Sample records for habitat restoration plan

  1. Wildlife Habitat Restoration: Chapter 12

    USGS Publications Warehouse

    Conway, Courtney J.; Borgmann, Kathi L.; Morrison, Michael L.; Mathewson, Heather A.

    2015-01-01

    As the preceding chapters point out, many wildlife species and the habitat they depend on are in peril. However, opportunities exist to restore habitat for many imperiled wildlife species. But what is wildlife habitat restoration? We begin this chapter by defining habitat restoration and then provide recommendations on how to maximize success of future habitat restoration efforts for wildlife. Finally, we evaluate whether we have been successful in restoring wildlife habitat and supply recommendations to advance habitat restoration. Successful restoration requires clear and explicit goals that are based on our best understanding of what the habitat was like prior to the disturbing event. Ideally, a restoration project would include: (1) a summary of prerestoration conditions that define the existing status of wildlife populations and their habitat; (2) a description of habitat features required by the focal or indicator species for persistence; (3) an a priori description of measurable, quantitative metrics that define restoration goals and measures of success; (4) a monitoring plan; (5) postrestoration comparisons of habitat features and wildlife populations with adjacent unmodified areas that are similar to the restoration site; and (6) expert review of the entire restoration plan (i.e., the five aforementioned components).

  2. Arroyo Management Plan (Alameda County): A Plan for Implementing Access and Restoring Riparian Habitats

    Treesearch

    Kent E. Watson; Jim Horner; Louise Mozingo

    1989-01-01

    Innovative techniques for restoring riparian habitats are of little value without a community endorsed plan for their implementation. A flood control district commissioned the Arroyo Management Plan in order to determine how it might provide public access and improve habitat along its current and future channels in a fast-growing area of Northern California. The Plan,...

  3. Planning for Large Scale Habitat Restoration in the Socorro Valley, New Mexico

    Treesearch

    Gina Dello Russo; Yasmeen Najmi

    2006-01-01

    One initiative for large scale habitat restoration on the Rio Grande in central New Mexico is being led by a nonprofit organization, the Save Our Bosque Task Force. The Task Force has just completed a conceptual restoration plan for a 72-kilometer reach of river. The goals of the plan were to determine the potential for enhanced biological diversity through improved...

  4. Ecological Restoration of Coastal Sage Scrub and Its Potential Role in Habitat Conservation Plans.

    PubMed

    BOWLER

    2000-07-01

    Extensive acreage loss of coastal sage scrub (CSS), isolation of surviving stands, and the federal listing of several animal species with obligate relationships to this plant community, particularly the threatened California gnatcatcher (Polioptila californica), have led to attempts to create CSS to mitigate habitat lost to urban development and other causes. Many of these creations lie within habitat conservation plan (HCP) sites, and they could play a more prominent role by being repositories for plants taken from a single site having site-specific genetics. Among others, one technique that increases initial resemblance to natural stands uses digitized, to-scale photography, which has been ground-truthed to verify vascular plant associations, which appear as mosaics on a landscape. A combination of placing patches of salvaged, mature canopy plants within larger matrices of imprinted or container plant plots appears to significantly enhance immediate use by CSS obligate bird species, accelerate "spread" or expansion of CSS, and can also introduce many epiphytic taxa that otherwise would be slow or unable to occupy developing CSS creations. Reptile, amphibian, butterfly, and rodent diversity in a salvaged canopy restoration case study at the University of California, Irvine, showed CSS species foraging and inhabiting transplanted canopy patches. Using restoration techniques to expand existing CSS stands has more promise than creating isolated patches, and the creation of canopies resembling CSS mid-fire cycle stands is now common. Gnatcatchers and other birds use restorations for foraging and occasional nesting, and in some cases created stands along "biological corridors" appear to be useful to bird movement. Patches of transplanted sage scrub shrubs along habitat edges appear to break up linear edge effects. There are no data on which long-term survival, succession, or postfire behavior can be predicted for CSS restoration sites, and postfire community changes

  5. Restoring and rehabilitating sagebrush habitats

    USGS Publications Warehouse

    Pyke, David A.; Knick, S.T.; Connelly, J.W.

    2011-01-01

    Less than half of the original habitat of the Greater Sage-Grouse (Centrocercus uropha-sianus) currently exists. Some has been perma-nently lost to farms and urban areas, but the remaining varies in condition from high quality to no longer adequate. Restoration of sagebrush (Artemisia spp.) grassland ecosystems may be pos-sible for resilient lands. However, Greater Sage-Grouse require a wide variety of habitats over large areas to complete their life cycle. Effective restoration will require a regional approach for prioritizing and identifying appropriate options across the landscape. A landscape triage method is recommended for prioritizing lands for restora-tion. Spatial models can indicate where to protect and connect intact quality habitat with other simi-lar habitat via restoration. The ecological site con-cept of land classification is recommended for characterizing potential habitat across the region along with their accompanying state and transi-tion models of plant community dynamics. These models assist in identifying if passive, manage-ment-based or active, vegetation manipulation?based restoration might accomplish the goals of improved Greater Sage-Grouse habitat. A series of guidelines help formulate questions that manag-ers might consider when developing restoration plans: (1) site prioritization through a landscape triage; (2) soil verification and the implications of soil features on plant establishment success; (3) a comparison of the existing plant community to the potential for the site using ecological site descriptions; (4) a determination of the current successional status of the site using state and transition models to aid in predicting if passive or active restoration is necessary; and (5) implemen-tation of post-treatment monitoring to evaluate restoration effectiveness and post-treatment man-agement implications to restoration success.

  6. 75 FR 34975 - Notice of Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration Strategy; Request... interagency Estuary Habitat Restoration Council, is providing notice of the Council's intent to revise the ''Estuary Habitat Restoration Strategy'' and requesting public comments to guide its revision. DATES...

  7. ESTUARINE HABITAT RESTORATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thom, Ronald M.; Borde, Amy B.

    2015-09-01

    Restoring estuarine habitats generally means repairing damages caused by humans and natural forces. Because of the extensive human occupation, development, and use of coastal areas for centuries, the extensive estuarine habitats have been either destroyed or significantly impaired.

  8. Site occupancy of brown-headed nuthatches varies with habitat restoration and range-limit context

    Treesearch

    Richard A. Stanton; Frank R. Thompson; Dylan C. Kesler

    2015-01-01

    Knowledge about species’ responses to habitat restoration can inform subsequent management and reintroduction planning. We used repeated call-response surveys to study brown-headed nuthatch (Sitta pusilla) patch occupancy at the current limits of its apparently expanding range in an area with active habitat restoration. We fit a probit occupancy...

  9. Spatio-Temporal Process Variability in Watershed Scale Wetland Restoration Planning

    NASA Astrophysics Data System (ADS)

    Evenson, G. R.

    2012-12-01

    Watershed scale restoration decision making processes are increasingly informed by quantitative methodologies providing site-specific restoration recommendations - sometimes referred to as "systematic planning." The more advanced of these methodologies are characterized by a coupling of search algorithms and ecological models to discover restoration plans that optimize environmental outcomes. Yet while these methods have exhibited clear utility as decision support toolsets, they may be critiqued for flawed evaluations of spatio-temporally variable processes fundamental to watershed scale restoration. Hydrologic and non-hydrologic mediated process connectivity along with post-restoration habitat dynamics, for example, are commonly ignored yet known to appreciably affect restoration outcomes. This talk will present a methodology to evaluate such spatio-temporally complex processes in the production of watershed scale wetland restoration plans. Using the Tuscarawas Watershed in Eastern Ohio as a case study, a genetic algorithm will be coupled with the Soil and Water Assessment Tool (SWAT) to reveal optimal wetland restoration plans as measured by their capacity to maximize nutrient reductions. Then, a so-called "graphical" representation of the optimization problem will be implemented in-parallel to promote hydrologic and non-hydrologic mediated connectivity amongst existing wetlands and sites selected for restoration. Further, various search algorithm mechanisms will be discussed as a means of accounting for temporal complexities such as post-restoration habitat dynamics. Finally, generalized patterns of restoration plan optimality will be discussed as an alternative and possibly superior decision support toolset given the complexity and stochastic nature of spatio-temporal process variability.

  10. WETLAND AND COASTAL HABITAT CONSERVATION AND RESTORATION MX 6475307

    EPA Science Inventory

    From the date of the project award to March 2009, the project team will coordinate the Wetland and Coastal Habitat Conservation and Restoration committee established by the Governors’ Action Plan of the Gulf of Mexico Alliance. A series of workshops will be held in the Gulf Stat...

  11. Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems

    NASA Astrophysics Data System (ADS)

    James, W. R.; Nelson, J. A.

    2017-12-01

    Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.

  12. White Lake AOC Habitat Restoration Project

    EPA Pesticide Factsheets

    The Muskegon Conservation District and the White Lake Public Advisory Council in 2012 completed the White Lake AOC Shoreline Habitat Restoration Project to address the loss of shoreline and nearshore habitat.

  13. Restoration Lessons Learned from Bay Scallop Habitat Models

    EPA Science Inventory

    Habitat quality and quantity are important factors to consider when restoring bay scallop (Argopecten irradians) populations; however, data linking habitat attributes to bay scallop populations are lacking. This information is essential to guide restoration efforts to reverse sc...

  14. Reference condition approach to restoration planning

    USGS Publications Warehouse

    Nestler, J.M.; Theiling, C.H.; Lubinski, S.J.; Smith, D.L.

    2010-01-01

    Ecosystem restoration planning requires quantitative rigor to evaluate alternatives, define end states, report progress and perform environmental benefits analysis (EBA). Unfortunately, existing planning frameworks are, at best, semi-quantitative. In this paper, we: (1) describe a quantitative restoration planning approach based on a comprehensive, but simple mathematical framework that can be used to effectively apply knowledge and evaluate alternatives, (2) use the approach to derive a simple but precisely defined lexicon based on the reference condition concept and allied terms and (3) illustrate the approach with an example from the Upper Mississippi River System (UMRS) using hydrologic indicators. The approach supports the development of a scaleable restoration strategy that, in theory, can be expanded to ecosystem characteristics such as hydraulics, geomorphology, habitat and biodiversity. We identify three reference condition types, best achievable condition (A BAC), measured magnitude (MMi which can be determined at one or many times and places) and desired future condition (ADFC) that, when used with the mathematical framework, provide a complete system of accounts useful for goal-oriented system-level management and restoration. Published in 2010 by John Wiley & Sons, Ltd.

  15. Tamarix as habitat for birds: Implications for riparian restoration in the Southwestern United States

    USGS Publications Warehouse

    Sogge, M.K.; Sferra, S.J.; Paxton, E.H.

    2008-01-01

    Exotic vegetation has become a major habitat component in many ecosystems around the world, sometimes dramatically changing the vegetation community structure and composition. In the southwestern United States, riparian ecosystems are undergoing major changes in part due to the establishment and spread of the exotic Tamarix (saltcedar, tamarisk). There are concerns about the suitability of Tamarix as habitat for birds. Although Tamarix habitats tend to support fewer species and individuals than native habitats, Arizona Breeding Bird Atlas data and Birds of North America accounts show that 49 species use Tamarix as breeding habitat. Importantly, the relative use of Tamarix and its quality as habitat vary substantially by geographic location and bird species. Few studies have examined how breeding in Tamarix actually affects bird survivorship and productivity; recent research on Southwestern Willow Flycatchers has found no negative effects from breeding in Tamarix habitats. Therefore, the ecological benefits and costs of Tamarix control are difficult to predict and are likely to be species specific and site specific. Given the likelihood that high-quality native riparian vegetation will not develop at all Tamarix control sites, restoration projects that remove Tamarix but do not assure replacement by high-quality native habitat have the potential to reduce the net riparian habitat value for some local or regional bird populations. Therefore, an assessment of potential negative impacts is important in deciding if exotic control should be conducted. In addition, measurable project objectives, appropriate control and restoration techniques, and robust monitoring are all critical to effective restoration planning and execution. ?? 2008 Society for Ecological Restoration International.

  16. A Process-Based Assessment for Watershed Restoration Planning, Chehalis River Basin, USA

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Thompson, J.; Seixas, G.; Fogel, C.; Hall, J.; Chamberlin, J.; Kiffney, P.; Pollock, M. M.; Pess, G. R.

    2016-12-01

    Three key questions in identifying and prioritizing river restoration are: (1) How have habitats changed?, (2) What are the causes of those habitat changes?, and (3) How of those changes affected the species of interest? To answer these questions and assist aquatic habitat restoration planning in the Chehalis River basin, USA, we quantified habitat changes across the river network from headwaters to the estuary. We estimated historical habitat capacity to support salmonids using a combination of historical assessments, reference sites, and models. We also estimated current capacity from recent or newly created data sets. We found that losses of floodplain habitats and beaver ponds were substantial, while the estuary was less modified. Both tributary and main channel habitats—while modified—did not show particularly large habitat changes. Assessments of key processes that form and sustain habitats indicate that riparian functions (shading and wood recruitment) have been significantly altered, although peak and low flows have also been altered in some locations. The next step is to link our habitat assessments to salmon life-cycle models to evaluate which life stages and habitat types currently constrain population sizes of spring and fall Chinook salmon, coho salmon, and steelhead. By comparing model runs that represent different components of habitat losses identified in the analysis above, life-cycle models help identify which habitat losses have most impacted each species and population. This assessment will indicate which habitat types provide the greatest restoration potential, and help define a guiding vision for restoration efforts. Future analyses may include development and evaluation of alternative restoration scenarios, including different climate change scenarios, to refine our understanding of which restoration actions provide the greatest benefit to a salmon population.

  17. Coupling systematic planning and expert judgement enhances the efficiency of river restoration.

    PubMed

    Langhans, Simone D; Gessner, Jörn; Hermoso, Virgilio; Wolter, Christian

    2016-08-01

    Ineffectiveness of current river restoration practices hinders the achievement of ecological quality targets set by country-specific regulations. Recent advances in river restoration help planning efforts more systematically to reach ecological targets at the least costs. However, such approaches are often desktop-based and overlook real-world constraints. We argue that combining two techniques commonly used in the conservation arena - expert judgement and systematic planning - will deliver cost-effective restoration plans with a high potential for implementation. We tested this idea targeting the restoration of spawning habitat, i.e. gravel bars, for 11 rheophilic fish species along a river system in Germany (Havel-Spree rivers). With a group of local fish experts, we identified the location and extent of potential gravel bars along the rivers and necessary improvements to migration barriers to ensure fish passage. Restoration cost of each gravel bar included the cost of the action itself plus a fraction of the cost necessary to ensure longitudinal connectivity by upgrading or building fish passages located downstream. We set restoration targets according to the EU Water Framework Directive, i.e. relative abundance of 11 fish species in the reference community and optimised a restoration plan by prioritising a subset of restoration sites from the full set of identified sites, using the conservation planning software Marxan. Out of the 66 potential gravel bars, 36 sites which were mainly located in the downstream section of the system were selected, reflecting their cost-effectiveness given that fewer barriers needed intervention. Due to the limited overall number of sites that experts identified as being suitable for restoring spawning habitat, reaching abundance-targets was challenged. We conclude that coupling systematic river restoration planning with expert judgement produces optimised restoration plans that account for on-the-ground implementation constraints

  18. Northern bobwhite response to habitat restoration in eastern oklahoma

    USGS Publications Warehouse

    Crosby, Andrew D.; Elmore, R.D.; Leslie,, David M.

    2013-01-01

    In response to the decline of northern bobwhite (Colinus virginianus; hereafter, bobwhite) in eastern Oklahoma, USA, a cost-share incentive program for private landowners was initiated to restore early successional habitat. Our objectives were to determine whether the program had an effect on bobwhite occupancy in the restoration areas and evaluate how local-and landscape-level habitat characteristics affect occupancy in both restoration and control areas. We surveyed 14 sample units that received treatment between 2009 and 2011, and 17 sample units that were controls. We used single-season occupancy models, with year as a dummy variable, to test for an effect of restoration treatment and habitat variables on occupancy. We found no significant treatment effect. Model selection showed that occupancy was best explained by the combination of overstory canopy cover and habitat area at both the local and landscape scales. Moran's I revealed positive spatial autocorrelation in the 1,000-3,000-m distance band, indicating that the likelihood of bobwhite occupancy increased with proximity to other populations. We show that creating ≥ 20 ha of habitat within 1-3 km of existing bobwhite populations increases the chance of restoration being successful.

  19. Evaluation of nekton use and habitat characteristics of restored Louisiana marsh

    USGS Publications Warehouse

    Thom, C.S.B.; Peyre, M.K.G.L.; Nyman, J.A.

    2004-01-01

    Marsh terracing and coconut fiber mats are two wetland restoration techniques implemented at Sabine National Wildlife Refuge, Louisiana, USA. Using nekton as an indicator of habitat quality, nekton community assemblages were compared between terraced, coconut-matted, unmanaged marsh (restoration goal), and open water (pre-restoration) habitats. Using a throw trap and a 3 m ?? 2 m straight seine, 192 nekton samples were collected over four dates in 2001 and 2002 at all habitats. Nekton abundance was similar at unmanaged marsh (restoration goal), coconut mat, and terrace edge, and significantly higher than at open water (pre-restoration) sites (P < 0.05). Coconut-matted habitat and unmanaged marsh edges had significantly higher numbers of benthic dependent species than terrace edges (P < 0.05), potentially because of differences in substrate. Terraced sites had lower organic matter and siltier substrate as compared to unmanaged marsh sites. At Sabine NWR, terracing increased nekton use as compared to pre-restoration conditions (open water samples) by providing marsh edge habitat, but failed to support a nekton community similar to unmanaged marsh (restoration goals) or coconut-matted sites. Future restoration projects may evaluate the combined use of coconut mats with terracing projects in order to enhance habitat for benthic dependent nekton.

  20. Storied experiences of school-based habitat restoration

    NASA Astrophysics Data System (ADS)

    Bell, Anne C.

    The purpose of this study has been to consider the eco-pedagogical promise of school-based habitat restoration. How does the practice of restoration foster a lived sense of being in a more-than-human world1 while inviting alternative approaches to teaching and learning? What opportunities does it offer to resist the societal forces and patterns, reinforced through the school system, which are eroding and effacing human relationships with other life? A literature review sets the broader context for an in-depth exploration of the experiences and understandings of participants (students, teachers, parents) involved in a case study. I proceeded with my research on the assumption that both the discursive and non-discursive dimensions of habitat restoration were key to appreciating its eco-pedagogical potential. Through participant observation over a ten month period, interviewing and a survey, I listened to some of the ways that habitat restoration challenged the typically disembodied, decontextualized organization of schooling by privileging hands-on involvement and encouraging attentive, caring relationships within the human and natural communities of which students were a part. I investigated particular storylines and metaphors which encoded and supported participants' endeavours, especially with regard to their potential to disrupt human-centered values and beliefs. This study suggests that the promise of habitat restoration lies in the openings created to attune to and interact with human and nonhuman others in fully embodied, locally situated and personally meaningful ways. Participants overwhelmingly attested to the importance of the experience of restoration which many deemed to be memorable and motivating and to provide fertile ground for future engagements in/for nature and society. As participants attended to the nuances and complexities of their interactions with a specific place and its inhabitants, their intimate involvement added a depth of feeling and

  1. HABITAT MODELING APPROACHES FOR RESTORATION SITE SELECTION

    EPA Science Inventory

    Numerous modeling approaches have been used to develop predictive models of species-environment and species-habitat relationships. These models have been used in conservation biology and habitat or species management, but their application to restoration efforts has been minimal...

  2. Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn; Tohtz, Joel

    The construction of Hungry Horse Dam inundated 125 km of adfluvial trout habitat in the South Fork of the Flathead River and its tributaries, impacting natural fish reproduction and rearing. Rapid residential and commercial growth in the Flathead Watershed now threaten the best remaining habitats and restrict our opportunities to offset natural resource losses. Hydropower development and other land disturbances caused severe declines in the range and abundance of our focal resident fish species, bull trout and westslope cutthroat trout. Bull trout were listed as threatened in 1998 under the Endangered Species Act and westslope cutthroat were petitioned for listingmore » under ESA. Westslope cutthroat are a species of special concern in Montana and a species of special consideration by the Confederated Salish and Kootenai Tribes. The Secure & Protect Fisheries Habitat project follows the logical progression towards habitat restoration outlined in the Hungry Horse Dam Fisheries Mitigation Implementation Plan approved by the NWPPC in 1993. This project is also consistent with the 2000 Fish and Wildlife Program and the Flathead River Subbasin Plan that identifies the protection of habitats for these populations as one of the most critical needs in the subbasin and directs actions to offset habitat losses. The Flathead basin is one of the fastest growing human population centers in Montana. Riparian habitats are being rapidly developed and subdivided, causing habitat degradation and altering ecosystem functions. Remaining critical habitats in the Flathead Watershed need to be purchased or protected with conservation easements if westslope cutthroat and bull trout are to persist and expand within the subbasin. In addition, habitats degraded by past land uses need to be restored to maximize the value of remaining habitats and offset losses caused by the construction of Hungry Horse Dam. Securing and restoring remaining riparian habitat will benefit fish by shading and

  3. Phase IV of Early Restoration | NOAA Gulf Spill Restoration

    Science.gov Websites

    Trustees published the Final Phase IV Early Restoration Plan and Environmental Assessments. The plan habitats. Useful Links: Final Phase IV Early Restoration Plan and Environmental Assessments (pdf, 4.8 MB ) Final Phase IV Early Restoration Plan and Environmental Assessments Executive Summary (pdf, 729 KB

  4. Functional variability of habitats within the Sacramento-San Joaquin Delta: Restoration implications

    USGS Publications Warehouse

    Lucas, L.V.; Cloern, J.E.; Thompson, J.K.; Monsen, N.E.

    2002-01-01

    We have now entered an era of large-scale attempts to restore ecological functions and biological communities in impaired ecosystems. Our knowledge base of complex ecosystems and interrelated functions is limited, so the outcomes of specific restoration actions are highly uncertain. One approach for exploring that uncertainty and anticipating the range of possible restoration outcomes is comparative study of existing habitats similar to future habitats slated for construction. Here we compare two examples of one habitat type targeted for restoration in the Sacramento-San Joaquin River Delta. We compare one critical ecological function provided by these shallow tidal habitats - production and distribution of phytoplankton biomass as the food supply to pelagic consumers. We measured spatial and short-term temporal variability of phytoplankton biomass and growth rate and quantified the hydrodynamic and biological processes governing that variability. Results show that the production and distribution of phytoplankton biomass can be highly variable within and between nearby habitats of the same type, due to variations in phytoplankton sources, sinks, and transport. Therefore, superficially similar, geographically proximate habitats can function very differently, and that functional variability introduces large uncertainties into the restoration process. Comparative study of existing habitats is one way ecosystem science can elucidate and potentially minimize restoration uncertainties, by identifying processes shaping habitat functionality, including those that can be controlled in the restoration design.

  5. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    PubMed

    Matchett, Elliott L; Fleskes, Joseph P

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  6. Development and implementation of a scrub habitat compensation plan for Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Breininger, David R.; Adrian, Frederic W.; Schaub, Ron; Duncan, Brean W.

    1994-01-01

    Kennedy Space Center (KSC), located on Merritt Island on the east coast of central Florida, is one of three remaining major populations of the Florida Scrub Jay (Aphelocoma coerulescens coerulescens), listed as threatened by the U.S. Fish and Wildlife Service (USFWS) since 1987. Construction of new facilities by the National Aeronautics and Space Administration (NASA) on KSC over the next five years has the potential to impact up to 193 ac (78.1 ha) of Scrub Jay habitat. Under an early consultation process with the Endangered Species Office of the USFWS, NASA agreed to a compensation plan for loss of Scrub Jay habitat. The compensation plan required NASA to restore or create scrub on KSC at a 2:1 ratio for that lost. The compensation plan emphasized restoration of scrub habitat that is of marginal or declining suitability to Scrub Jays because it has remained unburned. Although prescribed burning has been conducted by the USFWS Merritt Island National Wildlife Refuge (MINWR) for more than ten years, significant areas of scrub remain unburned because they have been excluded from fire management units or because landscape fragmentation and a period of fire suppression allowed scrub to reach heights and diameters that are fire resistant. For such areas, mechanical cutting followed by prescribed burning was recommended for restoration. A second part of the restoration plan is an experimental study of scrub reestablishment (i.e., creation) on abandoned, well drained agricultural sites by planting scrub oaks and other scrub plants. The compensation plan identified 260 ac (105 ha) of scrub restoration in four areas and a 40 ac (16 ha) scrub creation site. Monitoring of restoration sites required under the plan included: establishing permanent vegetation sample transects before treatment and resampling annually for ten years after treatment, and color banding Scrub Jays to determine territories prior to treatment followed by monitoring reproductive success and survival for

  7. Enhancing and restoring habitat for the desert tortoise

    USGS Publications Warehouse

    Abella, Scott R.; Berry, Kristin H.

    2016-01-01

    Habitat has changed unfavorably during the past 150 y for the desert tortoise Gopherus agassizii, a federally threatened species with declining populations in the Mojave Desert and western Sonoran Desert. To support recovery efforts, we synthesized published information on relationships of desert tortoises with three habitat features (cover sites, forage, and soil) and candidate management practices for improving these features for tortoises. In addition to their role in soil health and facilitating recruitment of annual forage plants, shrubs are used by desert tortoises for cover and as sites for burrows. Outplanting greenhouse-grown seedlings, protected from herbivory, has successfully restored (>50% survival) a variety of shrubs on disturbed desert soils. Additionally, salvaging and reapplying topsoil using effective techniques is among the more ecologically beneficial ways to initiate plant recovery after severe disturbance. Through differences in biochemical composition and digestibility, some plant species provide better-quality forage than others. Desert tortoises selectively forage on particular annual and herbaceous perennial species (e.g., legumes), and forage selection shifts during the year as different plants grow or mature. Nonnative grasses provide low-quality forage and contribute fuel to spreading wildfires, which damage or kill shrubs that tortoises use for cover. Maintaining a diverse “menu” of native annual forbs and decreasing nonnative grasses are priorities for restoring most desert tortoise habitats. Reducing herbivory by nonnative animals, carefully timing herbicide applications, and strategically augmenting annual forage plants via seeding show promise for improving tortoise forage quality. Roads, another disturbance, negatively affect habitat in numerous ways (e.g., compacting soil, altering hydrology). Techniques such as recontouring road berms to reestablish drainage patterns, vertical mulching (“planting” dead plant material

  8. Physical habitat monitoring strategy (PHAMS) for reach-scale restoration effectiveness monitoring

    USGS Publications Warehouse

    Jones, Krista L.; O'Daniel, Scott J.; Beechie, Tim J.; Zakrajsek, John; Webster, John G.

    2015-04-14

    Habitat restoration efforts by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) have shifted from the site scale (1-10 meters) to the reach scale (100-1,000 meters). This shift was in response to the growing scientific emphasis on process-based restoration and to support from the 2007 Accords Agreement with the Bonneville Power Administration. With the increased size of restoration projects, the CTUIR and other agencies are in need of applicable monitoring methods for assessing large-scale changes in river and floodplain habitats following restoration. The goal of the Physical Habitat Monitoring Strategy is to outline methods that are useful for capturing reach-scale changes in surface and groundwater hydrology, geomorphology, hydrologic connectivity, and riparian vegetation at restoration projects. The Physical Habitat Monitoring Strategy aims to avoid duplication with existing regional effectiveness monitoring protocols by identifying complimentary reach-scale metrics and methods that may improve the ability of CTUIR and others to detect instream and riparian changes at large restoration projects.

  9. Assessing Hazard Vulnerability, Habitat Conservation, and Restoration for the Enhancement of Mainland China's Coastal Resilience

    NASA Astrophysics Data System (ADS)

    Sajjad, Muhammad; Li, Yangfan; Tang, Zhenghong; Cao, Ling; Liu, Xiaoping

    2018-03-01

    Worldwide, humans are facing high risks from natural hazards, especially in coastal regions with high population densities. Rising sea levels due to global warming are making coastal communities' infrastructure vulnerable to natural disasters. The present study aims to provide a coupling approach of vulnerability and resilience through restoration and conservation of lost or degraded coastal natural habitats to reclamation under different climate change scenarios. The integrated valuation of ecosystems and tradeoffs model is used to assess the current and future vulnerability of coastal communities. The model employed is based on seven different biogeophysical variables to calculate a natural hazard index and to highlight the criticality of the restoration of natural habitats. The results show that roughly 25% of the coastline and more than 5 million residents are in highly vulnerable coastal areas of mainland China, and these numbers are expected to double by 2100. Our study suggests that restoration and conservation in recently reclaimed areas have the potential to reduce this vulnerability by 45%. Hence, natural habitats have proved to be a great defense against coastal hazards and should be prioritized in coastal planning and development. The findings confirm that natural habitats are critical for coastal resilience and can act as a recovery force of coastal functionality loss. Therefore, we recommend that the Chinese government prioritizes restoration (where possible) and conservation of the remaining habitats for the sake of coastal resilience to prevent natural hazards from escalating into disasters.

  10. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit Rivers of the Laurentian Great Lakes

    USGS Publications Warehouse

    Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne

    2015-01-01

    Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.

  11. Changes in habitat availability for outmigrating juvenile salmon (Oncorhychus spp.) following estuary restoration

    USGS Publications Warehouse

    Ellings, Christopher S.; Davis, Melanie; Grossman, Eric E.; Hodgson, Sayre; Turner, Kelley L.; Woo PR, Isa; Nakai, Glynnis; Takekawa, Jean E.; Takekawa, John Y.

    2016-01-01

    The restoration of the Nisqually River Delta (Washington, U.S.A.) represents one of the largest efforts toward reestablishing the ecosystem function and resilience of modified habitat in the Puget Sound, particularly for anadromous salmonid species. The opportunity for outmigrating salmon to access and benefit from the expansion of available tidal habitat can be quantified by several physical attributes, which are related to the ecological and physiological responses of juvenile salmon. We monitored a variety of physical parameters to measure changes in opportunity potential from historic, pre-restoration, and post-restoration habitat conditions at several sites across the delta. These parameters included channel morphology, water quality, tidal elevation, and landscape connectivity. We conducted fish catch surveys across the delta to determine if salmon was utilizing restored estuary habitat. Overall major channel area increased 42% and major channel length increased 131% from pre- to post-restoration conditions. Furthermore, the results of our tidal inundation model indicated that major channels were accessible up to 75% of the time, as opposed to 30% pre-restoration. Outmigrating salmon utilized this newly accessible habitat as quickly as 1 year post-restoration. The presence of salmon in restored tidal channels confirmed rapid post-restoration increases in opportunity potential on the delta despite habitat quality differences between restored and reference sites.

  12. Salmon habitat assessment for conservation planning in the lower White Salmon River, Washington

    USGS Publications Warehouse

    Hardiman, Jill M.; Allen, M. Brady

    2015-01-01

    In 2011, Condit Dam was removed from the White Salmon River, Washington. Since dam removal, there has been interest among scientists (State and Federal), Tribes, non-profit organizations, and the general public in assessing Pacific salmon habitat and use in the White Salmon River for conservation planning and potential fishery management actions. The study area extended from the lower 6 miles of the White Salmon River to the confluence with the Columbia River, including the former reservoir area. The Mid-Columbia Fisheries Enhancement Group received a grant to initiate efforts to plan for salmon habitat protection in the lower 6 river miles of the White Salmon River. As part of efforts by the Mid-Columbia Fisheries Enhancement Group to conduct conservation planning, the U.S. Geological Survey (USGS) used current and historical habitat information to assist in the planning process. The USGS compiled existing georeferenced habitat data into a Geographic Information System to identify areas of high quality habitat for salmon, potential areas for restoration/improvement, and areas that could be threatened. The primary sources of georeferenced data for this project include a lidar flight contracted by PacifiCorp, bathymetry from USGS, and fall Chinook salmon redd surveys from the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife. Redd observations provided support that the study area is a migratory corridor for salmon and steelhead and that the lowest 2–3 miles had the highest concentration of documented fall Chinook salmon redds. The study area has potential for restoration/conservation areas to improve/conserve salmon habitat.

  13. Incorporating climate change projections into riparian restoration planning and design

    USGS Publications Warehouse

    Perry, Laura G.; Reynolds, Lindsay V.; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  14. Monitoring habitat restoration projects: U.S. Fish and Wildlife Service Pacific Region Partners for Fish and Wildlife Program and Coastal Program Protocol

    USGS Publications Warehouse

    Woodward, Andrea; Hollar, Kathy

    2011-01-01

    The U.S. Fish and Wildlife Service's (FWS) Pacific Region (Region 1) includes more than 158 million acres (almost 247,000 square miles) of land base in Idaho, Oregon, Washington, Hawai`i, the Commonwealth of the Northern Mariana Islands, American Samoa, Guam, the Republic of Palau, the Federated States of Micronesia, and the Republic of the Marshall Islands. Region 1 is ecologically diverse with landscapes that range from coral reefs, broadleaf tropical forests, and tropical savannahs in the Pacific Islands, to glacial streams and lakes, lush old-growth rainforests, inland fjords, and coastal shoreline in the Pacific Northwest, to the forested mountains, shrub-steppe desert, and native grasslands in the Inland Northwest. Similarly, the people of the different landscapes perceive, value, and manage their natural resources in ways unique to their respective regions and cultures. The Partners for Fish and Wildlife Program (Partners Program) and Coastal Program work with a variety of partners in Region 1 including individual landowners, watershed councils, land trusts, Soil and Water Conservation Districts, non-governmental organizations, Tribal governments, Native Hawaiian organizations, and local, State, and Federal agencies. The Partners Program is the FWS's vanguard for working with private landowners to voluntarily restore and conserve fish and wildlife habitat. Using non-regulatory incentives, the Partners Program engages willing partners to conserve and protect valuable fish and wildlife habitat on their property and in their communities. This is accomplished by providing the funding support and technical and planning tools needed to make on-the-ground conservation affordable, feasible, and effective. The primary goals of the Pacific Region Partners Program are to: Promote citizen and community-based stewardship efforts for fish and wildlife conservation Contribute to the recovery of at-risk species, Protect the environmental integrity of the National Wildlife

  15. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California’s Central Valley

    PubMed Central

    Fleskes, Joseph P.

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  16. Projected impacts of climate, urbanization, water management, and wetland restoration on waterbird habitat in California’s Central Valley

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  17. 78 FR 35951 - Proposed Low-Effect Habitat Conservation Plan for the City of Santa Cruz Graham Hill Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... under a habitat conservation plan. Impacts to Ben Lomond spineflower as a result of restoration and...] Proposed Low-Effect Habitat Conservation Plan for the City of Santa Cruz Graham Hill Water Treatment Plant... grasshopper (Trimerotropis infantilis), and will address associated impacts and conservation measures for the...

