Holmes, KNRD; Anna, Washington Dept. of Fish and Game (WDFW); and Scott, WDFW. Baseline Habitat Units (HU) will be credited

  6. 42 CFR 422.132 - Protection against liability and loss of benefits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM MEDICARE ADVANTAGE PROGRAM Benefits and Beneficiary Protections § 422.132 Protection against liability and loss of benefits. Enrollees of MA organizations are... 42 Public Health 3 2010-10-01 2010-10-01 false Protection against liability and loss of benefits...

  7. Economic growth, biodiversity loss and conservation effort.

    PubMed

    Dietz, Simon; Adger, W Neil

    2003-05-01

    This paper investigates the relationship between economic growth, biodiversity loss and efforts to conserve biodiversity using a combination of panel and cross section data. If economic growth is a cause of biodiversity loss through habitat transformation and other means, then we would expect an inverse relationship. But if higher levels of income are associated with increasing real demand for biodiversity conservation, then investment to protect remaining diversity should grow and the rate of biodiversity loss should slow with growth. Initially, economic growth and biodiversity loss are examined within the framework of the environmental Kuznets hypothesis. Biodiversity is represented by predicted species richness, generated for tropical terrestrial biodiversity using a species-area relationship. The environmental Kuznets hypothesis is investigated with reference to comparison of fixed and random effects models to allow the relationship to vary for each country. It is concluded that an environmental Kuznets curve between income and rates of loss of habitat and species does not exist in this case. The role of conservation effort in addressing environmental problems is examined through state protection of land and the regulation of trade in endangered species, two important means of biodiversity conservation. This analysis shows that the extent of government environmental policy increases with economic development. We argue that, although the data are problematic, the implications of these models is that conservation effort can only ever result in a partial deceleration of biodiversity decline partly because protected areas serve multiple functions and are not necessarily designated to protect biodiversity. Nevertheless institutional and policy response components of the income biodiversity relationship are important but are not well captured through cross-country regression analysis.

  8. Habitat assessment for giant pandas in the Qinling Mountain region of China

    USGS Publications Warehouse

    Feng, Tian-Tian; Van Manen, Frank T.; Zhao, Na-Xun; Li, Ming; Wei, Fu-Wen

    2009-01-01

    Because habitat loss and fragmentation threaten giant pandas (Ailuropoda melanoleuca), habitat protection and restoration are important conservation measures for this endangered species. However, distribution and value of potential habitat to giant pandas on a regional scale are not fully known. Therefore, we identified and ranked giant panda habitat in Foping Nature Reserve, Guanyinshan Nature Reserve, and adjacent areas in the Qinling Mountains of China. We used Mahalanobis distance and 11 digital habitat layers to develop a multivariate habitat signature associated with 247 surveyed giant panda locations, which we then applied to the study region. We identified approximately 128 km2 of giant panda habitat in Foping Nature Reserve (43.6% of the reserve) and 49 km2 in Guanyinshan Nature Reserve (33.6% of the reserve). We defined core habitat areas by incorporating a minimum patch-size criterion (5.5 km2) based on home-range size. Percentage of core habitat area was higher in Foping Nature Reserve (41.8% of the reserve) than Guanyinshan Nature Reserve (26.3% of the reserve). Within the larger analysis region, Foping Nature Reserve contained 32.7% of all core habitat areas we identified, indicating regional importance of the reserve. We observed a negative relationship between distribution of core areas and presence of roads and small villages. Protection of giant panda habitat at lower elevations and improvement of habitat linkages among core habitat areas are important in a regional approach to giant panda conservation.

  9. A diffusion model of protected population on bilocal habitat with generalized resource

    NASA Astrophysics Data System (ADS)

    Vasilyev, Maxim D.; Trofimtsev, Yuri I.; Vasilyeva, Natalya V.

    2017-11-01

    A model of population distribution in a two-dimensional area divided by an ecological barrier, i.e. the boundaries of natural reserve, is considered. Distribution of the population is defined by diffusion, directed migrations and areal resource. The exchange of specimens occurs between two parts of the habitat. The mathematical model is presented in the form of a boundary value problem for a system of non-linear parabolic equations with variable parameters of diffusion and growth function. The splitting space variables, sweep method and simple iteration methods were used for the numerical solution of a system. A set of programs was coded in Python. Numerical simulation results for the two-dimensional unsteady non-linear problem are analyzed in detail. The influence of migration flow coefficients and functions of natural birth/death ratio on the distributions of population densities is investigated. The results of the research would allow to describe the conditions of the stable and sustainable existence of populations in bilocal habitat containing the protected and non-protected zones.

  10. Habitat Evaluation Procedure (HEP) Report for the Pend Oreille Wetlands Wildlife II Project, Technical Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, Darren

    The Habitat Evaluation Procedure (HEP), developed in 1980 by the U.S. Fish and Wildlife Service (USFWS 1980a, USFWS 1980b), uses a habitat/species based approach to assessing project impacts, and is a convenient tool to document the predicted effects of proposed management actions. The Northwest Power Planning Council (NPPC) endorsed the use of HEP in its Columbia River Basin Fish and Wildlife Program to evaluate wildlife benefits and impacts associated with the development and operation of the federal Columbia River Basin hydroelectric system (NPPC 1994). The Albeni Falls Interagency Work Group (AFIWG) used HEP in 1987 to evaluate wildlife habitat lossesmore » attributed to the Albeni Falls hydroelectric facility (Martin et al. 1988). In 1992, the AFIWG (Idaho Department of Fish and Game; Kalispel, Coeur d'Alene, and Kootenai Tribes) began implementing activities to mitigate these losses. Implementation activities include protecting, restoring and enhancing wildlife habitat. HEPs are used extensively within the NPPC's Columbia River Basin Fish and Wildlife Program. Wildlife managers use HEP to determine habitat lost from the construction of the federal hydroelectric projects and habitat gained through NPPC mitigation program. Habitat Suitability Index (HSI) models for each of the seven target species are used to determine habitat quality and quantity losses for representative habitat cover types for this project. Target species include Bald Eagle, black-capped chickadee, Canada goose, mallard, muskrat, white-tailed deer and yellow warbler. In 2002, a HEP team determined the habitat condition of the 164-acre Pend Oreille Wetlands Wildlife II Project (Figure 1). The HEP team consisted of the following members and agencies: Roy Finley, Kalispel Natural Resource Department (KNRD); Neil Lockwood, KNRD; Brian Merson, KNRD; Sonny Finley, KNRD; Darren Holmes, KNRD; Anna, Washington Dept. of Fish and Game (WDFW); and Scott, WDFW. Baseline Habitat Units (HU) will be

  11. Duck Valley Habitat Enhancement and Protection, 2001-2002 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Mattie H.; Sellman, Jake

    The Duck Valley Indian Reservation's Habitat Enhancement project is an ongoing project designed to enhance and protect critical riparian areas, natural springs, the Owhyee River and its tributaries, and native fish spawning areas on the Reservation. The project commenced in 1997 and addresses the Northwest Power Planning Council's measures 10.8C.2, 10.8C.3, and 10.8C.5 of the 1994 Columbia River Basin Fish and Wildlife Program. The performance period covers dates from April 2001 through August 2002.

  12. Socio-economic and ecological impacts of global protected area expansion plans

    PubMed Central

    Visconti, Piero; Bakkenes, Michel; Smith, Robert J.; Joppa, Lucas; Sykes, Rachel E.

    2015-01-01

    Several global strategies for protected area (PA) expansion have been proposed to achieve the Convention on Biological Diversity's Aichi target 11 as a means to stem biodiversity loss, as required by the Aichi target 12. However, habitat loss outside PAs will continue to affect habitats and species, and PAs may displace human activities into areas that might be even more important for species persistence. Here we measure the expected contribution of PA expansion strategies to Aichi target 12 by estimating the extent of suitable habitat available for all terrestrial mammals, with and without additional protection (the latter giving the counterfactual outcome), under different socio-economic scenarios and consequent land-use change to 2020. We found that expanding PAs to achieve representation targets for ecoregions under a Business-as-usual socio-economic scenario will result in a worse prognosis than doing nothing for more than 50% of the world's terrestrial mammals. By contrast, targeting protection towards threatened species can increase the suitable habitat available to over 60% of terrestrial mammals. Even in the absence of additional protection, an alternative socio-economic scenario, adopting progressive changes in human consumption, leads to positive outcomes for mammals globally and to the largest improvements for wide-ranging species. PMID:26460136

  13. Socio-economic and ecological impacts of global protected area expansion plans.

    PubMed

    Visconti, Piero; Bakkenes, Michel; Smith, Robert J; Joppa, Lucas; Sykes, Rachel E

    2015-11-05

    Several global strategies for protected area (PA) expansion have been proposed to achieve the Convention on Biological Diversity's Aichi target 11 as a means to stem biodiversity loss, as required by the Aichi target 12. However, habitat loss outside PAs will continue to affect habitats and species, and PAs may displace human activities into areas that might be even more important for species persistence. Here we measure the expected contribution of PA expansion strategies to Aichi target 12 by estimating the extent of suitable habitat available for all terrestrial mammals, with and without additional protection (the latter giving the counterfactual outcome), under different socio-economic scenarios and consequent land-use change to 2020. We found that expanding PAs to achieve representation targets for ecoregions under a Business-as-usual socio-economic scenario will result in a worse prognosis than doing nothing for more than 50% of the world's terrestrial mammals. By contrast, targeting protection towards threatened species can increase the suitable habitat available to over 60% of terrestrial mammals. Even in the absence of additional protection, an alternative socio-economic scenario, adopting progressive changes in human consumption, leads to positive outcomes for mammals globally and to the largest improvements for wide-ranging species. © 2015 The Author(s).

  14. Can Static Habitat Protection Encompass Critical Areas for Highly Mobile Marine Top Predators? Insights from Coastal East Africa.

    PubMed

    Pérez-Jorge, Sergi; Pereira, Thalia; Corne, Chloe; Wijtten, Zeno; Omar, Mohamed; Katello, Jillo; Kinyua, Mark; Oro, Daniel; Louzao, Maite

    2015-01-01

    Along the East African coast, marine top predators are facing an increasing number of anthropogenic threats which requires the implementation of effective and urgent conservation measures to protect essential habitats. Understanding the role that habitat features play on the marine top predator' distribution and abundance is a crucial step to evaluate the suitability of an existing Marine Protected Area (MPA), originally designated for the protection of coral reefs. We developed species distribution models (SDM) on the IUCN data deficient Indo-Pacific bottlenose dolphin (Tursiops aduncus) in southern Kenya. We followed a comprehensive ecological modelling approach to study the environmental factors influencing the occurrence and abundance of dolphins while developing SDMs. Through the combination of ensemble prediction maps, we defined recurrent, occasional and unfavourable habitats for the species. Our results showed the influence of dynamic and static predictors on the dolphins' spatial ecology: dolphins may select shallow areas (5-30 m), close to the reefs (< 500 m) and oceanic fronts (< 10 km) and adjacent to the 100 m isobath (< 5 km). We also predicted a significantly higher occurrence and abundance of dolphins within the MPA. Recurrent and occasional habitats were identified on large percentages on the existing MPA (47% and 57% using presence-absence and abundance models respectively). However, the MPA does not adequately encompass all occasional and recurrent areas and within this context, we propose to extend the MPA to incorporate all of them which are likely key habitats for the highly mobile species. The results from this study provide two key conservation and management tools: (i) an integrative habitat modelling approach to predict key marine habitats, and (ii) the first study evaluating the effectiveness of an existing MPA for marine mammals in the Western Indian Ocean.

  15. Can functional equivalency between seagrasses and other coastal habitats offset loss of ecosystem health with reduced seagrass abundance?

    NASA Astrophysics Data System (ADS)

    Cebrian, J.; Anton, A.; Christiaen, B.; Gamble, R.; Stutes, J.

    2016-02-01

    Seagrasses provide important ecosystem services, such as habitat for fisheries, shoreline stabilization, pollution filtration, and carbon sequestration. Thus, seagrass loss may seriously compromise coastal ecosystem services worldwide. However, functional equivalency (or redundancy) between seagrasses and other components of coastal ecosystems, such as algae and marshes, can offset the loss of services under declining seagrass abundance. That is, if seagrasses are redundant with algae and marshes in their functionality, then ecosystem services may be preserved in changing coasts with declining seagrass but pervading algal and marsh communities. Here we present several instances of functional redundancy between seagrasses and other coastal components in the Northern Gulf of Mexico. We first examine how net ecosystem production, which sets a limit to carbon accumulation and export to neighbouring communities, changes with eutrophication-induced seagrass decline and concomitant increase in algal abundance. Results from comparative and manipulative field studies are congruent and show no change in net ecosystem production despite drastic shifts from seagrass to algal dominance. We further provide evidence that fringing marshes can counteract the reduction in habitat provision for structure-dependent fisheries due to seagrass loss. Using a large-scale field comparison we show that, as long as fringing marshes are preserved, the abundance and diversity of structure-dependent fisheries are maintained despite large seagrass loss. Functional redundancy for habitat provision also occurs between seagrasses and well-oxygenated macroagal stands, since canopy-dwelling faunal abundance remains unaltered if seagrasses are replaced by normoxic algal stands. In concert the results demonstrate substantial functional equivalency between seagrasses and other coastal components, and indicate seagrass loss does not necessarily result in depressed coastal ecosystem health and services.

  16. Size, age, and habitat determine effectiveness of Palau's Marine Protected Areas

    PubMed Central

    Golbuu, Yimnang; Ballesteros, Enric; Caselle, Jennifer E.; Gouezo, Marine; Olsudong, Dawnette; Sala, Enric

    2017-01-01

    Palau has a rich heritage of conservation that has evolved from the traditional moratoria on fishing, or “bul”, to more western Marine Protected Areas (MPAs), while still retaining elements of customary management and tenure. In 2003, the Palau Protected Areas Network (PAN) was created to conserve Palau’s unique biodiversity and culture, and is the country’s mechanism for achieving the goals of the Micronesia Challenge (MC), an initiative to conserve ≥30% of near-shore marine resources within the region by 2020. The PAN comprises a network of numerous MPAs within Palau that vary in age, size, level of management, and habitat, which provide an excellent opportunity to test hypotheses concerning MPA design and function using multiple discreet sampling units. Our sampling design provided a robust space for time comparison to evaluate the relative influence of potential drivers of MPA efficacy. Our results showed that no-take MPAs had, on average, nearly twice the biomass of resource fishes (i.e. those important commercially, culturally, or for subsistence) compared to nearby unprotected areas. Biomass of non-resource fishes showed no differences between no-take areas and areas open to fishing. The most striking difference between no-take MPAs and unprotected areas was the more than 5-fold greater biomass of piscivorous fishes in the MPAs compared to fished areas. The most important determinates of no-take MPA success in conserving resource fish biomass were MPA size and years of protection. Habitat and distance from shore had little effect on resource fish biomass. The extensive network of MPAs in Palau likely provides important conservation and tourism benefits to the Republic, and may also provide fisheries benefits by protecting spawning aggregation sites, and potentially through adult spillover. PMID:28358910

  17. Invasive species and habitat degradation in Iberian streams: an analysis of their role in freshwater fish diversity loss.

    PubMed

    Hermoso, Virgilio; Clavero, Miguel; Blanco-Garrido, Francisco; Prenda, José

    2011-01-01

    Mediterranean endemic freshwater fish are among the most threatened biota in the world. Distinguishing the role of different extinction drivers and their potential interactions is crucial for achieving conservation goals. While some authors argue that invasive species are a main driver of native species declines, others see their proliferation as a co-occurring process to biodiversity loss driven by habitat degradation. It is difficult to discern between the two potential causes given that few invaded ecosystems are free from habitat degradation, and that both factors may interact in different ways. Here we analyze the relative importance of habitat degradation and invasive species in the decline of native fish assemblages in the Guadiana River basin (southwestern Iberian Peninsula) using an information theoretic approach to evaluate interaction pathways between invasive species and habitat degradation (structural equation modeling, SEM). We also tested the possible changes in the functional relationships between invasive and native species, measured as the per capita effect of invasive species, using ANCOVA. We found that the abundance of invasive species was the best single predictor of natives' decline and had the highest Akaike weight among the set of predictor variables examined. Habitat degradation neither played an active role nor influenced the per capita effect of invasive species on natives. Our analyses indicated that downstream reaches and areas close to reservoirs had the most invaded fish assemblages, independently of their habitat degradation status. The proliferation of invasive species poses a strong threat to the persistence of native assemblages in highly fluctuating environments. Therefore, conservation efforts to reduce native freshwater fish diversity loss in Mediterranean rivers should focus on mitigating the effect of invasive species and preventing future invasions.

  18. Housing growth in and near United States protected areas limits their conservation value

    USGS Publications Warehouse

    Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J.; Gimmi, U.; Pidgeon, A.M.; Flather, C.H.; Hammer, R.B.; Helmers, D.P.

    2010-01-01

    Protected areas are crucial for biodiversity conservation because they provide safe havens for species threatened by land-use change and resulting habitat loss. However, protected areas are only effective when they stop habitat loss within their boundaries, and are connected via corridors to other wild areas. The effectiveness of protected areas is threatened by development; however, the extent of this threat is unknown. We compiled spatially-detailed housing growth data from 1940 to 2030, and quantified growth for each wilderness area, national park, and national forest in the conterminous United States. Our findings show that housing development in the United States may severely limit the ability of protected areas to function as a modern "Noah's Ark." Between 1940 and 2000, 28 million housing units were built within 50 km of protected areas, and 940,000 were built within national forests. Housing growth rates during the 1990s within 1 km of protected areas (20% per decade) outpaced the national average (13%). If long-term trends continue, another 17 million housing units will be built within 50 km of protected areas by 2030 (1 million within 1 km), greatly diminishing their conservation value. US protected areas are increasingly isolated, housing development in their surroundings is decreasing their effective size, and national forests are even threatened by habitat loss within their administrative boundaries. Protected areas in the United States are thus threatened similarly to those in developing countries. However, housing growth poses the main threat to protected areas in the United States whereas deforestation is the main threat in developing countries.

  19. Housing growth in and near United States protected areas limits their conservation value.

    PubMed

    Radeloff, Volker C; Stewart, Susan I; Hawbaker, Todd J; Gimmi, Urs; Pidgeon, Anna M; Flather, Curtis H; Hammer, Roger B; Helmers, David P

    2010-01-12

    Protected areas are crucial for biodiversity conservation because they provide safe havens for species threatened by land-use change and resulting habitat loss. However, protected areas are only effective when they stop habitat loss within their boundaries, and are connected via corridors to other wild areas. The effectiveness of protected areas is threatened by development; however, the extent of this threat is unknown. We compiled spatially-detailed housing growth data from 1940 to 2030, and quantified growth for each wilderness area, national park, and national forest in the conterminous United States. Our findings show that housing development in the United States may severely limit the ability of protected areas to function as a modern "Noah's Ark." Between 1940 and 2000, 28 million housing units were built within 50 km of protected areas, and 940,000 were built within national forests. Housing growth rates during the 1990s within 1 km of protected areas (20% per decade) outpaced the national average (13%). If long-term trends continue, another 17 million housing units will be built within 50 km of protected areas by 2030 (1 million within 1 km), greatly diminishing their conservation value. US protected areas are increasingly isolated, housing development in their surroundings is decreasing their effective size, and national forests are even threatened by habitat loss within their administrative boundaries. Protected areas in the United States are thus threatened similarly to those in developing countries. However, housing growth poses the main threat to protected areas in the United States whereas deforestation is the main threat in developing countries.

  20. Habitat selection and management of the Hawaiian crow

    USGS Publications Warehouse

    Giffen, J.G.; Scott, J.M.; Mountainspring, S.

    1987-01-01

    The abundance and range of the Hawaiian crow, or alala, (Corvus hawaiiensis) have decreased drastically since the 1890's. Fewer than 10 breeding pairs remained in the wild in 1985. A sample of 82 nests during 1970-82 were used to determine habitat associations. Two hundred firty-nine alala observations were used to estimate densities occurring in different vegetation types in 1978. Compared to available habitat, more nests and higher bird densities during the breeding season occurred in areas where: (1) canopy cover was > 60%; (2) koa (Acacia koa) and ohia (Metrosideros polymorpha) were dominant species in the crown layer; (3) native plants constituted > 75% of the understory cover; and (4) the elevation was 1,100-1,500 m. Compared to breeding habitat, nonbreeding habitat tended to lie at lower elevations and in wetter forests having the crown layer dominated by ohia but lacking koa. Habitat loss is a major factor underlying the decline of this species although predation on fledgings, avian disease, and shooting also have reduced the population. Remaining key habitat areas have little or no legal protection through zoning and land ownership. Preserves should be established to encompass the location of existing pairs and to assure the provision of optimum breeding habitat and suitable nonbreeding habitat.

  1. A preliminary assessment of the effectiveness of the Mesoamerican Biological Corridor for protecting potential Baird's tapir (Tapirus bairdii) habitat in Southern Mexico.

    PubMed

    Mendoza, Eduardo; Fuller, Trevon L; Thomassen, Henri A; Buermann, Wolfgang; Ramírez-Mejía, Diana; Smith, Thomas B

    2013-03-01

    Baird's tapir (Tapirus bairdii) is one of the most emblematic mammals of Mesoamerica, but like other large-bodied animals, it is facing an increasing risk of extinction due primarily to habitat loss. Mexico's 'ortion of the Mesoamerican Biological Corridor (MBC-M) is located in one of the main strongholds for Bairds tapir. To assess the MBC-M's effectiveness for tapir conservation, we estimated the distribution of the species' potential habitat by applying 2 modelling approaches (random forest and Maxent) to a set of uncorrelated environmental variables and a 157-point presence dataset. We calculated the extent of tapir habitat in within the MBC-M and modelled new corridors and conservation areas, which we compared to the MBC-M. Moreover, we assessed deforestation patterns in the region. Twenty-seven percent of highly suitable tapir habitat occurred in protected areas, 15% in corridors and 58.3% was outside the MBC-M and associated reserves. The spatial configuration of the MBC-M was partially concordant with the modelled set of conservation areas and corridors. The main dissimilarity was that the modelled corridors traversed forests in Belize and Guatemala to connect conservation areas. Analyses of deforestation since 1993 and human population density in the vicinity of the MBC-M indicated that future conservation efforts should give particular attention to the Montes Azules-El Triunfo Corridor due to greater habitat threat. The MBC-M has a great potential to play a prominent role in the conservation of tapir habitat but there is an urgent need to implement management plans that reinforce and complement this conservation initiative. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  2. Host density and human activities mediate increased parasite prevalence and richness in primates threatened by habitat loss and fragmentation.

    PubMed

    Mbora, David N M; McPeek, Mark A

    2009-01-01

    1. Habitat loss and fragmentation are the principal causes of the loss of biological diversity. In addition, parasitic diseases are an emerging threat to many animals. Nevertheless, relatively few studies have tested how habitat loss and fragmentation influence the prevalence and richness of parasites in animals. 2. Several studies of nonhuman primates have shown that measures of human activity and forest fragmentation correlate with parasitism in primates. However, these studies have not tested for the ecological mechanism(s) by which human activities or forest fragmentation influence the prevalence and richness of parasites. 3. We tested the hypothesis that increased host density due to forest fragmentation and loss mediates increases in the prevalence and richness of gastrointestinal parasites in two forest primates, the Tana River red colobus (Procolobus rufomitratus, Peters 1879) and mangabey (Cercocebus galeritus galeritus, Peters 1879). We focused on population density because epidemiological theory states that host density is a key determinant of the prevalence and richness of directly transmitted parasites in animals. 4. The Tana River red colobus and mangabey are endemic to a highly fragmented forest ecosystem in eastern Kenya where habitat changes are caused by a growing human population increasingly dependent on forest resources and on clearing forest for cultivation. 5. We found that the prevalence of parasites in the two monkeys was very high compared to primates elsewhere. Density of monkeys was positively associated with forest area and disturbance in forests. In turn, the prevalence and richness of parasites was significantly associated with monkey density, and attributes indicative of human disturbance in forests. 6. We also found significant differences in the patterns of parasitism between the colobus and the mangabey possibly attributable to differences in their behavioural ecology. Colobus are arboreal folivores while mangabeys are terrestrial

  3. Future hotspots of terrestrial mammal loss

    PubMed Central

    Visconti, Piero; Pressey, Robert L.; Giorgini, Daniele; Maiorano, Luigi; Bakkenes, Michel; Boitani, Luigi; Alkemade, Rob; Falcucci, Alessandra; Chiozza, Federica; Rondinini, Carlo

    2011-01-01

    Current levels of endangerment and historical trends of species and habitats are the main criteria used to direct conservation efforts globally. Estimates of future declines, which might indicate different priorities than past declines, have been limited by the lack of appropriate data and models. Given that much of conservation is about anticipating and responding to future threats, our inability to look forward at a global scale has been a major constraint on effective action. Here, we assess the geography and extent of projected future changes in suitable habitat for terrestrial mammals within their present ranges. We used a global earth-system model, IMAGE, coupled with fine-scale habitat suitability models and parametrized according to four global scenarios of human development. We identified the most affected countries by 2050 for each scenario, assuming that no additional conservation actions other than those described in the scenarios take place. We found that, with some exceptions, most of the countries with the largest predicted losses of suitable habitat for mammals are in Africa and the Americas. African and North American countries were also predicted to host the most species with large proportional global declines. Most of the countries we identified as future hotspots of terrestrial mammal loss have little or no overlap with the present global conservation priorities, thus confirming the need for forward-looking analyses in conservation priority setting. The expected growth in human populations and consumption in hotspots of future mammal loss mean that local conservation actions such as protected areas might not be sufficient to mitigate losses. Other policies, directed towards the root causes of biodiversity loss, are required, both in Africa and other parts of the world. PMID:21844048

  4. Habitat fragmentation effects on annual survival of the federally protected eastern indigo snake

    USGS Publications Warehouse

    Breininger, D.R.; Mazerolle, M.J.; Bolt, M.R.; Legare, M.L.; Drese, J.H.; Hines, J.E.

    2012-01-01

    The eastern indigo snake (Drymarchon couperi) is a federally listed species, most recently threatened by habitat loss and habitat degradation. In an effort to estimate snake survival, a total of 103 individuals (59 males, 44 females) were followed using radio-tracking from January 1998 to March 2004 in three landscape types that had increasing levels of habitat fragmentation: (1) conservation cores; (2) conservation areas along highways; (3) suburbs. Because of a large number of radio-tracking locations underground for which the state of snakes (i.e. alive or dead) could not be assessed, we employed a multistate approach to model snake apparent survival and encounter probability of live and dead snakes. We predicted that male snakes in suburbs would have the lowest annual survival. We found a transmitter implantation effect on snake encounter probability, as snakes implanted on a given occasion had a lower encounter probability on the next visit compared with snakes not implanted on the previous occasion. Our results indicated that adult eastern indigo snakes have relatively high survival in conservation core areas, but greatly reduced survival in conservation areas along highways and in suburbs. These findings indicate that habitat fragmentation is likely to be the critical factor for species' persistence.

  5. Selecting compact habitat reserves for species with differential habitat size needs

    Treesearch

    Vladimir Marianov; Charles ReVelle; Stephanie Snyder

    2008-01-01

    We propose a model for the design of protected habitat reserves, which maximizes the number of species represented at least once in a limited set of reserved sites or parcels. Most models for reserve design do not differentiate eligible habitat sites by their size. Also, they assume that protection is guaranteed through the selection of one site for any species, not...

  6. A general framework for predicting delayed responses of ecological communities to habitat loss.

    PubMed

    Chen, Youhua; Shen, Tsung-Jen

    2017-04-20

    Although biodiversity crisis at different spatial scales has been well recognised, the phenomena of extinction debt and immigration credit at a crossing-scale context are, at best, unclear. Based on two community patterns, regional species abundance distribution (SAD) and spatial abundance distribution (SAAD), Kitzes and Harte (2015) presented a macroecological framework for predicting post-disturbance delayed extinction patterns in the entire ecological community. In this study, we further expand this basic framework to predict diverse time-lagged effects of habitat destruction on local communities. Specifically, our generalisation of KH's model could address the questions that could not be answered previously: (1) How many species are subjected to delayed extinction in a local community when habitat is destructed in other areas? (2) How do rare or endemic species contribute to extinction debt or immigration credit of the local community? (3) How will species differ between two local areas? From the demonstrations using two SAD models (single-parameter lognormal and logseries), the predicted patterns of the debt, credit, and change in the fraction of unique species can vary, but with consistencies and depending on several factors. The general framework deepens the understanding of the theoretical effects of habitat loss on community dynamic patterns in local samples.

  7. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems.

    PubMed

    Dirnböck, Thomas; Djukic, Ika; Kitzler, Barbara; Kobler, Johannes; Mol-Dijkstra, Janet P; Posch, Max; Reinds, Gert Jan; Schlutow, Angela; Starlinger, Franz; Wamelink, Wieger G W

    2017-01-01

    Climate change and excess deposition of airborne nitrogen (N) are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses) in the species potential distribution, but also N driven nutrient enrichment may threaten these habitats. We applied a dynamic geochemical soil model (VSD+) together with a novel niche-based plant response model (PROPS) to 5 forest habitat types (18 forest sites) protected under the EU Directive in Austria. We assessed how future climate change and N deposition might affect habitat suitability, defined as the capacity of a site to host its typical plant species. Our evaluation indicates that climate change will be the main driver of a decrease in habitat suitability in the future in Austria. The expected climate change will increase the occurrence of thermophilic plant species while decreasing cold-tolerant species. In addition to these direct impacts, climate change scenarios caused an increase of the occurrence probability of oligotrophic species due to a higher N immobilisation in woody biomass leading to soil N depletion. As a consequence, climate change did offset eutrophication from N deposition, even when no further reduction in N emissions was assumed. Our results show that climate change may have positive side-effects in forest habitats when multiple drivers of change are considered.

  8. Housing growth in and near United States protected areas limits their conservation value

    PubMed Central

    Radeloff, Volker C.; Stewart, Susan I.; Hawbaker, Todd J.; Gimmi, Urs; Pidgeon, Anna M.; Flather, Curtis H.; Hammer, Roger B.; Helmers, David P.

    2009-01-01

    Protected areas are crucial for biodiversity conservation because they provide safe havens for species threatened by land-use change and resulting habitat loss. However, protected areas are only effective when they stop habitat loss within their boundaries, and are connected via corridors to other wild areas. The effectiveness of protected areas is threatened by development; however, the extent of this threat is unknown. We compiled spatially-detailed housing growth data from 1940 to 2030, and quantified growth for each wilderness area, national park, and national forest in the conterminous United States. Our findings show that housing development in the United States may severely limit the ability of protected areas to function as a modern “Noah’s Ark.” Between 1940 and 2000, 28 million housing units were built within 50 km of protected areas, and 940,000 were built within national forests. Housing growth rates during the 1990s within 1 km of protected areas (20% per decade) outpaced the national average (13%). If long-term trends continue, another 17 million housing units will be built within 50 km of protected areas by 2030 (1 million within 1 km), greatly diminishing their conservation value. US protected areas are increasingly isolated, housing development in their surroundings is decreasing their effective size, and national forests are even threatened by habitat loss within their administrative boundaries. Protected areas in the United States are thus threatened similarly to those in developing countries. However, housing growth poses the main threat to protected areas in the United States whereas deforestation is the main threat in developing countries. PMID:20080780

  9. Estimating fish exploitation and aquatic habitat loss across diffuse inland recreational fisheries.

    PubMed

    de Kerckhove, Derrick Tupper; Minns, Charles Kenneth; Chu, Cindy

    2015-01-01

    The current state of many freshwater fish stocks worldwide is largely unknown but suspected to be vulnerable to exploitation from recreational fisheries and habitat degradation. Both these factors, combined with complex ecological dynamics and the diffuse nature of inland fisheries could lead to an invisible collapse: the drastic decline in fish stocks without great public or management awareness. In this study we provide a method to address the pervasive knowledge gaps in regional rates of exploitation and habitat degradation, and demonstrate its use in one of North America's largest and most diffuse recreational freshwater fisheries (Ontario, Canada). We estimated that (1) fish stocks were highly exploited and in apparent danger of collapse in management zones close to large population centres, and (2) fish habitat was under a low but constant threat of degradation at rates comparable to deforestation in Ontario and throughout Canada. These findings confirm some commonly held, but difficult to quantify, beliefs in inland fisheries management but also provide some further insights including (1) large anthropogenic projects greater than one hectare could contribute much more to fish habitat loss on an area basis than the cumulative effect of smaller projects within one year, (2) hooking mortality from catch-and-release fisheries is likely a greater source of mortality than the harvest itself, and (3) in most northern management zones over 50% of the fisheries resources are not yet accessible to anglers. While this model primarily provides a framework to prioritize management decisions and further targeted stock assessments, we note that our regional estimates of fisheries productivity and exploitation were similar to broadscale monitoring efforts by the Province of Ontario. We discuss the policy implications from our results and extending the model to other jurisdictions and countries.

  10. Estimating Fish Exploitation and Aquatic Habitat Loss across Diffuse Inland Recreational Fisheries

    PubMed Central

    de Kerckhove, Derrick Tupper; Minns, Charles Kenneth; Chu, Cindy

    2015-01-01

    The current state of many freshwater fish stocks worldwide is largely unknown but suspected to be vulnerable to exploitation from recreational fisheries and habitat degradation. Both these factors, combined with complex ecological dynamics and the diffuse nature of inland fisheries could lead to an invisible collapse: the drastic decline in fish stocks without great public or management awareness. In this study we provide a method to address the pervasive knowledge gaps in regional rates of exploitation and habitat degradation, and demonstrate its use in one of North America’s largest and most diffuse recreational freshwater fisheries (Ontario, Canada). We estimated that 1) fish stocks were highly exploited and in apparent danger of collapse in management zones close to large population centres, and 2) fish habitat was under a low but constant threat of degradation at rates comparable to deforestation in Ontario and throughout Canada. These findings confirm some commonly held, but difficult to quantify, beliefs in inland fisheries management but also provide some further insights including 1) large anthropogenic projects greater than one hectare could contribute much more to fish habitat loss on an area basis than the cumulative effect of smaller projects within one year, 2) hooking mortality from catch-and-release fisheries is likely a greater source of mortality than the harvest itself, and 3) in most northern management zones over 50% of the fisheries resources are not yet accessible to anglers. While this model primarily provides a framework to prioritize management decisions and further targeted stock assessments, we note that our regional estimates of fisheries productivity and exploitation were similar to broadscale monitoring efforts by the Province of Ontario. We discuss the policy implications from our results and extending the model to other jurisdictions and countries. PMID:25875790

  11. Hunting, Exotic Carnivores, and Habitat Loss: Anthropogenic Effects on a Native Carnivore Community, Madagascar

    PubMed Central

    Farris, Zach J.; Golden, Christopher D.; Karpanty, Sarah; Murphy, Asia; Stauffer, Dean; Ratelolahy, Felix; Andrianjakarivelo, Vonjy; Holmes, Christopher M.; Kelly, Marcella J.

    2015-01-01

    The wide-ranging, cumulative, negative effects of anthropogenic disturbance, including habitat degradation, exotic species, and hunting, on native wildlife has been well documented across a range of habitats worldwide with carnivores potentially being the most vulnerable due to their more extinction prone characteristics. Investigating the effects of anthropogenic pressures on sympatric carnivores is needed to improve our ability to develop targeted, effective management plans for carnivore conservation worldwide. Utilizing photographic, line-transect, and habitat sampling, as well as landscape analyses and village-based bushmeat hunting surveys, we provide the first investigation of how multiple forms of habitat degradation (fragmentation, exotic carnivores, human encroachment, and hunting) affect carnivore occupancy across Madagascar’s largest protected area: the Masoala-Makira landscape. We found that as degradation increased, native carnivore occupancy and encounter rates decreased while exotic carnivore occupancy and encounter rates increased. Feral cats (Felis species) and domestic dogs (Canis familiaris) had higher occupancy than half of the native carnivore species across Madagascar’s largest protected landscape. Bird and small mammal encounter rates were negatively associated with exotic carnivore occupancy, but positively associated with the occupancy of four native carnivore species. Spotted fanaloka (Fossa fossana) occupancy was constrained by the presence of exotic feral cats and exotic small Indian civet (Viverricula indica). Hunting was intense across the four study sites where hunting was studied, with the highest rates for the small Indian civet (x¯ = 90 individuals consumed/year), the ring-tailed vontsira (Galidia elegans) (x¯ = 58 consumed/year), and the fosa (Cryptoprocta ferox) (x¯ = 31 consumed/year). Our modeling results suggest hunters target intact forest where carnivore occupancy, abundance, and species richness, are

  12. A conservation paradox in the Great Basin—Altering sagebrush landscapes with fuel breaks to reduce habitat loss from wildfire

    USGS Publications Warehouse

    Shinneman, Douglas J.; Aldridge, Cameron L.; Coates, Peter S.; Germino, Matthew J.; Pilliod, David S.; Vaillant, Nicole M.

    2018-03-15

    Interactions between fire and nonnative, annual plant species (that is, “the grass/fire cycle”) represent one of the greatest threats to sagebrush (Artemisia spp.) ecosystems and associated wildlife, including the greater sage-grouse (Centrocercus urophasianus). In 2015, U.S. Department of the Interior called for a “science-based strategy to reduce the threat of large-scale rangeland fire to habitat for the greater sage-grouse and the sagebrush-steppe ecosystem.” An associated guidance document, the “Integrated Rangeland Fire Management Strategy Actionable Science Plan,” identified fuel breaks as high priority areas for scientific research. Fuel breaks are intended to reduce fire size and frequency, and potentially they can compartmentalize wildfire spatial distribution in a landscape. Fuel breaks are designed to reduce flame length, fireline intensity, and rates of fire spread in order to enhance firefighter access, improve response times, and provide safe and strategic anchor points for wildland fire-fighting activities. To accomplish these objectives, fuel breaks disrupt fuel continuity, reduce fuel accumulation, and (or) increase plants with high moisture content through the removal or modification of vegetation in strategically placed strips or blocks of land.Fuel breaks are being newly constructed, enhanced, or proposed across large areas of the Great Basin to reduce wildfire risk and to protect remaining sagebrush ecosystems (including greater sage-grouse habitat). These projects are likely to result in thousands of linear miles of fuel breaks that will have direct ecological effects across hundreds of thousands of acres through habitat loss and conversion. These projects may also affect millions of acres indirectly because of edge effects and habitat fragmentation created by networks of fuel breaks. Hence, land managers are often faced with a potentially paradoxical situation: the need to substantially alter sagebrush habitats with fuel breaks

  13. Impacts of climate-change-driven sea level rise on intertidal rocky reef habitats will be variable and site specific.

    PubMed

    Thorner, Jaqueline; Kumar, Lalit; Smith, Stephen D A

    2014-01-01

    Intertidal rocky reefs are complex and rich ecosystems that are vulnerable to even the smallest fluctuations in sea level. We modelled habitat loss associated with sea level rise for intertidal rocky reefs using GIS, high-resolution digital imagery, and LIDAR technology at fine-scale resolution (0.1 m per pixel). We used projected sea levels of +0.3 m, +0.5 m and +1.0 m above current Mean Low Tide Level (0.4 m). Habitat loss and changes were analysed for each scenario for five headlands in the Solitary Islands Marine Park (SIMP), Australia. The results indicate that changes to habitat extent will be variable across different shores and will not necessarily result in net loss of area for some habitats. In addition, habitat modification will not follow a regular pattern over the projected sea levels. Two of the headlands included in the study currently have the maximum level of protection within the SIMP. However, these headlands are likely to lose much of the habitat known to support biodiverse assemblages and may not continue to be suitable sanctuaries into the future. The fine-scale approach taken in this study thus provides a protocol not only for modelling habitat modification but also for future proofing conservation measures under a scenario of changing sea levels.

  14. Does protection of desert tortoise habitat generate other ecological benefits in the Mojave Desert?

    Treesearch

    Matthew L. Brooks

    2000-01-01

    This paper summarizes the ecological effects of fenced habitat protection for the desert tortoise (Gopherus agassizii) at the Desert Tortoise Research Natural Area in the Mojave Desert. The following were higher inside than outside the natural area: (1) annual and perennial plant biomass, cover, diversity and dominance by natives, (2) soil seed...

  15. EFFECTS OF HABITAT LOSS ON POPULATIONS OF WHITE-FOOTED MICE: MATRIX MODEL PREDICTIONS WITH LANDSCAPE-SCALE PERTURBATION EXPERIMENTS

    EPA Science Inventory

    Habitat loss is the leading cause of decline in wildlife diversity and abundance throughout the world, and understanding its impacts on animal populations is a critical challenge facing conservation biologists. Population viability analysis (PVA) is a commonly used tool for pred...

  16. Predicting the effects of proposed Mississippi River diversions on oyster habitat quality; application of an oyster habitat suitability index model

    USGS Publications Warehouse

    Soniat, Thomas M.; Conzelmann, Craig P.; Byrd, Jason D.; Roszell, Dustin P.; Bridevaux, Joshua L.; Suir, Kevin J.; Colley, Susan B.

    2013-01-01

    In an attempt to decelerate the rate of coastal erosion and wetland loss, and protect human communities, the state of Louisiana developed its Comprehensive Master Plan for a Sustainable Coast. The master plan proposes a combination of restoration efforts including shoreline protection, marsh creation, sediment diversions, and ridge, barrier island, and hydrological restoration. Coastal restoration projects, particularly the large-scale diversions of fresh water from the Mississippi River, needed to supply sediment to an eroding coast potentially impact oyster populations and oyster habitat. An oyster habitat suitability index model is presented that evaluates the effects of a proposed sediment and freshwater diversion into Lower Breton Sound. Voluminous freshwater, needed to suspend and broadly distribute river sediment, will push optimal salinities for oysters seaward and beyond many of the existing reefs. Implementation and operation of the Lower Breton Sound diversion structure as proposed would render about 6,173 ha of hard bottom immediately east of the Mississippi River unsuitable for the sustained cultivation of oysters. If historical harvests are to be maintained in this region, a massive and unprecedented effort to relocate private leases and restore oyster bottoms would be required. Habitat suitability index model results indicate that the appropriate location for such efforts are to the east and north of the Mississippi River Gulf Outlet.

  17. Eelgrass habitat near Liberty Bay: Chapter 5

    USGS Publications Warehouse

    Dinicola, Richard S.; Takesue, Renee K.

    2015-01-01

    Seagrasses are a widespread type of marine flowering plants that grow in nearshore intertidal and subtidal zones. Seagrass beds are ecologically important because they affect physical, biological, and chemical characteristics of nearshore habitat, and they are sensitive to changes in coastal water quality (Stevenson and others, 1993; Koch, 2001; Martinez-Crego and others, 2008). Zostera marina, commonly known as eelgrass, is protected by a no-net-loss policy in Washington State where it may be used as spawning habitat by herring, a key prey species for salmon, seabirds, and marine mammals (Bargmann, 1998). Eelgrass forms broad meadows in shallow embayments or narrow fringes on open shorelines (Berry and others, 2003). Anthropogenic activities that increase turbidity, nutrient loading, and physical disturbance at the coast can result in dramatic seagrass decline (Ralph and others, 2006).

  18. Underwater topography determines critical breeding habitat for humpback whales near Osa Peninsula, Costa Rica: implications for marine protected areas.

    PubMed

    Oviedo, L; Solís, M

    2008-06-01

    Migrating humpback whales from northern and southern feeding grounds come to the tropical waters near Osa Peninsula, Pacific of Costa Rica, to reproduce and raise their calves. Planning effective marine protected areas that encompass humpback critical habitats require data about which oceanographic features influence distribution during the breeding period. This study examines the relationship between water depth and ocean floor slope with humpback whale distribution, based on sightings during two breeding seasons (2005 and 2006). Data are from the Southern and Northern subpopulations in the Eastern Tropical Pacific (ETP). Analysis followed the basic principles of the Ecological Niche Factors Analysis (ENFA), where indices of Marginality and Tolerance provide insights on the restrictiveness of habitat use. At a fine scale, physical factors such as water depth and slope define the critical breeding and nursing habitat for M. novaeangliae. Divergence in the subsamples means of depths and slope distribution, with the global mean of the study area in both eco-geographical variables, determine habitat requirements restricted by topographic features such as depths (< 100 m) and slope (< 10%), and locate the key breeding and nursing habitat of the species within the continental shelf domains. Proposed Marine Protected Areas (MPA's) network plans should consider connectivity of Cafio Island-Drake Bay and the extension of Corcovado National Park maritime borders.

  19. The role of habitat-selection in restricting invasive blue mussel advancement to protect native populations in San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Mittal, N.; Saarman, N. P.; Pogson, G.

    2013-12-01

    Introduced species contribute to decline of biodiversity and ecosystem services. Introduced species threaten native species by increasing competition for space and resources, changing their habitat, and disrupting species interactions. Protecting native species is crucial to preserving ecosystem services (i.e. medicinal, agricultural, ecological, and cultural benefits) for future generations. In marine communities, the number of invasive species is dramatically increasing every year, further magnifying the negative impact on native species. This research determines if habitat-specific selection can protect native species from their invasive relatives, and could allow targeted habitat restoration for native species to maintain high levels of biodiversity. Blue mussels provide an ideal system for studying the impact of an invasive species (Mytilus galloprovincialis) on native mussels (M. trossulus), because M. galloprovincialis is marked as one of the world's 100 worst invasive species. Hybridization between M. galloprovincialis and M. trossulus occurs wherever their distributions overlap (i.e. Japan, Puget Sound, and central California). In central California, hybrids form in a broad variety of habitats ever since M. galloprovincialis was introduced about 100 years ago. The current level of threat posed to native mussels in central California is unknown. When population growth rate of an invasive species is higher than the native within a hybrid zone, the invader's genes become more prominent in the hybrids than the native species' genes. This uneven mix of genes and decrease of pure native mussels threatens to drive M. trossulus to extinction. Therefore, it is important to research which environment fosters highest success of pure native species. We conducted a field experiment in San Francisco Bay where mussels were reared in different habitats. We then collected samples and extracted DNA from each treatment, and genotyped them by a next-generation sequencing

  20. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems

    PubMed Central

    Djukic, Ika; Kitzler, Barbara; Kobler, Johannes; Mol-Dijkstra, Janet P.; Posch, Max; Reinds, Gert Jan; Schlutow, Angela; Starlinger, Franz; Wamelink, Wieger G. W.

    2017-01-01

    Climate change and excess deposition of airborne nitrogen (N) are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses) in the species potential distribution, but also N driven nutrient enrichment may threaten these habitats. We applied a dynamic geochemical soil model (VSD+) together with a novel niche-based plant response model (PROPS) to 5 forest habitat types (18 forest sites) protected under the EU Directive in Austria. We assessed how future climate change and N deposition might affect habitat suitability, defined as the capacity of a site to host its typical plant species. Our evaluation indicates that climate change will be the main driver of a decrease in habitat suitability in the future in Austria. The expected climate change will increase the occurrence of thermophilic plant species while decreasing cold-tolerant species. In addition to these direct impacts, climate change scenarios caused an increase of the occurrence probability of oligotrophic species due to a higher N immobilisation in woody biomass leading to soil N depletion. As a consequence, climate change did offset eutrophication from N deposition, even when no further reduction in N emissions was assumed. Our results show that climate change may have positive side-effects in forest habitats when multiple drivers of change are considered. PMID:28898262

  1. Safe Haven Configurations for Deep Space Transit Habitats

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Polsgrove, Tara; Rowe, Justin; Simon, Matthew

    2017-01-01

    Throughout the human space flight program there have been instances where smoke, fire, and pressure loss have occurred onboard space vehicles, putting crews at risk for loss of mission and loss of life. In every instance the mission has been in Low-Earth-Orbit (LEO) with access to multiple volumes that could be used to quickly seal off the damaged module or escape vehicles for a quick return to Earth. For long duration space missions beyond LEO, including Mars transit missions of about 1000 days, the mass penalty for multiple volumes has been a concern as has operating in an environment where a quick return will not be possible. In 2016 a study was done to investigate a variety of dual pressure vessel configurations for habitats that could protect the crew from these hazards. It was found that for a modest increase in total mass it should be possible to provide significant protection for the crew. Several configurations were developed that either had a small safe haven to provide 30-days to recover, or a full duration safe haven using two equal size pressure vessel volumes. The 30-day safe haven was found to be the simplest, yielding the least total mass impact but still with some risk if recovery is not possible during that timeframe. The full duration safe haven was the most massive option but provided the most robust solution. This paper provides information on the various layouts considered in the study and provides a discussion of the findings for implementing a safe haven in future habitat designs.

  2. Sexual differences in the post-breeding movements and habitats selected by Western toads (Bufo boreas) in southeastern Idaho

    USGS Publications Warehouse

    Bartelt, Paul E.; Peterson, Charles R.; Klaver, Robert W.

    2004-01-01

    We used radio-telemetry to study the movements and habitat use of Western toads (Bufo boreas) in the Targhee National Forest in southeastern Idaho. Eighteen toads (10 male and 8 female) that bred in a seasonally flooded pond, were fitted with radio-transmitters, tracked, and their movements mapped and analyzed with global positioning and geographic information systems. We also analyzed their patterns of habitat selection at micro- and macro-scales by comparing sites used by toads with randomly selected sites. After breeding, two male and six female toads left the breeding pond and used terrestrial habitats extensively. Male and female toads showed different patterns of movement and habitat use, although all toads seemed to behave in ways that reduced loss of body water (e.g., such as traveling on nights of high humidity). Male toads traveled shorter distances from the pond than females (581 ± 98 m and 1105 ± 272 m, respectively). Female toads used terrestrial habitats extensively and were selective of cover types (e.g., shrub) that provided greater protection from dehydration. Female toads also preferred certain habitat edges and open forests over forests with closed canopies or clearcuts. Information from this study can assist land managers in establishing protective buffers and managing forests for the protection of toad populations.

  3. An approach of habitat degradation assessment for characterization on coastal habitat conservation tendency.

    PubMed

    Zhou, Xi-Yin; Lei, Kun; Meng, Wei

    2017-09-01

    Coastal zones are population and economy highly intensity regions all over the world, and coastal habitat supports the sustainable development of human society. The accurate assessment of coastal habitat degradation is the essential prerequisite for coastal zone protection. In this study, an integrated framework of coastal habitat degradation assessment including landuse classification, habitat classifying and zoning, evaluation criterion of coastal habitat degradation and coastal habitat degradation index has been established for better regional coastal habitat assessment. Through establishment of detailed three-class landuse classification, the fine landscape change is revealed, the evaluation criterion of coastal habitat degradation through internal comparison based on the results of habitat classifying and zoning could indicate the levels of habitat degradation and distinguish the intensity of human disturbances in different habitat subareas under the same habitat classification. Finally, the results of coastal habitat degradation assessment could be achieved through coastal habitat degradation index (CHI). A case study of the framework is carried out in the Circum-Bohai-Sea-Coast, China, and the main results show the following: (1) The accuracy of all land use classes are above 90%, which indicates a satisfactory accuracy for the classification map. (2) The Circum-Bohai-Sea-Coast is divided into 3 kinds of habitats and 5 subareas. (3) In the five subareas of the Circum-Bohai-Sea-Coast, the levels of coastal habitat degradation own significant difference. The whole Circum-Bohai-Sea-Coast generally is in a worse state according to area weighting of each habitat subarea. This assessment framework of coastal habitat degradation would characterize the landuse change trend, realize better coastal habitat degradation assessment, reveal the habitat conservation tendency and distinguish intensity of human disturbances. Furthermore, it would support for accurate coastal

  4. Pitheciids in fragmented habitats: Land cover change and its implications for conservation.

    PubMed

    Boyle, Sarah A

    2016-05-01

    Pitheciids (Cacajao, Callicebus, Chiropotes, and Pithecia) have experienced habitat loss and fragmentation across their geographic range in South America. Some populations living in habitat fragments live in smaller groups, travel shorter distances, and consume items that are not regularly found in the diets of populations living in continuous habitat; however, these patterns are not consistent across species. I used the IUCN Red List of Threatened Species to delineate the geographic range and conservation status of 43 pitheciid species. I calculated the amount of modified land cover within the range of each species, as well as the extent to which the remaining habitat exists in small fragments and the amount of forest lost from 2000 to 2012. Mean forest fragment size ranged from 12 to 12,027 ha, and mean forest loss from 2000 to 2012 ranged from 10.7% for Chiropotes to 0.9% for Pithecia. Critically Endangered and Endangered species represented 20.9% of the pitheciid species, and 46.5% of these species had population trends documented as decreasing. Total modified land cover was greatest for Callicebus species (18.0% of geographic range), followed by Chiropotes (13.8%), Pithecia (4.4%), and Cacajao (1.1%). Species of greater conservation concern had smaller geographic ranges, and a greater percentage of their range consisting of modified land cover than species of lower conservation concern. Species of greater conservation concern also had a greater percentage of forest lost from 2000 to 2012 and a smaller percentage of the remaining forest being protected. Most studies of pitheciids in fragments have concentrated on census data; the behavior of pitheciids in fragments has been examined for only 9 of the 43 species. Increased data on the responses of pitheciid species to forest loss and fragmentation are necessary in order to address pitheciid conservation, especially in areas undergoing severe habitat loss. © 2014 Wiley Periodicals, Inc.

  5. FUTURE SCENARIOS OF CHANGE IN WILDLIFE HABITAT

    EPA Science Inventory

    Studies in Pennsylvania, Iowa, California, and Oregon show varying losses of terrestrial wildlife habitat in scenarios based on different assumptions about future human land use patterns. Retrospective estimates of losses of habitat since Euro-American settlement in several stud...

  6. Protection alone may not promote natural recovery of biogenic habitats of high biodiversity damaged by mobile fishing gears.

    PubMed

    Fariñas-Franco, Jose M; Allcock, A Louise; Roberts, Dai

    2018-04-01

    The horse mussel Modiolus modiolus (L.) is a large marine bivalve that aggregates to create complex habitats of high biodiversity. As a keystone species, M. modiolus is of great importance for the functioning of marine benthic ecosystems, forming biogenic habitats used to designate Marine Protected Areas (MPAs). The present study investigates the condition of M. modiolus beds historically subjected to intense scallop fishing using mobile fishing gears. The study, conducted seven years after the introduction of legislation banning all forms of fishing, aimed to establish whether natural habitat recovery occurs after protection measures are put in place. Lower biodiversity and up to 80% decline in densities of M. modiolus were recorded across the current distributional range of the species in Strangford Lough, Northern Ireland. The decline in biodiversity in most areas surveyed was consistent with that observed in biogenic reefs impacted by mobile fishing gears elsewhere. Epifauna, including sponges, hydroids and tunicates, experienced the most substantial decline in biodiversity, with up to 64% fewer taxa recorded in 2010 compared with 2003. Higher variability in community composition and a shift towards faunal assemblages dominated by opportunistic infaunal species typical of softer substrata were also detected. Based on these observations we suggest that, for biogenic habitats, the designation of MPAs and the introduction of fishing bans alone may not be sufficient to reverse or halt the negative effects caused by past anthropogenic impacts. Direct intervention, including habitat restoration based on translocation of native keystone species, should be considered as part of management strategies for MPAs which host similar biogenic reef habitats where condition and natural recovery have been compromised. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The role of protected area wetlands in waterfowl habitat conservation: implications for protected area network design

    USGS Publications Warehouse

    Beatty, William S.; Kesler, Dylan C.; Webb, Elisabeth B.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.