  18. Habitat Selection and Behaviour of a Reintroduced Passerine: Linking Experimental Restoration, Behaviour and Habitat Ecology

    PubMed Central

    Bennett, Victoria A.; Doerr, Veronica A. J.; Doerr, Erik D.; Manning, Adrian D.; Lindenmayer, David B.; Yoon, Hwan-Jin

    2013-01-01

    Habitat restoration can play an important role in recovering functioning ecosystems and improving biodiversity. Restoration may be particularly important in improving habitat prior to species reintroductions. We reintroduced seven brown treecreeper (Climacteris picumnus) social groups into two nature reserves in the Australian Capital Territory in south-eastern Australia. This study provided a unique opportunity to understand the interactions between restoration ecology, behavioural ecology and habitat ecology. We examined how experimental restoration treatments (addition of coarse woody debris, variations in ground vegetation cover and nest box installation) influenced the behaviour and microhabitat use of radio-tracked individuals to evaluate the success of restoration treatments. The addition of coarse woody debris benefited the brown treecreeper through increasing the probability of foraging on a log or on the ground. This demonstrated the value of using behaviour as a bio-indicator for restoration success. Based on previous research, we predicted that variations in levels of ground vegetation cover would influence behaviour and substrate use, particularly that brown treecreepers would choose sites with sparse ground cover because this allows better access to food and better vigilance for predators. However, there was little effect of this treatment, which was likely influenced by the limited overall use of the ground layer. There was also little effect of nest boxes on behaviour or substrate use. These results somewhat confound our understanding of the species based on research from extant populations. Our results also have a significant impact regarding using existing knowledge on a species to inform how it will respond to reintroduction and habitat restoration. This study also places great emphasis on the value of applying an experimental framework to ecological restoration, particularly when reintroductions produce unexpected outcomes. PMID:23349923

  19. Lower Klickitat Riparian and In-channel Habitat Restoration Project; Klickitat Watershed Enhancement, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conley, Will

    2004-01-01

    The overall goal of the Klickitat Watershed Enhancement Project (KWEP) is to restore watershed health to aid recovery of salmonid stocks in the Klickitat subbasin. An emphasis is placed on restoration and protection of stream reaches and watersheds supporting native anadromous fish production, particularly steelhead (Oncorhyncus mykiss; ESA- listed as 'Threatened' within the Mid-Columbia ESU) and spring Chinook (O. tshawytscha). Habitat restoration activities in the Klickitat subbasin augment goals and objectives of the Yakima Klickitat Fisheries Project (YKFP), NPPC Fish and Wildlife Program, Klickitat Subbasin Summary and the NMFS Biological Opinion (All-H paper). Work is conducted to enhance instream andmore » contributing upland habitat to facilitate increased natural production potential for native salmonid stocks. Efforts in the Klickitat Subbasin fall into two main categories: (1) identification and prioritization of sites for protection and restoration activities, (2) implementation of protection and restoration measures. KWEP personnel also assist monitoring efforts of the YKFP Monitoring & Evaluation Project. During the September 2002-August 2003 reporting period, KWEP personnel continued efforts to address feedback from the August 2000 Provincial Review that indicated a need for better information management and development of geographic priorities by: (1) Assisting development of the Strategic Habitat Plan for the Klickitat Lead Entity (Task A3.1) and Klickitat steelhead EDT model (Task A4.1); (2) Improving the functionality of reference point, habitat unit, and large woody debris modules of the habitat database as well as addition of a temperature module (Tasks A1.1-1.2); (3) Continuing development and acquisition of GIS data (Task A1.3); (4) Ongoing data collection efforts to fill information gaps including streamflow, habitat, and temperature (Objectives C1 and C2); and (5) Completion of planning, field work, and hydrologic modeling associated with

  20. Application of Science-Based Restoration Planning to a Desert River System

    NASA Astrophysics Data System (ADS)

    Laub, Brian G.; Jimenez, Justin; Budy, Phaedra

    2015-06-01

    Persistence of many desert river species is threatened by a suite of impacts linked to water infrastructure projects that provide human water security where water is scarce. Many desert rivers have undergone regime shifts from spatially and temporally dynamic ecosystems to more stable systems dominated by homogenous physical habitat. Restoration of desert river systems could aid in biodiversity conservation, but poses formidable challenges due to multiple threats and the infeasibility of recovery to pre-development conditions. The challenges faced in restoring desert rivers can be addressed by incorporating scientific recommendations into restoration planning efforts at multiple stages, as demonstrated here through an example restoration project. In particular, use of a watershed-scale planning process can identify data gaps and irreversible constraints, which aid in developing achievable restoration goals and objectives. Site-prioritization focuses limited the resources for restoration on areas with the greatest potential to improve populations of target organisms. Investment in research to understand causes of degradation, coupled with adoption of a guiding vision is critical for identifying feasible restoration actions that can enhance river processes. Setting monitoring as a project goal, developing hypotheses for expected outcomes, and implementing restoration as an experimental design will facilitate adaptive management and learning from project implementation. Involvement of scientists and managers during all planning stages is critical for developing process-based restoration actions and an implementation plan to maximize learning. The planning process developed here provides a roadmap for use of scientific recommendations in future efforts to recover dynamic processes in imperiled riverine ecosystems.

  1. Application of science-based restoration planning to a desert river system.

    PubMed

    Laub, Brian G; Jimenez, Justin; Budy, Phaedra

    2015-06-01

    Persistence of many desert river species is threatened by a suite of impacts linked to water infrastructure projects that provide human water security where water is scarce. Many desert rivers have undergone regime shifts from spatially and temporally dynamic ecosystems to more stable systems dominated by homogenous physical habitat. Restoration of desert river systems could aid in biodiversity conservation, but poses formidable challenges due to multiple threats and the infeasibility of recovery to pre-development conditions. The challenges faced in restoring desert rivers can be addressed by incorporating scientific recommendations into restoration planning efforts at multiple stages, as demonstrated here through an example restoration project. In particular, use of a watershed-scale planning process can identify data gaps and irreversible constraints, which aid in developing achievable restoration goals and objectives. Site-prioritization focuses limited the resources for restoration on areas with the greatest potential to improve populations of target organisms. Investment in research to understand causes of degradation, coupled with adoption of a guiding vision is critical for identifying feasible restoration actions that can enhance river processes. Setting monitoring as a project goal, developing hypotheses for expected outcomes, and implementing restoration as an experimental design will facilitate adaptive management and learning from project implementation. Involvement of scientists and managers during all planning stages is critical for developing process-based restoration actions and an implementation plan to maximize learning. The planning process developed here provides a roadmap for use of scientific recommendations in future efforts to recover dynamic processes in imperiled riverine ecosystems.

  2. Application of science-based restoration planning to a desert river system

    USGS Publications Warehouse

    Laub, Brian G.; Jimenez, Justin; Budy, Phaedra

    2015-01-01

    Persistence of many desert river species is threatened by a suite of impacts linked to water infrastructure projects that provide human water security where water is scarce. Many desert rivers have undergone regime shifts from spatially and temporally dynamic ecosystems to more stable systems dominated by homogenous physical habitat. Restoration of desert river systems could aid in biodiversity conservation, but poses formidable challenges due to multiple threats and the infeasibility of recovery to pre-development conditions. The challenges faced in restoring desert rivers can be addressed by incorporating scientific recommendations into restoration planning efforts at multiple stages, as demonstrated here through an example restoration project. In particular, use of a watershed-scale planning process can identify data gaps and irreversible constraints, which aid in developing achievable restoration goals and objectives. Site-prioritization focuses limited the resources for restoration on areas with the greatest potential to improve populations of target organisms. Investment in research to understand causes of degradation, coupled with adoption of a guiding vision is critical for identifying feasible restoration actions that can enhance river processes. Setting monitoring as a project goal, developing hypotheses for expected outcomes, and implementing restoration as an experimental design will facilitate adaptive management and learning from project implementation. Involvement of scientists and managers during all planning stages is critical for developing process-based restoration actions and an implementation plan to maximize learning. The planning process developed here provides a roadmap for use of scientific recommendations in future efforts to recover dynamic processes in imperiled riverine ecosystems.

  3. Restoration Planning | NOAA Gulf Spill Restoration

    Science.gov Websites

    Mexico. Since then, we have worked with the public and BP to identify and implement early restoration restoration plan for the Gulf of Mexico and took public comments on the draft plan through December 4, 2015

  4. Restoring habitat corridors in fragmented landscapes using optimization and percolation models

    Treesearch

    Justin C. Williams; Stephanie A. Snyder

    2005-01-01

    Landscape fragmentation and habitat loss are significant threats to the conservation of biological diversity. Creating and restoring corridors between isolated habitat patches can help mitigate or reverse the impacts of fragmentation. It is important that restoration and protection efforts be undertaken in the most efficient and effective way possible because...

  5. An Ecohydrological Approach to Riparian Restoration Planning in the American Southwest

    NASA Astrophysics Data System (ADS)

    Leverich, G. T.; Orr, B.; Diggory, Z.; Dudley, T.; Hatten, J.; Hultine, K. R.; Johnson, M. P.; Orr, D.

    2014-12-01

    Riparian systems across the American southwest region are under threat from a growing and intertwined cast of natural and anthropogenic stressors, including flooding, drought, invasion by non-native plants, wildfire, urban encroachment, and land- and water-use practices. In relatively remote and unregulated systems like the upper Gila River in Arizona, riparian habitat value has persisted reasonably well despite much of it being densely infested with non-native tamarisk (salt cedar). A new concern in the watershed, however, is the eventual arrival of the tamarisk leaf beetle that is expected to soon colonize the tamarisk-infested riparian corridor as the beetle continues to spread across the southwest region. While there are numerous potential benefits to tamarisk suppression (e.g., groundwater conservation, riparian habitat recovery, fire-risk reduction), short-term negative consequences are also possible, such as altered channel hydraulics and canopy defoliation during bird nesting season (e.g., the endangered southwestern willow flycatcher). In preparation for anticipated impacts following beetle colonization, we developed a holistic restoration framework to promote recovery of native riparian habitat and subsequent local increases in avian population. Pivotal to this process was an ecohydrological assessment that identified sustainable restoration sites based on consideration of natural and anthropogenic factors that, together, influence restoration opportunities—flood-scour dynamics, vegetation community structure and resilience, surface- and groundwater availability, soil texture and salinity, wildfire potential, and land-use activities. Data collected included high-resolution remote-sensing products, GIS-based delineation of geomorphic activity, and vegetation field mapping. These data along with other information generated, including pre-biocontrol vegetation monitoring and flycatcher-habitat modeling, were synthesized to produce a comprehensive

  6. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmussen, Lynn

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nezmore » Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.« less

  7. Prospective environmental restoration/ restoration up front: a concept for an incentive-based program to increase restoration planning and implementation in the United States.

    PubMed

    Stahl, Ralph G; Gouguet, Ron; DeSantis, Amanda; Liu, Jenny; Ammann, Michael

    2008-01-01

    This article describes a concept variously termed prospective environmental restoration, restoration up front, or restoration banking. Briefly, the concept centers on the ability of an entity, public or private, to gain durable credits for undertaking proactive restoration activities. Once obtained, these credits can be applied to an existing liability, held in the event of a future liability, or traded or sold to others that might have need for the credits. In the case of a natural resource damage claim or response action, possessing or applying the credits does not negate the need for responsible entities to clean up spills or releases of hazardous substances or oil or to address their clean-up requirements under applicable federal and state statutes. Concepts similar to prospective environmental restoration/restoration up front include wetlands mitigation banking, conservation habitat banking, and emissions trading. Much of the concept and details provided herein stem from the practice of natural resource damage assessment, although that is not the sole driver for the concept. The concept could also apply where the credits could be used to offset other environmental liabilities, for example, to provide habitat mitigation where development is being planned. The authors believe that the concept, if widely applied, could reduce the time and costs associated with restoration and perhaps lead to an increase in voluntary restoration and conservation nationally. Currently, there are no state or federal regulations or policies that directly provide for this approach.

  8. Effects of ecosystem development on benthic secondary production in restored and created mangrove habitats

    EPA Science Inventory

    Wetland creation, enhancement, and restoration activities are commonly implemented to compensate for wetland loss or degradation. However, functional equivalence in restored and created wetland habitats is often poorly understood. In estuarine habitats, changes in habitat qualit...

  9. Guidelines for evaluating performance of oyster habitat restoration

    USGS Publications Warehouse

    Baggett, Lesley P.; Powers, Sean P.; Brumbaugh, Robert D.; Coen, Loren D.; DeAngelis, Bryan M.; Greene, Jennifer K.; Hancock, Boze T.; Morlock, Summer M.; Allen, Brian L.; Breitburg, Denise L.; Bushek, David; Grabowski, Jonathan H.; Grizzle, Raymond E.; Grosholz, Edwin D.; LaPeyre, Megan K.; Luckenbach, Mark W.; McGraw, Kay A.; Piehler, Michael F.; Westby, Stephanie R.; zu Ermgassen, Philine S. E.

    2015-01-01

    Restoration of degraded ecosystems is an important societal goal, yet inadequate monitoring and the absence of clear performance metrics are common criticisms of many habitat restoration projects. Funding limitations can prevent adequate monitoring, but we suggest that the lack of accepted metrics to address the diversity of restoration objectives also presents a serious challenge to the monitoring of restoration projects. A working group with experience in designing and monitoring oyster reef projects was used to develop standardized monitoring metrics, units, and performance criteria that would allow for comparison among restoration sites and projects of various construction types. A set of four universal metrics (reef areal dimensions, reef height, oyster density, and oyster size–frequency distribution) and a set of three universal environmental variables (water temperature, salinity, and dissolved oxygen) are recommended to be monitored for all oyster habitat restoration projects regardless of their goal(s). In addition, restoration goal-based metrics specific to four commonly cited ecosystem service-based restoration goals are recommended, along with an optional set of seven supplemental ancillary metrics that could provide information useful to the interpretation of prerestoration and postrestoration monitoring data. Widespread adoption of a common set of metrics with standardized techniques and units to assess well-defined goals not only allows practitioners to gauge the performance of their own projects but also allows for comparison among projects, which is both essential to the advancement of the field of oyster restoration and can provide new knowledge about the structure and ecological function of oyster reef ecosystems.

  10. Restored agricultural wetlands in Central Iowa: habitat quality and amphibian response

    USGS Publications Warehouse

    Reeves, Rebecca A.; Pierce, Clay; Smalling, Kelly L.; Klaver, Robert W.; Vandever, Mark W.; Battaglin, William A.; Muths, Erin L.

    2016-01-01

    Amphibians are declining throughout the United States and worldwide due, partly, to habitat loss. Conservation practices on the landscape restore wetlands to denitrify tile drainage effluent and restore ecosystem services. Understanding how water quality, hydroperiod, predation, and disease affect amphibians in restored wetlands is central to maintaining healthy amphibian populations in the region. We examined the quality of amphibian habitat in restored wetlands relative to reference wetlands by comparing species richness, developmental stress, and adult leopard frog (Lithobates pipiens) survival probabilities to a suite of environmental metrics. Although measured habitat variables differed between restored and reference wetlands, differences appeared to have sub-lethal rather than lethal effects on resident amphibian populations. There were few differences in amphibian species richness and no difference in estimated survival probabilities between wetland types. Restored wetlands had more nitrate and alkaline pH, longer hydroperiods, and were deeper, whereas reference wetlands had more amphibian chytrid fungus zoospores in water samples and resident amphibians exhibited increased developmental stress. Restored and reference wetlands are both important components of the landscape in central Iowa and maintaining a complex of fish-free wetlands with a variety of hydroperiods will likely contribute to the persistence of amphibians in this landscape.

  11. 15 CFR 990.55 - Restoration selection-developing restoration plans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Restoration selection-developing... POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.55 Restoration selection—developing restoration plans. (a) General. OPA requires that damages be based upon a...

  12. 15 CFR 990.55 - Restoration selection-developing restoration plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Restoration selection-developing... POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.55 Restoration selection—developing restoration plans. (a) General. OPA requires that damages be based upon a...

  13. Seeding considerations in restoring big sagebrush habitat

    Treesearch

    Scott M. Lambert

    2005-01-01

    This paper describes methods of managing or seeding to restore big sagebrush communities for wildlife habitat. The focus is on three big sagebrush subspecies, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), basin big sagebrush (Artemisia tridentata ssp. tridentata), and mountain...

  14. Comparison of bird community indices for riparian restoration planning and monitoring

    USGS Publications Warehouse

    Young, Jock S.; Ammon, Elisabeth M.; Weisburg, Peter J.; Dilts, Thomas E.; Newton, Wesley E.; Wong-Kone, Diane C.; Heki, Lisa G.

    2013-01-01

    The use of a bird community index that characterizes ecosystem integrity is very attractive to conservation planners and habitat managers, particularly in the absence of any single focal species. In riparian areas of the western USA, several attempts at arriving at a community index signifying a functioning riparian bird community have been made previously, mostly resorting to expert opinions or national conservation rankings for species weights. Because extensive local and regional bird monitoring data were available for Nevada, we were able to develop three different indices that were derived empirically, rather than from expert opinion. We formally examined the use of three species weighting schemes in comparison with simple species richness, using different definitions of riparian species assemblage size, for the purpose of predicting community response to changes in vegetation structure from riparian restoration. For the three indices, species were weighted according to the following criteria: (1) the degree of riparian habitat specialization based on regional data, (2) the relative conservation ranking of landbird species, and (3) the degree to which a species is under-represented compared to the regional species pool for riparian areas. To evaluate the usefulness of these indices for habitat restoration planning and monitoring, we modeled them using habitat variables that are expected to respond to riparian restoration efforts, using data from 64 sampling sites in the Walker River Basin in Nevada and California. We found that none of the species-weighting schemes performed any better as an index for evaluating overall habitat condition than using species richness alone as a community index. Based on our findings, the use of a fairly complete list of 30–35 riparian specialists appears to be the best indicator group for predicting the response of bird communities to the restoration of riparian vegetation.

  15. Laying the foundation for a comprehensive program of restoration for wildlife habitat in a riparian floodplain

    NASA Astrophysics Data System (ADS)

    Morrison, Michael L.; Tennant, Tracy; Scott, Thomas A.

    1994-11-01

    We analyzed the past and current distribution and abundance of vegetation and wildlife to develop a wildlife habitat restoration plan for the Sweetwater Regional Park, San Diego County, California. Overall, there has been a substantial loss of native amphibians and reptiles, including four amphibians, three lizards, and 11 snake species. The small-mammal community was depauperate and dominated by the exotic house mouse ( Mus musculus) and the native western harvest mouse ( Reithrodontomys megalotis). It appeared that either house mice are exerting a negative influence on most native species or that they are responding positively to habitat degradation. There has apparently been a net loss of 13 mammal species, including nine insectivores and rodents, a rabbit, and three large mammals. Willow ( Salix) cover and density and cottonwoods ( Populus fremontii) had the highest number of positive correlations with bird abundance. There has been an overall net loss of 12 breeding bird species; this includes an absolute loss of 18 species and a gain of six species. A restoration plan is described that provides for creation and maintenance of willow riparian, riparian woodland, and coastal sage scrub vegetation types; guides for separation of human activities and wildlife habitats; and management of feral and exotic species of plants and animals.

  16. Information to support to monitoring and habitat restoration on Ash Meadows National Wildlife Refuge

    USGS Publications Warehouse

    Scoppettone, G. Gary

    2013-01-01

    The Ash Meadows National Wildlife Refuge staff focuses on improving habitat for the highest incidence of endemic species for an area of its size in the continental United States. Attempts are being made to restore habitat to some semblance of its pre-anthropogenic undisturbed condition, and to provide habitat conditions to which native plant and animal species have evolved. Unfortunately, restoring the Ash Meadows’ Oases to its pre-anthropogenic undisturbed condition is almost impossible. First, there are constraints on water manipulation because there are private holdings within the refuge boundary; second, there has been at least one species extinction—the Ash Meadows pool fish (Empetrichthys merriami). It is also quite possible that thermal endemic invertebrate species were lost before ever being described. Perhaps the primary obstacle to restoring Ash Meadows to its pre-anthropogenic undisturbed conditions is the presence of invasive species. However, invasive species, such as red swamp crayfish (Procambarus clarki) and western mosquitofish (Gambusia affinis), are a primary driving force in restoring Ash Meadows’ spring systems, because under certain habitat conditions they can all but replace native species. Returning Ash Meadows’ physical landscape to some semblance of its pre-anthropogenic undisturbed condition through natural processes may take decades. Meanwhile, the natural dissolution of concrete and earthen irrigation channels threatens to allow cattail marshes to flourish instead of spring-brooks immediately downstream of spring discharge. This successional stage favors non-native crayfish and mosquitofish over the native Amargosa pupfish (Cyprinodon nevadensis). Thus, restoration is needed to control non-natives and to promote native species, and without such intervention the probability of native fish reduction or loss, is anticipated. The four studies in this report are intended to provide information for restoring native fish habitat and

  17. A spatially explicit decision support model for restoration of forest bird habitat

    USGS Publications Warehouse

    Twedt, D.J.; Uihlein, W.B.; Elliott, A.B.

    2006-01-01

    The historical area of bottomland hardwood forest in the Mississippi Alluvial Valley has been reduced by >75%. Agricultural production was the primary motivator for deforestation; hence, clearing deliberately targeted higher and drier sites. Remaining forests are highly fragmented and hydrologically altered, with larger forest fragments subject to greater inundation, which has negatively affected many forest bird populations. We developed a spatially explicit decision support model, based on a Partners in Flight plan for forest bird conservation, that prioritizes forest restoration to reduce forest fragmentation and increase the area of forest core (interior forest >1 km from 'hostile' edge). Our primary objective was to increase the number of forest patches that harbor >2000 ha of forest core, but we also sought to increase the number and area of forest cores >5000 ha. Concurrently, we targeted restoration within local (320 km2) landscapes to achieve >60% forest cover. Finally, we emphasized restoration of higher-elevation bottomland hardwood forests in areas where restoration would not increase forest fragmentation. Reforestation of 10% of restorable land in the Mississippi Alluvial Valley (approximately 880,000 ha) targeted at priorities established by this decision support model resulted in approximately 824,000 ha of new forest core. This is more than 32 times the amount of core forest added through reforestation of randomly located fields (approximately 25,000 ha). The total area of forest core (1.6 million ha) that resulted from targeted restoration exceeded habitat objectives identified in the Partners in Flight Bird Conservation Plan and approached the area of forest core present in the 1950s.

  18. Habitat heterogeneity influences restoration efficacy: Implications of a habitat-specific management regime for an invaded marsh

    NASA Astrophysics Data System (ADS)

    Tang, Long; Gao, Yang; Wang, Cheng-Huan; Li, Bo; Chen, Jia-Kuan; Zhao, Bin

    2013-07-01

    Invasive species have to be managed to prevent adverse consequences. Spartina alterniflora has invaded many marshes where salinity and inundation are often key factors affecting vegetation. The former was surface clipped twice and native Phragmites australis was planted in invaded zones to examine the effects of habitat properties on the efficacy of invader control and native restoration. The results showed that two clipping treatments almost eliminated S. alterniflora in the zones with long inundation periods of 80 h/15 d but stimulated compensatory growth of S. alterniflora in the zones with short inundation periods. Transplanted P. australis performed better over time in zones with low salinity (<10.5 psu) but performed poorly in high-salinity zones, indicating that the efficacy of invader management and native restoration activities changes significantly along habitat gradients. With a progression from the dyke to the seaward side of the studied marsh, there was a long then short then long inundation period whereas salinity increased consistently. The study indicates that the high-frequency removal of the above-ground parts of S. alterniflora should be used only in the middle tidal zones and that native vegetation should be planted in zones above the mean high water level while the others zones in the saltmarsh should be restored to mud flats. Usually, invasive plants can flourish in highly heterogeneous habitats, which can influence management efficacy by influencing the re-growth of treated invaders and the performance of restored native species. Therefore, habitat-specific management regimes for invasive species can be expected to be more efficient because of their dependence on specific habitats.

  19. Restoring stream habitat connectivity: a proposed method for prioritizing the removal of resident fish passage barriers.

    PubMed

    O'Hanley, Jesse R; Wright, Jed; Diebel, Matthew; Fedora, Mark A; Soucy, Charles L

    2013-08-15

    Systematic methods for prioritizing the repair and removal of fish passage barriers, while growing of late, have hitherto focused almost exclusively on meeting the needs of migratory fish species (e.g., anadromous salmonids). An important but as of yet unaddressed issue is the development of new modeling approaches which are applicable to resident fish species habitat restoration programs. In this paper, we develop a budget constrained optimization model for deciding which barriers to repair or remove in order to maximize habitat availability for stream resident fish. Habitat availability at the local stream reach is determined based on the recently proposed C metric, which accounts for the amount, quality, distance and level of connectivity to different stream habitat types. We assess the computational performance of our model using geospatial barrier and stream data collected from the Pine-Popple Watershed, located in northeast Wisconsin (USA). The optimization model is found to be an efficient and practical decision support tool. Optimal solutions, which are useful in informing basin-wide restoration planning efforts, can be generated on average in only a few minutes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    USGS Publications Warehouse

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  1. Restoring High Priority Habitats for Birds: Aspen and Pine in the Interior West

    Treesearch

    Rex Sallabanks; Nils D. Christoffersen; Whitney W. Weatherford; Ralph Anderson

    2005-01-01

    This paper describes a long-term habitat restoration project in the Blue Mountains ecoregion, northeast Oregon, that we initiated in May 2000. We focused our restoration activities on two habitats previously identified as being high priority for birds: quaking aspen (Populus tremuloides) and ponderosa pine (Pinus ponderosa). In...

  2. Habitat Re-Creation (Ecological Restoration) as a Strategy for Conserving Insect Communities in Highly Fragmented Landscapes

    PubMed Central

    Shuey, John A.

    2013-01-01

    Because of their vast diversity, measured by both numbers of species as well as life history traits, insects defy comprehensive conservation planning. Thus, almost all insect conservation efforts target individual species. However, serious insect conservation requires goals that are set at the faunal level and conservation success requires strategies that conserve intact communities. This task is complicated in agricultural landscapes by high levels of habitat fragmentation and isolation. In many regions, once widespread insect communities are now functionally trapped on islands of ecosystem remnants and subject to a variety of stressors associated with isolation, small population sizes and artificial population fragmentation. In fragmented landscapes ecological restoration can be an effective strategy for reducing localized insect extinction rates, but insects are seldom included in restoration design criteria. It is possible to incorporate a few simple conservation criteria into restoration designs that enhance impacts to entire insect communities. Restoration can be used as a strategy to address fragmentation threats to isolated insect communities if insect communities are incorporated at the onset of restoration planning. Fully incorporating insect communities into restoration designs may increase the cost of restoration two- to three-fold, but the benefits to biodiversity conservation and the ecological services provided by intact insect communities justify the cost. PMID:26462535

  3. Habitat Re-Creation (Ecological Restoration) as a Strategy for Conserving Insect Communities in Highly Fragmented Landscapes.

    PubMed

    Shuey, John A

    2013-12-05

    Because of their vast diversity, measured by both numbers of species as well as life history traits, insects defy comprehensive conservation planning. Thus, almost all insect conservation efforts target individual species. However, serious insect conservation requires goals that are set at the faunal level and conservation success requires strategies that conserve intact communities. This task is complicated in agricultural landscapes by high levels of habitat fragmentation and isolation. In many regions, once widespread insect communities are now functionally trapped on islands of ecosystem remnants and subject to a variety of stressors associated with isolation, small population sizes and artificial population fragmentation. In fragmented landscapes ecological restoration can be an effective strategy for reducing localized insect extinction rates, but insects are seldom included in restoration design criteria. It is possible to incorporate a few simple conservation criteria into restoration designs that enhance impacts to entire insect communities. Restoration can be used as a strategy to address fragmentation threats to isolated insect communities if insect communities are incorporated at the onset of restoration planning. Fully incorporating insect communities into restoration designs may increase the cost of restoration two- to three-fold, but the benefits to biodiversity conservation and the ecological services provided by intact insect communities justify the cost.

  4. The importance of fluvial hydraulics to fish-habitat restoration in low-gradient alluvial streams

    USGS Publications Warehouse

    Rabeni, Charles F.; Jacobson, Robert B.

    1993-01-01

    1. A major cause of degradation and loss of stream fish is alteration of physical habitat within and adjacent to the channel. We describe a potentially efficient approach to fish restoration based upon the relationship between fluvial hydraulics, geomorphology, and those habitats important to fish.2. The aquatic habitat in a low-gradient, alluvial stream in the Ozark Plateaus physiographical province was classified according to location in the channel, patterns of water flow, and structures that control flow. The resulting habitat types were ranked in terms of their temporal stability and ability to be manipulated.3. Delineation and quantification of discrete physical spaces in a stream, termed hydraulic habitat units, are shown to be useful in stream restoration programmes if the ecological importance of each habitat unit is known, and if habitats are defined by fluvial dynamics so that restoration is aided by natural forces.4. Examples, using different taxa, are given to illustrate management options.

  5. Demographic Effects of Habitat Restoration for the Grey-Crowned Babbler Pomatostomus temporalis, in Victoria, Australia.

    PubMed

    Vesk, Peter A; Robinson, Doug; van der Ree, Rodney; Wilson, Caroline M; Saywell, Shirley; McCarthy, Michael A

    2015-01-01

    Considerable resources are spent on habitat restoration across the globe to counter the impacts of habitat loss and degradation on wildlife populations. But, because of time and resourcing constraints on many conservation programs, the effectiveness of these habitat restoration programs in achieving their long-term goals of improving the population viability of particular wildlife species is rarely assessed and many restoration programs cannot demonstrate their effectiveness. Without such demonstration, and in particular demonstrating the causal relationships between habitat restoration actions and demographic responses of the target species, investments in restoration to achieve population outcomes are of uncertain value. Here, we describe an approach that builds on population data collected for a threatened Australian bird - the Grey-crowned Babbler Pomatostomus temporalis - to evaluate how effectively targeted habitat restoration work improves its viability. We built upon an extensive historical survey by conducting surveys 13 years later at 117 sites stratified by presence/absence of restoration works and by detection or not of birds in the first survey. Our performance metric was the number of individuals in a social group, which is both a measure of local abundance and directly related to breeding success. We employed an occupancy model to estimate the response of Grey-crowned Babbler social group size to the effects of time, restoration works, local habitat as measured by the density of large trees, and distance to the nearest other known group of babblers. Babbler group size decreased over the survey period at sites without restoration works, but restoration works were effective in stemming declines where they were done. Restoration was responsible for a difference of about one bird per group of 3-5 individuals; this is an important effect on the reproductive success of the social group. Effectiveness of restoration works targeted at the Grey

  6. Framework for Evaluating Habitat Restoration Success with Respect to Fish Habitat- and Population-related Beneficial Use Impairments

    EPA Science Inventory

    A major challenge of evaluating restoration progress is establishing a cause-effect relationship between observed changes in fish abundance and ongoing aquatic habitat restoration. Since 1979, fish populations within the St. Louis River Area of Concern, which were severely degrad...

  7. Variable responses of fish assemblages, habitat, and stability to natural-channel-design restoration in Catskill Mountain streams

    USGS Publications Warehouse

    Baldigo, Barry P.; Ernst, Anne G.; Warren, Dana R.; Miller, Sarah J.

    2010-01-01

    Natural-channel-design (NCD) restorations were recently implemented within large segments of five first- and second-order streams in the Catskill Mountains of New York in an attempt to increase channel stability, reduce bed and bank erosion, and sustain water quality. In conjunction with these efforts, 54 fish and habitat surveys were done from 1999 to 2007 at six restored reaches and five stable control reaches to evaluate the effects of NCD restoration on fish assemblages, habitat, and bank stability. A before–after–control–impact study design and two-factor analysis of variance were used to quantify the net changes in habitat and fish population and community indices at treatment reaches relative to those at unaltered control reaches. The density and biomass of fish communities were often dominated by one or two small prey species and no or few predator species before restoration and by one or more trout (Salmonidae) species after restoration. Significant increases in community richness (30%), diversity (40%), species or biomass equitability (32%), and total biomass (up to 52%) in at least four of the six restored reaches demonstrate that NCD restorations can improve the health and sustainability of fish communities in geomorphically unstable Catskill Mountain streams over the short to marginally long term. Bank stability, stream habitat, and trout habitat suitability indices (HSIs) generally improved significantly at the restored reaches, but key habitat features and trout HSIs did not change or decreased at two of them. Fish communities and trout populations at these two reaches were not positively affected by NCD restorations. Though NCD restorations often had a positive effect on habitat and fish communities, our results show that the initial habitat conditions limit the relative improvements than can be achieved, habitat quality and stability do not necessarily respond in unison, and biotic and abiotic responses cannot always be generalized.

  8. Gauging resource exploitation by juvenile Chinook salmon (Oncorhynchus tshawytscha) in restoring estuarine habitat

    USGS Publications Warehouse

    Davis, Melanie; Ellings, Christopher S.; Woo, Isa; Hodgson, Sayre; Larsen, Kimberly A.; Nakai, Glynnis

    2018-01-01

    In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out-migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post-restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density-dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.

  9. Assessing the role of conspecific attraction in habitat restoration for Henslow's sparrows in Iowa

    USGS Publications Warehouse

    Vogel, Jennifer A.; Koford, Rolf R.; Otis, David L.

    2011-01-01

    The presence of conspecific individuals may provide important cues about habitat quality for territorial songbirds. We tested the ability of a conspecific song playback system to attract Henslow’s sparrows to previously unoccupied restored habitat. We successfully attracted Heslow’s sparrows to 3 of 7 treatment plots using conspecific song playbacks and we found no Henslow’s sparrows in control plots. The addition of social cues using playback systems in restored grassland habitats may aid conservation efforts of Henslow’s sparrows to available habitat.

  10. Demographic Effects of Habitat Restoration for the Grey-Crowned Babbler Pomatostomus temporalis, in Victoria, Australia

    PubMed Central

    Vesk, Peter A.; Robinson, Doug; van der Ree, Rodney; Wilson, Caroline M.; Saywell, Shirley; McCarthy, Michael A.

    2015-01-01

    Background Considerable resources are spent on habitat restoration across the globe to counter the impacts of habitat loss and degradation on wildlife populations. But, because of time and resourcing constraints on many conservation programs, the effectiveness of these habitat restoration programs in achieving their long-term goals of improving the population viability of particular wildlife species is rarely assessed and many restoration programs cannot demonstrate their effectiveness. Without such demonstration, and in particular demonstrating the causal relationships between habitat restoration actions and demographic responses of the target species, investments in restoration to achieve population outcomes are of uncertain value. Approach Here, we describe an approach that builds on population data collected for a threatened Australian bird – the Grey-crowned Babbler Pomatostomus temporalis - to evaluate how effectively targeted habitat restoration work improves its viability. We built upon an extensive historical survey by conducting surveys 13 years later at 117 sites stratified by presence/absence of restoration works and by detection or not of birds in the first survey. Our performance metric was the number of individuals in a social group, which is both a measure of local abundance and directly related to breeding success. We employed an occupancy model to estimate the response of Grey-crowned Babbler social group size to the effects of time, restoration works, local habitat as measured by the density of large trees, and distance to the nearest other known group of babblers. Results and implications Babbler group size decreased over the survey period at sites without restoration works, but restoration works were effective in stemming declines where they were done. Restoration was responsible for a difference of about one bird per group of 3-5 individuals; this is an important effect on the reproductive success of the social group. Effectiveness of

  11. A Restoration Design for Least Bell's Vireo Habitat in San Diego County

    Treesearch

    Kathryn J. Baird; John P. Rieger

    1989-01-01

    This paper describes the procedure for developing a specific habitat restoration model. Results of a detailed Least Bell's Vireo (Vireo bellii pusillus) habitat study on the Sweetwater River drainage, San Diego County California, generated the baseline vegetative and habitat data used. Mean percent cover, density, abundance, species composition...

  12. Restoration through eradication? Removal of an invasive bioengineer restores some habitat function for a native predator.

    PubMed

    Holsman, Kirstin K; McDonald, P Sean; Barreyro, Pablo A; Armstrong, David A

    2010-12-01

    Invasive aquatic macrophytes increase structural complexity in recipient systems and alter trophic and physical resources; thus, eradication programs that remove plant structure have potential to restore some impaired ecological functions. In this study we evaluate how an invasive ecosystem engineer, Atlantic smooth cordgrass (Spartina alterniflora), interferes with the movement and foraging activity of a mobile predator, Dungeness crab (Cancer magister), and whether removal of aboveground cordgrass structure rapidly reestablishes access to foraging habitats. By 2004, smooth cordgrass had invaded >25% of crab foraging habitat in Willapa Bay, Washington (USA), and transformed it into a highly structured landscape. However, by 2007 successful eradication efforts had eliminated most meadows of the cordgrass. In order to investigate the effect of smooth cordgrass on the habitat function of littoral areas for foraging crabs, we integrated field, laboratory, and statistical modeling approaches. We conducted trapping surveys at multiple sites and used a hierarchical model framework to examine patterns in catches prior to and following cordgrass removal (i.e., before-after control-impact design, BACI). Prior to eradication, catches of Dungeness crabs in unstructured habitats were 4-19 times higher than catches in adjacent patches of live cordgrass. In contrast, the results of post-eradication trapping in 2007 indicated similar catch rates of crabs in unstructured habitats and areas formerly invaded by the cordgrass. Subsequent laboratory experiments and video observations demonstrated that the rigid physical structure of smooth cordgrass shoots reduces the ability of Dungeness crabs to access prey resources and increases the risk of stranding. Taken together, these findings suggest that eliminating the structural complexity of invasive macrophytes may rapidly restore some ecological function (i.e., foraging area) for migratory predators like Dungeness crab. However

  13. A Multiple Watershed Approach to Assessing the Effects of Habitat Restoration Actions on Anadromous and Resident Fish Populations, Technical Report 2003-2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marmorek, David

    2004-03-01

    Habitat protection and restoration is a cornerstone of current strategies to restore ecosystems, recover endangered fish species, and rebuild fish stocks within the Columbia River Basin. Strategies featuring habitat restoration include the 2000 Biological Opinion on operation of the Federal Columbia River Power System (FCRPS BiOp) developed by the National Marine Fisheries Service (NMFS), the 2000 Biological Opinion on Bull Trout developed by the US Fish and Wildlife Service (USFWS), and Sub-Basin Plans developed under the Fish and Wildlife Program of the Northwest Power and Conservation Council (NWPCC). There is however little quantitative information about the effectiveness of different habitatmore » restoration techniques. Such information is crucial for helping scientists and program managers allocate limited funds towards the greatest benefits for fish populations. Therefore, it is critical to systematically test the hypotheses underlying habitat restoration actions for both anadromous and resident fish populations. This pilot project was developed through a proposal to the Innovative Projects fund of the NWPCC (ESSA 2002). It was funded by the Bonneville Power Administration (BPA) following reviews by the Independent Scientific Review Panel (ISRP 2002), the Columbia Basin Fish and Wildlife Authority (CBFWA 2002), the NWPCC and BPA. The study was designed to respond directly to the above described needs for information on the effectiveness of habitat restoration actions, including legal measures specified in the 2000 FCRPS BiOp (RPA 183, pg. 9-133, NMFS 2000). Due to the urgency of addressing these measures, the timeline of the project was accelerated from a duration of 18 months to 14 months. The purpose of this pilot project was to explore methods for evaluating past habitat restoration actions and their effects on fish populations. By doing so, the project will provide a foundation of retrospective analyses, on which to build prospective, multi

  14. Planning riparian restoration in the context of tamarix control in Western North America

    USGS Publications Warehouse

    Shafroth, P.B.; Beauchamp, Vanessa B.; Briggs, M.K.; Lair, K.; Scott, M.L.; Sher, A.A.