    2014-01-01

    The principal goal of protected area networks is biodiversity preservation, but efficacy of such networks is directly linked to animal movement within and outside area boundaries. We examined wetland selection patterns of mallards (Anas platyrhynchos) during non-breeding periods from 2010 to 2012 to evaluate the utility of protected areas to migratory waterfowl in North America. We tracked 33 adult females using global positioning system (GPS) satellite transmitters and implemented a use-availability resource selection design to examine mallard use of wetlands under varying degrees of protection. Specifically, we examined effects of proximities to National Wildlife Refuges, private land, state wildlife management areas, Wetland Reserve Program easements (WRP), and waterfowl sanctuaries on mallard wetland selection. In addition, we included landscape-level variables that measured areas of sanctuary and WRP within the surrounding landscape of each used and available wetland. We developed 8 wetland selection models according to season (autumn migration, winter, spring migration), hunting season (present, absent), and time period (diurnal, nocturnal). Model averaged parameter estimates indicated wetland selection patterns varied across seasons and time periods, but ducks consistently selected wetlands with greater areas of sanctuary and WRP in the surrounding landscape. Consequently, WRP has the potential to supplement protected area networks in the midcontinent region. Additionally, seasonal variation in wetland selection patterns indicated considering the effects of habitat management and anthropogenic disturbances on migratory waterfowl during the non-breeding period is essential in designing protected area networks.

  8. Heat Loss May Explain Bill Size Differences between Birds Occupying Different Habitats

    PubMed Central

    Greenberg, Russell; Cadena, Viviana; Danner, Raymond M.; Tattersall, Glenn

    2012-01-01

    Background Research on variation in bill morphology has focused on the role of diet. Bills have other functions, however, including a role in heat and water balance. The role of the bill in heat loss may be particularly important in birds where water is limiting. Song sparrows localized in coastal dunes and salt marsh edge (Melospiza melodia atlantica) are similar in size to, but have bills with a 17% greater surface area than, those that live in mesic habitats (M. m. melodia), a pattern shared with other coastal sparrows. We tested the hypotheses that sparrows can use their bills to dissipate “dry” heat, and that heat loss from the bill is higher in M. m. atlantica than M. m. melodia, which would indicate a role of heat loss and water conservation in selection for bill size. Methodology/Principal Findings Bill, tarsus, and body surface temperatures were measured using thermal imaging of sparrows exposed to temperatures from 15–37°C and combined with surface area and physical modeling to estimate the contribution of each body part to total heat loss. Song sparrow bills averaged 5–10°C hotter than ambient. The bill of M. m atlantica dissipated up to 33% more heat and 38% greater proportion of total heat than that of M. m. melodia. This could potentially reduce water loss requirements by approximately 7.7%. Conclusions/Significance This >30% higher heat loss in the bill of M. m. atlantica is independent of evaporative water loss and thus could play an important role in the water balance of sparrows occupying the hot and exposed dune/salt marsh environments during the summer. Heat loss capacity and water conservation could play an important role in the selection for bill size differences between bird populations and should be considered along with trophic adaptations when studying variation in bill size. PMID:22848413

  9. Sound solutions for habitat monitoring

    Treesearch

    Mary M. Rowland; Lowell H. Suring; Christina D. Vojta

    2015-01-01

    For agencies and organizations to effectively manage wildlife, knowledge about the status and trend of wildlife habitat is critical. Traditional wildlife monitoring, however, has focused on populations rather than habitat, because ultimately population status drives long-term species viability. Still, habitat loss has contributed to the decline of nearly all at-risk...

  10. Dietary Approaches to Protect Against Eye Blast Induced Oxidative Stress and Vision Loss

    DTIC Science & Technology

    2016-11-01

    supplementation of antioxidants and antioxidant enzymes. The ultimate goal of this study was to identify a dietary intervention that could protect...AWARD NUMBER: W81XWH-15-1-0096 TITLE: Dietary Approaches to Protect Against Eye Blast-Induced Oxidative Stress and Vision Loss PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Dietary Approaches to Protect Against Eye Blast-Induced Oxidative Stress and Vision Loss 5b. GRANT NUMBER

  11. Safe Haven Configurations for Deep Space Transit Habitats

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Polsgrove, Tara; Rowe, Justin; Simon, Matthew

    2017-01-01

    Throughout the human space flight program there have been instances where systems failures resulting in smoke, fire, and pressure loss have occurred onboard space vehicles, putting crews at risk for loss of mission and loss of life. In most instances the missions have been in Low-Earth-Orbit (LEO) or Earth-Moon vicinity, with access to multiple volumes that could be used to quickly seal off the damaged module or access escape vehicles for return to Earth. For long duration missions beyond LEO, including Mars transit missions of about 1100 days, the mass penalty for multiple volumes and operating in an environment where a quick return will not be possible have been concerns. In 2016, a study was done to investigate a variety of dual pressure vessel configurations for habitats that could protect the crew from these hazards. It was found that with a modest increase in total mass it should be possible to provide significant protection for the crew. Several configurations were considered that either had a small safe haven to provide 30-days to recover, or a full duration safe haven using two equal size pressure vessel volumes. The 30-day safe haven was found to be the simplest, yielding the least total mass impact but still with some risk if recovery is not possible during that timeframe. The full duration safe haven was the most massive option but provided the most robust solution. This paper provides information on the various layouts developed during the study and provides a discussion of the findings for implementing a safe haven in future habitat designs.

  12. Islands at bay: Rising seas, eroding islands, and waterbird habitat loss in Chesapeake Bay (USA)

    USGS Publications Warehouse

    Erwin, R.M.; Brinker, D.F.; Watts, B.D.; Costanzo, G.R.; Morton, D.D.

    2011-01-01

    Like many resources in the Chesapeake Bay region of the U. S., many waterbird nesting populations have suffered over the past three to four decades. In this study, historic information for the entire Bay and recent results from the Tangier Sound region were evaluated to illustrate patterns of island erosion and habitat loss for 19 breeding species of waterbirds. Aerial imagery and field data collected in the nesting season were the primary sources of data. From 1993/1994 to 2007/2008, a group of 15 islands in Tangier Sound, Virginia were reduced by 21% in area, as most of their small dunes and associated vegetation and forest cover were lost to increased washovers. Concurrently, nesting American black ducks (Anas rubripes) declined by 66%, wading birds (herons-egrets) by 51%, gulls by 72%, common terns (Sterna hirundo) by 96% and black skimmers (Rynchops niger) by about 70% in this complex. The declines noted at the larger Bay-wide scale suggest that this study area maybe symptomatic of a systemic limitation of nesting habitat for these species. The island losses noted in the Chesapeake have also been noted in other Atlantic U. S. coastal states. Stabilization and/or restoration of at least some of the rapidly eroding islands at key coastal areas are critical to help sustain waterbird communities. ?? 2010 US Government.

  13. The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats.

    PubMed

    Bothe, Hermann; Turnau, Katarzyna; Regvar, Marjana

    2010-10-01

    Ecosystems worldwide are threatened with the extinction of plants and, at the same time, invasion by new species. Plant invasiveness and loss of species can be caused by similar but opposing pressures on the community structures. Arbuscular mycorrhizal fungi (AMF) can have multiple positive effects on plant growth, productivity, health, and stress relief. Many endangered species live in symbiosis with AMF. However, the list of the International Union for Conservation of Nature and Natural Resources (IUCN Red List of Threatened Species) indicates that the mycorrhizal status of most of the threatened species has not been assessed. Rare plants often occur in specialized and also endangered habitats and might utilize specialized or unique AMF. The specificity of any endangered plant to its AMF population has not been investigated. Because most of the current AMF isolates that are available colonize a broad range of plant species, selected inocula could be used to promote growth of endangered plants before the proper and more effective indigenous AMF are characterized. Application of AMF in field sites to protect endangered plants is hardly feasible due to the complexity of plant community structures and the large amount of fungal inocula needed. Endangered plants could, however, be grown as greenhouse cultures together with appropriate fungi, and, at the relevant developmental stage, they could be re-planted into native sites to prevent extinction and to preserve plant community ecology.

  14. Habitat degradation and loss as key drivers of regional population extinction

    EPA Science Inventory

    Habitat quality is a fundamental driver of species distributions and population outcomes but is often difficult to measure. Further, habitat quality can be abstract, multi-faceted and challenging to compare alongside measures of habitat amount and fragmentation. Consequently, hab...

  15. Green infrastructure development at European Union's eastern border: Effects of road infrastructure and forest habitat loss.

    PubMed

    Angelstam, Per; Khaulyak, Olha; Yamelynets, Taras; Mozgeris, Gintautas; Naumov, Vladimir; Chmielewski, Tadeusz J; Elbakidze, Marine; Manton, Michael; Prots, Bohdan; Valasiuk, Sviataslau

    2017-05-15

    The functionality of forest patches and networks as green infrastructure may be affected negatively both by expanding road networks and forestry intensification. We assessed the effects of (1) the current and planned road infrastructure, and (2) forest loss and gain, on the remaining large forest landscape massifs as green infrastructure at the EU's eastern border region in post-socialistic transition. First, habitat patch and network functionality in 1996-98 was assessed using habitat suitability index modelling. Second, we made expert interviews about road development with planners in 10 administrative regions in Poland, Belarus and Ukraine. Third, forest loss and gain inside the forest massifs, and gain outside them during the period 2001-14 were measured. This EU cross-border region hosts four remaining forest massifs as regional green infrastructure hotspots. While Poland's road network is developing fast in terms of new freeways, city bypasses and upgrades of road quality, in Belarus and Ukraine the focus is on maintenance of existing roads, and no new corridors. We conclude that economic support from the EU, and thus rapid development of roads in Poland, is likely to reduce the permeability for wildlife of the urban and agricultural matrix around existing forest massifs. However, the four identified forest massifs themselves, forming the forest landscape green infrastructure at the EU's east border, were little affected by road development plans. In contrast, forest loss inside massifs was high, especially in Ukraine. Only in Poland forest loss was balanced by gain. Forest gain outside forest massifs was low. To conclude, pro-active and collaborative spatial planning across different sectors and countries is needed to secure functional forest green infrastructure as base for biodiversity conservation and human well-being. Copyright © 2017. Published by Elsevier Ltd.

  16. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines.

    PubMed

    Honda, Kentaro; Nakamura, Yohei; Nakaoka, Masahiro; Uy, Wilfredo H; Fortes, Miguel D

    2013-01-01

    Understanding the interconnectivity of organisms among different habitats is a key requirement for generating effective management plans in coastal ecosystems, particularly when determining component habitat structures in marine protected areas. To elucidate the patterns of habitat use by fishes among coral, seagrass, and mangrove habitats, and between natural and transplanted mangroves, visual censuses were conducted semiannually at two sites in the Philippines during September and March 2010-2012. In total, 265 species and 15,930 individuals were recorded. Species richness and abundance of fishes were significantly higher in coral reefs (234 species, 12,306 individuals) than in seagrass (38 species, 1,198 individuals) and mangrove (47 species, 2,426 individuals) habitats. Similarity tests revealed a highly significant difference among the three habitats. Fishes exhibited two different strategies for habitat use, inhabiting either a single (85.6% of recorded species) or several habitats (14.4%). Some fish that utilized multiple habitats, such as Lutjanus monostigma and Parupeneus barberinus, showed possible ontogenetic habitat shifts from mangroves and/or seagrass habitats to coral reefs. Moreover, over 20% of commercial fish species used multiple habitats, highlighting the importance of including different habitat types within marine protected areas to achieve efficient and effective resource management. Neither species richness nor abundance of fishes significantly differed between natural and transplanted mangroves. In addition, 14 fish species were recorded in a 20-year-old transplanted mangrove area, and over 90% of these species used multiple habitats, further demonstrating the key role of transplanted mangroves as a reef fish habitat in this region.

  17. Habitat Use by Fishes in Coral Reefs, Seagrass Beds and Mangrove Habitats in the Philippines

    PubMed Central

    Honda, Kentaro; Nakamura, Yohei; Nakaoka, Masahiro; Uy, Wilfredo H.; Fortes, Miguel D.

    2013-01-01

    Understanding the interconnectivity of organisms among different habitats is a key requirement for generating effective management plans in coastal ecosystems, particularly when determining component habitat structures in marine protected areas. To elucidate the patterns of habitat use by fishes among coral, seagrass, and mangrove habitats, and between natural and transplanted mangroves, visual censuses were conducted semiannually at two sites in the Philippines during September and March 2010–2012. In total, 265 species and 15,930 individuals were recorded. Species richness and abundance of fishes were significantly higher in coral reefs (234 species, 12,306 individuals) than in seagrass (38 species, 1,198 individuals) and mangrove (47 species, 2,426 individuals) habitats. Similarity tests revealed a highly significant difference among the three habitats. Fishes exhibited two different strategies for habitat use, inhabiting either a single (85.6% of recorded species) or several habitats (14.4%). Some fish that utilized multiple habitats, such as Lutjanus monostigma and Parupeneus barberinus, showed possible ontogenetic habitat shifts from mangroves and/or seagrass habitats to coral reefs. Moreover, over 20% of commercial fish species used multiple habitats, highlighting the importance of including different habitat types within marine protected areas to achieve efficient and effective resource management. Neither species richness nor abundance of fishes significantly differed between natural and transplanted mangroves. In addition, 14 fish species were recorded in a 20-year-old transplanted mangrove area, and over 90% of these species used multiple habitats, further demonstrating the key role of transplanted mangroves as a reef fish habitat in this region. PMID:23976940

  18. Protection reduces loss of natural land-cover at sites of conservation importance across Africa.

    PubMed

    Beresford, Alison E; Eshiamwata, George W; Donald, Paul F; Balmford, Andrew; Bertzky, Bastian; Brink, Andreas B; Fishpool, Lincoln D C; Mayaux, Philippe; Phalan, Ben; Simonetti, Dario; Buchanan, Graeme M

    2013-01-01

    There is an emerging consensus that protected areas are key in reducing adverse land-cover change, but their efficacy remains difficult to quantify. Many previous assessments of protected area effectiveness have compared changes between sets of protected and unprotected sites that differ systematically in other potentially confounding respects (e.g. altitude, accessibility), have considered only forest loss or changes at single sites, or have analysed changes derived from land-cover data of low spatial resolution. We assessed the effectiveness of protection in reducing land-cover change in Important Bird Areas (IBAs) across Africa using a dedicated visual interpretation of higher resolution satellite imagery. We compared rates of change in natural land-cover over a c. 20-year period from around 1990 at a large number of points across 45 protected IBAs to those from 48 unprotected IBAs. A matching algorithm was used to select sample points to control for potentially confounding differences between protected and unprotected IBAs. The rate of loss of natural land-cover at sample points within protected IBAs was just 42% of that at matched points in unprotected IBAs. Conversion was especially marked in forests, but protection reduced rates of forest loss by a similar relative amount. Rates of conversion increased from the centre to the edges of both protected and unprotected IBAs, but rates of loss in 20-km buffer zones surrounding protected IBAs and unprotected IBAs were similar, with no evidence of displacement of conversion from within protected areas to their immediate surrounds (leakage).

  19. Eder Acquisition 2007 Habitat Evaluation Procedures Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Paul R.

    A habitat evaluation procedures (HEP) analysis was conducted on the Eder acquisition in July 2007 to determine how many protection habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the project site as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. Baseline HEP surveys generated 3,857.64 habitat units or 1.16 HUs per acre. HEP surveys also served to document general habitat conditions. Survey results indicated that the herbaceous plant community lacked forbs species, which may be due to both livestock grazing and the late timing of the surveys. Moreover,more » the herbaceous plant community lacked structure based on lower than expected visual obstruction readings (VOR); likely a direct result of livestock impacts. In addition, introduced herbaceous vegetation including cultivated pasture grasses, e.g. crested wheatgrass and/or invader species such as cheatgrass and mustard, were present on most areas surveyed. The shrub element within the shrubsteppe cover type was generally a mosaic of moderate to dense shrubby areas interspersed with open grassland communities while the 'steppe' component was almost entirely devoid of shrubs. Riparian shrub and forest areas were somewhat stressed by livestock. Moreover, shrub and tree communities along the lower reaches of Nine Mile Creek suffered from lack of water due to the previous landowners 'piping' water out of the stream channel.« less

  20. Long-term distribution and habitat changes of protected wildlife: giant pandas in Wolong Nature Reserve, China.

    PubMed

    Bai, Wenke; Connor, Thomas; Zhang, Jindong; Yang, Hongbo; Dong, Xin; Gu, Xiaodong; Zhou, Caiquan

    2018-04-01

    Changes in wildlife habitat across space and time, and corresponding changes in wildlife space use, are increasingly common phenomenon. It is critical to study and understand these spatio-temporal changes to accurately inform conservation strategy and manage wildlife populations. These changes can be particularly large and complex in areas that face pressure from human development and disturbance but are also under protection and/or restoration regimes. We analyzed changes in space use and habitat suitability of giant pandas in Wolong Nature Reserve, China, over three decades using kernel density, spatio-temporal analysis of moving polygons (STAMP), and MaxEnt methods, and data from three national censuses. Between 2001 and 2012, there was a slight retraction in total range, and more area of significant space use decreases than increases. Habitat suitability varied spatially and temporally, with a 4.1% decrease in average suitability between 1987 and 2001 and a 3.5% increase in average suitability in between 2001 and 2012. Elevation and bamboo were the most important habitat predictors across the three censuses. Human and natural disturbance variables such as distance to household and the distance to landslide variable in the 4th census were also important predictors, and likely also negatively influenced important habitat variables such as bamboo and forest cover. We were able to measure changes in space utilization and habitat suitability over a large time scale, highlighting the achievements and challenges of giant panda conservation. Long-term monitoring of the changes in distribution and habitat of threatened species, and an analysis of the drivers behind these changes such as undergone here, are important to inform the management and conservation of the world's remaining wildlife populations.

  1. Floodplain forest loss and changes in forest community composition and structure in the upper Mississippi River: a wildlife habitat at risk

    USGS Publications Warehouse

    Knutson, M.G.; Klaas, E.E.

    1998-01-01

    Large floodplain forests represent a threatened and endangered type of ecosystem in the United States. Estimates of cumulative losses of floodplain forest range from 57% to 95% at different locations within the continental United Stales. Floodplain forests of the Upper Mississippi River (UMR) have significantly declined in extent due to agriculture, lock and dam construction, and urban development since European settlement. We collected data on shrubs, herbs, and trees from 56 floodplain forest plots in 1992 and compared our results with a previous analysis of historical tree data from the same area recorded by the General Land Office Survey in the 1840s. Acer saccharinum strongly dominates among mature trees and its relative dominance has increased over time. Salix spp. And Betula nigra have declined in relative dominance. Tree sizes are similar to those of presettlement forests, but present forests have fewer trees. The lack of early successional tree species and a trend toward an increasing monoculture of A. Saccharinum in the mature stages indicate problems with regeneration. Because floodplain forests represent a rare habitat type, losses and changes in habitat quality could pose serious problems for wildlife that depend upon these habitats, especially birds.

  2. White Lake AOC Habitat Restoration Project

    EPA Pesticide Factsheets

    The Muskegon Conservation District and the White Lake Public Advisory Council in 2012 completed the White Lake AOC Shoreline Habitat Restoration Project to address the loss of shoreline and nearshore habitat.

  3. Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore.

    PubMed

    Bjørneraas, Kari; Herfindal, Ivar; Solberg, Erling Johan; Sæther, Bernt-Erik; van Moorter, Bram; Rolandsen, Christer Moe

    2012-01-01

    Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.

  4. The airspace is habitat

    USGS Publications Warehouse

    Diehl, Robert H.

    2013-01-01

    A preconception concerning habitat persists and has gone unrecognized since use of the term first entered the lexicon of ecological and evolutionary biology many decades ago. Specifically, land and water are considered habitats, while the airspace is not. This might at first seem a reasonable, if unintended, demarcation, since years of education and personal experience as well as limits to perception predispose a traditional view of habitat. Nevertheless, the airspace satisfies the definition and functional role of a habitat, and its recognition as habitat may have implications for policy where expanding anthropogenic development of airspace could impact the conservation of species and subject parts of the airspace to formalized legal protection.

  5. Big game habitat use in southeastern Montana

    Treesearch

    James G. MacCracken; Daniel W. Uresk

    1984-01-01

    The loss of suitable, high quality habitat is a major problem facing big game managers in the western United States. Agricultural, water, road and highway, housing, and recreational development have contributed to loss of natural big game habitat (Wallmo et al. 1976, Reed 1981). In the western United States, surface mining of minerals has great potential to adversely...

  6. Riparian landscapes: Linking geodiversity with habitat and biodiversity

    NASA Astrophysics Data System (ADS)

    Chmieleski, Jana; Danzeisen, Laura

    2017-04-01

    Keywords: Oder valley, biodiversity, geodiversity River landscapes of all scales originally showed a high diversity of structures and habitats at a small spatial entity, such as the stream beds, terrasses, sand and gravel banks. This variety, with a lot of different elements, patches and patterns, represents not only a variety of geoelements or geomorhological features but also a large biodiversity, both of habitats and species. Riparian landscapes are both, a natural as well as a geoheritage, often even a cultural heritage (sustainabe land use practices). Embankments, utilization for agriculture, constructions for navigation, management measures lead to a strong loss of these structures. This impacts the value of the landscape as well ecosystem functions, not only the biodiversity and the geodiversity but also the recreation function or the aesthetic values. A case study from the National Park Lower Oder Valley in the Northeastern part of Germany, wich is also part of a Geopark („Eiszeitland am Oderrand") presents the connections of the diversity of geomorphological features with biodiversity and shows the loss of features (loss of values) due to intensive utilisation by using GIS-analysis and landscape-metrics. The Northern part of the Oder valley (National Park, transnational protection area of Germany and Poland) have been modified by man since centuries but even so remained in near-natural state that allows semi-(natural) stream dynamics. While the Oder's reparian zone is marked by the stream itself, by its bayous, reed beds, periodically flooded wet meadows and by its natural riparian forest the mineral morainic plateaus are marked by semi-natural forests and dry grasslands. Two areas of different degradation states, a) near-natural and wilderness area and b) grassland area will be compared in order to identify: quantity and extent of features, relation of measure and coverage, connectivity with other features, quantity and types of habitats (with

  7. Temporal changes in giant panda habitat connectivity across boundaries of Wolong Nature Reserve, China.

    PubMed

    Viña, Andrés; Bearer, Scott; Chen, Xiaodong; He, Guangming; Linderman, Marc; An, Li; Zhang, Hemin; Ouyang, Zhiyun; Liu, Jianguo

    2007-06-01

    Global biodiversity loss is largely driven by human activities such as the conversion of natural to human-dominated landscapes. A popular approach to mitigating land cover change is the designation of protected areas (e.g., nature reserves). Nature reserves are traditionally perceived as strongholds of biodiversity conservation. However, many reserves are affected by land cover changes not only within their boundaries, but also in their surrounding areas. This study analyzed the changes in habitat for the giant panda (Ailuropoda melanoleuca) inside Wolong Nature Reserve, Sichuan, China, and in a 3-km buffer area outside its boundaries, through a time series of classified satellite imagery and field observations. Habitat connectivity between the inside and the outside of the reserve diminished between 1965 and 2001 because panda habitat was steadily lost both inside and outside the reserve. However, habitat connectivity slightly increased between 1997 and 2001 due to the stabilization of some panda habitat inside and outside the reserve. This stabilization most likely occurred as a response to changes in socioeconomic activities (e.g., shifts from agricultural to nonagricultural economies). Recently implemented government policies could further mitigate the impacts of land cover change on panda habitat. The results suggest that Wolong Nature Reserve, and perhaps other nature reserves in other parts of the world, cannot be managed as an isolated entity because habitat connectivity declines with land cover changes outside the reserve even if the area inside the reserve is well protected. The findings and approaches presented in this paper may also have important implications for the management of other nature reserves across the world.

  8. Habitat Evaluation Procedures (HEP) Report : Rainwater Wildlife Area, 1998-2001 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland rover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens),more » black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2} plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native

  9. Sharp-tailed Grouse Restoration; Colville Tribes Restore Habitat for Sharp-tailed Grouse, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, Richard

    2004-01-01

    Columbian Sharp-Tailed Grouse (Tympanuchus phasianellus columbianus) (CSTG) are an important traditional and cultural species to the Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STOI), and other Tribes in the Region. They were once the most abundant upland bird in the Region. Currently, the largest remaining population in Washington State occurs on the CCT Reservation in Okanogan County. Increasing agricultural practices and other land uses has contributed to the decline of sharp-tail habitat and populations putting this species at risk. The decline of this species is not new (Yokum, 1952, Buss and Dziedzic, 1955, Zeigler, 1979, Meints 1991, and Crawfordmore » and Snyder 1994). The Tribes (CCT and STOI) are determined to protect, enhance and restore habitat for this species continued existence. When Grand Coulee and Chief Joseph Hydro-projects were constructed, inundated habitat used by this species was lost forever adding to overall decline. To compensate and prevent further habitat loss, the CCT proposed a project with Bonneville Power Administration (BPA) funding to address this species and their habitat requirements. The projects main focus is to address habitat utilized by the current CSTG population and determine ways to protect, restore, and enhance habitats for the conservation of this species over time. The project went through the NPPC Review Process and was funded through FY03 by BPA. This report addresses part of the current CCT effort to address the conservation of this species on the Colville Reservation.« less

  10. The Influence of Angler Values, Involvement, Catch Orientation, Satisfaction, Agency Trust, and Demographics on Support for Habitat Protection and Restoration Versus Stocking in Publicly Managed Waters.

    PubMed

    Schroeder, Susan A; Fulton, David C; Altena, Eric; Baird, Heather; Dieterman, Douglas; Jennings, Martin

    2018-05-23

    Resource managers benefit from knowledge of angler support for fisheries management strategies. Factors including angler values (protection, utilitarian, and dominance), involvement (attraction, centrality, social, identity affirmation, and expression), catch-related motivations (catching some, many, and big fish, and keeping fish), satisfaction, agency trust, and demographics may relate to fisheries management preferences. Using results from a mail survey of Minnesota resident anglers, we explored how these factors were related to budget support for fish stocking relative to habitat protection/restoration. Results suggest that values, angler involvement, catch orientation, satisfaction, total and recent years fishing, age, and education influence relative support for stocking versus habitat protection/restoration. Utilitarian values, angling centrality, an orientation to catch many fish, satisfaction with the number of fish caught, number of recent years fishing, and age positively related to support for stocking over habitat management, while protection values, attraction to angling, total years fishing, and education level were negatively related to relative support for stocking.

  11. Conservation plan for protected species on Naval Petroleum Reserve No. 1, Kern County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otten, M.R.M.; Cypher, B.L.

    1997-07-01

    Habitats in and around Naval Petroleum Reserve No. 1 (NPR-1) support populations of various vertebrates and plants, including a number of threatened and endangered species. Adequate conservation of habitats and species, particularly protected species, can be facilitated through development and implementation of management plans. This document provides a comprehensive plan for the conservation of protected species on NPR-1, through compliance with terms and conditions expressed in Biological Opinions rendered by the U.S. Fish and Wildlife Service for NPR-1 activities. Six conservation strategies by which threatened and endangered species have been, and will be, protected are described: population monitoring, mitigation strategies,more » special studies, operating guidelines and policies, information transfer and outreach, and the endangered species conservation area. Population monitoring programs are essential for determining population densities and for assessing the effects of oil field developments and environmental factors on protected species. Mitigation strategies (preactivity surveys and habitat reclamation) are employed to minimize the loss of important habitats components and to restore previously disturbed lands to conditions more suitable for species` use. A number of special studies were undertaken between 1985 and 1995 to investigate the effectiveness of a variety of population and habitat management techniques with the goal of increasing the density of protected species. Operating guidelines and policies governing routine oil field activities continue to be implemented to minimize the potential for the incidental take of protected species and minimize damage to wildlife habitats. Information transfer and outreach activities are important means by which technical and nontechnical information concerning protected species conservation on NPR-1 is shared with both the scientific and non-scientific public.« less

  12. Current practices in the identification of critical habitat for threatened species.

    PubMed

    Camaclang, Abbey E; Maron, Martine; Martin, Tara G; Possingham, Hugh P

    2015-04-01

    The term critical habitat is used to describe the subset of habitat that is essential to the survival and recovery of species. Some countries legally require that critical habitat of listed threatened and endangered species be identified and protected. However, there is little evidence to suggest that the identification of critical habitat has had much impact on species recovery. We hypothesized that this may be due at least partly to a mismatch between the intent of critical habitat identification, which is to protect sufficient habitat for species persistence and recovery, and its practice. We used content analysis to systematically review critical habitat documents from the United States, Canada, and Australia. In particular, we identified the major trends in type of information used to identify critical habitat and in occupancy of habitat identified as critical. Information about population viability was used to identify critical habitat for only 1% of the species reviewed, and for most species, designated critical habitat did not include unoccupied habitat. Without reference to population viability, it is difficult to determine how much of a species' occupied and unoccupied habitat will be required for persistence. We therefore conclude that the identification of critical habitat remains inconsistent with the goal of protecting sufficient habitat to support persistence and recovery of the species. Ensuring that critical habitat identification aligns more closely with its intent will improve the accuracy of the designations and may therefore help improve the benefits to species recovery when combined with adequate implementation and enforcement of legal protections. © 2014 Society for Conservation Biology.

  13. Identifying regions vulnerable to habitat degradation under future irrigation scenarios

    NASA Astrophysics Data System (ADS)

    Terrado, Marta; Sabater, Sergi; Acuña, Vicenç

    2016-11-01

    The loss and degradation of natural habitats is a primary cause of biodiversity decline. The increasing impacts of climate and land use change affect water availability, ultimately decreasing agricultural production. Areas devoted to irrigation have been increased to compensate this reduction, causing habitat and biodiversity losses, especially in regions undergoing severe water stress. These effects might intensify under global change, probably contributing to a decrease in habitat quality. We selected four European river basins across a gradient of water scarcity and irrigation agriculture. The habitat quality in the basins was assessed as a function of habitat suitability and threats under current and future global change scenarios of irrigation. Results revealed that the most threatened regions under future scenarios of global change were among those suffering of water scarcity and with bigger areas devoted to irrigation. Loss of habitat quality reached 10% in terrestrial and 25% in aquatic ecosystems under climate change scenarios involving drier conditions. The aquatic habitats were the most degraded in all scenarios, since they were affected by threats from both the terrestrial and the aquatic parts of the basin. By identifying in advance the regions most vulnerable to habitat and biodiversity loss, our approach can assist decision makers in deciding the conservation actions to be prioritized for mitigation and adaptation to the effects of climate change, particularly front the development of irrigation plans.

  14. RESEARCH IN SUPPORT OF CRITERIA FOR HABITAT ALTERATIONS

    EPA Science Inventory

    Many anthropogenic activities exert their influence on fish, shellfish and aquatic-dependent wildlife by affecting habitats. In fact, habitat alteration is one of the most important contributors to declines in ecological resources in North America. Habitat loss and degradation ar...

  15. Predicting 21st-century polar bear habitat distribution from global climate models

    USGS Publications Warehouse

    Durner, George M.; Douglas, David C.; Nielson, R.M.; Amstrup, Steven C.; McDonald, T.L.; Stirling, I.; Mauritzen, Mette; Born, E.W.; Wiig, O.; Deweaver, E.; Serreze, Mark C.; Belikov, Stanislav; Holland, M.M.; Maslanik, J.; Aars, Jon; Bailey, D.A.; Derocher, A.E.

    2009-01-01

    Projections of polar bear (Ursus maritimus) sea ice habitat distribution in the polar basin during the 21st century were developed to understand the consequences of anticipated sea ice reductions on polar bear populations. We used location data from satellitecollared polar bears and environmental data (e.g., bathymetry, distance to coastlines, and sea ice) collected from 1985 to 1995 to build resource selection functions (RSFs). RSFs described habitats that polar bears preferred in summer, autumn, winter, and spring. When applied to independent data from 1996 to 2006, the RSFs consistently identified habitats most frequently used by polar bears. We applied the RSFs to monthly maps of 21st-century sea ice concentration projected by 10 general circulation models (GCMs) used in the Intergovernmental Panel of Climate Change Fourth Assessment Report, under the A1B greenhouse gas forcing scenario. Despite variation in their projections, all GCMs indicated habitat losses in the polar basin during the 21st century. Losses in the highest-valued RSF habitat (optimal habitat) were greatest in the southern seas of the polar basin, especially the Chukchi and Barents seas, and least along the Arctic Ocean shores of Banks Island to northern Greenland. Mean loss of optimal polar bear habitat was greatest during summer; from an observed 1.0 million km2 in 1985-1995 (baseline) to a projected multi-model mean of 0.32 million km2 in 2090-2099 (-68% change). Projected winter losses of polar bear habitat were less: from 1.7 million km2 in 1985-1995 to 1.4 million km2 in 2090-2099 (-17% change). Habitat losses based on GCM multi-model means may be conservative; simulated rates of habitat loss during 1985-2006 from many GCMs were less than the actual observed rates of loss. Although a reduction in the total amount of optimal habitat will likely reduce polar bear populations, exact relationships between habitat losses and population demographics remain unknown. Density and energetic

  16. Landscape trajectory of natural boreal forest loss as an impediment to green infrastructure.

    PubMed

    Svensson, Johan; Andersson, Jon; Sandström, Per; Mikusiński, Grzegorz; Jonsson, Bengt-Gunnar

    2018-06-08

    Loss of natural forests has been identified as a critical conservation challenge worldwide. This loss impede the establishment of a functional green infrastructure as a spatiotemporally connected landscape-scale network of habitats enhancing biodiversity, favorable conservation status and ecosystem services. In many regions this loss is caused by forest clearcutting. Through retrospective satellite images analysis we assessed a 50-60 year spatiotemporal clearcutting impact trajectory on natural and near-natural boreal forests across a sizable and representative region from the Gulf of Bothnia to the Scandinavian Mountain Range in northern Fennoscandia. Our analysis broadly covers the whole forest clearcutting period and thus our study approach and results can be applied for comprehensive impact assessment of industrial forest management. Our results demonstrate profound disturbance on natural forest landscape configuration. The whole forest landscape is in a late phase in a transition from a natural or near-natural to a land-use modified state. Our results provide evidence of natural forest loss and spatial polarization at the regional scale, with a pre-dominant share of valuable habitats left in the mountain area, whereas the inland area has been more severely impacted. We highlight the importance of interior forest areas as most valuable biodiversity hotspots and the central axis of green infrastructure. Superimposing the effects of edge disturbance on forest fragmentation, the loss of interior forest entities further aggravate the conservation premises. Our results also show a loss of large contiguous forest patches and indicate patch size homogenization. The current forest protection share is low in the region and with geographical imbalance as the absolute majority is located in remote and low productive sites in the mountain area. Our approach provides possibilities to identify forest areas for directed conservation actions in the form of new protection

  17. Lunar base habitat designs: Characterizing the environment, and selecting habitat designs for future trade-offs

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Ferrall, Joseph; Seshan, P. K.

    1993-01-01

    A survey of distinct conceptual lunar habitat designs covering the pre- and post-Apollo era is presented. The impact of the significant lunar environmental challenges such as temperature, atmosphere, radiation, soil properties, meteorites, and seismic activity on the habitat design parameters are outlined. Over twenty habitat designs were identified and classified according to mission type, crew size; total duration of stay, modularity, environmental protection measures, and emplacement. Simple selection criteria of (1) post-Apollo design, (2) uniqueness of the habitat design, (3) level of thoroughness in design layout, (4) habitat dimensions are provided, and (5) materials of construction for the habitat shell are specified, are used to select five habitats for future trade studies. Habitat emplacement scenarios are created to examine the possible impact of emplacement of the habitat in different locations, such as lunar poles vs. equatorial, above ground vs. below ground, etc.

  18. The global distribution of deep-water Antipatharia habitat

    NASA Astrophysics Data System (ADS)

    Yesson, Chris; Bedford, Faye; Rogers, Alex D.; Taylor, Michelle L.

    2017-11-01

    Antipatharia are a diverse group of corals with many species found in deep water. Many Antipatharia are habitat for associates, have extreme longevity and some species can occur beyond 8500 m depth. As they are major constituents of'coral gardens', which are Vulnerable Marine Ecosystems (VMEs), knowledge of their distribution and environmental requirements is an important pre-requisite for informed conservation planning particularly where the expense and difficulty of deep-sea sampling prohibits comprehensive surveys. This study uses a global database of Antipatharia distribution data to perform habitat suitability modelling using the Maxent methodology to estimate the global extent of black coral habitat suitability. The model of habitat suitability is driven by temperature but there is notable influence from other variables of topography, surface productivity and oxygen levels. This model can be used to predict areas of suitable habitat, which can be useful for conservation planning. The global distribution of Antipatharia habitat suitability shows a marked contrast with the distribution of specimen observations, indicating that many potentially suitable areas have not been sampled, and that sampling effort has been disproportionate to shallow, accessible areas inside marine protected areas (MPAs). Although 25% of Antipatharia observations are located in MPAs, only 7-8% of predicted suitable habitat is protected, which is short of the Convention on Biological Diversity target to protect 10% of ocean habitats by 2020.

  19. Using environmental and site-specific variables to model current and potential distribution of red spruce forest habitat in West Virginia

    Treesearch

    Nathan Beane; James Rentch

    2010-01-01

    With the extensive loss of presettlement habitat for red spruce, this species is a high priority for restoration in West Virginia. The advent of climate change caused by human activity and the uncertainty of future environmental changes has also raised interests in the protection and restoration of red spruce ecosystems.

  20. The value of carbon sequestration and storage in coastal habitats

    NASA Astrophysics Data System (ADS)

    Beaumont, N. J.; Jones, L.; Garbutt, A.; Hansom, J. D.; Toberman, M.

    2014-01-01

    Coastal margin habitats are globally significant in terms of their capacity to sequester and store carbon, but their continuing decline, due to environmental change and human land use decisions, is reducing their capacity to provide this ecosystem service. In this paper the UK is used as a case study area to develop methodologies to quantify and value the ecosystem service of blue carbon sequestration and storage in coastal margin habitats. Changes in UK coastal habitat area between 1900 and 2060 are documented, the long term stocks of carbon stored by these habitats are calculated, and the capacity of these habitats to sequester CO2 is detailed. Changes in value of the carbon sequestration service of coastal habitats are then projected for 2000-2060 under two scenarios, the maintenance of the current state of the habitat and the continuation of current trends of habitat loss. If coastal habitats are maintained at their current extent, their sequestration capacity over the period 2000-2060 is valued to be in the region of £1 billion UK sterling (3.5% discount rate). However, if current trends of habitat loss continue, the capacity of the coastal habitats both to sequester and store CO2 will be significantly reduced, with a reduction in value of around £0.25 billion UK sterling (2000-2060; 3.5% discount rate). If loss-trends due to sea level rise or land reclamation worsen, this loss in value will be greater. This case study provides valuable site specific information, but also highlights global issues regarding the quantification and valuation of carbon sequestration and storage. Whilst our ability to value ecosystem services is improving, considerable uncertainty remains. If such ecosystem valuations are to be incorporated with confidence into national and global policy and legislative frameworks, it is necessary to address this uncertainty. Recommendations to achieve this are outlined.

  1. Global rates of habitat loss and implications for amphibian conservation

    USGS Publications Warehouse

    Gallant, Alisa L.; Klaver, R.W.; Casper, G.S.; Lannoo, M.J.

    2007-01-01

    A large number of factors are known to affect amphibian population viability, but most authors agree that the principal causes of amphibian declines are habitat loss, alteration, and fragmentation. We provide a global assessment of land use dynamics in the context of amphibian distributions. We accomplished this by compiling global maps of amphibian species richness and recent rates of change in land cover, land use, and human population growth. The amphibian map was developed using a combination of published literature and digital databases. We used an ecoregion framework to help interpret species distributions across environmental, rather than political, boundaries. We mapped rates of land cover and use change with statistics from the World Resources Institute, refined with a global digital dataset on land cover derived from satellite data. Temporal maps of human population were developed from the World Resources Institute database and other published sources. Our resultant map of amphibian species richness illustrates that amphibians are distributed in an uneven pattern around the globe, preferring terrestrial and freshwater habitats in ecoregions that are warm and moist. Spatiotemporal patterns of human population show that, prior to the 20th century, population growth and spread was slower, most extensive in the temperate ecoregions, and largely exclusive of major regions of high amphibian richness. Since the beginning of the 20th century, human population growth has been exponential and has occurred largely in the subtropical and tropical ecoregions favored by amphibians. Population growth has been accompanied by broad-scale changes in land cover and land use, typically in support of agriculture. We merged information on land cover, land use, and human population growth to generate a composite map showing the rates at which humans have been changing the world. When compared with the map of amphibian species richness, we found that many of the regions of the

  2. Developing management guidelines for cerulean warbler breeding habitat

    Treesearch

    Paul B. Hamel; Kenneth V. Rosenberg

    2007-01-01

    Recovery activities for species of conservation concern may be directed to acquire and protect habitats known to contain the species, or to produce suitable habitats or locations suspected to be capable of supporting populations of the species. Management of those habitats ultimately becomes necessary, especially where production of additional habitats is deemed...

  3. POWER TO DETECT REGIONAL TRENDS IN HABITAT CHARACTERISTICS

    EPA Science Inventory

    The condition of stream habitat draws considerable attention concerning the protection and recovery of salmonid populations in the West. Habitat degradation continues and substantial sums of money are spent on habitat restoration. However, aided by uncertainty concerning the ad...

  4. POWER TO DETECT REGIONAL TRENDS IN PHYSICAL HABITAT

    EPA Science Inventory

    The condition of stream habitat draws considerable attention concerning the protection and recovery of salmonid populations in the West. Habitat degradation continues and substantial sums of money are spent on habitat restoration. However, aided by uncertainty concerning the ad...

  5. Land-Sparing Agriculture Best Protects Avian Phylogenetic Diversity.

    PubMed

    Edwards, David P; Gilroy, James J; Thomas, Gavin H; Uribe, Claudia A Medina; Haugaasen, Torbjørn

    2015-09-21

    The conversion of natural habitats to farmland is a major driver of the global extinction crisis. Two strategies are promoted to mitigate the impacts of agricultural expansion on biodiversity: land sharing integrates wildlife-friendly habitats within farmland landscapes, and land sparing intensifies farming to allow the offset of natural reserves. A key question is which strategy would protect the most phylogenetic diversity--the total evolutionary history shared across all species within a community. Conserving phylogenetic diversity decreases the chance of losing unique phenotypic and ecological traits and provides benefits for ecosystem function and stability. Focusing on birds in the threatened Chocó-Andes hotspot of endemism, we tested the relative benefits of each strategy for retaining phylogenetic diversity in tropical cloud forest landscapes threatened by cattle pastures. Using landscape simulations, we find that land sharing would protect lower community-level phylogenetic diversity than land sparing and that with increasing distance from forest (from 500 to >1,500 m), land sharing is increasingly inferior to land sparing. Isolation from forest also leads to the loss of more evolutionarily distinct species from communities within land-sharing landscapes, which can be avoided with effective land sparing. Land-sharing policies that promote the integration of small-scale wildlife-friendly habitats might be of limited benefit without the simultaneous protection of larger blocks of natural habitat, which is most likely to be achieved via land-sparing measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Preliminary assessment of habitat protection needs for West Indian manatees on the east coast of Florida and Georgia. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-01

    The report assesses information on the status of endangered West Indian manatees (Trichechus manatus) on the east coast of Florida and Georgia in the southeastern United States and recommends actions to improve protection of the species and its habitat in that area. Manatees on the east coast of Florida and Georgia appear to constitute a discrete population numbering perhaps 700 to 900 animals. Based on carcass-salvage data, recent annual mortality rates of between 8% and 10% are indicated. Perhaps 3% to 4% of the population was killed as a result of collisions with boats during 1987, and this threat appearsmore » to be increasing. Collisions with boats and destruction of essential habitat are the principal threats to the population. Recommendations include: quadruple the size of the boat-speed regulatory system on the east coast of Florida; limit development in essential manatee habitats; acquire additional manatee habitat as additions to Federal and State refuges and preserves.« less

  7. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunitiesmore » for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream and 22

  8. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change.

    PubMed

    Albert, Cécile H; Rayfield, Bronwyn; Dumitru, Maria; Gonzalez, Andrew

    2017-12-01

    Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land-use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land-use change projections with the latest developments in network-connectivity research and spatial, multipurpose conservation prioritization. We used land-use change simulations to explore robustness of species' habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land-use change. The application of connectivity criteria alongside habitat-quality criteria for protected-area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade-offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low. © 2017 Society for Conservation Biology.

  9. Accidental Beam Losses and Protection in the LHC

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Working Group On Machine Protection

    2005-06-01

    At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection.

  10. Habitat Specialization in Tropical Continental Shelf Demersal Fish Assemblages

    PubMed Central

    Fitzpatrick, Ben M.; Harvey, Euan S.; Heyward, Andrew J.; Twiggs, Emily J.; Colquhoun, Jamie

    2012-01-01

    The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1–10 m depth), down the fore reef slope to the reef base (10–30 m depth) then across the adjacent continental shelf (30–110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected

  11. Rainwater Wildlife Area Habitat Evaluation Procedures Report; A Columbia Basin Wildlife Mitigation Project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen B.

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland cover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens),more » black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglecta). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2}2 plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native

  12. In the right place at the right time: habitat representation in protected areas of South American Nothofagus-dominated plants after a dispersal constrained climate change scenario.

    PubMed

    Alarcón, Diego; Cavieres, Lohengrin A

    2015-01-01

    In order to assess the effects of climate change in temperate rainforest plants in southern South America in terms of habitat size, representation in protected areas, considering also if the expected impacts are similar for dominant trees and understory plant species, we used niche modeling constrained by species migration on 118 plant species, considering two groups of dominant trees and two groups of understory ferns. Representation in protected areas included Chilean national protected areas, private protected areas, and priority areas planned for future reserves, with two thresholds for minimum representation at the country level: 10% and 17%. With a 10% representation threshold, national protected areas currently represent only 50% of the assessed species. Private reserves are important since they increase up to 66% the species representation level. Besides, 97% of the evaluated species may achieve the minimum representation target only if the proposed priority areas were included. With the climate change scenario representation levels slightly increase to 53%, 69%, and 99%, respectively, to the categories previously mentioned. Thus, the current location of all the representation categories is useful for overcoming climate change by 2050. Climate change impacts on habitat size and representation of dominant trees in protected areas are not applicable to understory plants, highlighting the importance of assessing these effects with a larger number of species. Although climate change will modify the habitat size of plant species in South American temperate rainforests, it will have no significant impact in terms of the number of species adequately represented in Chile, where the implementation of the proposed reserves is vital to accomplish the present and future minimum representation. Our results also show the importance of using migration dispersal constraints to develop more realistic future habitat maps from climate change predictions.

  13. In the Right Place at the Right Time: Habitat Representation in Protected Areas of South American Nothofagus-Dominated Plants after a Dispersal Constrained Climate Change Scenario

    PubMed Central

    Alarcón, Diego; Cavieres, Lohengrin A.

    2015-01-01

    In order to assess the effects of climate change in temperate rainforest plants in southern South America in terms of habitat size, representation in protected areas, considering also if the expected impacts are similar for dominant trees and understory plant species, we used niche modeling constrained by species migration on 118 plant species, considering two groups of dominant trees and two groups of understory ferns. Representation in protected areas included Chilean national protected areas, private protected areas, and priority areas planned for future reserves, with two thresholds for minimum representation at the country level: 10% and 17%. With a 10% representation threshold, national protected areas currently represent only 50% of the assessed species. Private reserves are important since they increase up to 66% the species representation level. Besides, 97% of the evaluated species may achieve the minimum representation target only if the proposed priority areas were included. With the climate change scenario representation levels slightly increase to 53%, 69%, and 99%, respectively, to the categories previously mentioned. Thus, the current location of all the representation categories is useful for overcoming climate change by 2050. Climate change impacts on habitat size and representation of dominant trees in protected areas are not applicable to understory plants, highlighting the importance of assessing these effects with a larger number of species. Although climate change will modify the habitat size of plant species in South American temperate rainforests, it will have no significant impact in terms of the number of species adequately represented in Chile, where the implementation of the proposed reserves is vital to accomplish the present and future minimum representation. Our results also show the importance of using migration dispersal constraints to develop more realistic future habitat maps from climate change predictions. PMID:25786226

  14. A Comprehensive Approach for Modelling Elephant Habitat within the Network of Protected Areas Oti-Keran-Mandouri in Togo (West Africa)

    NASA Astrophysics Data System (ADS)

    Polo-Akpisso, A.; Coulibaly, M.; Soulemane, O.; Wala, K.; Tano, Y.

    2015-12-01

    The network of protected areas Oti-Keran-Mandouri (OKM) is part of one of the most important ecogeographical region for the African savannah elephant conservation in West Africa. However, OKM is under high anthropogenic pressure but it is still considered as a first priority corridor for elephant migration. Therefore a comprehensive suitability model was developed in a GIS environment to identify remaining suitable patch of habitat. Considering the ecology of the African Savannah elephant, criteria such as pound thickness, distance to rivers, distance to roads, distance to settlements, Digital Elevation Model (DEM) and the Normalized Difference Vegetation Index (NDVI) were standardized using appropriate fuzzy membership functions and sum overlaid. A set of elephant occurrence data from park managers and from casual sighting was used as test data. About 29.01 % of the area of OKM was classified as suitable habitat whereas 60.84 % and 10.14% were respectively considered as somewhat and less suitable habitats. About 36.5% of the occurrence data felt in the suitable area while 62.16% in the somewhat suitable area. Forest lands were the main contributor to the suitable habitat whereas others land cover types (savannahs, wetlands and croplands) contributed mostly to the somewhat suitable habitat (60.97% to 63.43%). The Habitat Unit Index (HUI) for suitable habitat shows that forests are the most preferred vegetation type (0.49) followed by wetlands (0.32) and savannah (0.31). Despite the high anthropogenic pressure on OKM, there are still potential suitable patches of elephant habitat. Improvement of management and restauration activities could enable OKM to play a key role in biodiversity conservation in West Africa by allowing the seasonal migration of elephants. This study gives an insight on the availability of suitable habitat within OKM, however, further investigation is needed to refine the model and to assess habitat fragmentation.

  15. Probiotics Protect Mice from Ovariectomy-Induced Cortical Bone Loss

    PubMed Central

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H.; Farman, Helen H.; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice. PMID:24637895

  16. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    PubMed

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  17. Food-web models predict species abundances in response to habitat change.

    PubMed

    Gotelli, Nicholas J; Ellison, Aaron M

    2006-10-01

    Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss.

  18. Food-Web Models Predict Species Abundances in Response to Habitat Change

    PubMed Central

    Gotelli, Nicholas J; Ellison, Aaron M

    2006-01-01

    Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss. PMID:17002518

  19. Grand Ronde Basin Fish Habitat Enhancement Project, 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance R.; Morton, Winston H.

    2009-07-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing the opportunities for natural fishmore » production within the basin. This project originally provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented under revisions of the Fish and Wild Program as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires considerable time be spent developing rapport with landowners to gain acceptance, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources, is the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway

  20. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees.

    PubMed

    Felton, Adam; Sonesson, Johan; Nilsson, Urban; Lämås, Tomas; Lundmark, Tomas; Nordin, Annika; Ranius, Thomas; Roberge, Jean-Michel

    2017-04-01

    Because of the limited spatial extent and comprehensiveness of protected areas, an increasing emphasis is being placed on conserving habitats which promote biodiversity within production forest. For this reason, alternative silvicultural programs need to be evaluated with respect to their implications for forest biodiversity, especially if these programs are likely to be adopted. Here we simulated the effect of varied rotation length and associated thinning regimes on habitat availability in Scots pine and Norway spruce production forests, with high and low productivity. Shorter rotation lengths reduced the contribution made by production trees (trees grown for industrial use) to the availability of key habitat features, while concurrently increasing the contribution from retention trees. The contribution of production trees to habitat features was larger for high productivity sites, than for low productivity sites. We conclude that shortened rotation lengths result in losses of the availability of habitat features that are key for biodiversity conservation and that increased retention practices may only partially compensate for this. Ensuring that conservation efforts better reflect the inherent variation in stand rotation lengths would help improve the maintenance of key forest habitats in production forests.

  1. Fish habitat degradation in U.S. reservoirs

    USGS Publications Warehouse

    Miranda, L.E.; Spickard, M.; Dunn, T.; Webb, K.M.; Aycock, J.N.; Hunt, K.

    2010-01-01

    As the median age of the thousands of large reservoirs (> 200 ha) in the United States tops 50, many are showing various signs of fish habitat degradation. Our goal was to identify major factors degrading fish habitat in reservoirs across the country, and to explore regional degradation patterns. An online survey including 14 metrics was scored on a 0 (no degradation) to 5 (high degradation) point scale by 221 fisheries scientists (92% response rate) to describe degradation in 482 reservoirs randomly distributed throughout the continental United States. The highest scored sources of degradation were lack of aquatic macrophytes (41% of the reservoirs scored as 4-5), lack or loss of woody debris (35% scored 4-5), mistimed water level fluctuations (34% scored 4-5), and sedimentation (31% scored 4-5). Factor analysis identified five primary degradation factors that accounted for most of the variability in the 14 degradation metrics. The factors reflected siltation, structural habitat, eutrophication, water regime, and aquatic plants. Three degradation factors were driven principally by in-reservoir processes, whereas the other two were driven by inputs from the watershed. A comparison across U.S. regions indicated significant geographical differences in degradation relative to the factors emphasized by each region. Reservoirs sometimes have been dismissed as unnatural and disruptive, but they are a product of public policy, a critical feature of landscapes, and they cannot be overlooked if managers are to effectively conserve river systems. Protection and restoration of reservoir habitats may be enhanced with a broader perspective that includes watershed management, in addition to in reservoir activities.

  2. Habitat fragmentation in the temperate zone: a perspective for managers

    Treesearch

    John Faaborg; Margaret Brittingham; Therese Donovan; John Blake

    1993-01-01

    Habitat fragmentation occurs when a large, fairly continuous tract of vegetation is converted to other vegetation types such that only scattered fragments of the original type remain. Problems associated with habitat fragmentation include overall habitat loss, increase in edge habitat and edge effects (particularly higher parasitism and nest predation rates), and...

  3. Local Residents Perception of Benefits and Losses From Protected Areas in India and Nepal

    NASA Astrophysics Data System (ADS)

    Karanth, Krithi K.; Nepal, Sanjay K.

    2012-02-01

    High densities of people living around protected areas (PAs) in South Asia require management strategies to balance conservation goals and livelihood needs. Based on a survey of 777 households around five PAs in India and Nepal, this paper provides a comparative perspective of Indian and Nepali households' views of protected area benefits and costs, their attitude toward conservation in general, and attitude toward protected area staff. Results indicate mixed responses towards tourism, varying from very favorable in Nepal to less favorable in India. The majority (81%) held positive attitudes towards the existence and importance of PAs but had negative perceptions of PA staff (69%). Most residents perceived benefits from access to fuel wood, fodder and other PA resources including benefits from tourism, while crop and livestock losses from wildlife were the main costs. Households overall positive attitudes towards the PAs and conservation despite high losses from living around PAs suggests that local residents may support conservation if their livelihood needs are met. Comparisons of household attitudes and perceptions suggest that locally based strategies rather than top-down approaches are likely to be more effective. Extending PA benefits to smaller landholders, households that are highly resource-dependent or experiencing higher income losses from human-wildlife conflicts, and less educated residents are particularly important to balance costs and losses from living around protected areas.

  4. Local residents perception of benefits and losses from protected areas in India and Nepal.

    PubMed

    Karanth, Krithi K; Nepal, Sanjay K

    2012-02-01

    High densities of people living around protected areas (PAs) in South Asia require management strategies to balance conservation goals and livelihood needs. Based on a survey of 777 households around five PAs in India and Nepal, this paper provides a comparative perspective of Indian and Nepali households' views of protected area benefits and costs, their attitude toward conservation in general, and attitude toward protected area staff. Results indicate mixed responses towards tourism, varying from very favorable in Nepal to less favorable in India. The majority (81%) held positive attitudes towards the existence and importance of PAs but had negative perceptions of PA staff (69%). Most residents perceived benefits from access to fuel wood, fodder and other PA resources including benefits from tourism, while crop and livestock losses from wildlife were the main costs. Households overall positive attitudes towards the PAs and conservation despite high losses from living around PAs suggests that local residents may support conservation if their livelihood needs are met. Comparisons of household attitudes and perceptions suggest that locally based strategies rather than top-down approaches are likely to be more effective. Extending PA benefits to smaller landholders, households that are highly resource-dependent or experiencing higher income losses from human-wildlife conflicts, and less educated residents are particularly important to balance costs and losses from living around protected areas.

  5. Enhancements of the "eHabitat

    NASA Astrophysics Data System (ADS)

    Santoro, M.; Dubois, G.; Schulz, M.; Skøien, J. O.; Nativi, S.; Peedell, S.; Boldrini, E.

    2012-04-01

    The number of interoperable research infrastructures has increased significantly with the growing awareness of the efforts made by the Global Earth Observation System of Systems (GEOSS). One of the Social Benefit Areas (SBA) that is benefiting most from GEOSS is biodiversity, given the costs of monitoring the environment and managing complex information, from space observations to species records including their genetic characteristics. But GEOSS goes beyond the simple sharing of the data as it encourages the connectivity of models (the GEOSS Model Web), an approach easing the handling of often complex multi-disciplinary questions such as understanding the impact of environmental and climatological factors on ecosystems and habitats. In the context of GEOSS Architecture Implementation Pilot - Phase 3 (AIP-3), the EC-funded EuroGEOSS and GENESIS projects have developed and successfully demonstrated the "eHabitat" use scenario dealing with Climate Change and Biodiversity domains. Based on the EuroGEOSS multidisciplinary brokering infrastructure and on the DOPA (Digital Observatory for Protected Areas, see http://dopa.jrc.ec.europa.eu/), this scenario demonstrated how a GEOSS-based interoperability infrastructure can aid decision makers to assess and possibly forecast the irreplaceability of a given protected area, an essential indicator for assessing the criticality of threats this protected area is exposed to. The "eHabitat" use scenario was advanced in the GEOSS Sprint to Plenary activity; the advanced scenario will include the "EuroGEOSS Data Access Broker" and a new version of the eHabitat model in order to support the use of uncertain data. The multidisciplinary interoperability infrastructure which is used to demonstrate the "eHabitat" use scenario is composed of the following main components: a) A Discovery Broker: this component is able to discover resources from a plethora of different and heterogeneous geospatial services, presenting them on a single and

  6. Characterising reef fish populations and habitats within and outside the US Virgin Islands Coral Reef National Monument: A lesson in marine protected area design

    USGS Publications Warehouse

    Monaco, Mark E.; Friedlander, A.M.; Caldow, Chris; Christensen, J.D.; Rogers, C.; Beets, J.; Miller, J.; Boulon, Rafe

    2007-01-01

    Marine protected areas are an important tool for management of marine ecosystems. Despite their utility, ecological design criteria are often not considered or feasible to implement when establishing protected areas. In 2001, the Virgin Islands Coral Reef National Monument (VICRNM) in St John, US Virgin Islands was established by Executive Order. The VICRNM prohibits almost all extractive uses. Surveys of habitat and fishes inside and outside of the VICRNM were conducted in 2002-2004. Areas outside the VICRNM had significantly more hard corals, greater habitat complexity, and greater richness, abundance and biomass of reef fishes than areas within the VICRNM. The administrative process used to delineate the boundaries of the VICRNM did not include a robust ecological characterisation of the area. Because of reduced habitat complexity within the VICRNM, the enhancement of the marine ecosystem may not be fully realised or increases in economically important reef fishes may take longer to detect. ?? 2007 The Authors. Journal compilation ?? 2007 Blackwell Publishing Ltd.

  7. Benthic habitat and fish assemblage structure from shallow to mesophotic depths in a storm-impacted marine protected area

    NASA Astrophysics Data System (ADS)

    Abesamis, Rene A.; Langlois, Tim; Birt, Matthew; Thillainath, Emma; Bucol, Abner A.; Arceo, Hazel O.; Russ, Garry R.

    2018-03-01

    Baseline ecological studies of mesophotic coral ecosystems are lacking in the equatorial Indo-West Pacific region where coral reefs are highly threatened by anthropogenic and climate-induced disturbances. Here, we used baited remote underwater video to describe benthic habitat and fish assemblage structure from 10 to 80 m depth at Apo Island, a well-managed marine protected area in the Philippines. We conducted surveys 2 yr after two storms (in 2011 and 2012) caused severe damage to shallow coral communities within the no-take marine reserve (NTMR) of Apo Island, which led to declines in fish populations that had built up over three decades. We found that hard coral cover was restricted to < 40 m deep in the storm-impacted NTMR and a nearby fished area not impacted by storms. Benthic cover at mesophotic depths (> 30 m) was dominated by sand/rubble and rock (dead coral) with low cover of soft corals, sponges and macroalgae. Storm damage appeared to have reached the deepest limit of the fringing reef (40 m) and reduced variability in benthic structure within the NTMR. Species richness and/or abundance of most trophic groups of fish declined with increasing depth regardless of storm damage. There were differences in taxonomic and trophic structure and degree of targeting by fisheries between shallow and mesophotic fish assemblages. Threatened shark species and a fish species previously unreported in the Philippines were recorded at mesophotic depths. Our findings provide a first glimpse of the benthic and fish assemblage structure of Philippine coral reef ecosystems across a wide depth gradient. This work also underscores how a combination of limited coral reef development at mesophotic depths close to shallow reefs and severe habitat loss caused by storms would result in minimal depth refuge for reef fish populations.

  8. Middle Rio Grande Bosque Ecosystem Restoration Feasibility Study Habitat Assessment Using Habitat Evaluation Procedures (HEP): Analyses, Results and Documentation

    DTIC Science & Technology

    2012-08-01

    habitat to a greater number of wildlife species than any other ecological community in the region and serve as a critical travel corridor for many... species , especially migratory birds moving with the change of seasons. Yet although these riparian ecosystems are considered to be the most... habitat for many key wildlife species . Estimates of riparian habitat loss in the South- west range from 40% to 90% (Dahl 1990), and desert riparian

  9. Thermal biology mediates responses of amphibians and reptiles to habitat modification.

    PubMed

    Nowakowski, A Justin; Watling, James I; Thompson, Michelle E; Brusch, George A; Catenazzi, Alessandro; Whitfield, Steven M; Kurz, David J; Suárez-Mayorga, Ángela; Aponte-Gutiérrez, Andrés; Donnelly, Maureen A; Todd, Brian D

    2018-03-01

    Human activities often replace native forests with warmer, modified habitats that represent novel thermal environments for biodiversity. Reducing biodiversity loss hinges upon identifying which species are most sensitive to the environmental conditions that result from habitat modification. Drawing on case studies and a meta-analysis, we examined whether observed and modelled thermal traits, including heat tolerances, variation in body temperatures, and evaporative water loss, explained variation in sensitivity of ectotherms to habitat modification. Low heat tolerances of lizards and amphibians and high evaporative water loss of amphibians were associated with increased sensitivity to habitat modification, often explaining more variation than non-thermal traits. Heat tolerances alone explained 24-66% (mean = 38%) of the variation in species responses, and these trends were largely consistent across geographic locations and spatial scales. As habitat modification alters local microclimates, the thermal biology of species will likely play a key role in the reassembly of terrestrial communities. © 2018 John Wiley & Sons Ltd/CNRS.

  10. Challenges in rendering Coral Triangle habitat richness in remotely sensed habitat maps: The case of Bunaken Island (Indonesia).

    PubMed

    Ampou, Eghbert Elvan; Ouillon, Sylvain; Andréfouët, Serge

    2018-06-01

    The Coral Triangle is the epicenter of marine biodiversity, yet the numbers of habitats that can be found on coral reefs remain poorly described. First surveys for habitat mapping in Indonesia revealed a high number of habitats (>150) even for structurally simple reefs. To be able to represent all these habitats, typical habitat mapping procedures and performances are poorly effective even using very high resolution satellite images. Using Bunaken Island (North Sulawesi, Indonesia) as a case study, we devised a way to maintain all the in situ habitat information in remote sensing habitat map products without loss and with mapping procedures based on photo-interpretation. The result is a product which is consistent with a per-polygon fuzzy classification. As such, it is a complex product that meets our habitat representation goal, but its complexity can also limit its immediate use by managers and conservation planners when analyses per habitat are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ocelot Population Status in Protected Brazilian Atlantic Forest.

    PubMed

    Massara, Rodrigo Lima; Paschoal, Ana Maria de Oliveira; Doherty, Paul Francis; Hirsch, André; Chiarello, Adriano Garcia

    2015-01-01

    Forest fragmentation and habitat loss are detrimental to top carnivores, such as jaguars (Panthera onca) and pumas (Puma concolor), but effects on mesocarnivores, such as ocelots (Leopardus pardalis), are less clear. Ocelots need native forests, but also might benefit from the local extirpation of larger cats such as pumas and jaguars through mesopredator release. We used a standardized camera trap protocol to assess ocelot populations in six protected areas of the Atlantic forest in southeastern Brazil where over 80% of forest remnants are < 50 ha. We tested whether variation in ocelot abundance could be explained by reserve size, forest cover, number of free-ranging domestic dogs and presence of top predators. Ocelot abundance was positively correlated with reserve size and the presence of top predators (jaguar and pumas) and negatively correlated with the number of dogs. We also found higher detection probabilities in less forested areas as compared to larger, intact forests. We suspect that smaller home ranges and higher movement rates in smaller, more degraded areas increased detection. Our data do not support the hypothesis of mesopredator release. Rather, our findings indicate that ocelots respond negatively to habitat loss, and thrive in large protected areas inhabited by top predators.

  12. Ocelot Population Status in Protected Brazilian Atlantic Forest

    PubMed Central

    Massara, Rodrigo Lima; Paschoal, Ana Maria de Oliveira; Doherty, Paul Francis; Hirsch, André; Chiarello, Adriano Garcia

    2015-01-01

    Forest fragmentation and habitat loss are detrimental to top carnivores, such as jaguars (Panthera onca) and pumas (Puma concolor), but effects on mesocarnivores, such as ocelots (Leopardus pardalis), are less clear. Ocelots need native forests, but also might benefit from the local extirpation of larger cats such as pumas and jaguars through mesopredator release. We used a standardized camera trap protocol to assess ocelot populations in six protected areas of the Atlantic forest in southeastern Brazil where over 80% of forest remnants are < 50 ha. We tested whether variation in ocelot abundance could be explained by reserve size, forest cover, number of free-ranging domestic dogs and presence of top predators. Ocelot abundance was positively correlated with reserve size and the presence of top predators (jaguar and pumas) and negatively correlated with the number of dogs. We also found higher detection probabilities in less forested areas as compared to larger, intact forests. We suspect that smaller home ranges and higher movement rates in smaller, more degraded areas increased detection. Our data do not support the hypothesis of mesopredator release. Rather, our findings indicate that ocelots respond negatively to habitat loss, and thrive in large protected areas inhabited by top predators. PMID:26560347

  13. Non-target effects on songbirds from habitat manipulation for Greater Sage-Grouse: Implications for the umbrella species concept

    USGS Publications Warehouse

    Carlisle, Jason D.; Chalfoun, Anna D.; Smith, Kurt T.; Beck, Jeffery L.

    2018-01-01

    The “umbrella species” concept is a conservation strategy in which creating and managing reserve areas to meet the needs of one species is thought to benefit other species indirectly. Broad-scale habitat protections on behalf of an umbrella species are assumed to benefit co-occurring taxa, but targeted management actions to improve local habitat suitability for the umbrella species may produce unintended effects on other species. Our objective was to quantify the effects of a common habitat treatment (mowing of big sagebrush [Artemisia tridentata]) intended to benefit a high-profile umbrella species (Greater Sage-Grouse [Centrocercus urophasianus]) on 3 sympatric songbird species of concern. We used a before–after control-impact experimental design spanning 3 yr in Wyoming, USA, to quantify the effect of mowing on the abundance, nest-site selection, nestling condition, and nest survival of 2 sagebrush-obligate songbirds (Brewer's Sparrow [Spizella breweri] and Sage Thrasher [Oreoscoptes montanus]) and one open-habitat generalist songbird (Vesper Sparrow [Pooecetes gramineus]). Mowing was associated with lower abundance of Brewer's Sparrows and Sage Thrashers but higher abundance of Vesper Sparrows. We found no Brewer's Sparrows or Sage Thrashers nesting in the mowed footprint posttreatment, which suggests complete loss of nesting habitat for these species. Mowing was associated with higher nestling condition and nest survival for Vesper Sparrows but not for the sagebrush-obligate species. Management prescriptions that remove woody biomass within a mosaic of intact habitat may be tolerated by sagebrush-obligate songbirds but are likely more beneficial for open-habitat generalist species. By definition, umbrella species conservation entails habitat protections at broad spatial scales. We caution that habitat manipulations to benefit Greater Sage-Grouse could negatively affect nontarget species of conservation concern if implemented across large spatial extents.

  14. Effects of habitat disturbance on tropical forest biodiversity

    PubMed Central

    Alroy, John

    2017-01-01

    It is widely expected that habitat destruction in the tropics will cause a mass extinction in coming years, but the potential magnitude of the loss is unclear. Existing literature has focused on estimating global extinction rates indirectly or on quantifying effects only at local and regional scales. This paper directly predicts global losses in 11 groups of organisms that would ensue from disturbance of all remaining tropical forest habitats. The results are based on applying a highly accurate method of estimating species richness to 875 ecological samples. About 41% of the tree and animal species in this dataset are absent from disturbed habitats, even though most samples do still represent forests of some kind. The individual figures are 30% for trees and 8–65% for 10 animal groups. Local communities are more robust to disturbance because losses are partially balanced out by gains resulting from homogenization. PMID:28461482

  15. Evaluation of Streamflow Requirements for Habitat Protection by Comparison to Streamflow Characteristics at Index Streamflow-Gaging Stations in Southern New England

    USGS Publications Warehouse

    Armstrong, David S.; Parker, Gene W.; Richards, Todd A.

    2003-01-01

    Streamflow characteristics and methods for determining streamflow requirements for habitat protection were investigated at 23 active index streamflow-gaging stations in southern New England. Fish communities sampled near index streamflow-gaging stations in Massachusetts have a high percentage of fish that require flowing-water habitats for some or all of their life cycle. The relatively unaltered flow condition at these sites was assumed to be one factor that has contributed to this condition. Monthly flow durations and low flow statistics were determined for the index streamflow-gaging stations for a 25- year period from 1976 to 2000. Annual hydrographs were prepared for each index station from median streamflows at the 50-percent monthly flow duration, normalized by drainage area. A median monthly flow of 1 ft3/s/mi2 was used to split hydrographs into a high-flow period (November–May), and a low-flow period (June–October). The hydrographs were used to classify index stations into groups with similar median monthly flow durations. Index stations were divided into four regional groups, roughly paralleling the coast, to characterize streamflows for November to May; and into two groups, on the basis of base-flow index and percentage of sand and gravel in the contributing area, for June to October. For the June to October period, for index stations with a high base-flow index and contributing areas greater than 20 percent sand and gravel, median streamflows at the 50-percent monthly flow duration, normalized by drainage area, were 0.57, 0.49, and 0.46 ft3/s/mi2 for July, August, and September, respectively. For index stations with a low base-flow index and contributing areas less than 20 percent sand and gravel, median streamflows at the 50-percent monthly flow duration, normalized by drainage area, were 0.34, 0.28, and 0.27 ft3/s/mi2 for July, August, and September, respectively. Streamflow variability between wet and dry years can be characterized by use of the

  16. Marine habitat mapping at Labuan Marine Park, Federal Territory of Labuan, Malaysia

    NASA Astrophysics Data System (ADS)

    Mustajap, Fazliana; Saleh, Ejria; Madin, John; Hamid, Shahimah Abdul

    2015-06-01

    Marine habitat mapping has recently become essential in coastal marine science research. It is one of the efforts to understand marine ecosystems, and thus to protect them. Habitat mapping is integral to marine-related industries such as fisheries, aquaculture, forestry and tourism. An assessment of marine habitat mapping was conducted at Labuan Marine Park (LMP), a marine protected area in the Federal Territory of Labuan. It is surrounded by shallow water within its islands (Kuraman, Rusukan Kecil and Rusukan Besar) with an area of 39.7 km2. The objectives of the study are to identify the substrate and types of marine habitat present within the park. Side scan sonar (SSS) (Aquascan TM) was used to determine the substrates and habitat while ground truthings were done through field observation and SCUBA diving survey. Seabed classification and marine habitat was based on NOAA's biogeography program. Three substrate types (sand, rock, silt) were identified in this area. The major marine habitats identified are corals, macro algae and small patches of sea grass. The study area is an important refuge for spawning and juvenile fish and supports the livelihood of the coastal communities on Labuan Island. Therefore, proper management is crucial in order to better maintain the marine protected area. The findings are significant and provide detailed baseline information on marine habitat for conservation, protection and future management in LMP.

  17. Habitat use and reproductive success of western snowy plovers at new nesting areas created for California least terns

    USGS Publications Warehouse

    Powell, Abby N.; Collier, Christine L.

    2000-01-01

    The Pacific coast population of western snowy plovers (Charadrius alexandrinus nivosus) was listed as threatened under the Endangered Species Act (ESA) in 1993 and its decline is primarily attributed to habitat loss. In southern California, snowy plovers typically nest in association with federally endangered California least terns (Sterna antillarum browni). Since least terns were afforded protection under the ESA, the creation of nesting habitat from dredged materials has been a popular component of habitat restoration to partially compensate for wetland loss in this region. We had a unique opportunity to monitor habitat use and reproductive success at newly created habitats associated with the restoration of Batiquitos Lagoon, San Diego County, California from 1994 to 1998. We also compared hatch and fledge rates and habitat characteristics of snowy plovers nesting at new nesting areas at Batiquitos Lagoon to a nearby natural beach and a dredged-material area created in the 1970s. The number of nesting attempts by snowy plovers increased from 5 in 1994 to a high of 38 in 1997, and plovers nested on 4 of the 5 created areas. Fledge rates at Batiquitos Lagoon varied annually and declined after the initial colonization in 1995. Fledge rate in 1995 was higher at the newly created area than at the older dredged-material and natural beach areas in any other year. Nests on the created areas at Batiquitos Lagoon were surrounded by less vegetative cover, less debris, and shorter vegetation than nests at the older dredged-material and natural beach areas. Nonbreeding snowy plovers used created habitats within the lagoon, and more plovers used the lagoon and its adjacent beach during fall than winter. Predation pressure and habitat quality were important factors determining use and reproductive success on created areas at Batiquitos Lagoon.

  18. Fish habitat degradation in U.S. reservoirs

    USGS Publications Warehouse

    Miranda, Leandro E.; Spickard, M.; Dunn, T.; Webb, K.M.; Aycock, J.N.; Hunt, K.

    2010-01-01

    As the median age of the thousands of large reservoirs (> 200 ha) in the United States tops 50, many are showing various signs of fish habitat degradation. Our goal was to identify major factors degrading fish habitat in reservoirs across the country, and to explore regional degradation patterns. An online survey including 14 metrics was scored on a 0 (no degradation) to 5 (high degradation) point scale by 221 fisheries scientists (92% response rate) to describe degradation in 482 reservoirs randomly distributed throughout the continental United States. The highest scored sources of degradation were lack of aquatic macrophytes (41% of the reservoirs scored as 4–5), lack or loss of woody debris (35% scored 4–5), mistimed water level fluctuations (34% scored 4–5), and sedimentation (31% scored 4–5). Factor analysis identified five primary degradation factors that accounted for most of the variability in the 14 degradation metrics. The factors reflected siltation, structural habitat, eutrophication, water regime, and aquatic plants. Three degradation factors were driven principally by in-reservoir processes, whereas the other two were driven by inputs from the watershed. A comparison across U.S. regions indicated significant geographical differences in degradation relative to the factors emphasized by each region. Reservoirs sometimes have been dismissed as unnatural and disruptive, but they are a product of public policy, a critical feature of landscapes, and they cannot be overlooked if managers are to effectively conserve river systems. Protection and restoration of reservoir habitats may be enhanced with a broader perspective that includes watershed management, in addition to in reservoir activities.

  19. HABITAT RELATIONS OF WATERFOWL WINTERING IN NARRAGANSETT BAY

    EPA Science Inventory

    As part of a project investigating the effect of changes in habitat quality brought about by habitat loss or impairment on resident wildlife in coastal ecosystems, we conducted periodic surveys of wintering waterfowl in Narragansett Bay. A total of 17 species of waterfowl were i...

  20. Keeping Pace with Climate Change: Habitat Protection in the Face of Uncertainty

    NASA Astrophysics Data System (ADS)

    Flitcroft, R. L.; Burnett, K.; Giannico, G.

    2014-12-01

    Estuaries provide critical habitat for many economically and culturally important species. In the Pacific Northwest, intertidal and subtidal areas provide critical habitat for production of native and commercial oysters (Olympia oyster Ostrea lurida and Pacific oyster Crassostrea gigas, respectively) that in turn provide refuge and rearing habitat for Dungeness Crab, Metacarcinus magister. Environments ranging from subtidal through freshwater zones provide nursery areas for juvenile salmonids at different development stages in their life history. Most Oregon estuaries have been significantly altered by humans over the past century, reducing the quantity and diversity of available habitats. Management agencies have responded with projects to restore and enhance estuarine habitats. Unfortunately, future climate change and sea-level rise could render many current restoration projects ineffective over time. Planning for habitat restoration that keeps pace with climate change will be critical to the sustainable production of seafood and maintenance of ecosystem function. However, land managers and citizens lack the spatially-explicit data needed to incorporate the potential effects of climate change and sea-level rise into planning for habitat improvement projects in estuarine areas. To meet this need, we developed simple models using LiDAR to characterize the geomorphologies of multiple Oregon estuaries. We were able to map the margin of current mean high tide, and contour intervals associated with different potential increases in mean high tide. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting changes in estuary shape. For each estuary, we assessed changes in the amount and complexity of edge habitats. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance

  1. Averting biodiversity collapse in tropical forest protected areas.

    PubMed

    Laurance, William F; Useche, D Carolina; Rendeiro, Julio; Kalka, Margareta; Bradshaw, Corey J A; Sloan, Sean P; Laurance, Susan G; Campbell, Mason; Abernethy, Kate; Alvarez, Patricia; Arroyo-Rodriguez, Victor; Ashton, Peter; Benítez-Malvido, Julieta; Blom, Allard; Bobo, Kadiri S; Cannon, Charles H; Cao, Min; Carroll, Richard; Chapman, Colin; Coates, Rosamond; Cords, Marina; Danielsen, Finn; De Dijn, Bart; Dinerstein, Eric; Donnelly, Maureen A; Edwards, David; Edwards, Felicity; Farwig, Nina; Fashing, Peter; Forget, Pierre-Michel; Foster, Mercedes; Gale, George; Harris, David; Harrison, Rhett; Hart, John; Karpanty, Sarah; Kress, W John; Krishnaswamy, Jagdish; Logsdon, Willis; Lovett, Jon; Magnusson, William; Maisels, Fiona; Marshall, Andrew R; McClearn, Deedra; Mudappa, Divya; Nielsen, Martin R; Pearson, Richard; Pitman, Nigel; van der Ploeg, Jan; Plumptre, Andrew; Poulsen, John; Quesada, Mauricio; Rainey, Hugo; Robinson, Douglas; Roetgers, Christiane; Rovero, Francesco; Scatena, Frederick; Schulze, Christian; Sheil, Douglas; Struhsaker, Thomas; Terborgh, John; Thomas, Duncan; Timm, Robert; Urbina-Cardona, J Nicolas; Vasudevan, Karthikeyan; Wright, S Joseph; Arias-G, Juan Carlos; Arroyo, Luzmila; Ashton, Mark; Auzel, Philippe; Babaasa, Dennis; Babweteera, Fred; Baker, Patrick; Banki, Olaf; Bass, Margot; Bila-Isia, Inogwabini; Blake, Stephen; Brockelman, Warren; Brokaw, Nicholas; Brühl, Carsten A; Bunyavejchewin, Sarayudh; Chao, Jung-Tai; Chave, Jerome; Chellam, Ravi; Clark, Connie J; Clavijo, José; Congdon, Robert; Corlett, Richard; Dattaraja, H S; Dave, Chittaranjan; Davies, Glyn; Beisiegel, Beatriz de Mello; da Silva, Rosa de Nazaré Paes; Di Fiore, Anthony; Diesmos, Arvin; Dirzo, Rodolfo; Doran-Sheehy, Diane; Eaton, Mitchell; Emmons, Louise; Estrada, Alejandro; Ewango, Corneille; Fedigan, Linda; Feer, François; Fruth, Barbara; Willis, Jacalyn Giacalone; Goodale, Uromi; Goodman, Steven; Guix, Juan C; Guthiga, Paul; Haber, William; Hamer, Keith; Herbinger, Ilka; Hill, Jane; Huang, Zhongliang; Sun, I Fang; Ickes, Kalan; Itoh, Akira; Ivanauskas, Natália; Jackes, Betsy; Janovec, John; Janzen, Daniel; Jiangming, Mo; Jin, Chen; Jones, Trevor; Justiniano, Hermes; Kalko, Elisabeth; Kasangaki, Aventino; Killeen, Timothy; King, Hen-biau; Klop, Erik; Knott, Cheryl; Koné, Inza; Kudavidanage, Enoka; Ribeiro, José Lahoz da Silva; Lattke, John; Laval, Richard; Lawton, Robert; Leal, Miguel; Leighton, Mark; Lentino, Miguel; Leonel, Cristiane; Lindsell, Jeremy; Ling-Ling, Lee; Linsenmair, K Eduard; Losos, Elizabeth; Lugo, Ariel; Lwanga, Jeremiah; Mack, Andrew L; Martins, Marlucia; McGraw, W Scott; McNab, Roan; Montag, Luciano; Thompson, Jo Myers; Nabe-Nielsen, Jacob; Nakagawa, Michiko; Nepal, Sanjay; Norconk, Marilyn; Novotny, Vojtech; O'Donnell, Sean; Opiang, Muse; Ouboter, Paul; Parker, Kenneth; Parthasarathy, N; Pisciotta, Kátia; Prawiradilaga, Dewi; Pringle, Catherine; Rajathurai, Subaraj; Reichard, Ulrich; Reinartz, Gay; Renton, Katherine; Reynolds, Glen; Reynolds, Vernon; Riley, Erin; Rödel, Mark-Oliver; Rothman, Jessica; Round, Philip; Sakai, Shoko; Sanaiotti, Tania; Savini, Tommaso; Schaab, Gertrud; Seidensticker, John; Siaka, Alhaji; Silman, Miles R; Smith, Thomas B; de Almeida, Samuel Soares; Sodhi, Navjot; Stanford, Craig; Stewart, Kristine; Stokes, Emma; Stoner, Kathryn E; Sukumar, Raman; Surbeck, Martin; Tobler, Mathias; Tscharntke, Teja; Turkalo, Andrea; Umapathy, Govindaswamy; van Weerd, Merlijn; Rivera, Jorge Vega; Venkataraman, Meena; Venn, Linda; Verea, Carlos; de Castilho, Carolina Volkmer; Waltert, Matthias; Wang, Benjamin; Watts, David; Weber, William; West, Paige; Whitacre, David; Whitney, Ken; Wilkie, David; Williams, Stephen; Wright, Debra D; Wright, Patricia; Xiankai, Lu; Yonzon, Pralad; Zamzani, Franky

    2012-09-13

    The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses. As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world’s major tropical regions. Our analysis reveals great variation in reserve ‘health’: about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.

  2. Neuronal erythropoietin overexpression is protective against kanamycin-induced hearing loss in mice.

    PubMed

    Bächinger, David; Horvath, Lukas; Eckhard, Andreas; Goosmann, Madeline M; Honegger, Tim; Gassmann, Max; Vogel, Johannes; Naldi, Arianne Monge

    2018-07-01

    Aminoglycosides have detrimental effects on the hair cells of the inner ear, yet these agents indisputably are one of the cornerstones in antibiotic therapy. Hence, there is a demand for strategies to prevent aminoglycoside-induced ototoxicity, which are not available today. In vitro data suggests that the pleiotropic growth factor erythropoietin (EPO) is neuroprotective against aminoglycoside-induced hair cell loss. Here, we use a mouse model with EPO-overexpression in neuronal tissue to evaluate whether EPO could also in vivo protect from aminoglycoside-induced hearing loss. Auditory brainstem response (ABR) thresholds were measured in 12-weeks-old mice before and after treatment with kanamycin for 15 days, which resulted in both C57BL/6 and EPO-transgenic animals in a high-frequency hearing loss. However, ABR threshold shifts in EPO-transgenic mice were significantly lower than in C57BL/6 mice (mean difference in ABR threshold shift 13.6 dB at 32 kHz, 95% CI 3.8-23.4 dB, p = 0.003). Correspondingly, quantification of hair cells and spiral ganglion neurons by immunofluorescence revealed that EPO-transgenic mice had a significantly lower hair cell and spiral ganglion neuron loss than C57BL/6 mice. In conclusion, neuronal overexpression of EPO is protective against aminoglycoside-induce hearing loss, which is in accordance with its known neuroprotective effects in other organs, such as the eye or the brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Asian Elephants in China: Estimating Population Size and Evaluating Habitat Suitability

    PubMed Central

    Zhang, Li; Dong, Lu; Lin, Liu; Feng, Limin; Yan, Fan; Wang, Lanxin; Guo, Xianming; Luo, Aidong

    2015-01-01

    We monitored the last remaining Asian elephant populations in China over the past decade. Using DNA tools and repeat genotyping, we estimated the population sizes from 654 dung samples collected from various areas. Combined with morphological individual identifications from over 6,300 elephant photographs taken in the wild, we estimated that the total Asian elephant population size in China is between 221 and 245. Population genetic structure and diversity were examined using a 556-bp fragment of mitochondrial DNA, and 24 unique haplotypes were detected from DNA analysis of 178 individuals. A phylogenetic analysis revealed two highly divergent clades of Asian elephants, α and β, present in Chinese populations. Four populations (Mengla, Shangyong, Mengyang, and Pu’Er) carried mtDNA from the α clade, and only one population (Nangunhe) carried mtDNA belonging to the β clade. Moreover, high genetic divergence was observed between the Nangunhe population and the other four populations; however, genetic diversity among the five populations was low, possibly due to limited gene flow because of habitat fragmentation. The expansion of rubber plantations, crop cultivation, and villages along rivers and roads had caused extensive degradation of natural forest in these areas. This had resulted in the loss and fragmentation of elephant habitats and had formed artificial barriers that inhibited elephant migration. Using Geographic Information System, Global Positioning System, and Remote Sensing technology, we found that the area occupied by rubber plantations, tea farms, and urban settlements had dramatically increased over the past 40 years, resulting in the loss and fragmentation of elephant habitats and forming artificial barriers that inhibit elephant migration. The restoration of ecological corridors to facilitate gene exchange among isolated elephant populations and the establishment of cross-boundary protected areas between China and Laos to secure their natural

  4. Asian elephants in China: estimating population size and evaluating habitat suitability.

    PubMed

    Zhang, Li; Dong, Lu; Lin, Liu; Feng, Limin; Yan, Fan; Wang, Lanxin; Guo, Xianming; Luo, Aidong

    2015-01-01

    We monitored the last remaining Asian elephant populations in China over the past decade. Using DNA tools and repeat genotyping, we estimated the population sizes from 654 dung samples collected from various areas. Combined with morphological individual identifications from over 6,300 elephant photographs taken in the wild, we estimated that the total Asian elephant population size in China is between 221 and 245. Population genetic structure and diversity were examined using a 556-bp fragment of mitochondrial DNA, and 24 unique haplotypes were detected from DNA analysis of 178 individuals. A phylogenetic analysis revealed two highly divergent clades of Asian elephants, α and β, present in Chinese populations. Four populations (Mengla, Shangyong, Mengyang, and Pu'Er) carried mtDNA from the α clade, and only one population (Nangunhe) carried mtDNA belonging to the β clade. Moreover, high genetic divergence was observed between the Nangunhe population and the other four populations; however, genetic diversity among the five populations was low, possibly due to limited gene flow because of habitat fragmentation. The expansion of rubber plantations, crop cultivation, and villages along rivers and roads had caused extensive degradation of natural forest in these areas. This had resulted in the loss and fragmentation of elephant habitats and had formed artificial barriers that inhibited elephant migration. Using Geographic Information System, Global Positioning System, and Remote Sensing technology, we found that the area occupied by rubber plantations, tea farms, and urban settlements had dramatically increased over the past 40 years, resulting in the loss and fragmentation of elephant habitats and forming artificial barriers that inhibit elephant migration. The restoration of ecological corridors to facilitate gene exchange among isolated elephant populations and the establishment of cross-boundary protected areas between China and Laos to secure their natural

  5. Habitat Options to Protect Against Decompression Sickness on Mars

    NASA Astrophysics Data System (ADS)

    Conkin, J.

    2000-07-01

    Men and women are alive today, although perhaps still in diapers, who will explore the surface of Mars. Two achievable goals to enable this exploration are to use Martian resources, and to provide a safe means for unrestricted access to the surface. A cost-effective approach for Mars exploration is to use the available resources, such as water and atmospheric gases. Nitrogen (N2) and Argon (Ar) in a concentration ratio of 1.68/1.0 are available, and could form the inert gas component of a habitat atmosphere at 8.0, 9.0, or 10.0 pounds per square inch absolute (psia). The habitat and space suit must be designed as an integrated, complementary, system: a comfortable living environment about 85% of the time and a safe working environment about 15% of the time. A goal is to provide a system that permits unrestricted exploration of Mars. However the risk of decompression sickness (DCS) during the extravehicular activity (EVA) in a 3.75 psia suit after exposure to either of the three habitat conditions may limit unrestricted exploration.

  6. Habitat-based PCB environmental quality criteria for the protection of endangered killer whales (Orcinus orca).

    PubMed

    Alava, Juan José; Ross, Peter S; Lachmuth, Cara; Ford, John K B; Hickie, Brendan E; Gobas, Frank A P C

    2012-11-20

    The development of an area-based polychlorinated biphenyl (PCB) food-web bioaccumulation model enabled a critical evaluation of the efficacy of sediment quality criteria and prey tissue residue guidelines in protecting fish-eating resident killer whales of British Columbia and adjacent waters. Model-predicted and observed PCB concentrations in resident killer whales and Chinook salmon were in good agreement, supporting the model's application for risk assessment and criteria development. Model application shows that PCB concentrations in the sediments from the resident killer whale's Critical Habitats and entire foraging range leads to PCB concentrations in most killer whales that exceed PCB toxicity threshold concentrations reported for marine mammals. Results further indicate that current PCB sediment quality and prey tissue residue criteria for fish-eating wildlife are not protective of killer whales and are not appropriate for assessing risks of PCB-contaminated sediments to high trophic level biota. We present a novel methodology for deriving sediment quality criteria and tissue residue guidelines that protect biota of high trophic levels under various PCB management scenarios. PCB concentrations in sediments and in prey that are deemed protective of resident killer whale health are much lower than current criteria values, underscoring the extreme vulnerability of high trophic level marine mammals to persistent and bioaccumulative contaminants.

  7. The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis).

    PubMed

    Bruggeman, Douglas J; Wiegand, Thorsten; Fernández, Néstor

    2010-09-01

    The relative influence of habitat loss, fragmentation and matrix heterogeneity on the viability of populations is a critical area of conservation research that remains unresolved. Using simulation modelling, we provide an analysis of the influence both patch size and patch isolation have on abundance, effective population size (N(e)) and F(ST). An individual-based, spatially explicit population model based on 15 years of field work on the red-cockaded woodpecker (Picoides borealis) was applied to different landscape configurations. The variation in landscape patterns was summarized using spatial statistics based on O-ring statistics. By regressing demographic and genetics attributes that emerged across the landscape treatments against proportion of total habitat and O-ring statistics, we show that O-ring statistics provide an explicit link between population processes, habitat area, and critical thresholds of fragmentation that affect those processes. Spatial distances among land cover classes that affect biological processes translated into critical scales at which the measures of landscape structure correlated best with genetic indices. Therefore our study infers pattern from process, which contrasts with past studies of landscape genetics. We found that population genetic structure was more strongly affected by fragmentation than population size, which suggests that examining only population size may limit recognition of fragmentation effects that erode genetic variation. If effective population size is used to set recovery goals for endangered species, then habitat fragmentation effects may be sufficiently strong to prevent evaluation of recovery based on the ratio of census:effective population size alone.

  8. Habitat acquisition strategies for grassland birds in an urbanizing landscape

    Treesearch

    Stephanie A. Snyder; James R. Miller; Adam M. Skibbe; Robert G. Haight

    2007-01-01

    Habitat protection for grassland birds is an important component of open space land acquisition in suburban Chicago. We use optimization decision models to develop recommendations for land protection and analyze tradeoffs between alternative goals. One goal is to acquire (and restore if necessary) as much grassland habitat as possible for a given budget. Because a...

  9. Incorporating Natural Capital into Climate Adaptation Planning: Exploring the Role of Habitat in Increasing Coastal Resilience

    NASA Astrophysics Data System (ADS)

    Wedding, L.; Hartge, E. H.; Guannel, G.; Melius, M.; Reiter, S. M.; Ruckelshaus, M.; Guerry, A.; Caldwell, M.

    2014-12-01

    To support decision-makers in their efforts to manage coastal resources in a changing climate the Natural Capital Project and the Center for Ocean Solutions are engaging in, informing, and helping to shape climate adaptation planning at various scales throughout coastal California. Our team is building collaborations with regional planners and local scientific and legal experts to inform local climate adaptation decisions that might minimize the economic and social losses associated with rising seas and more damaging storms. Decision-makers are considering engineered solutions (e.g. seawalls), natural solutions (e.g. dune or marsh restoration), and combinations of the two. To inform decisions about what kinds of solutions might best work in specific locations, we are comparing alternate climate and adaptation scenarios. We will present results from our use of the InVEST ecosystem service models in Sonoma County, with an initial focus on protection from coastal hazards due to erosion and inundation. By strategically choosing adaptation alternatives, communities and agencies can work to protect people and property while also protecting or restoring dwindling critical habitat and the full suite of benefits those habitats provide to people.

  10. Key tiger habitats in the Garo Hills of Meghalaya

    Treesearch

    Ashish Kumar; Bruce G. Marcot

    2010-01-01

    We describe assumed tiger habitat characteristics and attempt to identify potential tiger habitats in the Garo Hills region of Meghalaya, North East India. Conserving large forest tracts and protected wildlife habitats provides an opportunity for restoring populations of wide-ranging wildlife such as tigers and elephants. Based on limited field observations coupled...

  11. Quantifying multi-habitat support of Great Lakes fishes

    EPA Science Inventory

    Recent advances in trophic ecology have revealed the interconnectedness of diverse habitats in support of aquatic food webs. Understanding the degree to which different habitats support fish can be valuable for fisheries management and ecosystem protection. For example, stable is...

  12. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish productionmore » within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and

  13. Protection of fish spawning habitat for the conservation of warm temperate reef fish fisheries of shelf-edge reefs of Florida

    USGS Publications Warehouse

    Koenig, Christopher C.; Coleman, Felicia C.; Grimes, Churchill B.; Fitzhugh, Gary R.; Scanlon, Kathryn M.; Gledhill, Christopher T.; Grace, Mark

    2000-01-01

    We mapped and briefly describe the surficial geology of selected examples of shelfedge reefs (50–120 m deep) of the southeastern United States, which are apparently derived from ancient Pleistocene shorelines and are intermittently distributed throughout the region. These reefs are ecologically significant because they support a diverse array of fish and invertebrate species, and they are the only aggregation spawning sites of gag (Mycteroperca microlepis), scamp (M. phenax), and other economically important reef fish. Our studies on the east Florida shelf in the Experimental Oculina Research Reserve show that extensive damage to the habitat-structuring coral Oculina varicosa has occurred in the past, apparently from trawling and dredging activities of the 1970s and later. On damaged or destroyed Oculina habitat, reef-fish abundance and diversity are low, whereas on intact habitat, reef-fish diversity is relatively high compared to historical diversity on the same site. The abundance and biomass of the economically important reef fish was much higher in the past than it is now, and spawning aggregations of gag and scamp have been lost or greatly reduced in size. On the west Florida shelf, fishers have concentrated on shelf-edge habitats for over 100 yrs, but fishing intensity increased dramatically in the 1980s. Those reefs are characterized by low abundance of economically important species. The degree and extent of habitat damage there is unknown. We recommend marine fishery reserves to protect habitat and for use in experimentally examining the potential production of unfished communities.

  14. Protection of fish spawning habitat for the conservation of warm-temperature reef-fish fisheries of shelf-edge reefs of Florida

    USGS Publications Warehouse

    Koenig, Christopher C.; Coleman, Felicia C.; Grimes, Churchill B.; Fitzhugh, Gary R.; Scanlon, Kathryn M.; Gledhill, Christopher T.; Grace, Mark

    2000-01-01

    We mapped and briefly describe the surficial geology of selected examples of shelf-edge reefs (50–120 m deep) of the southeastern United States, which are apparently derived from ancient Pleistocene shorelines and are intermittently distributed throughout the region. These reefs are ecologically significant because they support a diverse array of fish and invertebrate species, and they are the only aggregation spawning sites of gag (Mycteroperca microlepis), scamp (M. phenax), and other economically important reef fish. Our studies on the east Florida shelf in the Experimental Oculina Research Reserve show that extensive damage to the habitat-structuring coral Oculina varicosa has occurred in the past, apparently from trawling and dredging activities of the 1970s and later. On damaged or destroyed Oculina habitat, reef-fish abundance and diversity are low, whereas on intact habitat, reef-fish diversity is relatively high compared to historical diversity on the same site. The abundance and biomass of the economically important reef fish was much higher in the past than it is now, and spawning aggregations of gag and scamp have been lost or greatly reduced in size. On the west Florida shelf, fishers have concentrated on shelf-edge habitats for over 100 yrs, but fishing intensity increased dramatically in the 1980s. Those reefs are characterized by low abundance of economically important species. The degree and extent of habitat damage there is unknown. We recommend marine fishery reserves to protect habitat and for use in experimentally examining the potential production of unfished communities.

  15. The fate of threatened coastal dune habitats in Italy under climate change scenarios.

    PubMed

    Prisco, Irene; Carboni, Marta; Acosta, Alicia T R

    2013-01-01

    Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an "indirect" plant-species-based one and a simple "direct" one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the "direct" approach was unsatisfactory, "indirect" models had a good predictive performance, highlighting the importance of using species' responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats' distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future.

  16. Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor.

    PubMed

    Fagan, Matthew E; DeFries, Ruth S; Sesnie, Steven E; Arroyo-Mora, J Pablo; Chazdon, Robin L

    2016-07-01

    Re-establishing connectivity between protected areas isolated by habitat clearing is a key conservation goal in the humid tropics. In northeastern Costa Rica, payments for environmental services (PES) and a government ban on deforestation have subsidized forest protection and reforestation in the San Juan-La Selva Biological Corridor (SJLSBC), resulting in a decline in mature forest loss and the expansion of tree plantations. We use field studies and graph models to assess how conservation efforts have altered functional connectivity over the last 25 years for four species of insectivorous understory birds. Field playback studies assessed how reforestation habitat quality affected the willingness of Myrmeciza exsul, Henicorhina leucosticta, Thamnophilus atrinucha, and Glyphorynchus spirurus to travel outside forest habitat for territorial defense. Observed travel distances were greatest in nonnative and native tree plantations with high understory stem density, regardless of overstory composition. In contrast, tree plantations with low stem density had travel responses comparable to open pasture for three of the four bird species. We modeled landscape connectivity for each species using graph models based on varying possible travel distances in tree plantations, gallery forests, and pastures. From 1986 to 2011, connectivity for all species declined in the SJLSBC landscape (5825 km 2 ) by 14% to 21% despite only a 4.9% net loss in forest area and the rapid expansion of tree plantations over 2% of the landscape. Plantation placement in the landscape limited their potential facilitation of connectivity because they were located either far from forest cover or within already contiguous forest areas. We mapped current connectivity bottlenecks and identified priority areas for future reforestation. We estimate that reforestation of priority areas could improve connectivity by 2% with only a 1% gain in forest cover, an impressive gain given the small area reforested

  17. Coral reef habitat response to climate change scenarios.

    PubMed

    Freeman, Lauren A; Kleypas, Joan A; Miller, Arthur J

    2013-01-01

    Coral reef ecosystems are threatened by both climate change and direct anthropogenic stress. Climate change will alter the physico-chemical environment that reefs currently occupy, leaving only limited regions that are conducive to reef habitation. Identifying these regions early may aid conservation efforts and inform decisions to transplant particular coral species or groups. Here a species distribution model (Maxent) is used to describe habitat suitable for coral reef growth. Two climate change scenarios (RCP4.5, RCP8.5) from the National Center for Atmospheric Research's Community Earth System Model were used with Maxent to determine environmental suitability for corals (order Scleractinia). Environmental input variables best at representing the limits of suitable reef growth regions were isolated using a principal component analysis. Climate-driven changes in suitable habitat depend strongly on the unique region of reefs used to train Maxent. Increased global habitat loss was predicted in both climate projections through the 21(st) century. A maximum habitat loss of 43% by 2100 was predicted in RCP4.5 and 82% in RCP8.5. When the model is trained solely with environmental data from the Caribbean/Atlantic, 83% of global habitat was lost by 2100 for RCP4.5 and 88% was lost for RCP8.5. Similarly, global runs trained only with Pacific Ocean reefs estimated that 60% of suitable habitat would be lost by 2100 in RCP4.5 and 90% in RCP8.5. When Maxent was trained solely with Indian Ocean reefs, suitable habitat worldwide increased by 38% in RCP4.5 by 2100 and 28% in RCP8.5 by 2050. Global habitat loss by 2100 was just 10% for RCP8.5. This projection suggests that shallow tropical sites in the Indian Ocean basin experience conditions today that are most similar to future projections of worldwide conditions. Indian Ocean reefs may thus be ideal candidate regions from which to select the best strands of coral for potential re-seeding efforts.

  18. Temporal patterns in Saturnidae (silk moth) and Sphingidae (hawk moth) assemblages in protected forests of central Uganda

    PubMed Central

    Akite, Perpetra; Telford, Richard J; Waring, Paul; Akol, Anne M; Vandvik, Vigdis

    2015-01-01

    Forest-dependent biodiversity is threatened throughout the tropics by habitat loss and land-use intensification of the matrix habitats. We resampled historic data on two moth families, known to play central roles in many ecosystem processes, to evaluate temporal changes in species richness and community structure in three protected forests in central Uganda in a rapidly changing matrix. Our results show some significant declines in the moth species richness and the relative abundance and richness of forest-dependent species over the last 20–40 years. The observed changes in species richness and composition among different forests, ecological types, and moth groups highlight the need to repeatedly monitor biodiversity even within protected and relatively intact forests. PMID:25937916

  19. Decision analysis for habitat conservation of an endangered, range-limited salamander

    USGS Publications Warehouse

    Robinson, Orin J.; McGowan, Conor P.; Apodaca, J.J.

    2016-01-01

    Many species of conservation concern are habitat limited and often a major focus of management for these species is habitat acquisition and/or restoration. Deciding the location of habitat restoration or acquisition to best benefit a protected species can be a complicated subject with competing management objectives, ecological uncertainties and stochasticity. Structured decision making (SDM) could be a useful approach for explicitly incorporating those complexities while still working toward species conservation and/or recovery. We applied an SDM approach to Red Hills salamander Phaeognathus hubrichti habitat conservation decision making. Phaeognathus hubrichti is a severely range-limited endemic species in south central Alabama and has highly specific habitat requirements. Many known populations live on private lands and the primary mode of habitat protection is habitat conservation planning, but such plans are non-binding and not permanent. Working with stakeholders, we developed an objectives hierarchy linking land acquisition or protection actions to fundamental objectives. We built a model to assess and compare the quality of the habitat in the known range of P. hubrichti. Our model evaluated key habitat attributes of 5814 pixels of 1 km2 each and ranked the pixels from best to worst with respect to P. hubrichti habitat requirements. Our results are a spatially explicit valuation of each pixel, with respect to its probable benefit to P. hubrichti populations. The results of this effort will be used to rank pixels from most to least beneficial, then identify land owners in the most useful areas for salamanders who are willing to sell or enter into a permanent easement agreement.

  20. Vulnerability of ecosystems to climate change moderated by habitat intactness.

    PubMed

    Eigenbrod, Felix; Gonzalez, Patrick; Dash, Jadunandan; Steyl, Ilse

    2015-01-01

    The combined effects of climate change and habitat loss represent a major threat to species and ecosystems around the world. Here, we analyse the vulnerability of ecosystems to climate change based on current levels of habitat intactness and vulnerability to biome shifts, using multiple measures of habitat intactness at two spatial scales. We show that the global extent of refugia depends highly on the definition of habitat intactness and spatial scale of the analysis of intactness. Globally, 28% of terrestrial vegetated area can be considered refugia if all natural vegetated land cover is considered. This, however, drops to 17% if only areas that are at least 50% wilderness at a scale of 48×48 km are considered and to 10% if only areas that are at least 50% wilderness at a scale of 4.8×4.8 km are considered. Our results suggest that, in regions where relatively large, intact wilderness areas remain (e.g. Africa, Australia, boreal regions, South America), conservation of the remaining large-scale refugia is the priority. In human-dominated landscapes, (e.g. most of Europe, much of North America and Southeast Asia), focusing on finer scale refugia is a priority because large-scale wilderness refugia simply no longer exist. Action to conserve such refugia is particularly urgent since only 1 to 2% of global terrestrial vegetated area is classified as refugia and at least 50% covered by the global protected area network. © 2014 John Wiley & Sons Ltd.

  1. The Fate of Threatened Coastal Dune Habitats in Italy under Climate Change Scenarios

    PubMed Central

    Prisco, Irene; Carboni, Marta; Acosta, Alicia T. R.

    2013-01-01

    Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an “indirect” plant-species-based one and a simple “direct” one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the “direct” approach was unsatisfactory, “indirect” models had a good predictive performance, highlighting the importance of using species’ responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats’ distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future. PMID:23874787

  2. An Ecohydraulic Model to Identify and Monitor Moapa Dace Habitat

    PubMed Central

    Hatten, James R.; Batt, Thomas R.; Scoppettone, Gary G.; Dixon, Christopher J.

    2013-01-01

    Moapa dace (Moapa coriacea) is a critically endangered thermophilic minnow native to the Muddy River ecosystem in southeastern Nevada, USA. Restricted to temperatures between 26.0 and 32.0°C, these fish are constrained to the upper two km of the Muddy River and several small tributaries fed by warm springs. Habitat alterations, nonnative species invasion, and water withdrawals during the 20th century resulted in a drastic decline in the dace population and in 1979 the Moapa Valley National Wildlife Refuge (Refuge) was created to protect them. The goal of our study was to determine the potential effects of reduced surface flows that might result from groundwater pumping or water diversions on Moapa dace habitat inside the Refuge. We accomplished our goal in several steps. First, we conducted snorkel surveys to determine the locations of Moapa dace on three warm-spring tributaries of the Muddy River. Second, we conducted hydraulic simulations over a range of flows with a two-dimensional hydrodynamic model. Third, we developed a set of Moapa dace habitat models with logistic regression and a geographic information system. Fourth, we estimated Moapa dace habitat over a range of flows (plus or minus 30% of base flow). Our spatially explicit habitat models achieved classification accuracies between 85% and 91%, depending on the snorkel survey and creek. Water depth was the most significant covariate in our models, followed by substrate, Froude number, velocity, and water temperature. Hydraulic simulations showed 2–11% gains in dace habitat when flows were increased by 30%, and 8–32% losses when flows were reduced by 30%. To ensure the health and survival of Moapa dace and the Muddy River ecosystem, groundwater and surface-water withdrawals and diversions need to be carefully monitored, while fully implementing a proactive conservation strategy. PMID:23408999

  3. An ecohydraulic model to identify and monitor moapa dace habitat

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.; Scoppettone, Gayton G.; Dixon, Christopher J.

    2013-01-01

    Moapa dace (Moapa coriacea) is a critically endangered thermophilic minnow native to the Muddy River ecosystem in southeastern Nevada, USA. Restricted to temperatures between 26.0 and 32.0°C, these fish are constrained to the upper two km of the Muddy River and several small tributaries fed by warm springs. Habitat alterations, nonnative species invasion, and water withdrawals during the 20th century resulted in a drastic decline in the dace population and in 1979 the Moapa Valley National Wildlife Refuge (Refuge) was created to protect them. The goal of our study was to determine the potential effects of reduced surface flows that might result from groundwater pumping or water diversions on Moapa dace habitat inside the Refuge. We accomplished our goal in several steps. First, we conducted snorkel surveys to determine the locations of Moapa dace on three warm-spring tributaries of the Muddy River. Second, we conducted hydraulic simulations over a range of flows with a two-dimensional hydrodynamic model. Third, we developed a set of Moapa dace habitat models with logistic regression and a geographic information system. Fourth, we estimated Moapa dace habitat over a range of flows (plus or minus 30% of base flow). Our spatially explicit habitat models achieved classification accuracies between 85% and 91%, depending on the snorkel survey and creek. Water depth was the most significant covariate in our models, followed by substrate, Froude number, velocity, and water temperature. Hydraulic simulations showed 2-11% gains in dace habitat when flows were increased by 30%, and 8-32% losses when flows were reduced by 30%. To ensure the health and survival of Moapa dace and the Muddy River ecosystem, groundwater and surface-water withdrawals and diversions need to be carefully monitored, while fully implementing a proactive conservation strategy.

  4. The efficiency of voluntary incentive policies for preventing biodiversity loss

    Treesearch

    David J. Lewis; Andrew J. Plantinga; Erik Nelson; Stephen Polasky

    2011-01-01

    Habitat loss is a primary cause of loss of biodiversity but conserving habitat for species presents challenges. Land parcels differ in their ability to produce returns for landowners and landowners may have private information about the value of the land to them. Land parcels also differ in the type and quality of habitat and the spatial pattern of land use across...

  5. Combined effects of local habitat, anthropogenic stress, and dispersal on stream ecosystems: a mesocosm experiment.

    PubMed

    Turunen, Jarno; Louhi, Pauliina; Mykrä, Heikki; Aroviita, Jukka; Putkonen, Emmi; Huusko, Ari; Muotka, Timo

    2018-06-06

    The effects of anthropogenic stressors on community structure and ecosystem functioning can be strongly influenced by local habitat structure and dispersal from source communities. Catchment land uses increase the input of fine sediments into stream channels, clogging the interstitial spaces of benthic habitats. Aquatic macrophytes enhance habitat heterogeneity and mediate important ecosystem functions, being thus a key component of habitat structure in many streams. Therefore, the recovery of macrophytes following in-stream habitat modification may be prerequisite for successful stream restoration. Restoration success is also affected by dispersal of organisms from the source community, with potentially strongest responses in relatively isolated headwater sites that receive limited amount of dispersing individuals. We used a factorial design in a set of stream mesocosms to study the independent and combined effects of an anthropogenic stressor (sand sedimentation), local habitat (macrophytes, i.e. moss transplants) and enhanced dispersal (two levels: high vs. low) on organic matter retention, algal accrual rate, leaf decomposition and macroinvertebrate community structure. Overall, all responses were simple additive effects with no interactions between treatments. Sand reduced algal accumulation, total invertebrate density and density of a few individual taxa. Mosses reduced algal accrual rate and algae-grazing invertebrates, but enhanced organic matter retention and detritus- and filter-feeders. Mosses also reduced macroinvertebrate diversity by increasing the dominance by a few taxa. Mosses also reduced leaf-mass loss, possibly because the organic matter retained by mosses provided an additional food source for leaf-shredding invertebrates and thus reduced shredder aggregation into leaf packs. The effect of mosses on macroinvertebrate communities and ecosystem functioning was distinct irrespective of the level of dispersal, suggesting strong environmental

  6. Ecology. Three-Gorges Dam--experiment in habitat fragmentation?

    PubMed

    Wu, Jianguo; Huang, Jianhui; Han, Xingguo; Xie, Zongqiang; Gao, Xianming

    2003-05-23

    Habitat fragmentation is the primary cause of the loss of biodiversity and ecosystem services, but its underlying processes and mechanisms remain poorly understood. Studies of islands and insular terrestrial habitats are essential for improving our understanding of habitat fragmentation. We argue that the Three-Gorges Dam, the largest that humans have ever created, presents a unique grand-scale natural experiment that allows ecologists to address a range of critical questions concerning the theory and practice of biodiversity conservation.