    2008-01-01

    Throughout the world, the condition of many riparian ecosystems has declined due to numerous factors, including encroachment of non-native species. In the western United States, millions of dollars are spent annually to control invasions of Tamarix spp., introduced small trees or shrubs from Eurasia that have colonized bottomland ecosystems along many rivers. Resource managers seek to control Tamarix in attempts to meet various objectives, such as increasing water yield and improving wildlife habitat. Often, riparian restoration is an implicit goal, but there has been little emphasis on a process or principles to effectively plan restoration activities, and many Tamarix removal projects are unsuccessful at restoring native vegetation. We propose and summarize the key steps in a planning process aimed at developing effective restoration projects in Tamarix-dominated areas. We discuss in greater detail the biotic and abiotic factors central to the evaluation of potential restoration sites and summarize information about plant communities likely to replace Tamarix under various conditions. Although many projects begin with implementation, which includes the actual removal of Tamarix, we stress the importance of pre-project planning that includes: (1) clearly identifying project goals; (2) developing realistic project objectives based on a detailed evaluation of site conditions; (3) prioritizing and selecting Tamarix control sites with the best chance of ecological recovery; and (4) developing a detailed tactical plan before Tamarix is removed. After removal, monitoring and maintenance as part of an adaptive management approach are crucial for evaluating project success and determining the most effective methods for restoring these challenging sites. ?? 2008 Society for Ecological Restoration International.

  15. Sharp-tailed Grouse Restoration; Colville Tribes Restore Habitat for Sharp-tailed Grouse, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, Richard

    2004-01-01

    Columbian Sharp-Tailed Grouse (Tympanuchus phasianellus columbianus) (CSTG) are an important traditional and cultural species to the Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STOI), and other Tribes in the Region. They were once the most abundant upland bird in the Region. Currently, the largest remaining population in Washington State occurs on the CCT Reservation in Okanogan County. Increasing agricultural practices and other land uses has contributed to the decline of sharp-tail habitat and populations putting this species at risk. The decline of this species is not new (Yokum, 1952, Buss and Dziedzic, 1955, Zeigler, 1979, Meints 1991, and Crawfordmore » and Snyder 1994). The Tribes (CCT and STOI) are determined to protect, enhance and restore habitat for this species continued existence. When Grand Coulee and Chief Joseph Hydro-projects were constructed, inundated habitat used by this species was lost forever adding to overall decline. To compensate and prevent further habitat loss, the CCT proposed a project with Bonneville Power Administration (BPA) funding to address this species and their habitat requirements. The projects main focus is to address habitat utilized by the current CSTG population and determine ways to protect, restore, and enhance habitats for the conservation of this species over time. The project went through the NPPC Review Process and was funded through FY03 by BPA. This report addresses part of the current CCT effort to address the conservation of this species on the Colville Reservation.« less

  16. Using ecosystem engineers as tools in habitat restoration and rewilding: beaver and wetlands.

    PubMed

    Law, Alan; Gaywood, Martin J; Jones, Kevin C; Ramsay, Paul; Willby, Nigel J

    2017-12-15

    Potential for habitat restoration is increasingly used as an argument for reintroducing ecosystem engineers. Beaver have well known effects on hydromorphology through dam construction, but their scope to restore wetland biodiversity in areas degraded by agriculture is largely inferred. Our study presents the first formal monitoring of a planned beaver-assisted restoration, focussing on changes in vegetation over 12years within an agriculturally-degraded fen following beaver release, based on repeated sampling of fixed plots. Effects are compared to ungrazed exclosures which allowed the wider influence of waterlogging to be separated from disturbance through tree felling and herbivory. After 12years of beaver presence mean plant species richness had increased on average by 46% per plot, whilst the cumulative number of species recorded increased on average by 148%. Heterogeneity, measured by dissimilarity of plot composition, increased on average by 71%. Plants associated with high moisture and light conditions increased significantly in coverage, whereas species indicative of high nitrogen decreased. Areas exposed to both grazing and waterlogging generally showed the most pronounced change in composition, with effects of grazing seemingly additive, but secondary, to those of waterlogging. Our study illustrates that a well-known ecosystem engineer, the beaver, can with time transform agricultural land into a comparatively species-rich and heterogeneous wetland environment, thus meeting common restoration objectives. This offers a passive but innovative solution to the problems of wetland habitat loss that complements the value of beavers for water or sediment storage and flow attenuation. The role of larger herbivores has been significantly overlooked in our understanding of freshwater ecosystem function; the use of such species may yet emerge as the missing ingredient in successful restoration. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights

  17. Effects of natural-channel-design restoration on habitat quality in Catskill Mountain streams, New York

    USGS Publications Warehouse

    Ernst, Anne G.; Baldigo, Barry P.; Mulvihill, Christiane; Vian, Mark

    2010-01-01

    Stream restoration has received much attention in recent years, yet there has been little effort to evaluate its impacts on physical habitat, stability, and biota. A popular but controversial stream restoration approach is natural channel design (NCD), which cannot be adequately evaluated without a long-term, independent assessment of its effects on stream habitat. Six reaches of five Catskill Mountain streams in southeastern New York were restored during 2000–2003 following NCD techniques to decrease bed and bank degradation, decrease sediment loads, and improve water quality. Habitat surveys were conducted during summer low flows from 2001 to 2007. The effects of the NCD projects on stream condition were assessed via a before–after–control–impact study design to quantify the net changes in stream and bank habitat variables relative to those in unaltered control reaches. Analysis of variance tests of three different measures of bank stability show that on average stream stability increased at treatment sites for 2–5 years after restoration. Mean channel depth, thalweg depth, and the pool–riffle ratio generally increased, whereas mean channel width, percent streambank coverage by trees, and shade decreased. Habitat suitability indices for local salmonid species increased at four of six reaches after restoration. The changes in channel dimensions rendered them generally more characteristic of stabler stream forms in the given valley settings. Although these studies were done relatively soon after project completion, our findings demonstrate that habitat conditions can be improved in degraded Catskill Mountain streams through NCD restoration.

  18. Can we enhance amphibians' habitat restoration in the post-mining areas?

    PubMed

    Klimaszewski, Krzysztof; Pacholik, Ewa; Snopek, Adam

    2016-09-01

    The study was aimed to evaluate the selected improvements of nature restoration in a depleted gravel pit. The study site consisted of four water reservoirs of different shapes and sizes, flooded after the gravel extraction ended. Ecological succession monitoring, conducted by the Warsaw University of Life Sciences students associated in the Student Scientific Association of Animal Sciences Faculty since the completion of mining, have focused on amphibians. A twofold approach upheld amphibian species population dynamics, as well as selected habitat elements. The restoration practices dedicated to habitat conditions enhancing have been proved to be definitely effective and useful for similar sites.

  19. The critical role of islands for waterbird breeding and foraging habitat in managed ponds of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California

    USGS Publications Warehouse

    Ackerman, Joshua T.; Hartman, C. Alex; Herzog, Mark P.; Smith, Lacy M.; Moskal, Stacy M.; De La Cruz, Susan E. W.; Yee, Julie L.; Takekawa, John Y.

    2014-01-01

    The South Bay Salt Pond Restoration Project aims to restore 50–90 percent of former salt evaporation ponds into tidal marsh in South San Francisco Bay, California. However, large numbers of waterbirds use these ponds annually as nesting and foraging habitat. Islands within ponds are particularly important habitat for nesting, foraging, and roosting waterbirds. To maintain current waterbird populations, the South Bay Salt Pond Restoration Project plans to create new islands within former salt ponds in South San Francisco Bay. In a series of studies, we investigated pond and individual island attributes that are most beneficial to nesting, foraging, and roosting waterbirds.

  20. Habitat restoration as a means of controlling non-native fish in a Mojave desert Oasis

    USGS Publications Warehouse

    Scoppettone, G.G.; Rissler, P.H.; Gourley, C.; Martinez, C.

    2005-01-01

    Non-native fish generally cause native fish decline, and once non-natives are established, control or elimination is usually problematic. Because non-native fish colonization has been greatest in anthropogenically altered habitats, restoring habitat similar to predisturbance conditions may offer a viable means of non-native fish control. In this investigation we identified habitats favoring native over non-native fish in a Mojave Desert oasis (Ash Meadows) and used this information to restore one of its major warm water spring systems (Kings Pool Spring). Prior to restoration, native fishes predominated in warm water (25-32??C) stream and spring-pool habitat, whereas non-natives predominated in cool water (???23??C) spring-pool and marsh/slack water habitat. Native Amargosa pupfish (Cyprinodon nevadensis) and Ash Meadows speckled dace (Rhinichthys osculus nevadensis) inhabited significantly faster mean water column velocities (MWCV) and greater total depth (TD) than non-native Sailfin molly (Poecilia latipinna) and Mosquitofish (Gambusia affinis) in warm water stream habitat, and Ash Meadows speckled dace inhabited significantly faster water than non-natives in cool water stream habitat. Modification of the outflow of Kings Pool Spring from marsh to warm water stream, with MWCV, TD, and temperature favoring native fish, changed the fish composition from predominantly non-native Sailfin molly and Mosquitofish to predominantly Ash Meadows pupfish. This result supports the hypothesis that restoring spring systems to a semblance of predisturbance conditions would promote recolonization of native fishes and deter non-native fish invasion and proliferation. ?? 2005 Society for Ecological Restoration International.

  1. Habitat Complexity Metrics to Guide Restoration of Large Rivers

    NASA Astrophysics Data System (ADS)

    Jacobson, R. B.; McElroy, B. J.; Elliott, C.; DeLonay, A.

    2011-12-01

    Restoration strategies on large, channelized rivers typically strive to recover lost habitat complexity, based on the assumption complexity and biophysical capacity are directly related. Although definition of links between complexity and biotic responses can be tenuous, complexity metrics have appeal because of their potential utility in quantifying habitat quality, defining reference conditions and design criteria, and measuring restoration progress. Hydroacoustic instruments provide many ways to measure complexity on large rivers, yet substantive questions remain about variables and scale of complexity that are meaningful to biota, and how complexity can be measured and monitored cost effectively. We explore these issues on the Missouri River, using the example of channel re-engineering projects that are intended to aid in recovery of the pallid sturgeon, an endangered benthic fish. We are refining understanding of what habitat complexity means for adult fish by combining hydroacoustic habitat assessments with acoustic telemetry to map locations during reproductive migrations and spawning. These data indicate that migrating sturgeon select points with relatively low velocity but adjacent to areas of high velocity (that is, with high velocity gradients); the integration of points defines pathways which minimize energy expenditures during upstream migrations of 10's to 100's of km. Complexity metrics that efficiently quantify migration potential at the reach scale are therefore directly relevant to channel restoration strategies. We are also exploring complexity as it relates to larval sturgeon dispersal. Larvae may drift for as many as 17 days (100's of km at mean velocities) before using up their yolk sac, after which they "settle" into habitats where they initiate feeding. An assumption underlying channel re-engineering is that additional channel complexity, specifically increased shallow, slow water, is necessary for early feeding and refugia. Development of

  2. Habitat Restoration on Mobile Bay

    NASA Astrophysics Data System (ADS)

    Murphy, B.

    2017-12-01

    Alabama has some of the most biodiversity found anywhere in our nation, however we are rapidly losing many of these species to habitat loss. Our marine science class realized our shoreline on our campus on Mobile Bay was disappearing and wanted to help. We collaborated with local scientists from Dauphin Island Sea Lab under the direction of Dr. Just Cebrian and our instructor, Dr. Megan McCall, to create a project to help restore the habitat. We had to first collect beach profile surveys and learn how to measure elevations. Next we installed plants that we measured and collected growth data. Our project went through a series of prototypes and corrective measures based on the type of wave energy we discovered on our shores. Finally we landed on a type of wave attenuator of crab traps filled with rock and staked into the sand. This coming year we will begin collecting data on any changes to the beach profile as well as fish counts to evaluate the effectiveness of our installation.

  3. Macroinvertebrate Taxonomic and Functional Trait Compositions within Lotic Habitats Affected By River Restoration Practices

    NASA Astrophysics Data System (ADS)

    White, J. C.; Hill, M. J.; Bickerton, M. A.; Wood, P. J.

    2017-09-01

    The widespread degradation of lotic ecosystems has prompted extensive river restoration efforts globally, but many studies have reported modest ecological responses to rehabilitation practices. The functional properties of biotic communities are rarely examined within post-project appraisals, which would provide more ecological information underpinning ecosystem responses to restoration practices and potentially pinpoint project limitations. This study examines macroinvertebrate community responses to three projects which aimed to physically restore channel morphologies. Taxonomic and functional trait compositions supported by widely occurring lotic habitats (biotopes) were examined across paired restored and non-restored (control) reaches. The multivariate location (average community composition) of taxonomic and functional trait compositions differed marginally between control and restored reaches. However, changes in the amount of multivariate dispersion were more robust and indicated greater ecological heterogeneity within restored reaches, particularly when considering functional trait compositions. Organic biotopes (macrophyte stands and macroalgae) occurred widely across all study sites and supported a high alpha (within-habitat) taxonomic diversity compared to mineralogical biotopes (sand and gravel patches), which were characteristic of restored reaches. However, mineralogical biotopes possessed a higher beta (between-habitat) functional diversity, although this was less pronounced for taxonomic compositions. This study demonstrates that examining the functional and structural properties of taxa across distinct biotopes can provide a greater understanding of biotic responses to river restoration works. Such information could be used to better understand the ecological implications of rehabilitation practices and guide more effective management strategies.

  4. Shortleaf pine-bluestem habitat restoration in the Interior Highlands: Implications for stand growth and regeneration

    Treesearch

    James M. Guldin; John Strom; Warren Montague; Larry D. Hedrick

    2004-01-01

    National Forest managers in the Interior Highlands of Arkansas are restoring 155,000 acres of unburned shortleaf pine stands to shortleaf pine-bluestem habitat. Habitat restoration consists of longer rotations, removal of midstory hardwoods, and reintroduction of fire. A study was installed in the spring of 2000 to evaluate shortleaf pine regeneration and overstory...

  5. The effects of habitat restoration on endangered fishes in the Upper Klamath Basin

    NASA Astrophysics Data System (ADS)

    Vanderkooi, S.; Burdick, S.; Ellsworth, C.

    2009-12-01

    The Klamath Basin has been prominent in the debate over the use of water in the arid west for nearly a decade. Principle competing demands include threatened and endangered species, agriculture, recreation, and Tribal rights. In an effort to recover two endangered fish species, the Lost River sucker and the shortnose sucker, several large-scale restoration projects have recently been undertaken in the basin. These include restoration of 7000 acres of drained wetlands in the Williamson River Delta in 2007 and 2008 and the removal of Chiloquin Dam on the Sprague River in 2008. The objectives of these projects include increasing amounts of usable aquatic habitats, restoring watershed function, improving water quality, and improving access to and connectivity among habitats. The U.S. Geological Survey is involved in a series of collaborative, interdisciplinary research efforts to evaluate the effectiveness of these restoration projects. Effectiveness is being evaluated by physical, biological and ecological metrics. Our focus is on the biology and ecology of endangered suckers. In the Williamson River Delta, we’re collecting data on the distribution, habitat use, relative abundance, and health and condition of early life-history stages of endangered suckers. Results to date indicate larval as well as age-0 and age-1 juvenile suckers are using newly created habitats in the delta. Preliminary results from comparisons of age-0 suckers captured within and outside of the delta suggest those using the restored habitats are in better condition. In the Sprague River, we’re studying the behavior, run timing, and distribution of adult suckers during spawning migrations as well as the relative abundance, species composition, and timing of emigrating larval suckers. Preliminary results indicate adult suckers migrated into the reach previously impounded by Chiloquin Dam in greater numbers than in the past. While these results indicate a positive response to dam removal

  6. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis

    USGS Publications Warehouse

    Lind-Null, Angela; Larsen, Kimberly; Reisenbichler, Reginald

    2007-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act. The preservation of the Nisqually delta ecosystem coupled with extensive restoration of approximately 1,000 acres of diked estuarine habitat is identified as the highest priority action for the recovery of naturally spawning Nisqually River Fall Chinook salmon (Oncorhynchus tshawytscha) in the Nisqually Chinook Recovery Plan. In order to evaluate the response of Chinook salmon to restoration, a pre-restoration baseline of life history diversity and estuary utilization must be established. Otolith analysis has been proposed as a means to measure Chinook salmon life history diversity, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: (1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, (2) compare pre and post restoration residence times and growth rates, and (3) suggest whether estuary restoration yields substantial benefits for Chinook salmon. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile Chinook salmon can exhibit a variety of life history trajectories ? some enter the sea (or Puget Sound) as fry, some rear in the estuary before entering the sea, and some rear in the river and then move rapidly through the estuary into the sea as smolts. The

  7. Quantifying restoration effectiveness using multi-scale habitat models: implications for sage-grouse in the Great Basin

    USGS Publications Warehouse

    Arkle, Robert S.; Pilliod, David S.; Hanser, Steven E.; Brooks, Matthew L.; Chambers, Jeanne C.; Grace, James B.; Knutson, Kevin C.; Pyke, David A.; Welty, Justin L.

    2014-01-01

    A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of occupancy in 211 randomly located plots within a 40 million ha portion of the species' range. We then used these models to predict sage-grouse habitat quality at 826 plots associated with 101 post-wildfire seeding projects implemented from 1990 to 2003. We also compared conditions at restoration sites to published habitat guidelines. Sage-grouse occupancy was positively related to plot- and landscape-level dwarf sagebrush (Artemisia arbuscula, A. nova, A. tripartita) and big sagebrush steppe prevalence, and negatively associated with non-native plants and human development. The predicted probability of sage-grouse occupancy at treated plots was low on average (0.09) and not substantially different from burned areas that had not been treated. Restoration sites with quality habitat tended to occur at higher elevation locations with low annual temperatures, high spring precipitation, and high plant diversity. Of 313 plots seeded after fire, none met all sagebrush guidelines for breeding habitats, but approximately 50% met understory guidelines, particularly for perennial grasses. This pattern was similar for summer habitat. Less than 2% of treated plots met winter habitat guidelines. Restoration actions did not increase the probability of burned areas meeting most guideline criteria. The probability of meeting guidelines was influenced by a latitudinal gradient, climate, and topography. Our results suggest that sage-grouse are relatively unlikely to use many burned areas within 20 years of fire, regardless of treatment. Understory habitat conditions are more likely to be adequate than overstory

  8. Approaches to defining reference regimes for river restoration planning

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.

    2014-12-01

    Reference conditions or reference regimes can be defined using three general approaches, historical analysis, contemporary reference sites, and theoretical or empirical models. For large features (e.g., floodplain channels and ponds) historical data and maps are generally reliable. For smaller features (e.g., pools and riffles in small tributaries), field data from contemporary reference sites are a reasonable surrogate for historical data. Models are generally used for features that have no historical information or present day reference sites (e.g., beaver pond habitat). Each of these approaches contributes to a watershed-wide understanding of current biophysical conditions relative to potential conditions, which helps create not only a guiding vision for restoration, but also helps quantify and locate the largest or most important restoration opportunities. Common uses of geomorphic and biological reference conditions include identifying key areas for habitat protection or restoration, and informing the choice of restoration targets. Examples of use of each of these three approaches to define reference regimes in western USA illustrate how historical information and current research highlight key restoration opportunities, focus restoration effort in areas that can produce the largest ecological benefit, and contribute to estimating restoration potential and assessing likelihood of achieving restoration goals.

  9. 75 FR 27708 - Stanford University Habitat Conservation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration DEPARTMENT OF THE INTERIOR Fish and Wildlife Service RIN 0648-XV36 Stanford University Habitat Conservation Plan AGENCIES... University Habitat Conservation Plan (Plan), the Draft Environmental Impact Statement (DEIS) for...

  10. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoverson, Eric D.; Amonette, Alexandra

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meachammore » Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and

  11. Assessing patterns of fish demographics and habitat in stream networks

    EPA Science Inventory

    Effective habitat restoration planning requires correctly anticipating demographic responses to altered habitats. New applications of Passive Integrated Transponder (PIT) tag technology to fish-habitat research have provided critical insights into fish movement, growth, and surv...

  12. 77 FR 13095 - Intent To Prepare an Environmental Impact Statement for NOAA Restoration Center Programmatic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... Coastal Wetland Planning, Protection and Restoration Act (CWPPRA) Program, and the Great Lakes Habitat... Prepare an Environmental Impact Statement for NOAA Restoration Center Programmatic Coastal Habitat... (PEIS) to evaluate the potential environmental impacts of different ranges of coastal and marine habitat...

  13. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    PubMed

    Markle, Chantel E; Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  14. Klamath Basin: A Watershed Approach to Support Habitat Restoration, Species Recovery, and Water Resource Planning

    USGS Publications Warehouse

    VanderKooi, S.P.; Thorsteinson, L.

    2007-01-01

    Water allocation among human and natural resource uses in the American West is challenging. Western rivers have been largely managed for hydropower, irrigation, drinking water, and navigation. Today land and water use practices have gained importance, particularly as aging dams are faced with re-licensing requirements and provisions of the Endangered Species and Clean Water Acts. Rising demand for scarce water heightens the need for scientific research to predict consequences of management actions on habitats, human resource use, and fish and wildlife. Climate change, introduction of invasive species, or restoration of fish passage can have large, landscape-scaled consequences - research must expand to encompass the appropriate scale and by applying multiple scientific disciplines to complex ecosystem challenges improve the adaptive management framework for decision-making.

  15. A framework for modeling anthropogenic impacts on waterbird habitats: addressing future uncertainty in conservation planning

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph P.; Young, Charles A.; Purkey, David R.

    2015-01-01

    The amount and quality of natural resources available for terrestrial and aquatic wildlife habitats are expected to decrease throughout the world in areas that are intensively managed for urban and agricultural uses. Changes in climate and management of increasingly limited water supplies may further impact water resources essential for sustaining habitats. In this report, we document adapting a Water Evaluation and Planning (WEAP) system model for the Central Valley of California. We demonstrate using this adapted model (WEAP-CVwh) to evaluate impacts produced from plausible future scenarios on agricultural and wetland habitats used by waterbirds and other wildlife. Processed output from WEAP-CVwh indicated varying levels of impact caused by projected climate, urbanization, and water supply management in scenarios used to exemplify this approach. Among scenarios, the NCAR-CCSM3 A2 climate projection had a greater impact than the CNRM-CM3 B1 climate projection, whereas expansive urbanization had a greater impact than strategic urbanization, on annual availability of waterbird habitat. Scenarios including extensive rice-idling or substantial instream flow requirements on important water supply sources produced large impacts on annual availability of waterbird habitat. In the year corresponding with the greatest habitat reduction for each scenario, the scenario including instream flow requirements resulted in the greatest decrease in habitats throughout all months of the wintering period relative to other scenarios. This approach provides a new and useful tool for habitat conservation planning in the Central Valley and a model to guide similar research investigations aiming to inform conservation, management, and restoration of important wildlife habitats.

  16. An assessment of stream habitat and nutrients in the Elwha River basin: implications for restoration

    USGS Publications Warehouse

    Munn, Mark D.; Black, R.W.; Haggland, A.L.; Hummling, M.A.; Huffman, R.L.

    1999-01-01

    The Elwha River was once famous for its 10 runs of anadromous salmon which included chinook that reportedly exceeded 45 kilograms. These runs either ceased to exist or were significantly depleted after the construction of the Elwha (1912) and Glines Canyon (1927) Dams, which resulted in the blockage of more than 113 kilometers of mainstem river and tributary habitat. In 1992, in response to the loss of the salmon runs in the Elwha River Basin, President George Bush signed the Elwha River Ecosystem and Fisheries Restoration Act, which authorizes the Secretary of the Interior to remove both dams for ecosystem restoration. The objective of this U.S. Geological Survey (USGS) study was to begin describing baseline conditions for assessing changes that will result from restoration. The first step was to review available physical, chemical, and biological information on the Elwha River Basin. We found that most studies have focused on anadromous fish and habitat and that little information is available on water quality, habitat classification, geomorphic processes, and riparian and aquatic biological communities. There is also a lack of sufficient data on baseline conditions for assessing future changes if restoration occurs. The second component of this study was to collect water-quality and habitat data, filling information gaps. This information will permit a better understanding of the relation between physical habitat and nutrient conditions and changes that may result from salmon restoration. We collected data in the fall of 1997 and found that the concentrations of nitrogen and phosphorous were generally low, with most samples having concentrations below detection limits. Detectable concentrations of nitrogen were associated with sites in the lower reach of the Elwha River, whereas the few detections of phosphorus were at sites throughout the basin. Nutrient data indicate that the Elwha River and its tributaries are oligotrophic. Results of the stream

  17. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration

    PubMed Central

    Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada’s mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931–2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna. PMID:29444129

  18. Spatial and stage-structured population model of the American crocodile for comparison of comprehensive Everglades Restoration Plan (CERP) alternatives

    USGS Publications Warehouse

    Green, Timothy W.; Slone, Daniel H.; Swain, Eric D.; Cherkiss, Michael S.; Lohmann, Melinda; Mazzotti, Frank J.; Rice, Kenneth G.

    2010-01-01

    As part of the U.S. Geological Survey Priority Ecosystems Science (PES) initiative to provide the ecological science required during Everglades restoration, we have integrated current regional hydrologic models with American crocodile (Crocodylus acutus) research and monitoring data to create a model that assesses the potential impact of Comprehensive Everglades Restoration Plan (CERP) efforts on the American crocodile. A list of indicators was created by the Restoration Coordination and Verification (RECOVER) component of CERP to help determine the success of interim restoration goals. The American crocodile was established as an indicator of the ecological condition of mangrove estuaries due to its reliance upon estuarine environments characterized by low salinity and adequate freshwater inflow. To gain a better understanding of the potential impact of CERP restoration efforts on the American crocodile, a spatially explicit crocodile population model has been created that has the ability to simulate the response of crocodiles to various management strategies for the South Florida ecosystem. The crocodile model uses output from the Tides and Inflows in the Mangroves of the Everglades (TIME) model, an application of the Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) simulator. TIME has the capability to link to the South Florida Water Management Model (SFWMM), which is the primary regional tool used to assess CERP restoration scenarios. A crocodile habitat suitability index and spatial parameter maps that reflect salinity, water depth, habitat, and nesting locations are used as driving functions to construct crocodile finite rate of increase maps under different management scenarios. Local stage-structured models are integrated with a spatial landscape grid to display crocodile movement behavior in response to changing environmental conditions. Restoration efforts are expected to affect salinity levels throughout the habitat of

  19. Contrast of degraded and restored stream habitat using an individual-based salmon model

    Treesearch

    S. F. Railsback; M. Gard; Bret Harvey; Jason White; J.K.H. Zimmerman

    2013-01-01

    Stream habitat restoration projects are popular, but can be expensive and difficult to evaluate. We describe inSALMO, an individual-based model designed to predict habitat effects on freshwater life stages (spawning through juvenile out-migration) of salmon. We applied inSALMO to Clear Creek, California, simulating the production of total and large (>5 cm FL)...

  20. Beneficial use of dredged material for habitat creation, enhancement, and restoration in New York-New Jersey Harbor.

    PubMed

    Yozzo, David J; Wilber, Pace; Will, Robert J

    2004-10-01

    A comprehensive Dredged Material Management Plan (DMMP) has been developed by the US Army Corps of Engineers, New York District (USACE-NYD) and the Port Authority of New York and New Jersey (PANY/NJ). The primary objective of the DMMP is to identify cost-effective and environmentally acceptable alternatives for the placement of dredged material derived from ongoing and proposed navigation improvements within the PANY/NJ. A significant portion of this dredged material is classified as unsuitable for open-ocean disposal. One suite of alternatives presented within the DMMP is the beneficial use of dredged material for habitat creation, enhancement, and restoration within the NY/NJ Harbor Estuary. Proposed beneficial use/habitat development projects include the use of dredged material for construction of artificial reefs, oyster reef restoration, intertidal wetland and mudflat creation, bathymetric recontouring, filling dead-end canals/basins, creation of bird/wildlife islands, and landfill/brownfields reclamation. Preliminary screening of the proposed beneficial use alternatives identified advantages, disadvantages, potential volumes, and estimated costs associated with each project type. Continued study of the proposed beneficial use alternatives has identified areas of environmental research or technology development where further investigation is warranted.

  1. Alligator, Alligator mississippiensis, habitat suitability index model

    USGS Publications Warehouse

    Waddle, J. Hardin

    2017-01-01

    The 2012 Coastal Master Plan utilized Habitat Suitability Indices (HSIs) to evaluate potential project effects on wildlife species. Even though HSIs quantify habitat condition, which may not directly correlate to species abundance, they remain a practical and tractable way to assess changes in habitat quality from various restoration actions. As part of the legislatively mandated five year update to the 2012 plan, the wildlife habitat suitability indices were updated and revised using literature and existing field data where available. The outcome of these efforts resulted in improved, or in some cases entirely new suitability indices. This report describes the development of the habitat suitability indices for the American alligator, Alligator mississippiensis.

  2. A GIS Approach to Prioritizing Habitat for Restoration Using Neotropical Migrant Songbird Criteria

    NASA Astrophysics Data System (ADS)

    Holzmueller, Eric J.; Gaskins, Michael D.; Mangun, Jean C.

    2011-07-01

    Restoration efforts to increase wildlife habitat quality in agricultural landscapes have limited funding and are typically done on a first come, first serve basis. In order to increase the efficiency of these restoration efforts, a prioritized ranking system is needed to obtain the greatest increase in habitat quality possible for the fewest amount of hectares restored. This project examines the use of a GIS based multi-criteria approach to prioritize lands for reforestation along the Kaskaskia River in Illinois. Loss of forested area and corresponding increase in forest fragmentation has decreased songbird habitat quality across the Midwestern United States. We prioritized areas for reforestation based on nine landscape metrics: available agricultural land, forest cover gaps, edge density, proximity to river, 200 m corridor area, total forest core area, fringe core area, distance to primary core value, and primary core area. The multi-criteria analysis revealed that high priority areas for reforestation were most likely to be close to the riparian corridor and existing large blocks of forest. Analysis of simulated reforestation (0, 0.5, 1.0, 5.0 10.0, 25.0, and 50.0% of highest priority parcels reforested) revealed different responses for multiple landscape metrics used to quantify forest fragmentation following reforestation, but indicated that the study area would get the greatest rate of return on reforestation efforts by reforesting 10.0% of the highest priority areas. This project demonstrates how GIS and a multi-criteria analysis approach can be used to increase the efficiency of restoration projects. This approach should be considered by land managers when attempting to identify the location and quantity of area for restoration within a landscape.

  3. A GIS approach to prioritizing habitat for restoration using neotropical migrant songbird criteria.

    PubMed

    Holzmueller, Eric J; Gaskins, Michael D; Mangun, Jean C

    2011-07-01

    Restoration efforts to increase wildlife habitat quality in agricultural landscapes have limited funding and are typically done on a first come, first serve basis. In order to increase the efficiency of these restoration efforts, a prioritized ranking system is needed to obtain the greatest increase in habitat quality possible for the fewest amount of hectares restored. This project examines the use of a GIS based multi-criteria approach to prioritize lands for reforestation along the Kaskaskia River in Illinois. Loss of forested area and corresponding increase in forest fragmentation has decreased songbird habitat quality across the Midwestern United States. We prioritized areas for reforestation based on nine landscape metrics: available agricultural land, forest cover gaps, edge density, proximity to river, 200 m corridor area, total forest core area, fringe core area, distance to primary core value, and primary core area. The multi-criteria analysis revealed that high priority areas for reforestation were most likely to be close to the riparian corridor and existing large blocks of forest. Analysis of simulated reforestation (0, 0.5, 1.0, 5.0 10.0, 25.0, and 50.0% of highest priority parcels reforested) revealed different responses for multiple landscape metrics used to quantify forest fragmentation following reforestation, but indicated that the study area would get the greatest rate of return on reforestation efforts by reforesting 10.0% of the highest priority areas. This project demonstrates how GIS and a multi-criteria analysis approach can be used to increase the efficiency of restoration projects. This approach should be considered by land managers when attempting to identify the location and quantity of area for restoration within a landscape.

  4. 7 CFR 625.12 - The HFRP restoration plan development.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false The HFRP restoration plan development. 625.12 Section... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM § 625.12 The HFRP restoration plan development. (a) The development of the HFRP restoration plan shall be made...

  5. WATER QUALITY AND OYSTER HEALTH (CRASSOSTREA VIRGINICA): AN INTEGRATED APPROACH TO DETERMINING HABITAT RESTORATION POTENTIAL

    EPA Science Inventory

    Volety, Aswani K., S. Gregory Tolley and James T. Winstead. 2001. Water Quality and Oyster Health (Crassostrea virginica): An Integrated Approach to Determining Habitat Restoration Potential (Abstract). Presented at the 5th International Conference on Shellfish Restoration, 18-21...

  6. Restoration of bighorn sheep metapopulations in and near 15 national parks: Conservation of a severely fragmented species; Volume I, Planning, problem definition, findings, and restoration

    USGS Publications Warehouse

    Singer, Francis J.; Gudorf, Michelle A.

    1999-01-01

    declining to avoid expensive and controversial federal listing. Because the capture and moving of the species are still relatively uncomplicated and because some source stocks are available, aggressive restoration in 15 National Park System units in the former Rocky Mountain Region was recommended in 1990. This report details the 7-year restoration of bighorn sheep to all currently suitable historic habitats in the national parks of the former Rocky Mountain Region (now the Intermountain and Midwest regions of the National Park Service). The purpose of the first phase of the restoration during 1991-93 was to conduct research and population surveys and to formulate the restoration plans. The purpose of the second phase of the initiative during 1994-97 was to conduct GIS-based habitat and biological assessments of prospective restoration sites, write restoration plans, and restore and monitor the released bighorn sheep.

  7. Using scenario modeling for red spruce restoration planning in West Virginia

    Treesearch

    Melissa A. Thomas-Van Gundy; Brian R. Sturtevant

    2014-01-01

    Active restoration of threatened or endangered species habitat may seem in conflict with the provisions of the Endangered Species Act because of the prohibition of "take," which can include habitat modification as well as death or harm to individuals. Risk-averse managers may choose to forego active management in known or presumed endangered species habitat...

  8. 15 CFR 990.55 - Restoration selection-developing restoration plans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OIL... plan developed with opportunity for public review and comment. To meet this requirement, trustees must, at a minimum, develop a Draft and Final Restoration Plan, with an opportunity for public review of...

  9. 15 CFR 990.55 - Restoration selection-developing restoration plans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OIL... plan developed with opportunity for public review and comment. To meet this requirement, trustees must, at a minimum, develop a Draft and Final Restoration Plan, with an opportunity for public review of...

  10. 12 CFR 325.104 - Capital restoration plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Capital restoration plans. 325.104 Section 325.104 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL... filing plan—(1) In general. A bank shall file a written capital restoration plan with the appropriate...

  11. 29 CFR 4047.3 - Funding of restored plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Funding of restored plan. 4047.3 Section 4047.3 Labor... OF TERMINATING AND TERMINATED PLANS § 4047.3 Funding of restored plan. (a) General. Whenever the PBGC... paragraph (a) of this section shall state that the PBGC has reviewed the funding of the plan, the financial...

  12. 29 CFR 4047.3 - Funding of restored plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 9 2013-07-01 2013-07-01 false Funding of restored plan. 4047.3 Section 4047.3 Labor... OF TERMINATING AND TERMINATED PLANS § 4047.3 Funding of restored plan. (a) General. Whenever the PBGC... paragraph (a) of this section shall state that the PBGC has reviewed the funding of the plan, the financial...

  13. River habitat assessment for ecological restoration of Wei River Basin, China.

    PubMed

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  14. Habitat Restoration and Monitoring in Urban Streams: The Case of Tryon Creek in Portland, OR

    NASA Astrophysics Data System (ADS)

    Rios Touma, B. P.; Prescott, C.; Axtell, S.; Kondolf, G. M.

    2013-12-01

    Habitat enhancement in urban streams can be important for threatened species but challenging, because of altered catchment hydrology and urban encroachment on floodplains and channel banks. In Portland (OR) restoration actions have been undertaken at the watershed scale (e.g.: storm water management, protection of sites with high watershed value) to improve water quality, and at reach scale, when water quality and quantity are adequate, to increase habitat heterogeneity and stabilize banks. To evaluate reach-scale restoration projects in the Tryon Creek watershed, we sampled benthic macroinvertebrates and conducted habitat quality surveys pre-project and over 4 years post- project. Species sensitive to pollution and diversity of trophic groups increased after restoration. Although taxonomical diversity increased after restoration, but was still low compared to reference streams. We found no significant changes in trait proportions and functional diversity. Functional diversity, proportion of shredders and semivoltine invertebrates were significantly higher in reference streams than the restored stream reaches. We hypothesized that inputs of coarse particulate organic matter and land use at watershed scale may explain the differences in biodiversity between restored and reference stream reaches. Variables such as substrate composition, canopy cover or large wood pieces did not change from pre- to post-project, so could not explain the changes in the community. This may have been partly attributable to insensitivity of the visual estimate methods used, but likely also reflects an importance influence of watershed variables on aquatic biota - suggesting watershed actions may be more effective for the ecological recovery of streams. For future projects, we recommend multihabitat benthic sampling supported by studies of channel geomorphology to better understand stream response to restoration actions.

  15. $627 Million Gulf Spill Restoration Plan Approved | NOAA Gulf Spill

    Science.gov Websites

    Publications Press Releases Story Archive Home $627 Million Gulf Spill Restoration Plan Approved $627 Million Gulf Spill Restoration Plan Approved Bird landing on water share Posted on October 3, 2014 | Assessment Gulf of Mexico early restoration projects since the oil spill. The restoration plan includes 44

  16. Habitat conditions of montane meadows associated with restored and unrestored stream channels of California

    Treesearch

    K. L. Pope; D. S. Montoya; J. N. Brownlee; J. Dierks; T. E. Lisle

    2015-01-01

    Mountain meadow habitats are valued for their ecological importance. They attenuate floods, improve water quality, and support high biodiversity. Many meadow habitats in the western US are degraded, and efforts are increasing to restore these montane meadow ecosystems. Rewatering projects such as pond-and-plug quickly raise the water table by blocking the existing...

  17. Metric Selection for Ecosystem Restoration

    DTIC Science & Technology

    2013-06-01

    focus on wetlands, submerged aquatic vegetation, oyster reefs, riparian forest, and wet prairie (Miner 2005). The objective of these Corps...of coastal habitats, Volume Two: Tools for monitoring coastal habitats. NOAA Coastal Ocean Program Decision Analysis Series No. 23. Silver Spring, MD...NOAA National Centers for Coastal Ocean Science. Thom, R. M., and K. F. Wellman. 1996. Planning aquatic ecosystem restoration monitoring programs

  18. Landscape restoration for greater sage-grouse: implications for multiscale planning and monitoring

    Treesearch

    Michael J. Wisdom; Mary M. Rowland; Miles A. Hemstrom; Barbara C. Wales

    2005-01-01

    Habitats and populations of greater sage-grouse (Centrocercus urophasianus) have declined throughout western North America in response to a myriad of detrimental land uses. Successful restoration of this species' habitat, therefore, is of keen interest to Federal land agencies who oversee management of most remaining habitat. To illustrate the...

  19. 12 CFR 6.5 - Capital restoration plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Capital Categories § 6.5 Capital restoration plans. (a) Schedule for filing plan—(1) In general. A bank..., pursuant to § 6.4 and subpart M of part 19 of this chapter, shall include a description of the steps the... that controls the bank. (c) Review of capital restoration plans. Within 60 days after receiving a...

  20. Assessment of Effectiveness and Limitations of Habitat Suitability Models for Wetland Restoration

    USGS Publications Warehouse

    Draugelis-Dale, Rassa O.

    2008-01-01

    Habitat suitability index (HSI) models developed for wildlife in the Louisiana Coastal Area Comprehensive Ecosystem Restoration Plan (LCA study) have been assessed for parameter and overall model quality. The success of the suitability models from the South Florida Water Management District for The Everglades restoration project and from the Spatially Explicit Species Index Models (SESI) of the Across Trophic Level System Simulation (ATLSS) Program of Florida warranted investigation with possible application of modeling theory to the current LCA study. General HSI models developed by the U.S. Fish and Wildlife Service were also investigated. This report presents examinations of theoretical formulae and comparisons of the models, performed by using diverse hypothetical settings of hydrological/biological ecosystems to highlight weaknesses as well as strengths among the models, limited to the American alligator and selected wading bird species (great blue heron, great egret, and white ibis). Recommendations were made for the LCA study based on these assessments. An enhanced HSI model for the LCA study is proposed for the American alligator, and a new HSI model for wading birds is introduced for the LCA study. Performance comparisons of the proposed models with the other suitability models are made by using the aforementioned hypothetical settings.

  1. Modeling Biota-Sediment Accumulation Factors in fish for AOC habitat restoration projects

    EPA Science Inventory

    We compiled contaminated sediment data for Dioxins and Dioxin Like PCBs for the St. Louis River Area of Concern as part of a health impact assessment for the proposed Kingsbury Bay Grassy Point Habitat Restoration project. To incorporate potential Biota-Sediment Accumulation Fac...

  2. Trends and habitat associations of waterbirds using the South Bay Salt Pond Restoration Project, San Francisco Bay, California

    USGS Publications Warehouse

    De La Cruz, Susan E. W.; Smith, Lacy M.; Moskal, Stacy M.; Strong, Cheryl; Krause, John; Wang, Yiwei; Takekawa, John Y.

    2018-04-02

    Executive SummaryThe aim of the South Bay Salt Pond Restoration Project (hereinafter “Project”) is to restore 50–90 percent of former salt evaporation ponds to tidal marsh in San Francisco Bay (SFB). However, hundreds of thousands of waterbirds use these ponds over winter and during fall and spring migration. To ensure that existing waterbird populations are supported while tidal marsh is restored in the Project area, managers plan to enhance the habitat suitability of ponds by adding islands and berms to change pond topography, manipulating water salinity and depth, and selecting appropriate ponds to maintain for birds. To help inform these actions, we used 13 years of monthly (October–April) bird abundance data from Project ponds to (1) assess trends in waterbird abundance since the inception of the Project, and (2) evaluate which pond habitat characteristics were associated with highest abundances of different avian guilds and species. For comparison, we also evaluated waterbird abundance trends in active salt production ponds using 10 years of monthly survey data.We assessed bird guild and species abundance trends through time, and created separate trend curves for Project and salt production ponds using data from every pond that was counted in a year. We divided abundance data into three seasons—fall (October–November), winter (December–February), and spring (March–April). We used the resulting curves to assess which periods had the highest bird abundance and to identify increasing or decreasing trends for each guild and species.

  3. 75 FR 38913 - Long-Term Gulf Coast Restoration Support Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... Coast Restoration Support Plan Memorandum for the Heads of Executive Departments and Agencies The oil... must help the Gulf Coast and its people recover from this tragedy. A long-term plan to restore the... to create a plan of Federal support for the long-term economic and environmental restoration of the...

  4. Restoring monarch butterfly habitat in the Midwestern US: 'All hands on deck'

    USGS Publications Warehouse

    Thogmartin, Wayne E.; Lopez-Hoffman, Laura; Rohweder, Jason; Diffendorfer, James E.; Drum, Ryan G.; Semmens, Darius J.; Black, Scott; Caldwell, Iris; Cotter, Donita; Drobney, Pauline; Jackson, Laura L.; Gale, Michael; Helmers, Doug; Hilburger, Steven B.; Howard, Elizabeth; Oberhauser, Karen S.; Pleasants, John M.; Semmens, Brice X.; Taylor, Orley R.; Ward, Patrick; Weltzin, Jake F.; Wiederholt, Ruscena

    2017-01-01

    The eastern migratory population of monarch butterflies (Danaus plexippus plexippus) has declined by >80% within the last two decades. One possible cause of this decline is the loss of ≥1.3 billion stems of milkweed (Asclepias spp.), which monarchs require for reproduction. In an effort to restore monarchs to a population goal established by the US Fish and Wildlife Service and adopted by Mexico, Canada, and the US, we developed scenarios for amending the Midwestern US landscape with milkweed. Scenarios for milkweed restoration were developed for protected area grasslands, Conservation Reserve Program land, powerline, rail and roadside rights of way, urban/suburban lands, and land in agricultural production. Agricultural land was further divided into productive and marginal cropland. We elicited expert opinion as to the biological potential (in stems per acre) for lands in these individual sectors to support milkweed restoration and the likely adoption (probability) of management practices necessary for affecting restoration. Sixteen of 218 scenarios we developed for restoring milkweed to the Midwestern US were at levels (>1.3 billion new stems) necessary to reach the monarch population goal. One of these scenarios would convert all marginal agriculture to conserved status. The other 15 scenarios converted half of marginal agriculture (730 million stems), with remaining stems contributed by other societal sectors. Scenarios without substantive agricultural participation were insufficient for attaining the population goal. Agricultural lands are essential to reaching restoration targets because they occupy 77% of all potential monarch habitat. Barring fundamental changes to policy, innovative application of economic tools such as habitat exchanges may provide sufficient resources to tip the balance of the agro-ecological landscape toward a setting conducive to both robust agricultural production and reduced imperilment of the migratory monarch butterfly.

  5. Predicting the effects of proposed Mississippi River diversions on oyster habitat quality; application of an oyster habitat suitability index model

    USGS Publications Warehouse

    Soniat, Thomas M.; Conzelmann, Craig P.; Byrd, Jason D.; Roszell, Dustin P.; Bridevaux, Joshua L.; Suir, Kevin J.; Colley, Susan B.

    2013-01-01

    In an attempt to decelerate the rate of coastal erosion and wetland loss, and protect human communities, the state of Louisiana developed its Comprehensive Master Plan for a Sustainable Coast. The master plan proposes a combination of restoration efforts including shoreline protection, marsh creation, sediment diversions, and ridge, barrier island, and hydrological restoration. Coastal restoration projects, particularly the large-scale diversions of fresh water from the Mississippi River, needed to supply sediment to an eroding coast potentially impact oyster populations and oyster habitat. An oyster habitat suitability index model is presented that evaluates the effects of a proposed sediment and freshwater diversion into Lower Breton Sound. Voluminous freshwater, needed to suspend and broadly distribute river sediment, will push optimal salinities for oysters seaward and beyond many of the existing reefs. Implementation and operation of the Lower Breton Sound diversion structure as proposed would render about 6,173 ha of hard bottom immediately east of the Mississippi River unsuitable for the sustained cultivation of oysters. If historical harvests are to be maintained in this region, a massive and unprecedented effort to relocate private leases and restore oyster bottoms would be required. Habitat suitability index model results indicate that the appropriate location for such efforts are to the east and north of the Mississippi River Gulf Outlet.

  6. Kingsbury Bay-Grassy Point habitat restoration project: A Health Impact Assessment-oral presentation

    EPA Science Inventory

    Undertaking large-scale aquatic habitat restoration projects in prominent waterfront locations, such as city parks, provides an opportunity to both improve ecological integrity and enhance community well-being. However, to consider both opportunities simultaneously, a community-b...

  7. Landscape Context Mediates Avian Habitat Choice in Tropical Forest Restoration

    PubMed Central

    Reid, J. Leighton; Mendenhall, Chase D.; Rosales, J. Abel; Zahawi, Rakan A.; Holl, Karen D.

    2014-01-01

    Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage. We sampled bird communities over two years in 13 restoration sites and two old-growth forests in southern Costa Rica. Restoration sites were established on degraded farmlands in a variety of landscape contexts, and each included a 0.25-ha plantation, island treatment (trees planted in patches), and unplanted control. We analyzed four attributes of bird communities including frugivore abundance, nectarivore abundance, migrant insectivore richness, and compositional similarity of bird communities in restoration plots to bird communities in old-growth forests. All four bird community variables were greater in plantations and/or islands than in control treatments. Frugivore and nectarivore abundance decreased with increasing tree cover in the landscape surrounding restoration plots, whereas compositional similarity to old-growth forests was greatest in plantations embedded in landscapes with high tree cover. Migrant insectivore richness was unaffected by landscape tree cover. Our results agree with previous studies showing that increasing levels of investment in active restoration are positively related to bird richness and abundance, but differences in the effects of landscape tree cover on foraging guilds and community composition suggest that trade-offs between biodiversity conservation and bird-mediated ecosystem functioning may be important for prioritizing restoration sites. PMID:24595233

  8. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek,more » Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a

  9. Do management actions to restore rare habitat benefit native fish conservation? Distribution of juvenile native fish among shoreline habitats of the Colorado River

    USGS Publications Warehouse

    Dodrill, Michael J.; Yackulic, Charles B.; Gerig, Brandon; Pine, William E.; Korman, Josh; Finch, Colton

    2015-01-01

    Many management actions in aquatic ecosystems are directed at restoring or improving specific habitats to benefit fish populations. In the Grand Canyon reach of the Colorado River, experimental flow operations as part of the Glen Canyon Dam Adaptive Management Program have been designed to restore sandbars and associated backwater habitats. Backwaters can have warmer water temperatures than other habitats, and native fish, including the federally endangered humpback chub Gila cypha, are frequently observed in backwaters, leading to a common perception that this habitat is critical for juvenile native fish conservation. However, it is unknown how fish densities in backwaters compare with that in other habitats or what proportion of juvenile fish populations reside in backwaters. Here, we develop and fit multi-species hierarchical models to estimate habitat-specific abundances and densities of juvenile humpback chub, bluehead suckerCatostomus discobolus, flannelmouth sucker Catostomus latipinnis and speckled dace Rhinichthys osculus in a portion of the Colorado River. Densities of all four native fish were greatest in backwater habitats in 2009 and 2010. However, backwaters are rare and ephemeral habitats, so they contain only a small portion of the overall population. For example, the total abundance of juvenile humpback chub in this study was much higher in talus than in backwater habitats. Moreover, when we extrapolated relative densities based on estimates of backwater prevalence directly after a controlled flood, the majority of juvenile humpback chub were still found outside of backwaters. This suggests that the role of controlled floods in influencing native fish population trends may be limited in this section of the Colorado River. 

  10. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  11. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, T.P.

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physicalmore » characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River

  12. 75 FR 5765 - NOAA Coastal and Marine Habitat Restoration Project Supplemental Funding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... the approximately 3 percent of funding that remains from the original allocation provided to NMFS... manage and mitigate risks to the original habitat restoration investments and ensure program goals are... awarded funds as a result of the original competition. There is the possibility that NMFS may also fund...

  13. Habitat restoration from an ecosystem goods and services perspective: Application of a spatially explicit individual-based model

    EPA Science Inventory

    Estuarine ecosystems provide many services to humans, but these ecosystems are also under pressure from human development, which has led to large investments in habitat protection and restoration. Restoration in estuaries is typically focused on emergent and submerged vegetation ...

  14. Draft Maumee River Watershed Restoration Plan

    EPA Pesticide Factsheets

    A draft of the Maumee River AOC Watershed Restoration Plan was completed in January 2006. The plan was created to meet requirements for the stage II RAP as well as Ohio EPA’s and ODNR’s Watershed Coordinator Program.

  15. Application of restoration scenarios to basin-scale demographics of coho salmon inferred from pit-tags

    EPA Science Inventory

    Effective habitat restoration planning requires correctly anticipating demographic responses to altered habitats. New applications of Passive Integrated Transponder (PIT) tag technology to fish-habitat research have provided critical insights into fish movement, growth, and surv...

  16. Wetlands reserve program: a partnership to restore wetlands and associated habitat

    Treesearch

    Randall L. Gray

    2005-01-01

    The 1990 Farm Bill created the Wetlands Reserve Program (WRP) to restore and protect wetland, which as of 2002 has enrolled over 1.4 million acres of wetland and upland habitat in 49 states and Puerto Rico. The program is administered by the U. S. Department of Agriculture Natural Resource Conservation Service and delivered in cooperation with many partners from the...

  17. 75 FR 57820 - National Credit Union Administration Restoration Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... NATIONAL CREDIT UNION ADMINISTRATION National Credit Union Administration Restoration Plan AGENCY: National Credit Union Administration (NCUA). ACTION: Approval of National Credit Union Administration restoration plan. On September 16, 2010, the National Credit Union Administration (NCUA) implemented a...

  18. Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture.

    PubMed

    M'Gonigle, Leithen K; Ponisio, Lauren C; Cutler, Kerry; Kremen, Claire

    2015-09-01

    Widespread evidence of pollinator declines has led to policies supporting habitat restoration including in agricultural landscapes. Yet, little is yet known about the effectiveness of these restoration techniques for promoting stable populations and communities of pollinators, especially in intensively managed agricultural landscapes. Introducing floral resources, such as flowering hedgerows, to enhance intensively cultivated agricultural landscapes is known to increase the abundances of native insect pollinators in and around restored areas. Whether this is a result of local short-term concentration at flowers or indicative of true increases in the persistence and species richness of these communities remains unclear. It is also unknown whether this practice supports species of conservation concern (e.g., those with more specialized dietary requirements). Analyzing occupancies of native bees and syrphid flies from 330 surveys across 15 sites over eight years, we found that hedgerow restoration promotes rates of between-season persistence and colonization as compared with unrestored field edges. Enhanced persistence and colonization, in turn, led to the formation of more species-rich communities. We also find that hedgerows benefit floral resource specialists more than generalists, emphasizing the value of this restoration technique for conservation in agricultural landscapes.

  19. 7 CFR 1730.28 - Emergency Restoration Plan (ERP).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Emergency Restoration Plan (ERP). 1730.28 Section... § 1730.28 Emergency Restoration Plan (ERP). (a) Each borrower with an approved RUS electric program loan as of October 12, 2004 shall have a written ERP no later than January 12, 2006. The ERP should be...

  20. RESTORATION OF 100 SQUARE MILES OF SHELLFISH HABITAT IN LAKE PONTCHARTRAIN MX974852

    EPA Science Inventory

    The project will document the adverse effects of episodic hypoxia on the biotic integrity of Lake Pontchartrain and provide quantitative data on environmental benefits derived from the restoration of 100 square miles of clam habitat in Lake Pontchartrain. This project will prov...

  1. An expert panel process to evaluate habitat restoration actions in the Columbia River estuary.

    PubMed

    Krueger, Kirk L; Bottom, Daniel L; Hood, W Gregory; Johnson, Gary E; Jones, Kim K; Thom, Ronald M

    2017-03-01

    We describe a process for evaluating proposed ecosystem restoration projects intended to improve survival of juvenile salmon in the Columbia River estuary (CRE). Changes in the Columbia River basin (northwestern USA), including hydropower development, have contributed to the listing of 13 salmon stocks as endangered or threatened under the U.S. Endangered Species Act. Habitat restoration in the CRE, from Bonneville Dam to the ocean, is part of a basin-wide, legally mandated effort to mitigate federal hydropower impacts on salmon survival. An Expert Regional Technical Group (ERTG) was established in 2009 to improve and implement a process for assessing and assigning "survival benefit units" (SBUs) to restoration actions. The SBU concept assumes site-specific restoration projects will increase juvenile salmon survival during migration through the 234 km CRE. Assigned SBUs are used to inform selection of restoration projects and gauge mitigation progress. The ERTG standardized the SBU assessment process to improve its scientific integrity, repeatability, and transparency. In lieu of experimental data to quantify the survival benefits of individual restoration actions, the ERTG adopted a conceptual model composed of three assessment criteria-certainty of success, fish opportunity improvements, and habitat capacity improvements-to evaluate restoration projects. Based on these criteria, an algorithm assigned SBUs by integrating potential fish density as an indicator of salmon performance. Between 2009 and 2014, the ERTG assessed SBUs for 55 proposed projects involving a total of 181 restoration actions located across 8 of 9 reaches of the CRE, largely relying on information provided in a project template based on the conceptual model, presentations, discussions with project sponsors, and site visits. Most projects restored tidal inundation to emergent wetlands, improved riparian function, and removed invasive vegetation. The scientific relationship of geomorphic and

  2. Forward-looking farmers owning multiple potential wetland restoration sites: implications for efficient restoration

    NASA Astrophysics Data System (ADS)

    Schroder (Kushch), Svetlana; Lang, Zhengxin; Rabotyagov, Sergey

    2018-04-01

    Wetland restoration can increase the provision of multiple non-market ecosystem services. Environmental and socio-economic factors need to be accounted for when land is withdrawn from agriculture and wetlands are restored. We build multi-objective optimization models to provide decision support for wetland restoration in the Le Sueur river watershed in Southern Minnesota. We integrate environmental objectives of sediment reduction and habitat protection with socio-economic factors associated with the overlap of private land with potential wetland restoration sites in the watershed and the costs representing forward-looking farmers voluntarily taking land out of agricultural production in favor of wetland restoration. Our results demonstrate that the inclusion of these factors early on in the restoration planning process affects both the total costs of the restoration project and the spatial distribution of optimally selected wetland restoration sites.

  3. Restoring monarch butterfly habitat in the Midwestern US: ‘all hands on deck’

    NASA Astrophysics Data System (ADS)

    Thogmartin, Wayne E.; López-Hoffman, Laura; Rohweder, Jason; Diffendorfer, Jay; Drum, Ryan; Semmens, Darius; Black, Scott; Caldwell, Iris; Cotter, Donita; Drobney, Pauline; Jackson, Laura L.; Gale, Michael; Helmers, Doug; Hilburger, Steve; Howard, Elizabeth; Oberhauser, Karen; Pleasants, John; Semmens, Brice; Taylor, Orley; Ward, Patrick; Weltzin, Jake F.; Wiederholt, Ruscena

    2017-07-01

    The eastern migratory population of monarch butterflies (Danaus plexippus plexippus) has declined by >80% within the last two decades. One possible cause of this decline is the loss of ≥1.3 billion stems of milkweed (Asclepias spp.), which monarchs require for reproduction. In an effort to restore monarchs to a population goal established by the US Fish and Wildlife Service and adopted by Mexico, Canada, and the US, we developed scenarios for amending the Midwestern US landscape with milkweed. Scenarios for milkweed restoration were developed for protected area grasslands, Conservation Reserve Program land, powerline, rail and roadside rights of way, urban/suburban lands, and land in agricultural production. Agricultural land was further divided into productive and marginal cropland. We elicited expert opinion as to the biological potential (in stems per acre) for lands in these individual sectors to support milkweed restoration and the likely adoption (probability) of management practices necessary for affecting restoration. Sixteen of 218 scenarios we developed for restoring milkweed to the Midwestern US were at levels (>1.3 billion new stems) necessary to reach the monarch population goal. One of these scenarios would convert all marginal agriculture to conserved status. The other 15 scenarios converted half of marginal agriculture (730 million stems), with remaining stems contributed by other societal sectors. Scenarios without substantive agricultural participation were insufficient for attaining the population goal. Agricultural lands are essential to reaching restoration targets because they occupy 77% of all potential monarch habitat. Barring fundamental changes to policy, innovative application of economic tools such as habitat exchanges may provide sufficient resources to tip the balance of the agro-ecological landscape toward a setting conducive to both robust agricultural production and reduced imperilment of the migratory monarch butterfly.

  4. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis: An Additional Year

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2009-01-01

    The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the Federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent upon the estuary. A pre-restoration baseline that includes characterization of life history types, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and determine restoration success. Otolith analysis was selected to examine Chinook salmon life history, growth, and residence in the Nisqually Estuary. Previously funded work on wild samples collected in 2004 established the growth rate and length of residence associated with various habitats. The purpose of the current study is to build on the previous work by incorporating otolith microstructure analysis from 2005 (second sampling year), to verify findings from 2004, and to evaluate between-year variation in otolith microstructure. Our results from this second year of analysis indicated no inter-annual variation in the appearance of the tidal delta check (TDCK) and delta-flats check (DFCK). However, a new life history type (fry migrant) was observed on samples collected in 2005. Fish caught in the tidal delta regardless of capture date spent an average of 17 days in the tidal delta. There was a corresponding increase in growth rate as the fish migrated from freshwater (FW) to tidal delta to nearshore (NS) habitats. Fish grew 33 percent faster in the tidal delta than in FW habitat and slightly faster (14 percent) in the delta flats (DF) habitat compared to the tidal delta.

  5. Home range and habitat selection patterns of mule deer in a restoration-treated ponderosa pine forest

    Treesearch

    R. Fenner Yarborough; Catherine S. Wightman

    2008-01-01

    (Please note, this is an abstract only) Forest restoration treatments are currently being conducted throughout the state of Arizona. Restoration treatments open the existing forest structure and may improve foraging habitat for mule deer (Odocoileus hemionus) but may reduce the suitability of day bed sites or decrease fawn recruitment due to removal of sufficient...

  6. 15 CFR 990.55 - Restoration selection-developing restoration plans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OIL... involvement of the responsible parties in the assessment; and (vii) A description of monitoring for.... (3) The monitoring component to the Draft Restoration Plan should address such factors as duration...

  7. Incorporating Natural Capital into Climate Adaptation Planning: Exploring the Role of Habitat in Increasing Coastal Resilience

    NASA Astrophysics Data System (ADS)

    Wedding, L.; Hartge, E. H.; Guannel, G.; Melius, M.; Reiter, S. M.; Ruckelshaus, M.; Guerry, A.; Caldwell, M.

    2014-12-01

    To support decision-makers in their efforts to manage coastal resources in a changing climate the Natural Capital Project and the Center for Ocean Solutions are engaging in, informing, and helping to shape climate adaptation planning at various scales throughout coastal California. Our team is building collaborations with regional planners and local scientific and legal experts to inform local climate adaptation decisions that might minimize the economic and social losses associated with rising seas and more damaging storms. Decision-makers are considering engineered solutions (e.g. seawalls), natural solutions (e.g. dune or marsh restoration), and combinations of the two. To inform decisions about what kinds of solutions might best work in specific locations, we are comparing alternate climate and adaptation scenarios. We will present results from our use of the InVEST ecosystem service models in Sonoma County, with an initial focus on protection from coastal hazards due to erosion and inundation. By strategically choosing adaptation alternatives, communities and agencies can work to protect people and property while also protecting or restoring dwindling critical habitat and the full suite of benefits those habitats provide to people.

  8. Keeping Pace with Climate Change: Habitat Protection in the Face of Uncertainty

    NASA Astrophysics Data System (ADS)

    Flitcroft, R. L.; Burnett, K.; Giannico, G.

    2014-12-01

    Estuaries provide critical habitat for many economically and culturally important species. In the Pacific Northwest, intertidal and subtidal areas provide critical habitat for production of native and commercial oysters (Olympia oyster Ostrea lurida and Pacific oyster Crassostrea gigas, respectively) that in turn provide refuge and rearing habitat for Dungeness Crab, Metacarcinus magister. Environments ranging from subtidal through freshwater zones provide nursery areas for juvenile salmonids at different development stages in their life history. Most Oregon estuaries have been significantly altered by humans over the past century, reducing the quantity and diversity of available habitats. Management agencies have responded with projects to restore and enhance estuarine habitats. Unfortunately, future climate change and sea-level rise could render many current restoration projects ineffective over time. Planning for habitat restoration that keeps pace with climate change will be critical to the sustainable production of seafood and maintenance of ecosystem function. However, land managers and citizens lack the spatially-explicit data needed to incorporate the potential effects of climate change and sea-level rise into planning for habitat improvement projects in estuarine areas. To meet this need, we developed simple models using LiDAR to characterize the geomorphologies of multiple Oregon estuaries. We were able to map the margin of current mean high tide, and contour intervals associated with different potential increases in mean high tide. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting changes in estuary shape. For each estuary, we assessed changes in the amount and complexity of edge habitats. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance

  9. Attrition and erosion: restorative planning and performance.

    PubMed

    Burrow, Michael F

    2012-04-01

    The number of patients presenting with severe attrition and associated erosion is increasing in frequency. Treatment of this patient group is very challenging as it is simply not just a case of replacing lost tooth tissue, but also trying to identify and then eliminate the aetiological factors responsible for the loss of tooth structure. In most cases restorative treatment involves extensive rehabilitation of the dentition to restore the aesthetics and function and also to prevent further tooth loss. Such treatment often involves a multidisciplinary approach to eliminate and/or reduce causative factors prior to definitive restoration of teeth. Treatment needs to focus on quick intervention when the problem has been identified and diagnosed. Restorative treatment involves careful if not complex planning culminating in the establishment of a well defined and ongoing maintenance plan. Long-term success of treatment is centred on the maintenance phase. Current restorative options include the use of extensive resin composite build-ups. This is often the best initial starting point as it allows for adjustments, as well as being a reversible and more conservative procedure. The use of indirect restorations is likely to provide a longer lasting outcome after initial stabilization, whether it is metal- or ceramic-based or a combination.

  10. 75 FR 2517 - Notice of Solicitation for Estuary Habitat Restoration Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... related to climate change on the viability of the proposed restoration. This may take the form of considering climate change in the planning, design, siting, and construction of the project, or in testing new restoration technologies that may help to alleviate effects of climate change. This document describes project...

  11. 75 FR 41157 - Stanford University Habitat Conservation Plan; Extension of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... Fish and Wildlife Service RIN 0648-XX52 Stanford University Habitat Conservation Plan; Extension of... extending the comment period for our joint request for comments on the Stanford University Habitat... issued Stanford University Habitat Conservation Plan, a DEIS for Authorization of Incidental Take and...

  12. Using Species Distribution Models to Predict Potential Landscape Restoration Effects on Puma Conservation

    PubMed Central

    Angelieri, Cintia Camila Silva; Adams-Hosking, Christine; Ferraz, Katia Maria Paschoaletto Micchi de Barros

    2016-01-01

    A mosaic of intact native and human-modified vegetation use can provide important habitat for top predators such as the puma (Puma concolor), avoiding negative effects on other species and ecological processes due to cascade trophic interactions. This study investigates the effects of restoration scenarios on the puma’s habitat suitability in the most developed Brazilian region (São Paulo State). Species Distribution Models incorporating restoration scenarios were developed using the species’ occurrence information to (1) map habitat suitability of pumas in São Paulo State, Southeast, Brazil; (2) test the relative contribution of environmental variables ecologically relevant to the species habitat suitability and (3) project the predicted habitat suitability to future native vegetation restoration scenarios. The Maximum Entropy algorithm was used (Test AUC of 0.84 ± 0.0228) based on seven environmental non-correlated variables and non-autocorrelated presence-only records (n = 342). The percentage of native vegetation (positive influence), elevation (positive influence) and density of roads (negative influence) were considered the most important environmental variables to the model. Model projections to restoration scenarios reflected the high positive relationship between pumas and native vegetation. These projections identified new high suitability areas for pumas (probability of presence >0.5) in highly deforested regions. High suitability areas were increased from 5.3% to 8.5% of the total State extension when the landscapes were restored for ≥ the minimum native vegetation cover rule (20%) established by the Brazilian Forest Code in private lands. This study highlights the importance of a landscape planning approach to improve the conservation outlook for pumas and other species, including not only the establishment and management of protected areas, but also the habitat restoration on private lands. Importantly, the results may inform environmental

  13. Using Species Distribution Models to Predict Potential Landscape Restoration Effects on Puma Conservation.

    PubMed

    Angelieri, Cintia Camila Silva; Adams-Hosking, Christine; Ferraz, Katia Maria Paschoaletto Micchi de Barros; de Souza, Marcelo Pereira; McAlpine, Clive Alexander

    2016-01-01

    A mosaic of intact native and human-modified vegetation use can provide important habitat for top predators such as the puma (Puma concolor), avoiding negative effects on other species and ecological processes due to cascade trophic interactions. This study investigates the effects of restoration scenarios on the puma's habitat suitability in the most developed Brazilian region (São Paulo State). Species Distribution Models incorporating restoration scenarios were developed using the species' occurrence information to (1) map habitat suitability of pumas in São Paulo State, Southeast, Brazil; (2) test the relative contribution of environmental variables ecologically relevant to the species habitat suitability and (3) project the predicted habitat suitability to future native vegetation restoration scenarios. The Maximum Entropy algorithm was used (Test AUC of 0.84 ± 0.0228) based on seven environmental non-correlated variables and non-autocorrelated presence-only records (n = 342). The percentage of native vegetation (positive influence), elevation (positive influence) and density of roads (negative influence) were considered the most important environmental variables to the model. Model projections to restoration scenarios reflected the high positive relationship between pumas and native vegetation. These projections identified new high suitability areas for pumas (probability of presence >0.5) in highly deforested regions. High suitability areas were increased from 5.3% to 8.5% of the total State extension when the landscapes were restored for ≥ the minimum native vegetation cover rule (20%) established by the Brazilian Forest Code in private lands. This study highlights the importance of a landscape planning approach to improve the conservation outlook for pumas and other species, including not only the establishment and management of protected areas, but also the habitat restoration on private lands. Importantly, the results may inform environmental

  14. Prioritizing Sites for Protection and Restoration for Grizzly Bears (Ursus arctos) in Southwestern Alberta, Canada.

    PubMed

    Braid, Andrew C R; Nielsen, Scott E

    2015-01-01

    As the influence of human activities on natural systems continues to expand, there is a growing need to prioritize not only pristine sites for protection, but also degraded sites for restoration. We present an approach for simultaneously prioritizing sites for protection and restoration that considers landscape patterns for a threatened population of grizzly bears (Ursus arctos) in southwestern Alberta, Canada. We considered tradeoffs between bottom-up (food resource supply) and top-down (mortality risk from roads) factors affecting seasonal habitat quality for bears. Simulated annealing was used to prioritize source-like sites (high habitat productivity, low mortality risk) for protection, as well as sink-like sites (high habitat productivity, high mortality risk) for restoration. Priority source-like habitats identified key conservation areas where future developments should be limited, whereas priority sink-like habitats identified key areas for mitigating road-related mortality risk with access management. Systematic conservation planning methods can be used to complement traditional habitat-based methods for individual focal species by identifying habitats where conservation actions (both protection and restoration) have the highest potential utility.

  15. Conservation education and habitat restoration for the endangered Sagalla caecilian (Boulengerula niedeni) in Sagalla Hill, Kenya.

    PubMed

    K Malonza, Patrick

    2016-05-18

    The Sagalla caecilian (Boulengerula niedeni) is an endangered amphibian endemic to Sagalla Hill in the Taita Hills. This burrowing worm-like species prefers soft soil with high moisture and organic matter. The major threats to the Sagalla caecilian are soil erosion caused by steep slopes, bare ground and water siphoning/soil hardening from exotic eucalyptus trees. The purpose of this study was to get a better understanding of the local people's attitude towards this species and how they can contribute to its continued conservation through restoration of its remaining habitat. In this study, it was found that 96% of Sagalla people are aware of the species, its habits and its association with soils high in organic matter. It was also found that 96% of Sagalla people use organic manure from cow dung in their farms. Habitat restoration through planting of indigenous plants was found to be ongoing, especially on compounds of public institutions as well as on private lands. Although drought was found to be a challenge for seedlings development especially on the low elevation sites, destruction by livestock especially during the dry season is also a major threat. In this study, it was recommended that any future habitat restoration initiative should include strong chain-link fencing to protect the seedlings from livestock activity. Recognizing that the preferred habitats for the species are in the valleys, systematic planting of keystone plant species such as fig trees (Ficus) creates the best microhabitats. These are better than general woodlots of indigenous trees.

  16. Marbled murrelet effectiveness monitoring plan for the Northwest Forest Plan.

    Treesearch

    Sarah Madsen; Diane Evans; Thomas Hamer; Paul Henson; Sherri Miller; S. Kim Nelson; Daniel Roby; Martin Stapanian

    1999-01-01

    This report describes options for effectiveness monitoring of long-term status and trends to evaluate the success of the Northwest Forest Plan in maintaining and restoring marbled murrelet nesting habitat and populations on Federal lands. A two-phase approach is described that begins with developing reliable and repeatable processes for identifying nesting habitat and...

  17. 12 CFR 208.44 - Capital restoration plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Action § 208.44 Capital restoration plans. (a) Schedule for filing plan—(1) In general. A member bank... § 208.43(c) shall include a description of the steps the bank will take to correct the unsafe or unsound... section 38(e)(2)(C) of that Act by each company that controls the bank. (c) Review of capital restoration...

  18. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico.

    PubMed

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-12-04

    We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. We found 16% of suitable habitat (6% of the study area) distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area) distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82%) occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM). We identified 88,190 ha (10% of the study area) of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA) contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  19. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    PubMed Central

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-01-01

    Background We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We found 16% of suitable habitat (6% of the study area) distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area) distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82%) occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM). We identified 88,190 ha (10% of the study area) of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA) contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Conclusion Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool. PMID:17144922

  20. Description of Nesting Habitat for Least Bell's Vireo in San Diego County

    Treesearch

    Bonnie J. Hendricks; John P. Rieger

    1989-01-01

    Least Bell's Vireo (Vireo bellii pusillus) nesting sites on three rivers in coastal southern California were characterized to provide data for a habitat restoration plan for this endangered species. In addition, riparian areas outside vireo territories were sampled to compare with nesting habitat. The parameters measured were percent cover,...