  7. Does a No-Take Marine Protected Area Benefit Seahorses?

    PubMed Central

    Harasti, David; Martin-Smith, Keith; Gladstone, William

    2014-01-01

    Seahorses are iconic charismatic species that are often used to ‘champion’ marine conservation causes around the world. As they are threatened in many countries by over-exploitation and habitat loss, marine protected areas (MPAs) could help with their protection and recovery. MPAs may conserve seahorses through protecting essential habitats and removing fishing pressures. Populations of White's seahorse, Hippocampus whitei, a species endemic to New South Wales, Australia, were monitored monthly from 2006 to 2009 using diver surveys at two sites within a no-take marine protected areas established in 1983, and at two control sites outside the no-take MPA sites. Predators of H. whitei were also identified and monitored. Hippocampus whitei were more abundant at the control sites. Seahorse predators (3 species of fish and 2 species of octopus) were more abundant within the no-take MPA sites. Seahorse and predator abundances were negatively correlated. Substantial variability in the seahorse population at one of the control sites reinforced the importance of long-term monitoring and use of multiple control sites to assess the outcomes of MPAs for seahorses. MPAs should be used cautiously to conserve seahorse populations as there is the risk of a negative impact through increased predator abundance. PMID:25137253

  8. Does a no-take marine protected area benefit seahorses?

    PubMed

    Harasti, David; Martin-Smith, Keith; Gladstone, William

    2014-01-01

    Seahorses are iconic charismatic species that are often used to 'champion' marine conservation causes around the world. As they are threatened in many countries by over-exploitation and habitat loss, marine protected areas (MPAs) could help with their protection and recovery. MPAs may conserve seahorses through protecting essential habitats and removing fishing pressures. Populations of White's seahorse, Hippocampus whitei, a species endemic to New South Wales, Australia, were monitored monthly from 2006 to 2009 using diver surveys at two sites within a no-take marine protected areas established in 1983, and at two control sites outside the no-take MPA sites. Predators of H. whitei were also identified and monitored. Hippocampus whitei were more abundant at the control sites. Seahorse predators (3 species of fish and 2 species of octopus) were more abundant within the no-take MPA sites. Seahorse and predator abundances were negatively correlated. Substantial variability in the seahorse population at one of the control sites reinforced the importance of long-term monitoring and use of multiple control sites to assess the outcomes of MPAs for seahorses. MPAs should be used cautiously to conserve seahorse populations as there is the risk of a negative impact through increased predator abundance.

  9. The Cattle-Wolf Dilemma: Interactions among Three Protected Species

    NASA Astrophysics Data System (ADS)

    Becker, Nir; Farja, Yanay

    2017-02-01

    This paper utilizes economic valuation to offer a new perspective on livestock rancher—predator conflicts. While most studies have considered losses to the species directly involved, i.e., cattle and wolves ( Canis lupus), we take into account other species that are threatened by efforts to protect livestock. In this case, vultures ( Gyps fulvus) and gazelles ( Gazella gazella), both endangered species, are either poisoned (vultures) or suffer from habitat fragmentation (gazelles) in the Upper Galilee region in Israel. Since the ecological value of these species is unobserved in the marketplace, we use the contingent valuation method to quantify the loss incurred from damage to protected species: wolves, vultures and gazelles. This method uses surveys of a representative sample from the population to generate estimates for use and non-use values of animals and other components of the natural environment. These value estimates are then used to compare between different measures that address the problem: either protect cattle herds by building anti-wolf fences and taking other protective measures, or compensating ranchers for their losses from wolf depredations. Our analysis suggests that while it is optimal from the ranchers' point of view to invest in protective measures such as fences, dogs and guards against wolves, it is not in society's best interest. A cost-benefit analysis taking into account all the ecological values finds a higher net benefit to society from a relatively small amount of protection, coupled with compensation to the farmers for depredations.

  10. Habitat Evaluation Procedures (HEP) Report; Iskuulpa Wildlife Mitigation and Watershed Project, Technical Report 1998-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaempts, Eric

    U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to evaluate lands acquired and leased in Eskuulpa Watershed, a Confederated Tribes of the Umatilla Indian Reservation watershed and wildlife mitigation project. The project is designed to partially credit habitat losses incurred by BPA for the construction of the John Day and McNary hydroelectric facilities on the Columbia River. Upland and riparian forest, upland and riparian shrub, and grasslands cover types were included in the evaluation. Indicator species included downy woodpecker (Picuides puhescens), black-capped chickadee (Pams atricopillus), blue grouse (Beadragapusmore » obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petschia), mink (Mustela vison), and Western meadowlark (Sturnello neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 55,500 feet of transects, 678 m2 plots, and 243 one-tenth-acre plots. Between 123.9 and f 0,794.4 acres were evaluated for each indicator species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total habitat units credited to BPA for the Iskuulpa Watershed Project and its seven indicator species is 4,567.8 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest, which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing or implementation of restoration grazing schemes, road de-commissioning, reforestation, large woody debris additions to floodplains, control of competing and unwanted vegetation, reestablishing displaced or reduced native vegetation

  11. Defining western prairie fringed orchid (Platanthera praeclara) habitat

    NASA Astrophysics Data System (ADS)

    Knudson, Michael David

    Terrestrial orchids are at the forefront of the discussion about anthropogenically-driven extinction with more species threatened globally than any other plant family, mostly because of loss of habitat. The Western Prairie Fringed Orchid ( Platanthera praeclara) is a threatened species found on the Sheyenne National Grassland in southeast North Dakota, USA. This conservation area that is a vital refuge for this species is subject to management for multiple uses including livestock grazing and recreation. Orchids are subject to continuous monitoring, but knowledge of the relationship between landscape indicators and orchid locations is limited. Research is needed to provide a greater understanding of the landscape relative to orchid habitat to develop conservation management strategies suited to dealing with threats arising from future interactions between land management and use, and climate change. The spatial distribution of orchid habitat was defined using a suite of indicators that characterize topography, moisture, and vegetation cover and compared with orchid point-based field observations. High resolution infrared imagery, a LiDAR-derived DEM, and well observations were used to characterize landscape properties. The NDVI (a measure of vegetation cover), the Topographic Wetness Index (TWI: a measure of moisture on the landscape), the Topographic Position Index (TPI: a measure of position on the landscape), and the depth to groundwater (a measure of the depth from the land surface to the groundwater surface) provided the best set of indicators of orchid habitat. Comparison between orchid locations and landscape indicators identified orchid metrics (+/-2 sigma) used to classify landscape indicators which were combined to create orchid habitat maps. This study supports that distribution of orchid habitat are influenced by the selected landscape indicators, each providing important information to the analysis. Comparison of orchid metrics with groundwater

  12. Global forest loss disproportionately erodes biodiversity in intact landscapes.

    PubMed

    Betts, Matthew G; Wolf, Christopher; Ripple, William J; Phalan, Ben; Millers, Kimberley A; Duarte, Adam; Butchart, Stuart H M; Levi, Taal

    2017-07-27

    Global biodiversity loss is a critical environmental crisis, yet the lack of spatial data on biodiversity threats has hindered conservation strategies. Theory predicts that abrupt biodiversity declines are most likely to occur when habitat availability is reduced to very low levels in the landscape (10-30%). Alternatively, recent evidence indicates that biodiversity is best conserved by minimizing human intrusion into intact and relatively unfragmented landscapes. Here we use recently available forest loss data to test deforestation effects on International Union for Conservation of Nature Red List categories of extinction risk for 19,432 vertebrate species worldwide. As expected, deforestation substantially increased the odds of a species being listed as threatened, undergoing recent upgrading to a higher threat category and exhibiting declining populations. More importantly, we show that these risks were disproportionately high in relatively intact landscapes; even minimal deforestation has had severe consequences for vertebrate biodiversity. We found little support for the alternative hypothesis that forest loss is most detrimental in already fragmented landscapes. Spatial analysis revealed high-risk hot spots in Borneo, the central Amazon and the Congo Basin. In these regions, our model predicts that 121-219 species will become threatened under current rates of forest loss over the next 30 years. Given that only 17.9% of these high-risk areas are formally protected and only 8.9% have strict protection, new large-scale conservation efforts to protect intact forests are necessary to slow deforestation rates and to avert a new wave of global extinctions.

  13. Using genetic profiles of African forest elephants to infer population structure, movements, and habitat use in a conservation and development landscape in Gabon.

    PubMed

    Eggert, L S; Buij, R; Lee, M E; Campbell, P; Dallmeier, F; Fleischer, R C; Alonso, A; Maldonado, J E

    2014-02-01

    Conservation of wide-ranging species, such as the African forest elephant (Loxodonta cyclotis), depends on fully protected areas and multiple-use areas (MUA) that provide habitat connectivity. In the Gamba Complex of Protected Areas in Gabon, which includes 2 national parks separated by a MUA containing energy and forestry concessions, we studied forest elephants to evaluate the importance of the MUA to wide-ranging species. We extracted DNA from elephant dung samples and used genetic information to identify over 500 individuals in the MUA and the parks. We then examined patterns of nuclear microsatellites and mitochondrial control-region sequences to infer population structure, movement patterns, and habitat use by age and sex. Population structure was weak but significant, and differentiation was more pronounced during the wet season. Within the MUA, males were more strongly associated with open habitats, such as wetlands and savannas, than females during the dry season. Many of the movements detected within and between seasons involved the wetlands and bordering lagoons. Our results suggest that the MUA provides year-round habitat for some elephants and additional habitat for others whose primary range is in the parks. With the continuing loss of roadless wilderness areas in Central Africa, well-managed MUAs will likely be important to the conservation of wide-ranging species. © 2013 Society for Conservation Biology.

  14. Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures?

    NASA Astrophysics Data System (ADS)

    Perkins, Matthew J.; Ng, Terence P. T.; Dudgeon, David; Bonebrake, Timothy C.; Leung, Kenneth M. Y.

    2015-12-01

    Globally, coastlines are under pressure as coastal human population growth and urbanization continues, while climatic change leads to stormier seas and rising tides. These trends create a strong and sustained demand for land reclamation and infrastructure protection in coastal areas, requiring engineered coastal defence structures such as sea walls. Here, we review the nature of ecological impacts of coastal structures on intertidal ecosystems, seek to understand the extent to which ecological engineering can mitigate these impacts, and evaluate the effectiveness of mitigation as a tool to contribute to conservation of intertidal habitats. By so doing, we identify critical knowledge gaps to inform future research. Coastal structures alter important physical, chemical and biological processes of intertidal habitats, and strongly impact community structure, inter-habitat linkages and ecosystem services while also driving habitat loss. Such impacts occur diffusely across localised sites but scale to significant regional and global levels. Recent advances in ecological engineering have focused on developing habitat complexity on coastal structures to increase biodiversity. 'Soft' engineering options maximise habitat complexity through inclusion of natural materials, species and processes, while simultaneously delivering engineering objectives such as coastal protection. Soft options additionally sustain multiple services, providing greater economic benefits for society, and resilience to climatic change. Currently however, a lack of inclusion and economic undervaluation of intertidal ecosystem services may undermine best practice in coastline management. Importantly, reviewed evidence shows mitigation and even restoration do not support intertidal communities or processes equivalent to pre-disturbance conditions. Crucially, an absence of comprehensive empirical baseline biodiversity data, or data comprising additional ecological parameters such as ecosystem functions

  15. Effects of habitat fragmentation on passerine birds breeding in Intermountain shrubsteppe

    USGS Publications Warehouse

    Knick, S.T.; Rotenberry, J.T.

    2002-01-01

    Habitat fragmentation and loss strongly influence the distribution and abundance of passerine birds breeding in Intermountain shrubsteppe. Wildfires, human activities, and change in vegetation communities often are synergistic in these systems and can result in radical conversion from shrubland to grasslands dominated by exotic annuals at large temporal and spatial scales from which recovery to native conditions is unlikely. As a result, populations of 5 of the 12 species in our review of Intermountain shrubsteppe birds are undergoing significant declines; 5 species are listed as at-risk or as candidates for protection in at least one state. The process by which fragmentation affects bird distributions in these habitats remains unknown because most research has emphasized the detection of population trends and patterns of habitat associations at relatively large spatial scales. Our research indicates that the distribution of shrubland-obligate species, such as Brewer's Sparrows (Spizella breweri), Sage Sparrows (Amphispiza belli), and Sage Thrashers (Oreoscoptes montanus), was highly sensitive to fragmentation of shrublands at spatial scales larger than individual home ranges. In contrast, the underlying mechanisms for both habitat change and bird population dynamics may operate independently of habitat boundaries. We propose alternative, but not necessarily exclusive, mechanisms to explain the relationship between habitat fragmentation and bird distribution and abundance. Fragmentation might influence productivity through differences in breeding density, nesting success, or predation. However, local and landscape variables were not significant determinants either of success, number fledged, or probability of predation or parasitism (although our tests had relatively low statistical power). Alternatively, relative absence of natal philopatry and redistribution by individuals among habitats following fledging or post-migration could account for the pattern of

  16. Habitat split and the global decline of amphibians.

    PubMed

    Becker, Carlos Guilherme; Fonseca, Carlos Roberto; Haddad, Célio Fernando Baptista; Batista, Rômulo Fernandes; Prado, Paulo Inácio

    2007-12-14

    The worldwide decline in amphibians has been attributed to several causes, especially habitat loss and disease. We identified a further factor, namely "habitat split"-defined as human-induced disconnection between habitats used by different life history stages of a species-which forces forest-associated amphibians with aquatic larvae to make risky breeding migrations between suitable aquatic and terrestrial habitats. In the Brazilian Atlantic Forest, we found that habitat split negatively affects the richness of species with aquatic larvae but not the richness of species with terrestrial development (the latter can complete their life cycle inside forest remnants). This mechanism helps to explain why species with aquatic larvae have the highest incidence of population decline. These findings reinforce the need for the conservation and restoration of riparian vegetation.

  17. Distance from roads and cities as a predictor of habitat loss and fragmentation in the caatinga vegetation of Brazil.

    PubMed

    Santos, A M; Tabarelli, M

    2002-11-01

    Roads and cities represent huge sources of degradation for adjacent ecosystems regarding nutrient cycling, energy, water flow and species composition. In this study we test the hypothesis that distance from roads and cities is associated with habitat loss and fragmentation in the caatinga vegetation--a dry forest to scrub vegetation that covers ca. 736,000 km2 of northeast Brazil. The study site comprised a 2,828.8 km2 piece (64 km x 44.2 km) of Xingó region (09 degrees 36'S, 37 degrees 50'W), which is located between the States of Alagoas and Sergipe. Based on satellite imagery we mapped the remaining vegetation, 145 km of paved roads and the seven small-sized cities set in the study site. A positive correlation was found between the combined distance from roads and cities and the percentage of remaining vegetation as it dropped from 18% at 12 km distant to 5.9% at 1 km distant from cities and roads. Thus, remaining vegetation was reduced by one third near cities and roads. A positive correlation was also found between distance from cities and roads and the percentage of fragments larger than 200 ha, which ranged from 3.6% (within 3 km distance class) to 23.3% (15 km distance class) of all fragments. Our results suggest a road/city-effect zone of 12 to 15 km width, over which habitat loss and fragmentation extend throughout the caatinga vegetation. These findings should be considered in the regional polices for biodiversity conservation and economic development of the caatinga region.

  18. Teetering on the edge or too late? Conservation and research issues for avifauna of sagebrush habitats

    USGS Publications Warehouse

    Knick, Steven T.; Dobkin, David S.; Rotenberry, John T.; Schroeder, Michael A.; Vander Haegen, W. Matthew; van Riper, Charles

    2003-01-01

    Degradation, fragmentation, and loss of native sagebrush (Artemisia spp.) landscapes have imperiled these habitats and their associated avifauna. Historically, this vast piece of the Western landscape has been undervalued: even though more than 70% of all remaining sagebrush habitat in the United States is publicly owned, <3% of it is protected as federal reserves or national parks. We review the threats facing birds in sagebrush habitats to emphasize the urgency for conservation and research actions, and synthesize existing information that forms the foundation for recommended research directions. Management and conservation of birds in sagebrush habitats will require more research into four major topics: (1) identification of primary land-use practices and their influence on sagebrush habitats and birds, (2) better understanding of bird responses to habitat components and disturbance processes of sagebrush ecosystems, (3) improved hierarchical designs for surveying and monitoring programs, and (4) linking bird movements and population changes during migration and wintering periods to dynamics on the sagebrush breeding grounds. This research is essential because we already have seen that sagebrush habitats can be altered by land use, spread of invasive plants, and disrupted disturbance regimes beyond a threshold at which natural recovery is unlikely. Research on these issues should be instituted on lands managed by state or federal agencies because most lands still dominated by sagebrush are owned publicly. In addition to the challenge of understanding shrubsteppe bird-habitat dynamics, conservation of sagebrush landscapes depends on our ability to recognize and communicate their intrinsic value and on our resolve to conserve them.

  19. Beyond habitat structure: Landscape heterogeneity explains the monito del monte (Dromiciops gliroides) occurrence and behavior at habitats dominated by exotic trees.

    PubMed

    Salazar, Daniela A; Fontúrbel, Francisco E

    2016-09-01

    Habitat structure determines species occurrence and behavior. However, human activities are altering natural habitat structure, potentially hampering native species due to the loss of nesting cavities, shelter or movement pathways. The South American temperate rainforest is experiencing an accelerated loss and degradation, compromising the persistence of many native species, and particularly of the monito del monte (Dromiciops gliroides Thomas, 1894), an arboreal marsupial that plays a key role as seed disperser. Aiming to compare 2 contrasting habitats (a native forest and a transformed habitat composed of abandoned Eucalyptus plantations and native understory vegetation), we assessed D. gliroides' occurrence using camera traps and measured several structural features (e.g. shrub and bamboo cover, deadwood presence, moss abundance) at 100 camera locations. Complementarily, we used radio telemetry to assess its spatial ecology, aiming to depict a more complete scenario. Moss abundance was the only significant variable explaining D. gliroides occurrence between habitats, and no structural variable explained its occurrence at the transformed habitat. There were no differences in home range, core area or inter-individual overlapping. In the transformed habitats, tracked individuals used native and Eucalyptus-associated vegetation types according to their abundance. Diurnal locations (and, hence, nesting sites) were located exclusively in native vegetation. The landscape heterogeneity resulting from the vicinity of native and Eucalyptus-associated vegetation likely explains D. gliroides occurrence better than the habitat structure itself, as it may be use Eucalyptus-associated vegetation for feeding purposes but depend on native vegetation for nesting. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  20. Climate effects on the distribution of wetland habitats and connectivity in networks of migratory waterbirds

    NASA Astrophysics Data System (ADS)

    Bellisario, Bruno; Cerfolli, Fulvio; Nascetti, Giuseppe

    2014-07-01

    The establishment and maintenance of conservation areas are among the most common measures to mitigate the loss of biodiversity. However, recent advances in conservation biology have challenged the reliability of such areas to cope with variation in climate conditions. Climate change can reshuffle the geographic distribution of species, but in many cases suitable habitats become scarce or unavailable, limiting the ability to migrate or adapt in response to modified environments. In this respect, the extent to which existing protected areas are able to compensate changes in habitat conditions to ensure the persistence of species still remains unclear. We used a spatially explicit model to measure the effects of climate change on the potential distribution of wetland habitats and connectivity of Natura 2000 sites in Italy. The effects of climate change were measured on the potential for water accumulation in a given site, as a surrogate measure for the persistence of aquatic ecosystems and their associated migratory waterbirds. Climate impacts followed a geographic trend, changing the distribution of suitable habitats for migrants and highlighting a latitudinal threshold beyond which the connectivity reaches a sudden collapse. Our findings show the relative poor reliability of most sites in dealing with changing habitat conditions and ensure the long-term connectivity, with possible consequences for the persistence of species. Although alterations of climate suitability and habitat destruction could impact critical areas for migratory waterbirds, more research is needed to evaluate all possible long-term effects on the connectivity of migratory networks.

  1. Marine defaunation: animal loss in the global ocean.

    PubMed

    McCauley, Douglas J; Pinsky, Malin L; Palumbi, Stephen R; Estes, James A; Joyce, Francis H; Warner, Robert R

    2015-01-16

    Marine defaunation, or human-caused animal loss in the oceans, emerged forcefully only hundreds of years ago, whereas terrestrial defaunation has been occurring far longer. Though humans have caused few global marine extinctions, we have profoundly affected marine wildlife, altering the functioning and provisioning of services in every ocean. Current ocean trends, coupled with terrestrial defaunation lessons, suggest that marine defaunation rates will rapidly intensify as human use of the oceans industrializes. Though protected areas are a powerful tool to harness ocean productivity, especially when designed with future climate in mind, additional management strategies will be required. Overall, habitat degradation is likely to intensify as a major driver of marine wildlife loss. Proactive intervention can avert a marine defaunation disaster of the magnitude observed on land. Copyright © 2015, American Association for the Advancement of Science.

  2. Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations.

    PubMed

    Rode, Karyn D; Regehr, Eric V; Douglas, David C; Durner, George; Derocher, Andrew E; Thiemann, Gregory W; Budge, Suzanne M

    2014-01-01

    Polar bears (Ursus maritimus) have experienced substantial changes in the seasonal availability of sea ice habitat in parts of their range, including the Beaufort, Chukchi, and Bering Seas. In this study, we compared the body size, condition, and recruitment of polar bears captured in the Chukchi and Bering Seas (CS) between two periods (1986-1994 and 2008-2011) when declines in sea ice habitat occurred. In addition, we compared metrics for the CS population 2008-2011 with those of the adjacent southern Beaufort Sea (SB) population where loss in sea ice habitat has been associated with declines in body condition, size, recruitment, and survival. We evaluated how variation in body condition and recruitment were related to feeding ecology. Comparing habitat conditions between populations, there were twice as many reduced ice days over continental shelf waters per year during 2008-2011 in the SB than in the CS. CS polar bears were larger and in better condition, and appeared to have higher reproduction than SB bears. Although SB and CS bears had similar diets, twice as many bears were fasting in spring in the SB than in the CS. Between 1986-1994 and 2008-2011, body size, condition, and recruitment indices in the CS were not reduced despite a 44-day increase in the number of reduced ice days. Bears in the CS exhibited large body size, good body condition, and high indices of recruitment compared to most other populations measured to date. Higher biological productivity and prey availability in the CS relative to the SB, and a shorter recent history of reduced sea ice habitat, may explain the maintenance of condition and recruitment of CS bears. Geographic differences in the response of polar bears to climate change are relevant to range-wide forecasts for this and other ice-dependent species. © 2013 John Wiley & Sons Ltd.

  3. Variation in the response of an Arctic top predator experiencing habitat loss: Feeding and reproductive ecology of two polar bear populations

    USGS Publications Warehouse

    Rode, Karyn D.; Regehr, Eric V.; Douglas, David C.; Durner, George M.; Derocher, Andrew E.; Thiemann, Gregory W.; Budge, Suzanne M.

    2014-01-01

    Polar bears (Ursus maritimus) have experienced substantial changes in the seasonal availability of sea ice habitat in parts of their range, including the Beaufort, Chukchi, and Bering Seas. In this study, we compared the body size, condition, and recruitment of polar bears captured in the Chukchi and Bering Seas (CS) between two periods (1986–1994 and 2008–2011) when declines in sea ice habitat occurred. In addition, we compared metrics for the CS population 2008–2011 with those of the adjacent southern Beaufort Sea (SB) population where loss in sea ice habitat has been associated with declines in body condition, size, recruitment, and survival. We evaluated how variation in body condition and recruitment were related to feeding ecology. Comparing habitat conditions between populations, there were twice as many reduced ice days over continental shelf waters per year during 2008–2011 in the SB than in the CS. CS polar bears were larger and in better condition, and appeared to have higher reproduction than SB bears. Although SB and CS bears had similar diets, twice as many bears were fasting in spring in the SB than in the CS. Between 1986–1994 and 2008–2011, body size, condition, and recruitment indices in the CS were not reduced despite a 44-day increase in the number of reduced ice days. Bears in the CS exhibited large body size, good body condition, and high indices of recruitment compared to most other populations measured to date. Higher biological productivity and prey availability in the CS relative to the SB, and a shorter recent history of reduced sea ice habitat, may explain the maintenance of condition and recruitment of CS bears. Geographic differences in the response of polar bears to climate change are relevant to range-wide forecasts for this and other ice-dependent species.

  4. Are wetland regulations cost effective for species protection? A case study of amphibian metapopulations.

    PubMed

    Bauer, Dana Marie; Paton, Peter W C; Swallow, Stephen K

    2010-04-01

    Recent declines in amphibian populations have raised concern among conservation biologists, with habitat loss and degradation due to human activities among the leading causes. The most common policies used to protect the habitat of pond-breeding amphibians are wetland regulations that safeguard the wetland itself. However, many amphibians spend much of their adult lives foraging and over-wintering in upland habitats and exist as metapopulations with dispersal among ponds. With no consideration of lands in the dispersal matrix, wetland policies may be ineffective at protecting amphibians or other wetland species that disperse across the landscape. This paper examined the adequacy and cost effectiveness of alternative conservation policies and their corresponding land use patterns on the long-term persistence of pond-breeding amphibians in exurban landscapes. We used computer simulations to compare outcomes of wetland buffer policies and broader landscape-wide conservation policies across a variety of landscape scenarios, and we conducted sensitivity analyses on the model's species parameters in order to generalize our results to other wetland species. Results showed that, in the majority of human-dominated landscapes, some amount of dispersal matrix protection is necessary for long-term species persistence. However, in landscapes with extremely low-intensity land use (e.g., low-density residential housing) and high pond density, wetland buffer policies may be all that is required. It is not always more cost effective to protect core habitat over the dispersal matrix, a common conservation practice. Conservation costs that result from forgone residential, commercial, or agricultural activities can vary substantially but increase in a nonlinear manner regardless of land use zoning. There appears to be a threshold around an average habitat patch occupancy level of 80%, after which opportunity costs rise dramatically.

  5. Evaluating the long-term management of introduced ungulates to protect the palila, an endangered bird, and its criticial habitat in subalpine forest of Mauna Kea, Hawai'i

    USGS Publications Warehouse

    Banko, Paul C.; Hess, Steven C.; Scowcroft, Paul G.; Farmer, Chris; Jacobi, James D.; Stephens, Robert M.; Camp, Richard J.; Leonard, David L.; Brinck, Kevin W.; Juvik, J.O.; Juvik, S. P.

    2014-01-01

    Under the multiple-use paradigm, conflicts may arise when protection of an endangered species must compete with other management objectives. To resolve such a conflict in the Critical Habitat of the endangered Hawaiian honeycreeper, palila (Loxioides bailleui), federal courts ordered the eradication of introduced ungulates responsible for damaging the māmane (Sophora chrysophylla) forest on which palila depend. During 1980–2011, a total of 18,130 sheep (Ovis aries and O. gmelini musimon) and 310 goats (Capra hircus) were removed from Palila Critical Habitat (PCH) primarily by public hunters (54%) and secondarily by aerial shooting. Nevertheless, our analysis indicates that ungulates have increased over time. Palila numbers have declined sharply since 2003 due to long-term habitat degradation by ungulates and drought. Although culling ungulate populations has allowed some habitat improvement, their complete removal is necessary for palila to recover, especially given the potential for continued drought. Introduced predators are being controlled to reduce palila mortality, māmane and other native trees are being planted to restore some areas, and fencing is being constructed to prevent ungulate immigration. Funds are recently available for more effective eradication efforts, which are urgently needed to eliminate browsing damage in PCH and protect the palila from extinction.

  6. An ecophysiological perspective on likely giant panda habitat responses to climate change.

    PubMed

    Zhang, Yuke; Mathewson, Paul D; Zhang, Qiongyue; Porter, Warren P; Ran, Jianghong

    2018-04-01

    Threatened and endangered species are more vulnerable to climate change due to small population and specific geographical distribution. Therefore, identifying and incorporating the biological processes underlying a species' adaptation to its environment are important for determining whether they can persist in situ. Correlative models are widely used to predict species' distribution changes, but generally fail to capture the buffering capacity of organisms. Giant pandas (Ailuropoda melanoleuca) live in topographically complex mountains and are known to avoid heat stress. Although many studies have found that climate change will lead to severe habitat loss and threaten previous conservation efforts, the mechanisms underlying panda's responses to climate change have not been explored. Here, we present a case study in Daxiangling Mountains, one of the six Mountain Systems that giant panda distributes. We used a mechanistic model, Niche Mapper, to explore what are likely panda habitat response to climate change taking physiological, behavioral and ecological responses into account, through which we map panda's climatic suitable activity area (SAA) for the first time. We combined SAA with bamboo forest distribution to yield highly suitable habitat (HSH) and seasonal suitable habitat (SSH), and their temporal dynamics under climate change were predicted. In general, SAA in the hottest month (July) would reduce 11.7%-52.2% by 2070, which is more moderate than predicted bamboo habitat loss (45.6%-86.9%). Limited by the availability of bamboo and forest, panda's suitable habitat loss increases, and only 15.5%-68.8% of current HSH would remain in 2070. Our method of mechanistic modeling can help to distinguish whether habitat loss is caused by thermal environmental deterioration or food loss under climate change. Furthermore, mechanistic models can produce robust predictions by incorporating ecophysiological feedbacks and minimizing extrapolation into novel environments. We

  7. Effects of ecosystem development on benthic secondary production in restored and created mangrove habitats

    EPA Science Inventory

    Wetland creation, enhancement, and restoration activities are commonly implemented to compensate for wetland loss or degradation. However, functional equivalence in restored and created wetland habitats is often poorly understood. In estuarine habitats, changes in habitat qualit...

  8. 76 FR 75458 - Servicemembers' Group Life Insurance Traumatic Injury Protection Program-Genitourinary Losses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... DEPARTMENT OF VETERANS AFFAIRS 38 CFR Part 9 RIN 2900-AO20 Servicemembers' Group Life Insurance... that amends the regulations governing the Servicemembers' Group Life Insurance Traumatic Injury...-AO20--Servicemembers' Group Life Insurance Traumatic Injury Protection Program--Genitourinary Losses...

  9. Analysis of Nonlinear Insertion Loss of Hearing Protection Devices using an Acoustic Test Fixture

    DTIC Science & Technology

    2015-09-01

    USAARL Report No. 2016-05 Analysis of Nonlinear Insertion Loss of Hearing Protection Devices using an Acoustic Test Fixture By Robert Williams1...through circuitry. Talk through circuits use electro- acoustic transducers to pass ambient sounds through the protector. When the circuitry detects...the SPL of the acoustic insult. If the protective capacity is variable, it should be accounted for in the selection of appropriate HPDs. REAT

  10. Wildfire impacts on California spotted owl nesting habitat in the Sierra Nevada

    Treesearch

    Scott L. Stephens; Jay D. Miller; Brandon M. Collins; Malcolm P. North; John J. Keane; Susan L. Roberts

    2016-01-01

    California spotted owls (CSOs) (Strix occidentalis occidentalis) have received significant conservation attention beginning with the U.S. Forest Service interim management guidelines in 1992. The most commonly reported forest habitat feature for successful nesting habitat of CSO is canopy cover > 70%. Loss and degradation of Sierra Nevada CSO habitat, however,...

  11. Assessing freshwater habitat of adult anadromous alewives using multiple approaches

    USGS Publications Warehouse

    Mather, Martha E.; Frank, Holly J.; Smith, Joseph M.; Cormier, Roxann D.; Muth, Robert M.; Finn, John T.

    2012-01-01

    After centuries of disturbance, environmental professionals now recognize the need to restore coastal watersheds for native fish and protect the larger ecosystems on which fish and other aquatic biota depend. Anadromous fish species are an important component of coastal ecosystems that are often adversely affected by human activities. Restoring native anadromous fish species is a common focus of both fish and coastal watershed restoration. Yet restoration efforts have met with uneven success, often due to lack of knowledge about habitat availability and use. Using habitat surveys and radio tracking of adult anadromous alewives Alosa pseudoharengus during their spring spawning migration, we illustrate a method for quantifying habitat using multiple approaches and for relating mobile fish distribution to habitat. In the Ipswich River, Massachusetts, measuring habitat units and physical conditions at transects (width, depth, and velocity) provided an ecological basis for the interpretation of landscape patterns of fish distribution. Mapping habitat units allowed us to efficiently census habitat relevant to alewives for the entire 20.6 river kilometers of interest. Our transect data reinforced the results of the habitat unit survey and provided useful, high‐resolution ecological data for restoration efforts. Tagged alewives spent little time in riffle–run habitats and substantial time in pools, although the locations of pool occupancy varied. The insights we provide here can be used to (1) identify preferred habitats into which anadromous fish can be reintroduced in order to maximize fish survival and reproduction and (2) pinpoint habitat types in urgent need of protection or restoration.

  12. How Much Are Floridians Willing to Pay for Protecting Sea Turtles from Sea Level Rise?

    NASA Astrophysics Data System (ADS)

    Hamed, Ahmed; Madani, Kaveh; Von Holle, Betsy; Wright, James; Milon, J. Walter; Bossick, Matthew

    2016-01-01

    Sea level rise (SLR) is posing a great inundation risk to coastal areas. Some coastal nesting species, including sea turtle species, have experienced diminished habitat from SLR. Contingent valuation method (CVM) was used in an effort to assess the economic loss impacts of SLR on sea turtle nesting habitats for Florida coasts; and to elicit values of willingness to pay (WTP) of Central Florida residents to implement certain mitigation strategies, which would protect Florida's east coast sea turtle nesting areas. Using the open-ended and dichotomous choice CVM, we sampled residents of two Florida communities: Cocoa Beach and Oviedo. We estimated the WTP of households from these two cities to protect sea turtle habitat to be between 42 and 57 per year for 5 years. Additionally, we attempted to assess the impact of the both the respondents' demographics and their perception toward various situations on their WTP value. Findings include a negative correlation between the age of a respondent and the probability of an individual willing to pay the hypothetical WTP amount. We found that WTP of an individual was not dependent on prior knowledge of the effects of SLR on sea turtle habitat. The greatest indicators of whether or not an individual was willing to pay to protect sea turtle habitat were the respondents' perception regarding the trustworthiness and efficiency of the party which will implement the conservation measures and their confidence in the conservation methods used. Respondents who perceive sea turtles having an effect on their life were also more likely to pay.

  13. How Much Are Floridians Willing to Pay for Protecting Sea Turtles from Sea Level Rise?

    PubMed

    Hamed, Ahmed; Madani, Kaveh; Von Holle, Betsy; Wright, James; Milon, J Walter; Bossick, Matthew

    2016-01-01

    Sea level rise (SLR) is posing a great inundation risk to coastal areas. Some coastal nesting species, including sea turtle species, have experienced diminished habitat from SLR. Contingent valuation method (CVM) was used in an effort to assess the economic loss impacts of SLR on sea turtle nesting habitats for Florida coasts; and to elicit values of willingness to pay (WTP) of Central Florida residents to implement certain mitigation strategies, which would protect Florida's east coast sea turtle nesting areas. Using the open-ended and dichotomous choice CVM, we sampled residents of two Florida communities: Cocoa Beach and Oviedo. We estimated the WTP of households from these two cities to protect sea turtle habitat to be between $42 and $57 per year for 5 years. Additionally, we attempted to assess the impact of the both the respondents' demographics and their perception toward various situations on their WTP value. Findings include a negative correlation between the age of a respondent and the probability of an individual willing to pay the hypothetical WTP amount. We found that WTP of an individual was not dependent on prior knowledge of the effects of SLR on sea turtle habitat. The greatest indicators of whether or not an individual was willing to pay to protect sea turtle habitat were the respondents' perception regarding the trustworthiness and efficiency of the party which will implement the conservation measures and their confidence in the conservation methods used. Respondents who perceive sea turtles having an effect on their life were also more likely to pay.

  14. Can soda ash dumping grounds provide replacement habitats for digger wasps (Hymenoptera, Apoidea, Spheciformes)?

    PubMed

    Twerd, Lucyna; Krzyżyński, Maciej; Waldon-Rudzionek, Barbara; Olszewski, Piotr

    2017-01-01

    Published sources document a loss of biodiversity at an extreme rate, mainly because natural and semi-natural ecosystems are becoming fragmented and isolated, thus losing their biological functions. These changes significantly influence biological diversity, which is a complex phenomenon that changes over time. Contemporary ecologists must therefore draw attention to anthropogenic replacement habitats and increase their conservation status. In our studies we show the positive role of soda ash dumping grounds as an alternative habitat for digger wasps, especially the thermophilic species. In the years 2007-2010 we carried out investigations in postindustrial soda ash dumping grounds located in Central Poland. We demonstrated that these areas serve as replacement habitats for thermophilic species of Spheciformes and, indirectly, for their potential prey. The studies were conducted in three microhabitat types, varying in soil moisture, salinity and alkalinity, that were changing in the course of ecological succession. We trapped 2571 specimens belonging to 64 species of digger wasps. Species typical of open sunny spaces comprised 73% of the whole inventory. The obtained results suggest that the stage of succession determines the richness, abundance and diversity of Spheciformes. The most favorable conditions for digger wasps were observed in habitats at late successional stages. Our results clearly showed that these habitats were replacement habitats for thermophilous Spheciformes, including rare taxa that require genetic, species and ecosystem protection, according to the Biodiversity Convention. We showed that some types of industry might play a positive role in the preservation of taxa in the landscape, and that even degraded industrial wasteland can replace habitats under anthropopressure, serving as refugia of biological diversity, especially for disturbance-dependent species.

  15. Can soda ash dumping grounds provide replacement habitats for digger wasps (Hymenoptera, Apoidea, Spheciformes)?

    PubMed Central

    Twerd, Lucyna; Krzyżyński, Maciej; Waldon-Rudzionek, Barbara; Olszewski, Piotr

    2017-01-01

    Background Published sources document a loss of biodiversity at an extreme rate, mainly because natural and semi-natural ecosystems are becoming fragmented and isolated, thus losing their biological functions. These changes significantly influence biological diversity, which is a complex phenomenon that changes over time. Contemporary ecologists must therefore draw attention to anthropogenic replacement habitats and increase their conservation status. In our studies we show the positive role of soda ash dumping grounds as an alternative habitat for digger wasps, especially the thermophilic species. Methodology/Principal findings In the years 2007–2010 we carried out investigations in postindustrial soda ash dumping grounds located in Central Poland. We demonstrated that these areas serve as replacement habitats for thermophilic species of Spheciformes and, indirectly, for their potential prey. The studies were conducted in three microhabitat types, varying in soil moisture, salinity and alkalinity, that were changing in the course of ecological succession. We trapped 2571 specimens belonging to 64 species of digger wasps. Species typical of open sunny spaces comprised 73% of the whole inventory. The obtained results suggest that the stage of succession determines the richness, abundance and diversity of Spheciformes. The most favorable conditions for digger wasps were observed in habitats at late successional stages. Conclusions/Significance Our results clearly showed that these habitats were replacement habitats for thermophilous Spheciformes, including rare taxa that require genetic, species and ecosystem protection, according to the Biodiversity Convention. We showed that some types of industry might play a positive role in the preservation of taxa in the landscape, and that even degraded industrial wasteland can replace habitats under anthropopressure, serving as refugia of biological diversity, especially for disturbance-dependent species. PMID:28423033

  16. Virtual increase or latent loss? A reassessment of mangrove populations and their conservation in Guangdong, southern China.

    PubMed

    Peng, Yisheng; Zheng, Mingxuan; Zheng, Zhouxiang; Wu, Guichang; Chen, Yuechao; Xu, Hualin; Tian, Guanghong; Peng, Shenghua; Chen, Guizhu; Lee, Shing Yip

    2016-08-30

    Contrary to the global trend, the area of mangrove in Guangdong Province, southern China, has been increasing over the last two decades. Currently, three exotic mangrove species have been introduced for large-scale afforestation since 1985. A reassessment of the overall status of the mangrove species, habitat change, population of introduced species, was conducted through a comprehensive literature review as well as field investigations covering 96 sites. The success of conservation efforts is also evaluated. Upstream and high intertidal habitats are more vulnerable than downstream and lower intertidal ones, with habitat alteration being the biggest threats. Five mangrove species have narrow distributional extents with small populations, which could incur regional extinction. With the introduced species having naturalized at 42 sites, their role in mangrove management needs to be reconsidered. These findings collectively suggest a need to manage latent species loss and habitat degradation beyond the apparent increase in mangrove area and protection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Characteristics of summer and fall diurnal resting habitat used by American martens in coastal northwestern California

    Treesearch

    K. M. Slauson; W. J. Zielinski

    2009-01-01

    American martens use resting habitat between periods of activity to provide both thermal refugia and protection from predators. Maintenance or restoration of key elements of marten resting habitat, such as resting structures, requires that managers recognize their characteristics to protect them, or manage for their creation. We measured resting habitat at 4 scales: (1...

  18. Arctigenin protects against neuronal hearing loss by promoting neural stem cell survival and differentiation.

    PubMed

    Huang, Xinghua; Chen, Mo; Ding, Yan; Wang, Qin

    2017-03-01

    Neuronal hearing loss has become a prevalent health problem. This study focused on the function of arctigenin (ARC) in promoting survival and neuronal differentiation of mouse cochlear neural stem cells (NSCs), and its protection against gentamicin (GMC) induced neuronal hearing loss. Mouse cochlea was used to isolate NSCs, which were subsequently cultured in vitro. The effects of ARC on NSC survival, neurosphere formation, differentiation of NSCs, neurite outgrowth, and neural excitability in neuronal network in vitro were examined. Mechanotransduction ability demonstrated by intact cochlea, auditory brainstem response (ABR), and distortion product optoacoustic emissions (DPOAE) amplitude in mice were measured to evaluate effects of ARC on GMC-induced neuronal hearing loss. ARC increased survival, neurosphere formation, neuron differentiation of NSCs in mouse cochlear in vitro. ARC also promoted the outgrowth of neurites, as well as neural excitability of the NSC-differentiated neuron culture. Additionally, ARC rescued mechanotransduction capacity, restored the threshold shifts of ABR and DPOAE in our GMC ototoxicity murine model. This study supports the potential therapeutic role of ARC in promoting both NSCs proliferation and differentiation in vitro to functional neurons, thus supporting its protective function in the therapeutic treatment of neuropathic hearing loss in vivo. © 2017 Wiley Periodicals, Inc.

  19. Predator identity influences the effect of habitat management on nest predation.

    PubMed

    Lyons, Timothy P; Miller, James R; Debinski, Diane M; Engle, David M

    2015-09-01

    Predation is the leading cause of nest failure for many passerines and considerable effort is devoted to identifying the habitat characteristics and management practices that influence nest loss. The habitat components associated with nest loss are strongly influenced by the ecology of nest predators and differ among predator species as a result. Nevertheless, there is a tendency to generalize about the effects of habitat features and management on nest failure without considering how resulting patterns are influenced by nest predators. We examined how predator-specific patterns of nest loss differed among predators and in response to grassland management with fire and grazing by cattle (Bos taurus). We used video cameras to monitor and identify predators at nests of the Grasshopper Sparrow (Ammodramus savannarum), a species of conservation concern throughout its range. We observed predation by 15 different species that differed in their response to management and the habitat characteristics associated with nests they preyed on. Losses to mammals and snakes were more likely at nests with greater amounts of litter cover and tall fescue (Schedonorus phoenix). Mammals were less likely to prey on nests surrounded by greater forb cover. Nest predation by snakes was lower in burned areas, whereas predation by mammals and Brown-headed Cowbirds (Molothrus ater) was unaffected by the use of fire. Neither vegetation density at the nest, nor landscape context was related to nest loss by any predator taxon. Although there were many similarities, we identified important differences in the species composing the nest predator community between our. study and other published research. These differences are likely to be responsible for geographic variation in the influence of habitat features and management actions on nest success. Our results demonstrate the need for natural resource managers to incorporate knowledge of local nest predators and their ecology when developing

  20. Effects of habitat fragmentation and disturbance on howler monkeys: a review.

    PubMed

    Arroyo-Rodríguez, Víctor; Dias, Pedro Américo D

    2010-01-01

    We examined the literature on the effects of habitat fragmentation and disturbance on howler monkeys (genus Alouatta) to (1) identify different threats that may affect howlers in fragmented landscapes; (2) review specific predictions developed in fragmentation theory and (3) identify the empirical evidence supporting these predictions. Although howlers are known for their ability to persist in both conserved and disturbed conditions, we found evidence that they are negatively affected by high levels of habitat loss, fragmentation and degradation. Patch size appears to be the main factor constraining populations in fragmented habitats, probably because patch size is positively related to food availability, and negatively related to anthropogenic pressures, physiological stress and parasite loads. Patch isolation is not a strong predictor of either patch occupancy or population size in howlers, a result that may be related to the ability of howlers to move among forest patches. Thus, we propose that it is probable that habitat loss has larger consistent negative effects on howler populations than habitat fragmentation per se. In general, food availability decreases with patch size, not only due to habitat loss, but also because the density of big trees, plant species richness and howlers' home range size are lower in smaller patches, where howlers' population densities are commonly higher. However, it is unclear which vegetation attributes have the biggest influence on howler populations. Similarly, our knowledge is still limited concerning the effects of postfragmentation threats (e.g. hunting and logging) on howlers living in forest patches, and how several endogenous threats (e.g. genetic diversity, physiological stress, and parasitism) affect the distribution, population structure and persistence of howlers. More long-term studies with comparable methods are necessary to quantify some of the patterns discussed in this review, and determine through meta

  1. Assessment of habitat representation across a network of marine protected areas with implications for the spatial design of monitoring.

    PubMed

    Young, Mary; Carr, Mark

    2015-01-01

    Networks of marine protected areas (MPAs) are being adopted globally to protect ecosystems and supplement fisheries management. The state of California recently implemented a coast-wide network of MPAs, a statewide seafloor mapping program, and ecological characterizations of species and ecosystems targeted for protection by the network. The main goals of this study were to use these data to evaluate how well seafloor features, as proxies for habitats, are represented and replicated across an MPA network and how well ecological surveys representatively sampled fish habitats inside MPAs and adjacent reference sites. Seafloor data were classified into broad substrate categories (rock and sediment) and finer scale geomorphic classifications standard to marine classification schemes using surface analyses (slope, ruggedness, etc.) done on the digital elevation model derived from multibeam bathymetry data. These classifications were then used to evaluate the representation and replication of seafloor structure within the MPAs and across the ecological surveys. Both the broad substrate categories and the finer scale geomorphic features were proportionately represented for many of the classes with deviations of 1-6% and 0-7%, respectively. Within MPAs, however, representation of seafloor features differed markedly from original estimates, with differences ranging up to 28%. Seafloor structure in the biological monitoring design had mismatches between sampling in the MPAs and their corresponding reference sites and some seafloor structure classes were missed entirely. The geomorphic variables derived from multibeam bathymetry data for these analyses are known determinants of the distribution and abundance of marine species and for coastal marine biodiversity. Thus, analyses like those performed in this study can be a valuable initial method of evaluating and predicting the conservation value of MPAs across a regional network.

  2. Assessment of Habitat, Fish Communities, and Streamflow Requirements for Habitat Protection, Ipswich River, Massachusetts, 1998-99

    USGS Publications Warehouse

    Armstrong, David S.; Richards, Todd A.; Parker, Gene W.

    2001-01-01

    The relations among stream habitat, fish communities, and hydrologic conditions were investigated in the Ipswich River Basin in northeastern Massachusetts. Data were assessed from 27 sites on the mainstem of the Ipswich River from July to September 1998 and from 10 sites on 5 major tributaries in July and August 1999. Habitat assessments made in 1998 determined that in a year with sustained streamflow for most of the summer, the Ipswich River contains diverse, high-quality aquatic habitat. Channel types are predominantly low gradient glides, pools, and impoundments, with a sandy streambed and a forest or shrub riparian zone. Features that provide fish habitat are located mostly along stream margins; these features include overhanging brush, undercut banks, exposed roots, and woody debris. These habitat features decrease in availability to aquatic communities with declining streamflows and generally become unavailable after streamflows drop to the point where the edge of water recedes from the stream banks.The mainstem and tributaries were sampled to determine fish species composition, relative abundance, and length frequency. Fish sampling indicates that the fish community in the Ipswich River is currently a warm-water fish community dominated by pond-type fish. However, historical temperature data, and survival of stocked trout in the mainstem Ipswich into late summer of 1998, indicate that the Ipswich River potentially could support cold-water fish species if adequate flows are maintained. Dominant fish species sampled in the mainstem Ipswich River were redfin pickerel (Esox americanus), American eel (Anguilla rostrata), and pumpkinseed (Lepomis gibbosus), which together represented 41, 22, and 10 percent, respectively, of 4,745 fish sampled. The fish communities of the mainstem and tributaries contained few fluvial-dependent or fluvial-specialist species (requiring flow), and were dominated by macrohabitat generalists (tolerant of low-flow, warm-water, and

  3. Effect of reproductive rate on minimum habitat requirements of forest-breeding birds

    Treesearch

    Melissa D. Vance; Lenore Fahrig; Curtis H. Flather

    2003-01-01

    A major challenge facing conservation biologists and wildlife managers is to predict how fauna will respond to habitat loss. Different species require different amounts of habitat for population persistence, and species’ reproductive rates have been identified as one of the major factors affecting these habitat-amount requirements. The purpose of this study was to test...

  4. Bee diversity associated with Limnanthes floral patches in California vernal pool habitats

    Treesearch

    Joan M. Leong; Robbin W. Thorp

    2005-01-01

    As with other kinds of wetland habitats in California, approximately 90 percent of vernal pool habitat (estimated) has been lost in California. In southern California, losses are estimated to be even greater. The flora of these endangered habitats is reasonably well known, especially the spring flowering annuals that are found in or at the margins of vernal pools (for...

  5. Hydropower Production and Fish Habitat Suitability: Impact and Effectiveness of Environmental Flow Prescriptions

    NASA Astrophysics Data System (ADS)

    Ceola, Serena; Pugliese, Alessio; Galeati, Giorgio; Castellarin, Attilio

    2017-04-01

    The anthropogenic alteration of the natural flow regime of a river for hydropower production can significantly modify the processes and functions associated with fluvial ecosystems. In order to preserve the fluvial habitat downstream of dams and diversion structures, environmental flows are commonly defined. Such environmental flows are generally computed from empirical methodologies, which are seldom based on site-specific studies, and may not be representative of local ecological and hydraulic conditions. Here we present the results of a quantitative analysis on the effectiveness of two alternative environmental flow scenarios prescribed in Central Italy (time-invariant experimental and empirically-based flow release versus time-variant hydrogeomorphologically-based flow release) and their impact on hydropower production and fish habitat suitability. The latter is examined by means of several models of habitat suitability curve, which is a well-known approach capable of analysing fluvial species preferences as a function of key eco-hydraulic features, such as water depth, flow velocity and river substrate. The results show an evident loss of hydropower production moving from the time-invariant experimental flow release to the hydrogeomorphological one (nearly 20% at the annual scale). Concerning the effects in terms of fish habitat suitability, our outcomes are less obvious, since they are species- and life stage-specific. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.

  6. Hydropower Production and Fish Habitat Suitability: Impact and Effectiveness of Environmental Flow Prescriptions

    NASA Astrophysics Data System (ADS)

    Castellarin, A.; Galeati, G.; Ceola, S.; Pugliese, A.; Ventura, M.; Montanari, A.

    2017-12-01

    The anthropogenic alteration of the natural flow regime of a river for hydropower production can significantly modify the processes and functions associated with fluvial ecosystems. In order to preserve the fluvial habitat downstream of dams and diversion structures, environmental flows are commonly defined. Such environmental flows are generally computed from empirical methodologies, which are seldom based on site-specific studies, and may not be representative of local ecological and hydraulic conditions. Here we present the results of a quantitative analysis on the effectiveness of two alternative environmental flow scenarios prescribed in Central Italy (time-invariant experimental and empirically-based flow release versus time-variant hydrogeomorphologically-based flow release) and their impact on hydropower production and fish habitat suitability. The latter is examined by means of several models of habitat suitability curve, which is a well-known approach capable of analysing fluvial species preferences as a function of key eco-hydraulic features, such as water depth, flow velocity and river substrate. The results show an evident loss of hydropower production moving from the time-invariant experimental flow release to the hydrogeomorphological one (nearly 20% at the annual scale). Concerning the effects in terms of fish habitat suitability, our outcomes are less obvious, since they are species- and life stage-specific. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.

  7. Propagation of narrow-band-high-frequency clicks: measured and modeled transmission loss of porpoise-like clicks in porpoise habitats.

    PubMed

    DeRuiter, Stacy L; Hansen, Michael; Koopman, Heather N; Westgate, Andrew J; Tyack, Peter L; Madsen, Peter T

    2010-01-01

    Estimating the range at which harbor porpoises can detect prey items and environmental objects is integral to understanding their biosonar. Understanding the ranges at which they can use echolocation to detect and avoid obstacles is particularly important for strategies to reduce bycatch. Transmission loss (TL) during acoustic propagation is an important determinant of those detection ranges, and it also influences animal detection functions used in passive acoustic monitoring. However, common assumptions regarding TL have rarely been tested. Here, TL of synthetic porpoise clicks was measured in porpoise habitats in Canada and Denmark, and field data were compared with spherical spreading law and ray-trace (Bellhop) model predictions. Both models matched mean observations quite well in most cases, indicating that a spherical spreading law can usually provide an accurate first-order estimate of TL for porpoise sounds in porpoise habitat. However, TL varied significantly (+/-10 dB) between sites and over time in response to variability in seafloor characteristics, sound-speed profiles, and other short-timescale environmental fluctuations. Such variability should be taken into account in estimates of the ranges at which porpoises can communicate acoustically, detect echolocation targets, and be detected via passive acoustic monitoring.

  8. Meta-replication reveals nonstationarity in multi-scale habitat selection of Mexican Spotted Owl

    Treesearch

    Ho Yi Wan; Kevin McGarigal; Joseph L. Ganey; Valentin Lauret; Brad C. Timm; Samuel A. Cushman

    2017-01-01

    Anthropogenic environmental changes are leading to habitat loss and degradation, driving many species to extinction. In this context, habitat models become increasingly important for effective species management and conservation. However, most habitat studies lack replicated study areas and do not properly address the role of nonstationarity and spatial scales in...

  9. School Children's Knowledge and Perceptions of Jaguars, Pumas, and Smaller Cats around a Mosaic of Protected Areas in the Western Brazilian Pantanal

    ERIC Educational Resources Information Center

    Porfirio, Grasiela; Sarmento, Pedro; Fonseca, Carlos

    2014-01-01

    Surveys to assess environmental knowledge are elementary tools to ensure successful environmental education. Felines are considered key components of the environment, acting as flagships for conservation. Nevertheless, they are threatened by loss of habitat, prey reductions, and poaching. In the mosaic of protected areas in the Brazilian Pantanal,…

  10. Ontogenetic shifts in habitat use by the endangered Roanoke logperch (Percina rex)

    Treesearch

    Amanda Rosenberger; Paul L. Angermeier

    2003-01-01

    1. Conservation of the federally endangered Roanoke logperch (Percina rex, Jordan and Evermann) necessitates protection of habitat that is critical for all age classes. We examined habitat use patterns of individual logperch to determine: (1) if age classes of logperch in the Nottoway and Roanoke Rivers exhibit habitat selectivity, (2) if...