  1. Chapter 3. Planning and design for habitat monitoring

    Treesearch

    Christina D. Vojta; Lyman L. McDonald; C. Kenneth Brewer; Kevin S. McKelvey; Mary M Rowland; Michael I. Goldstein

    2013-01-01

    This chapter provides guidance for designing a habitat monitoring program so that it will meet the monitoring objective, will be repeatable, and will adequately represent habitat within the spatial extent of interest. Although a number of excellent resources are available for planning and designing a monitoring program for wildlife populations (e.g., Busch and Trexler...

  2. A Spatially Based Area–Time Inundation Index Model Developed to Assess Habitat Opportunity in Tidal–Fluvial Wetlands and Restoration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Andre M.; Diefenderfer, Heida L.; Ward, Duane L.

    The hydrodynamics of tidal wetland areas in the lower Columbia River floodplain and estuary directly affect habitat opportunity for endangered salmonid fishes. Physical and biological structures and functions in the system are directly affected by inundation patterns influenced by tidal cycles, hydropower operations, river discharge, upriver water withdrawals, climate, and physical barriers such as dikes, culverts, and tide gates. Ongoing ecosystem restoration efforts are intended to increase the opportunity for salmon to access beneficial habitats by hydrologically reconnecting main-stem river channels and diked areas within the historical floodplain. To address the need to evaluate habitat opportunity, a geographic information system-basedmore » Area-Time Inundation Index Model (ATIIM) was developed. The ATIIM integrates in situ or modeled hourly water-surface elevation (WSE) data and advanced terrain processing of high-resolution elevation data. The ATIIM uses a spatially based wetted-area algorithm to determine site average bankfull elevation, two- and three-dimensional inundation extent, and other site metrics. Hydrological process metrics such as inundation frequency, duration, maximum area, and maximum frequency area can inform evaluation of proposed restoration sites; e.g., determine trade-offs between WSE and habitat opportunity, contrast alternative restoration designs, predict impacts of altered flow regimes, and estimate nutrient and biomass fluxes. In an adaptive management framework, this model can be used to provide standardized site comparisons and effectiveness monitoring of changes in the developmental trajectories of restoration sites. Results are presented for 11 wetlands representative of tidal marshes, tidal forested wetlands, and restoration sites.« less

  3. 7 CFR 625.13 - Modification of the HFRP restoration plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Modification of the HFRP restoration plan. 625.13... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM § 625.13 Modification of the HFRP restoration plan. Consistent with the easement and applicable law, the State...

  4. 77 FR 39686 - Draft Programmatic Environmental Impact Statement and Restoration Plan To Compensate for Injuries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... Programmatic Environmental Impact Statement and Restoration Plan To Compensate for Injuries to Natural... Environmental Impact Statement and Restoration Plan; request for comments. SUMMARY: NOAA, the Department of the... Statement (PEIS) and Draft Restoration Plan are being released for public comment. The Restoration Plan...

  5. Targeted habitat restoration can reduce extinction rates in fragmented forests.

    PubMed

    Newmark, William D; Jenkins, Clinton N; Pimm, Stuart L; McNeally, Phoebe B; Halley, John M

    2017-09-05

    The Eastern Arc Mountains of Tanzania and the Atlantic Forest of Brazil are two of the most fragmented biodiversity hotspots. Species-area relationships predict that their habitat fragments will experience a substantial loss of species. Most of these extinctions will occur over an extended time, and therefore, reconnecting fragments could prevent species losses and allow locally extinct species to recolonize former habitats. An empirical relaxation half-life vs. area relationship for tropical bird communities estimates the time that it takes to lose one-half of all species that will be eventually lost. We use it to estimate the increase in species persistence by regenerating a forest connection 1 km in width among the largest and closest fragments at 11 locations. In the Eastern Arc Mountains, regenerating 8,134 ha of forest would create >316,000 ha in total of restored contiguous forest. More importantly, it would increase the persistence time for species by a factor of 6.8 per location or ∼2,272 years, on average, relative to individual fragments. In the Atlantic Forest, regenerating 6,452 ha of forest would create >251,000 ha in total of restored contiguous forest and enhance species persistence by a factor of 13.0 per location or ∼5,102 years, on average, relative to individual fragments. Rapidly regenerating forest among fragments is important, because mean time to the first determined extinction across all fragments is 7 years. We estimate the cost of forest regeneration at $21-$49 million dollars. It could provide one of the highest returns on investment for biodiversity conservation worldwide.

  6. 76 FR 24050 - Coral Reef Restoration Plan, Final Programmatic Environmental Impact Statement, Biscayne National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... DEPARTMENT OF THE INTERIOR National Park Service [2310-0003-422] Coral Reef Restoration Plan... for the Coral Reef Restoration Plan, Biscayne National Park. SUMMARY: Pursuant to the National... availability of a Final Programmatic Environmental Impact Statement for the Coral Reef Restoration Plan (Plan...

  7. Facilitating political decisions using species distribution models to assess restoration measures in heavily modified estuaries.

    PubMed

    Heuner, Maike; Weber, Arnd; Schröder, Uwe; Kleinschmit, Birgit; Schröder, Boris

    2016-09-15

    The European Water Framework Directive requires a good ecological potential for heavily modified water bodies. This standard has not been reached for most large estuaries by 2015. Management plans for estuaries fall short in linking implementations between restoration measures and underlying spatial analyses. The distribution of emergent macrophytes - as an indicator of habitat quality - is here used to assess the ecological potential. Emergent macrophytes are capable of settling on gentle tidal flats where hydrodynamic stress is comparatively low. Analyzing their habitats based on spatial data, we set up species distribution models with 'elevation relative to mean high water', 'mean bank slope', and 'length of bottom friction' from shallow water up to the vegetation belt as key predictors representing hydrodynamic stress. Effects of restoration scenarios on habitats were assessed applying these models. Our findings endorse species distribution models as crucial spatial planning tools for implementing restoration measures in modified estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Incorporating food web dynamics into ecological restoration: A modeling approach for river ecosystems

    USGS Publications Warehouse

    Bellmore, J. Ryan; Benjamin, Joseph R.; Newsom, Michael; Bountry, Jennifer A.; Dombroski, Daniel

    2017-01-01

    Restoration is frequently aimed at the recovery of target species, but also influences the larger food web in which these species participate. Effects of restoration on this broader network of organisms can influence target species both directly and indirectly via changes in energy flow through food webs. To help incorporate these complexities into river restoration planning we constructed a model that links river food web dynamics to in-stream physical habitat and riparian vegetation conditions. We present an application of the model to the Methow River, Washington (USA), a location of on-going restoration aimed at recovering salmon. Three restoration strategies were simulated: riparian vegetation restoration, nutrient augmentation via salmon carcass addition, and side-channel reconnection. We also added populations of nonnative aquatic snails and fish to the modeled food web to explore how changes in food web structure mediate responses to restoration. Simulations suggest that side-channel reconnection may be a better strategy than carcass addition and vegetation planting for improving conditions for salmon in this river segment. However, modeled responses were strongly sensitive to changes in the structure of the food web. The addition of nonnative snails and fish modified pathways of energy through the food web, which negated restoration improvements. This finding illustrates that forecasting responses to restoration may require accounting for the structure of food webs, and that changes in this structure—as might be expected with the spread of invasive species—could compromise restoration outcomes. Unlike habitat-based approaches to restoration assessment that focus on the direct effects of physical habitat conditions on single species of interest, our approach dynamically links the success of target organisms to the success of competitors, predators, and prey. By elucidating the direct and indirect pathways by which restoration affects target species

  9. Crims Island-Restoration and monitoring of juvenile salmon rearing habitat in the Columbia River Estuary, Oregon, 2004-10

    USGS Publications Warehouse

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Under the 2004 Biological Opinion for operation of the Federal Columbia River Power System released by the National Marine Fisheries Service, the U.S. Army Corps of Engineers (USACE), the Bonneville Power Administration (BPA), and the Bureau of Reclamation (Reclamation) were directed to restore more than 4,047 hectares (10,000 acres) of tidal marsh in the Columbia River estuary by 2010. Restoration of Crims Island near Longview, Washington, restored 38.1 hectares of marsh and swamp in the tidal freshwater portion of the lower Columbia River. The goal of the restoration was to improve habitat for juveniles of Endangered Species Act (ESA)-listed salmon stocks and ESA-listed Columbian white-tailed deer. The U.S. Geological Survey (USGS) monitored and evaluated the fisheries and aquatic resources at Crims Island in 2004 prior to restoration (pre-restoration), which began in August 2004, and then post-restoration from 2006 to 2009. This report summarizes pre- and post-restoration monitoring data used by the USGS to evaluate project success. We evaluated project success by examining the interaction between juvenile salmon and a suite of broader ecological measures including sediments, plants, and invertebrates and their response to large-scale habitat alteration. The restoration action at Crims Island from August 2004 to September 2005 was to excavate a 0.6-meter layer of soil and dig channels in the interior of the island to remove reed canary grass and increase habitat area and tidal exchange. The excavation created 34.4 hectares of tidal emergent marsh where none previously existed and 3.7 hectares of intertidal and subtidal channels. Cattle that had grazed the island for more than 50 years were relocated. Soil excavated from the site was deposited in upland areas next to the tidal marsh to establish an upland forest. Excavation deepened and widened an existing T-shaped channel to increase tidal flow to the interior of the island. The western arm of the existing 'T

  10. Assessing Impacts of Hydropower Regulation on Salmonid Habitat Connectivity to Guide River Restoration

    NASA Astrophysics Data System (ADS)

    Buddendorf, Bas; Geris, Josie; Malcolm, Iain; Wilkinson, Mark; Soulsby, Chris

    2016-04-01

    Anthropogenic activity in riverine ecosystems has led to a substantial divergence from the natural state of many rivers globally. Many of Scotland's rivers have been regulated for hydropower with increasing intensity since the 1890s. At the same time they sustain substantial populations of Atlantic Salmon (Salmo salar L.), which have a range of requirements in terms of flow and access to habitat, depending on the different life-stages. River barriers for hydropower regulation can change the spatial and temporal connectivity within river networks, the impacts of which on salmon habitat are not fully understood. Insight into such changes in connectivity, and the link with the distribution and accessibility of suitable habitat and areas of high productivity, are essential to aid restoration and/or conservation efforts. This is because they indicate where such efforts might have a higher chance of being successful in terms of providing suitable habitat and increasing river productivity. In this study we applied a graph theory approach to assess historic (natural) and contemporary (regulated) in-stream habitat connectivity of the River Lyon, an important UK salmon river that is moderately regulated for hydropower. Historic maps and GIS techniques were used to construct the two contrasting river networks (i.e., natural vs. regulated). Subsequently, connectivity metrics were used to assess the impacts of hydropower infrastructure on upstream and downstream migration possibilities for adults and juveniles, respectively. A national juvenile salmon production model was used to weight the importance of reaches for juvenile salmon production. Results indicate that the impact of barriers in the Lyon on the connectivity indices depends on the type of barrier and its location within the network, but is generally low for both adults and juveniles, and that compared to the historic river network the reduction in the amount of suitable habitat and juvenile production is most marked

  11. Are Urban Stream Restoration Plans Worth Implementing?

    NASA Astrophysics Data System (ADS)

    Sarvilinna, Auri; Lehtoranta, Virpi; Hjerppe, Turo

    2017-01-01

    To manage and conserve ecosystems in a more sustainable way, it is important to identify the importance of the ecosystem services they provide and understand the connection between natural and socio-economic systems. Historically, streams have been an underrated part of the urban environment. Many of them have been straightened and often channelized under pressure of urbanization. However, little knowledge exists concerning the economic value of stream restoration or the value of the improved ecosystem services. We used the contingent valuation method to assess the social acceptability of a policy-level water management plan in the city of Helsinki, Finland, and the values placed on improvements in a set of ecosystem services, accounting for preference uncertainty. According to our study, the action plan would provide high returns on restoration investments, since the benefit-cost ratio was 15-37. Moreover, seventy-two percent of the respondents willing to pay for stream restoration chose "I want to conserve streams as a part of urban nature for future generations" as the most motivating reason. Our study indicates that the water management plan for urban streams in Helsinki has strong public support. If better marketed to the population within the watershed, the future projects could be partly funded by the local residents, making the projects easier to accomplish. The results of this study can be used in planning, management and decision making related to small urban watercourses.

  12. Snapshot of a Multi-Year Multidisciplinary Environmental Mapping and Restoration Project

    ERIC Educational Resources Information Center

    Lusignan, Molly; Abilock, Debbie

    2008-01-01

    This article presents a snapshot of the authors' first restoration project with young children which grew out of a fourth- and fifth-grade forestry curriculum. The restoration project was part of a long-term plan for enhancing the wild areas of the campus for wildlife habitat and for educational use. It is a native oak woodland and riparian…

  13. 75 FR 21650 - Coral Reef Restoration Plan, Draft Programmatic Environmental Impact Statement, Biscayne National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... DEPARTMENT OF THE INTERIOR National Park Service Coral Reef Restoration Plan, Draft Programmatic... Coral Reef Restoration Plan, Biscayne National Park. SUMMARY: Pursuant to the National Environmental... availability of a Draft Programmatic Environmental Impact Statement (DEIS) for the Coral Reef Restoration Plan...

  14. A mangrove creek restoration plan utilizing hydraulic modeling.

    PubMed

    Marois, Darryl E; Mitsch, William J

    2017-11-01

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.

  15. Decision analysis for habitat conservation of an endangered, range-limited salamander

    USGS Publications Warehouse

    Robinson, Orin J.; McGowan, Conor P.; Apodaca, J.J.

    2016-01-01

    Many species of conservation concern are habitat limited and often a major focus of management for these species is habitat acquisition and/or restoration. Deciding the location of habitat restoration or acquisition to best benefit a protected species can be a complicated subject with competing management objectives, ecological uncertainties and stochasticity. Structured decision making (SDM) could be a useful approach for explicitly incorporating those complexities while still working toward species conservation and/or recovery. We applied an SDM approach to Red Hills salamander Phaeognathus hubrichti habitat conservation decision making. Phaeognathus hubrichti is a severely range-limited endemic species in south central Alabama and has highly specific habitat requirements. Many known populations live on private lands and the primary mode of habitat protection is habitat conservation planning, but such plans are non-binding and not permanent. Working with stakeholders, we developed an objectives hierarchy linking land acquisition or protection actions to fundamental objectives. We built a model to assess and compare the quality of the habitat in the known range of P. hubrichti. Our model evaluated key habitat attributes of 5814 pixels of 1 km2 each and ranked the pixels from best to worst with respect to P. hubrichti habitat requirements. Our results are a spatially explicit valuation of each pixel, with respect to its probable benefit to P. hubrichti populations. The results of this effort will be used to rank pixels from most to least beneficial, then identify land owners in the most useful areas for salamanders who are willing to sell or enter into a permanent easement agreement.

  16. 43 CFR 11.81 - Damage determination phase-restoration and compensation determination plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... compensation determination plan. 11.81 Section 11.81 Public Lands: Interior Office of the Secretary of the...—restoration and compensation determination plan. (a) Requirement. (1) The authorized official shall develop a Restoration and Compensation Determination Plan that will list a reasonable number of possible alternatives...

  17. 43 CFR 11.81 - Damage determination phase-restoration and compensation determination plan.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... compensation determination plan. 11.81 Section 11.81 Public Lands: Interior Office of the Secretary of the...—restoration and compensation determination plan. (a) Requirement. (1) The authorized official shall develop a Restoration and Compensation Determination Plan that will list a reasonable number of possible alternatives...

  18. Targeted habitat restoration can reduce extinction rates in fragmented forests

    PubMed Central

    Newmark, William D.; Pimm, Stuart L.; McNeally, Phoebe B.; Halley, John M.

    2017-01-01

    The Eastern Arc Mountains of Tanzania and the Atlantic Forest of Brazil are two of the most fragmented biodiversity hotspots. Species–area relationships predict that their habitat fragments will experience a substantial loss of species. Most of these extinctions will occur over an extended time, and therefore, reconnecting fragments could prevent species losses and allow locally extinct species to recolonize former habitats. An empirical relaxation half-life vs. area relationship for tropical bird communities estimates the time that it takes to lose one-half of all species that will be eventually lost. We use it to estimate the increase in species persistence by regenerating a forest connection 1 km in width among the largest and closest fragments at 11 locations. In the Eastern Arc Mountains, regenerating 8,134 ha of forest would create >316,000 ha in total of restored contiguous forest. More importantly, it would increase the persistence time for species by a factor of 6.8 per location or ∼2,272 years, on average, relative to individual fragments. In the Atlantic Forest, regenerating 6,452 ha of forest would create >251,000 ha in total of restored contiguous forest and enhance species persistence by a factor of 13.0 per location or ∼5,102 years, on average, relative to individual fragments. Rapidly regenerating forest among fragments is important, because mean time to the first determined extinction across all fragments is 7 years. We estimate the cost of forest regeneration at $21–$49 million dollars. It could provide one of the highest returns on investment for biodiversity conservation worldwide. PMID:28827340

  19. 77 FR 37432 - Final Springfield Plateau Regional Restoration Plan and Environmental Assessment and Finding of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ...-FF03E00000] Final Springfield Plateau Regional Restoration Plan and Environmental Assessment and Finding of... Springfield Plateau Regional Restoration Plan (Plan) and Environmental Assessment and Finding of No... Springfield Plateau Regional Restoration Plan and Environmental Assessment (77 FR 1717). The public comment...

  20. A Planning and Decision-Making Framework for Ecological Restoration.

    ERIC Educational Resources Information Center

    Wyant, James G.; And Others

    1995-01-01

    Provides a definition for restoration ecology that is suitable for extensive terrestrial applications and presents a decision framework to help organize different phases of the decision process. Encourages a wider spectrum of participants and decisions than have been traditionally employed for restoration planning. (AIM)

  1. Telemetry-Determined Habitat Use Informs Multi-Species Habitat Management in an Urban Harbour.

    PubMed

    Rous, Andrew M; Midwood, Jonathon D; Gutowsky, Lee F G; Lapointe, Nicolas W R; Portiss, Rick; Sciscione, Thomas; Wells, Mathew G; Doka, Susan E; Cooke, Steven J

    2017-01-01

    Widespread human development has led to impairment of freshwater coastal wetlands and embayments, which provide critical and unique habitat for many freshwater fish species. This is particularly evident in the Laurentian Great Lakes, where such habitats have been severely altered over the last century as a result of industrial activities, urbanization, dredging and infilling. In Toronto Harbour, extensive restoration efforts have been directed towards improving the amount and quality of aquatic habitat, especially for fishes. To evaluate the effectiveness of this restoration work, use of the restored area by both target species and the fish community as a whole must be assessed. Individuals from four species (Common Carp, Largemouth Bass, Northern Pike and Yellow Perch) were tagged and tracked continuously for 1 year using an acoustic telemetry array in Toronto Harbour area of Lake Ontario. Daily site fidelity was estimated using a mixed-effects logistic regression model. Daily site fidelity was influenced by habitat restoration and its interactions with species and body size, as well as season and its interactions with species and body size. Daily site fidelity was higher in restored sites compared to non-restored sites for Yellow Perch and Northern Pike, but lower for Largemouth Bass and Common Carp. For all species, daily site fidelity estimates were highest during the summer and lowest during autumn. The approach used here has merit for evaluating restoration success and informing future habitat management activities. Creating diverse habitats that serve multiple functions and species are more desirable than single-function-oriented or single-species-oriented designs.

  2. Telemetry-Determined Habitat Use Informs Multi-Species Habitat Management in an Urban Harbour

    NASA Astrophysics Data System (ADS)

    Rous, Andrew M.; Midwood, Jonathon D.; Gutowsky, Lee F. G.; Lapointe, Nicolas W. R.; Portiss, Rick; Sciscione, Thomas; Wells, Mathew G.; Doka, Susan E.; Cooke, Steven J.

    2017-01-01

    Widespread human development has led to impairment of freshwater coastal wetlands and embayments, which provide critical and unique habitat for many freshwater fish species. This is particularly evident in the Laurentian Great Lakes, where such habitats have been severely altered over the last century as a result of industrial activities, urbanization, dredging and infilling. In Toronto Harbour, extensive restoration efforts have been directed towards improving the amount and quality of aquatic habitat, especially for fishes. To evaluate the effectiveness of this restoration work, use of the restored area by both target species and the fish community as a whole must be assessed. Individuals from four species (Common Carp, Largemouth Bass, Northern Pike and Yellow Perch) were tagged and tracked continuously for 1 year using an acoustic telemetry array in Toronto Harbour area of Lake Ontario. Daily site fidelity was estimated using a mixed-effects logistic regression model. Daily site fidelity was influenced by habitat restoration and its interactions with species and body size, as well as season and its interactions with species and body size. Daily site fidelity was higher in restored sites compared to non-restored sites for Yellow Perch and Northern Pike, but lower for Largemouth Bass and Common Carp. For all species, daily site fidelity estimates were highest during the summer and lowest during autumn. The approach used here has merit for evaluating restoration success and informing future habitat management activities. Creating diverse habitats that serve multiple functions and species are more desirable than single-function-oriented or single-species-oriented designs.

  3. Wanaket Wildlife Area Management Plan : Five-Year Plan for Protecting, Enhancing, and Mitigating Wildlife Habitat Losses for the McNary Hydroelectric Facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to continue to protect, enhance, and mitigate wildlife and wildlife habitat at the Wanaket Wildlife Area. The Wanaket Wildlife Area was approved as a Columbia River Basin Wildlife Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1993. This management plan will provide an update of the original management plan approved by BPA in 1995. Wanaket will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the McNary Hydroelectric facility on the Columbia River. By funding themore » enhancement and operation and maintenance of the Wanaket Wildlife Area, BPA will receive credit towards their mitigation debt. The purpose of the Wanaket Wildlife Area management plan update is to provide programmatic and site-specific standards and guidelines on how the Wanaket Wildlife Area will be managed over the next five years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management. Specific project objectives are related to protection and enhancement of wildlife habitats and are expressed in terms of habitat units (HU's). Habitat units were developed by the US Fish and Wildlife Service's Habitat Evaluation Procedures (HEP), and are designed to track habitat gains and/or losses associated with mitigation and/or development projects. Habitat Units for a given species are a product of habitat quantity (expressed in acres) and habitat quality estimates. Habitat quality estimates are developed using Habitat Suitability Indices (HSI). These indices are based on quantifiable habitat features such as

  4. Sediment Transport into the Swinomish Navigation Channel, Puget Sound—Habitat Restoration versus Navigation Maintenance Needs

    DOE PAGES

    Khangaonkar, Tarang; Nugraha, Adi; Hinton, Steve; ...

    2017-04-21

    The 11 mile (1.6 km) Swinomish Federal Navigation Channel provides a safe and short passage to fishing and recreational craft in and out of Northern Puget Sound by connecting Skagit and Padilla Bays, US State abbrev., USA. A network of dikes and jetties were constructed through the Swinomish corridor between 1893 and 1936 to improve navigation functionality. Over the years, these river training dikes and jetties designed to minimize sedimentation in the channel have deteriorated, resulting in reduced protection of the channel. The need to repair or modify dikes/jetties for channel maintenance, however, may conflict with salmon habitat restoration goalsmore » aimed at improving access, connectivity and brackish water habitat. Several restoration projects have been proposed in the Skagit delta involving breaching, lowering, or removal of dikes. To assess relative merits of the available alternatives, a hydrodynamic model of the Skagit River estuary was developed using the Finite Volume Community Ocean Model (FVCOM). Here, in this paper, we present the refinement and calibration of the model using oceanographic data collected from the years 2006 and 2009 with a focus on the sediment and brackish water transport from the river and Skagit Bay tide flats to the Swinomish Channel. The model was applied to assess the feasibility of achieving the desired dual outcome of (a) reducing sedimentation and shoaling in the Swinomish Channel and (b) providing a direct migration pathway and improved conveyance of freshwater into the Swinomish Channel. Finally, the potential reduction in shoaling through site-specific structure repairs is evaluated. Similarly, the potential to significantly improve of brackish water habitat through dike breach restoration actions using the McGlinn Causeway project example, along with its impacts on sediment deposition in the Swinomish Navigation Channel, is examined« less

  5. Sediment Transport into the Swinomish Navigation Channel, Puget Sound—Habitat Restoration versus Navigation Maintenance Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang; Nugraha, Adi; Hinton, Steve

    The 11 mile (1.6 km) Swinomish Federal Navigation Channel provides a safe and short passage to fishing and recreational craft in and out of Northern Puget Sound by connecting Skagit and Padilla Bays, US State abbrev., USA. A network of dikes and jetties were constructed through the Swinomish corridor between 1893 and 1936 to improve navigation functionality. Over the years, these river training dikes and jetties designed to minimize sedimentation in the channel have deteriorated, resulting in reduced protection of the channel. The need to repair or modify dikes/jetties for channel maintenance, however, may conflict with salmon habitat restoration goalsmore » aimed at improving access, connectivity and brackish water habitat. Several restoration projects have been proposed in the Skagit delta involving breaching, lowering, or removal of dikes. To assess relative merits of the available alternatives, a hydrodynamic model of the Skagit River estuary was developed using the Finite Volume Community Ocean Model (FVCOM). Here, in this paper, we present the refinement and calibration of the model using oceanographic data collected from the years 2006 and 2009 with a focus on the sediment and brackish water transport from the river and Skagit Bay tide flats to the Swinomish Channel. The model was applied to assess the feasibility of achieving the desired dual outcome of (a) reducing sedimentation and shoaling in the Swinomish Channel and (b) providing a direct migration pathway and improved conveyance of freshwater into the Swinomish Channel. Finally, the potential reduction in shoaling through site-specific structure repairs is evaluated. Similarly, the potential to significantly improve of brackish water habitat through dike breach restoration actions using the McGlinn Causeway project example, along with its impacts on sediment deposition in the Swinomish Navigation Channel, is examined« less

  6. Potential of phytoremediation as a means for habitat restoration and cleanup of petroleum contaminated wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Qianxin; Mendelssohn, A.

    1996-12-31

    Oil spills in coastal wetlands often kill vegetation and leave oil in the wetland sediment for many years. The potential of phytoremediation as a means for habitat restoration and cleanup of oiled marshes was studied with marsh mesocosms. Soil sods of Spartina alterniflora and Spartina patens (common coastal marsh grasses) were dosed at the rates of 0, 4, 8, 16 and 24 1 m{sup {minus}2} of south Louisiana crude oil. Plant mortality occurred at high oil dosages (8 1 m{sup {minus}2} and above). Two years after application of the oil to the soil sods, these two Spartina species were transplantedmore » into oiled and unoiled sods to determine the potential for habitat restoration and oil phytoremediation. Fertilizer (at rates of 666 kg N/ha, 272 kg P/ha and 514 kg K/Ha) was applied after transplanting. Regrowth biomass of S. alterniflora, S. patens and the combination of these two species was significantly increased by application of fertilizer one year after transplanting. The regrowth biomass was not significantly affected by oil as high as 250 mg g{sup 1} dry soil for combined biomass of the two species and was significantly higher with oil for Spartina alterniflora although the biomass of S. patens was affected at the highest oil content in the soil, suggesting the potential of habitat restoration by transplanting after oil spills. Oil degradation was enhanced by phytoremediation in combination with fertilization. The oil degradation rate was negligible in the absence of vegetation, but it was significantly higher in the presence of transplanted vegetation and fertilizer. Whether increased degradation of residual oil was due to the enhancement of soil microbial activity by the fertilizer or by phytoremediation is presently being investigated.« less

  7. Restoration of waterbird habitats in Chesapeake Bay: Great expectations or Sisyphus revisited?

    USGS Publications Warehouse

    Erwin, R.M.; Beck, R.A.

    2007-01-01

    In the past half century, many waterbird populations in Chesapeake Bay have declined or shifted ranges, indicating major ecological changes have occurred. While many studies have focused on the problems associated with environmental degradation such as the losses of coastal wetlands and submerged vegetation, a number of restoration efforts have been launched in the past few decades to reverse the "sea of despair." Most pertinent to waterbirds, restoration of submerged aquatic vegetation (SAV) beds, tidal wetland restoration, oyster reef restoration, and island creation/restoration have benefited a number of species. State and federal agencies and non-government agencies have formed partnerships to spawn many projects ranging in size from less than 0.5 ha to ca. 1,000 ha. While most SAV, wetland, and oyster reef projects have struggled to different degrees over the past ten to twenty years with inconsistent methods, irregular monitoring, and unknown reasons for failures, recent improvements in techniques and application of adaptive management have been made. The large dredge-material island projects at Hart-Miller Island near Baltimore, Poplar Island west of Tilghman Island, Maryland, and Craney Island in Portsmouth, Virginia have provided large outdoor "laboratories" for wildlife, fishery, and wetland habitat creation. All three have proven to be important for nesting waterbirds and migrant shorebirds and waterfowl; however nesting populations at all three islands have been compromised to different degrees by predators. Restoration success for waterbirds and other natural resources depends on: (1) establishing realistic, quantifiable objectives and performance criteria, (2) continued monitoring and management (e.g., predator control), (3) targeted research to determine causality, and (4) careful evaluation under an adaptive management regime.

  8. Restoration of waterbird habitats in Chesapeake Bay: Great expectations or Sisyphus revisited?

    USGS Publications Warehouse

    Erwin, R.M.; Beck, R.A.; Erwin, R. Michael; Watts, Bryan D.; Haramis, G.Michael; Perry, Matthew C.; Hobson, Keith A.

    2007-01-01

    In the past half century, many waterbird populations in Chesapeake Bay have declined or shifted ranges, indicating major ecological changes have occurred. While many studies have focused on the problems associated with environmental degradation such as the losses of coastal wetlands and submerged vegetation, a number of restoration efforts have been launched in the past few decades to reverse the 'sea of despair.' Most pertinent to waterbirds, restoration of submerged aquatic vegetation (SAV) beds, tidal wetland restoration, oyster reef restoration, and island creation/restoration have benefited a number of species. State and federal agencies and non government agencies have formed partnerships to spawn many projects ranging in size from less than 0.5 ha to ca. 1,000 ha. While most SAV, wetland, and oyster reef projects have struggled to different degrees over the past ten to twenty years with inconsistent methods, irregular monitoring, and unknown reasons for failures, recent improvements in techniques and application of adaptive management have been made. The large dredge-material island at Hart-Miller Island near Baltimore, Poplar Island west of Tilghman Island, Maryland, and Craney Island Portsmouth, Virginia have provided large outdoor 'laboratories' for wildlife, fishery, and wetland habitat creation. All three have proven to be important for nesting waterbirds and migrant shorebirds and waterfowl; however nesting populations at all three islands have been compromised to different degrees by predators. Restoration success for waterbirds and other natural resources depends on: (1) establishing realistic, quantifiable objectives and performance criteria, (2) continued monitoring and management (e.g., predator control), (3) targeted research to determine causality, and (4) careful evaluation under an adaptive management regime.

  9. Mapping habitat suitability for at-risk plant species and its implications for restoration and reintroduction.

    PubMed

    Questad, Erin J; Kellner, James R; Kinney, Kealoha; Cordell, Susan; Asner, Gregory P; Thaxton, Jarrod; Diep, Jennifer; Uowolo, Amanda; Brooks, Sam; Inman-Narahari, Nikhil; Evans, Steven A; Tucker, Brian

    2014-03-01

    The conservation of species at risk of extinction requires data to support decisions at landscape to regional scales. There is a need for information that can assist with locating suitable habitats in fragmented and degraded landscapes to aid the reintroduction of at-risk plant species. In addition, desiccation and water stress can be significant barriers to the success of at-risk plant reintroduction programs. We examine how airborne light detection and ranging (LiDAR) data can be used to model microtopographic features that reduce water stress and increase resource availability, providing information for landscape planning that can increase the success of reintroduction efforts for a dryland landscape in Hawaii. We developed a topographic habitat-suitability model (HSM) from LiDAR data that identifies topographic depressions that are protected from prevailing winds (high-suitability sites) and contrasts them with ridges and other exposed areas (low-suitability sites). We tested in the field whether high-suitability sites had microclimatic conditions that indicated better-quality habitat compared to low-suitability sites, whether plant-response traits indicated better growing conditions in high-suitability sites, whether the locations of individuals of existing at-risk plant species corresponded with our habitat-suitability classes, and whether the survival of planted individuals of a common native species was greater in high-suitability, compared to low-suitability, planting sites. Mean wind speed in a high-suitability field site was over five times lower than in a low-suitability site, and soil moisture and leaf wetness were greater, indicating less stress and greater resource availability in high-suitability areas. Plant height and leaf nutrient content were greater in high-suitability areas. Six at-risk species showed associations with high-suitability areas. The survival of planted individuals was less variable among high-suitability plots. These results

  10. South Bay Salt Pond Tidal Wetland Restoration Phase II Planning

    EPA Pesticide Factsheets

    Information about the SFBWQP South Bay Salt Pond Tidal Wetland Restoration Phase II Planning project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic re

  11. Sediment cores and chemistry for the Kootenai River White Sturgeon Habitat Restoration Project, Boundary County, Idaho

    USGS Publications Warehouse

    Barton, Gary J.; Weakland, Rhonda J.; Fosness, Ryan L.; Cox, Stephen E.; Williams, Marshall L.

    2012-01-01

    The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. This project is oriented toward recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. Projects currently (2010) under consideration include modifying the channel and flood plain, installing in-stream structures, and creating wetlands to improve the physical and biological functions of the ecosystem. River restoration is a complex undertaking that requires a thorough understanding of the river. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey collected and analyzed the physical and chemical nature of sediment cores collected at 24 locations in the river. Core depths ranged from 4.6 to 15.2 meters; 21 cores reached a depth of 15.2 meters. The sediment was screened for the presence of chemical constituents that could have harmful effects if released during restoration activities. The analysis shows that concentrations of harmful chemical constituents do not exceed guideline limits that were published by the U.S. Army Corps of Engineers in 2006.

  12. 15 CFR 990.56 - Restoration selection-use of a Regional Restoration Plan or existing restoration project.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF COMMERCE OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning... acquire the equivalent of the injured natural resources and services and compensate for interim losses. (b... incident; (iii) Addresses, and is currently relevant to, the same or comparable natural resources and...

  13. 15 CFR 990.56 - Restoration selection-use of a Regional Restoration Plan or existing restoration project.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF COMMERCE OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning... acquire the equivalent of the injured natural resources and services and compensate for interim losses. (b... incident; (iii) Addresses, and is currently relevant to, the same or comparable natural resources and...

  14. Modeling predator habitat to enhance reintroduction planning

    Treesearch

    Shiloh M. Halsey; William J. Zielinski; Robert M. Scheller

    2015-01-01

    Context The success of species reintroduction often depends on predation risk and spatial estimates of predator habitat. The fisher (Pekania pennanti) is a species of conservation concern and populations in the western United States have declined substantially in the last century. Reintroduction plans are underway, but the ability...

  15. 7 CFR 636.8 - The WHIP plan of operations (WPO).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING WILDLIFE HABITAT INCENTIVES PROGRAM § 636.8 The WHIP plan of... habitat will be established, improved, protected, enhanced, or restored. The WPO shall be approved by NRCS and address at least one of the following: (1) Fish and wildlife habitat conditions that are of...

  16. 78 FR 16294 - Draft Environmental Impact Statement for Restoration of the Mariposa Grove of Giant Sequoias...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... Building or the Office of Environmental Planning and Compliance at 5083 Foresta Road, El Portal, CA. Before... wetlands, soundscape, and giant sequoia habitat, this alternative would relocate public parking from the... restoration of wetlands and sequoia habitat in the lower portion of the Grove. Alternative 3 (Grizzly Giant...

  17. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation

    PubMed Central

    Pollock, Michael M.; Schilling, Jason W.; Olden, Julian D.; Lawler, Joshua J.; Torgersen, Christian E.

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors—information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17

  18. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation

    USGS Publications Warehouse

    Dittbrenner, Benjamin J.; Pollack, Michael M.; Schilling, Jason W.; Olden, Julian D.; Lawler, Joshua J.; Torgersen, Christian E.

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors—information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17

  19. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation.

    PubMed

    Dittbrenner, Benjamin J; Pollock, Michael M; Schilling, Jason W; Olden, Julian D; Lawler, Joshua J; Torgersen, Christian E

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors-information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17% are

  20. 77 FR 43350 - Draft Environmental Assessment and Proposed Habitat Conservation Plan for the San Diego Unified...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ...) restoration and enhancement of vernal pools occupied by San Diego fairy shrimp on the McAuliffe Park and... would permanently remove all San Diego fairy shrimp and its vernal pool habitat from the project site. To mitigate impacts to the San Diego fairy shrimp and its vernal pool habitat, the applicant would...

  1. Early Restoration | NOAA Gulf Spill Restoration

    Science.gov Websites

    Early Restoration Plan. On April 20, 2011 we reached an agreement with BP to start restoration planning draft plan for the third phase of early restoration in December 2013. We are considering your comments : All Phase III information and documents Phase II Useful Links: Phase II Early Restoration Plan &

  2. Assessing shoreline exposure and oyster habitat suitability maximizes potential success for sustainable shoreline protection using restored oyster reefs

    USGS Publications Warehouse

    LaPeyre, Megan K.; Serra, Kayla; Joyner, T. Andrew; Humphries, Austin T.

    2015-01-01

    Oyster reefs provide valuable ecosystem services that contribute to coastal resilience. Unfortunately, many reefs have been degraded or removed completely, and there are increased efforts to restore oysters in many coastal areas. In particular, much attention has recently been given to the restoration of shellfish reefs along eroding shorelines to reduce erosion. Such fringing reef approaches, however, often lack empirical data to identify locations where reefs are most effective in reducing marsh erosion, or fully take into account habitat suitability. Using monitoring data from 5 separate fringing reef projects across coastal Louisiana, we quantify shoreline exposure (fetch + wind direction + wind speed) and reef impacts on shoreline retreat. Our results indicate that fringing oyster reefs have a higher impact on shoreline retreat at higher exposure shorelines. At higher exposures, fringing reefs reduced marsh edge erosion an average of 1.0 m y−1. Using these data, we identify ranges of shoreline exposure values where oyster reefs are most effective at reducing marsh edge erosion and apply this knowledge to a case study within one Louisiana estuary. In Breton Sound estuary, we calculate shoreline exposure at 500 random points and then overlay a habitat suitability index for oysters. This method and the resulting visualization show areas most likely to support sustainable oyster populations as well as significantly reduce shoreline erosion. Our results demonstrate how site selection criteria, which include shoreline exposure and habitat suitability, are critical to ensuring greater positive impacts and longevity of oyster reef restoration projects.

  3. Quantifying restoration effectiveness using multi-scale habitat models: Implications for sage-grouse in the Great Basin

    Treesearch

    Robert S. Arkle; David S. Pilliod; Steven E. Hanser; Matthew L. Brooks; Jeanne C. Chambers; James B. Grace; Kevin C. Knutson; David A. Pyke; Justin L. Welty; Troy A. Wirth

    2014-01-01

    A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of...

  4. Restoration ecology: longterm evaluation as an essential feature of rehabilitation

    USGS Publications Warehouse

    Gannon, John E.

    1993-01-01

    In its brief existence as a recognized scientific discipline, restoration ecology has focused almost exclusively on terrestrial and wetland habitat. As a consequence, aquatic restoration and rehabilitation, an important component of restoration ecology is a relatively new discipline. This article examines the ecosystem approach to rehabilitation of the Great Lakes Basin and proposes that waterfront redevlopment and terrestrial and wetland habitat restoration should be accompanied by aquatic habitat restoration. Furthermore, aquatic habitat restoration must include rehabilitation of hard-bottom substrates and structures as well as pollution cleanup and management of soft sediments. Lastly, the article suggests that longterm evaluation is indispensable for aquatic habitat restoration and rehabiliation to be truly successful in the Great Lakes region. Only through longterm evaluation can we determine whether habitat restoration goals have been met at specific sites and transfer successful lessons learned at other locations.

  5. Riverine habitat dynamics

    USGS Publications Warehouse

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  6. Restoration planning on the Okanogan-Wenatchee national forest: prescriptions for resilient landscapes

    Treesearch

    Keith Reynolds; Paul Hessburg; Joan O’Callaghan

    2014-01-01

    Human settlement and land management have radically altered the composition and structure of eastern Washington forests. Restoring high-functioning landscapes and habitat patterns have broad implications for the future sustainability of native species, ecosystem services, and ecosystem processes. Many land managers and scientists have turned their attention to whole...

  7. Watershed restoration: planning and implementing small dam removals to maximize ecosystem services

    NASA Astrophysics Data System (ADS)

    Tonitto, C.; Riha, S. J.

    2016-12-01

    River restoration and enhancing watershed connectivity is of growing concern in industrialized nations. The past two decades have seen a number of small dam removals, though many removals remain unstudied and poorly documented. We summarize socio-economic and biophysical lessons learned during the past two decades of accelerated activity regarding small dam removals throughout the United States. We present frameworks for planning and implementing removals developed by interdisciplinary engagement. Toward the goal of achieving thorough dam removal planning, we present outcomes from well-documented small dam removals covering ecological, chemical, and physical change in rivers post-dam removal, including field observation and modeling methodologies. Guiding principles of a dam removal process should include: 1) stakeholder engagement to navigate the complexity of watershed landuse, 2) an impacts assessment to inform the planning process, 3) pre- and post-dam removal observations of ecological, chemical and physical properties, 4) the expectation that there are short- and long-term ecological dynamics with population recovery depending on whether dam impacts were largely related to dispersion or to habitat destruction, 5) an expectation that changes in watershed chemistry are dependent on sediment type, sediment transport and watershed landuse, and 6) rigorous assessment of physical changes resulting from dam removal, understanding that alteration in hydrologic flows, sediment transport, and channel evolution will shape ecological and chemical dynamics, and shape how stakeholders engage with the watershed.

  8. Lower Red River Meadow Restoration Project : Biennial Report 1996-97.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LRK Communications; Wildlife Habitat Institute; Pocket Water, Inc.

    2003-07-01

    The Red River has been straightened and the riparian vegetation corridor eliminated in several reaches within the watershed. The river responded by incision resulting in over-steepened banks, increased sedimentation, elevated water temperatures, depressed groundwater levels, reduced floodplain function, and degraded fish habitat. The Lower Red River Meadow Restoration Project is a multi-phase ecosystem enhancement effort that restores natural physical and biological processes and functions to stabilize the stream channel and establish high quality habitats for fish and wildlife. A natural channel restoration philosophy guides the design and on the ground activities, allowing the channel to evolve into a state ofmore » dynamic equilibrium. Two years of planning, two years of restoration in Phases I and II, and one year post-restoration monitoring are complete. By excavating new bends and reconnecting historic meanders, Phase I and II channel realignment increased channel length by 3,060 feet, decreased channel gradient by 25 percent, and increased sinuosity from 1.7 to 2.3. Cross-sectional shapes and point bars were modified to maintain deep pool habitat at low flow and to reconnect the meadow floodplain. Improved soil moisture conditions will help sustain the 31,500 native riparian plantings reestablished within these two phases. Overall, short-term restoration performance was successful. Analyses of long-term parameters document either post-restoration baseline conditions or early stages of evolution toward desired conditions. An adaptive management strategy has helped to improve restoration designs, methods, and monitoring. Lessons learned are being transferred to a variety of audiences to advance the knowledge of ecological restoration and wise management of watersheds.« less

  9. Anuran site occupancy and species richness as tools for evaluating restoration of a hydrologically-modified landscape

    USGS Publications Warehouse

    Walls, Susan; Waddle, J. Hardin; Barichivich, William J.; Bartoszek, Ian A.; Brown, Mary E.; Hefner, J. M.; Schuman, Melinda J.

    2014-01-01

    A fundamental goal of wetland restoration is to reinstate pre-disturbance hydrological conditions to degraded landscapes, facilitating recolonization by native species and the production of resilient, functional ecosystems. To evaluate restoration success, baseline conditions need to be determined and a reference target needs to be established that will serve as an ecological blueprint in the restoration process. During the summer wet seasons of 2010 and 2011, we used automated recording units to monitor a community of calling anuran amphibians in the Picayune Strand State Forest of Southwest Florida, USA. This area is undergoing hydrological restoration as part of the Comprehensive Everglades Restoration Plan. We compared occurrence of anurans at sites in the restoration area, to nearby locations in relatively undisturbed habitat (reference sites). We assessed the utility of the latter as restoration targets, using a hierarchical model of community species occupancy to estimate the probability of occurrence of anurans in restoration and reference locations. We detected 14 species, 13 of which were significantly more likely to occur in reference areas. All 14 species were estimated by our model to occur at these sites but, across both years, only 8–13 species were estimated to occur at restoration sites. The composition and structure of these habitats within and adjacent to the Picayune Strand State Forest indicate that they are suitable targets for habitat restoration, as measured by amphibian occurrence and species richness. These areas are important sources for recolonization of anuran amphibians as the hydrologically degraded Picayune Strand undergoes restoration to mitigate the effects of overdrainage and habitat loss.

  10. Are restored side channels sustainable aquatic habitat features? Predicting the potential persistence of side channels as aquatic habitats based on their fine sedimentation dynamics

    NASA Astrophysics Data System (ADS)

    Riquier, Jérémie; Piégay, Hervé; Lamouroux, Nicolas; Vaudor, Lise

    2017-10-01

    The restoration of side channels (also referred to as abandoned channels, former channels, floodplain channels, or side arms) is increasingly implemented to improve the ecological integrity of river-floodplain systems. However, the design of side channel restoration projects remains poorly informed by theory or empirical observations despite the increasing number of projects. Moreover, feedback regarding the hydromorphological adjustment of restored channels is rarely documented, making it difficult to predict channel persistence as aquatic habitats. In this study, we analyze the spatial and temporal patterns of fine sediment deposition (< 2 mm) in 16 side channels of the Rhône River, France, restored in 1999-2006 by a combination of dredging and/or partial to full reconnection of their extremities and as a by-product of an increase in minimum flow through the bypassed main channels. We develop prediction tools to assess the persistence of restored channels as aquatic habitats, using between five and seven monitoring surveys per channel (spanning 7-15 years after restoration). Observed channel-averaged sedimentation rates ranged from 0 to 40.3 cm·y- 1 and reached 90.3 cm·y- 1 locally. Some channels exhibited a significant decline of sedimentation rates through time, whereas others maintained rather constant rates. Scouring processes (i.e., self-rejuvenation capacity) were occasionally documented in 15 channels. Six of the 16 studied channels appeared to be self-sustaining. The 10 others accumulated more and more fine sediment deposits after restoration. Parametric modeling of sedimentation rates suggested that among these 10 channels, four have long life-durations (i.e., more than a century), three have intermediate life-durations (i.e., likely between three and nine decades), and three others have short life-durations (i.e., likely between two and five decades). Observed channel-averaged sedimentation rates can be predicted from the frequency and magnitude (i

  11. HABITAT DISTRIBUTION MODELS FOR 37 VERTEBRATE SPECIES ADDRESSED BY THE MULTI-SPECIES HABITAT CONSERVATION PLAN OF CLARK COUNTY, NEVADA

    EPA Science Inventory

    Thirty-seven species identified in the Clark County Multi-Species Habitat Conservation Plan were

    previously modeled through the Southwest Regional Gap Analysis Project. Existing SWReGAP habitat

    models and modeling databases were used to facilitate the revision of mo...

  12. Recolonization after habitat restoration leads to decreased genetic variation in populations of a terrestrial orchid.

    PubMed

    Vandepitte, K; Gristina, A S; De Hert, K; Meekers, T; Roldán-Ruiz, I; Honnay, O

    2012-09-01

    Colonization is crucial to habitat restoration projects that rely on the spontaneous regeneration of the original vegetation. However, as a previously declining plant species spreads again, the likelihood of founder effects increases through recurrent population founding and associated serial bottlenecks. We related Amplified Fragment Length Polymorphism markers genetic variation and fitness to colonization history for all extant populations of the outcrossing terrestrial orchid Dactylorhiza incarnata in an isolated coastal dune complex. Around 1970, D. incarnata suffered a severe bottleneck yet ultimately persisted and gradually spread throughout the spatially segregated dune slacks, aided by the restoration of an open vegetation. Genetic assignment demonstrated dispersal to vacant sites from few nearby extant populations and very limited inflow from outside the spatially isolated reserve. Results further indicated that recurrent founding from few local sources resulted in the loss of genetic diversity and promoted genetic divergence (F(ST) = 0.35) among populations, but did not influence population fitness. The few source populations initially available and the limited inflow of genes from outside the study reserve, as a consequence of habitat degradation and spatial isolation, may have magnified the genetic effects of recurrent population founding. © 2012 Blackwell Publishing Ltd.

  13. Standard Review Plan for Environmental Restoration Program Quality Management Plans. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-01

    The Department of Energy, Richland Operations Office (RL) Manual Environmental Restoration Program Quality System Requirements (QSR) for the Hanford Site, defines all quality requirements governing Hanford Environmental Restoration (ER) Program activities. The QSR requires that ER Program participants develop Quality Management Plans (QMPs) that describe how the QSR requirements will be implemented for their assigned scopes of work. This standard review plan (SRP) describes the ER program participant responsibilities for submittal of QMPs to the RL Environmental Restoration Division for review and the RL methodology for performing the reviews of participant QMPS. The SRP serves the following functions: acts asmore » a guide in the development or revision of QMPs to assure that the content is complete and adequate; acts as a checklist to be used by the RL staff in their review of participant QMPs; acts as an index or matrix between the requirements of the QSR and implementing methodologies described in the QMPs; decreases the time and subjectivity of document reviews; and provides a formal, documented method for describing exceptions, modifications, or waivers to established ER Program quality requirements.« less

  14. 78 FR 16296 - Record of Decision for the Coral Reef Restoration Plan, Biscayne National Park, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ...] Record of Decision for the Coral Reef Restoration Plan, Biscayne National Park, FL AGENCY: National Park... Record of Decision (ROD) for the Coral Reef Restoration Plan (Plan) for Biscayne National Park, Florida... Biscayne National Park, causing injuries to submerged resources. The goal of coral reef restoration actions...

  15. Detroit River habitat inventory

    USGS Publications Warehouse

    Manny, Bruce A.

    2003-01-01

    This inventory complements a previous survey of habitat in Ontario waters of the Detroit River (OMNR,1993). It is a starting point for balanced and sustained use of the river for natural resource conservation and economic development. The objectives of the inventory were to: (1) locate candidate sites for protection and restoration of fish and wildlife habitat in Michigan waters of the Detroit River; (2) describe the ownership and size of each site, as well as its potential for habitat protection and restoration; and (3) subjectively assess the extent to which existing habitat along the river is productive of fish and wildlife and protected from land uses that have degraded or destroyed such habitat.

  16. 7 CFR 625.13 - The HFRP restoration plan development and Landowner Protections.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... endangered species or 50 CFR 17.32(c) for threatened species, or applicable subsequent regulations. (iv) All..., and CCAAs with FWS also are subject to regulations at 50 CFR 17.22(d) for endangered species or 50 CFR... structural practices and measures that will restore and enhance habitat conditions for listed species...

  17. 7 CFR 625.13 - The HFRP restoration plan development and Landowner Protections.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... endangered species or 50 CFR 17.32(c) for threatened species, or applicable subsequent regulations. (iv) All..., and CCAAs with FWS also are subject to regulations at 50 CFR 17.22(d) for endangered species or 50 CFR... structural practices and measures that will restore and enhance habitat conditions for listed species...

  18. 7 CFR 625.13 - The HFRP restoration plan development and Landowner Protections.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... endangered species or 50 CFR 17.32(c) for threatened species, or applicable subsequent regulations. (iv) All..., and CCAAs with FWS also are subject to regulations at 50 CFR 17.22(d) for endangered species or 50 CFR... structural practices and measures that will restore and enhance habitat conditions for listed species...

  19. 7 CFR 625.13 - The HFRP restoration plan development and Landowner Protections.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... endangered species or 50 CFR 17.32(c) for threatened species, or applicable subsequent regulations. (iv) All..., and CCAAs with FWS also are subject to regulations at 50 CFR 17.22(d) for endangered species or 50 CFR... structural practices and measures that will restore and enhance habitat conditions for listed species...

  20. A Method for Applying Fluvial Geomorphology in Support of Catchment-Scale River Restoration Planning

    NASA Astrophysics Data System (ADS)

    Sear, D.; Newson, M.; Hill, C.; Branson, J.; Old, J.

    2005-12-01

    Fluvial geomorphology is increasingly used by those responsible for conserving river ecosystems; survey techniques are used to derive conceptual models of the processes and forms that characterise particular systems and locations, with a view to making statements of `condition' or `status' and providing fundamental strategies for rehabilitation/restoration. However, there are important scale-related problems in developing catchments scale restoration plans that inevitably are implemented on a reach- by-reach basis. This paper reports on a watershed scale methodology for setting geomorphological and physical habitat reference conditions based on a science-based conceptual model of cachment:channel function. Using a case study from the River Nar, a gravel-bed groundwater dominated river in the UK with important conservation status, the paper describes the sequences of the methodology; from analysis of available evidence, process of field data capture and development of a conceptual model of catchment-wide fluvial dynamics. Reference conditions were derived from the conceptual model and gathered from the literature for the two main river types found on the river Nar, and compared with the current situation in 76 sub-reaches from source to mouth. Multi-Criteria Analysis (MCA) was used to score the extent of channel departures from `natural' and to suggest the basis for a progressive restoration strategy for the whole river system. MCA is shown to be a flexible method for setting and communicating decisions that are amenable to stakeholder and public consultation.

  1. Restoring forbs for sage grouse habitat: Fire, microsites, and establishment methods

    USGS Publications Warehouse

    Wirth, Troy A.; Pyke, David A.

    2003-01-01

    The decline and range reduction of sage grouse populations are primarily due to permanent loss and degradation of sagebrusha??grassland habitat. Several studies have shown that sage grouse productivity may be limited by the availability of certain preferred highly nutritious forb species that have also declined within sagebrush ecosystems of the Intermountain West, U.S.A. The purpose of this study was to determine the suitability of three species of forbs for revegetation projects where improving sage grouse habitat is a goal. Species suitability was determined by evaluating the emergence, survival, and reproduction of Crepis modocensis, C. occidentalis, and Astragalus purshii in response to method of establishment (seeding or transplanting), site preparation treatment (burned or unburned), and microsite (mound or interspace) in an Artemisia tridentata ssp. wyomingensis vegetation association in south central Oregon. For seeded plants A. purshii had the lowest emergence (8%) of all three species. Both seeded Crepis species had similar overall emergence (38%). Significantly more Crepis seedlings emerged from shrub mounds in unburned areas (50%) than in any other fire-by-microsite treatment (33 to 36%). Approximately 10% more Crepis seedlings survived in mounds compared with interspaces. Nearly twice as many emerging Crepis seedlings survived in the burned areas as opposed to unburned areas (p < 0.01). This resulted in more plant establishment in burned mounds despite higher emergence in unburned mounds. Astragalus purshii seedlings also survived better in burned areas (p = 0.06) but had no differential response to microsite. Fire enhanced survival of both Crepis and A. purshii transplants (p = 0.08 and p = 0.001). We believe additional research is needed to improve A. purshii emergence before it will become an effective plant for restoring sage grouse habitat. Conversely, we conclude that these Crepis species provide a viable revegetation option for improving sage

  2. 12 CFR 1229.11 - Capital restoration plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... that the Bank will make to member stock purchase requirements, to assure that it will become adequately... decision deadline has been extended. The Director shall provide the Bank with written notification of the decision to approve or not approve a proposed capital restoration plan. If the Director does not approve...

  3. Whole Watershed Restoration Planning Tools for Estimating Tradeoffs Among Multiple Objectives

    EPA Science Inventory

    We developed a set of decision support tools to assist whole watershed restoration planning in the Pacific Northwest. Here we describe how these tools are being integrated and applied in collaboration with tribes and community stakeholders to address restoration of hydrological ...

  4. Methylmercury Screening Models for Surface Water Habitat Restoration: A Case Study in Duluth-Superior Harbor

    DTIC Science & Technology

    2017-11-01

    three models used in this study (HERMES, WASP, and SERAFM) were applied very differently and, in some ways, comparing them in Table 10 is...ER D C/ EL T R- 17 -1 9 Dredging Innovations Group Methylmercury Screening Models for Surface Water Habitat Restoration: A Case Study in...Case Study in Duluth-Superior Harbor Philip T. Gidley, Joseph P. Kreitinger, Mansour Zakikhani, and Burton C. Suedel Environmental Laboratory

  5. Habitat Selection and Post-Release Movement of Reintroduced Brown Treecreeper Individuals in Restored Temperate Woodland

    PubMed Central

    Bennett, Victoria A.; Doerr, Veronica A. J.; Doerr, Erik D.; Manning, Adrian D.; Lindenmayer, David B.; Yoon, Hwan-Jin

    2012-01-01

    It is essential to choose suitable habitat when reintroducing a species into its former range. Habitat quality may influence an individual’s dispersal decisions and also ultimately where they choose to settle. We examined whether variation in habitat quality (quantified by the level of ground vegetation cover and the installation of nest boxes) influenced the movement, habitat choice and survival of a reintroduced bird species. We experimentally reintroduced seven social groups (43 individuals) of the brown treecreeper (Climacteris picumnus) into two nature reserves in south-eastern Australia. We radio-tracked 18 brown treecreepers from release in November 2009 until February 2010. We observed extensive movements by individuals irrespective of the release environment or an individual’s gender. This indicated that individuals were capable of dispersing and actively selecting optimum habitat. This may alleviate pressure on wildlife planners to accurately select the most optimum release sites, so long as the species’ requirements are met. There was significant variation in movement between social groups, suggesting that social factors may be a more important influence on movement than habitat characteristics. We found a significant effect of ground vegetation cover on the likelihood of settlement by social groups, with high rates of settlement and survival in dry forests, rather than woodland (where the species typically resides), which has implications for the success of woodland restoration. However, overall the effects of variation in habitat quality were not as strong as we had expected, and resulted in some unpredicted effects such as low survival and settlement in woodland areas with medium levels of ground vegetation cover. The extensive movement by individuals and unforeseen effects of habitat characteristics make it difficult to predict the outcome of reintroductions, the movement behaviour and habitat selection of reintroduced individuals, particularly

  6. Balancing feasibility and precision of wildlife habitat analysis in planning for natural resources

    Treesearch

    Anita T. Morzillo; Joshua S. Halofsky; Jennifer DiMiceli; Blair Csuti; Pamela Comeleo; Miles Hemstrom

    2012-01-01

    Wildlife conservation often is a central focus in planning for natural resource management. Evaluation of wildlife habitat involves balancing the desire for information about detailed habitat characteristics and the feasibility of completing analyses across large areas. Our objective is to describe tradeoffs made in assessments of wildlife habitat within a multiple-...

  7. The Importance of the Regional Species Pool, Ecological Species Traits and Local Habitat Conditions for the Colonization of Restored River Reaches by Fish

    PubMed Central

    Stoll, Stefan; Kail, Jochem; Lorenz, Armin W.; Sundermann, Andrea; Haase, Peter

    2014-01-01

    It is commonly assumed that the colonization of restored river reaches by fish depends on the regional species pools; however, quantifications of the relationship between the composition of the regional species pool and restoration outcome are lacking. We analyzed data from 18 German river restoration projects and adjacent river reaches constituting the regional species pools of the restored reaches. We found that the ability of statistical models to describe the fish assemblages established in the restored reaches was greater when these models were based on ‘biotic’ variables relating to the regional species pool and the ecological traits of species rather than on ‘abiotic’ variables relating to the hydromorphological habitat structure of the restored habitats and descriptors of the restoration projects. For species presence in restored reaches, ‘biotic’ variables explained 34% of variability, with the occurrence rate of a species in the regional species pool being the most important variable, while ’abiotic’ variables explained only the negligible amount of 2% of variability. For fish density in restored reaches, about twice the amount of variability was explained by ‘biotic’ (38%) compared to ‘abiotic’ (21%) variables, with species density in the regional species pool being most important. These results indicate that the colonization of restored river reaches by fish is largely determined by the assemblages in the surrounding species pool. Knowledge of species presence and abundance in the regional species pool can be used to estimate the likelihood of fish species becoming established in restored reaches. PMID:24404187

  8. San Francisco Bay living shorelines: Restoring Eelgrass and Olympia Oysters for habitat and shore protection: Chapter 17

    USGS Publications Warehouse

    Boyer, Katharyn E.; Zabin, Chela; De La Cruz, Susan; Grosholz, Edwin D.; Orr, Michelle; Lowe, Jeremy; Latta, Marilyn; Miller, Jen; Kiriakopolos, Stephanie; Pinnell, Cassie; Kunz, Damien; Modéran, Julien; Stockmann, Kevin; Ayala, Geana; Abbott, Robert; Obernolte, Rena

    2017-01-01

    Living shorelines projects utilize a suite of sediment stabilization and habitat restoration techniques to maintain or build the shoreline, while creating habitat for a variety of species, including invertebrates, fish, and birds (see National Oceanic and Atmospheric Administration [NOAA] 2015 for an overview). The term “living shorelines” denotes provision of living space and support for estuarine and coastal organisms through the strategic placement of native vegetation and natural materials. This green coastal infrastructure can serve as an alternative to bulkheads and other engineering solutions that provide little to no habitat in comparison (Arkema et al. 2013; Gittman et al. 2014; Scyphers et al. 2011). In the United States, the living shorelines approach has been implemented primarily on the East and Gulf Coasts, where it has been shown to enhance habitat values and increase connectivity between wetlands, mudflats, and subtidal lands, while reducing shoreline erosion during storms and even hurricanes (Currin et al. 2015; Gittman et al. 2014, 2015).

  9. 77 FR 52754 - Draft Midwest Wind Energy Multi-Species Habitat Conservation Plan Within Eight-State Planning Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... include new and existing small-scale wind energy facilities, such as single-turbine demonstration projects, as well as large, multi-turbine commercial wind facilities. Covered Species The planning partners are...-FF03E00000] Draft Midwest Wind Energy Multi-Species Habitat Conservation Plan Within Eight-State Planning...

  10. Phase III of Early Restoration | NOAA Gulf Spill Restoration

    Science.gov Websites

    information about this phase of Early Restoration, including fact sheets on each project. The final Phase III 44 projects are documented in a final Record of Decision. Information about Phase III of Early Archive Home Phase III of Early Restoration Phase III of Early Restoration Beach habitat would be restored

  11. 26 CFR 1.412(c)(1)-3 - Applying the minimum funding requirements to restored plans.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 5 2013-04-01 2013-04-01 false Applying the minimum funding requirements to..., Stock Bonus Plans, Etc. § 1.412(c)(1)-3 Applying the minimum funding requirements to restored plans. (a) In general—(1) Restoration method. The restoration method is a funding method that adapts the...

  12. 77 FR 1717 - Notice of Availability; Draft Springfield Plateau Regional Restoration Plan and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... Resources, have written a Draft Springfield Plateau Regional Restoration Plan and Environmental Assessment... Plateau ecoregion, and an environmental assessment, as required pursuant to the National Environmental... Springfield Plateau Regional Restoration Plan and Environmental Assessment will be finalized prior to...

  13. TEXAS DICKINSON BAY ISLANDS RESTORATION PROJECT MX964016

    EPA Science Inventory

    The Dickinson Bay Islands Restoration Project will restore approximately ten acres of intertidal marsh, three acres of oyster reef, and 18 acres of bird rookery habitat. The total acreage of restored habitat will be close to 30 acres.

  14. Anthropogenic Habitats Facilitate Dispersal of an Early Successional Obligate: Implications for Restoration of an Endangered Ecosystem.

    PubMed

    Amaral, Katrina E; Palace, Michael; O'Brien, Kathleen M; Fenderson, Lindsey E; Kovach, Adrienne I

    2016-01-01

    Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists.

  15. Anthropogenic Habitats Facilitate Dispersal of an Early Successional Obligate: Implications for Restoration of an Endangered Ecosystem

    PubMed Central

    Amaral, Katrina E.; Palace, Michael; O’Brien, Kathleen M.; Fenderson, Lindsey E.; Kovach, Adrienne I.

    2016-01-01

    Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists. PMID:26954014

  16. Use of fish telemetry in rehabilitation planning, management, and monitoring in Areas of Concern in the Laurentian Great Lakes

    USGS Publications Warehouse

    Brooks, J.L.; Boston, C.; Doka, Susan E.; Gorsky, Dimitry; Gustavson, K.; Hondorp, Darryl W.; Isermann, Daniel A.; Midwood, Jonathan D.; Pratt, T.C.; Rous, Andrew M.; Withers, J. L.; Krueger, C.C.; Cooke, S.J.

    2017-01-01

    Freshwater ecosystems provide many ecosystem services; however, they are often degraded as a result of human activity. To address ecosystem degradation in the Laurentian Great Lakes, Canada and the United States of America established the Great Lakes Water Quality Agreement (GLWQA). In 1987, 43 highly polluted and impacted areas were identified under the GLWQA as having one or more of 14 Beneficial Use Impairments (BUIs) to the physical and chemical habitat for fish, wildlife and humans, and were designated as Areas of Concern (AOC). Subnational jurisdictions combined with local stakeholders, with support from federal governments, developed plans to remediate and restore these sites. Biotelemetry (the tracking of animals using electronic tags) provides information on the spatial ecology of fish in the wild relevant to habitat management and stock assessment. Here, seven case studies are presented where biotelemetry data were directly incorporated within the AOC Remedial Action Plan (RAP) process. Specific applications include determining seasonal fish–habitat associations to inform habitat restoration plans, identifying the distribution of pollutant-indicator species to identify exposure risk to contamination sources, informing the development of fish passage facilities to enable fish to access fragmented upstream habitats, and assessing fish use of created or restored habitats. With growing capacity for fish biotelemetry research in the Great Lakes, we discuss the strengths and weaknesses of incorporating biotelemetry into AOC RAP processes to improve the science and practice of restoration and to facilitate the delisting of AOCs.

  17. Use of Fish Telemetry in Rehabilitation Planning, Management, and Monitoring in Areas of Concern in the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Brooks, J. L.; Boston, C.; Doka, S.; Gorsky, D.; Gustavson, K.; Hondorp, D.; Isermann, D.; Midwood, J. D.; Pratt, T. C.; Rous, A. M.; Withers, J. L.; Krueger, C. C.; Cooke, S. J.

    2017-12-01

    Freshwater ecosystems provide many ecosystem services; however, they are often degraded as a result of human activity. To address ecosystem degradation in the Laurentian Great Lakes, Canada and the United States of America established the Great Lakes Water Quality Agreement (GLWQA). In 1987, 43 highly polluted and impacted areas were identified under the GLWQA as having one or more of 14 Beneficial Use Impairments (BUIs) to the physical and chemical habitat for fish, wildlife and humans, and were designated as Areas of Concern (AOC). Subnational jurisdictions combined with local stakeholders, with support from federal governments, developed plans to remediate and restore these sites. Biotelemetry (the tracking of animals using electronic tags) provides information on the spatial ecology of fish in the wild relevant to habitat management and stock assessment. Here, seven case studies are presented where biotelemetry data were directly incorporated within the AOC Remedial Action Plan (RAP) process. Specific applications include determining seasonal fish-habitat associations to inform habitat restoration plans, identifying the distribution of pollutant-indicator species to identify exposure risk to contamination sources, informing the development of fish passage facilities to enable fish to access fragmented upstream habitats, and assessing fish use of created or restored habitats. With growing capacity for fish biotelemetry research in the Great Lakes, we discuss the strengths and weaknesses of incorporating biotelemetry into AOC RAP processes to improve the science and practice of restoration and to facilitate the delisting of AOCs.

  18. 77 FR 66626 - Deepwater Horizon Oil Spill; Draft Early Restoration Plan and Environmental Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... Agriculture (USDA); U.S. Department of Defense (DOD); U.S. Environmental Protection Agency (USEPA); State of Louisiana Coastal Protection and Restoration Authority, Oil Spill Coordinator's Office, Department of... habitats in the Gulf of Mexico and along the coastal areas of Alabama, Florida, Louisiana, Mississippi, and...

  19. Monitoring of stream restoration habitat on the main stem of the Methow River, Washington, during the pre-treatment phase (October 2008-May 2012) with a progress report for activities from March 2011 to November 2011

    USGS Publications Warehouse

    Tibbits, Wesley T.; Martens, Kyle D.; Connolly, Patrick J.

    2012-01-01

    The approach and actions taken or planned by Reclamation to modify off-channel habitat are largely untested as to their effectiveness to improve target fish species’ productivity and survival needs. Those documented strategies that identify both physical parameters and biological relationships and benefits have been identified (Reclamation, 2008). To assess biological performance, we plan to compare age structure, growth, and age at smolting between those fish that stay in natal areas versus those fish that move. To assess retention in, and movement from or into, the restoration reach, we have used a combination of within-reach and out-of-reach sampling. We are using passive integrated transponder (PIT) tags, a network of instream PIT tag interrogation systems, and smolt traps to assess differences in biological performance and the magnitude of retention in, and movement from and into, the restoration reach.

  20. 75 FR 57059 - Montana Department of Natural Resources and Conservation Final Habitat Conservation Plan and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R6-ES-2010-N175; 61130-1115-0000 F2] Montana Department of Natural Resources and Conservation Final Habitat Conservation Plan and Final... Department of Natural Resources and Conservation (DNRC) a Final Habitat Conservation Plan (HCP) and prepared...

  1. Endangered species management and ecosystem restoration: Finding the common ground

    USGS Publications Warehouse

    Casazza, Michael L.; Overton, Cory T.; Bui, Thuy-Vy D.; Hull, Joshua M.; Albertson, Joy D.; Bloom, Valary K.; Bobzien, Steven; McBroom, Jennifer; Latta, Marilyn; Olofson, Peggy; Rohmer, Tobias M.; Schwarzbach, Steven E.; Strong, Donald R.; Grijalva, Erik; Wood, Julian K.; Skalos, Shannon; Takekawa, John Y.

    2016-01-01

    Management actions to protect endangered species and conserve ecosystem function may not always be in precise alignment. Efforts to recover the California Ridgway’s Rail (Rallus obsoletus obsoletus; hereafter, California rail), a federally and state-listed species, and restoration of tidal marsh ecosystems in the San Francisco Bay estuary provide a prime example of habitat restoration that has conflicted with species conservation. On the brink of extinction from habitat loss and degradation, and non-native predators in the 1990s, California rail populations responded positively to introduction of a non-native plant, Atlantic cordgrass (Spartina alterniflora). California rail populations were in substantial decline when the non-native Spartina was initially introduced as part of efforts to recover tidal marshes. Subsequent hybridization with the native Pacific cordgrass (Spartina foliosa) boosted California rail populations by providing greater cover and increased habitat area. The hybrid cordgrass (S. alterniflora × S. foliosa) readily invaded tidal mudflats and channels, and both crowded out native tidal marsh plants and increased sediment accretion in the marsh plain. This resulted in modification of tidal marsh geomorphology, hydrology, productivity, and species composition. Our results show that denser California rail populations occur in invasive Spartina than in native Spartina in San Francisco Bay. Herbicide treatment between 2005 and 2012 removed invasive Spartina from open intertidal mud and preserved foraging habitat for shorebirds. However, removal of invasive Spartina caused substantial decreases in California rail populations. Unknown facets of California rail ecology, undesirable interim stages of tidal marsh restoration, and competing management objectives among stakeholders resulted in management planning for endangered species or ecosystem restoration that favored one goal over the other. We have examined this perceived conflict and propose

  2. Bridging the conservation design and delivery gap for wetland bird habitat maintenance and restoration in the Midwestern United States

    USGS Publications Warehouse

    Thogmartin, W.E.; Potter, B.; Soulliere, G.

    2011-01-01

    The U.S. Fish and Wildlife Service's adoption of Strategic Habitat Conservation is intended to increase the effectiveness and efficiency of conservation delivery by targeting effort in areas where biological benefits are greatest. Conservation funding has not often been allocated in accordance with explicit biological endpoints, and the gap between conservation design (the identification of conservation priority areas) and delivery needs to be bridged to better meet conservation goals for multiple species and landscapes. We introduce a regional prioritization scheme for North American Wetlands Conservation Act funding which explicitly addresses Midwest regional goals for wetland-dependent birds. We developed decision-support maps to guide conservation of breeding and non-breeding wetland bird habitat. This exercise suggested ~55% of the Midwest consists of potential wetland bird habitat, and areas suited for maintenance (protection) were distinguished from those most suited to restoration. Areas with greater maintenance focus were identified for central Minnesota, southeastern Wisconsin, the Upper Mississippi and Illinois rivers, and the shore of western Lake Erie and Saginaw Bay. The shores of Lakes Michigan and Superior accommodated fewer waterbird species overall, but were also important for wetland bird habitat maintenance. Abundant areas suited for wetland restoration occurred in agricultural regions of central Illinois, western Iowa, and northern Indiana and Ohio. Use of this prioritization scheme can increase effectiveness, efficiency, transparency, and credibility to land and water conservation efforts for wetland birds in the Midwestern United States.

  3. Identifying Impacts of Hydropower Regulation on Salmonid Habitats to Guide River Restoration for Existing Schemes and Mitigate Adverse Effects of Future Developments

    NASA Astrophysics Data System (ADS)

    Buddendorf, B.; Geris, J.; Malcolm, I.; Wilkinson, M.; Soulsby, C.