  11. Climate Change, Habitat Loss, Protected Areas and the Climate Adaptation Potential of Species in Mediterranean Ecosystems Worldwide

    PubMed Central

    Klausmeyer, Kirk R.; Shaw, M. Rebecca

    2009-01-01

    Mediterranean climate is found on five continents and supports five global biodiversity hotspots. Based on combined downscaled results from 23 atmosphere-ocean general circulation models (AOGCMs) for three emissions scenarios, we determined the projected spatial shifts in the mediterranean climate extent (MCE) over the next century. Although most AOGCMs project a moderate expansion in the global MCE, regional impacts are large and uneven. The median AOGCM simulation output for the three emissions scenarios project the MCE at the end of the 21st century in Chile will range from 129–153% of its current size, while in Australia, it will contract to only 77–49% of its current size losing an area equivalent to over twice the size of Portugal. Only 4% of the land area within the current MCE worldwide is in protected status (compared to a global average of 12% for all biome types), and, depending on the emissions scenario, only 50–60% of these protected areas are likely to be in the future MCE. To exacerbate the climate impact, nearly one third (29–31%) of the land where the MCE is projected to remain stable has already been converted to human use, limiting the size of the potential climate refuges and diminishing the adaptation potential of native biota. High conversion and low protection in projected stable areas make Australia the highest priority region for investment in climate-adaptation strategies to reduce the threat of climate change to the rich biodiversity of the mediterranean biome. PMID:19641600

  12. Habitat fragmentation and interspecific competition: Implications for lynx conservation [Chapter 4

    Treesearch

    Steven W. Buskirk

    2000-01-01

    Habitat fragmentation and interspecific competition are two important forces that potentially affect lynx populations. Fragmentation operates by various mechanisms, including direct habitat loss, vehicle collisions and behavioral disturbance from roads, and changes in landscape features such as edges. Competition takes two forms: Exploitation competition involves...

  13. Winter habitat selection of mule deer before and during development of a natural gas field

    USGS Publications Warehouse

    Sawyer, H.; Nielson, R.M.; Lindzey, F.; McDonald, L.L.

    2006-01-01

    Increased levels of natural gas exploration, development, and production across the Intermountain West have created a variety of concerns for mule deer (Odocoileus hemionus) populations, including direct habitat loss to road and well-pad construction and indirect habitat losses that may occur if deer use declines near roads or well pads. We examined winter habitat selection patterns of adult female mule deer before and during the first 3 years of development in a natural gas field in western Wyoming. We used global positioning system (GPS) locations collected from a sample of adult female mule deer to model relative frequency or probability of use as a function of habitat variables. Model coefficients and predictive maps suggested mule deer were less likely to occupy areas in close proximity to well pads than those farther away. Changes in habitat selection appeared to be immediate (i.e., year 1 of development), and no evidence of well-pad acclimation occurred through the course of the study; rather, mule deer selected areas farther from well pads as development progressed. Lower predicted probabilities of use within 2.7 to 3.7 km of well pads suggested indirect habitat losses may be substantially larger than direct habitat losses. Additionally, some areas classified as high probability of use by mule deer before gas field development changed to areas of low use following development, and others originally classified as low probability of use were used more frequently as the field developed. If areas with high probability of use before development were those preferred by the deer, observed shifts in their distribution as development progressed were toward less-preferred and presumably less-suitable habitats.

  14. MoSI (Monitoreo de Sobrevivencia Invernal): assessing habitat-specific overwintering survival of neotropical migratory landbirds

    Treesearch

    David F. DeSante; T. Scott Sillett; Rodney B. Siegel; James F. Saracco; Claudia A. Romo de Vivar Alvarez; Salvadora Morales; Alexis Cerezo; Danielle R. Kaschube; Manuel Grosselet; Borja Mila

    2005-01-01

    Recent evidence suggests that population declines in many Neotropical-wintering migratory landbird species are caused by habitat loss and degradation on their wintering grounds. Such habitat loss and degradation can lower overwintering survival rates and cause surviving birds to leave their wintering grounds in poor physical condition, leading to high mortality during...

  15. Fifteenmile Basin Habitat Enhancement Project: Annual Report FY 1988.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Roger C.; Marx, Steven D.

    1989-04-01

    The goal of the Fifteenmile Creek Habitat Enhancement Project is to improve wild winter steelhead in the Fifteenmile Creek Basin under the Columbia River Basin Fish and Wildlife Program. The project is funded by through the Bonneville Power Administration. Cooperators in the habitat enhancement project include the USDA Forest Service, Wasco County Soil and Water Conservation District and the Confederated Tribes of the Warms Springs. Installation of instream fish habitat structures was completed on four miles of Ramsey Creek and on one mile of Fifteenmile Creek. One hundred thirty-five structures were installed in treatment areas. Construction materials included logs andmore » rock. Riparian protection fencing was completed on Dry Creek and Ramsey Creek worksites. Five and one-half miles of new fence was added to existing fence on Ramsey Creek to afford riparian protection to four miles of stream. Six miles of stream on Dry Creek will be afforded riparian protection by constructing 4.5 miles of fence to complement existing fence. 2 refs., 5 figs.« less

  16. The energetic consequences of habitat structure for forest stream salmonids.

    PubMed

    Naman, Sean M; Rosenfeld, Jordan S; Kiffney, Peter M; Richardson, John S

    2018-05-08

    terrestrial subsidy. Simulations indicated that increasing terrestrial prey inputs linearized the effect of habitat availability on salmonid biomass, while decreasing terrestrial inputs exaggerated a 'hump-shaped' effect. 5.Our results imply that nonlinear effects of habitat availability on consumer production can arise from trade-offs between habitat suitable for consumer occupancy and habitat that generates prey. However, cross-ecosystem prey subsidies can effectively decouple this trade-off and modify consumer-habitat relationships in recipient systems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Grisham, Blake A.; Timmer, Jennifer M.; Boal, Clint W.; Butler, Matthew; Pitman, James C.; Kyle, Sean; Klute, David; Beauprez, Grant M.; Janus, Allan; Van Pelt, William E.

    2016-01-01

    Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  18. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem

    PubMed Central

    Muposhi, Victor K.; Gandiwa, Edson; Chemura, Abel; Bartels, Paul; Makuza, Stanley M.; Madiri, Tinaapi H.

    2016-01-01

    An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i) surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii) habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii) spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana) for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats. PMID:27680673

  19. Small mammal populations in a grazed and ungrazed riparian habitat in Nevada

    Treesearch

    Dean E. Medin; Warren P. Clary

    1989-01-01

    Small mammal populations were compared between a grazed habitat and a comparable adjoining habitat protected from grazing by an exclosure. Composition, naive densiiy, standing crop biomass, species diversity, and other attributes of the small mammal communities were assessed. More species and higher numbers of most small mammals were found in the ungrazed habitat....

  20. The importance of benchmarking habitat structure and composition for understanding the extent of fishing impacts in soft sediment ecosystems

    NASA Astrophysics Data System (ADS)

    Handley, Sean J.; Willis, Trevor J.; Cole, Russell G.; Bradley, Anna; Cairney, Daniel J.; Brown, Stephen N.; Carter, Megan E.

    2014-02-01

    Trawling and dredge fisheries remove vulnerable fauna, homogenise sediments and assemblages, and break down biogenic habitats, but the full extent of these effects can be difficult to quantify in the absence of adequate control sites. Our study utilised rare control sites containing biogenic habitat, the Separation Point exclusion zone, formally protected for 28 years, as the basis for assessing the degree of change experienced by adjacent areas subject to benthic fishing. Sidescan sonar surveys verified that intensive trawling and dredging occurred in areas adjacent to, but not inside, the exclusion area. We compared sediment composition, biogenic cover, macrofaunal assemblages, biomass, and productivity of the benthos, inside and outside the exclusion zone. Disturbed sites were dominated by fine mud, with little or no shell-gravel, reduced number of species, and loss of large bodied animals, with concomitant reductions in biomass and productivity. At protected sites, large, rarer molluscs were more abundant and contributed the most to size-based estimates of productivity and biomass. Functional changes in fished assemblages were consistent with previously reported relative increases in scavengers, predators and deposit feeders at the expense of filter feeders and a grazer. We propose that the colonisation of biogenic species in protected sites was contingent on the presence of shell-gravel atop these soft sediments. The process of sediment homogenisation by bottom fishing and elimination of shell-gravels from surficial sediments appeared to have occurred over decades - a ‘shifting baseline’. Therefore, benchmarking historical sediment structure at control site like the Separation Point exclusion zone is necessary to determine the full extent of physical habitat change wrought by contact gears on sheltered soft sediment habitats to better underpin appropriate conservation, restoration or fisheries management goals.

  1. The Earth Observation Data for Habitat Monitoring (EODHaM) system

    NASA Astrophysics Data System (ADS)

    Lucas, Richard; Blonda, Palma; Bunting, Peter; Jones, Gwawr; Inglada, Jordi; Arias, Marcela; Kosmidou, Vasiliki; Petrou, Zisis I.; Manakos, Ioannis; Adamo, Maria; Charnock, Rebecca; Tarantino, Cristina; Mücher, Caspar A.; Jongman, Rob H. G.; Kramer, Henk; Arvor, Damien; Honrado, Joāo Pradinho; Mairota, Paola

    2015-05-01

    To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India.

  2. Consequences of severe habitat fragmentation on density, genetics, and spatial capture-recapture analysis of a small bear population.

    PubMed

    Murphy, Sean M; Augustine, Ben C; Ulrey, Wade A; Guthrie, Joseph M; Scheick, Brian K; McCown, J Walter; Cox, John J

    2017-01-01

    Loss and fragmentation of natural habitats caused by human land uses have subdivided several formerly contiguous large carnivore populations into multiple small and often isolated subpopulations, which can reduce genetic variation and lead to precipitous population declines. Substantial habitat loss and fragmentation from urban development and agriculture expansion relegated the Highlands-Glades subpopulation (HGS) of Florida, USA, black bears (Ursus americanus floridanus) to prolonged isolation; increasing human land development is projected to cause ≥ 50% loss of remaining natural habitats occupied by the HGS in coming decades. We conducted a noninvasive genetic spatial capture-recapture study to quantitatively describe the degree of contemporary habitat fragmentation and investigate the consequences of habitat fragmentation on population density and genetics of the HGS. Remaining natural habitats sustaining the HGS were significantly more fragmented and patchier than those supporting Florida's largest black bear subpopulation. Genetic diversity was low (AR = 3.57; HE = 0.49) and effective population size was small (NE = 25 bears), both of which remained unchanged over a period spanning one bear generation despite evidence of some immigration. Subpopulation density (0.054 bear/km2) was among the lowest reported for black bears, was significantly female-biased, and corresponded to a subpopulation size of 98 bears in available habitat. Conserving remaining natural habitats in the area occupied by the small, genetically depauperate HGS, possibly through conservation easements and government land acquisition, is likely the most important immediate step to ensuring continued persistence of bears in this area. Our study also provides evidence that preferentially placing detectors (e.g., hair traps or cameras) primarily in quality habitat across fragmented landscapes poses a challenge to estimating density-habitat covariate relationships using spatial capture

  3. Ecological and geographical analysis of the distribution of the mountain tapir (Tapirus pinchaque) in Ecuador: importance of protected areas in future scenarios of global warming.

    PubMed

    Ortega-Andrade, H Mauricio; Prieto-Torres, David A; Gómez-Lora, Ignacio; Lizcano, Diego J

    2015-01-01

    In Ecuador, Tapirus pinchaque is considered to be critically endangered. Although the species has been registered in several localities, its geographic distribution remains unclear, and the effects of climate change and current land uses on this species are largely unknown. We modeled the ecological niche of T. pinchaque using MaxEnt, in order to assess its potential adaptation to present and future climate change scenarios. We evaluated the effects of habitat loss due by current land use, the ecosystem availability and importance of Ecuadorian System of Protected Areas into the models. The model of environmental suitability estimated an extent of occurrence for species of 21,729 km2 in all of Ecuador, mainly occurring along the corridor of the eastern Ecuadorian Andes. A total of 10 Andean ecosystems encompassed ~98% of the area defined by the model, with herbaceous paramo, northeastern Andean montane evergreen forest and northeastern Andes upper montane evergreen forest being the most representative. When considering the effect of habitat loss, a significant reduction in model area (~17%) occurred, and the effect of climate change represented a net reduction up to 37.86%. However, the synergistic effect of both climate change and habitat loss, given current land use practices, could represent a greater risk in the short-term, leading to a net reduction of 19.90 to 44.65% in T. pinchaque's potential distribution. Even under such a scenarios, several Protected Areas harbor a portion (~36 to 48%) of the potential distribution defined by the models. However, the central and southern populations are highly threatened by habitat loss and climate change. Based on these results and due to the restricted home range of T. pinchaque, its preference for upland forests and paramos, and its small estimated population size in the Andes, we suggest to maintaining its current status as Critically Endangered in Ecuador.

  4. Ecological and Geographical Analysis of the Distribution of the Mountain Tapir (Tapirus pinchaque) in Ecuador: Importance of Protected Areas in Future Scenarios of Global Warming

    PubMed Central

    Ortega-Andrade, H. Mauricio; Prieto-Torres, David A.; Gómez-Lora, Ignacio; Lizcano, Diego J.

    2015-01-01

    In Ecuador, Tapirus pinchaque is considered to be critically endangered. Although the species has been registered in several localities, its geographic distribution remains unclear, and the effects of climate change and current land uses on this species are largely unknown. We modeled the ecological niche of T. pinchaque using MaxEnt, in order to assess its potential adaptation to present and future climate change scenarios. We evaluated the effects of habitat loss due by current land use, the ecosystem availability and importance of Ecuadorian System of Protected Areas into the models. The model of environmental suitability estimated an extent of occurrence for species of 21,729 km2 in all of Ecuador, mainly occurring along the corridor of the eastern Ecuadorian Andes. A total of 10 Andean ecosystems encompassed ~98% of the area defined by the model, with herbaceous paramo, northeastern Andean montane evergreen forest and northeastern Andes upper montane evergreen forest being the most representative. When considering the effect of habitat loss, a significant reduction in model area (~17%) occurred, and the effect of climate change represented a net reduction up to 37.86%. However, the synergistic effect of both climate change and habitat loss, given current land use practices, could represent a greater risk in the short-term, leading to a net reduction of 19.90 to 44.65% in T. pinchaque’s potential distribution. Even under such a scenarios, several Protected Areas harbor a portion (~36 to 48%) of the potential distribution defined by the models. However, the central and southern populations are highly threatened by habitat loss and climate change. Based on these results and due to the restricted home range of T. pinchaque, its preference for upland forests and paramos, and its small estimated population size in the Andes, we suggest to maintaining its current status as Critically Endangered in Ecuador. PMID:25798851

  5. Determination of Acreage Thermal Protection Foam Loss From Ice and Foam Impacts

    NASA Technical Reports Server (NTRS)

    Carney, Kelly S.; Lawrence, Charles

    2015-01-01

    A parametric study was conducted to establish Thermal Protection System (TPS) loss from foam and ice impact conditions similar to what might occur on the Space Launch System. This study was based upon the large amount of testing and analysis that was conducted with both ice and foam debris impacts on TPS acreage foam for the Space Shuttle Project External Tank. Test verified material models and modeling techniques that resulted from Space Shuttle related testing were utilized for this parametric study. Parameters varied include projectile mass, impact velocity and impact angle (5 degree and 10 degree impacts). The amount of TPS acreage foam loss as a result of the various impact conditions is presented.

  6. Lemur species-specific metapopulation responses to habitat loss and fragmentation

    PubMed Central

    Lehman, Shawn M.

    2018-01-01

    Determining what factors affect species occurrence is vital to the study of primate biogeography. We investigated the metapopulation dynamics of a lemur community consisting of eight species (Avahi occidentalis, Propithecus coquereli, Microcebus murinus, Microcebus ravelobensis, Lepilemur edwardsi, Cheirogaleus medius, Eulemur mongoz, and Eulemur fulvus) within fragmented tropical dry deciduous forest habitat in Ankarafantsika National Park, Madagascar. We measured fragment size and isolation of 42 fragments of forest ranging in size from 0.23 to 117.7 ha adjacent to continuous forest. Between June and November 2011, we conducted 1218 surveys and observed six of eight lemur species (M. murinus, M. ravelobensis, C. medius, E. fulvus, P. coquereli, and L. edwardsi) in the 42 fragments. We applied among patch incidence function models (IFMs) with various measures of dispersal and a mainland-island IFM to lemur species occurrence, with the aim of answering the following questions: 1) Do lemur species in dry deciduous forest fragments form metapopulations? 2) What are the separate effects of area (extinction risk) and connectivity/isolation (colonization potential) within a lemur metapopulation? 3) Within simulated metapopulations over time, how do area and connectivity/isolation affect occurrence? and 4) What are the conservation implications of our findings? We found that M. murinus formed either a mainland-island or an among patch metapopulation, M. ravelobensis formed a mainland-island metapopulation, C. medius and E. fulvus formed among patch metapopulations, and neither P. coquereli or L. edwardsi formed a metapopulation. Metapopulation dynamics and simulations suggest that area was a more consistent positive factor determining lemur species occurrence than fragment isolation and is crucial to the maintenance of lemur populations within this fragmented landscape. Using a metapopulation approach to lemur biogeography is critical for understanding how lemur species

  7. Work, social support and leisure protect the elderly from functional loss: EPIDOSO study.

    PubMed

    d'Orsi, Eleonora; Xavier, André Junqueira; Ramos, Luiz Roberto

    2011-08-01

    To identify risk factors for functional capacity loss in elderly people. Epidoso (Epidemiology of the Elderly) cohort study with elderly people living in São Paulo (Southeastern Brazil). A total of 326 participants in the first interview (1991-1992) who were independent or had mild dependence (one or two activities of daily living) were selected. Those who presented functional loss in the second (1994-1995) or third interviews (1998-1999) were compared to those who did not present it. The incidence of functional loss was calculated according to sociodemographic variables, life habits, cognitive status, morbidity, hospitalization, self-rated health, tooth loss, social support and leisure activities. Crude and adjusted relative risks with 95% confidence intervals were estimated through bivariate and multiple analyses with Poisson regression. The criterion for the inclusion of the variables in the model was p < 0.20 and for exclusion, p > 0.10. The incidence of functional loss was 17.8% (13.6; 21.9). The risk factors in the final model were: age group 70-74 years RR=1.9 (0.9;3.9); age group 75-79 years RR=2.8 (1.4;5.5); age group 80 years or older RR=5.4 (3.0;9.6); score in the mini-mental state examination <24 RR=1.8 (1.1;2.9); asthma RR=2.3 (1.3;3.9); hypertension RR=1.7 (1.1;2.6); and diabetes RR=1.7 (0.9;3.0). The protective factors were: paid work RR=0.3 (0.1;1.0); monthly relationship with friends RR=0.5 (0.3;0.8); watching TV RR=0.5 (0.3;0.9); and handcrafting RR=0.7 (0.4;1.0). The prevention of functional loss should include adequate control of chronic diseases, like hypertension, asthma and diabetes, as well as cognitive stimulation. Work, leisure and relationships with friends should be valued due to their protective effect.

  8. Foraging habitat for shorebirds in southeastern Missouri and its predicted future availability

    USGS Publications Warehouse

    Twedt, Daniel J.

    2013-01-01

    Water management to protect agriculture in alluvial floodplains often conflicts with wildlife use of seasonal floodwater. Such is the case along the Mississippi River in southeastern Missouri where migrating shorebirds forage in shallow-flooded fields. I estimated the current availability of habitat for foraging shorebirds within the New Madrid and St. Johns Basins based on daily river elevations (1943–2009), under assumptions that shorebirds forage in open habitat with water depth <15 cm and use mudflats for 3 days after exposure. The area of shorebird foraging habitat, based on replicated 50-year random samples, averaged 975 ha per day during spring and 33 ha per day during fall. Adjustments to account for habitat quality associated with different water depths, duration of mudflat exposure, intra-seasonal availability, and state of agricultural crops, indicated the equivalent of 494 ha daily of optimal habitat during spring and 11 ha during fall. Proposed levees and pumps to protect cropland would reduce shorebird foraging habitat by 80 %: to 211 ha (108 optimal ha) per day during spring and 9 ha (<3 optimal ha) per day during fall. Alternative water management that allows natural flooding below a prescribed elevation would retain nearly all existing shorebird foraging habitat during fall and about 60 % of extant habitat during spring.

  9. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat

    NASA Astrophysics Data System (ADS)

    Sunday, Jennifer M.; Fabricius, Katharina E.; Kroeker, Kristy J.; Anderson, Kathryn M.; Brown, Norah E.; Barry, James P.; Connell, Sean D.; Dupont, Sam; Gaylord, Brian; Hall-Spencer, Jason M.; Klinger, Terrie; Milazzo, Marco; Munday, Philip L.; Russell, Bayden D.; Sanford, Eric; Thiyagarajan, Vengatesen; Vaughan, Megan L. H.; Widdicombe, Stephen; Harley, Christopher D. G.

    2017-01-01

    The effects of ocean acidification (OA) on the structure and complexity of coastal marine biogenic habitat have been broadly overlooked. Here we explore how declining pH and carbonate saturation may affect the structural complexity of four major biogenic habitats. Our analyses predict that indirect effects driven by OA on habitat-forming organisms could lead to lower species diversity in coral reefs, mussel beds and some macroalgal habitats, but increases in seagrass and other macroalgal habitats. Available in situ data support the prediction of decreased biodiversity in coral reefs, but not the prediction of seagrass bed gains. Thus, OA-driven habitat loss may exacerbate the direct negative effects of OA on coastal biodiversity; however, we lack evidence of the predicted biodiversity increase in systems where habitat-forming species could benefit from acidification. Overall, a combination of direct effects and community-mediated indirect effects will drive changes in the extent and structural complexity of biogenic habitat, which will have important ecosystem effects.

  10. Genetic diversity in butterflies: Interactive effects of habitat fragmentation and climate-driven range expansion.

    PubMed

    Hill, Jane K; Hughes, Clare L; Dytham, Calvin; Searle, Jeremy B

    2006-03-22

    Some species are expanding their ranges polewards during current climate warming. However, anthropogenic fragmentation of suitable habitat is affecting expansion rates and here we investigate interactions between range expansion, habitat fragmentation and genetic diversity. We examined three closely related Satyrinae butterflies, which differ in their habitat associations, from six sites along a transect in England from distribution core to expanding range margin. There was a significant decline in allozyme variation towards an expanding range margin in Pararge aegeria, which has the most restricted habitat availability, but not in Pyronia tithonus whose habitat is more widely available, or in a non-expanding 'control species' (Maniola jurtina). Moreover, data from another transect in Scotland indicated that declines in genetic diversity in P. aegeria were evident only on the transect in England, which had greater habitat fragmentation. Our results indicate that fragmentation of breeding habitats leads to more severe founder events during colonization, resulting in reduced diversity in marginal populations in more specialist species. The continued widespread loss of suitable habitats in the future may increase the likelihood of loss of genetic diversity in expanding species, which may affect whether or not species can adapt to future environmental change.

  11. Assessment of Habitat Representation across a Network of Marine Protected Areas with Implications for the Spatial Design of Monitoring

    PubMed Central

    Young, Mary; Carr, Mark

    2015-01-01

    Networks of marine protected areas (MPAs) are being adopted globally to protect ecosystems and supplement fisheries management. The state of California recently implemented a coast-wide network of MPAs, a statewide seafloor mapping program, and ecological characterizations of species and ecosystems targeted for protection by the network. The main goals of this study were to use these data to evaluate how well seafloor features, as proxies for habitats, are represented and replicated across an MPA network and how well ecological surveys representatively sampled fish habitats inside MPAs and adjacent reference sites. Seafloor data were classified into broad substrate categories (rock and sediment) and finer scale geomorphic classifications standard to marine classification schemes using surface analyses (slope, ruggedness, etc.) done on the digital elevation model derived from multibeam bathymetry data. These classifications were then used to evaluate the representation and replication of seafloor structure within the MPAs and across the ecological surveys. Both the broad substrate categories and the finer scale geomorphic features were proportionately represented for many of the classes with deviations of 1-6% and 0-7%, respectively. Within MPAs, however, representation of seafloor features differed markedly from original estimates, with differences ranging up to 28%. Seafloor structure in the biological monitoring design had mismatches between sampling in the MPAs and their corresponding reference sites and some seafloor structure classes were missed entirely. The geomorphic variables derived from multibeam bathymetry data for these analyses are known determinants of the distribution and abundance of marine species and for coastal marine biodiversity. Thus, analyses like those performed in this study can be a valuable initial method of evaluating and predicting the conservation value of MPAs across a regional network. PMID:25760858

  12. Simulating range-wide population and breeding habitat dynamics for an endangered woodland warbler in the face of uncertainty

    USGS Publications Warehouse

    Adam Duarte,; Hatfield, Jeffrey; Todd M. Swannack,; Michael R. J. Forstner,; M. Clay Green,; Floyd W. Weckerly,

    2015-01-01

    Population viability analyses provide a quantitative approach that seeks to predict the possible future status of a species of interest under different scenarios and, therefore, can be important components of large-scale species’ conservation programs. We created a model and simulated range-wide population and breeding habitat dynamics for an endangered woodland warbler, the golden-cheeked warbler (Setophaga chrysoparia). Habitat-transition probabilities were estimated across the warbler's breeding range by combining National Land Cover Database imagery with multistate modeling. Using these estimates, along with recently published demographic estimates, we examined if the species can remain viable into the future given the current conditions. Lastly, we evaluated if protecting a greater amount of habitat would increase the number of warblers that can be supported in the future by systematically increasing the amount of protected habitat and comparing the estimated terminal carrying capacity at the end of 50 years of simulated habitat change. The estimated habitat-transition probabilities supported the hypothesis that habitat transitions are unidirectional, whereby habitat is more likely to diminish than regenerate. The model results indicated population viability could be achieved under current conditions, depending on dispersal. However, there is considerable uncertainty associated with the population projections due to parametric uncertainty. Model results suggested that increasing the amount of protected lands would have a substantial impact on terminal carrying capacities at the end of a 50-year simulation. Notably, this study identifies the need for collecting the data required to estimate demographic parameters in relation to changes in habitat metrics and population density in multiple regions, and highlights the importance of establishing a common definition of what constitutes protected habitat, what management goals are suitable within those protected

  13. Predicting Impacts of tropical cyclones and sea-Level rise on beach mouse habitat

    USGS Publications Warehouse

    Chen, Qin; Wang, Hongqing; Wang, Lixia; Tawes, Robert; Rollman, Drew

    2014-01-01

    Alabama beach mouse (ABM) (Peromyscus polionotus ammobates) is an important component of the coastal dune ecosystem along the Gulf of Mexico. Due to habitat loss and degradation, ABM is federally listed as an endangered species. In this study, we examined the impacts of storm surge and wind waves, which are induced by hurricanes and sea-level rise (SLR), on the ABM habitat on Fort Morgan Peninsula, Alabama, using advanced storm surge and wind wave models and spatial analysis tools in geographic information systems (GIS). Statistical analyses of the long-term historical data enabled us to predict the extreme values of winds, wind waves, and water levels in the study area at different return periods. We developed a series of nested domains for both wave and surge modeling and validated the models using field observations of surge hydrographs and high watermarks of Hurricane Ivan (2004). We then developed wave atlases and flood maps corresponding to the extreme wind, surge and waves without SLR and with a 0.5 m of SLR by coupling the wave and surge prediction models. The flood maps were then merged with a map of ABM habitat to determine the extent and location of habitat impacted by the 100-year storm with and without SLR. Simulation results indicate that more than 82% of ABM habitat would be inundated in such an extreme storm event, especially under SLR, making ABM populations more vulnerable to future storm damage. These results have aided biologists, community planners, and other stakeholders in the identification, restoration and protection of key beach mouse habitat in Alabama. Methods outlined in this paper could also be used to assist in the conservation and recovery of imperiled coastal species elsewhere.

  14. Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation.

    PubMed

    Vranckx, Guy; Jacquemyn, Hans; Muys, Bart; Honnay, Olivier

    2012-04-01

    Shrubs and trees are assumed less likely to lose genetic variation in response to habitat fragmentation because they have certain life-history characteristics such as long lifespans and extensive pollen flow. To test this assumption, we conducted a meta-analysis with data on 97 woody plant species derived from 98 studies of habitat fragmentation. We measured the weighted response of four different measures of population-level genetic diversity to habitat fragmentation with Hedge's d and Spearman rank correlation. We tested whether the genetic response to habitat fragmentation was mediated by life-history traits (longevity, pollination mode, and seed dispersal vector) and study characteristics (genetic marker and plant material used). For both tests of effect size habitat fragmentation was associated with a substantial decrease in expected heterozygosity, number of alleles, and percentage of polymorphic loci, whereas the population inbreeding coefficient was not associated with these measures. The largest proportion of variation among effect sizes was explained by pollination mechanism and by the age of the tissue (progeny or adult) that was genotyped. Our primary finding was that wind-pollinated trees and shrubs appeared to be as likely to lose genetic variation as insect-pollinated species, indicating that severe habitat fragmentation may lead to pollen limitation and limited gene flow. In comparison with results of previous meta-analyses on mainly herbaceous species, we found trees and shrubs were as likely to have negative genetic responses to habitat fragmentation as herbaceous species. We also found that the genetic variation in offspring was generally less than that of adult trees, which is evidence of a genetic extinction debt and probably reflects the genetic diversity of the historical, less-fragmented landscape. ©2011 Society for Conservation Biology.

  15. Estimates of connectivity reveal non-equilibrium epiphyte occurrence patterns almost 180 years after habitat decline.

    PubMed

    Johansson, Victor; Snäll, Tord; Ranius, Thomas

    2013-06-01

    Habitat loss is a major cause of species decline and extinction. Immediately after habitat loss, species occurrences are not in equilibrium with the new landscape and more closely reflect the previous landscape structure. Species with slow colonisation-extinction dynamics may display long time-lags before reaching a new equilibrium. We investigated the importance of connectivity to current and historical dispersal sources with the aim of explaining the occurrence pattern of epiphytic lichens with different traits among 104 old oaks. We used oak survey data collected from 1830 and 2009 for a Swedish landscape where oak densities declined drastically shortly after 1830. We fitted a commonly used connectivity measure and estimated the confidence interval for the spatial scale parameter. Small differences in the spatial scale parameter resulted in large differences in model fit. Connectivity to trees in 1830 better explained the occurrence of three of the four species compared to the connectivity in 2009. The explanatory power of the historical landscape structure was highest for the species with traits that may result in a low colonisation rate--both a narrow niche (here few suitable trees) and large dispersal propagules. The results suggest that oak-dependent epiphytic lichens have not reached equilibrium with the spatial landscape structure 180 years after the drastic decline in habitat. For the long-term persistence of epiphytes associated with old trees, conservation efforts should focus on (1) protecting and restoring stands where specialised species with large dispersal propagules (i.e. with low colonisation rates) occur today and (2) promoting tree regeneration in their near vicinity.

  16. Physical habitat and its alteration: A common ground for exposure of amphibians to environmental stressors

    USGS Publications Warehouse

    Bishop, Christine A.; Cunnington, David C.; Fellers, Gary M.; Gibbs, James P.; Pauli, Bruce D.; Rothermel, Betsie B.; Linder, Greg L.; Krest, Sherry K.; Sparling, Donald W.

    2003-01-01

    Amphibians as a class of vertebrates have persisted for hundreds of millions of years (Stebbins and Cohen 1995), but they are currently threatened by a variety of stressors, many resulting from human-related alterations of the environment. Most species of amphibians live closely associated with moist environments throughout their life and have evolved specialized adaptations that conserve water and reduce desiccation (Stebbins and Cohen 1995; Henry 2000; Chapter 2A). Amphibians are ectotherms, so their body temperatures fluctuate with the local environment. Latitude, elevation, and habitat affect environmental temperature and have a strong influence on amphibian distributions. Despite these physiological and habitat constraints, the 4750 species of amphibians in the world today have exploited a wide variety of habitats that range from dry deserts to tropical rain forests and from sea level to elevations above 4000 m (McDairmid and Mitchell 2000).The direct loss of suitable habitat has had a profound effect on amphibian populations (Johnson 1992), as it has on nearly all species of wildlife. In the U.S., 53% of wetlands have been lost to human development in the last 200 years (Dahl 1990). Similar loss of wetlands has occurred throughout much of the world, especially in developing countries (Miller 1993). In many regions, deforestation has reduced or eliminated suitable terrestrial habitats, and this may prove to be the largest global threat to amphibian populations (Johnson 1992). Eight thousand years ago, forests covered approximately 40% of the world’s land (6 billion hectares), but by 1997, the world’s forests had been reduced to 3.5 billion hectares, a 42% loss worldwide (CIDA 2001). The effect of habitat loss is generally both obvious and predictable; with increasing restriction of suitable habitat, amphibian populations will probably not survive. The anthropogenic effects on the quality of the habitat that remains are often less obvious.

  17. Minocycline Protection of Neomycin Induced Hearing Loss in Gerbils

    PubMed Central

    Robinson, Alan M.; Vujanovic, Irena; Richter, Claus-Peter

    2015-01-01

    This animal study was designed to determine if minocycline ameliorates cochlear damage is caused by intratympanic injection of the ototoxic aminoglycoside antibiotic neomycin. Baseline auditory-evoked brainstem responses were measured in gerbils that received 40 mM intratympanic neomycin either with 0, 1.2, or 1.5 mg/kg intraperitoneal minocycline. Four weeks later auditory-evoked brainstem responses were measured and compared to the baseline measurements. Minocycline treatments of 1.2 mg/kg and 1.5 mg/kg resulted in significantly lower threshold increases compared to 0 mg/kg, indicating protection of hearing loss between 6 kHz and 19 kHz. Cochleae were processed for histology and sectioned to allow quantification of the spiral ganglion neurons and histological evaluation of organ of Corti. Significant reduction of spiral ganglion neuron density was demonstrated in animals that did not receive minocycline, indicating that those receiving minocycline demonstrated enhanced survival of spiral ganglion neurons, enhanced survival of sensory hairs cells and spiral ganglion neurons, and reduced hearing threshold elevation correlates with minocycline treatment demonstrating that neomycin induced hearing loss can be reduced by the simultaneous application of minocycline. PMID:25950003

  18. Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems.

    PubMed

    Barletta, M; Jaureguizar, A J; Baigun, C; Fontoura, N F; Agostinho, A A; Almeida-Val, V M F; Val, A L; Torres, R A; Jimenes-Segura, L F; Giarrizzo, T; Fabré, N N; Batista, V S; Lasso, C; Taphorn, D C; Costa, M F; Chaves, P T; Vieira, J P; Corrêa, M F M

    2010-06-01

    Fish conservation in South America is a pressing issue. The biodiversity of fishes, just as with all other groups of plants and animals, is far from fully known. Continuing habitat loss may result in biodiversity losses before full species diversity is known. In this review, the main river basins of South America (Magdalena, Orinoco, Amazon and Paraná-La Plata system), together with key aquatic habitats (mangrove-fringed estuaries of the tropical humid, tropical semi-arid and subtropical regions) are analysed in terms of their characteristics and main concerns. Habitat loss was the main concern identified for all South American ecosystems. It may be caused by damming of rivers, deforestation, water pollution, mining, poor agricultural practice or inadequate management practice. Habitat loss has a direct consequence, which is a decrease in the availability of living resources, a serious social and economic issue, especially for South American nations which are all developing countries. The introduction of exotic species and overfishing were also identified as widespread across the continent and its main freshwater, coastal and marine ecosystems. Finally, suggestions are made to find ways to overcome these problems. The main suggestion is a change of paradigm and a new design for conservation actions, starting with integrated research and aiming at the co-ordinated and harmonized management of the main transboundary waters of the continent. The actions would be focused on habitat conservation and social rescue of the less well-off populations of indigenous and non-indigenous peoples. Energy and freshwater demands will also have to be rescaled in order to control habitat loss.

  19. Fish predators reduce kelp frond loss via a trait-mediated trophic cascade.

    PubMed

    Haggerty, Miranda B; Anderson, Todd W; Long, Jeremy D

    2018-05-05

    Although trophic cascades were originally believed to be driven only by predators eating prey, there is mounting evidence that such cascades can be generated in large part via non-consumptive effects. This is especially important in cascades affecting habitat-forming foundation species that in turn, influence associated communities. Here, we use laboratory and field experiments to identify a trait-mediated indirect interaction between predators and an abundant kelp in a marine temperate reef system. Predation risk from a microcarnivorous fish, the señorita, suppressed grazing by the host-specific seaweed limpet, which in turn, influenced frond loss of the habitat-forming feather boa kelp. This trophic cascade was pronounced because minor amounts of limpet grazing decreased the strength required to break kelp fronds. Cues from fish predators mitigated kelp loss by decreasing limpet grazing; we found 86% of this indirect interaction between predator and kelp was attributed to the non-consumptive effect in the laboratory and 56% when applying the same effect size calculations to the field. In field manipulations, the non-consumptive effect of señorita was as strong as the total predator effect and most importantly, as strong as the uncaged, "open" treatment with natural levels of predators. Our findings demonstrate that the mere presence of this fish reduces frond loss of the feather boa kelp through a trait-mediated trophic cascade. Moreover, despite large volumes of water, current flow, and wave energy, we clearly demonstrate a strong non-consumptive effect via an apparent chemical cue from señorita, suggesting that chemically mediated trait-driven cascades may be more prevalent in subtidal marine systems than we are currently aware. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Piping Plover Habitat Loss at the Nature Conservancy's John E. Williams Preserve, Central North Dakota: an Interdisciplinary Study of Alkaline Prairie Pothole Glacial Lakes, Groundwater, Gravel Beaches and Vegetation Encroachment

    NASA Astrophysics Data System (ADS)

    Sciamanda, M.; Kellner, J. R.; Lamb, M. A.; Clotts, R.; Pastika, D. W.; Welter, D. J.; Brown, J. M.; Schuweiler, T. K.; Mohanty, R. B.; Vang, K. M.; Nichols, K. S.; Lorah, P. A.; Robinson, D. O.

    2016-12-01

    The Piping Plover (Charadrius melodus) is a threatened migratory bird that nests along shores of alkaline lakes, the Great Lakes, and the Atlantic Ocean. John Williams Preserve, in central North Dakota, houses one of the largest breeding populations in the world. Over the past eighty years, vegetation has encroached and caused variable habitat loss from lake to lake (Root and Ryan, 2004). Processes operating on different time scales affect lake, beach and vegetation changes: long-term global climate changes, decadal drought cycles, and seasonal and local weather. To determine how these processes interact to affect vegetation growth, soil salinity and habitat loss, we began a multidisciplinary field study. Sampled lake cores provide a chemical record of historical events and possible habitat changes. Water chemistry samples taken in different months inform groundwater flow patterns and core interpretation. Spatial analyses of local and regional groundwater systems informed placement of piezometers to determine groundwater flow. Aerial drone imagery builds on previous ground studies and allows for a quantitative spatial analysis of vegetation encroachment and geomorphic analyses. The three main lakes in our study show a general increase in concentration of major ions from east to west —from Pelican to Peterson to Williams—that mirrors westerly groundwater flow. Geochemical data from sediment cores, including LOI, XRD and XRF data, show that Williams is the most variable chemically, Pelican the least. Williams contains the most evaporate minerals, including thernardite and burkeite. Land use changes in the last 120 years may have changed lake chemistry: at 60 cm depth in cores, there are changes in the organic matter concentration and major ion chemistry, suggesting an increase in runoff and sediment input. Historical research points to changing agricultural practices as a possible cause of these changes. Initial ArcGIS analyses of detailed drone topographic data

  1. Mangrove Habitat Use by Juvenile Reef Fish: Meta-Analysis Reveals that Tidal Regime Matters More than Biogeographic Region

    PubMed Central

    Igulu, Mathias M.; Nagelkerken, Ivan; Dorenbosch, Martijn; Grol, Monique G. G.; Harborne, Alastair R.; Kimirei, Ismael A.; Mumby, Peter J.; Olds, Andrew D.; Mgaya, Yunus D.

    2014-01-01

    Identification of critical life-stage habitats is key to successful conservation efforts. Juveniles of some species show great flexibility in habitat use while other species rely heavily on a restricted number of juvenile habitats for protection and food. Considering the rapid degradation of coastal marine habitats worldwide, it is important to evaluate which species are more susceptible to loss of juvenile nursery habitats and how this differs across large biogeographic regions. Here we used a meta-analysis approach to investigate habitat use by juvenile reef fish species in tropical coastal ecosystems across the globe. Densities of juvenile fish species were compared among mangrove, seagrass and coral reef habitats. In the Caribbean, the majority of species showed significantly higher juvenile densities in mangroves as compared to seagrass beds and coral reefs, while for the Indo-Pacific region seagrass beds harbored the highest overall densities. Further analysis indicated that differences in tidal amplitude, irrespective of biogeographic region, appeared to be the major driver for this phenomenon. In addition, juvenile reef fish use of mangroves increased with increasing water salinity. In the Caribbean, species of specific families (e.g. Lutjanidae, Haemulidae) showed a higher reliance on mangroves or seagrass beds as juvenile habitats than other species, whereas in the Indo-Pacific family-specific trends of juvenile habitat utilization were less apparent. The findings of this study highlight the importance of incorporating region-specific tidal inundation regimes into marine spatial conservation planning and ecosystem based management. Furthermore, the significant role of water salinity and tidal access as drivers of mangrove fish habitat use implies that changes in seawater level and rainfall due to climate change may have important effects on how juvenile reef fish use nearshore seascapes in the future. PMID:25551761

  2. Mangrove habitat use by juvenile reef fish: meta-analysis reveals that tidal regime matters more than biogeographic region.

    PubMed

    Igulu, Mathias M; Nagelkerken, Ivan; Dorenbosch, Martijn; Grol, Monique G G; Harborne, Alastair R; Kimirei, Ismael A; Mumby, Peter J; Olds, Andrew D; Mgaya, Yunus D

    2014-01-01

    Identification of critical life-stage habitats is key to successful conservation efforts. Juveniles of some species show great flexibility in habitat use while other species rely heavily on a restricted number of juvenile habitats for protection and food. Considering the rapid degradation of coastal marine habitats worldwide, it is important to evaluate which species are more susceptible to loss of juvenile nursery habitats and how this differs across large biogeographic regions. Here we used a meta-analysis approach to investigate habitat use by juvenile reef fish species in tropical coastal ecosystems across the globe. Densities of juvenile fish species were compared among mangrove, seagrass and coral reef habitats. In the Caribbean, the majority of species showed significantly higher juvenile densities in mangroves as compared to seagrass beds and coral reefs, while for the Indo-Pacific region seagrass beds harbored the highest overall densities. Further analysis indicated that differences in tidal amplitude, irrespective of biogeographic region, appeared to be the major driver for this phenomenon. In addition, juvenile reef fish use of mangroves increased with increasing water salinity. In the Caribbean, species of specific families (e.g. Lutjanidae, Haemulidae) showed a higher reliance on mangroves or seagrass beds as juvenile habitats than other species, whereas in the Indo-Pacific family-specific trends of juvenile habitat utilization were less apparent. The findings of this study highlight the importance of incorporating region-specific tidal inundation regimes into marine spatial conservation planning and ecosystem based management. Furthermore, the significant role of water salinity and tidal access as drivers of mangrove fish habitat use implies that changes in seawater level and rainfall due to climate change may have important effects on how juvenile reef fish use nearshore seascapes in the future.

  3. A meta-analysis of lesser prairie-chicken nesting and brood-rearing habitats: implications for habitat management

    USGS Publications Warehouse

    Hagen, Christian A.; Grisham, Blake A.; Boal, Clint W.; Haukos, David A.

    2013-01-01

    The distribution and range of lesser prairie-chicken (Tympanuchus pallidicinctus) has been reduced by >90% since European settlement of the Great Plains of North America. Currently, lesser prairie-chickens occupy 3 general vegetation communities: sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii), and mixed-grass prairies juxtaposed with Conservation Reserve Program grasslands. As a candidate for protection under the Endangered Species Act, there is a need for a synthesis that characterizes habitat structure rangewide. Thus, we conducted a meta-analysis of vegetation characteristics at nest sites and brood habitats to determine whether there was an overall effect (Hedges' d) of habitat selection and to estimate average (95% CI) habitat characteristics at use sites. We estimated effect sizes (di) from the difference between use (nests and brood sites) and random sampling sites for each study (n = 14), and derived an overall effect size (d++). There was a general effect for habitat selection as evidenced by low levels of variation in effect sizes across studies and regions. There was a small to medium effect (d++) = 0.20-0.82) of selection for greater vertical structure (visual obstruction) by nesting females in both vegetation communities, and selection against bare ground (d++ = 0.20-0.58). Females with broods exhibited less selectivity for habitat components except for vertical structure. The variation of d++ was greater during nesting than brooding periods, signifying a seasonal shift in habitat use, and perhaps a greater range of tolerance for brood-rearing habitat. The overall estimates of vegetation cover were consistent with those provided in management guidelines for the species.

  4. Comparative habitat ecology of Texas and masked bobwhites

    USGS Publications Warehouse

    Guthery, F.S.; King, N.M.; Nolte, K.R.; Kuvlesky, W.P.; DeStefano, S.; Gall, S.A.; Silvy, N.J.

    2000-01-01

    The habitat ecology of masked bobwhites (Colinus virginianus ridgwayi) is poorly understood, which hampers recovery efforts for this endangered bird. During 1994-96, we analyzed the habitat ecology of masked bobwhites in Sonora, Mexico, and Arizona, and compared these findings with the habitat ecology of Texas bobwhites (C. v. texanus) in southern Texas. Mean values for the quantity of low screening cover (<50 cm aboveground), operative temperature (??C), and exposure to aerial predators were relatively constant across regions (CV <14.2%), indicating these variables are important in adaptive habitat-use decisions by bobwhites. Bobwhites exhibited preference in all regions for higher canopy coverage of woody vegetation, lower exposure to aerial predators, and lower operative temperatures in comparison with randomly available conditions. The major habitat deficiencies for masked bobwhites were lack of woody and herbaceous cover, which led to high exposure to aerial predators in Sonora and Arizona. High operative temperatures at quail level were associated with the loss of ???24% of potential habitat space-time in Texas, Sonora, and Arizona. Management to improve habitat for masked bobwhites includes any practice that increases canopy coverage of woody vegetation, and height and coverage of herbaceous vegetation.

  5. Landscape genetics indicate recently increased habitat fragmentation in African forest-associated chafers.

    PubMed

    Eberle, Jonas; Rödder, Dennis; Beckett, Marc; Ahrens, Dirk

    2017-05-01

    Today, indigenous forests cover less than 0.6% of South Africa's land surface and are highly fragmented. Most forest relicts are very small and typically occur in fire-protected gorges along the eastern Great Escarpment. Yet, they hold a unique and valuable fauna with high endemism and ancient phylogenetic lineages, fostered by long-term climatic stability and complex microclimates. Despite numerous studies on southern African vegetation cover, the current state of knowledge about the natural extension of indigenous forests is rather fragmentary. We use an integrated approach of population-level phylogeography and climatic niche modeling of forest-associated chafer species to assess connectivity and extent of forest habitats since the last glacial maximum. Current and past species distribution models ascertained potential fluctuations of forest distribution and supported a much wider potential current extension of forests based on climatic data. Considerable genetic admixture of mitochondrial and nuclear DNA among many populations and an increase in mean population mutation rate in Extended Bayesian Skyline Plots of all species indicated more extended or better connected forests in the recent past (<5 kya). Genetic isolation of certain populations, as revealed by population differentiation statistics (GST'), as well as landscape connectivity statistics and habitat succession scenarios suggests considerable loss of habitat connectivity. As major anthropogenic influence is likely, conservational actions need to be considered. © 2017 John Wiley & Sons Ltd.

  6. Modeling sensitive elasmobranch habitats

    NASA Astrophysics Data System (ADS)

    Pennino, M. Grazia; Muñoz, Facundo; Conesa, David; López-Quílez, Antonio; Bellido, José Marí; a

    2013-10-01

    Basic information on the distribution and habitat preferences of ecologically important species is essential for their management and protection. In the Mediterranean Sea there is increasing concern over elasmobranch species because their biological (ecological) characteristics make them highly vulnerable to fishing pressure. Their removal could affect the structure and function of marine ecosystems, inducing changes in trophic interactions at the community level due to the selective elimination of predators or prey species, competitors and species replacement. In this study Bayesian hierarchical spatial models are used to map the sensitive habitats of the three most caught elasmobranch species (Galeus melastomus, Scyliorhinus canicula, Etmopterus spinax) in the western Mediterranean Sea, based on fishery-dependent bottom trawl data. Results show that habitats associated with hard substrata and sandy beds, mainly in deep waters and with a high seabed gradient, have a greater probability registering the presence of the studied species than those associated with muddy shallow waters. Temperature and chlorophyll-α concentration show a negative relationship with S. canicula occurrence. Our results identify some of the sensitive habitats for elasmobranchs in the western Mediterranean Sea (GSA06 South), providing essential and easy-to-use interpretation tools, such as predictive distribution maps, with the final aim of improving management and conservation of these vulnerable species.

  7. Protection from wintertime rainfall reduces nutrient losses and greenhouse gas emissions during the decomposition of poultry and horse manure-based amendments.

    PubMed

    Maltais-Landry, Gabriel; Neufeld, Katarina; Poon, David; Grant, Nicholas; Nesic, Zoran; Smukler, Sean

    2018-04-01

    Manure-based soil amendments (herein "amendments") are important fertility sources, but differences among amendment types and management can significantly affect their nutrient value and environmental impacts. A 6-month in situ decomposition experiment was conducted to determine how protection from wintertime rainfall affected nutrient losses and greenhouse gas (GHG) emissions in poultry (broiler chicken and turkey) and horse amendments. Changes in total nutrient concentration were measured every 3 months, changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations every month, and GHG emissions of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) every 7-14 days. Poultry amendments maintained higher nutrient concentrations (except for K), higher emissions of CO 2 and N 2 O, and lower CH 4 emissions than horse amendments. Exposing amendments to rainfall increased total N and NH 4 + losses in poultry amendments, P losses in turkey and horse amendments, and K losses and cumulative N 2 O emissions for all amendments. However, it did not affect CO 2 or CH 4 emissions. Overall, rainfall exposure would decrease total N inputs by 37% (horse), 59% (broiler chicken), or 74% (turkey) for a given application rate (wet weight basis) after 6 months of decomposition, with similar losses for NH 4 + (69-96%), P (41-73%), and K (91-97%). This study confirms the benefits of facilities protected from rainfall to reduce nutrient losses and GHG emissions during amendment decomposition. The impact of rainfall protection on nutrient losses and GHG emissions was monitored during the decomposition of broiler chicken, turkey, and horse manure-based soil amendments. Amendments exposed to rainfall had large ammonium and potassium losses, resulting in a 37-74% decrease in N inputs when compared with amendments protected from rainfall. Nitrous oxide emissions were also higher with rainfall exposure, although it had no effect on carbon dioxide and methane emissions

  8. Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems

    NASA Astrophysics Data System (ADS)

    James, W. R.; Nelson, J. A.

    2017-12-01

    Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.

  9. Habitat Evaluation Procedures (HEP) Report : Grand Coulee Dam Mitigation, 1996-1999 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieffer, B.; Singer, Kelly; Abrahamson, Twa-le

    1999-07-01

    The purpose of this Habitat Evaluation Procedures (HEP) study was to determine baseline habitat units and to estimate future habitat units for Bonneville Power Administration (BPA) mitigation projects on the Spokane Indian Reservation. The mitigation between BPA and the Spokane Tribe of Indians (STOI) is for wildlife habitat losses on account of the construction of Grand Coulee Dam. Analysis of the HEP survey data will assist in mitigation crediting and appropriate management of the mitigation lands.

  10. Quantifying suitable habitat of the threatened western prairie fringed orchid

    Treesearch

    Paige M. Wolken; Carolyn Hull Sieg; Stephen E. Williams

    2001-01-01

    Land managers need accurate and quick techniques to identify suitable habitat of species of interest. For species protected by federal or state laws, identification of suitable habitat is critical for developing a conservation strategy that includes reestablishing populations and altering management to address this need. In this research, we quantified vegetative and...

  11. Methods for estimating the amount of vernal pool habitat in the northeastern United States

    USGS Publications Warehouse

    Van Meter, R.; Bailey, L.L.; Grant, E.H.C.

    2008-01-01

    The loss of small, seasonal wetlands is a major concern for a variety of state, local, and federal organizations in the northeastern U.S. Identifying and estimating the number of vernal pools within a given region is critical to developing long-term conservation and management strategies for these unique habitats and their faunal communities. We use three probabilistic sampling methods (simple random sampling, adaptive cluster sampling, and the dual frame method) to estimate the number of vernal pools on protected, forested lands. Overall, these methods yielded similar values of vernal pool abundance for each study area, and suggest that photographic interpretation alone may grossly underestimate the number of vernal pools in forested habitats. We compare the relative efficiency of each method and discuss ways of improving precision. Acknowledging that the objectives of a study or monitoring program ultimately determine which sampling designs are most appropriate, we recommend that some type of probabilistic sampling method be applied. We view the dual-frame method as an especially useful way of combining incomplete remote sensing methods, such as aerial photograph interpretation, with a probabilistic sample of the entire area of interest to provide more robust estimates of the number of vernal pools and a more representative sample of existing vernal pool habitats.

  12. Habitat Effects on the Breeding Performance of Three Forest-Dwelling Hawks.

    PubMed

    Björklund, Heidi; Valkama, Jari; Tomppo, Erkki; Laaksonen, Toni

    2015-01-01

    Habitat loss causes population declines, but the mechanisms are rarely known. In the European Boreal Zone, loss of old forest due to intensive forestry is suspected to cause declines in forest-dwelling raptors by reducing their breeding performance. We studied the boreal breeding habitat and habitat-associated breeding performance of the northern goshawk (Accipiter gentilis), common buzzard (Buteo buteo) and European honey buzzard (Pernis apivorus). We combined long-term Finnish bird-of-prey data with multi-source national forest inventory data at various distances (100-4000 m) around the hawk nests. We found that breeding success of the goshawk was best explained by the habitat within a 2000-m radius around the nests; breeding was more successful with increasing proportions of old spruce forest and water, and decreasing proportions of young thinning forest. None of the habitat variables affected significantly the breeding success of the common buzzard or the honey buzzard, or the brood size of any of the species. The amount of old spruce forest decreased both around goshawk and common buzzard nests and throughout southern Finland in 1992-2010. In contrast, the area of young forest increased in southern Finland but not around hawk nests. We emphasize the importance of studying habitats at several spatial and temporal scales to determine the relevant species-specific scale and to detect environmental changes. Further effort is needed to reconcile the socioeconomic and ecological functions of forests and habitat requirements of old forest specialists.

  13. 75 FR 42489 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Limnanthes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... increase species' richness and native plant cover in this edge habitat. In a grazing report prepared for... Lomatium cookii. Excluding overlapping critical habitat units for the two species, a total of approximately... of mining activities can result in direct habitat loss for the species and limit recovery. Indirect...

  14. Endangered Species Protection Bulletins

    EPA Pesticide Factsheets

    Endangered Species Protection Bulletins set forth geographically specific pesticide use limitations for the protection of threatened and endangered (listed) species and their designated critical habitat. Find out how to get and use Bulletins.

  15. Influences of scale on bat habitat relationships in a forested landscape in Nicaragua

    Treesearch

    Carol L. Chambers; Samuel A. Cushman; Arnulfo Medina-Fitoria; Jose Martinez-Fonseca; Marlon Chavez-Velasquez

    2016-01-01

    Scale dependence of bat habitat selection is poorly known with few studies evaluating relationships among landscape metrics such as class versus landscape, or metrics that measure composition or configuration. This knowledge can inform conservation approaches to mitigate habitat loss and fragmentation.

  16. John Day River Sub-Basin Fish Habitat Enhancement Project; 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Russ M.; Alley, Pamela D.; Goin Jr, Lonnie

    Work undertaken in 2008 included: (1) Seven new fence projects were completed thereby protecting approximately 10.97 miles of streams with 16.34 miles of riparian fence; (2) Renewal of one expired lease was completed thereby continuing to protect 0.75 miles of stream with 1.0 mile of riparian fence. (3) Maintenance of all active project fences (106.54 miles), watergaps (78), spring developments (33) were checked and repairs performed; (3) Planted 1000 willow/red osier on Fox Creek/Henslee property; (4) Planted 2000 willows/red osier on Middle Fork John Day River/Coleman property; (5) Planted 1000 willow/red osier cuttings on Fox Creek/Johns property; (6) Since themore » initiation of the Fish Habitat Project in 1984 we have 126.86 miles of stream protected using 211.72 miles of fence protecting 5658 acres. The purpose of the John Day Fish Habitat Enhancement Program is to enhance production of indigenous wild stocks of spring Chinook and summer steelhead within the sub basin through habitat protection, enhancement and fish passage improvement. The John Day River system supports the largest remaining wild runs of spring chinook salmon and summer steelhead in Northeast Oregon.« less

  17. Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century

    PubMed Central

    Stern, Harry; Kovacs, Kit M.; Lowry, Lloyd; Moore, Sue E.; Regehr, Eric V.; Ferguson, Steven H.; Wiig, Øystein; Boveng, Peter; Angliss, Robyn P.; Born, Erik W.; Litovka, Dennis; Quakenbush, Lori; Lydersen, Christian; Vongraven, Dag; Ugarte, Fernando

    2015-01-01

    Abstract Arctic marine mammals (AMMs) are icons of climate change, largely because of their close association with sea ice. However, neither a circumpolar assessment of AMM status nor a standardized metric of sea ice habitat change is available. We summarized available data on abundance and trend for each AMM species and recognized subpopulation. We also examined species diversity, the extent of human use, and temporal trends in sea ice habitat for 12 regions of the Arctic by calculating the dates of spring sea ice retreat and fall sea ice advance from satellite data (1979–2013). Estimates of AMM abundance varied greatly in quality, and few studies were long enough for trend analysis. Of the AMM subpopulations, 78% (61 of 78) are legally harvested for subsistence purposes. Changes in sea ice phenology have been profound. In all regions except the Bering Sea, the duration of the summer (i.e., reduced ice) period increased by 5–10 weeks and by >20 weeks in the Barents Sea between 1979 and 2013. In light of generally poor data, the importance of human use, and forecasted environmental changes in the 21st century, we recommend the following for effective AMM conservation: maintain and improve comanagement by local, federal, and international partners; recognize spatial and temporal variability in AMM subpopulation response to climate change; implement monitoring programs with clear goals; mitigate cumulative impacts of increased human activity; and recognize the limits of current protected species legislation. PMID:25783745

  18. Habitat destruction and the extinction debt revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loehle, C.

    1996-02-01

    A very important analysis of the problem of habitat destruction concluded that such destruction may lead to an extinction debt, which is the irreversible loss of species following a prolonged transient or delay. An error in interpretation of this model led the authors to apply the results to all types of habitat destruction, but in fact the model applies only to an across-the-board decrease in fecundity, not to disturbances. For repeated, spatially random disturbance, a different model applies. For habitat destruction on regional scales (reduction in ecosystem area without disturbance in remnant areas), one must, in contrast, apply species-area relationsmore » based on the distribution of different habitat types (e.g., elevational and rainfall gradients, physiographic and edaphic variability). The error in interpretation of the basic model is presented, followed by clarification of model usage and development of a new model that applies to disturbance events.« less

  19. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    NASA Astrophysics Data System (ADS)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access

  20. Null expectations for disease dynamics in shrinking habitat: dilution or amplification?

    PubMed Central

    McCallum, Hamish I.; Gillespie, Thomas R.

    2017-01-01

    As biodiversity declines with anthropogenic land-use change, it is increasingly important to understand how changing biodiversity affects infectious disease risk. The dilution effect hypothesis, which points to decreases in biodiversity as critical to an increase in infection risk, has received considerable attention due to the allure of a win–win scenario for conservation and human well-being. Yet some empirical data suggest that the dilution effect is not a generalizable phenomenon. We explore the response of pathogen transmission dynamics to changes in biodiversity that are driven by habitat loss using an allometrically scaled multi-host model. With this model, we show that declining habitat, and thus declining biodiversity, can lead to either increasing or decreasing infectious-disease risk, measured as endemic prevalence. Whether larger habitats, and thus greater biodiversity, lead to a decrease (dilution effect) or increase (amplification effect) in infection prevalence depends upon the pathogen transmission mode and how host competence scales with body size. Dilution effects were detected for most frequency-transmitted pathogens and amplification effects were detected for density-dependent pathogens. Amplification effects were also observed over a particular range of habitat loss in frequency-dependent pathogens when we assumed that host competence was greatest in large-bodied species. By contrast, only amplification effects were observed for density-dependent pathogens; host competency only affected the magnitude of the effect. These models can be used to guide future empirical studies of biodiversity–disease relationships across gradients of habitat loss. The type of transmission, the relationship between host competence and community assembly, the identity of hosts contributing to transmission, and how transmission scales with area are essential factors to consider when elucidating the mechanisms driving disease risk in shrinking habitat. This article

  1. Null expectations for disease dynamics in shrinking habitat: dilution or amplification?

    PubMed

    Faust, Christina L; Dobson, Andrew P; Gottdenker, Nicole; Bloomfield, Laura S P; McCallum, Hamish I; Gillespie, Thomas R; Diuk-Wasser, Maria; Plowright, Raina K

    2017-06-05

    As biodiversity declines with anthropogenic land-use change, it is increasingly important to understand how changing biodiversity affects infectious disease risk. The dilution effect hypothesis, which points to decreases in biodiversity as critical to an increase in infection risk, has received considerable attention due to the allure of a win-win scenario for conservation and human well-being. Yet some empirical data suggest that the dilution effect is not a generalizable phenomenon. We explore the response of pathogen transmission dynamics to changes in biodiversity that are driven by habitat loss using an allometrically scaled multi-host model. With this model, we show that declining habitat, and thus declining biodiversity, can lead to either increasing or decreasing infectious-disease risk, measured as endemic prevalence. Whether larger habitats, and thus greater biodiversity, lead to a decrease (dilution effect) or increase (amplification effect) in infection prevalence depends upon the pathogen transmission mode and how host competence scales with body size. Dilution effects were detected for most frequency-transmitted pathogens and amplification effects were detected for density-dependent pathogens. Amplification effects were also observed over a particular range of habitat loss in frequency-dependent pathogens when we assumed that host competence was greatest in large-bodied species. By contrast, only amplification effects were observed for density-dependent pathogens; host competency only affected the magnitude of the effect. These models can be used to guide future empirical studies of biodiversity-disease relationships across gradients of habitat loss. The type of transmission, the relationship between host competence and community assembly, the identity of hosts contributing to transmission, and how transmission scales with area are essential factors to consider when elucidating the mechanisms driving disease risk in shrinking habitat.This article is

  2. Adaptation to Ephemeral Habitat May Overcome Natural Barriers and Severe Habitat Fragmentation in a Fire-Dependent Species, the Bachman's Sparrow (Peucaea aestivalis)

    PubMed Central

    Cerame, Blain; Cox, James A.; Brumfield, Robb T.; Tucker, James W.; Taylor, Sabrina S.

    2014-01-01

    Bachman's Sparrow (Peucaea aestivalis) is a fire-dependent species that has undergone range-wide population declines in recent decades. We examined genetic diversity in Bachman's Sparrows to determine whether natural barriers have led to distinct population units and to assess the effect of anthropogenic habitat loss and fragmentation. Genetic diversity was examined across the geographic range by genotyping 226 individuals at 18 microsatellite loci and sequencing 48 individuals at mitochondrial and nuclear genes. Multiple analyses consistently demonstrated little genetic structure and high levels of genetic variation, suggesting that populations are panmictic. Based on these genetic data, separate management units/subspecies designations or translocations to promote gene flow among fragmented populations do not appear to be necessary. Panmixia in Bachman's Sparrow may be a consequence of an historical range expansion and retraction. Alternatively, high vagility in Bachman's Sparrow may be an adaptation to the ephemeral, fire-mediated habitat that this species prefers. In recent times, high vagility also appears to have offset inbreeding and loss of genetic diversity in highly fragmented habitat. PMID:25180939

  3. Consequences of severe habitat fragmentation on density, genetics, and spatial capture-recapture analysis of a small bear population

    PubMed Central

    Guthrie, Joseph M.; Scheick, Brian K.; McCown, J. Walter; Cox, John J.

    2017-01-01

    Loss and fragmentation of natural habitats caused by human land uses have subdivided several formerly contiguous large carnivore populations into multiple small and often isolated subpopulations, which can reduce genetic variation and lead to precipitous population declines. Substantial habitat loss and fragmentation from urban development and agriculture expansion relegated the Highlands-Glades subpopulation (HGS) of Florida, USA, black bears (Ursus americanus floridanus) to prolonged isolation; increasing human land development is projected to cause ≥ 50% loss of remaining natural habitats occupied by the HGS in coming decades. We conducted a noninvasive genetic spatial capture-recapture study to quantitatively describe the degree of contemporary habitat fragmentation and investigate the consequences of habitat fragmentation on population density and genetics of the HGS. Remaining natural habitats sustaining the HGS were significantly more fragmented and patchier than those supporting Florida’s largest black bear subpopulation. Genetic diversity was low (AR = 3.57; HE = 0.49) and effective population size was small (NE = 25 bears), both of which remained unchanged over a period spanning one bear generation despite evidence of some immigration. Subpopulation density (0.054 bear/km2) was among the lowest reported for black bears, was significantly female-biased, and corresponded to a subpopulation size of 98 bears in available habitat. Conserving remaining natural habitats in the area occupied by the small, genetically depauperate HGS, possibly through conservation easements and government land acquisition, is likely the most important immediate step to ensuring continued persistence of bears in this area. Our study also provides evidence that preferentially placing detectors (e.g., hair traps or cameras) primarily in quality habitat across fragmented landscapes poses a challenge to estimating density-habitat covariate relationships using spatial capture

  4. Optimal Conservation Outcomes Require Both Restoration and Protection

    PubMed Central

    Possingham, Hugh P.; Bode, Michael; Klein, Carissa J.

    2015-01-01

    Conservation outcomes are principally achieved through the protection of intact habitat or the restoration of degraded habitat. Restoration is generally considered a lower priority action than protection because protection is thought to provide superior outcomes, at lower costs, without the time delay required for restoration. Yet while it is broadly accepted that protected intact habitat safeguards more biodiversity and generates greater ecosystem services per unit area than restored habitat, conservation lacks a theory that can coherently compare the relative outcomes of the two actions. We use a dynamic landscape model to integrate these two actions into a unified conservation theory of protection and restoration. Using nonlinear benefit functions, we show that both actions are crucial components of a conservation strategy that seeks to optimise either biodiversity conservation or ecosystem services provision. In contrast to conservation orthodoxy, in some circumstances, restoration should be strongly preferred to protection. The relative priority of protection and restoration depends on their costs and also on the different time lags that are inherent to both protection and restoration. We derive a simple and easy-to-interpret heuristic that integrates these factors into a single equation that applies equally to biodiversity conservation and ecosystem service objectives. We use two examples to illustrate the theory: bird conservation in tropical rainforests and coastal defence provided by mangrove forests. PMID:25625277

  5. Optimal conservation outcomes require both restoration and protection.

    PubMed

    Possingham, Hugh P; Bode, Michael; Klein, Carissa J

    2015-01-01

    Conservation outcomes are principally achieved through the protection of intact habitat or the restoration of degraded habitat. Restoration is generally considered a lower priority action than protection because protection is thought to provide superior outcomes, at lower costs, without the time delay required for restoration. Yet while it is broadly accepted that protected intact habitat safeguards more biodiversity and generates greater ecosystem services per unit area than restored habitat, conservation lacks a theory that can coherently compare the relative outcomes of the two actions. We use a dynamic landscape model to integrate these two actions into a unified conservation theory of protection and restoration. Using nonlinear benefit functions, we show that both actions are crucial components of a conservation strategy that seeks to optimise either biodiversity conservation or ecosystem services provision. In contrast to conservation orthodoxy, in some circumstances, restoration should be strongly preferred to protection. The relative priority of protection and restoration depends on their costs and also on the different time lags that are inherent to both protection and restoration. We derive a simple and easy-to-interpret heuristic that integrates these factors into a single equation that applies equally to biodiversity conservation and ecosystem service objectives. We use two examples to illustrate the theory: bird conservation in tropical rainforests and coastal defence provided by mangrove forests.

  6. Making habitat connectivity a reality.

    PubMed

    Keeley, Annika T H; Basson, Galli; Cameron, D Richard; Heller, Nicole E; Huber, Patrick R; Schloss, Carrie A; Thorne, James H; Merenlender, Adina M

    2018-06-19

    For over 40 years, habitat corridors have been a solution for sustaining wildlife in fragmented landscapes, and now are often suggested as a climate adaptation strategy. However, while a plethora of connectivity plans exist, protecting and restoring habitat connectivity through on-the-ground action has been slow. We identified implementation challenges and opportunities through a literature review of project implementation, a science-practice workshop, and interviews with conservation professionals. Our research indicates that connectivity challenges and solutions tend to be context-specific, dependent on land ownership patterns, socioeconomic factors, and the policy framework. We found evidence that developing and promoting a common vision shared by a diverse set of stakeholders including nontraditional conservation actors, such as water districts and recreation departments, and through communication among and between partners and the public is key to successful implementation. Other factors that lead to successful implementation include undertaking empirical studies to prioritize and validate corridors and the identification of related co-benefits of corridor projects. Engaging partners involved in land management and planning, such as non-governmental conservation organizations, public agencies, and private landowners is critical to effective strategy implementation. A clear regulatory framework including unambiguous connectivity conservation mandates would increase public resource allocation, and incentive programs are needed to promote private sector engagement. We argue that connectivity conservation must more rapidly move from planning to implementation and provide an evidence-based solution made up of key elements for successful on-the-ground connectivity implementation. The components of this new framework constitute the social processes necessary to advance habitat connectivity for biodiversity conservation and resilient landscapes under climate change

  7. Incorporating Conservation Zone Effectiveness for Protecting Biodiversity in Marine Planning

    PubMed Central

    Makino, Azusa; Klein, Carissa J.; Beger, Maria; Jupiter, Stacy D.; Possingham, Hugh P.

    2013-01-01

    Establishing different types of conservation zones is becoming commonplace. However, spatial prioritization methods that can accommodate multiple zones are poorly understood in theory and application. It is typically assumed that management regulations across zones have differential levels of effectiveness (“zone effectiveness”) for biodiversity protection, but the influence of zone effectiveness on achieving conservation targets has not yet been explored. Here, we consider the zone effectiveness of three zones: permanent closure, partial protection, and open, for planning for the protection of five different marine habitats in the Vatu-i-Ra Seascape, Fiji. We explore the impact of differential zone effectiveness on the location and costs of conservation priorities. We assume that permanent closure zones are fully effective at protecting all habitats, open zones do not contribute towards the conservation targets and partial protection zones lie between these two extremes. We use four different estimates for zone effectiveness and three different estimates for zone cost of the partial protection zone. To enhance the practical utility of the approach, we also explore how much of each traditional fishing ground can remain open for fishing while still achieving conservation targets. Our results show that all of the high priority areas for permanent closure zones would not be a high priority when the zone effectiveness of the partial protection zone is equal to that of permanent closure zones. When differential zone effectiveness and costs are considered, the resulting marine protected area network consequently increases in size, with more area allocated to permanent closure zones to meet conservation targets. By distributing the loss of fishing opportunity equitably among local communities, we find that 84–88% of each traditional fishing ground can be left open while still meeting conservation targets. Finally, we summarize the steps for developing marine zoning

  8. Models of regional habitat quality and connectivity for pumas (Puma concolor) in the southwestern United States.

    PubMed

    Dickson, Brett G; Roemer, Gary W; McRae, Brad H; Rundall, Jill M

    2013-01-01

    The impact of landscape changes on the quality and connectivity of habitats for multiple wildlife species is of global conservation concern. In the southwestern United States, pumas (Puma concolor) are a well distributed and wide-ranging large carnivore that are sensitive to loss of habitat and to the disruption of pathways that connect their populations. We used an expert-based approach to define and derive variables hypothesized to influence the quality, location, and permeability of habitat for pumas within an area encompassing the entire states of Arizona and New Mexico. Survey results indicated that the presence of woodland and forest cover types, rugged terrain, and canyon bottom and ridgeline topography were expected to be important predictors of both high quality habitat and heightened permeability. As road density, distance to water, or human population density increased, the quality and permeability of habitats were predicted to decline. Using these results, we identified 67 high quality patches across the study area, and applied concepts from electronic circuit theory to estimate regional patterns of connectivity among these patches. Maps of current flow among individual pairs of patches highlighted possible pinch points along two major interstate highways. Current flow summed across all pairs of patches highlighted areas important for keeping the entire network connected, regardless of patch size. Cumulative current flow was highest in Arizona north of the Colorado River and around Grand Canyon National Park, and in the Sky Islands region owing to the many small habitat patches present. Our outputs present a first approximation of habitat quality and connectivity for dispersing pumas in the southwestern United States. Map results can be used to help target finer-scaled analyses in support of planning efforts concerned with the maintenance of puma metapopulation structure, as well as the protection of landscape features that facilitate the dispersal

  9. Models of Regional Habitat Quality and Connectivity for Pumas (Puma concolor) in the Southwestern United States

    PubMed Central

    Dickson, Brett G.; Roemer, Gary W.; McRae, Brad H.; Rundall, Jill M.

    2013-01-01

    The impact of landscape changes on the quality and connectivity of habitats for multiple wildlife species is of global conservation concern. In the southwestern United States, pumas (Puma concolor) are a well distributed and wide-ranging large carnivore that are sensitive to loss of habitat and to the disruption of pathways that connect their populations. We used an expert-based approach to define and derive variables hypothesized to influence the quality, location, and permeability of habitat for pumas within an area encompassing the entire states of Arizona and New Mexico. Survey results indicated that the presence of woodland and forest cover types, rugged terrain, and canyon bottom and ridgeline topography were expected to be important predictors of both high quality habitat and heightened permeability. As road density, distance to water, or human population density increased, the quality and permeability of habitats were predicted to decline. Using these results, we identified 67 high quality patches across the study area, and applied concepts from electronic circuit theory to estimate regional patterns of connectivity among these patches. Maps of current flow among individual pairs of patches highlighted possible pinch points along two major interstate highways. Current flow summed across all pairs of patches highlighted areas important for keeping the entire network connected, regardless of patch size. Cumulative current flow was highest in Arizona north of the Colorado River and around Grand Canyon National Park, and in the Sky Islands region owing to the many small habitat patches present. Our outputs present a first approximation of habitat quality and connectivity for dispersing pumas in the southwestern United States. Map results can be used to help target finer-scaled analyses in support of planning efforts concerned with the maintenance of puma metapopulation structure, as well as the protection of landscape features that facilitate the dispersal

  10. Partitioning mechanisms of predator interference in different habitats.

    PubMed

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.

  11. Critical Beach Habitat for Hawaiian Green Sea Turtle Endangered Before Mid-Century

    NASA Astrophysics Data System (ADS)

    Burstein, J. T.; Fletcher, C. H., III; Dominique Tavares, K.

    2017-12-01

    Many Hawaiian beaches provide critical habitat for the Hawaiian Green Sea Turtle (Chelonia Mydas). However, sea level rise drives beaches and dunes to migrate landward where they may encounter roads and other types of developed lands. Where developed lands are threatened by coastal erosion, defined as a distance of 20 ft (6.1 m) by state rules, property owners are eligible to apply for an emergency permit. These have historically led to coastal armoring. Seawalls and revetments on chronically receding shorelines cause permanent beach loss by restricting sand supply to the beach in front of the sea wall, as well as to beaches adjacent to the restrictive structure (flanking). This study focuses on four primary beach habitats along the North Shore of Oahu, Hawai'i: Waimea, Haleiwa, Kawailoa, and Mokuleia. We utilize GIS techniques to apply spatial analysis of nesting and basking locations collected from the National Oceanic Atmospheric Administration (NOAA). We then estimate the number of homes and the length of shoreline threatened by coastal armoring for 0 m, 0.17 m, 0.32 m, 0.60 m, and 0.98 m of sea-level rise. We demonstrate that 0.17 m of sea level rise impacts 31% of all beach front homes, and 4.6 km of shoreline, or 21% of the total shoreline. An increase to 0.32 m of sea level rise impacts 42% of all beach front homes, and 5.8 km of shoreline, or 31% of the total shoreline. The upper bound of the most recent sea level rise projection by the International Panel on Climate Change (IPCC RCP 8.5) affirms that 0.17 m of sea level rise may be reached by 2030, and 0.32 m by 2050. This sea level projection is a "worst-case" under IPCC-AR5, however, Sweet et al. (2017) depicts this as an "Intermediate" scenario on the basis of faster than expected mass loss by Greenland and Antarctica ice sheets, and rapid heat uptake and thermal expansion by the world's oceans. We conclude that the impacts of sea level rise and reactive coastal armoring currently endanger critical

  12. The effect of habitat patch size on small mammal populations

    Treesearch

    Mark D. Yates; Susan C. Loeb; David C. Guynn

    1997-01-01

    Habitat fragmentation is one of the greatest threats to the conservation of bio­diversity and has 3 components: habitat loss, patch isolation, and patch size. The authors tested the effects of forest-clearing size on small mammal populations in the Upper Coastal Plain of South Carolina. These clearings act as islands for many species of small mam­mals, particularly old...

  13. A functional cutin matrix is required for plant protection against water loss

    PubMed Central

    Ma, Jian Feng; Li, Chao; Yamaji, Naoki; Nevo, Eviatar

    2011-01-01

    The plant cuticle, a cutin matrix embedded with and covered by wax, seals the aerial organ's surface to protect the plant against uncontrolled water loss. The cutin matrix is essential for the cuticle to function as a barrier to water loss. Recently, we identified from wild barley a drought supersensitive mutant, eibi1, which is caused by a defective cutin matrix as the result of the loss of function of HvABCG31, an ABCG full transporter. Here, we report that eibi1 epidermal cells contain lipid-like droplets, which are supposed to consist of cutin monomers that have not been transported out of the cells. The eibi1 cuticle is fragile due to a defective cutin matrix. The rice ortholog of the EIBI1 gene has a similar pattern of expression, young shoot but not flag leaf blade, as the barley gene. The model of the function of Eibi1 is discussed. The HvABCG31 full transporter functions in the export of cutin components and contributed to land plant colonization, hence also to terrestrial life evolution. PMID:22019635

  14. A functional cutin matrix is required for plant protection against water loss.

    PubMed

    Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Li, Chao; Yamaji, Naoki; Nevo, Eviatar

    2011-09-01

    The plant cuticle, a cutin matrix embedded with and covered by wax, seals the aerial organ's surface to protect the plant against uncontrolled water loss. The cutin matrix is essential for the cuticle to function as a barrier to water loss. Recently, we identified from wild barley a drought supersensitive mutant, eibi1, which is caused by a defective cutin matrix as the result of the loss of function of HvABCG31, an ABCG full transporter. Here, we report that eibi1 epidermal cells contain lipid-like droplets, which are supposed to consist of cutin monomers that have not been transported out of the cells. The eibi1 cuticle is fragile due to a defective cutin matrix. The rice ortholog of the EIBI1 gene has a similar pattern of expression, young shoot but not flag leaf blade, as the barley gene. The model of the function of Eibi1 is discussed. The HvABCG31 full transporter functions in the export of cutin components and contributed to land plant colonization, hence also to terrestrial life evolution.

  15. Availability, usage and expected contribution of potential nursery habitats for the California halibut

    NASA Astrophysics Data System (ADS)

    Fodrie, F. Joel; Mendoza, Guillermo

    2006-06-01

    Coastal ecosystems have been identified as important nursery habitats for many of the world's fishery species. Beyond this, there remain many questions about what exactly constitutes high-value, even critical, habitat for juvenile fish. A first step in investigating nursery habitat value should be to catalogue the spatial coverage (availability) of all potential nursery habitats as well as the distribution (usage) of juvenile fish within those habitats. We conducted two years of fall surveys in the nearshore areas of San Diego County, CA, examining the spatial distribution of 0-group California halibut, Paralichthys californicus. The database generated by 527 otter trawls and block-net seine collections was used to produce a series of models employing regression trees to study the abiotic factors (water column and bottom features) that affect juvenile distributions. Along the exposed coast, highest 0-group densities (0.002-0.008 individuals/m 2 (indiv/m 2)) occurred where temperatures exceeded 21.5 °C (2003), and at depths between 3.3 and 5.2 m (2004). Within protected embayments, densities were higher at depths less than 1.5 m (0.054-0.430 indiv/m 2) and, in 2004, inside channeled marsh estuaries (0.156 indiv/m 2). The spatial coverage of potential nursery habitats was calculated using a Geographic Information System (GIS) database, and the total number of resident 0-group halibut within each site was estimated (habitat area × juvenile halibut density) as a proxy for expected contribution of halibut advancing to the adult stock from each nursery. Although 85% of the potential nursery habitat area occurred along the exposed coastline, 69% (2003) to 58% (2004) of 0-group halibut resided in protected embayments. Embayment contribution is much greater in the southern half of the study region, largely due to Mission and San Diego bays. We conclude that all nursery habitat types demonstrate the potential to contribute significantly to stock fitness, and that in

  16. Sage-grouse habitat restoration symposium proceedings

    Treesearch

    Nancy L. Shaw; Mike Pellant; Stephen B. Monsen

    2005-01-01

    Declines in habitat of greater sage-grouse and Gunnison sage-grouse across the western United States are related to degradation, loss, and fragmentation of sagebrush ecosystems resulting from development of agricultural lands, grazing practices, changes in wildfire regimes, increased spread of invasive species, gas and oil development, and other human impacts. These...

  17. Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands.

    PubMed

    Ockinger, Erik; Smith, Henrik G

    2006-09-01

    During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6-10 ha) and one small (0.5-2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km(2) landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at

  18. Detailed seafloor habitat mapping to enhance marine-resource management

    USGS Publications Warehouse

    Zawada, David G.; Hart, Kristen M.

    2010-01-01

    Pictures of the seafloor capture important information about the sediments, exposed geologic features, submerged aquatic vegetation, and animals found in a given habitat. With the emergence of marine protected areas (MPAs) as a favored tactic for preserving coral reef resources, knowledge of essential habitat components is paramount to designing effective management strategies. Surprisingly, detailed information on seafloor habitat components is not available in many areas that are being considered for MPA designation or that are already designated as MPAs. A task of the U.S. Geological Survey Coral Reef Ecosystem STudies (USGS CREST) project is addressing this issue.

  19. Road to the Future: Strategies for Wildlife Crossings and Youth Empowerment to Improve Wildlife Habitat in Roaded Landscapes

    ERIC Educational Resources Information Center

    Tanner, Dawn Renee

    2010-01-01

    As the footprint of human society expands upon the earth, habitat loss and landscape fragmentation is an increasing global problem. That problem includes loss of native habitats as these areas are harvested, converted to agricultural crops, and occupied by human settlement. Roads increase human access to previously inaccessible areas, encourage…

  20. Habitat geology studies on and near Georges Bank, off New England

    USGS Publications Warehouse

    Valentine, P.C.

    2001-01-01

    Marine habitat geology is the study of the distribution of geologic materials that form the seabed, the geologic processes (such as sediment movement and deposition) that affect the seabed, and the interplay of geologic factors and species behavior that gives rise to biological habitats in general and to specific habitats deemed essential to the success of a particular species (essential fish habitats, EFH's). Georges Bank was once the premier East Coast fishing ground for groundfish and scallops. The decline of groundfish species due to overfishing contributed to the increasingly restrictive management of fish stocks and a need to identify and protect EFH's.

  1. Effects of Climate Change on Habitat Availability and Configuration for an Endemic Coastal Alpine Bird

    PubMed Central

    Jackson, Michelle M.; Gergel, Sarah E.; Martin, Kathy

    2015-01-01

    North America’s coastal mountains are particularly vulnerable to climate change, yet harbour a number of endemic species. With little room “at the top” to track shifting climate envelopes, alpine species may be especially negatively affected by climate-induced habitat fragmentation. We ask how climate change will affect the total amount, mean patch size, and number of patches of suitable habitat for Vancouver Island White-tailed Ptarmigan (Lagopus leucura saxatilis; VIWTP), a threatened, endemic alpine bird. Using a Random Forest model and a unique dataset consisting of citizen science observations combined with field surveys, we predict the distribution and configuration of potential suitable summer habitat for VIWTP under baseline and future (2020s, 2050s, and 2080s) climates using three general circulation models and two greenhouse gas scenarios. VIWTP summer habitat is predicted to decline by an average of 25%, 44%, and 56% by the 2020s, 2050s, and 2080s, respectively, under the low greenhouse gas scenario and 27%, 59%, and 74% under the high scenario. Habitat patches are predicted to become fragmented, with a 52–79% reduction in mean patch size. The average elevation of suitable habitat patches is expected to increase, reflecting a loss of patches at lower elevations. Thus ptarmigan are in danger of being “squeezed off the mountain”, as their remaining suitable habitat will be increasingly confined to mountaintops in the center of the island. The extent to which ptarmigan will be able to persist in increasingly fragmented habitat is unclear. Much will depend on their ability to move throughout a more heterogeneous landscape, utilize smaller breeding areas, and survive increasingly variable climate extremes. Our results emphasize the importance of continued monitoring and protection for high elevation specialist species, and suggest that White-tailed Ptarmigan should be considered an indicator species for alpine ecosystems in the face of climate

  2. When sources become sinks: migrational meltdown in heterogeneous habitats.

    PubMed

    Ronce, O; Kirkpatrick, M

    2001-08-01

    We consider the evolution of ecological specialization in a landscape with two discrete habitat types connected by migration, for example, a plant-insect system with two plant hosts. Using a quantitative genetic approach. we study the joint evolution of a quantitative character determining performance in each habitat together with the changes in the population density. We find that specialization on a single habitat evolves with intermediate migration rates, whereas a generalist species evolves with both very low and very large rates of movement between habitats. There is a threshold at which a small increase in the connectivity of the two habitats will result in dramatic decrease in the total population size and the nearly complete loss of use of one of the two habitats through a process of "migrational meltdown." In some situations, equilibria corresponding to a specialist and a generalist species are simultaneously stable. Analysis of our model also shows cases of hysteresis in which small transient changes in the landscape structure or accidental demographic disturbances have irreversible effects on the evolution of specialization.

  3. Patterns of tsetse abundance and trypanosome infection rates among habitats of surveyed villages in Maasai steppe of northern Tanzania.

    PubMed

    Ngonyoka, Anibariki; Gwakisa, Paul S; Estes, Anna B; Salekwa, Linda P; Nnko, Happiness J; Hudson, Peter J; Cattadori, Isabella M

    2017-09-04

    Changes of land cover modify the characteristics of habitat, host-vector interaction and consequently infection rates of disease causing agents. In this paper, we report variations in tsetse distribution patterns, abundance and infection rates in relation to habitat types and age in the Maasai Steppe of northern Tanzania. In Africa, Tsetse-transmitted trypanosomiasis negatively impacted human life where about 40 million people are at risk of contracting the disease with dramatic socio-economical consequences, for instance, loss of livestock, animal productivity, and manpower. We trapped tsetse flies in dry and wet seasons between October 2014 and May 2015 in selected habitats across four villages: Emboreet, Loiborsireet, Kimotorok and Oltukai adjacent to protected areas. Data collected include number and species of tsetse flies caught in baited traps, PCR identification of trypanosome species and extraction of monitored Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectrometer (MODIS). Our findings demonstrate the variation of tsetse fly species abundance and infection rates among habitats in surveyed villages in relation to NDVI and host abundance. Results have shown higher tsetse fly abundance in Acacia-swampy ecotone and riverine habitats for Emboreet and other villages, respectively. Tsetse abundance was inconsistent among habitats in different villages. Emboreet was highly infested with Glossina swynnertoni (68%) in ecotone and swampy habitats followed by G. morsitans (28%) and G. pallidipes (4%) in riverine habitat. In the remaining villages, the dominant tsetse fly species by 95% was G. pallidipes in all habitats. Trypanosoma vivax was the most prevalent species in all infected flies (95%) with few observations of co-infections (with T. congolense or T. brucei). The findings of this study provide a framework to mapping hotspots of tsetse infestation and trypanosomiasis infection and enhance the communities to plan for

  4. Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change.

    PubMed

    Giannini, Tereza C; Tambosi, Leandro R; Acosta, André L; Jaffé, Rodolfo; Saraiva, Antonio M; Imperatriz-Fonseca, Vera L; Metzger, Jean Paul

    2015-01-01

    Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata), a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC). We then used this information, the bee's flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use schemes. Overall

  5. Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change

    PubMed Central

    Giannini, Tereza C.; Tambosi, Leandro R.; Acosta, André L.; Jaffé, Rodolfo; Saraiva, Antonio M.; Imperatriz-Fonseca, Vera L.; Metzger, Jean Paul

    2015-01-01

    Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata), a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC). We then used this information, the bee’s flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use schemes

  6. Mosquito vector diversity across habitats in central Thailand endemic for dengue and other arthropod-borne diseases.

    PubMed

    Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Kapan, Durrell; Wilcox, Bruce; Bennett, Shannon

    2013-01-01

    Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an

  7. Mosquito Vector Diversity across Habitats in Central Thailand Endemic for Dengue and Other Arthropod-Borne Diseases

    PubMed Central

    Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Kapan, Durrell; Wilcox, Bruce; Bennett, Shannon

    2013-01-01

    Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an

  8. Linking social, ecological, and physical science to advance natural and nature-based protection for coastal communities.

    PubMed

    Arkema, Katie K; Griffin, Robert; Maldonado, Sergio; Silver, Jessica; Suckale, Jenny; Guerry, Anne D

    2017-07-01

    Interest in the role that ecosystems play in reducing the impacts of coastal hazards has grown dramatically. Yet the magnitude and nature of their effects are highly context dependent, making it difficult to know under what conditions coastal habitats, such as saltmarshes, reefs, and forests, are likely to be effective for saving lives and protecting property. We operationalize the concept of natural and nature-based solutions for coastal protection by adopting an ecosystem services framework that propagates the outcome of a management action through ecosystems to societal benefits. We review the literature on the basis of the steps in this framework, considering not only the supply of coastal protection provided by ecosystems but also the demand for protective services from beneficiaries. We recommend further attention to (1) biophysical processes beyond wave attenuation, (2) the combined effects of multiple habitat types (e.g., reefs, vegetation), (3) marginal values and expected damage functions, and, in particular, (4) community dependence on ecosystems for coastal protection and co-benefits. We apply our approach to two case studies to illustrate how estimates of multiple benefits and losses can inform restoration and development decisions. Finally, we discuss frontiers for linking social, ecological, and physical science to advance natural and nature-based solutions to coastal protection. © 2017 New York Academy of Sciences.

  9. Morin hydrate promotes inner ear neural stem cell survival and differentiation and protects cochlea against neuronal hearing loss.

    PubMed

    He, Qiang; Jia, Zhanwei; Zhang, Ying; Ren, Xiumin

    2017-03-01

    We aimed to investigate the effect of morin hydrate on neural stem cells (NSCs) isolated from mouse inner ear and its potential in protecting neuronal hearing loss. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and bromodeoxyuridine incorporation assays were employed to assess the effect of morin hydrate on the viability and proliferation of in vitro NSC culture. The NSCs were then differentiated into neurons, in which neurosphere formation and differentiation were evaluated, followed by neurite outgrowth and neural excitability measurements in the subsequent in vitro neuronal network. Mechanotransduction of cochlea ex vivo culture and auditory brainstem responses threshold and distortion product optoacoustic emissions amplitude in mouse ototoxicity model were also measured following gentamicin treatment to investigate the protective role of morin hydrate against neuronal hearing loss. Morin hydrate improved viability and proliferation, neurosphere formation and neuronal differentiation of inner ear NSCs, and promoted in vitro neuronal network functions. In both ex vivo and in vivo ototoxicity models, morin hydrate prevented gentamicin-induced neuronal hearing loss. Morin hydrate exhibited potent properties in promoting growth and differentiation of inner ear NSCs into functional neurons and protecting from gentamicin ototoxicity. Our study supports its clinical potential in treating neuronal hearing loss. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit Rivers of the Laurentian Great Lakes

    USGS Publications Warehouse

    Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne

    2015-01-01

    Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.

  11. Combined effects of levels of protection and environmental variables at different spatial resolutions on fish assemblages in a marine protected area.

    PubMed

    Claudet, Joachim; García-Charton, José Antonio; Lenfant, Philippe

    2011-02-01

    The links between species-environment relations and species' responses to protection are unclear, but the objectives of marine protected areas (MPAs) are most likely to be achieved when those relations are known and inform MPA design. The components of a species' habitat vary with the spatial resolution of the area considered. We characterized areas at two resolutions: 250 m(2) (transect) and approximately 30,000 m(2) (seascape). We considered three categories of environmental variables: substrate type, bottom complexity, and depth. We sought to determine at which resolution habitat characteristics were a better predictor of abundance and species composition of fishes and whether the relations with environmental variables at either resolution affected species' responses to protection. Habitat features accounted for a larger proportion of spatial variation in species composition and abundances than differences in protection status. This spatial variation was explained best by habitat characteristics at the seascape level than at the transect level. Species' responses to protected areas were specific to particular seascape characteristics, primarily depth, and bottom complexity. Our method may be useful for prioritizing marine areas for protection, designing MPAs, and monitoring their effectiveness. It identified areas that provided natural shelter, areas acting as buffer zones, and areas where fish species were most responsive to protection. The identification of such areas is necessary for cost-effective establishment and monitoring of MPAs. ©2010 Society for Conservation Biology.

  12. Using dynamic population simulations to extend resource selection analyses and prioritize habitats for conservation

    USGS Publications Warehouse

    Heinrichs, Julie; Aldridge, Cameron L.; O'Donnell, Michael; Schumaker, Nathan

    2017-01-01

    Prioritizing habitats for conservation is a challenging task, particularly for species with fluctuating populations and seasonally dynamic habitat needs. Although the use of resource selection models to identify and prioritize habitat for conservation is increasingly common, their ability to characterize important long-term habitats for dynamic populations are variable. To examine how habitats might be prioritized differently if resource selection was directly and dynamically linked with population fluctuations and movement limitations among seasonal habitats, we constructed a spatially explicit individual-based model for a dramatically fluctuating population requiring temporally varying resources. Using greater sage-grouse (Centrocercus urophasianus) in Wyoming as a case study, we used resource selection function maps to guide seasonal movement and habitat selection, but emergent population dynamics and simulated movement limitations modified long-term habitat occupancy. We compared priority habitats in RSF maps to long-term simulated habitat use. We examined the circumstances under which the explicit consideration of movement limitations, in combination with population fluctuations and trends, are likely to alter predictions of important habitats. In doing so, we assessed the future occupancy of protected areas under alternative population and habitat conditions. Habitat prioritizations based on resource selection models alone predicted high use in isolated parcels of habitat and in areas with low connectivity among seasonal habitats. In contrast, results based on more biologically-informed simulations emphasized central and connected areas near high-density populations, sometimes predicted to be low selection value. Dynamic models of habitat use can provide additional biological realism that can extend, and in some cases, contradict habitat use predictions generated from short-term or static resource selection analyses. The explicit inclusion of population

  13. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.

    PubMed

    Flannick, Jason; Thorleifsson, Gudmar; Beer, Nicola L; Jacobs, Suzanne B R; Grarup, Niels; Burtt, Noël P; Mahajan, Anubha; Fuchsberger, Christian; Atzmon, Gil; Benediktsson, Rafn; Blangero, John; Bowden, Don W; Brandslund, Ivan; Brosnan, Julia; Burslem, Frank; Chambers, John; Cho, Yoon Shin; Christensen, Cramer; Douglas, Desirée A; Duggirala, Ravindranath; Dymek, Zachary; Farjoun, Yossi; Fennell, Timothy; Fontanillas, Pierre; Forsén, Tom; Gabriel, Stacey; Glaser, Benjamin; Gudbjartsson, Daniel F; Hanis, Craig; Hansen, Torben; Hreidarsson, Astradur B; Hveem, Kristian; Ingelsson, Erik; Isomaa, Bo; Johansson, Stefan; Jørgensen, Torben; Jørgensen, Marit Eika; Kathiresan, Sekar; Kong, Augustine; Kooner, Jaspal; Kravic, Jasmina; Laakso, Markku; Lee, Jong-Young; Lind, Lars; Lindgren, Cecilia M; Linneberg, Allan; Masson, Gisli; Meitinger, Thomas; Mohlke, Karen L; Molven, Anders; Morris, Andrew P; Potluri, Shobha; Rauramaa, Rainer; Ribel-Madsen, Rasmus; Richard, Ann-Marie; Rolph, Tim; Salomaa, Veikko; Segrè, Ayellet V; Skärstrand, Hanna; Steinthorsdottir, Valgerdur; Stringham, Heather M; Sulem, Patrick; Tai, E Shyong; Teo, Yik Ying; Teslovich, Tanya; Thorsteinsdottir, Unnur; Trimmer, Jeff K; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Vaziri-Sani, Fariba; Voight, Benjamin F; Wilson, James G; Boehnke, Michael; McCarthy, Mark I; Njølstad, Pål R; Pedersen, Oluf; Groop, Leif; Cox, David R; Stefansson, Kari; Altshuler, David

    2014-04-01

    Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ~150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.

  14. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter.

    PubMed

    Huang, Wenjuan; Hall, Steven J

    2017-11-24

    Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C 3 /C 4 plant rotations at moisture levels at and above field capacity over 5 months. Increased moisture and anaerobiosis initially suppress soil C mineralization, consistent with theory. However, after 25 days, elevated moisture stimulates cumulative gaseous C-loss as CO 2 and CH 4 to >150% of the control. Stable C isotopes show that mineralization of older C 3 -derived C released following Fe reduction dominates C losses. Counter to theory, elevated moisture may significantly accelerate C losses from mineral soils over weeks to months-a critical mechanistic deficiency of current Earth system models.

  15. Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century.

    PubMed

    Laidre, Kristin L; Stern, Harry; Kovacs, Kit M; Lowry, Lloyd; Moore, Sue E; Regehr, Eric V; Ferguson, Steven H; Wiig, Øystein; Boveng, Peter; Angliss, Robyn P; Born, Erik W; Litovka, Dennis; Quakenbush, Lori; Lydersen, Christian; Vongraven, Dag; Ugarte, Fernando

    2015-06-01

    Arctic marine mammals (AMMs) are icons of climate change, largely because of their close association with sea ice. However, neither a circumpolar assessment of AMM status nor a standardized metric of sea ice habitat change is available. We summarized available data on abundance and trend for each AMM species and recognized subpopulation. We also examined species diversity, the extent of human use, and temporal trends in sea ice habitat for 12 regions of the Arctic by calculating the dates of spring sea ice retreat and fall sea ice advance from satellite data (1979-2013). Estimates of AMM abundance varied greatly in quality, and few studies were long enough for trend analysis. Of the AMM subpopulations, 78% (61 of 78) are legally harvested for subsistence purposes. Changes in sea ice phenology have been profound. In all regions except the Bering Sea, the duration of the summer (i.e., reduced ice) period increased by 5-10 weeks and by >20 weeks in the Barents Sea between 1979 and 2013. In light of generally poor data, the importance of human use, and forecasted environmental changes in the 21st century, we recommend the following for effective AMM conservation: maintain and improve comanagement by local, federal, and international partners; recognize spatial and temporal variability in AMM subpopulation response to climate change; implement monitoring programs with clear goals; mitigate cumulative impacts of increased human activity; and recognize the limits of current protected species legislation. © 2015 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  16. Mangrove habitats provide refuge from climate change for reef-building corals

    NASA Astrophysics Data System (ADS)

    Yates, K. K.; Rogers, C. S.; Herlan, J. J.; Brooks, G. R.; Smiley, N. A.; Larson, R. A.

    2014-03-01

    Risk analyses indicate that more than 90% of the world's reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under "business as usual" climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. Here we characterize the first natural, non-reef, coral refuge from thermal stress and ocean acidification and identify resiliency factors for mangrove-coral habitats. We measured diurnal and seasonal variations in temperature, salinity, photosynthetically active radiation (PAR), and seawater chemistry; characterized substrate parameters; and examined water circulation patterns in mangrove communities where scleractinian corals are growing attached to and under mangrove prop roots in Hurricane Hole, St. John, US Virgin Islands. Additionally, we inventoried the coral species and quantified incidences of coral bleaching, mortality and recovery for two major reef-building corals, Colpophyllia natans and Diploria labyrinthiformis, growing in mangrove shaded and exposed (unshaded) areas. At least 33 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies was living shaded by mangroves, and no shaded colonies bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies bleached. A combination of substrate and habitat heterogeniety, proximity of different habitat types, hydrographic

  17. Evaluating the long-term management of introduced ungulates to protect the palila, an endangered bird, and its critical habitat in subalpine forest of Mauna Kea, Hawai‘i

    Treesearch

    Paul C. Banko; Steven C. Hess; Paul G. Scowcroft; Chris Farmer; James D. Jacobi; Robert M. Stephens; Richard J. Camp; David L. Leonard; Kevin W. Brinck; J. O. Juvik; S. P. Juvik

    2014-01-01

    Under the multiple-use paradigm, conflicts may arise when protection of an endangered species must compete with other management objectives. To resolve such a conflict in the Critical Habitat of the endangered Hawaiian honeycreeper, palila (Loxioides bailleui), federal courts ordered the eradication of introduced ungulates responsible for damaging...

  18. Home-range use patterns and movements of the Siberian flying squirrel in urban forests: Effects of habitat composition and connectivity.

    PubMed

    Mäkeläinen, Sanna; de Knegt, Henrik J; Ovaskainen, Otso; Hanski, Ilpo K

    2016-01-01

    Urbanization causes modification, fragmentation and loss of native habitats. Such landscape changes threaten many arboreal and gliding mammals by limiting their movements through treeless parts of a landscape and by making the landscape surrounding suitable habitat patches more inhospitable. Here, we investigate the effects of landscape structure and habitat availability on the home-range use and movement patterns of the Siberian flying squirrel (Pteromys volans) at different spatial and temporal scales. We followed radio-tagged individuals in a partly urbanized study area in Eastern Finland, and analysed how landscape composition and connectivity affected the length and speed of movement bursts, distances moved during one night, and habitat and nest-site use. The presence of urban habitat on movement paths increased both movement lengths and speed whereas nightly distances travelled by males decreased with increasing amount of urban habitat within the home range. The probability of switching from the present nest site to another nest site decreased with increasing distance among the nest sites, but whether the nest sites were connected or unconnected by forests did not have a clear effect on nest switching. Flying squirrels preferred to use mature forests for their movements at night. Our results suggest that the proximity to urban habitats modifies animal movements, possibly because animals try to avoid such habitats by moving faster through them. Urbanization at the scale of an entire home range can restrict their movements. Thus, maintaining a large enough amount of mature forests around inhabited landscape fragments will help protect forest specialists in urban landscapes. The effect of forested connections remains unclear, highlighting the difficulty of measuring and preserving connectivity in a species-specific way.

  19. Commonality between Reduced Gravity and Microgravity Habitats for Long Duration Missions

    NASA Technical Reports Server (NTRS)

    Howard, Robert

    2014-01-01

    Many conceptual studies for long duration missions beyond Earth orbit have assumed unique habitat designs for each destination and for transit habitation. This may not be the most effective approach. A variable gravity habitat, one designed for use in microgravity, lunar, Martian, and terrestrial environments may provide savings that offset the loss of environment-specific optimization. However, a brief analysis of selected flown spacecraft and Constellation-era conceptual habitat designs suggests that one cannot simply lift a habitat from one environment and place it in another that it was not designed for without incurring significant human performance compromises. By comparison, a conceptual habitat based on the Skylab II framework but designed specifically to accommodate variable gravity environments can be shown to yield significant advantages while incurring only minimal human performance compromises.

  20. 3 CFR - Proposed Revised Habitat for the Spotted Owl: Minimizing Regulatory Burdens

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... “regulatory system must protect public health, welfare, safety, and our environment while promoting economic... habitat, consistent with applicable law and science; and (6) to the extent permitted by law, adopt the... habitat for the spotted owl, based on a full evaluation of all key criteria: the relevant science...

  1. Antibody-based inhibition of circulating DLK1 protects from estrogen deficiency-induced bone loss in mice.

    PubMed

    Figeac, Florence; Andersen, Ditte C; Nipper Nielsen, Casper A; Ditzel, Nicholas; Sheikh, Søren P; Skjødt, Karsten; Kassem, Moustapha; Jensen, Charlotte H; Abdallah, Basem M

    2018-05-01

    Soluble delta-like 1 homolog (DLK1) is a circulating protein that belongs to the Notch/Serrate/delta family, which regulates many differentiation processes including osteogenesis and adipogenesis. We have previously demonstrated an inhibitory effect of DLK1 on bone mass via stimulation of bone resorption and inhibition of bone formation. Further, serum DLK1 levels are elevated and positively correlated to bone turnover markers in estrogen (E)-deficient rodents and women. In this report, we examined whether inhibition of serum DLK1 activity using a neutralizing monoclonal antibody protects from E deficiency-associated bone loss in mice. Thus, we generated mouse monoclonal anti-mouse DLK1 antibodies (MAb DLK1) that enabled us to reduce and also quantitate the levels of bioavailable serum DLK1 in vivo. Ovariectomized (ovx) mice were injected intraperitoneally twice weekly with MAb DLK1 over a period of one month. DEXA-, microCT scanning, and bone histomorphometric analyses were performed. Compared to controls, MAb DLK1 treated ovx mice were protected against ovx-induced bone loss, as revealed by significantly increased total bone mass (BMD) due to increased trabecular bone volume fraction (BV/TV) and inhibition of bone resorption. No significant changes were observed in total fat mass or in the number of bone marrow adipocytes. These results support the potential use of anti-DLK1 antibody therapy as a novel intervention to protect from E deficiency associated bone loss. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm.

    PubMed

    Dinerstein, Eric; Olson, David; Joshi, Anup; Vynne, Carly; Burgess, Neil D; Wikramanayake, Eric; Hahn, Nathan; Palminteri, Suzanne; Hedao, Prashant; Noss, Reed; Hansen, Matt; Locke, Harvey; Ellis, Erle C; Jones, Benjamin; Barber, Charles Victor; Hayes, Randy; Kormos, Cyril; Martin, Vance; Crist, Eileen; Sechrest, Wes; Price, Lori; Baillie, Jonathan E M; Weeden, Don; Suckling, Kierán; Davis, Crystal; Sizer, Nigel; Moore, Rebecca; Thau, David; Birch, Tanya; Potapov, Peter; Turubanova, Svetlana; Tyukavina, Alexandra; de Souza, Nadia; Pintea, Lilian; Brito, José C; Llewellyn, Othman A; Miller, Anthony G; Patzelt, Annette; Ghazanfar, Shahina A; Timberlake, Jonathan; Klöser, Heinz; Shennan-Farpón, Yara; Kindt, Roeland; Lillesø, Jens-Peter Barnekow; van Breugel, Paulo; Graudal, Lars; Voge, Maianna; Al-Shammari, Khalaf F; Saleem, Muhammad

    2017-06-01

    We assess progress toward the protection of 50% of the terrestrial biosphere to address the species-extinction crisis and conserve a global ecological heritage for future generations. Using a map of Earth's 846 terrestrial ecoregions, we show that 98 ecoregions (12%) exceed Half Protected; 313 ecoregions (37%) fall short of Half Protected but have sufficient unaltered habitat remaining to reach the target; and 207 ecoregions (24%) are in peril, where an average of only 4% of natural habitat remains. We propose a Global Deal for Nature-a companion to the Paris Climate Deal-to promote increased habitat protection and restoration, national- and ecoregion-scale conservation strategies, and the empowerment of indigenous peoples to protect their sovereign lands. The goal of such an accord would be to protect half the terrestrial realm by 2050 to halt the extinction crisis while sustaining human livelihoods.

  3. Habitat Evaluation Procedures Report; Carl Property - Yakama Nation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Paul; Muse, Anthony

    A baseline habitat evaluation procedures (HEP) analysis was conducted on the Carl property (160 acres) in June 2007 to determine the number of habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the property as partial mitigation for habitat losses associated with construction of McNary Dam. HEP surveys also helped assess the general ecological condition of the property. The Carl property appeared damaged from livestock grazing and exhibited a high percentage of invasive forbs. Exotic grasses, while present, did not comprise a large percentage of the available cover in most areas. Cover types were primarily grassland/shrubsteppemore » with a limited emergent vegetation component. Baseline HEP surveys generated 356.11 HUs or 2.2 HUs per acre. Habitat units were associated with the following HEP models: California quail (47.69 HUs), western meadowlark (114.78 HUs), mallard (131.93 HUs), Canada goose (60.34 HUs), and mink (1.38 HUs).« less

  4. How Many Wolves (Canis lupus) Fit into Germany? The Role of Assumptions in Predictive Rule-Based Habitat Models for Habitat Generalists

    PubMed Central

    Fechter, Dominik; Storch, Ilse

    2014-01-01

    Due to legislative protection, many species, including large carnivores, are currently recolonizing Europe. To address the impending human-wildlife conflicts in advance, predictive habitat models can be used to determine potentially suitable habitat and areas likely to be recolonized. As field data are often limited, quantitative rule based models or the extrapolation of results from other studies are often the techniques of choice. Using the wolf (Canis lupus) in Germany as a model for habitat generalists, we developed a habitat model based on the location and extent of twelve existing wolf home ranges in Eastern Germany, current knowledge on wolf biology, different habitat modeling techniques and various input data to analyze ten different input parameter sets and address the following questions: (1) How do a priori assumptions and different input data or habitat modeling techniques affect the abundance and distribution of potentially suitable wolf habitat and the number of wolf packs in Germany? (2) In a synthesis across input parameter sets, what areas are predicted to be most suitable? (3) Are existing wolf pack home ranges in Eastern Germany consistent with current knowledge on wolf biology and habitat relationships? Our results indicate that depending on which assumptions on habitat relationships are applied in the model and which modeling techniques are chosen, the amount of potentially suitable habitat estimated varies greatly. Depending on a priori assumptions, Germany could accommodate between 154 and 1769 wolf packs. The locations of the existing wolf pack home ranges in Eastern Germany indicate that wolves are able to adapt to areas densely populated by humans, but are limited to areas with low road densities. Our analysis suggests that predictive habitat maps in general, should be interpreted with caution and illustrates the risk for habitat modelers to concentrate on only one selection of habitat factors or modeling technique. PMID:25029506

  5. Restoring and rehabilitating sagebrush habitats

    USGS Publications Warehouse

    Pyke, David A.; Knick, S.T.; Connelly, J.W.

    2011-01-01

    Less than half of the original habitat of the Greater Sage-Grouse (Centrocercus uropha-sianus) currently exists. Some has been perma-nently lost to farms and urban areas, but the remaining varies in condition from high quality to no longer adequate. Restoration of sagebrush (Artemisia spp.) grassland ecosystems may be pos-sible for resilient lands. However, Greater Sage-Grouse require a wide variety of habitats over large areas to complete their life cycle. Effective restoration will require a regional approach for prioritizing and identifying appropriate options across the landscape. A landscape triage method is recommended for prioritizing lands for restora-tion. Spatial models can indicate where to protect and connect intact quality habitat with other simi-lar habitat via restoration. The ecological site con-cept of land classification is recommended for characterizing potential habitat across the region along with their accompanying state and transi-tion models of plant community dynamics. These models assist in identifying if passive, manage-ment-based or active, vegetation manipulation?based restoration might accomplish the goals of improved Greater Sage-Grouse habitat. A series of guidelines help formulate questions that manag-ers might consider when developing restoration plans: (1) site prioritization through a landscape triage; (2) soil verification and the implications of soil features on plant establishment success; (3) a comparison of the existing plant community to the potential for the site using ecological site descriptions; (4) a determination of the current successional status of the site using state and transition models to aid in predicting if passive or active restoration is necessary; and (5) implemen-tation of post-treatment monitoring to evaluate restoration effectiveness and post-treatment man-agement implications to restoration success.