    2015-12-01

    A decrease in longitudinal connectivity in riverine ecosystems resulting from the construction of transverse barriers has been identified as a major threat to biodiversity. For example, Atlantic Salmon (Salmo salar) have a seasonal variety of hydraulic habitat requirements for their different life stages. However, hydropower impoundments impact the spatial and temporal connectivity of natural habitat along many salmon rivers in ways that are not fully understood. Yet, these changes may affect the sustainability of habitat at local and regional scales and so ultimately the conservation of the species. Research is therefore needed both to aid the restoration and management of rivers impacted by previous hydropower development and guide new schemes to mitigate potentially adverse effects. To this end we assessed the effects of hydropower development on the flow related habitat conditions for different salmon life stages in Scottish rivers at different spatial scales. We used GIS techniques to map the changes in structural connectivity at regional scales, applying a weighting for habitat quality. Next, we used hydrological models to simulate past and present hydrologic conditions that in turn drive reach-scale hydraulic models to assess the impacts of regulation on habitat suitability in both space and time. Preliminary results indicate that: 1) impacts on connectivity depend on the location of the barrier within the river network; 2) multiple smaller barriers may have a potentially lower impact than a single larger barrier; 3) there is a relationship between habitat and connectivity where losing less but more suitable habitat potentially has a disproportionally large impact; 4) the impact of flow regulation can lead to a deterioration of habitat quality, though the effects are spatially variable and the extent of the impact depends on salmon life stage. This work can form a basis for using natural processes to perform targeted and cost-effective restoration of rivers.

  4. Hellsgate Big Game Winter Range Wildlife Mitigation Site Specific Management Plan for the Hellsgate Project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Matthew T.; Judd, Steven L.

    This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.

  5. Northern spotted owl effectiveness monitoring plan for the Northwest Forest Plan.

    Treesearch

    Joseph Lint; Barry Noon; Robert Anthony; Eric Forsman; Martin Raphael; Michael Collopy; Edward. Starkey

    1999-01-01

    This report describes options for effectiveness monitoring of long-term status and trends of the northern spotted owl to evaluate the success of the Northwest Forest Plan in arresting downward population trends, and in maintaining and restoring the habitat conditions necessary to support viable owl populations on Federal lands. It describes options to address...

  6. The science and practice of river restoration

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen; Lane, Stuart N.; Wilcox, Andrew C.

    2015-08-01

    River restoration is one of the most prominent areas of applied water-resources science. From an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of channel form, restoration has expanded to incorporate a wide variety of management activities designed to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers, and entire river networks in urban, agricultural, and less intensively human-altered environments. We critically examine how contemporary practitioners approach river restoration and challenges for implementing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems, and the role of restoration as a social process. We also examine challenges for scientific understanding in river restoration. These include: how physical complexity supports biogeochemical function, stream metabolism, and stream ecosystem productivity; characterizing response curves of different river components; understanding sediment dynamics; and increasing appreciation of the importance of incorporating climate change considerations and resiliency into restoration planning. Finally, we examine changes in river restoration within the past decade, such as increasing use of stream mitigation banking; development of new tools and technologies; different types of process-based restoration; growing recognition of the importance of biological-physical feedbacks in rivers; increasing expectations of water quality improvements from restoration; and more effective communication between practitioners and river scientists.

  7. 78 FR 14587 - Kelley-McDonough Low-Effect Habitat Conservation Plan for the Morro Shoulderband Snail, Community...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ...] Kelley-McDonough Low-Effect Habitat Conservation Plan for the Morro Shoulderband Snail, Community of Los... that includes the Kelley-McDonough Low-Effect Habitat Conservation Plan for the Morro Shoulderband... plan, draft environmental action statement and low-effect screening form, and related documents on the...

  8. Assessing freshwater habitat of adult anadromous alewives using multiple approaches

    USGS Publications Warehouse

    Mather, Martha E.; Frank, Holly J.; Smith, Joseph M.; Cormier, Roxann D.; Muth, Robert M.; Finn, John T.

    2012-01-01

    After centuries of disturbance, environmental professionals now recognize the need to restore coastal watersheds for native fish and protect the larger ecosystems on which fish and other aquatic biota depend. Anadromous fish species are an important component of coastal ecosystems that are often adversely affected by human activities. Restoring native anadromous fish species is a common focus of both fish and coastal watershed restoration. Yet restoration efforts have met with uneven success, often due to lack of knowledge about habitat availability and use. Using habitat surveys and radio tracking of adult anadromous alewives Alosa pseudoharengus during their spring spawning migration, we illustrate a method for quantifying habitat using multiple approaches and for relating mobile fish distribution to habitat. In the Ipswich River, Massachusetts, measuring habitat units and physical conditions at transects (width, depth, and velocity) provided an ecological basis for the interpretation of landscape patterns of fish distribution. Mapping habitat units allowed us to efficiently census habitat relevant to alewives for the entire 20.6 river kilometers of interest. Our transect data reinforced the results of the habitat unit survey and provided useful, high‐resolution ecological data for restoration efforts. Tagged alewives spent little time in riffle–run habitats and substantial time in pools, although the locations of pool occupancy varied. The insights we provide here can be used to (1) identify preferred habitats into which anadromous fish can be reintroduced in order to maximize fish survival and reproduction and (2) pinpoint habitat types in urgent need of protection or restoration.

  9. 77 FR 71013 - Proposed Low-Effect Habitat Conservation Plan for the Spring Mountain Raceway Expansion Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ...-FXES11130800000-134] Proposed Low-Effect Habitat Conservation Plan for the Spring Mountain Raceway Expansion... (Service), have received an application from Spring Mountain Raceway, LLC (applicant), for an incidental... to the Low-Effect Habitat Conservation Plan for the Spring Mountain Raceway Expansion Project...

  10. Multiscale analysis of restoration priorities for marine shoreline planning.

    PubMed

    Diefenderfer, Heida L; Sobocinski, Kathryn L; Thom, Ronald M; May, Christopher W; Borde, Amy B; Southard, Susan L; Vavrinec, John; Sather, Nichole K

    2009-10-01

    Planners are being called on to prioritize marine shorelines for conservation status and restoration action. This study documents an approach to determining the management strategy most likely to succeed based on current conditions at local and landscape scales. The conceptual framework based in restoration ecology pairs appropriate restoration strategies with sites based on the likelihood of producing long-term resilience given the condition of ecosystem structures and processes at three scales: the shorezone unit (site), the drift cell reach (nearshore marine landscape), and the watershed (terrestrial landscape). The analysis is structured by a conceptual ecosystem model that identifies anthropogenic impacts on targeted ecosystem functions. A scoring system, weighted by geomorphic class, is applied to available spatial data for indicators of stress and function using geographic information systems. This planning tool augments other approaches to prioritizing restoration, including historical conditions and change analysis and ecosystem valuation.

  11. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 1. Concepts for understanding and applying restoration

    USGS Publications Warehouse

    Pyke, David A.; Chambers, Jeanne C.; Pellant, Mike; Knick, Steven T.; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Schupp, Eugene W.; Roundy, Bruce A.; Brunson, Mark; McIver, James D.

    2015-10-26

    Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrushobligate animals. This restoration handbook is the first in a three-part series on restoration of sagebrush ecosystems. In Part 1, we discuss concepts surrounding landscape and restoration ecology of sagebrush ecosystems and greater sage-grouse that habitat managers and restoration practitioners need to know to make informed decisions regarding where and how to restore specific areas. We will describe the plant dynamics of sagebrush steppe ecosystems and their responses to major disturbances, fire, and defoliation. We will introduce the concepts of ecosystem resilience to disturbances and resistance to invasions of annual grasses within sagebrush steppe. An introduction to soils and ecological site information will provide insights into the specific plants that can be restored in a location. Soil temperature and moisture regimes are described as a tool for determining resilience and resistance and the potential for various restoration actions. Greater sage-grouse are considered landscape birds that require large areas of intact sagebrush steppe; therefore, we describe concepts of landscape ecology that aid our decisions regarding habitat restoration. We provide a brief overview of

  12. 76 FR 29260 - Incidental Take Permit; San Bernardino County, CA; Proposed Habitat Conservation Plan, Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... related to operations and maintenance of storage and distribution facilities for petroleum products within the Colton and Colton North Terminals, and with habitat restoration and management on a proposed on... maintenance of storage and distribution facilities for petroleum products on approximately 20 acres (ac) (8...

  13. Bat activity following restoration prescribed burning in the central Appalachian Upland and riparian habitats

    USGS Publications Warehouse

    Austin, Lauren V.; Silvis, Alexander; Ford, W. Mark; Muthersbaugh, Michael; Powers, Karen E.

    2018-01-01

    After decades of fire suppression in eastern North America, land managers now are prioritizing prescribed fire as a management tool to restore or maintain fire-adapted vegetation communities. However, in long—fire-suppressed landscapes, such as the central and southern Appalachians, it is unknown how bats will respond to prescribed fire in both riparian and upland forest habitats. To address these concerns, we conducted zero-crossing acoustic surveys of bat activity in burned, unburned, riparian, and non-riparian areas in the central Appalachians, Virginia, USA. Burn and riparian variables had model support (ΔAICc < 4) to explain activity of all bat species. Nonetheless, parameter estimates for these conditions were small and confidence intervals overlapped zero for all species, indicating effect sizes were marginal. Our results suggest that bats respond to fire differently between upland and riparian forest habitats, but overall, large landscape-level prescribed fire has a slightly positive to neutral impact on all bats species identified at our study site post—fire application.

  14. Use of Land Use Land Cover Change Mapping Products in Aiding Coastal Habitat Conservation and Restoration Efforts of the Mobile Bay NEP

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Swann, Roberta; Smooth, James

    2010-01-01

    The Mobile Bay region has undergone significant land use land cover change (LULC) over the last 35 years, much of which is associated with urbanization. These changes have impacted the region s water quality and wildlife habitat availability. In addition, much of the region is low-lying and close to the Gulf, which makes the region vulnerable to hurricanes, climate change (e.g., sea level rise), and sometimes man-made disasters such as the Deepwater Horizon (DWH) oil spill. Land use land cover change information is needed to help coastal zone managers and planners to understand and mitigate the impacts of environmental change on the region. This presentation discusses selective results of a current NASA-funded project in which Landsat data over a 34-year period (1974-2008) is used to produce, validate, refine, and apply land use land cover change products to aid coastal habitat conservation and restoration needs of the Mobile Bay National Estuary Program (MB NEP). The project employed a user defined classification scheme to compute LULC change mapping products for the entire region, which includes the majority of Mobile and Baldwin counties. Additional LULC change products have been computed for select coastal HUC-12 sub-watersheds adjacent to either Mobile Bay or the Gulf of Mexico, as part of the MB NEP watershed profile assessments. This presentation will include results of additional analyses of LULC change for sub-watersheds that are currently high priority areas, as defined by MB NEP. Such priority sub-watersheds include those that are vulnerable to impacts from the DWH oil spill, as well as sub-watersheds undergoing urbanization. Results demonstrating the nature and permanence of LULC change trends for these higher priority sub-watersheds and results characterizing change for the entire 34-year period and at approximate 10-year intervals across this period will also be presented. Future work will include development of value-added coastal habitat quality

  15. Mapping the current and potential distribution of red spruce in Virginia: implications for the restoration of degraded high elevation habitat

    Treesearch

    Heather Griscom; Helmut Kraenzle; Zachary. Bortolot

    2010-01-01

    The objective of our project is to create a habitat suitability model to predict potential and future red spruce forest distributions. This model will be used to better understand the influence of climate change on red spruce distribution and to help guide forest restoration efforts.

  16. Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receivemore » credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.« less

  17. South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaney, Mark D.

    2009-04-15

    The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fishmore » production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment

  18. A case study of assigning conservation value to dispersed habitat units for conservation planning

    USGS Publications Warehouse

    Rohweder, Jason J.; Sara C. Vacek,; Crimmins, Shawn M.; Thogmartin, Wayne E.

    2015-01-01

    Resource managers are increasingly tasked with developing habitat conservation plans in the face of numerous, sometimes competing, objectives. These plans must often be implemented across dispersed habitat conservation units that may contribute unequally to overall conservation objectives. Using U.S. Fish and Wildlife Service waterfowl production areas (WPA) in western Minnesota as our conservation landscape, we develop a landscape-scale approach for evaluating the conservation value of dispersed habitat conservation units with multiple conservation priorities. We evaluated conservation value based on a suite of variables directly applicable to conservation management practices, thus providing a direct link between conservation actions and outcomes. We developed spatial models specific to each of these conservation objectives and also developed two freely available prioritization tools to implement these analyses. We found that some WPAs provided high conservation value across a range of conservation objectives, suggesting that managing these specific areas would achieve multiple conservation goals. Conversely, other WPAs provided low conservation value for some objectives, suggesting they would be most effectively managed for a distinct set of specific conservation goals. Approaches such as ours provide a direct means of assessing the conservation value of dispersed habitat conservation units and could be useful in the development of habitat management plans, particularly when faced with multiple conservation objectives.

  19. Microhabitat use by brook trout inhabiting small tributaries and a large river main stem: Implications for stream habitat restoration in the central Appalachians

    USGS Publications Warehouse

    Hansbarger, Jeff L.; Petty, J. Todd; Mazik, Patricia M.

    2008-01-01

    Brook trout (Salvelinus fontinalis) habitat restoration is needed across a range of stream sizes; however, studies quantifying brook trout habitat preferences in streams of differing sizes are rare. We used radio-telemetry to quantify adult brook trout microhabitat use in a central Appalachian watershed, the upper Shavers Fork of the Cheat River in eastern West Virginia. Our objectives were to: 1) quantify non-random microhabitat use by adult brook trout in the Shavers Fork main stem (drainage area = 32 km2) and an adjacent tributary, Rocky Run (drainage area = 7 km2); and 2) construct stream-specific habitat suitability curves (HSCs) for four important microhabitat variables (depth, average current velocity, maximum current velocity within one meter, and distance to cover). Brook trout used a subset of available microhabitats in both the main stem and Rocky Run: trout tended to occupy microhabitats that were deeper, higher velocity, and closer to cover than expected by chance alone. Although specific microhabitat values differed between the main stem and tributary populations, the overall patterns in brook trout microhabitat use were consistent regardless of stream size. Habitat suitability curves were constructed based on brook trout microhabitat use and will be used to design and monitor the effectiveness of future habitat restoration efforts in the Shavers Fork watershed. Our results suggest that habitat enhancement projects that increase the availability of deep, high velocity microhabitats adjacent to cover would benefit brook trout in both small tributaries and larger river main stems.

  20. Otolith analysis of pre-restoration habitat use by Chinook salmon in the delta-flats and nearshore regions of the Nisqually River Estuary

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2010-01-01

    The Nisqually Fall Chinook population is one of 27 salmon stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent on the estuary. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith analysis was selected as a tool to examine Chinook salmon life history, growth, and residence in the Nisqually River estuary. Previously funded work on samples collected in 2004 (marked and unmarked) and 2005 (unmarked only) partially established a juvenile baseline on growth rates and length of residence associated with various habitats (freshwater, forested riverine tidal, emergent forested transition, estuarine emergent marsh, delta-flats and nearshore). However, residence times and growth rates for the delta-flats (DF) and nearshore (NS) habitats have been minimally documented due to small sample sizes. The purpose of the current study is to incorporate otolith microstructural analysis using otoliths from fish collected within the DF and NS habitats during sampling years 2004-08 to increase sample size and further evaluate between-year variation in otolith microstructure. Our results from this analysis indicated the delta-flats check (DFCK) on unmarked and marked Chinook samples in 2005-08 varied slightly in appearance from that seen on samples previously analyzed only from 2004. A fry migrant life history was observed on otoliths of unmarked Chinook collected in 2005, 2007, and 2008. Generally, freshwater mean increment width of unmarked fish, on average, was smaller compared to marked

  1. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish productionmore » within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and

  2. An integrated environmental and human systems modeling framework for Puget Sound restoration planning.

    EPA Science Inventory

    Local, state, federal, tribal and private stakeholders have committed significant resources to restoring Puget Sound’s terrestrial-marine ecosystem. Though jurisdictional issues have promoted a fragmented approach to restoration planning, there is growing recognition that a...

  3. An integrated environmental and human systems modeling framework for Puget Sound restoration planning

    EPA Science Inventory

    Local, state, federal, tribal and private stakeholders have committed significant resources to restoring Puget Sound’s terrestrial-marine ecosystem. Though jurisdictional issues have promoted a fragmented approach to restoration planning, there is growing recognition that a...

  4. Land use-based landscape planning and restoration in mine closure areas.

    PubMed

    Zhang, Jianjun; Fu, Meichen; Hassani, Ferri P; Zeng, Hui; Geng, Yuhuan; Bai, Zhongke

    2011-05-01

    Landscape planning and restoration in mine closure areas is not only an inevitable choice to sustain mining areas but also an important path to maximize landscape resources and to improve ecological function in mine closure areas. The analysis of the present mine development shows that many mines are unavoidably facing closures in China. This paper analyzes the periodic impact of mining activities on landscapes and then proposes planning concepts and principles. According to the landscape characteristics in mine closure areas, this paper classifies available landscape resources in mine closure areas into the landscape for restoration, for limited restoration and for protection, and then summarizes directions for their uses. This paper establishes the framework of spatial control planning and design of landscape elements from "macro control, medium allocation and micro optimization" for the purpose of managing and using this kind of special landscape resources. Finally, this paper applies the theories and methods to a case study in Wu'an from two aspects: the construction of a sustainable land-use pattern on a large scale and the optimized allocation of typical mine landscape resources on a small scale.

  5. Plant invaders, global change and landscape restoration

    USGS Publications Warehouse

    Pyke, D.A.; Knick, S.T.

    2005-01-01

    Modifications in land uses, technology, transportation and biogeochemical cycles currently influence the spread of organisms by reducing the barriers that once restricted their movements. We provide an overview of the spatial and temporal extent for agents of environmental change (land and disturbance transformations, biogeochemical modifications, biotic additions and losses) and highlight those that strongly influence rangeland ecosystems. Restoration may provide a mechanism for ameliorating the impacts of invasive species, but applications of restoration practices over large scales, e.g. ecoregions, will yield benefits earlier when the landscape is prioritised by criteria that identify locations where critical restoration species can grow and where success will be high. We used the Great Basin, USA as our region of interest where the invasive annual grass, cheatgrass (Bromus tectorum), dominates millions of hectares. A landscape-level restoration model for sagebrush (Artemisia tridentata ssp. tridentata and ssp. wyomingensis) was developed to meet the goal of establishing priority habitat for wildlife. This approach could be used in long-range planning of rangeland ecosystems where funds and labour for restoration projects may vary annually. Copyright ?? NISC Pty Ltd.

  6. Examining the Potential for Agricultural Benefits from Pollinator Habitat at Solar Facilities in the United States.

    PubMed

    Walston, Leroy J; Mishra, Shruti K; Hartmann, Heidi M; Hlohowskyj, Ihor; McCall, James; Macknick, Jordan

    2018-06-13

    Of the many roles insects serve for ecosystem function, pollination is possibly the most important service directly linked to human well-being. However, land use changes have contributed to the decline of pollinators and their habitats. In agricultural landscapes that also support renewable energy developments such as utility-scale solar energy [USSE] facilities, opportunities may exist to conserve insect pollinators and locally restore their ecosystem services through the implementation of vegetation management approaches that aim to provide and maintain pollinator habitat at USSE facilities. As a first step toward understanding the potential agricultural benefits of solar-pollinator habitat, we identified areas of overlap between USSE facilities and surrounding pollinator-dependent crop types in the United States (U.S.). Using spatial data on solar energy developments and crop types across the U.S., and assuming a pollinator foraging distance of 1.5 km, we identified over 3,500 km 2 of agricultural land near existing and planned USSE facilities that may benefit from increased pollination services through the creation of pollinator habitat at the USSE facilities. The following five pollinator-dependent crop types accounted for over 90% of the agriculture near USSE facilities, and these could benefit most from the creation of pollinator habitat at existing and planned USSE facilities: soybeans, alfalfa, cotton, almonds, and citrus. We discuss how our results may be used to understand potential agro-economic implications of solar-pollinator habitat. Our results show that ecosystem service restoration through the creation of pollinator habitat could improve the sustainability of large-scale renewable energy developments in agricultural landscapes.

  7. 78 FR 62646 - Endangered and Threatened Wildlife and Plants; Permits; Low-Effect Habitat Conservation Plan for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... the Utah Prairie Dog in Garfield County, Utah AGENCY: Fish and Wildlife Service, Interior. ACTION... Draft Low-effect Habitat Conservation Plan (HCP) for the Utah prairie dog in Garfield County, Utah, for... review and comment of the Draft Low-effect Habitat Conservation Plan for the Utah prairie dog in Garfield...

  8. Rocky to bullwinkle: understanding flying squirrels helps us restore dry forest ecosystems.

    Treesearch

    Jonathan Thompson

    2006-01-01

    A century of effective fire suppression has radically transformed many forested landscapes on the east side of the Cascades. Managers of dry forests critically need information to help plan for and implement forest restoration . Management priorities include the stabilization of fire regimes and the maintenance of habitat for the northern spotted owl and other old-...

  9. 26 CFR 1.412(c)(1)-3T - Applying the minimum funding requirements to restored plans (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 5 2013-04-01 2013-04-01 false Applying the minimum funding requirements to...-Sharing, Stock Bonus Plans, Etc. § 1.412(c)(1)-3T Applying the minimum funding requirements to restored plans (temporary). (a) In general—(1) Restoration method. The restoration method is a funding method...

  10. Restoring Resiliency: Case Studies from Pacific Northwest Estuarine Eelgrass (Zostera marina L.) Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thom, Ronald M.; Diefenderfer, Heida L.; Vavrinec, John

    2012-01-01

    The purpose of many ecological restoration projects is to establish an ecosystem with fully developed structure and function that exhibits resistance to and resilience from disturbances. Coastal restoration projects in the Pacific Northwest provide opportunities to understand what is required to restore the resilience of eelgrass (Zostera marina L.) populations. Factors influencing resilience observed in three case studies of eelgrass restoration include minimum viable population, adaptations of transplant populations, and natural and anthropogenic disturbances at restoration sites. The evaluation of resiliency depends on selecting appropriate monitoring metrics and the frequency and duration of monitoring. Eelgrass area, cover and shoot densitymore » provide useful and reliable metrics for quantifying resilience of restored meadows. Further, five years of monitoring of these metrics provides data that can reasonably predict the long-term viability of a planted plot. Eelgrass appears to be a resilient ecosystem in general, though one that data suggest may exhibit tipping points brought about by compounded environmental conditions outside of its tolerance ranges. Explicit inclusion of resilience in the planning and practice of habitat restoration may reduce uncertainties and improve the performance of restored systems by increasing buffering capacity, nurturing sources of renewal (e.g., seeds and rhizomes), and managing for habitat forming and maintaining processes (e.g., sediment dynamics) at multiple scales.« less

  11. Re-establishing pollinator habitat on mined lands using the forestry reclamation approach

    Treesearch

    Tammy Horn; Patrick Angel; Carl Zipper; Michael Ulyshen; Michael French; Jim Burger; Mary Beth Adams

    2017-01-01

    Pollinators are animals that play an essential role in the reproduction of many plants by transferring genetic material, in the form of pollen, from male to female flower parts. Because pollinator communities are under threat both in the US and worldwide, there is great interest in incorporating the needs of pollinators into habitat restoration plans. Forests provide...

  12. Grand Ronde Basin Fish Habitat Enhancement Project, 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance R.; Morton, Winston H.

    2009-07-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing the opportunities for natural fishmore » production within the basin. This project originally provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented under revisions of the Fish and Wild Program as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires considerable time be spent developing rapport with landowners to gain acceptance, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources, is the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway

  13. Predictive Seagrass Habitat Model

    EPA Science Inventory

    Restoration of ecosystem services provided by seagrass habitats in estuaries requires a firm understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We explored the application...

  14. 15 CFR 990.42 - Determination to conduct restoration planning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Determination to conduct restoration planning. 990.42 Section 990.42 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OIL POLLUTION...

  15. Predicting occurrence of juvenile shark habitat to improve conservation planning.

    PubMed

    Oh, Beverly Z L; Sequeira, Ana M M; Meekan, Mark G; Ruppert, Jonathan L W; Meeuwig, Jessica J

    2017-06-01

    Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark-monitoring data on large scales (100s-1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km 2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species-level models had higher accuracy (ĸ ≥ 0.69) and deviance explained (≥48%) than our order-level model (ĸ = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species-specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species-focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non-extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across

  16. 78 FR 75939 - Bay Delta Habitat Conservation Plan and Natural Community Conservation Plan, Sacramento, CA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-13

    ... patterns, including breeding, feeding, and sheltering (50 CFR 17.3(c)). NMFS defines ``harm'' to include... impairing essential behavioral patterns, including breeding, spawning, rearing, migrating, feeding, or... permit in recognition of the conservation benefits provided to them under a habitat conservation plan...

  17. Strategic planning for instream flow restoration: a case study of potential climate change impacts in the central Columbia River basin.

    PubMed

    Donley, Erin E; Naiman, Robert J; Marineau, Mathieu D

    2012-10-01

    We provide a case study prioritizing instream flow restoration activities by sub-basin according to the habitat needs of Endangered Species Act (ESA)-listed salmonids relative to climate change in the central Columbia River basin in Washington State (USA). The objective is to employ scenario analysis to inform and improve existing instream flow restoration projects. We assess the sensitivity of late summer (July, August, and September) flows to the following scenario simulations - singly or in combination: climate change, changes in the quantity of water used for irrigation and possible changes to existing water resource policy. Flows for four sub-basins were modeled using the Water Evaluation and Planning system (WEAP) under historical and projected conditions of 2020 and 2040 for each scenario. Results indicate that Yakima will be the most flow-limited sub-basin with average reductions in streamflow of 41% under climate conditions of 2020 and 56% under 2040 conditions; 1.3-2.5 times greater than those of other sub-basins. In addition, irrigation plays a key role in the hydrology of the Yakima sub-basin - with flow reductions ranging from 78% to 90% under severe to extreme (i.e., 20-40%) increases in agricultural water use (2.0-4.4 times the reductions in the other sub-basins). The Yakima and Okanogan sub-basins are the most responsive to simulations of flow-bolstering policy change (providing salmon with first priority water allocation and at biologically relevant flows), as demonstrated by 91-100% target flows attained. The Wenatchee and Methow sub-basins do not exhibit similar responsiveness to simulated policy changes. Considering climate change only, we conclude that flow restoration should be prioritized first in the Yakima and Wenatchee sub-basins, and second in the Okanogan and Methow. Considering both climate change and possible policy changes, we recommend that the Yakima sub-basin receive the highest priority for flow restoration activities to sustain

  18. Pink shrimp as an indicator for restoration of everglades ecosystems

    USGS Publications Warehouse

    Browder, Joan A.; Robblee, M.B.

    2009-01-01

    The pink shrimp, Farfantepenaeus duorarum, familiar to most Floridians as either food or bait shrimp, is ubiquitous in South Florida coastal and offshore waters and is proposed as an indicator for assessing restoration of South Florida's southern estuaries: Florida Bay, Biscayne Bay, and the mangrove estuaries of the lower southwest coast. Relationships between pink shrimp and salinity have been determined in both field and laboratory studies. Salinity is directly relevant to restoration because the salinity regimes of South Florida estuaries, critical nursery habitat for the pink shrimp, will be altered by changes in the quantity, timing, and distribution of freshwater inflow planned as part of the Comprehensive Everglades Restoration Project (CERP). Here we suggest performance measures based on pink shrimp density (number per square meter) in the estuaries and propose a restoration assessment and scoring scheme using these performance measures that can readily be communicated to managers, policy makers, and the interested public. The pink shrimp is an appropriate restoration indicator because of its ecological as well as its economic importance and also because scientific interest in pink shrimp in South Florida has produced a wealth of information about the species and relatively long time series of data on both juveniles in estuarine nursery habitats and adults on the fishing grounds. We suggest research needs for improving the pink shrimp performance measure.

  19. A systematic review of ecological attributes that confer resilience to climate change in environmental restoration

    PubMed Central

    Timpane-Padgham, Britta L.

    2017-01-01

    Ecological restoration is widely practiced as a means of rehabilitating ecosystems and habitats that have been degraded or impaired through human use or other causes. Restoration practices now are confronted by climate change, which has the potential to influence long-term restoration outcomes. Concepts and attributes from the resilience literature can help improve restoration and monitoring efforts under changing climate conditions. We systematically examined the published literature on ecological resilience to identify biological, chemical, and physical attributes that confer resilience to climate change. We identified 45 attributes explicitly related to climate change and classified them as individual- (9), population- (6), community- (7), ecosystem- (7), or process-level attributes (16). Individual studies defined resilience as resistance to change or recovery from disturbance, and only a few studies explicitly included both concepts in their definition of resilience. We found that individual and population attributes generally are suited to species- or habitat-specific restoration actions and applicable at the population scale. Community attributes are better suited to habitat-specific restoration at the site scale, or system-wide restoration at the ecosystem scale. Ecosystem and process attributes vary considerably in their type and applicability. We summarize these relationships in a decision support table and provide three example applications to illustrate how these classifications can be used to prioritize climate change resilience attributes for specific restoration actions. We suggest that (1) including resilience as an explicit planning objective could increase the success of restoration projects, (2) considering the ecological context and focal scale of a restoration action is essential in choosing appropriate resilience attributes, and (3) certain ecological attributes, such as diversity and connectivity, are more commonly considered to confer

  20. A systematic review of ecological attributes that confer resilience to climate change in environmental restoration.

    PubMed

    Timpane-Padgham, Britta L; Beechie, Tim; Klinger, Terrie

    2017-01-01

    Ecological restoration is widely practiced as a means of rehabilitating ecosystems and habitats that have been degraded or impaired through human use or other causes. Restoration practices now are confronted by climate change, which has the potential to influence long-term restoration outcomes. Concepts and attributes from the resilience literature can help improve restoration and monitoring efforts under changing climate conditions. We systematically examined the published literature on ecological resilience to identify biological, chemical, and physical attributes that confer resilience to climate change. We identified 45 attributes explicitly related to climate change and classified them as individual- (9), population- (6), community- (7), ecosystem- (7), or process-level attributes (16). Individual studies defined resilience as resistance to change or recovery from disturbance, and only a few studies explicitly included both concepts in their definition of resilience. We found that individual and population attributes generally are suited to species- or habitat-specific restoration actions and applicable at the population scale. Community attributes are better suited to habitat-specific restoration at the site scale, or system-wide restoration at the ecosystem scale. Ecosystem and process attributes vary considerably in their type and applicability. We summarize these relationships in a decision support table and provide three example applications to illustrate how these classifications can be used to prioritize climate change resilience attributes for specific restoration actions. We suggest that (1) including resilience as an explicit planning objective could increase the success of restoration projects, (2) considering the ecological context and focal scale of a restoration action is essential in choosing appropriate resilience attributes, and (3) certain ecological attributes, such as diversity and connectivity, are more commonly considered to confer

  1. Using Habitat Equivalency Analysis to Assess the Cost Effectiveness of Restoration Outcomes in Four Institutional Contexts

    NASA Astrophysics Data System (ADS)

    Scemama, Pierre; Levrel, Harold

    2016-01-01

    At the national level, with a fixed amount of resources available for public investment in the restoration of biodiversity, it is difficult to prioritize alternative restoration projects. One way to do this is to assess the level of ecosystem services delivered by these projects and to compare them with their costs. The challenge is to derive a common unit of measurement for ecosystem services in order to compare projects which are carried out in different institutional contexts having different goals (application of environmental laws, management of natural reserves, etc.). This paper assesses the use of habitat equivalency analysis (HEA) as a tool to evaluate ecosystem services provided by restoration projects developed in different institutional contexts. This tool was initially developed to quantify the level of ecosystem services required to compensate for non-market impacts coming from accidental pollution in the US. In this paper, HEA is used to assess the cost effectiveness of several restoration projects in relation to different environmental policies, using case studies based in France. Four case studies were used: the creation of a market for wetlands, public acceptance of a port development project, the rehabilitation of marshes to mitigate nitrate loading to the sea, and the restoration of streams in a protected area. Our main conclusion is that HEA can provide a simple tool to clarify the objectives of restoration projects, to compare the cost and effectiveness of these projects, and to carry out trade-offs, without requiring significant amounts of human or technical resources.

  2. Using Habitat Equivalency Analysis to Assess the Cost Effectiveness of Restoration Outcomes in Four Institutional Contexts.

    PubMed

    Scemama, Pierre; Levrel, Harold

    2016-01-01

    At the national level, with a fixed amount of resources available for public investment in the restoration of biodiversity, it is difficult to prioritize alternative restoration projects. One way to do this is to assess the level of ecosystem services delivered by these projects and to compare them with their costs. The challenge is to derive a common unit of measurement for ecosystem services in order to compare projects which are carried out in different institutional contexts having different goals (application of environmental laws, management of natural reserves, etc.). This paper assesses the use of habitat equivalency analysis (HEA) as a tool to evaluate ecosystem services provided by restoration projects developed in different institutional contexts. This tool was initially developed to quantify the level of ecosystem services required to compensate for non-market impacts coming from accidental pollution in the US. In this paper, HEA is used to assess the cost effectiveness of several restoration projects in relation to different environmental policies, using case studies based in France. Four case studies were used: the creation of a market for wetlands, public acceptance of a port development project, the rehabilitation of marshes to mitigate nitrate loading to the sea, and the restoration of streams in a protected area. Our main conclusion is that HEA can provide a simple tool to clarify the objectives of restoration projects, to compare the cost and effectiveness of these projects, and to carry out trade-offs, without requiring significant amounts of human or technical resources.

  3. Altered mangrove wetlands as habitat for estuarine nekton: are dredged channels and tidal creeks equivalent?

    USGS Publications Warehouse

    Krebs, Justin M.; Brame, Adam B.; McIvor, Carole C.

    2007-01-01

    Hasty decisions are often made regarding the restoration of "altered" habitats, when in fact the ecological value of these habitats may be comparable to natural ones. To assess the "value" of altered mangrove-lined habitats for nekton, we sampled for 1 yr within three Tampa Bay wetlands. Species composition, abundance, and spatial distribution of nekton assemblages in permanent subtidal portions of natural tidal creeks and wetlands altered by construction of mosquito-control ditches and stormwater-drainage ditches were quantified through seasonal seine sampling. Results of repeated-measures analysis of variance and ordination of nekton community data suggested differences in species composition and abundance between natural and altered habitat, though not consistently among the three wetlands. In many cases, mosquito ditches were more similar in assemblage structure to tidal creeks than to stormwater ditches. In general, mosquito ditches and stormwater ditches were the most dissimilar in terms of nekton community structure. These dissimilarities were likely due to differences in design between the two types of ditches. Mosquito ditches tend to fill in over time and are thus more ephemeral features in the landscape. In contrast, stormwater ditches are a more permanent altered habitat that remain open due to periodic flushing from heavy runoff. Results indicate that environmental conditions (e.g., salinity, current velocity, vegetative structure) may provide a more useful indication of potential habitat "value" for nekton than whether the habitat has been altered. The type of ditching is therefore more important than ditching per se when judging the habitat quality of these altered channels for fishes, shrimps and crabs. Planning should entail careful consideration of environmental conditions rather than simply restoring for restoration's sake.

  4. Northwest Montana Wildlife Habitat Enhancement: Hungry Horse Elk Mitigation Project: Monitoring and Evaluation Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, Daniel; Malta, Patrick

    Portions of two important elk (Cervus elaphus) winter ranges totalling 8749 acres were lost due to the construction of the Hungry Horse Dam hydroelectric facility. This habitat loss decreased the carrying capacity of the both the elk and the mule deer (Odocoileus hemionus). In 1985, using funds from the Bonneville Power Administration (BPA) as authorized by the Northwest Power Act, the Montana Department of Fish, Wildlife and Parks (FWP) completed a wildlife mitigation plan for Hungry Horse Reservoir. This plan identified habitat enhancement of currently-occupied winter range as the most cost-efficient, easily implemented mitigation alternative available to address these large-scalemore » losses of winter range. The Columbia Basin Fish and Wildlife Program, as amended in 1987, authorized BPA to fund winter range enhancement to meet an adjusted goal of 133 additional elk. A 28-month advance design phase of the BPA-funded project was initiated in September 1987. Primary goals of this phase of the project included detailed literature review, identification of enhancement areas, baseline (elk population and habitat) data collection, and preparation of 3-year and 10-year implementation plans. This document will serve as a site-specific habitat and population monitoring plan which outlines our recommendations for evaluating the results of enhancement efforts against mitigation goals. 25 refs., 13 figs., 7 tabs.« less

  5. Lower Walnut Creek Restoration

    EPA Pesticide Factsheets

    Lower Walnut Creek Restoration Project will restore and enhance coastal wetlands along southern shoreline of Suisun Bay from Suisun Bay upstream along Walnut Creek, improving habitat quality, diversity, and connectivity along three miles of creek channel.