  6. Global patterns of fragmentation and connectivity of mammalian carnivore habitat.

    PubMed

    Crooks, Kevin R; Burdett, Christopher L; Theobald, David M; Rondinini, Carlo; Boitani, Luigi

    2011-09-27

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges, a greater proportion of habitat within their range, greater habitat connectivity and a lower risk of extinction. Species with higher connectivity (i.e. less habitat isolation) also had a greater proportion of high-quality habitat, but had smaller, not larger, ranges, probably reflecting shorter distances between habitat patches for species with restricted distributions; such species were also more threatened, as would be expected given the negative relationship between range size and extinction risk. Fragmentation and connectivity did not differ among Carnivora families, and body mass was associated with connectivity but not fragmentation. On average, only 54.3 per cent of a species' geographical range comprised high-quality habitat, and more troubling, only 5.2 per cent of the range comprised such habitat within protected areas. Identification of global hotspots of fragmentation and connectivity will help guide strategic priorities for carnivore conservation.

  7. Global patterns of fragmentation and connectivity of mammalian carnivore habitat

    PubMed Central

    Crooks, Kevin R.; Burdett, Christopher L.; Theobald, David M.; Rondinini, Carlo; Boitani, Luigi

    2011-01-01

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges, a greater proportion of habitat within their range, greater habitat connectivity and a lower risk of extinction. Species with higher connectivity (i.e. less habitat isolation) also had a greater proportion of high-quality habitat, but had smaller, not larger, ranges, probably reflecting shorter distances between habitat patches for species with restricted distributions; such species were also more threatened, as would be expected given the negative relationship between range size and extinction risk. Fragmentation and connectivity did not differ among Carnivora families, and body mass was associated with connectivity but not fragmentation. On average, only 54.3 per cent of a species' geographical range comprised high-quality habitat, and more troubling, only 5.2 per cent of the range comprised such habitat within protected areas. Identification of global hotspots of fragmentation and connectivity will help guide strategic priorities for carnivore conservation. PMID:21844043

  8. No Evidence of Habitat Loss Affecting the Orchid Bees Eulaema nigrita Lepeletier and Eufriesea auriceps Friese (Apidae: Euglossini) in the Brazilian Cerrado Savanna.

    PubMed

    Silva, D P; De Marco, P

    2014-12-01

    Habitat loss, landscape fragmentation, and agriculture intensification constitute the main threats to bees. As the organisms responsible for almost one third of the food produced worldwide, there are growing concerns on bees' response to human-related disturbances. Among all bee groups, orchid bees (Apidae: Euglossini) compose an interesting group to test landscape-related hypotheses. In here, we tested the effect of landscape features (amount of anthropic areas and isolation) on the probability of occurrence and the abundances of both Eulaema nigrita Lepeletier and Eufriesea auriceps Friese in the Cerrado savanna. In general, we did not observe any effect of landscape features on the probability of occurrence and abundances of both species in our sampling sites. Given their potential high dispersal abilities, these bee species may be less sensitive to fragmented landscapes or even positively affected by the increase of anthropic habitats. Since we sampled many E. nigrita specimens in highly preserved Cerrado savanna areas, we believe that at least for this biome, this species may not be a good indicator of landscape disturbance.

  9. Spawning habitat associations and selection by fishes in a flow-regulated prairie river

    USGS Publications Warehouse

    Brewer, S.K.; Papoulias, D.M.; Rabeni, C.F.

    2006-01-01

    We used histological features to identify the spawning chronologies of river-dwelling populations of slenderhead darter Percina phoxocephala, suckermouth minnow Phenacobius mirabilis, stonecat Noturus flavus, and red shiner Cyprinella lutrensis and to relate their reproductive status to microhabitat associations. We identified spawning and nonspawning differences in habitat associations resulting from I year of field data via logistic regression modeling and identified shifts in microhabitat selection via frequency-of-use and availability histograms. Each species demonstrated different habitat associations between spawning and nonspawning periods. The peak spawning period for slenderhead darters was April to May in high-velocity microhabitats containing cobble. Individuals were associated with similar microhabitats during the postspawn summer and began migrating to deeper habitats in the fall. Most suckermouth minnow spawned from late March through early May in shallow microhabitats. The probability of the presence of these fish in shallow habitats declined postspawn, as fish apparently shifted to deeper habitats. Stonecats conducted prespawn activities in nearshore microhabitats containing large substrates but probably moved to deeper habitats during summer to spawn. Microhabitats with shallow depths containing cobble were associated with the presence of spawning red shiners during the summer. Prespawn fish selected low-velocity microhabitats during the spring, whereas postspawn fish selected habitats similar to the spawning habitat but added a shallow depth component. Hydraulic variables had the most influence on microhabitat models for all of these species, emphasizing the importance of flow in habitat selection by river-dwelling fishes. Histological analyses allowed us to more precisely document the time periods when habitat use is critical to species success. Without evidence demonstrating the functional mechanisms behind habitat associations, protective flows

  10. Apolipoprotein E3 (ApoE3) but Not ApoE4 Protects against Synaptic Loss through Increased Expression of Protein Kinase Cϵ

    PubMed Central

    Sen, Abhik; Alkon, Daniel L.; Nelson, Thomas J.

    2012-01-01

    Synaptic loss is the earliest pathological change in Alzheimer disease (AD) and is the pathological change most directly correlated with the degree of dementia. ApoE4 is the major genetic risk factor for the age-dependent form of AD, which accounts for 95% of cases. Here we show that in synaptic networks formed from primary hippocampal neurons in culture, apoE3, but not apoE4, prevents the loss of synaptic networks produced by amyloid β oligomers (amylospheroids). Specific activators of PKCϵ, such as 8-(2-(2-pentyl-cyclopropylmethyl)-cyclopropyl)-octanoic acid methyl ester and bryostatin 1, protected against synaptic loss by amylospheroids, whereas PKCϵ inhibitors blocked this synaptic protection and also blocked the protection by apoE3. Blocking LRP1, an apoE receptor on the neuronal membrane, also blocked the protection by apoE. ApoE3, but not apoE4, induced the synthesis of PKCϵ mRNA and expression of the PKCϵ protein. Amyloid β specifically blocked the expression of PKCϵ but had no effect on other isoforms. These results suggest that protection against synaptic loss by apoE is mediated by a novel intracellular PKCϵ pathway. This apoE pathway may account for much of the protective effect of apoE and reduced risk for the age-dependent form of AD. This finding supports the potential efficacy of newly developed therapeutics for AD. PMID:22427674

  11. Protecting Future Biodiversity via Re-allocation of Future Land-use Change Patterns

    NASA Astrophysics Data System (ADS)

    Chini, L. P.; Hurtt, G. C.; Jantz, S.; Brooks, T.; Leon, C.; Waldhoff, S.; Edmonds, J.

    2013-12-01

    Future scenarios, such as the Representative Concentration Pathways (RCPs), are typically designed to meet a radiative forcing target while also producing enough food and energy for a growing population. In the assessment process, impacts of these scenarios for other important variables such as biodiversity loss are considered 'downstream', after the future climate has been simulated within Earth System Models. However, the direct land-use impacts associated with future scenarios often have as much impact on these issues as the changing climate; in addition, many different patterns of land-use can result in the same radiative forcing target. In the case of biodiversity loss, one of the greatest contributors to species extinction is the loss of habitat such as primary forest, which is a direct result of land-use change decisions. By considering issues such as the preservation of future biodiversity 'up-front' in the scenario process, we can design a scenario that not only meets a radiative forcing target and feeds a growing planet, but also preserves as much habitat as possible through careful spatial allocation of future land-use change. Our Global Land-use Model (GLM) is used to provide 'harmonized' land-use data for the RCP process. GLM preserves as much information as possible from the Integrated Assessment Models (IAMs) while spatially allocating regional IAM land-use change data, ensuring a continuous transition from historical to future land-use states, and producing annual, gridded (0.5°×0.5°), fractional land-use states and all associated transitions. In this presentation we will present results from new GLM simulations in which land-use change decisions are constrained to meet the mutual goals of protecting important eco-regions (e.g. biodiversity hotspots) from future land-use change, providing enough food and fiber for a growing planet, and remaining consistent with the radiative forcing targets of the future scenarios. Trade-offs between agricultural

  12. A phylogenetic approach to total evaporative water loss in mammals.

    PubMed

    Van Sant, Matthew J; Oufiero, Christopher E; Muñoz-Garcia, Agustí; Hammond, Kimberly A; Williams, Joseph B

    2012-01-01

    Maintaining appropriate water balance is a constant challenge for terrestrial mammals, and this problem can be exacerbated in desiccating environments. It has been proposed that natural selection has provided desert-dwelling mammals physiological mechanisms to reduce rates of total evaporative water loss. In this study, we evaluated the relationship between total evaporative water loss and body mass in mammals by using a recent phylogenetic hypothesis. We compared total evaporative water loss in 80 species of arid-zone mammals to that in 56 species that inhabit mesic regions, ranging in size from 4 g to 3,500 kg, to test the hypothesis that mammals from arid environments have lower rates of total evaporative water loss than mammals from mesic environments once phylogeny is taken into account. We found that arid species had lower rates of total evaporative water loss than mesic species when using a dichotomous variable to describe habitat (arid or mesic). We also found that total evaporative water loss was negatively correlated with the average maximum and minimum environmental temperature as well as the maximum vapor pressure deficit of the environment. Annual precipitation and the variable Q (a measure of habitat aridity) were positively correlated with total evaporative water loss. These results support the hypothesis that desert-dwelling mammals have lower rates of total evaporative water loss than mesic species after controlling for body mass and evolutionary relatedness regardless of whether categorical or continuous variables are used to describe habitat.

  13. Using a down-scaled bioclimate envelope model to determine long-term temporal connectivity of Garry oak (Quercus garryana) habitat in western North America: implications for protected area planning.

    PubMed

    Pellatt, Marlow G; Goring, Simon J; Bodtker, Karin M; Cannon, Alex J

    2012-04-01

    Under the Canadian Species at Risk Act (SARA), Garry oak (Quercus garryana) ecosystems are listed as "at-risk" and act as an umbrella for over one hundred species that are endangered to some degree. Understanding Garry oak responses to future climate scenarios at scales relevant to protected area managers is essential to effectively manage existing protected area networks and to guide the selection of temporally connected migration corridors, additional protected areas, and to maintain Garry oak populations over the next century. We present Garry oak distribution scenarios using two random forest models calibrated with down-scaled bioclimatic data for British Columbia, Washington, and Oregon based on 1961-1990 climate normals. The suitability models are calibrated using either both precipitation and temperature variables or using only temperature variables. We compare suitability predictions from four General Circulation Models (GCMs) and present CGCM2 model results under two emissions scenarios. For each GCM and emissions scenario we apply the two Garry oak suitability models and use the suitability models to determine the extent and temporal connectivity of climatically suitable Garry oak habitat within protected areas from 2010 to 2099. The suitability models indicate that while 164 km(2) of the total protected area network in the region (47,990 km(2)) contains recorded Garry oak presence, 1635 and 1680 km(2) of climatically suitable Garry oak habitat is currently under some form of protection. Of this suitable protected area, only between 6.6 and 7.3% will be "temporally connected" between 2010 and 2099 based on the CGCM2 model. These results highlight the need for public and private protected area organizations to work cooperatively in the development of corridors to maintain temporal connectivity in climatically suitable areas for the future of Garry oak ecosystems.

  14. Landscape connectivity promotes plant biodiversity spillover into non-target habitats.

    PubMed

    Brudvig, Lars A; Damschen, Ellen I; Tewksbury, Joshua J; Haddad, Nick M; Levey, Douglas J

    2009-06-09

    Conservation efforts typically focus on maximizing biodiversity in protected areas. The space available for reserves is limited, however, and conservation efforts must increasingly consider how management of protected areas can promote biodiversity beyond reserve borders. Habitat corridors are considered an important feature of reserves because they facilitate movement of organisms between patches, thereby increasing species richness in those patches. Here we demonstrate that by increasing species richness inside target patches, corridors additionally benefit biodiversity in surrounding non-target habitat, a biodiversity "spillover" effect. Working in the world's largest corridor experiment, we show that increased richness extends for approximately 30% of the width of the 1-ha connected patches, resulting in 10-18% more vascular plant species around patches of target habitat connected by corridors than around unconnected but otherwise equivalent patches of habitat. Furthermore, corridor-enhanced spillover into non-target habitat can be predicted by a simple plant life-history trait: seed dispersal mode. Species richness of animal-dispersed plants in non-target habitat increased in response to connectivity provided by corridors, whereas species richness of wind-dispersed plants was unaffected by connectivity and increased in response to changes in patch shape--higher edge-to-interior ratio--created by corridors. Corridors promoted biodiversity spillover for native species of the threatened longleaf pine ecosystem being restored in our experiment, but not for exotic species. By extending economically driven spillover concepts from marine fisheries and crop pollination systems, we show how reconnecting landscapes amplifies biodiversity conservation both within and beyond reserve borders.

  15. Habitat diversity and ecosystem multifunctionality—The importance of direct and indirect effects

    PubMed Central

    Alsterberg, Christian; Roger, Fabian; Sundbäck, Kristina; Juhanson, Jaanis; Hulth, Stefan; Hallin, Sara; Gamfeldt, Lars

    2017-01-01

    Ecosystems worldwide are facing habitat homogenization due to human activities. Although it is commonly proposed that such habitat homogenization can have negative repercussions for ecosystem functioning, this question has yet to receive explicit scientific attention. We expand on the framework for evaluating the functional consequences of biodiversity loss by scaling up from the level of species to the level of the entire habitats. Just as species diversity generally fosters ecosystem functioning through positive interspecies interactions, we hypothesize that different habitats within ecosystems can facilitate each other through structural complementarity and through exchange of material and energy across habitats. We show that experimental ecosystems comprised of a diversity of habitats show higher levels of multiple ecosystem functions than ecosystems with low habitat diversity. Our results demonstrate that the effect of habitat diversity on multifunctionality varies with season; it has direct effects on ecosystem functioning in summer and indirect effects, via changes in species diversity, in autumn, but no effect in spring. We propose that joint consideration of habitat diversity and species diversity will prove valuable for both environmental management and basic research. PMID:28246634

  16. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoverson, Eric D.; Amonette, Alexandra

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meachammore » Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and

  17. Habitat fragmentation resulting in overgrazing by herbivores.

    PubMed

    Kondoh, Michio

    2003-12-21

    Habitat fragmentation sometimes results in outbreaks of herbivorous insect and causes an enormous loss of primary production. It is hypothesized that the driving force behind such herbivore outbreaks is disruption of natural enemy attack that releases herbivores from top-down control. To test this hypothesis I studied how trophic community structure changes along a gradient of habitat fragmentation level using spatially implicit and explicit models of a tri-trophic (plant, herbivore and natural enemy) food chain. While in spatially implicit model number of trophic levels gradually decreases with increasing fragmentation, in spatially explicit model a relatively low level of habitat fragmentation leads to overgrazing by herbivore to result in extinction of the plant population followed by a total system collapse. This provides a theoretical support to the hypothesis that habitat fragmentation can lead to overgrazing by herbivores and suggests a central role of spatial structure in the influence of habitat fragmentation on trophic communities. Further, the spatially explicit model shows (i) that the total system collapse by the overgrazing can occur only if herbivore colonization rate is high; (ii) that with increasing natural enemy colonization rate, the fragmentation level that leads to the system collapse becomes higher, and the frequency of the collapse is lowered.

  18. Habitat Concepts for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Griffin, Brand N.

    2014-01-01

    Future missions under consideration requiring human habitation beyond the International Space Station (ISS) include deep space habitats in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar missions, satellite servicing, and Mars vehicle servicing missions. Habitat designs are also under consideration for missions beyond the Earth-Moon system, including transfers to near-Earth asteroids and Mars orbital destinations. A variety of habitat layouts have been considered, including those derived from the existing ISS designs and those that could be fabricated from the Space Launch System (SLS) propellant tanks. This paper presents a comparison showing several options for asteroid, lunar, and Mars mission habitats using ISS derived and SLS derived modules and identifies some of the advantages and disadvantages inherent in each. Key findings indicate that the larger SLS diameter modules offer built-in compatibility with the launch vehicle, single launch capability without on-orbit assembly, improved radiation protection, lighter structures per unit volume, and sufficient volume to accommodate consumables for long duration missions without resupply. The information provided with the findings includes mass and volume comparison data that should be helpful to future exploration mission planning efforts.

  19. Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting.

    PubMed

    Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B

    2014-01-01

    Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is "biodiversity offsetting" (wherein biodiversity impacted is "replaced" through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of "linear" infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with "hub" infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km(2) across the Ustyurt (total ∼ 100,000 km(2)), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study

  20. An evolving process: protecting spotted owl habitat through landscape management

    Treesearch

    Michael Feinstein; John Lehmkuhl; Paul Hessburg

    2010-01-01

    A network of late-successional forest reserves is central to the Northwest Forest Plan, the guiding vision for managing federal forests in Washington, Oregon, and northern California within the range of the northern spotted owl. These reserves were created to maintain older forest structure as habitat for the northern spotted owl, marbled murrelet, and other associated...

  1. From points to forecasts: Predicting invasive species habitat suitability in the near term

    USGS Publications Warehouse

    Holcombe, Tracy R.; Stohlgren, Thomas J.; Jarnevich, Catherine S.

    2010-01-01

    We used near-term climate scenarios for the continental United States, to model 12 invasive plants species. We created three potential habitat suitability models for each species using maximum entropy modeling: (1) current; (2) 2020; and (3) 2035. Area under the curve values for the models ranged from 0.92 to 0.70, with 10 of the 12 being above 0.83 suggesting strong and predictable species-environment matching. Change in area between the current potential habitat and 2035 ranged from a potential habitat loss of about 217,000 km2, to a potential habitat gain of about 133,000 km2.

  2. Determination of Section 404 Permit and Habitat Mitigation Requirements

    DOT National Transportation Integrated Search

    2012-09-01

    The Arizona Department of Transportation (ADOT) is committed to developing habitat, mitigation, : monitoring, and maintenance plans that replace the loss of the functions and values of an area and : are self-sustaining, thereby providing long-term co...

  3. Benthic macrofauna habitat associations in Willapa Bay, Washington, USA

    NASA Astrophysics Data System (ADS)

    Ferraro, Steven P.; Cole, Faith A.

    2007-02-01

    critical habitats, prioritize habitats for environmental protection, index habitat suitability, assess habitat equivalency, and as habitat value criteria in ecological risk assessments in Willapa Bay.

  4. West Foster Creek 2007 Follow-up Habitat Evaluation Procedures (HEP) Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Paul R.

    A follow-up habitat evaluation procedures (HEP) analysis was conducted on the West Foster Creek (Smith acquisition) wildlife mitigation site in May 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance and maintain the project site as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The West Foster Creek 2007 follow-up HEP survey generated 2,981.96 habitat units (HU) or 1.51 HUs per acre for a 34% increase (+751.34 HUs) above baseline HU credit (the 1999 baseline HEP survey generated 2,230.62 habitat units or 1.13 HUs permore » acre). The 2007 follow-up HEP analysis yielded 1,380.26 sharp-tailed grouse (Tympanuchus phasianellus) habitat units, 879.40 mule deer (Odocoileus hemionus) HUs, and 722.29 western meadowlark (Sturnella neglecta) habitat units. Mule deer and sharp-tailed grouse habitat units increased by 346.42 HUs and 470.62 HUs respectively over baseline (1999) survey results due largely to cessation of livestock grazing and subsequent passive restoration. In contrast, the western meadowlark generated slightly fewer habitat units in 2007 (-67.31) than in 1999, because of increased shrub cover, which lowers habitat suitability for that species.« less

  5. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm

    PubMed Central

    Olson, David; Joshi, Anup; Burgess, Neil D.; Wikramanayake, Eric; Hahn, Nathan; Palminteri, Suzanne; Hedao, Prashant; Noss, Reed; Hansen, Matt; Locke, Harvey; Ellis, Erle C; Jones, Benjamin; Barber, Charles Victor; Hayes, Randy; Kormos, Cyril; Martin, Vance; Crist, Eileen; Sechrest, Wes; Price, Lori; Baillie, Jonathan E. M.; Weeden, Don; Suckling, Kierán; Davis, Crystal; Sizer, Nigel; Moore, Rebecca; Thau, David; Birch, Tanya; Potapov, Peter; Turubanova, Svetlana; Tyukavina, Alexandra; de Souza, Nadia; Pintea, Lilian; Brito, José C.; Llewellyn, Othman A.; Miller, Anthony G.; Patzelt, Annette; Ghazanfar, Shahina A.; Timberlake, Jonathan; Klöser, Heinz; Shennan-Farpón, Yara; Kindt, Roeland; Lillesø, Jens-Peter Barnekow; van Breugel, Paulo; Graudal, Lars; Voge, Maianna; Al-Shammari, Khalaf F.; Saleem, Muhammad

    2017-01-01

    Abstract We assess progress toward the protection of 50% of the terrestrial biosphere to address the species-extinction crisis and conserve a global ecological heritage for future generations. Using a map of Earth's 846 terrestrial ecoregions, we show that 98 ecoregions (12%) exceed Half Protected; 313 ecoregions (37%) fall short of Half Protected but have sufficient unaltered habitat remaining to reach the target; and 207 ecoregions (24%) are in peril, where an average of only 4% of natural habitat remains. We propose a Global Deal for Nature—a companion to the Paris Climate Deal—to promote increased habitat protection and restoration, national- and ecoregion-scale conservation strategies, and the empowerment of indigenous peoples to protect their sovereign lands. The goal of such an accord would be to protect half the terrestrial realm by 2050 to halt the extinction crisis while sustaining human livelihoods. PMID:28608869

  6. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes

    PubMed Central

    Flannick, Jason; Thorleifsson, Gudmar; Beer, Nicola L.; Jacobs, Suzanne B. R.; Grarup, Niels; Burtt, Noël P.; Mahajan, Anubha; Fuchsberger, Christian; Atzmon, Gil; Benediktsson, Rafn; Blangero, John; Bowden, Don W.; Brandslund, Ivan; Brosnan, Julia; Burslem, Frank; Chambers, John; Cho, Yoon Shin; Christensen, Cramer; Douglas, Desirée A.; Duggirala, Ravindranath; Dymek, Zachary; Farjoun, Yossi; Fennell, Timothy; Fontanillas, Pierre; Forsén, Tom; Gabriel, Stacey; Glaser, Benjamin; Gudbjartsson, Daniel F.; Hanis, Craig; Hansen, Torben; Hreidarsson, Astradur B.; Hveem, Kristian; Ingelsson, Erik; Isomaa, Bo; Johansson, Stefan; Jørgensen, Torben; Jørgensen, Marit Eika; Kathiresan, Sekar; Kong, Augustine; Kooner, Jaspal; Kravic, Jasmina; Laakso, Markku; Lee, Jong-Young; Lind, Lars; Lindgren, Cecilia M; Linneberg, Allan; Masson, Gisli; Meitinger, Thomas; Mohlke, Karen L; Molven, Anders; Morris, Andrew P.; Potluri, Shobha; Rauramaa, Rainer; Ribel-Madsen, Rasmus; Richard, Ann-Marie; Rolph, Tim; Salomaa, Veikko; Segrè, Ayellet V.; Skärstrand, Hanna; Steinthorsdottir, Valgerdur; Stringham, Heather M.; Sulem, Patrick; Tai, E Shyong; Teo, Yik Ying; Teslovich, Tanya; Thorsteinsdottir, Unnur; Trimmer, Jeff K.; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Vaziri-Sani, Fariba; Voight, Benjamin F.; Wilson, James G.; Boehnke, Michael; McCarthy, Mark I.; Njølstad, Pål R.; Pedersen, Oluf; Groop, Leif; Cox, David R.; Stefansson, Kari; Altshuler, David

    2014-01-01

    Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets1,2,3, yet none are described for type 2 diabetes (T2D). Through sequencing or genotyping ~150,000 individuals across five ethnicities, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8)4 and harbors a common variant (p.Trp325Arg) associated with T2D risk, glucose, and proinsulin levels5–7. Collectively, protein-truncating variant carriers had 65% reduced T2D risk (p=1.7×10−6), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34SerfsX50) demonstrated reduced glucose levels (−0.17 s.d., p=4.6×10−4). The two most common protein-truncating variants (p.Arg138X and p.Lys34SerfsX50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested reduced zinc transport increases T2D risk8,9, yet phenotypic heterogeneity was observed in rodent Slc30a8 knockouts10–15. Contrastingly, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, proposing ZnT8 inhibition as a therapeutic strategy in T2D prevention. PMID:24584071

  7. Habitat, topographical, and geographical components structuring shrubsteppe bird communities

    USGS Publications Warehouse

    Knick, S.T.; Rotenberry, J.T.; Leu, M.

    2008-01-01

    Landscapes available to birds to select for breeding locations are arrayed along multiple dimensions. Identifying the primary gradients structuring shrubsteppe bird communities in the western United States is important because widespread habitat loss and alteration are shifting the environmental template on which these birds depend. We integrated field habitat surveys, GIS coverages, and bird counts from 61 Breeding Bird Survey routes located in shrubsteppe habitats across a >800 000 km2 region to determine the gradients of habitat, topography, and geography underlying bird communities. A small set of habitat features dominated the primary environmental gradients in a canonical ordination; the 13 species in the shrubsteppe bird community were closely packed along the first two axes. Using hierarchical variance partitioning, we identified habitat as the most important pure (31% explained variation) or shared component. Topography (9%) and geography (4%) were minor components but each shared a larger contribution with habitat (habitat-topography 21%; habitat-geography 22%) in explaining the organization of the bird community. In a second tier partition of habitat structure, pure composition (% land cover) was more important (45%) than configuration (patch size and edge) (7%); the two components shared 27% of the explained variation in the bird community axes. Local (9%), community (14%), and landscape (10%) levels contributed equally. Adjacent organizational levels had a larger shared contribution (local-community 26%; community-landscape 27%) than more separated local-landscape levels (21%). Extensive conversion of shrubsteppe habitats to agriculture, exotic annual grasslands, or pinyon (Pinus spp.)-juniper (Juniperus spp.) woodlands is occurring along the primary axes of habitat structure. Because the shrubsteppe bird community was organized along short gradients dominated by habitat features, relatively small shifts in their available environment will exert a

  8. Quantifying the importance of patch-specific changes in habitat to metapopulation viability of an endangered songbird.

    PubMed

    Horne, Jon S; Strickler, Katherine M; Alldredge, Mathew

    2011-10-01

    A growing number of programs seek to facilitate species conservation using incentive-based mechanisms. Recently, a market-based incentive program for the federally endangered Golden-cheeked Warbler (Dendroica chrysoparia) was implemented on a trial basis at Fort Hood, an Army training post in Texas, USA. Under this program, recovery credits accumulated by Fort Hood through contracts with private landowners are used to offset unintentional loss of breeding habitat of Golden-cheeked Warblers within the installation. Critical to successful implementation of such programs is the ability to value, in terms of changes to overall species viability, both habitat loss and habitat restoration or protection. In this study, we sought to answer two fundamental questions: Given the same amount of change in breeding habitat, does the change in some patches have a greater effect on metapopulation persistence than others? And if so, can characteristics of a patch (e.g., size or spatial location) be used to predict how the metapopulation will respond to these changes? To answer these questions, we describe an approach for using sensitivity analysis of a metapopulation projection model to predict how changes to specific habitat patches would affect species viability. We used a stochastic, discrete-time projection model based on stage-specific estimates of survival and fecundity, as well as various assumptions about dispersal among populations. To assess a particular patch's leverage, we quantified how much metapopulation viability was expected to change in response to changing the size of that patch. We then related original patch size and distance from the largest patch to each patch's leverage to determine if general patch characteristics could be used to develop guidelines for valuing changes to patches within a metapopulation. We found that both the characteristic that best predicted patch leverage and the magnitude of the relationship changed under different model scenarios

  9. A Case Study in the Effectiveness of Marine Protected Areas (MPAs): the Islands of Bonaire and Curacao, Dutch Caribbean

    NASA Astrophysics Data System (ADS)

    Relles, Noelle J.

    experience a decline in total coral cover, but did become increasingly patchy, significantly more so than Bonaire. The Curacao Underwater Park afforded no additional protection against coral loss or fragmentation than an adjacent unprotected area of reef. The difference between the two islands in coral loss versus fragmentation has the potential for a unique natural experiment to study the effects of habitat fragmentation in the absence of overall habitat loss at the landscape scale. The Bonaire National Marine Park could benefit by restricting visitors to its most frequented dive sites by increasing the cost of entry into a tiered pay system, thus generating more income for education and management of the park, as well as deterring some divers from these overused sites. Satellite remote sensing-derived maps are useful for rapid reef mapping and can be utilized for comparison to ancillary maps created by more traditional methods. Satellite-derived maps can only distinguish benthic habitats coarsely (3-4 habitat classes) and are only as reliable as their source data, they benefit greatly from fieldwork to determine depth, geographic location, and benthic habitat cover in real time.

  10. Evaluation of New Zealand's high-seas bottom trawl closures using predictive habitat models and quantitative risk assessment.

    PubMed

    Penney, Andrew J; Guinotte, John M

    2013-01-01

    United Nations General Assembly Resolution 61/105 on sustainable fisheries (UNGA 2007) establishes three difficult questions for participants in high-seas bottom fisheries to answer: 1) Where are vulnerable marine systems (VMEs) likely to occur?; 2) What is the likelihood of fisheries interaction with these VMEs?; and 3) What might qualify as adequate conservation and management measures to prevent significant adverse impacts? This paper develops an approach to answering these questions for bottom trawling activities in the Convention Area of the South Pacific Regional Fisheries Management Organisation (SPRFMO) within a quantitative risk assessment and cost : benefit analysis framework. The predicted distribution of deep-sea corals from habitat suitability models is used to answer the first question. Distribution of historical bottom trawl effort is used to answer the second, with estimates of seabed areas swept by bottom trawlers being used to develop discounting factors for reduced biodiversity in previously fished areas. These are used in a quantitative ecological risk assessment approach to guide spatial protection planning to address the third question. The coral VME likelihood (average, discounted, predicted coral habitat suitability) of existing spatial closures implemented by New Zealand within the SPRFMO area is evaluated. Historical catch is used as a measure of cost to industry in a cost : benefit analysis of alternative spatial closure scenarios. Results indicate that current closures within the New Zealand SPRFMO area bottom trawl footprint are suboptimal for protection of VMEs. Examples of alternative trawl closure scenarios are provided to illustrate how the approach could be used to optimise protection of VMEs under chosen management objectives, balancing protection of VMEs against economic loss to commercial fishers from closure of historically fished areas.

  11. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes

    NASA Astrophysics Data System (ADS)

    Stramma, Lothar; Prince, Eric D.; Schmidtko, Sunke; Luo, Jiangang; Hoolihan, John P.; Visbeck, Martin; Wallace, Douglas W. R.; Brandt, Peter; Körtzinger, Arne

    2012-01-01

    Climate model predictions and observations reveal regional declines in oceanic dissolved oxygen, which are probably influenced by global warming. Studies indicate ongoing dissolved oxygen depletion and vertical expansion of the oxygen minimum zone (OMZ) in the tropical northeast Atlantic Ocean. OMZ shoaling may restrict the usable habitat of billfishes and tunas to a narrow surface layer. We report a decrease in the upper ocean layer exceeding 3.5mll-1 dissolved oxygen at a rate of <=1myr-1 in the tropical northeast Atlantic (0-25°N, 12-30°W), amounting to an annual habitat loss of ~5.95×1013m3, or 15% for the period 1960-2010. Habitat compression and associated potential habitat loss was validated using electronic tagging data from 47 blue marlin. This phenomenon increases vulnerability to surface fishing gear for billfishes and tunas, and may be associated with a 10-50% worldwide decline of pelagic predator diversity. Further expansion of the Atlantic OMZ along with overfishing may threaten the sustainability of these valuable pelagic fisheries and marine ecosystems.

  12. Landscape-level connectivity in coastal southern California, USA, as assessed through carnivore habitat suitability

    USGS Publications Warehouse

    Hunter, Richard D.; Fisher, Robert N.; Crooks, Kevin R.

    2003-01-01

    Although the fragmentation of the natural landscape of coastal southern California, USA, is accelerating, large-scale assessments of regional connectivity are lacking. Because of their large area requirements and long dispersal movements, mammalian carnivores can be effective focal species to use when evaluating landscape-level connectivity. Our goal was to make an initial assessment of the extent of landscape-level connectivity in coastal southern California using mountain lions (Felis concolor [Linnaeus]) and bobcats (Felis rufus [Shreber]) as focal species. We first characterized habitat preferences for mountain lions and bobcats from previously derived habitat relationship models for these species; the resulting maps provided a coarse view of habitat preferences for use at regional scales. We then constructed GIS models to evaluate the disturbance impact of roadways and development, major determinants of carnivore distribution and abundance in the south coast region. Finally, we combined the habitat relationship models with the disturbance impact models to characterize habitat connectivity for mountain lions and bobcats in the ecoregion. Habitat connectivity in the ecoregion appeared higher for bobcats than for mountain lions due in part to higher habitat suitability for bobcats in coastal lowland areas. Our models suggest that much of the key carnivore habitat in the coastal southern California is at risk; over 80% of high suitability habitat and over 90% of medium suitability habitat for carnivores is found in the least protected land management classes. Overall, these models allow for (1) identification of core habitat blocks for carnivores and key landscape connections between core areas, (2) evaluation of the level of protection of these areas, and (3) a regional framework within which to develop and coordinate local management and conservation plans.

  13. Habitat Evaluation Procedures (HEP) Report; Precious Lands Wildlife Management Area, Technical Report 2000-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozusko, Shana

    The Nez Perce Tribe (NPT) currently manages a 15,325 acre parcel of land known as the Precious Lands Wildlife Management Area that was purchased as mitigation for losses incurred by construction of the four lower Snake River dams. The Management Area is located in northern Wallowa County, Oregon and southern Asotin County, Washington (Figure 1). It is divided into three management parcels--the Buford parcel is located on Buford Creek and straddles the WA-OR state line, and the Tamarack and Basin parcels are contiguous to each other and located between the Joseph Creek and Cottonwood Creek drainages in Wallowa County, OR.more » The project was developed under the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L. 96-501), with funding from the Bonneville Power Administration (BPA). The acreage protected under this contract will be credited to BPA as habitat permanently dedicated to wildlife and wildlife mitigation. A modeling strategy known as Habitat Evaluation Procedure (HEP) was developed by the U.S. Fish and Wildlife Service and adopted by BPA as a habitat equivalency accounting system. Nine wildlife species models were used to evaluate distinct cover type features and provide a measure of habitat quality. Models measure a wide range of life requisite variables for each species and monitor overall trends in vegetation community health and diversity. One product of HEP is an evaluation of habitat quality expressed in Habitat Units (HUs). This HU accounting system is used to determine the amount of credit BPA receives for mitigation lands. After construction of the four lower Snake River dams, a HEP loss assessment was conducted to determine how many Habitat Units were inundated behind the dams. Twelve target species were used in that evaluation: Canada goose, mallard, river otter, downy woodpecker, song sparrow, yellow warbler, marsh wren, western meadowlark, chukar, ring-necked pheasant, California quail, and mule deer. The U.S. Army

  14. Albeni Falls Wildlife Protection, Mitigation, and Enhancement Plan, Final Report 1987.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Robert C.

    1988-08-01

    A wildlife impact assessment and mitigation plan has been developed for the US Army Corps of Engineers Albeni Falls Project in northern Idaho. The Habitat Evaluation Procedure (HEP) was used to evaluate pre- and post-construction habitat conditions at the Albeni Falls Project. There were 6617 acres of wetlands converted to open water due to development and operation of the project. Eight evaluation species were selected with impacts expressed in numbers of Habitat Units (HU's). For a given species, one HU is equivalent to one acre of prime habitat. The Albeni Falls Project resulted in estimated losses of 5985 mallard HU's,more » 4699 Canada goose HU's, 3379 redhead HU's, 4508 breeding bald eagle HU's, 4365 wintering bald eagle HU's, 2286 black-capped chickadee HU's, 1680 white-tailed deer HU's, and 1756 muskrat HU's. The yellow warbler gained 71 HU's. Therefore, total target species estimated impacts were 28,587 HU's. Impacts on peregrine falcons were not quantified in terms of HU's. Projects have been proposed by an interagency team of biologists to mitigate the impacts of Albeni Falls on wildlife. The HEP was used to estimate benefits of proposed mitigation projects to target species. Through a series of proposed protection and enhancement actions, the mitigation plan will provide benefits of an estimated 28,590 target species HU's to mitigate Albeni Falls wildlife habitat values lost. 52 refs., 9 figs., 14 tabs.« less

  15. Single launch lunar habitat derived from an NSTS external tank

    NASA Technical Reports Server (NTRS)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using the spent external tank from a National Space Transportation System (NSTS) to derive a lunar habitat is described. The external tank is carried into low Earth orbit where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS orbiter can place the external tank in LEO, provide orbiter astronauts for disassembly of the external tank, and transport the required subsystem hardware for outfitting the lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen intertank modifications utilize existing structures and openings for man access without compromising the structural integrity of the tank. The modifications include installation of living quarters, instrumentation, and an airlock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal control, environmental control and life support, and propulsion. The converted lunar habitat is designed for unmanned transport and autonomous soft landing on the lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyer. The lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a lunar lander for crew changeover and resupply.

  16. Dietary coral calcium and zeolite protects bone in a mouse model for postmenopausal bone loss.

    PubMed

    Banu, Jameela; Varela, Erika; Guerra, Juan M; Halade, Ganesh; Williams, Paul J; Bahadur, Ali N; Hanaoka, Kokichi; Fernandes, Gabriel

    2012-12-01

    In patients diagnosed with osteoporosis, calcium is lost from bones making them weaker and easily susceptible to fractures. Supplementation of calcium is highly recommended for such conditions. However, the source of calcium plays an important role in the amount of calcium that is assimilated into bone. We hypothesize that naturally occurring coral calcium and zeolite may prevent ovariectomy-induced bone loss. We have measured bone loss in ovariectomized mice supplemented with coral calcium and Zeolite. Female C57BL/6 mice were either sham-operated or ovariectomized and fed diets containing coral calcium or zeolite for 6 months. Serum was analyzed for bone biochemical markers and cytokines. Bones were analyzed using dual x-ray absorbtiometry, peripheral quantitative computed tomography, and micro-computed tomography densitometry. In the distal femoral metaphysis, total bone and cortical bone mass was restored and the endocortical surface was significantly decreased in coral calcium and zeolite fed ovariectomized (OVX) mice. Trabecular number and the ratio of bone volume to total volume was higher in OVX mice after coral calcium and zeolite feeding, while trabecular separation decreased in the different treatment OVX groups. Coral calcium protected bone to a lesser extent in the proximal tibia and lumbar vertebrae. Overall, coral calcium and zeolite may protect postmenopausal bone loss. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Nearshore habitat and fish community associations of coaster brook trout in Isle Royale, Lake Superior

    USGS Publications Warehouse

    Gorman, O.T.; Moore, S.A.; Carlson, A.J.; Quinlan, H.R.

    2008-01-01

    We characterized the nearshore habitat and fish community composition of approximately 300 km of shoreline within and adjacent to the major embayments of Isle Royale, Lake Superior. Sampling yielded 17 species, of which 12 were widespread and represented a common element of the Lake Superior fish community, including cisco Coregonus artedi, lake whitefish C. clupeaformis, round whitefish Prosopium cylindraceum, lake trout Salvelinus namaycush, rainbow smelt Osmerus mordax, lake chub Couesius plumbeus, longnose sucker Catostomus catostomus, white sucker C. commersonii, trout-perch Percopsis omiscomaycus, ninespine stickleback Pungitius pungitius, burbot Lota lota, and slimy sculpin Cottus cognatus. The presence of brook trout S. fontinalis in an embayment was associated with the common species of the Isle Royale nearshore fish community, particularly cisco, longnose sucker, and round whitefish. However, brook trout were present in only five embayments and were common only in Tobin Harbor. Most Isle Royale embayments had broadly overlapping ranges of nearshore habitats. Within embayments, fish were distributed along a habitat gradient from less-protected rocky habitat near the mouth to highly protected habitat with mixed and finer substrates at the head. Embayments with brook trout had greater mean protection from the open lake, greater variation in depth, greater mean cover, and higher mean frequencies of large substrates (cobble, boulder, and bedrock). Within those embayments, brook trout were associated with habitat patches with higher mean frequencies of small substrates (particularly sand and coarse gravel). Within Tobin Harbor, brook trout were associated with midembayment habitat and species assemblages, especially those locations with a mixture of sand, gravel, and cobble substrates, an absence of bedrock, and the presence of round whitefish, white sucker, and trout-perch. Comparison of embayments with the model, Tobin Harbor, showed that six embayments

  18. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkman, Jed

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reportingmore » period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.« less

  19. Subsurface microbial habitats on Mars

    NASA Technical Reports Server (NTRS)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  20. PROTECTING BIODIVERSITY

    EPA Science Inventory

    At present, over 40% of the earth's land surface has been converted from its natural state to one dominated by human activities such as agriculture and development. The destruction and degradation of natural habitats has been clearly linked to the loss of biodiversity. Biodiver...

  1. A spatial model of potential jaguar habitat in Arizona

    USGS Publications Warehouse

    Hatten, J.R.; Averill-Murray, A.; van Pelt, W.E.

    2005-01-01

    The jaguar (Panthera onca) is an endangered species that occasionally visits the southwestern United States from Mexico. The number of jaguar sightings per decade has declined over the last 100 years in Arizona, USA, raising conservation concerns for the species at a local and national level. In 1997, state, federal, and local governments with land-management responsibilities agreed to characterize and identify potential jaguar habitat in Arizona and New Mexico. Specifically, the objectives of our analysis were 2-fold: (1) characterize potential jaguar habitat in Arizona from historic sighting records and (2) create a statewide habitat suitability map. We used a Geographic Information System (GIS) to characterize potential jaguar habitat by overlaying historic jaguar sightings (25) on landscape and habitat features believed important (e.g., vegetation biomes and series, elevation, terrain ruggedness, proximity to perennial or intermittent water sources, human density). The amount of Arizona (%) identified as potential jaguar habitat ranged from 21% to 30% depending on the input variables. Most jaguar sightings were in scrub grasslands between 1,220 and 1,829-m elevation in southeastern Arizona, in intermediately to extremely rugged terrain, and within 10 km of a water source. Conservation efforts should focus on protecting the most suitable jaguar habitat in southeastern Arizona (i.e., Santa Cruz, Pima, Cochise, Pinal, Graham counties), travel corridors within and outside Arizona, and jaguar habitat in the Sierra Madres of Sonora, Mexico.

  2. Habitat degradation is threatening reef replenishment by making fish fearless.

    PubMed

    Lönnstedt, Oona M; McCormick, Mark I; Chivers, Douglas P; Ferrari, Maud C O

    2014-09-01

    Habitat degradation is one of the 'Big Five' drivers of biodiversity loss. However, the mechanisms responsible for this progressive loss of biodiversity are poorly understood. In marine ecosystems, corals play the role of ecosystem engineers, providing essential habitat for hundreds of thousands of species and hence their health is crucial to the stability of the whole ecosystem. Climate change is causing coral bleaching and degradation, and while this has been known for a while, little do we know about the cascading consequences of these events on the complex interrelationships between predators and their prey. The goal of our study was to investigate, under completely natural conditions, the effect of coral degradation on predator-prey interactions. Settlement stage ambon damselfish (Pomacentrus amboinensis), a common tropical fish, were released on patches of healthy or dead corals, and their behaviours in situ were measured, along with their response to injured conspecific cues, a common risk indicator. This study also explored the effect of habitat degradation on natural levels of mortality at a critical life-history transition. We found that juveniles in dead corals displayed risk-prone behaviours, sitting further away and higher up on the reef patch, and failed to respond to predation cues, compared to those on live coral patches. In addition, in situ survival experiments over 48 h indicated that juveniles on dead coral habitats had a 75% increase in predation-related mortality, compared to fish released on live, healthy coral habitats. Our results provide the first of many potential mechanisms through which habitat degradation can impact the relationship between prey and predators in the coral reef ecosystem. As the proportion of dead coral increases, the recruitment and replenishment of coral reef fishes will be threatened, and so will the level of diversity in these biodiversity hot spots. © 2014 The Authors. Journal of Animal Ecology © 2014 British

  3. Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease.

    PubMed

    Emdin, Connor A; Khera, Amit V; Chaffin, Mark; Klarin, Derek; Natarajan, Pradeep; Aragam, Krishna; Haas, Mary; Bick, Alexander; Zekavat, Seyedeh M; Nomura, Akihiro; Ardissino, Diego; Wilson, James G; Schunkert, Heribert; McPherson, Ruth; Watkins, Hugh; Elosua, Roberto; Bown, Matthew J; Samani, Nilesh J; Baber, Usman; Erdmann, Jeanette; Gupta, Namrata; Danesh, John; Chasman, Daniel; Ridker, Paul; Denny, Joshua; Bastarache, Lisa; Lichtman, Judith H; D'Onofrio, Gail; Mattera, Jennifer; Spertus, John A; Sheu, Wayne H-H; Taylor, Kent D; Psaty, Bruce M; Rich, Stephen S; Post, Wendy; Rotter, Jerome I; Chen, Yii-Der Ida; Krumholz, Harlan; Saleheen, Danish; Gabriel, Stacey; Kathiresan, Sekar

    2018-04-24

    Less than 3% of protein-coding genetic variants are predicted to result in loss of protein function through the introduction of a stop codon, frameshift, or the disruption of an essential splice site; however, such predicted loss-of-function (pLOF) variants provide insight into effector transcript and direction of biological effect. In >400,000 UK Biobank participants, we conduct association analyses of 3759 pLOF variants with six metabolic traits, six cardiometabolic diseases, and twelve additional diseases. We identified 18 new low-frequency or rare (allele frequency < 5%) pLOF variant-phenotype associations. pLOF variants in the gene GPR151 protect against obesity and type 2 diabetes, in the gene IL33 against asthma and allergic disease, and in the gene IFIH1 against hypothyroidism. In the gene PDE3B, pLOF variants associate with elevated height, improved body fat distribution and protection from coronary artery disease. Our findings prioritize genes for which pharmacologic mimics of pLOF variants may lower risk for disease.

  4. A FRAMEWORK FOR THE ASSESSMENT OF WILDLIFE HABITAT VALUE OF NEW ENGLAND SALT MARSHES

    EPA Science Inventory

    Resource managers are frequently asked to make decisions that affect the protection and restoration of wetland habitats. The desire is often to base at least some part of this decision process on an assessment of wildlife habitat value, an acknowledged and important wetland func...

  5. Prioritizing Sites for Protection and Restoration for Grizzly Bears (Ursus arctos) in Southwestern Alberta, Canada.

    PubMed

    Braid, Andrew C R; Nielsen, Scott E

    2015-01-01

    As the influence of human activities on natural systems continues to expand, there is a growing need to prioritize not only pristine sites for protection, but also degraded sites for restoration. We present an approach for simultaneously prioritizing sites for protection and restoration that considers landscape patterns for a threatened population of grizzly bears (Ursus arctos) in southwestern Alberta, Canada. We considered tradeoffs between bottom-up (food resource supply) and top-down (mortality risk from roads) factors affecting seasonal habitat quality for bears. Simulated annealing was used to prioritize source-like sites (high habitat productivity, low mortality risk) for protection, as well as sink-like sites (high habitat productivity, high mortality risk) for restoration. Priority source-like habitats identified key conservation areas where future developments should be limited, whereas priority sink-like habitats identified key areas for mitigating road-related mortality risk with access management. Systematic conservation planning methods can be used to complement traditional habitat-based methods for individual focal species by identifying habitats where conservation actions (both protection and restoration) have the highest potential utility.

  6. Confounding factors in the detection of species responses to habitat fragmentation.

    PubMed

    Ewers, Robert M; Didham, Raphael K

    2006-02-01

    Habitat loss has pervasive and disruptive impacts on biodiversity in habitat remnants. The magnitude of the ecological impacts of habitat loss can be exacerbated by the spatial arrangement -- or fragmentation -- of remaining habitat. Fragmentation per se is a landscape-level phenomenon in which species that survive in habitat remnants are confronted with a modified environment of reduced area, increased isolation and novel ecological boundaries. The implications of this for individual organisms are many and varied, because species with differing life history strategies are differentially affected by habitat fragmentation. Here, we review the extensive literature on species responses to habitat fragmentation, and detail the numerous ways in which confounding factors have either masked the detection, or prevented the manifestation, of predicted fragmentation effects. Large numbers of empirical studies continue to document changes in species richness with decreasing habitat area, with positive, negative and no relationships regularly reported. The debate surrounding such widely contrasting results is beginning to be resolved by findings that the expected positive species-area relationship can be masked by matrix-derived spatial subsidies of resources to fragment-dwelling species and by the invasion of matrix-dwelling species into habitat edges. Significant advances have been made recently in our understanding of how species interactions are altered at habitat edges as a result of these changes. Interestingly, changes in biotic and abiotic parameters at edges also make ecological processes more variable than in habitat interiors. Individuals are more likely to encounter habitat edges in fragments with convoluted shapes, leading to increased turnover and variability in population size than in fragments that are compact in shape. Habitat isolation in both space and time disrupts species distribution patterns, with consequent effects on metapopulation dynamics and the

  7. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals.

    PubMed

    Crooks, Kevin R; Burdett, Christopher L; Theobald, David M; King, Sarah R B; Di Marco, Moreno; Rondinini, Carlo; Boitani, Luigi

    2017-07-18

    Although habitat fragmentation is often assumed to be a primary driver of extinction, global patterns of fragmentation and its relationship to extinction risk have not been consistently quantified for any major animal taxon. We developed high-resolution habitat fragmentation models and used phylogenetic comparative methods to quantify the effects of habitat fragmentation on the world's terrestrial mammals, including 4,018 species across 26 taxonomic Orders. Results demonstrate that species with more fragmentation are at greater risk of extinction, even after accounting for the effects of key macroecological predictors, such as body size and geographic range size. Species with higher fragmentation had smaller ranges and a lower proportion of high-suitability habitat within their range, and most high-suitability habitat occurred outside of protected areas, further elevating extinction risk. Our models provide a quantitative evaluation of extinction risk assessments for species, allow for identification of emerging threats in species not classified as threatened, and provide maps of global hotspots of fragmentation for the world's terrestrial mammals. Quantification of habitat fragmentation will help guide threat assessment and strategic priorities for global mammal conservation.

  8. Relationships of field habitat measurements, visual habitat indices, and land cover to benthic macroinvertebrates in urbanized streams of the Santa Clara Valley, California

    USGS Publications Warehouse

    Fend, S.V.; Carter, J.L.; Kearns, F.R.

    2005-01-01

    We evaluated several approaches for measuring natural and anthropogenic habitat characteristics to predict benthic macroinvertebrate assemblages over a range of urban intensity at 85 stream sites in the Santa Clara Valley, California. Land cover was summarized as percentage urban land cover and impervious area within upstream buffers and the upstream subwatersheds. Field measurements characterized water chemistry, channel slope, sediment, and riparian canopy. In . addition to applying the visual-based habitat assessment in U.S. Environmental Protection Agency's rapid bioassessment protocol, we developed a simplified urban habitat assessment index based on turbidity, fine sediment deposition, riparian condition, and channel modification. Natural and anthropogenic habitat variables covaried along longitudinal stream gradients and were highly correlated with elevation. At the scale of the entire watershed, benthic macroinvertebrate measures were equally correlated with variables expressing natural gradients and urbanization effects. When natural gradients were reduced by partitioning sites into ecoregion subsection groupings, habitat variables most highly correlated with macroinvertebrate measures differed between upland and valley floor site groups. Among the valley floor sites, channel slope and physical modification of channel and riparian habitats appeared more important than upstream land cover or water quality in determining macroinvertebrate richness and ordination scores. Among upland sites, effects of upstream reservoir releases on habitat quality appeared important. Rapid habitat evaluation methods appeared to be an effective method for describing habitat features important to benthic macroinvertebrates when adapted for the region and the disturbance of interest. ?? 2005 by the American Fisheries Society.

  9. Remote identification of polar bear maternal den habitat in northern Alaska

    USGS Publications Warehouse

    Durner, George M.; Amstrup, Steven C.; Ambrosius, Ken J.

    2001-01-01

    Polar bears (Ursus maritimus) give birth in dens of ice and snow to protect their altricial young. During the snow-free season, we visited 25 den sites located previously by radiotelemetry and characterized the den site physiognomy. Seven dens occurred in habitats with minimal relief. Eighteen dens (72%) were in coastal and river banks. These "banks" were identifiable on aerial photographs. We then searched high-resolution aerial photographs (n = 3000) for habitats similar to those of the 18 dens. On aerial photos, we mapped 1782 km of bank habitats suitable for denning. Bank habitats comprised 0.18% of our study area between the Colville River and the Tamayariak River in northern Alaska. The final map, which correctly identified 88% of bank denning habitat in this region, will help minimize the potential for disruptions of maternal dens by winter petroleum exploration activities.

  10. Effects of marine reserves versus nursery habitat availability on structure of reef fish communities.

    PubMed

    Nagelkerken, Ivan; Grol, Monique G G; Mumby, Peter J

    2012-01-01

    No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.

  11. Effects of Marine Reserves versus Nursery Habitat Availability on Structure of Reef Fish Communities

    PubMed Central

    Nagelkerken, Ivan; Grol, Monique G. G.; Mumby, Peter J.

    2012-01-01

    No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems. PMID:22675474

  12. Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams

    Treesearch

    T. C. McDonnell; M. R. Sloat; T. J. Sullivan; C. A. Dolloff; P. F. Hessburg; N. A. Povak; W. A Jackson; C. Sams

    2015-01-01

    Stream-dwelling species in the U.S. southern Appalachian Mountains region are particularly vulnerable to climate change and acidification. The objectives of this study were to quantify the spatial extent of contemporary suitable habitat for acid- and thermally sensitive aquatic species and to forecast future habitat loss resulting from expected temperature increases on...

  13. Habitat and food resources of otters (Mustelidae) in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Abdul-Patah, P.; Nur-Syuhada, N.; Md-Nor, S.; Sasaki, H.; Md-Zain, B. M.

    2014-09-01

    Habitat and food resources of otters were studied in several locations in Peninsular Malaysia. A total of 210 fecal samples were collected from April 2010 to March 2011 believed to be of otter's were analyzed for their diet composition and their habitat preferences. The DNA testing conducted revealed that only 126 samples were identified as Lultrogale perspicillata and Aonyx cinereus with 105 and 21 samples, respectively. Habitat analyses revealed that these two species preferred paddy fields and mangroves as their main habitats but L. perspicillata preferred to hunt near habitat with large water bodies, such as mangroves, rivers, ponds, and lakes. A. cinereus on the other hand, were mainly found near land-based habitat, such as paddy fields, casuarinas forest and oil palms near mangroves. Habitats chosen were influenced by their food preferences where L. perspicillata consumed a variety of fish species with a supplementary diet of prawns, small mammals, and amphibians, compared to A. cinereus which consumed less fish and more non-fish food items, such as insects, crabs, and snails. Since, the most of the otter habitats in this study are not located within the protected areas, conservation effort involving administrations, landowners, private organizations and public are necessary.

  14. Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats.

    PubMed

    Eyres, Isobel; Boschetti, Chiara; Crisp, Alastair; Smith, Thomas P; Fontaneto, Diego; Tunnacliffe, Alan; Barraclough, Timothy G

    2015-11-04

    Although prevalent in prokaryotes, horizontal gene transfer (HGT) is rarer in multicellular eukaryotes. Bdelloid rotifers are microscopic animals that contain a higher proportion of horizontally transferred, non-metazoan genes in their genomes than typical of animals. It has been hypothesized that bdelloids incorporate foreign DNA when they repair their chromosomes following double-strand breaks caused by desiccation. HGT might thereby contribute to species divergence and adaptation, as in prokaryotes. If so, we expect that species should differ in their complement of foreign genes, rather than sharing the same set of foreign genes inherited from a common ancestor. Furthermore, there should be more foreign genes in species that desiccate more frequently. We tested these hypotheses by surveying HGT in four congeneric species of bdelloids from different habitats: two from permanent aquatic habitats and two from temporary aquatic habitats that desiccate regularly. Transcriptomes of all four species contain many genes with a closer match to non-metazoan genes than to metazoan genes. Whole genome sequencing of one species confirmed the presence of these foreign genes in the genome. Nearly half of foreign genes are shared between all four species and an outgroup from another family, but many hundreds are unique to particular species, which indicates that HGT is ongoing. Using a dated phylogeny, we estimate an average of 12.8 gains versus 2.0 losses of foreign genes per million years. Consistent with the desiccation hypothesis, the level of HGT is higher in the species that experience regular desiccation events than those that do not. However, HGT still contributed hundreds of foreign genes to the species from permanently aquatic habitats. Foreign genes were mainly enzymes with various annotated functions that include catabolism of complex polysaccharides and stress responses. We found evidence of differential loss of ancestral foreign genes previously associated with

  15. Field Testing Of An Expert Model: Can The Model Predict Habitat Potential For Saltmarsh Birds?

    EPA Science Inventory

    Salt marshes are valuable resources, which provide numerous ecosystem services, including flood protection, fish nursery habitat, and nesting habitat for a number of threatened and endangered species. At the present time, due primarily to coastal development and sea level rise,...

  16. Commercially important species associated with horse mussel (Modiolus modiolus) biogenic reefs: A priority habitat for nature conservation and fisheries benefits.

    PubMed

    Kent, Flora E A; Mair, James M; Newton, Jason; Lindenbaum, Charles; Porter, Joanne S; Sanderson, William G

    2017-05-15

    Horse mussel reefs (Modiolus modiolus) are biodiversity hotspots afforded protection by Marine Protected Areas (MPAs) in the NE Atlantic. In this study, horse mussel reefs, cobble habitats and sandy habitats were assessed using underwater visual census and drop-down video techniques in three UK regions. Megafauna were enumerated, differences in community composition and individual species abundances were analysed. Samples of conspicuous megafauna were also collected from horse mussel reefs in Orkney for stable isotope analysis. Communities of conspicuous megafauna were different between horse mussel habitats and other habitats throughout their range. Three commercially important species: whelks (Buccinum undatum), queen scallops (Aequipecten opercularis) and spider crabs (Maja brachydactyla) were significantly more abundant (by as much as 20 times) on horse mussel reefs than elsewhere. Isotopic analysis provided insights into their trophic relationship with the horse mussel reef. Protection of M. modiolus habitat can achieve biodiversity conservation objectives whilst benefiting fisheries also. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Impact of Wenchuan earthquake on the giant panda habitat in Wolong National Nature Reserve, China

    NASA Astrophysics Data System (ADS)

    Kou, Cheng; Xu, Yu-Yue; Ke, Chang-Qing; He, Yu-Ting

    2014-01-01

    Monitoring the change of the giant panda habitat is essential to protect this endangered species. The Wolong National Nature Reserve (WNNR) of China, the giant panda habitat, was struck by the Wenchuan earthquake (M=8.0) on May 12, 2008, and was seriously damaged. Landsat images covering the WNNR on four dates, one before and three after the earthquake, are classified using support vector machines to generate land cover maps (with an overall accuracy of ˜90% and Kappa coefficients of ˜0.86). The habitat suitability index and weighted usable area (WUA) are calculated to evaluate the changes of the habitat suitability of the WNNR. The results indicate that the forest area dropped by ˜10% due to the earthquake. The forest located in the east of Wolong town, the home of numerous giant pandas, suffered the most. The WUA decreased significantly after the earthquake, and was showing improvement in 2013, although still not fully recovered to the level of priori earthquake. The habitat between 1200 and 1300 m above sea level (m a.s.l.) was particularly vulnerable and was slowly recovering. Further effective management is necessary to restore and protect the giant panda habitat.

  18. Evaluation of New Zealand’s High-Seas Bottom Trawl Closures Using Predictive Habitat Models and Quantitative Risk Assessment

    PubMed Central

    Penney, Andrew J.; Guinotte, John M.

    2013-01-01

    United Nations General Assembly Resolution 61/105 on sustainable fisheries (UNGA 2007) establishes three difficult questions for participants in high-seas bottom fisheries to answer: 1) Where are vulnerable marine systems (VMEs) likely to occur?; 2) What is the likelihood of fisheries interaction with these VMEs?; and 3) What might qualify as adequate conservation and management measures to prevent significant adverse impacts? This paper develops an approach to answering these questions for bottom trawling activities in the Convention Area of the South Pacific Regional Fisheries Management Organisation (SPRFMO) within a quantitative risk assessment and cost : benefit analysis framework. The predicted distribution of deep-sea corals from habitat suitability models is used to answer the first question. Distribution of historical bottom trawl effort is used to answer the second, with estimates of seabed areas swept by bottom trawlers being used to develop discounting factors for reduced biodiversity in previously fished areas. These are used in a quantitative ecological risk assessment approach to guide spatial protection planning to address the third question. The coral VME likelihood (average, discounted, predicted coral habitat suitability) of existing spatial closures implemented by New Zealand within the SPRFMO area is evaluated. Historical catch is used as a measure of cost to industry in a cost : benefit analysis of alternative spatial closure scenarios. Results indicate that current closures within the New Zealand SPRFMO area bottom trawl footprint are suboptimal for protection of VMEs. Examples of alternative trawl closure scenarios are provided to illustrate how the approach could be used to optimise protection of VMEs under chosen management objectives, balancing protection of VMEs against economic loss to commercial fishers from closure of historically fished areas. PMID:24358162

  19. Scenarios of large mammal loss in Europe for the 21st century.

    PubMed

    Rondinini, Carlo; Visconti, Piero

    2015-08-01

    Distributions and populations of large mammals are declining globally, leading to an increase in their extinction risk. We forecasted the distribution of extant European large mammals (17 carnivores and 10 ungulates) based on 2 Rio+20 scenarios of socioeconomic development: business as usual and reduced impact through changes in human consumption of natural resources. These scenarios are linked to scenarios of land-use change and climate change through the spatial allocation of land conversion up to 2050. We used a hierarchical framework to forecast the extent and distribution of mammal habitat based on species' habitat preferences (as described in the International Union for Conservation of Nature Red List database) within a suitable climatic space fitted to the species' current geographic range. We analyzed the geographic and taxonomic variation of habitat loss for large mammals and the potential effect of the reduced impact policy on loss mitigation. Averaging across scenarios, European large mammals were predicted to lose 10% of their habitat by 2050 (25% in the worst-case scenario). Predicted loss was much higher for species in northwestern Europe, where habitat is expected to be lost due to climate and land-use change. Change in human consumption patterns was predicted to substantially improve the conservation of habitat for European large mammals, but not enough to reduce extinction risk if species cannot adapt locally to climate change or disperse. © 2015 Society for Conservation Biology.

  20. Threats from urban expansion, agricultural transformation and forest loss on global conservation priority areas.

    PubMed

    Veach, Victoria; Moilanen, Atte; Di Minin, Enrico

    2017-01-01

    Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results

  1. Threats from urban expansion, agricultural transformation and forest loss on global conservation priority areas

    PubMed Central

    Moilanen, Atte; Di Minin, Enrico

    2017-01-01

    Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results

  2. Broad-scale lake expansion and flooding inundates essential wood bison habitat

    NASA Astrophysics Data System (ADS)

    Korosi, Jennifer B.; Thienpont, Joshua R.; Pisaric, Michael F. J.; Demontigny, Peter; Perreault, Joelle T.; McDonald, Jamylynn; Simpson, Myrna J.; Armstrong, Terry; Kokelj, Steven V.; Smol, John P.; Blais, Jules M.

    2017-02-01

    Understanding the interaction between the response of a complex ecosystem to climate change and the protection of vulnerable wildlife species is essential for conservation efforts. In the Northwest Territories (Canada), the recent movement of the Mackenzie wood bison herd (Bison bison athabascae) out of their designated territory has been postulated as a response to the loss of essential habitat following regional lake expansion. We show that the proportion of this landscape occupied by water doubled since 1986 and the timing of lake expansion corresponds to bison movements out of the Mackenzie Bison Sanctuary. Historical reconstructions using proxy data in dated sediment cores show that the scale of recent lake expansion is unmatched over at least the last several hundred years. We conclude that recent lake expansion represents a fundamental alteration of the structure and function of this ecosystem and its use by Mackenzie wood bison, in response to climate change.

  3. Impacts of climate change and renewable energy development on habitat of an endemic squirrel, Xerospermophilus mohavensis, in the Mojave Desert, USA

    USGS Publications Warehouse

    Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Leitner, Philip; Matocq, Marjorie D.; Weisberg, Peter J.; Dilts, Thomas E.

    2016-01-01

    Predicting changes in species distributions under a changing climate is becoming widespread with the use of species distribution models (SDMs). The resulting predictions of future potential habitat can be cast in light of planned land use changes, such as urban expansion and energy development to identify areas with potential conflict. However, SDMs rarely incorporate an understanding of dispersal capacity, and therefore assume unlimited dispersal in potential range shifts under uncertain climate futures. We use SDMs to predict future distributions of the Mojave ground squirrel, Xerospermophilus mohavensis Merriam, and incorporate partial dispersal models informed by field data on juvenile dispersal to assess projected impact of climate change and energy development on future distributions of X. mohavensis. Our models predict loss of extant habitat, but also concurrent gains of new habitat under two scenarios of future climate change. Under the B1 emissions scenario- a storyline describing a convergent world with emphasis on curbing greenhouse gas emissions- our models predicted losses of up to 64% of extant habitat by 2080, while under the increased greenhouse gas emissions of the A2 scenario, we suggest losses of 56%. New potential habitat may become available to X. mohavensis, thereby offsetting as much as 6330 km2 (50%) of the current habitat lost. Habitat lost due to planned energy development was marginal compared to habitat lost from changing climates, but disproportionately affected current habitat. Future areas of overlap in potential habitat between the two climate change scenarios are identified and discussed in context of proposed energy development.

  4. Global screening for Critical Habitat in the terrestrial realm

    PubMed Central

    Blyth, Simon; Bennun, Leon; Butchart, Stuart H. M.; Hoffmann, Michael; Burgess, Neil D.; Cuttelod, Annabelle; Jones, Matt I.; Kapos, Val; Pilgrim, John; Tolley, Melissa J.; Underwood, Emma C.; Weatherdon, Lauren V.

    2018-01-01

    Critical Habitat has become an increasingly important concept used by the finance sector and businesses to identify areas of high biodiversity value. The International Finance Corporation (IFC) defines Critical Habitat in their highly influential Performance Standard 6 (PS6), requiring projects in Critical Habitat to achieve a net gain of biodiversity. Here we present a global screening layer of Critical Habitat in the terrestrial realm, derived from global spatial datasets covering the distributions of 12 biodiversity features aligned with guidance provided by the IFC. Each biodiversity feature is categorised as ‘likely’ or ‘potential’ Critical Habitat based on: 1. Alignment between the biodiversity feature and the IFC Critical Habitat definition; and 2. Suitability of the spatial resolution for indicating a feature’s presence on the ground. Following the initial screening process, Critical Habitat must then be assessed in-situ by a qualified assessor. This analysis indicates that a total of 10% and 5% of the global terrestrial environment can be considered as likely and potential Critical Habitat, respectively, while the remaining 85% did not overlap with any of the biodiversity features assessed and was classified as ‘unknown’. Likely Critical Habitat was determined principally by the occurrence of Key Biodiversity Areas and Protected Areas. Potential Critical Habitat was predominantly characterised by data representing highly threatened and unique ecosystems such as ever-wet tropical forests and tropical dry forests. The areas we identified as likely or potential Critical Habitat are based on the best available global-scale data for the terrestrial realm that is aligned with IFC’s Critical Habitat definition. Our results can help businesses screen potential development sites at the early project stage based on a range of biodiversity features. However, the study also demonstrates several important data gaps and highlights the need to incorporate

  5. Global screening for Critical Habitat in the terrestrial realm.

    PubMed

    Brauneder, Kerstin M; Montes, Chloe; Blyth, Simon; Bennun, Leon; Butchart, Stuart H M; Hoffmann, Michael; Burgess, Neil D; Cuttelod, Annabelle; Jones, Matt I; Kapos, Val; Pilgrim, John; Tolley, Melissa J; Underwood, Emma C; Weatherdon, Lauren V; Brooks, Sharon E

    2018-01-01

    Critical Habitat has become an increasingly important concept used by the finance sector and businesses to identify areas of high biodiversity value. The International Finance Corporation (IFC) defines Critical Habitat in their highly influential Performance Standard 6 (PS6), requiring projects in Critical Habitat to achieve a net gain of biodiversity. Here we present a global screening layer of Critical Habitat in the terrestrial realm, derived from global spatial datasets covering the distributions of 12 biodiversity features aligned with guidance provided by the IFC. Each biodiversity feature is categorised as 'likely' or 'potential' Critical Habitat based on: 1. Alignment between the biodiversity feature and the IFC Critical Habitat definition; and 2. Suitability of the spatial resolution for indicating a feature's presence on the ground. Following the initial screening process, Critical Habitat must then be assessed in-situ by a qualified assessor. This analysis indicates that a total of 10% and 5% of the global terrestrial environment can be considered as likely and potential Critical Habitat, respectively, while the remaining 85% did not overlap with any of the biodiversity features assessed and was classified as 'unknown'. Likely Critical Habitat was determined principally by the occurrence of Key Biodiversity Areas and Protected Areas. Potential Critical Habitat was predominantly characterised by data representing highly threatened and unique ecosystems such as ever-wet tropical forests and tropical dry forests. The areas we identified as likely or potential Critical Habitat are based on the best available global-scale data for the terrestrial realm that is aligned with IFC's Critical Habitat definition. Our results can help businesses screen potential development sites at the early project stage based on a range of biodiversity features. However, the study also demonstrates several important data gaps and highlights the need to incorporate new and

  6. UNG protects B cells from AID-induced telomere loss

    PubMed Central

    Cortizas, Elena M.; Zahn, Astrid; Safavi, Shiva

    2016-01-01

    Activation-induced deaminase (AID) initiates antibody gene diversification by creating G:U mismatches in the immunoglobulin loci. However, AID also deaminates nonimmunoglobulin genes, and failure to faithfully repair these off-target lesions can cause B cell lymphoma. In this study, we identify a mechanism by which processing of G:U produced by AID at the telomeres can eliminate B cells at risk of genomic instability. We show that telomeres are off-target substrates of AID and that B cell proliferation depends on protective repair by uracil-DNA glycosylase (UNG). In contrast, in the absence of UNG activity, deleterious processing by mismatch repair leads to telomere loss and defective cell proliferation. Indeed, we show that UNG deficiency reduces B cell clonal expansion in the germinal center in mice and blocks the proliferation of tumor B cells expressing AID. We propose that AID-induced damage at telomeres acts as a fail-safe mechanism to limit the tumor promoting activity of AID when it overwhelms uracil excision repair. PMID:27697833

  7. Forecasting relative impacts of land use on anadromous fish habitat to guide conservation planning.

    PubMed

    Lohse, Kathleen A; Newburn, David A; Opperman, Jeff J; Merenlender, Adina M

    2008-03-01

    Land use change can adversely affect water quality and freshwater ecosystems, yet our ability to predict how systems will respond to different land uses, particularly rural-residential development, is limited by data availability and our understanding of biophysical thresholds. In this study, we use spatially explicit parcel-level data to examine the influence of land use (including urban, rural-residential, and vineyard) on salmon spawning substrate quality in tributaries of the Russian River in California. We develop a land use change model to forecast the probability of losses in high-quality spawning habitat and recommend priority areas for incentive-based land conservation efforts. Ordinal logistic regression results indicate that all three land use types were negatively associated with spawning substrate quality, with urban development having the largest marginal impact. For two reasons, however, forecasted rural-residential and vineyard development have much larger influences on decreasing spawning substrate quality relative to urban development. First, the land use change model estimates 10 times greater land use conversion to both rural-residential and vineyard compared to urban. Second, forecasted urban development is concentrated in the most developed watersheds, which already have poor spawning substrate quality, such that the marginal response to future urban development is less significant. To meet the goals of protecting salmonid spawning habitat and optimizing investments in salmon recovery, we suggest investing in watersheds where future rural-residential development and vineyards threaten high-quality fish habitat, rather than the most developed watersheds, where land values are higher.

  8. Northern protected areas will become important refuges for biodiversity tracking suitable climates.

    PubMed

    Berteaux, Dominique; Ricard, Marylène; St-Laurent, Martin-Hugues; Casajus, Nicolas; Périé, Catherine; Beauregard, Frieda; de Blois, Sylvie

    2018-03-15

    The Northern Biodiversity Paradox predicts that, despite its globally negative effects on biodiversity, climate change will increase biodiversity in northern regions where many species are limited by low temperatures. We assessed the potential impacts of climate change on the biodiversity of a northern network of 1,749 protected areas spread over >600,000 km 2 in Quebec, Canada. Using ecological niche modeling, we calculated potential changes in the probability of occurrence of 529 species to evaluate the potential impacts of climate change on (1) species gain, loss, turnover, and richness in protected areas, (2) representativity of protected areas, and (3) extent of species ranges located in protected areas. We predict a major species turnover over time, with 49% of total protected land area potentially experiencing a species turnover >80%. We also predict increases in regional species richness, representativity of protected areas, and species protection provided by protected areas. Although we did not model the likelihood of species colonising habitats that become suitable as a result of climate change, northern protected areas should ultimately become important refuges for species tracking climate northward. This is the first study to examine in such details the potential effects of climate change on a northern protected area network.

  9. KENNEDY SPACE CENTER, FLA. - A blue-black indigo snake is seen crossing a roadway inside the Center. Indigo snakes are active during the day and spend a great deal of time foraging for food and mates. They often hide in gopher tortoise burrows (the tortoises don’t seem to mind) in sandy scrub habitats. The longest snakes in the United States, some individuals reach almost nine feet in length. In 1978, the U.S. Fish and Wildlife Service listed indigo snakes as a threatened species in all portions of its range; federal protection has helped to stop collection of these snakes from the wild. The numbers of indigo snakes are still declining throughout most of the Southeast, especially Georgia, Florida, Alabama, and Mississippi. Habitat loss and fragmentation is the main problem facing these snakes today. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - A blue-black indigo snake is seen crossing a roadway inside the Center. Indigo snakes are active during the day and spend a great deal of time foraging for food and mates. They often hide in gopher tortoise burrows (the tortoises don’t seem to mind) in sandy scrub habitats. The longest snakes in the United States, some individuals reach almost nine feet in length. In 1978, the U.S. Fish and Wildlife Service listed indigo snakes as a threatened species in all portions of its range; federal protection has helped to stop collection of these snakes from the wild. The numbers of indigo snakes are still declining throughout most of the Southeast, especially Georgia, Florida, Alabama, and Mississippi. Habitat loss and fragmentation is the main problem facing these snakes today. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles.

  10. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change

    NASA Astrophysics Data System (ADS)

    Yates, K. K.; Rogers, C. S.; Herlan, J. J.; Brooks, G. R.; Smiley, N. A.; Larson, R. A.

    2014-08-01

    Risk analyses indicate that more than 90% of the world's reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under "business-as-usual" climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. Here we characterize the first natural, non-reef coral refuge from thermal stress and ocean acidification and identify resiliency factors for mangrove-coral habitats. We measured diurnal and seasonal variations in temperature, salinity, photosynthetically active radiation (PAR), and seawater chemistry; characterized substrate parameters; and examined water circulation patterns in mangrove communities where scleractinian corals are growing attached to and under mangrove prop roots in Hurricane Hole, St. John, US Virgin Islands. Additionally, we inventoried the coral species and quantified incidences of coral bleaching, mortality, and recovery for two major reef-building corals, Colpophyllia natans and Diploria labyrinthiformis, growing in mangrove-shaded and exposed (unshaded) areas. Over 30 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies were living shaded by mangroves, and no shaded colonies were bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies were bleached. A combination of substrate and habitat heterogeneity, proximity of different habitat types, hydrographic

  11. Macroalgal Composition Determines the Structure of Benthic Assemblages Colonizing Fragmented Habitats.

    PubMed

    Matias, Miguel G; Arenas, Francisco; Rubal, Marcos; Pinto, Isabel S

    2015-01-01

    Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats.

  12. Behavioural and physiological response of trout to winter habitat in tailwaters in Wyoming, USA

    USGS Publications Warehouse

    Annear, T.C.; Hubert, W.; Simpkins, D.; Hebdon, L.

    2002-01-01

    Fisheries managers have often suggested that survival of trout during the winter is a major factor affecting population densities in many stream ecosystems in the Rocky Mountains. In Wyoming, trout population reductions from fall to spring in excess of 90% have been documented in some reservoir tailwaters. Though biologists have surmised that these reductions were the result of either mortality or emigration from some river sections, the specific mechanisms have not been defined and the factors leading to the trout loss are unknown. This is a review of four studies that were conducted or funded between 1991 and 1998 by the Wyoming Game and Fish Department to understand the extent of overwinter losses, identify some of the mechanisms leading to those conditions and develop management strategies to help avoid those impacts. Winter studies were conducted on tailwater fisheries in the Green, North Platte, Bighorn and Shoshone rivers to document trout population dynamics, assess physical habitat availability, evaluate trout movement and habitat selection, and understand the relationships between food availability and bioenergetic relationships. Results indicate that winter trout losses are extreme in some years, that trout movement and habitat selection are affected by supercooled flows, and that mortality is probably not directly due to starvation. The combination of physiological impairment with frequently altered habitat availability probably leads to indirect mortality from predators and other factors. Copyright ?? 2002 John Wiley & Sons, Ltd.

  13. Possible shift in macaque trophic level following a century of biodiversity loss in Singapore.

    PubMed

    Gibson, Luke

    2011-07-01

    Biodiversity loss in tropical forests is a major problem in conservation biology, and nowhere is this more dire than in Southeast Asia. Deforestation and the associated loss of species may trigger shifts in habitat and feeding preferences of persisting species. In this study, I compared the habitat use and diet of long-tailed macaque (Macaca fascicularis) populations in Singapore from two time periods: museum specimens originally collected between 1893 and 1944, and living macaques sampled in 2009. I collected hair and used stable carbon and nitrogen isotope analysis to identify temporal changes in dietary source and trophic position, respectively. δ(13)C ratios were virtually identical, suggesting that macaques foraged in similar habitats during both time periods. However, δ(15)N ratios decreased considerably over time, suggesting that macaques today feed at a lower trophic level than previously. This decline in trophic level may be because of the disappearance or decline of other species that compete with macaques for fruit. This study highlights the effect of biodiversity loss on persisting species in degraded habitats of Southeast Asia, and improves our understanding of how species will adapt to further human-driven changes in tropical forest habitats.

  14. Modeling marine protected areas for threatened eiders in a climatically changing Bering Sea.

    PubMed

    Lovvorn, James R; Grebmeier, Jacqueline M; Cooper, Lee W; Bump, Joseph K; Richman, Samantha E

    2009-09-01

    Delineating protected areas for sensitive species is a growing challenge as changing climate alters the geographic pattern of habitats as well as human responses to those shifts. When human impacts are expected within projected ranges of threatened species, there is often demand to demarcate the minimum habitat required to ensure the species' persistence. Because diminished or wide-ranging populations may not occupy all viable (and needed) habitat at once, one must identify thresholds of resources that will support the species even in unoccupied areas. Long-term data on the shifting mosaic of critical resources may indicate ranges of future variability. We addressed these issues for the Spectacled Eider (Somateria fischeri), a federally threatened species that winters in pack ice of the Bering Sea. Changing climate has decreased ice cover and severely reduced the eiders' benthic prey and has increased prospects for expansion of bottom trawling that may further affect prey communities. To assess long-term changes in habitats that will support eiders, we linked data on benthic prey, sea ice, and weather from 1970 to 2001 with a spatially explicit simulation model of eider energy balance that integrated field, laboratory, and remote-sensing studies. Areas estimated to have prey densities adequate for eiders in 1970-1974 did not include most areas that were viable 20 years later (1993-1994). Unless the entire area with adequate prey in 1993-1994 had been protected, the much reduced viable area in 1999-2001 might well have been excluded. During long non-foraging periods (as at night), eiders can save much energy by resting on ice vs. floating on water; thus, loss of ice cover in the future might substantially decrease the area in which prey densities are adequate to offset the eiders' energy needs. For wide-ranging benthivores such as eiders, our results emphasize that fixed protected areas based on current conditions can be too small or inflexible to subsume long

  15. Reef Fishes in Biodiversity Hotspots Are at Greatest Risk from Loss of Coral Species

    PubMed Central

    Holbrook, Sally J.; Schmitt, Russell J.; Messmer, Vanessa; Brooks, Andrew J.; Srinivasan, Maya; Munday, Philip L.; Jones, Geoffrey P.

    2015-01-01

    Coral reef ecosystems are under a variety of threats from global change and anthropogenic disturbances that are reducing the number and type of coral species on reefs. Coral reefs support upwards of one third of all marine species of fish, so the loss of coral habitat may have substantial consequences to local fish diversity. We posit that the effects of habitat degradation will be most severe in coral regions with highest biodiversity of fishes due to greater specialization by fishes for particular coral habitats. Our novel approach to this important but untested hypothesis was to conduct the same field experiment at three geographic locations across the Indo-Pacific biodiversity gradient (Papua New Guinea; Great Barrier Reef, Australia; French Polynesia). Specifically, we experimentally explored whether the response of local fish communities to identical changes in diversity of habitat-providing corals was independent of the size of the regional species pool of fishes. We found that the proportional reduction (sensitivity) in fish biodiversity to loss of coral diversity was greater for regions with larger background species pools, reflecting variation in the degree of habitat specialization of fishes across the Indo-Pacific diversity gradient. This result implies that habitat-associated fish in diversity hotspots are at greater risk of local extinction to a given loss of habitat diversity compared to regions with lower species richness. This mechanism, related to the positive relationship between habitat specialization and regional biodiversity, and the elevated extinction risk this poses for biodiversity hotspots, may apply to species in other types of ecosystems. PMID:25970588

  16. Reef fishes in biodiversity hotspots are at greatest risk from loss of coral species.

    PubMed

    Holbrook, Sally J; Schmitt, Russell J; Messmer, Vanessa; Brooks, Andrew J; Srinivasan, Maya; Munday, Philip L; Jones, Geoffrey P

    2015-01-01

    Coral reef ecosystems are under a variety of threats from global change and anthropogenic disturbances that are reducing the number and type of coral species on reefs. Coral reefs support upwards of one third of all marine species of fish, so the loss of coral habitat may have substantial consequences to local fish diversity. We posit that the effects of habitat degradation will be most severe in coral regions with highest biodiversity of fishes due to greater specialization by fishes for particular coral habitats. Our novel approach to this important but untested hypothesis was to conduct the same field experiment at three geographic locations across the Indo-Pacific biodiversity gradient (Papua New Guinea; Great Barrier Reef, Australia; French Polynesia). Specifically, we experimentally explored whether the response of local fish communities to identical changes in diversity of habitat-providing corals was independent of the size of the regional species pool of fishes. We found that the proportional reduction (sensitivity) in fish biodiversity to loss of coral diversity was greater for regions with larger background species pools, reflecting variation in the degree of habitat specialization of fishes across the Indo-Pacific diversity gradient. This result implies that habitat-associated fish in diversity hotspots are at greater risk of local extinction to a given loss of habitat diversity compared to regions with lower species richness. This mechanism, related to the positive relationship between habitat specialization and regional biodiversity, and the elevated extinction risk this poses for biodiversity hotspots, may apply to species in other types of ecosystems.

  17. Cyber security risk management: public policy implications of correlated risk, imperfect ability to prove loss, and observability of self-protection.

    PubMed

    Oğüt, Hulisi; Raghunathan, Srinivasan; Menon, Nirup

    2011-03-01

    The correlated nature of security breach risks, the imperfect ability to prove loss from a breach to an insurer, and the inability of insurers and external agents to observe firms' self-protection efforts have posed significant challenges to cyber security risk management. Our analysis finds that a firm invests less than the social optimal levels in self-protection and in insurance when risks are correlated and the ability to prove loss is imperfect. We find that the appropriate social intervention policy to induce a firm to invest at socially optimal levels depends on whether insurers can verify a firm's self-protection levels. If self-protection of a firm is observable to an insurer so that it can design a contract that is contingent on the self-protection level, then self-protection and insurance behave as complements. In this case, a social planner can induce a firm to choose the socially optimal self-protection and insurance levels by offering a subsidy on self-protection. We also find that providing a subsidy on insurance does not provide a similar inducement to a firm. If self-protection of a firm is not observable to an insurer, then self-protection and insurance behave as substitutes. In this case, a social planner should tax the insurance premium to achieve socially optimal results. The results of our analysis hold regardless of whether the insurance market is perfectly competitive or not, implying that solely reforming the currently imperfect insurance market is insufficient to achieve the efficient outcome in cyber security risk management. © 2010 Society for Risk Analysis.

  18. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.

    PubMed

    Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C

    2015-08-01

    Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by

  19. Structural Concepts and Materials for Lunar Exploration Habitats

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Watson, Judith J.; Singhal, Surendra N.

    2006-01-01

    A new project within the Exploration Systems Mission Directorate s Technology Development Program at NASA involves development of lightweight structures and low temperature mechanisms for Lunar and Mars missions. The Structures and Mechanisms project is to develop advanced structure technology for the primary structure of various pressurized elements needed to implement the Vision for Space Exploration. The goals are to significantly enhance structural systems for man-rated pressurized structures by 1) lowering mass and/or improving efficient volume for reduced launch costs, 2) improving performance to reduce risk and extend life, and 3) improving manufacturing and processing to reduce costs. The targeted application of the technology is to provide for the primary structure of the pressurized elements of the lunar lander for both sortie and outpost missions, and surface habitats for the outpost missions. The paper presents concepts for habitats that support six month (and longer) lunar outpost missions. Both rigid and flexible habitat wall systems are discussed. The challenges of achieving a multi-functional habitat that provides micro-meteoroid, radiation, and thermal protection for explorers are identified.

  20. A single launch lunar habitat derived from an NSTS external tank

    NASA Technical Reports Server (NTRS)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using a spent External Tank from the National Space Transportation System (Shuttle) to derive a Lunar habitat is described. The concept is that the External Tank is carried into Low-Earth Orbit (LEO) where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person Lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS Orbiter can place the External Tank in LEO, provide orbiter astronauts for disassembly of the External Tank, and transport the required subsystem hardware for outfitting the Lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen tank-intertank modifications utilize existing structures and openings for human access without compromising the structural integrity of the tank. The modification includes installation of living quarters, instrumentation, and an air lock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal-control, environmental-control and life-support, and propulsion. The converted Lunar habitat is designed for unmanned transport and autonomous soft landing on the Lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyor. The Lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a Lunar lander for crew changeover and resupply.

  1. Breeding loggerhead marine turtles Caretta caretta in Dry Tortugas National Park, USA, show high fidelity to diverse habitats near nesting beaches

    USGS Publications Warehouse

    Hart, Kristen M.; Zawada, David G.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko

    2016-01-01

    We used satellite telemetry to identify in-water habitat used by individuals in the smallest North-west Atlantic subpopulation of adult nesting loggerhead turtles Caretta caretta during the breeding season. During 2010, 2011 and 2012 breeding periods, a total of 20 adult females used habitats proximal to nesting beaches with various levels of protection within Dry Tortugas National Park. We then used a rapid, high-resolution, digital imaging system to map habitat adjacent to nesting beaches, revealing the diversity and distribution of available benthic cover. Turtle behaviour showing measurable site-fidelity to these diverse habitats has implications for managing protected areas and human activities within them. Protecting diverse benthic areas adjacent to loggerhead turtle nesting beaches here and elsewhere could provide benefits for overall biodiversity conservation.

  2. Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting

    PubMed Central

    Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B

    2014-01-01

    Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is “biodiversity offsetting” (wherein biodiversity impacted is “replaced” through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of “linear” infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with “hub” infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km2 across the Ustyurt (total ∼ 100,000 km2), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species

  3. Predicting sea-level rise vulnerability of terrestrial habitat and wildlife of the Northwestern Hawaiian Islands

    USGS Publications Warehouse

    Reynolds, Michelle H.; Berkowitz, Paul; Courtot, Karen N.; Krause, Crystal M.; Reynolds, Michelle H.; Berkowitz, Paul; Courtot, Karen N.; Krause, Crystal M.

    2012-01-01

    potential losses of nesting habitat from SLR and wave-driven inundation. We observed far greater potential impacts of SLR to wildlife with the dynamic wave-driven modeling approach than with the passive modeling approach. Depending on SLR scenario and coastal orientation, during storms under a +2.00 m SLR scenario, the wave-driven inundation model predicted three times more inundation than the passive model (17.2 percent of total terrestrial area versus 4.6 percent, respectively). Large-wave events generally added 1 m of water height to passive inundation surfaces, therefore our dynamic models (during storm events) forecasted comparable inundation extents earlier than passive models. Although wave-driven water levels were highest in the northwest quadrant of Laysan Island, the greatest extent of inundation occurred in the southeast where coastal dunes less than 3 m above mean sea level provide little protection from wave-driven inundation. When wave-driven inundation was included in the SLR model for Laysan Island greater nesting habitat loss and potential impacts on wildlife population dynamics were predicted. The consequences of habitat loss due to SLR may be worse for species with colonies in the wave-exposed coastal zones (for example, Black-footed Albatross) and for populations already near the island's carrying capacity (for example, Laysan Teal). Species whose peak incubation and chick-rearing periods coincide with seasonally high wave heights also will be increasingly vulnerable, especially those species nesting on the ground in areas vulnerable to inundation, such as Gray-backed Tern and Black-footed Albatross. Other species that have space for population growth, or are not restricted to a narrow range of habitat types on Laysan (for instance, Sooty Terns), may be less sensitive to habitat loss from SLR over the next century. Our assessments of inundation risk, habitat loss, and wildlife species vulnerability synthesize current knowledge about individual islands

  4. Desert tortoise use of burned habitat in the Eastern Mojave desert

    USGS Publications Warehouse

    Drake, Karla K.; Esque, Todd C.; Nussear, Kenneth E.; DeFalco, Lesley; Scoles, Sara; Modlin, Andrew T.; Medica, Philip A.

    2015-01-01

    Wildfires burned 24,254 ha of critical habitat designated for the recovery of the threatened Mojave desert tortoise (Gopherus agassizii) in southern Nevada during 2005. The proliferation of non-native annual grasses has increased wildfire frequency and extent in recent decades and continues to accelerate the conversion of tortoise habitat across the Mojave Desert. Immediate changes to vegetation are expected to reduce quality of critical habitat, yet whether tortoises will use burned and recovering habitat differently from intact unburned habitat is unknown. We compared movement patterns, home-range size, behavior, microhabitat use, reproduction, and survival for adult desert tortoises located in, and adjacent to, burned habitat to understand how tortoises respond to recovering burned habitat. Approximately 45% of home ranges in the post-fire environment contained burned habitat, and numerous observations (n = 12,223) corroborated tortoise use of both habitat types (52% unburned, 48% burned). Tortoises moved progressively deeper into burned habitat during the first 5 years following the fire, frequently foraging in burned habitats that had abundant annual plants, and returning to adjacent unburned habitat for cover provided by intact perennial vegetation. However, by years 6 and 7, the live cover of the short-lived herbaceous perennial desert globemallow (Sphaeralcea ambigua) that typically re-colonizes burned areas declined, resulting in a contraction of tortoise movements from the burned areas. Health and egg production were similar between burned and unburned areas indicating that tortoises were able to acquire necessary resources using both areas. This study documents that adult Mojave desert tortoises continue to use habitat burned once by wildfire. Thus, continued management of this burned habitat may contribute toward the recovery of the species in the face of many sources of habitat loss.

  5. Fragmentation of the Habitat of Wild Ungulates by Anthropogenic Barriers in Mongolia

    PubMed Central

    Ito, Takehiko Y.; Lhagvasuren, Badamjav; Tsunekawa, Atsushi; Shinoda, Masato; Takatsuki, Seiki; Buuveibaatar, Bayarbaatar; Chimeddorj, Buyanaa

    2013-01-01

    Habitat loss and habitat fragmentation caused by anthropogenic activities are the main factors that constrain long-distance movement of ungulates. Mongolian gazelles (Procapra gutturosa) and Asiatic wild asses (Equus hemionus) in Mongolia are facing habitat fragmentation and loss. To better understand how their movements respond to potential anthropogenic and natural barriers, we tracked 24 Mongolian gazelles and 12 wild asses near the Ulaanbaatar–Beijing Railroad and the fenced international border between Mongolia and China between 2002 and 2012. None of the tracked gazelles crossed the railroad, even though gazelles were captured on both sides of the tracks at the start of the study. Similarly, we did not observe cross-border movements between Mongolia and China for either species, even though some animals used areas adjacent to the border. The both species used close areas to the anthropogenic barriers more frequently during winter than summer. These results suggest strong impacts by the artificial barriers. The construction of new railroads and roads to permit mining and other resource development therefore creates the threat of further habitat fragmentation, because the planned routes will divide the remaining non-fragmented habitats of the ungulates into smaller pieces. To conserve long-distance movement of the ungulates in this area, it will be necessary to remove or mitigate the barrier effects of the existing and planned roads and railroads and to adopt a landscape-level approach to allow access by ungulates to wide ranges throughout their distribution. PMID:23437291

  6. Gulf sturgeon spawning migration and habitat in the Choctawhatchee River system, Alabama-Florida

    USGS Publications Warehouse

    Fox, D.A.; Hightower, J.E.; Parauka, F.M.

    2000-01-01

    Information about spawning migration and spawning habitat is essential to maintain and ultimately restore populations of endangered and threatened species of anadromous fish. We used ultrasonic and radiotelemetry to monitor the movements of 35 adult Gulf sturgeon Acipenser oxyrinchus desotoi (a subspecies of the Atlantic sturgeon A. oxyrinchus) as they moved between Choctawhatchee Bay and the Choctawhatchee River system during the spring of 1996 and 1997. Histological analysis of gonadal biopsies was used to determine the sex and reproductive status of individuals. Telemetry results and egg sampling were used to identify Gulf sturgeon spawning sites and to examine the roles that sex and reproductive status play in migratory behavior. Fertilized Gulf sturgeon eggs were collected in six locations in both the upper Choctawhatchee and Pea rivers. Hard bottom substrate, steep banks, and relatively high flows characterized collection sites. Ripe Gulf sturgeon occupied these spawning areas from late March through early May, which included the interval when Gulf sturgeon eggs were collected. For both sexes, ripe fish entered the Choctawhatchee River significantly earlier and at a lower water temperature and migrated further upstream than did nonripe fish. Males entered the Choctawhatchee River at a lower water temperature than females. Results from histology and telemetry support the hypothesis that male Gulf sturgeon may spawn annually, whereas females require more than 1 year between spawning events. Upper river hard bottom areas appear important for the successful spawning of Gulf sturgeon, and care should be taken to protect against habitat loss or degradation of known spawning habitat.

  7. Low leopard populations in protected areas of Maputaland: a consequence of poaching, habitat condition, abundance of prey, and a top predator.

    PubMed

    Ramesh, Tharmalingam; Kalle, Riddhika; Rosenlund, Havard; Downs, Colleen T

    2017-03-01

    Identifying the primary causes affecting population densities and distribution of flagship species are necessary in developing sustainable management strategies for large carnivore conservation. We modeled drivers of spatial density of the common leopard ( Panthera pardus ) using a spatially explicit capture-recapture-Bayesian approach to understand their population dynamics in the Maputaland Conservation Unit, South Africa. We camera-trapped leopards in four protected areas (PAs) of varying sizes and disturbance levels covering 198 camera stations. Ours is the first study to explore the effects of poaching level, abundance of prey species (small, medium, and large), competitors (lion Panthera leo and spotted hyenas Crocuta crocuta ), and habitat on the spatial distribution of common leopard density. Twenty-six male and 41 female leopards were individually identified and estimated leopard density ranged from 1.6 ± 0.62/100 km 2 (smallest PA-Ndumo) to 8.4 ± 1.03/100 km 2 (largest PA-western shores). Although dry forest thickets and plantation habitats largely represented the western shores, the plantation areas had extremely low leopard density compared to native forest. We found that leopard density increased in areas when low poaching levels/no poaching was recorded in dry forest thickets and with high abundance of medium-sized prey, but decreased with increasing abundance of lion. Because local leopard populations are vulnerable to extinction, particularly in smaller PAs, the long-term sustainability of leopard populations depend on developing appropriate management strategies that consider a combination of multiple factors to maintain their optimal habitats.

  8. Development of Adaptive Management Tools to Guide Habitat Allocations for At-Risk Species

    DTIC Science & Technology

    2014-01-01

    Results indicated that the mating system assumptions can have a large impact on the ability of the model to approximate data collected in the field...indicated that strength of habitat preferences during dispersal for juvenile and subadult male dispersal also significantly impacted model fit. Certainly...the influence of habitat loss, as these structural (or geometric) changes are often confounded in real landscapes, the impact of fragmentation is

  9. Managing for No Net Loss of Ecological Services: An Approach for Quantifying Loss of Coastal Wetlands due to Sea Level Rise.

    PubMed

    Kassakian, Jennifer; Jones, Ann; Martinich, Jeremy; Hudgens, Daniel

    2017-05-01

    Sea level rise has the potential to substantially alter the extent and nature of coastal wetlands and the critical ecological services they provide. In making choices about how to respond to rising sea level, planners are challenged with weighing easily quantified risks (e.g., loss of property value due to inundation) against those that are more difficult to quantify (e.g., loss of primary production or carbon sequestration services provided by wetlands due to inundation). Our goal was to develop a cost-effective, appropriately-scaled, model-based approach that allows planners to predict, under various sea level rise and response scenarios, the economic cost of wetland loss-with the estimates proxied by the costs of future restoration required to maintain the existing level of wetland habitat services. Our approach applies the Sea Level Affecting Marshes Model to predict changes in wetland habitats over the next century, and then applies Habitat Equivalency Analysis to predict the cost of restoration projects required to maintain ecological services at their present, pre-sea level rise level. We demonstrate the application of this approach in the Delaware Bay estuary and in the Indian River Lagoon (Florida), and discuss how this approach can support future coastal decision-making.

  10. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals

    PubMed Central

    Crooks, Kevin R.; Burdett, Christopher L.; Theobald, David M.; King, Sarah R. B.; Rondinini, Carlo; Boitani, Luigi

    2017-01-01

    Although habitat fragmentation is often assumed to be a primary driver of extinction, global patterns of fragmentation and its relationship to extinction risk have not been consistently quantified for any major animal taxon. We developed high-resolution habitat fragmentation models and used phylogenetic comparative methods to quantify the effects of habitat fragmentation on the world’s terrestrial mammals, including 4,018 species across 26 taxonomic Orders. Results demonstrate that species with more fragmentation are at greater risk of extinction, even after accounting for the effects of key macroecological predictors, such as body size and geographic range size. Species with higher fragmentation had smaller ranges and a lower proportion of high-suitability habitat within their range, and most high-suitability habitat occurred outside of protected areas, further elevating extinction risk. Our models provide a quantitative evaluation of extinction risk assessments for species, allow for identification of emerging threats in species not classified as threatened, and provide maps of global hotspots of fragmentation for the world’s terrestrial mammals. Quantification of habitat fragmentation will help guide threat assessment and strategic priorities for global mammal conservation. PMID:28673992

  11. Climate Change, Northern Birds of Conservation Concern and Matching the Hotspots of Habitat Suitability with the Reserve Network

    PubMed Central

    Virkkala, Raimo; Heikkinen, Risto K.; Fronzek, Stefan; Leikola, Niko

    2013-01-01

    National reserve networks are one of the most important means of species conservation, but their efficiency may be diminished due to the projected climatic changes. Using bioclimatic envelope models and spatial data on habitats and conservation areas, we studied how efficient the reserve network will be in preserving 100 forest, mire, marshland, and alpine bird species of conservation concern in Finland in 2051–2080 under three different climate scenarios. The occurrences of the studied bird species were related to the amount of habitat preferred by each species in the different boreal zones. We employed a novel integrated habitat suitability index that takes into account both the species’ probability of occurrence from the bioclimatic models and the availability of suitable habitat. Using this suitability index, the distribution of the topmost 5% suitability squares (“hotspots”) in the four bird species groups in the period 1971–2000 and under the three scenarios were compared with the location of reserves with the highest amounts of the four habitats to study the efficiency of the network. In species of mires, marshlands, and Arctic mountains, a high proportion of protected habitat was included in the 5% hotspots in the scenarios in 2051–2080, showing that protected areas cover a high proportion of occurrences of bird species. In contrast, in forests in the southern and middle boreal zones, only a small proportion of the protected habitat was included in the 5% hotspots, indicating that the efficiency of the protected area network will be insufficient for forest birds in the future. In the northern boreal zone, the efficiency of the reserve network in forests was highly dependent on the strength of climate change varying between the scenarios. Overall, there is no single solution to preserving biodiversity in a changing climate, but several future pathways should be considered. PMID:23700420

  12. Climate change, northern birds of conservation concern and matching the hotspots of habitat suitability with the reserve network.

    PubMed

    Virkkala, Raimo; Heikkinen, Risto K; Fronzek, Stefan; Leikola, Niko

    2013-01-01

    National reserve networks are one of the most important means of species conservation, but their efficiency may be diminished due to the projected climatic changes. Using bioclimatic envelope models and spatial data on habitats and conservation areas, we studied how efficient the reserve network will be in preserving 100 forest, mire, marshland, and alpine bird species of conservation concern in Finland in 2051-2080 under three different climate scenarios. The occurrences of the studied bird species were related to the amount of habitat preferred by each species in the different boreal zones. We employed a novel integrated habitat suitability index that takes into account both the species' probability of occurrence from the bioclimatic models and the availability of suitable habitat. Using this suitability index, the distribution of the topmost 5% suitability squares ("hotspots") in the four bird species groups in the period 1971-2000 and under the three scenarios were compared with the location of reserves with the highest amounts of the four habitats to study the efficiency of the network. In species of mires, marshlands, and Arctic mountains, a high proportion of protected habitat was included in the 5% hotspots in the scenarios in 2051-2080, showing that protected areas cover a high proportion of occurrences of bird species. In contrast, in forests in the southern and middle boreal zones, only a small proportion of the protected habitat was included in the 5% hotspots, indicating that the efficiency of the protected area network will be insufficient for forest birds in the future. In the northern boreal zone, the efficiency of the reserve network in forests was highly dependent on the strength of climate change varying between the scenarios. Overall, there is no single solution to preserving biodiversity in a changing climate, but several future pathways should be considered.

  13. Aquatic habitat change in the Arkansas river after the development of a lock-and-dam commercial navigation system

    USGS Publications Warehouse

    Schramm, H.L.; Minnis, R.B.; Spencer, A.B.; Theel, R.T.

    2008-01-01

    The McClellan-Kerr Arkansas River Navigation System (MKARNS), completed in 1971, required the construction of 17 locks and dams and associated navigation works to make the Arkansas and Verdigris Rivers navigable for barge traffic from the Mississippi River to Catoosa, Oklahoma. We used a Geographic Information System to assess habitat changes in the 477-km portion of this system within Arkansas from 1973 to 1999. Total aquatic area declined by 9% from 42 404 to 38 655 ha. Aquatic habitat losses were 1-17% among pools. Greatest habitat losses occurred in diked secondary channels (former secondary channels with flow reduced by rock dikes) and backwaters adjacent to the main channel. Most of the area of dike pools (aquatic habitat downstream of rock dikes), diked secondary channels and adjacent backwaters were <0.9 m deep. Copyright ?? 2008 John Wiley & Sons, Ltd.

  14. Lakeland Habitat for Humanity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbride, Theresa L.

    2009-03-30

    This is a case study of the Lakeland, FLorida, Habitat for Humanity affiliate, which has partnered with DOE's Building America program to homes that achieve energy savings of 30% or more over the Building America baseline home (a home built to the 1993 Model Energy Code). The article includes a description of the energy-efficiency features used. The Lakeland affiliate built several of its homes with ducts in conditioned space, which minimizes heat losses and gains. They also used high-efficiency SEER 14 air conditioners; radiant barriers in the roof to keep attics cooler; above-code high-performance dual-pane vinyl-framed low-emissivity windows; a passivemore » fresh air duct to the air handler; and duct blaster and blower door testing of every home to ensure the home's air tightness. This case study was also prepared as a flier titled "High Performance Builder Spotlight: Lakeland Habitat for Humanity, Lakeland, Florida,: which was cleared as PNNL-SA-59068 and distributed at the International Builders’ Show Feb 13-16, 2008, in Orlando, Florida.« less

  15. Noise Attenuation Loss Due to Wearing APEL Eye Protection with Ear-Muff Style Headset Systems

    DTIC Science & Technology

    2012-02-14

    USAARL Report No. 2012-09 Noise Attenuation Loss Due to Wearing APEL Eye Protection with Ear-Muff Style Headset Systems By Efrem Reeves Elmaree...Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request...not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation

  16. Biodiversity loss and infectious diseases: chapter 5

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2014-01-01

    When conservation biologists think about infectious diseases, their thoughts are mostly negative. Infectious diseases have been associated with the extinction and endangerment of some species, though this is rare, and other factors like habitat loss and poorly regulated harvest still are the overwhelming drivers of endangerment. Parasites are pervasive and play important roles as natural enemies on par with top predators, from regulating population abundances to maintaining species diversity. Sometimes, parasites themselves can be endangered. However, it seems unlikely that humans will miss extinct parasites. Parasites are often sensitive to habitat loss and degradation, making them positive indicators of ecosystem “health”. Conservation biologists need to carefully consider infectious diseases when planning conservation actions. This can include minimizing the movement of domestic and invasive species, vaccination, and culling.

  17. Areas of gain and loss along the Platte River, central Nebraska, spring 1999

    USGS Publications Warehouse

    Stanton, Jennifer S.

    2000-01-01

    In an effort to protect endangered and other wildlife species, the governors of Nebraska, Colorado, and Wyoming, and the Secretary of the U.S. Department of the Interior signed an agreement in 1997 (Platte River Endangered Species Partnership, 1997) to initiate the development of a basin-wide habitat recovery program for the central reaches of the Platte River in Nebraska.  This agreement recognizes the need to maintain minimal flows in the central reaches of the Platte River.  An understanding of the surface-water and ground-water interaction along the central reaches of the Platte River is critical to deliver water to the targeted habitat areas.  Therefore, a study by the U.S. Geological Survey (USGS), in cooperation with the Bureau of Reclamation and the U.S. Fish and Wildlife Service, was conducted to determine qualitatively the areas of gain and loss along the central Platte River between Gothenburg and Silver Creek, Nebraska (fig. 1).  The purpose of this report is to present the results of the study.

  18. The Power of Three: Coral Reefs, Seagrasses and Mangroves Protect Coastal Regions and Increase Their Resilience.

    PubMed

    Guannel, Greg; Arkema, Katie; Ruggiero, Peter; Verutes, Gregory

    2016-01-01

    Natural habitats have the ability to protect coastal communities against the impacts of waves and storms, yet it is unclear how different habitats complement each other to reduce those impacts. Here, we investigate the individual and combined coastal protection services supplied by live corals on reefs, seagrass meadows, and mangrove forests during both non-storm and storm conditions, and under present and future sea-level conditions. Using idealized profiles of fringing and barrier reefs, we quantify the services supplied by these habitats using various metrics of inundation and erosion. We find that, together, live corals, seagrasses, and mangroves supply more protection services than any individual habitat or any combination of two habitats. Specifically, we find that, while mangroves are the most effective at protecting the coast under non-storm and storm conditions, live corals and seagrasses also moderate the impact of waves and storms, thereby further reducing the vulnerability of coastal regions. Also, in addition to structural differences, the amount of service supplied by habitats in our analysis is highly dependent on the geomorphic setting, habitat location and forcing conditions: live corals in the fringing reef profile supply more protection services than seagrasses; seagrasses in the barrier reef profile supply more protection services than live corals; and seagrasses, in our simulations, can even compensate for the long-term degradation of the barrier reef. Results of this study demonstrate the importance of taking integrated and place-based approaches when quantifying and managing for the coastal protection services supplied by ecosystems.

  19. The Power of Three: Coral Reefs, Seagrasses and Mangroves Protect Coastal Regions and Increase Their Resilience

    PubMed Central

    Guannel, Greg; Arkema, Katie; Ruggiero, Peter; Verutes, Gregory

    2016-01-01

    Natural habitats have the ability to protect coastal communities against the impacts of waves and storms, yet it is unclear how different habitats complement each other to reduce those impacts. Here, we investigate the individual and combined coastal protection services supplied by live corals on reefs, seagrass meadows, and mangrove forests during both non-storm and storm conditions, and under present and future sea-level conditions. Using idealized profiles of fringing and barrier reefs, we quantify the services supplied by these habitats using various metrics of inundation and erosion. We find that, together, live corals, seagrasses, and mangroves supply more protection services than any individual habitat or any combination of two habitats. Specifically, we find that, while mangroves are the most effective at protecting the coast under non-storm and storm conditions, live corals and seagrasses also moderate the impact of waves and storms, thereby further reducing the vulnerability of coastal regions. Also, in addition to structural differences, the amount of service supplied by habitats in our analysis is highly dependent on the geomorphic setting, habitat location and forcing conditions: live corals in the fringing reef profile supply more protection services than seagrasses; seagrasses in the barrier reef profile supply more protection services than live corals; and seagrasses, in our simulations, can even compensate for the long-term degradation of the barrier reef. Results of this study demonstrate the importance of taking integrated and place-based approaches when quantifying and managing for the coastal protection services supplied by ecosystems. PMID:27409584

  20. Masticophis flagellum selects florida scrub habitat at multiple spatial scales

    USGS Publications Warehouse

    Halstead, B.J.; Mushinsky, H.R.; McCoy, E.D.

    2009-01-01

    The use of space by individual animals strongly influences the spatial extent, abundance, and growth rates of their populations. We analyzed the spatial ecology and habitat selection of Masticophis flagellum (the coachwhip) at three different scales to determine which habitats are most important to this species. Home ranges and mean daily displacements of M. flagellum in Florida were large compared to individuals in other populations of this species. Home ranges contained a greater proportion of Florida scrub habitat than did the study site as a whole, and individuals selected Florida scrub habitat within their home ranges. For both selection of the home range within the study site and selection of habitats within the home range, mesic cutthroat and hydric swamp habitats were avoided. Standardized selection ratios of Florida scrub patches were positively correlated with lizard abundance. Several non-mutually exclusive mechanisms, including foraging success (prey abundance, prey vulnerability, and foraging efficiency), abundance of refugia, and thermoregulatory opportunity may underlie the selection of Florida scrub by M. flagellum. Historic rarity and anthropogenic loss and fragmentation of Florida scrub habitat, coupled with the long-distance movements, large home ranges, and selection of Florida scrub by M. flagellum, indicate that large contiguous tracts of land containing Florida scrub will be essential for the persistence of M. flagellum in central Florida. ?? 2009 by The Herpetologists' League, Inc.