  6. Environmental restoration and waste management: Five-year plan, Fiscal Years 1992--1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleman, L.I.

    1990-06-01

    This document reflects DOE's fulfillment of a major commitment of the Environmental Restoration and Waste Management Five-Year Plan: reorganization to create an Office of Environmental Restoration and Waste Management (EM) responsible for the consolidated environmental management of nuclear-related facilities and sites formerly under the Assistant Secretaries for Defense Programs and Nuclear Energy and the Director of the Office of Energy Research. The purposes of this Plan for FY 1992--1996 are to measure progress in meeting DOE's compliance, cleanup, and waste management agenda; to incorporate a revised and condensed version of the Draft Research Development, Demonstration, Testing, and Evaluation (RDDT E)more » Plan (November 1989) to describe DOE's process for developing the new technologies critically needed to solve its environmental problems; to show DOE's current strategy and planned activities through FY 1996, including reasons for changes required to meet compliance and cleanup commitments; and to increase the involvement of other agencies and the public in DOE's planning.« less

  7. Ants as a measure of effectiveness of habitat conservation planning in southern California

    USGS Publications Warehouse

    Mitrovich, Milan J.; Matsuda, Tritia; Pease, Krista H.; Fisher, Robert N.

    2010-01-01

    In the United States multispecies habitat conservation plans were meant to be the solution to conflicts between economic development and protection of biological diversity. Although now widely applied, questions exist concerning the scientific credibility of the conservation planning process and effectiveness of the plans. We used ants to assess performance of one of the first regional conservation plans developed in the United States, the Orange County Central-Coastal Natural Community Conservation Plan (NCCP), in meeting its broader conservation objectives of biodiversity and ecosystem-level protection. We collected pitfall data on ants for over 3 years on 172 sites established across a network of conservation lands in coastal southern California. Although recovered native ant diversity for the study area was high, site-occupancy models indicated the invasive and ecologically disruptive Argentine ant ( Linepithema humile) was present at 29% of sites, and sites located within 200 m of urban and agricultural areas were more likely to have been invaded. Within invaded sites, native ants were largely displaced, and their median species richness declined by more than 60% compared with uninvaded sites. At the time of planning, 24% of the 15,133-ha reserve system established by Orange County NCCP fell within 200 m of an urban or agricultural edge. With complete build out of lands surrounding the reserve, the proportion of the reserve system vulnerable to invasion will grow to 44%. Our data indicate that simply protecting designated areas from development is not enough. If habitat conservation plans are to fulfill their conservation promise of ecosystem-level protection, a more-integrated and systematic approach to the process of habitat conservation planning is needed.

  8. RESTORATION OF STREAM PHYSICAL HABITAT AND FOOD RESOURCES: INFLUENCE ON JUVENILE COHO GROWTH AND SALMON DERIVED NUTRIENT INCORPORATION IN COASTAL OREGON STREAMS

    EPA Science Inventory

    ABSTRACT - Stream restoration in Western Oregon and Washington includes physical habitat improvement and salmon carcass additions. However, few studies examine the effects of carcass placement on juvenile fish in western Oregon, and in particular the interaction with physical hab...

  9. Optimal Conservation Outcomes Require Both Restoration and Protection

    PubMed Central

    Possingham, Hugh P.; Bode, Michael; Klein, Carissa J.

    2015-01-01

    Conservation outcomes are principally achieved through the protection of intact habitat or the restoration of degraded habitat. Restoration is generally considered a lower priority action than protection because protection is thought to provide superior outcomes, at lower costs, without the time delay required for restoration. Yet while it is broadly accepted that protected intact habitat safeguards more biodiversity and generates greater ecosystem services per unit area than restored habitat, conservation lacks a theory that can coherently compare the relative outcomes of the two actions. We use a dynamic landscape model to integrate these two actions into a unified conservation theory of protection and restoration. Using nonlinear benefit functions, we show that both actions are crucial components of a conservation strategy that seeks to optimise either biodiversity conservation or ecosystem services provision. In contrast to conservation orthodoxy, in some circumstances, restoration should be strongly preferred to protection. The relative priority of protection and restoration depends on their costs and also on the different time lags that are inherent to both protection and restoration. We derive a simple and easy-to-interpret heuristic that integrates these factors into a single equation that applies equally to biodiversity conservation and ecosystem service objectives. We use two examples to illustrate the theory: bird conservation in tropical rainforests and coastal defence provided by mangrove forests. PMID:25625277

  10. Optimal conservation outcomes require both restoration and protection.

    PubMed

    Possingham, Hugh P; Bode, Michael; Klein, Carissa J

    2015-01-01

    Conservation outcomes are principally achieved through the protection of intact habitat or the restoration of degraded habitat. Restoration is generally considered a lower priority action than protection because protection is thought to provide superior outcomes, at lower costs, without the time delay required for restoration. Yet while it is broadly accepted that protected intact habitat safeguards more biodiversity and generates greater ecosystem services per unit area than restored habitat, conservation lacks a theory that can coherently compare the relative outcomes of the two actions. We use a dynamic landscape model to integrate these two actions into a unified conservation theory of protection and restoration. Using nonlinear benefit functions, we show that both actions are crucial components of a conservation strategy that seeks to optimise either biodiversity conservation or ecosystem services provision. In contrast to conservation orthodoxy, in some circumstances, restoration should be strongly preferred to protection. The relative priority of protection and restoration depends on their costs and also on the different time lags that are inherent to both protection and restoration. We derive a simple and easy-to-interpret heuristic that integrates these factors into a single equation that applies equally to biodiversity conservation and ecosystem service objectives. We use two examples to illustrate the theory: bird conservation in tropical rainforests and coastal defence provided by mangrove forests.

  11. Progress toward lake trout restoration in Lake Michigan

    USGS Publications Warehouse

    Holey, Mark E.; Rybicki, Ronald W.; Eck, Gary W.; Brown, Edward H.; Marsden, J. Ellen; Lavis, Dennis S.; Toneys, Michael L.; Trudeau, Tom N.; Horrall, Ross M.

    1995-01-01

    Progress toward lake trout restoration in Lake Michigan is described through 1993. Extinction of the native lake trout fishery by sea lamprey predation, augmented by exploitation and habitat destruction, resulted in an extensive stocking program of hatchery-reared lake trout that began in 1965. Sea lamprey abundance was effectively controlled using selective chemical toxicants. The initial stocking produced a measurable wild year class of lake trout by 1976 in Grand Traverse Bay, but failed to continue probably due to excessive exploitation. The overall lack of successful reproduction lakewide by the late 1970s led to the development and implementation in 1985 of a focused inter-agency lakewide restoration plan by a technical committee created through the Lake Committee structure of the Great Lakes Fishery Commission. Strategies implemented in 1985 by the plan included setting a 40% total mortality goal lakewide, creating two large refuges designed to encompass historically the most productive spawning habitat and protect trout stocked over their home range, evaluating several lake trout strains, and setting stocking priorities throughout the lake. Target levels for stocking in the 1985 Plan have never been reached, and are much less than the estimated lakewide recruitment of yearlings by the native lake trout stocks. Since 1985, over 90% of the available lake trout have been stocked over the best spawning habitat, and colonization of the historically productive offshore reefs has occurred. Concentrations of spawning lake trout large enough for successful reproduction, based on observations of successful hatchery and wild stocks, have developed at specific reefs. Continued lack of recruitment at these specific sites suggests that something other than stotk abundance has limited success. Poor survival of lake trout eggs, assumed to be related to contaminant burden, occurred in the late 1970s and early 1980s, but survival has since increased to equal survival in the

  12. Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yde, Chis

    1990-06-01

    The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer wintermore » and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.« less

  13. 78 FR 8184 - DEEPWATER HORIZON Oil Spill; Final Phase II Early Restoration Plan and Environmental Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... Protection Agency (USEPA); State of Louisiana Coastal Protection and Restoration Authority, Oil Spill... and their habitats in the Gulf of Mexico and along the coastal areas of Alabama, Florida, Louisiana... Department of Environmental Protection and Fish and Wildlife Conservation Commission; and For the State of...

  14. Seeing the bigger picture: multi-partner spruce restoration in the central and southern Appalachian mountains

    Treesearch

    Jack Tribble; Thomas Minney; Catherine Johnson; Ken. Sturm

    2010-01-01

    Habitat-based ecosystem partnerships are necessary for implementing strategic forest restoration plans. Overwhelming environmental threats such as climate change and invasive pests and pathogens could have traumatic and devastating effects to our native forests. Additionally, past land-use history has left existing forests isolated, fragmented and in some cases...

  15. 76 FR 41810 - Francis Proposed Low-Effect Habitat Conservation Plan for the Morro Shoulderband Snail, Los Osos...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ...] Francis Proposed Low-Effect Habitat Conservation Plan for the Morro Shoulderband Snail, Los Osos, San Luis... conservation program to minimize and mitigate project activities as described in their low-effect habitat conservation plan. We invite comments from the public on the application, which includes the Francis Low-Effect...

  16. The influence of patients' decisions on treatment planning in restorative dentistry.

    PubMed

    Kalsi, Jagdip S; Hemmings, Kenneth

    2013-11-01

    As part of treatment planning, options are presented to patients by dentists. An informal discussion takes place involving a cost-benefit analysis and a treatment plan is agreed. Evidence-based dentistry takes into account the best available literature, clinical experience and patient factors to guide the dentist. Dentists exert considerable influence on which treatment modality is selected. This paper focuses on the importance of patient factors which lead to less than ideal, clinically acceptable, treatment plans that nevertheless give patient satisfaction over the long term. Though no universally accepted healthcare model exists for restorative dentistry, patients' decisions are most influenced by their relationship with their dentist over factors such as time, access and cost. Letters should be sent to patients clarifying the nature of all proposed options, including advantages and disadvantages, complications, success rates, biological and financial costs and what happens if no treatment is carried out. Many psychological and social determinants influence patients'values and decision-making when planning for restorative dentistry. These lead to a treatment plan agreed between the patient and the dentist. Often an element of compromise is considered acceptable to both parties when the evidence would suggest an alternative treatment to be preferable.

  17. 75 FR 66780 - Suisun Marsh Habitat Management, Preservation, and Restoration Plan, California

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... joint lead agencies, and the State of California Department of Fish and Game (DFG), acting as the... comprehensive 30-year plan designed to address various conflicts regarding use of resources within approximately... comprehensive plan designed to address the various conflicts regarding use of Marsh resources, with the focus on...

  18. Flow Restoration in the Columbia River Basin: An Evaluation of a Flow Restoration Accounting Framework

    NASA Astrophysics Data System (ADS)

    McCoy, Amy L.; Holmes, S. Rankin; Boisjolie, Brett A.

    2018-03-01

    Securing environmental flows in support of freshwater biodiversity is an evolving field of practice. An example of a large-scale program dedicated to restoring environmental flows is the Columbia Basin Water Transactions Program in the Pacific Northwest region of North America, which has been restoring flows in dewatered tributary habitats for imperiled salmon species over the past decade. This paper discusses a four-tiered flow restoration accounting framework for tracking the implementation and impacts of water transactions as an effective tool for adaptive management. The flow restoration accounting framework provides compliance and flow accounting information to monitor transaction efficacy. We review the implementation of the flow restoration accounting framework monitoring framework to demonstrate (a) the extent of water transactions that have been implemented over the past decade, (b) the volumes of restored flow in meeting flow targets for restoring habitat for anadromous fish species, and (c) an example of aquatic habitat enhancement that resulted from Columbia Basin Water Transactions Program investments. Project results show that from 2002 to 2015, the Columbia Basin Water Transactions Program has completed more than 450 water rights transactions, restoring approximately 1.59 million megaliters to date, with an additional 10.98 million megaliters of flow protected for use over the next 100 years. This has resulted in the watering of over 2414 stream kilometers within the Columbia Basin. We conclude with a discussion of the insights gained through the implementation of the flow restoration accounting framework. Understanding the approach and efficacy of a monitoring framework applied across a large river basin can be informative to emerging flow-restoration and adaptive management efforts in areas of conservation concern.

  19. Flow Restoration in the Columbia River Basin: An Evaluation of a Flow Restoration Accounting Framework.

    PubMed

    McCoy, Amy L; Holmes, S Rankin; Boisjolie, Brett A

    2018-03-01

    Securing environmental flows in support of freshwater biodiversity is an evolving field of practice. An example of a large-scale program dedicated to restoring environmental flows is the Columbia Basin Water Transactions Program in the Pacific Northwest region of North America, which has been restoring flows in dewatered tributary habitats for imperiled salmon species over the past decade. This paper discusses a four-tiered flow restoration accounting framework for tracking the implementation and impacts of water transactions as an effective tool for adaptive management. The flow restoration accounting framework provides compliance and flow accounting information to monitor transaction efficacy. We review the implementation of the flow restoration accounting framework monitoring framework to demonstrate (a) the extent of water transactions that have been implemented over the past decade, (b) the volumes of restored flow in meeting flow targets for restoring habitat for anadromous fish species, and (c) an example of aquatic habitat enhancement that resulted from Columbia Basin Water Transactions Program investments. Project results show that from 2002 to 2015, the Columbia Basin Water Transactions Program has completed more than 450 water rights transactions, restoring approximately 1.59 million megaliters to date, with an additional 10.98 million megaliters of flow protected for use over the next 100 years. This has resulted in the watering of over 2414 stream kilometers within the Columbia Basin. We conclude with a discussion of the insights gained through the implementation of the flow restoration accounting framework. Understanding the approach and efficacy of a monitoring framework applied across a large river basin can be informative to emerging flow-restoration and adaptive management efforts in areas of conservation concern.

  20. Determining habitat quality for species that demonstrate dynamic habitat selection

    USGS Publications Warehouse

    Beerens, James M.; Frederick, Peter C; Noonburg, Erik G; Gawlik, Dale E.

    2015-01-01

    Determining habitat quality for wildlife populations requires relating a species' habitat to its survival and reproduction. Within a season, species occurrence and density can be disconnected from measures of habitat quality when resources are highly seasonal, unpredictable over time, and patchy. Here we establish an explicit link among dynamic selection of changing resources, spatio-temporal species distributions, and fitness for predictive abundance and occurrence models that are used for short-term water management and long-term restoration planning. We used the wading bird distribution and evaluation models (WADEM) that estimate (1) daily changes in selection across resource gradients, (2) landscape abundance of flocks and individuals, (3) conspecific foraging aggregation, and (4) resource unit occurrence (at fixed 400 m cells) to quantify habitat quality and its consequences on reproduction for wetland indicator species. We linked maximum annual numbers of nests detected across the study area and nesting success of Great Egrets (Ardea alba), White Ibises (Eudocimus albus), and Wood Storks (Mycteria americana) over a 20-year period to estimated daily dynamics of food resources produced by WADEM over a 7490 km2 area. For all species, increases in predicted species abundance in March and high abundance in April were strongly linked to breeding responses. Great Egret nesting effort and success were higher when birds also showed greater conspecific foraging aggregation. Synthesis and applications: This study provides the first empirical evidence that dynamic habitat selection processes and distributions of wading birds over environmental gradients are linked with reproductive measures over periods of decades. Further, predictor variables at a variety of temporal (daily-multiannual) resolutions and spatial (400 m to regional) scales effectively explained variation in ecological processes that change habitat quality. The process used here allows managers to develop

  1. Joint Ecosystem Modeling (JEM) ecological model documentation volume 2: roseate spoonbill (Platalea ajaja) landscape habitat suitability index v1.0.0

    USGS Publications Warehouse

    Romañach, Stephanie S.; Conzelmann, Craig; Daugherty, Adam; Lorenz, Jerome J.; Hunnicutt, Christina; Mazzotti, Frank J.

    2011-01-01

    Ecological conditions in the Greater Everglades have changed due to human activities, including the construction of canals to divert water away from the core of the landscape. Current and planned restoration projects are designed to produce a natural sheetflow of water across the landscape. This restoration of water flow should provide an increase in freshwater needed to restore natural salinities to the fringing estuarine ecosystem. In this report, we describe a Landscape Habitat Suitability Index model designed to evaluate alternative restoration plans for the benefit of a key species, the roseate spoonbill (Platalea ajaja). Model output has shown to be a good indicator of areas capable of supporting spoonbills. Use of this model will allow examination of the potential response of this key species to water management proposed through the Greater Everglades restoration process.

  2. Examining the Potential for Agricultural Benefits from Pollinator Habitat at Solar Facilities in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCall, James D; Macknick, Jordan E; Walston, Leroy J.

    Of the many roles insects serve for ecosystem function, pollination is possibly the most important service directly linked to human well-being. However, land use changes have contributed to the decline of pollinators and their habitats. In agricultural landscapes that also support renewable energy developments such as utility-scale solar energy [USSE] facilities, opportunities may exist to conserve insect pollinators and locally restore their ecosystem services through the implementation of vegetation management approaches that aim to provide and maintain pollinator habitat at USSE facilities. As a first step toward understanding the potential agricultural benefits of solar-pollinator habitat, we identified areas of overlapmore » between USSE facilities and surrounding pollinator-dependent crop types in the United States (U.S.). Using spatial data on solar energy developments and crop types across the U.S., and assuming a pollinator foraging distance of 1.5 km, we identified over 3,500 km2 of agricultural land near existing and planned USSE facilities that may benefit from increased pollination services through the creation of pollinator habitat at the USSE facilities. The following five pollinator-dependent crop types accounted for over 90% of the agriculture near USSE facilities, and these could benefit most from the creation of pollinator habitat at existing and planned USSE facilities: soybeans, alfalfa, cotton, almonds, and citrus. We discuss how our results may be used to understand potential agro-economic implications of solar-pollinator habitat. Our results show that ecosystem service restoration through the creation of pollinator habitat could improve the sustainability of large-scale renewable energy developments in agricultural landscapes.« less

  3. Phase V of Early Restoration | NOAA Gulf Spill Restoration

    Science.gov Websites

    Phase V Early Restoration Plan and Environmental Assessment. The project will acquire land along Florida million. Phase V Early Restoration Plan and Environmental Assessment (pdf, 10 MB) Draft Phase V Early Restoration Plan and Environmental Assessment (Executive Summary) (2 MB) Phase V Fact Sheet (pdf, 2 MB) Gulf

  4. The role of tidal marsh restoration in fish management in the San Francisco Estuary

    USGS Publications Warehouse

    Herbold, Bruce; Baltz, Donald; Brown, Larry R.; Grossinger, Robin; Kimmerer, Wim J.; Lehman, Peggy W.; Moyle, Peter B.; Nobriga, Matthew L.; Simenstad, Charles A.

    2015-01-01

    Tidal marsh restoration is an important management issue in the San Francisco Estuary (estuary). Restoration of large areas of tidal marsh is ongoing or planned in the lower estuary (up to 6,000 ha, Callaway et al. 2011). Large areas are proposed for restoration in the upper estuary under the Endangered Species Act biological opinions (3,237 ha) and the Bay Delta Conservation Plan (26,305 ha). In the lower estuary, tidal marsh has proven its value to a wide array of species that live within it (Palaima 2012). In the Sacramento–San Joaquin Delta (Delta), one important function ascribed to restoration of freshwater tidal marshes is that they make large contributions to the food web of fish in open waters (BDCP 2013). The Ecosystem Restoration Program ascribed a suite of ecological functions to tidal marsh restoration, including habitat and food web benefits to native fish (CDFW 2010). This background was the basis for a symposium, Tidal Marshes and Native Fishes in the Delta: Will Restoration Make a Difference? held at the University of California, Davis, on June 10, 2013. This paper summarizes conclusions the authors drew from the symposium.

  5. Restoration versus invasive species: Bigheaded carps’ use of a rehabilitated backwater

    USGS Publications Warehouse

    Coulter, Alison A.; Schultz, Douglas; Tristano, Elizabeth; Brey, Marybeth; Garvey, James E.

    2017-01-01

    Knowledge of how invasive species use invaded habitats can aid in developing management practices to exclude them. Swan Lake, a 1100-ha Illinois River (USA) backwater, was rehabilitated to restore ecosystem functions, but may provide valuable habitat for invasive bigheaded carps [bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix)]. Use (residency and passages) of Swan Lake by invasive bigheaded carps was monitored using acoustic telemetry (n = 50 individuals/species) to evaluate the use of a large, restored habitat from 2004 to 2005. Passages (entrances/exits) by bigheaded carps were highest in winter, and residency was highest in the summer. Bighead carp backwater use was associated with the differences in temperature between the main channel and backwater, and passages primarily occurred between 18:00 h and midnight. Silver carp backwater use was positively correlated with water level and main channel discharge, and fewer passages occurred between 12:00 h and 18:00 h than during any other time of day. Harvest occurring during summer or high main channel discharge could reduce backwater abundances while maintenance of low water levels could reduce overall backwater use. Conclusions from this study regarding the timing of bigheaded carps' use of backwater habitats are critical to integrated pest management plans to control invasive species.

  6. A visualization tool to support decision making in environmental and biological planning

    USGS Publications Warehouse

    Romañach, Stephanie S.; McKelvy, James M.; Conzelmann, Craig; Suir, Kevin J.

    2014-01-01

    Large-scale ecosystem management involves consideration of many factors for informed decision making. The EverVIEW Data Viewer is a cross-platform desktop decision support tool to help decision makers compare simulation model outputs from competing plans for restoring Florida's Greater Everglades. The integration of NetCDF metadata conventions into EverVIEW allows end-users from multiple institutions within and beyond the Everglades restoration community to share information and tools. Our development process incorporates continuous interaction with targeted end-users for increased likelihood of adoption. One of EverVIEW's signature features is side-by-side map panels, which can be used to simultaneously compare species or habitat impacts from alternative restoration plans. Other features include examination of potential restoration plan impacts across multiple geographic or tabular displays, and animation through time. As a result of an iterative, standards-driven approach, EverVIEW is relevant to large-scale planning beyond Florida, and is used in multiple biological planning efforts in the United States.

  7. A rehabilitation plan for walleye populations and habitats in Lake Superior

    USGS Publications Warehouse

    Hoff, Michael H.

    2003-01-01

    The walleye (Stizostedion vitreum vitreum) has been historically important in regional fisheries and fish communities in large bays, estuaries, and rivers of Lake Superior. Significant negative impacts on the species caused by overharvesting, habitat degradation, and pollution during the late 1800s and early 1900s have led to the preparation of a strategic rehabilitation plan. The lakewide goal is to maintain, enhance, and rehabilitate habitat for walleye and to establish self-sustaining populations in areas where walleyes historically lived. Population objectives that support the goal are to increase the abundance of juvenile and adult walleyes in selected areas. Habitat objectives that support the goal include increasing spawning and nursery habitat in four areas: enhancing fish passage, reducing sedimentation, increasing water quality, and reducing contaminants in walleyes. Progress toward achieving the habitat objectives should be measured by documenting increases in spawning and nursery habitats, resolving fish-passage issues, reducing sediments in rivers, and reducing contaminant levels in walleyes. Stocking various life stages of walleye should be considered to rehabilitate certain degraded populations. Total annual mortality of walleye populations should be less than 45% to allow populations to either increase or be maintained at target levels of abundance. Routine assessments should focus on gathering the data necessary to evaluate abundance and mortality and on taking inventories of spawning and nursery habitats. Research should be conducted to understand the specific habitat requirements for Lake Superior walleye populations and the habitat-abundance relationships for populations and for the lake as a whole.

  8. Large-scale restoration mitigate land degradation and support the establishment of green infrastructure

    NASA Astrophysics Data System (ADS)

    Tóthmérész, Béla; Mitchley, Jonathan; Jongepierová, Ivana; Baasch, Annett; Fajmon, Karel; Kirmer, Anita; Prach, Karel; Řehounková, Klára; Tischew, Sabine; Twiston-Davies, Grace; Dutoit, Thierry; Buisson, Elise; Jeunatre, Renaud; Valkó, Orsolya; Deák, Balázs; Török, Péter

    2017-04-01

    Sustaining the human well-being and the quality of life, it is essential to develop and support green infrastructure (strategically planned network of natural and semi-natural areas with other environmental features designed and managed to deliver a wide range of ecosystem services). For developing and sustaining green infrastructure the conservation and restoration of biodiversity in natural and traditionally managed habitats is essential. Species-rich landscapes in Europe have been maintained over centuries by various kinds of low-intensity use. Recently, they suffered by losses in extent and diversity due to land degradation by intensification or abandonment. Conservation of landscape-scale biodiversity requires the maintenance of species-rich habitats and the restoration of lost grasslands. We are focusing on landscape-level restoration studies including multiple sites in wide geographical scale (including Czech Republic, France, Germany, Hungary, and UK). In a European-wide perspective we aimed at to address four specific questions: (i) What were the aims and objectives of landscape-scale restoration? (ii) What results have been achieved? (iii) What are the costs of large-scale restoration? (iv) What policy tools are available for the restoration of landscape-scale biodiversity? We conclude that landscape-level restoration offers exciting new opportunities to reconnect long-disrupted ecological processes and to restore landscape connectivity. Generally, these measures enable to enhance the biodiversity at the landscape scale. The development of policy tools to achieve restoration at the landscape scale are essential for the achievement of the ambitious targets of the Convention on Biological Diversity and the European Biodiversity Strategy for ecosystem restoration.

  9. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 3. Site level restoration decisions

    USGS Publications Warehouse

    Pyke, David A.; Chambers, Jeanne C.; Pellant, Mike; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Roundy, Bruce A.; Schupp, Eugene W.; Knick, Steven T.; Brunson, Mark; McIver, James D.

    2017-02-14

    Sagebrush steppe ecosystems in the United States currently (2016) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) depends on large landscapes of intact habitat of sagebrush and perennial grasses for their existence. In addition, other sagebrush-obligate animals have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals, livestock, and wild horses, and to provide ecosystem services for humans now and for future generations.When a decision is made on where restoration treatments should be applied, there are a number of site-specific decisions managers face before selecting the appropriate type of restoration. This site-level decision tool for restoration of sagebrush steppe ecosystems is organized in nine steps.Step 1 describes the process of defining site-level restoration objectives.Step 2 describes the ecological site characteristics of the restoration site. This covers soil chemistry and texture, soil moisture and temperature regimes, and the vegetation communities the site is capable of supporting.Step 3 compares the current vegetation to the plant communities associated with the site State and Transition models.Step 4 takes the manager through the process of current land uses and past disturbances that may influence restoration success.Step 5 is a brief discussion of how weather before and after treatments may impact restoration success.Step 6 addresses restoration treatment types and their potential positive and negative impacts on the ecosystem and on habitats, especially for greater sage

  10. Understanding Existing Salmonid Habitat Availability and Connectivity to Improve River Management

    NASA Astrophysics Data System (ADS)

    Duffin, J.; Yager, E.; Tonina, D.; Benjankar, R. M.

    2017-12-01

    In the Pacific Northwest river restoration is common for salmon conservation. Mangers need methods to help target restoration to problem areas in rivers to create habitat that meets a species' needs. Hydraulic models and habitat suitability curves provide basic information on habitat availability and overall quality, but these analyses need to be expanded to address habitat quality based on the accessibility of habitats required for multiple life stages. Scientists are starting to use connectivity measurements to understand the longitudinal proximity of habitat patches, which can be used to address the habitat variability of a reach. By evaluating the availability and quality of habitat and calculating the connectivity between complementary habitats, such as spawning and rearing habitats, we aim to identify areas that should be targeted for restoration. To meet these goals, we assessed Chinook salmon habitat on the Lemhi River in Idaho. The depth and velocity outputs from a 2D hydraulic model are used in conjunction with locally created habitat suitability curves to evaluate the availability and quality of habitat for multiple Chinook salmon life stages. To assess the variability of the habitat, connectivity between habitat patches necessary for different life stages is calculated with a proximity index. A spatial representation of existing habitat quality and connectivity between complimentary habitats can be linked to river morphology by the evaluation of local geomorphic characteristics, including sinuosity and channel units. The understanding of the current habitat availability for multiple life stage needs, the connectivity between these habitat patches, and their relationship with channel morphology can help managers better identify restoration needs and direct their limited resources.

  11. An analysis of attitudes towards the comprehensive Everglades Restoration Plan using market segmentation

    Treesearch

    Jeffrey J. Bransford; Robert D. Bixler; William E. Hammitt

    2006-01-01

    Manipulation of water systems in south Florida have created hundreds of miles of canals, dams, and other diversions. These efforts significantly altered the region?s hydrology and introduced unanticipated changes into the ecosystem. In 2000, the Comprehensive Everglades Restoration Plan (CERP) was authorized to restore, protect, and preserve these wetlands....

  12. The conservation and restoration of wild bees.

    PubMed

    Winfree, Rachael

    2010-05-01

    Bees pollinate most of the world's wild plant species and provide economically valuable pollination services to crops; yet knowledge of bee conservation biology lags far behind other taxa such as vertebrates and plants. There are few long-term data on bee populations, which makes their conservation status difficult to assess. The best-studied groups are the genus Bombus (the bumble bees), and bees in the EU generally; both of these are clearly declining. However, it is not known to what extent these groups represent the approximately 20,000 species of bees globally. As is the case for insects in general, bees are underrepresented in conservation planning and protection efforts. For example, only two bee species are on the global IUCN Red List, and no bee is listed under the U.S. Endangered Species Act, even though many bee species are known to be in steep decline or possibly extinct. At present, bee restoration occurs mainly in agricultural contexts, funded by government programs such as agri-environment schemes (EU) and the Farm Bill (USA). This is a promising approach given that many bee species can use human-disturbed habitats, and bees provide valuable pollination services to crops. However, agricultural restorations only benefit species that persist in agricultural landscapes, and they are more expensive than preserving natural habitat elsewhere. Furthermore, such restorations benefit bees in only about half of studied cases. More research is greatly needed in many areas of bee conservation, including basic population biology, bee restoration in nonagricultural contexts, and the identification of disturbance-sensitive bee species.

  13. Using Video to Communicate Scientific Findings -- Habitat Connections in Urban Streams

    NASA Astrophysics Data System (ADS)

    Harned, D. A.; Moorman, M.; Fitzpatrick, F. A.; McMahon, G.

    2011-12-01

    The U.S Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) provides information about (1) water-quality conditions and how those conditions vary locally, regionally, and nationally, (2) water-quality trends, and (3) factors that affect those conditions. As part of the NAWQA Program, the Effects of Urbanization on Stream Ecosystems (EUSE) study examined the vulnerability and resilience of streams to urbanization. Completion of the EUSE study has resulted in over 20 scientific publications. Video podcasts are being used in addition to these publications to communicate the relevance of these scientific findings to more general audiences such as resource managers, educational groups, public officials, and the general public. An example of one of the podcasts is a film examining effects of urbanization on stream habitat. "Habitat Connections in Urban Streams" explores how urbanization changes some of the physical features that provide in-stream habitat and examines examples of stream restoration projects designed to improve stream form and function. The "connections" theme is emphasized, including the connection of in-stream habitats from the headwaters to the stream mouth; connections between stream habitat and the surrounding floodplains, wetlands and basin; and connections between streams and people-- resource managers, public officials, scientists, and the general public. Examples of innovative stream restoration projects in Baltimore Maryland; Milwaukee, Wisconsin; and Portland Oregon are shown with interviews of managers, engineers, scientists, and others describing the projects. The film is combined with a website with links to extended film versions of the stream-restoration project interviews. The website and films are an example of USGS efforts aimed at improving science communication to a general audience. The film is available for access from the EUSE website: http://water.usgs.gov/nawqa/urban/html/podcasts.html. Additional films are

  14. An Evaluation of Butterfly Gardens for Restoring Habitat for the Monarch Butterfly (Lepidoptera: Danaidae).

    PubMed

    Cutting, Brian T; Tallamy, Douglas W

    2015-10-01

    The eastern migratory monarch butterfly (Danaus plexippus L.) population in North America hit record low numbers during the 2013-2014 overwintering season, prompting pleas by scientists and conservation groups to plant the butterfly's milkweed host plants (Asclepias spp.) in residential areas. While planting butterfly gardens with host plants seems like an intuitive action, no previous study has directly compared larval survival in gardens and natural areas to demonstrate that gardens are suitable habitats for Lepidoptera. In this study, milkweed was planted in residential gardens and natural areas. In 2009 and 2010, plants were monitored for oviposition by monarch butterflies and survival of monarch eggs and caterpillars. Monarchs oviposited significantly more frequently in gardens than in natural sites, with 2.0 and 6.2 times more eggs per plant per observation in 2009 and 2010, respectively. There were no significant differences in overall subadult survival between gardens and natural areas. Significant differences in survival were measured for egg and larval cohorts when analyzed separately, but these were not consistent between years. These results suggest that planting gardens with suitable larval host plants can be an effective tool for restoring habitat for monarch butterflies. If planted over a large area, garden plantings may be useful as a partial mitigation for dramatic loss of monarch habitat in agricultural settings. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. The Use of Avian Focal Species for Conservation Planning in California

    Treesearch

    Mary K. Chase; Geoffrey R. Geupel

    2005-01-01

    Conservationists often try to facilitate the complex task of protecting biological diversity by choosing a subset of species from a larger community to help them plan their conservation objectives. Biological knowledge about these species then is used to plan reserve systems or to guide habitat restoration and management efforts, with the assumption that the...

  16. Bedload entrainment in low-gradient paraglacial coastal rivers of Maine, U.S.A.: Implications for habitat restoration

    NASA Astrophysics Data System (ADS)

    Snyder, Noah P.; Castele, Michael R.; Wright, Jed R.

    2009-02-01

    The rivers of coastal Maine flow through mainstem lakes and long low-gradient reaches that break the continuum of bedload transport expected in nonparaglacial landscapes. Stream erosion of glacial deposits supplies coarse sediment to these systems. The land use history includes intensive timber harvest and associated dam construction, which may have altered the frequency of substrate-mobilizing events. These watersheds are vital habitat for the last remaining wild anadromous Atlantic salmon in the United States. Future adjustments in channel morphology and habitat quality (via natural stream processes or restoration projects) depend on erosion, transport, and deposition of coarse sediment. These factors motivate our study of competence at four sites in the Sheepscot and Narraguagus watersheds. Three of the four sites behaved roughly similarly, with particle entrainment during intervals that include winter ice and spring flood conditions, and relatively minor bed mobilization during moderate floods in the summer and fall (with a recurrence interval of 2-3 years). The fourth site, on the Sheepscot River mainstem, exhibits more vigorous entrainment of marked particles and more complex three-dimensional channel morphology. This contrast is partially due to local geomorphic conditions that favor high shear stresses (particularly relatively steep gradient), but also likely to nourishment of the bedload saltation system by recruitment from an eroding glacial deposit upstream. Our results suggest that the frequency and magnitude of bedload transport are reach specific, depending on factors including local channel geometry, upstream sediment supply and transport, and formation of anchor ice. This presents a challenge for stream practitioners in this region: different reaches may require contrasting management strategies. Our results underscore the importance of understanding channel processes at a given site and assessing conditions upstream and downstream as a prerequisite

  17. 26 CFR 1.412(c)(1)-3 - Applying the minimum funding requirements to restored plans.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) In general—(1) Restoration method. The restoration method is a funding method that adapts the... spread gain method that maintains an unfunded liability. A plan may adopt any cost method that satisfies...

  18. Umatilla River Subbasin Fish Habitat Improvement Program, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Hilaire, Danny R.

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and,more » more recently, to channel re-design and reconstruction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary of Program activities for the 2004 calendar year (January 1 through December 31, 2004), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance, and (4) Monitoring and Evaluation. This report also summarizes Program Administrative, Interagency Coordination, and Public Education activities.« less

  19. The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe

    2013-01-01

    The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many of the new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides a review of the SHM concept, the advantages it provides, trajectory assessments related to use of a high specific impulse space based propulsion system, advances in mission planning and new mass estimates.

  20. Science Base and Tools for Evaluating Stream Restoration Project Proposals.

    NASA Astrophysics Data System (ADS)

    Cluer, B.; Thorne, C.; Skidmore, P.; Castro, J.; Pess, G.; Beechie, T.; Shea, C.

    2008-12-01

    Stream restoration, stabilization, or enhancement projects typically employ site-specific designs and site- scale habitat improvement projects have become the default solution to many habitat problems and constraints. Such projects are often planned and implemented without thorough consideration of the broader scale problems that may be contributing to habitat degradation, attention to project resiliency to flood events, accounting for possible changes in climate or watershed land use, or ensuring the long term sustainability of the project. To address these issues, NOAA Fisheries and USFWS have collaboratively commissioned research to develop a science document and accompanying tools to support more consistent and comprehensive review of stream management and restoration projects proposals by Service staff responsible for permitting. The science document synthesizes the body of knowledge in fluvial geomorphology and presents it in a way that is accessible to the Services staff biologists, who are not trained experts in this field. Accompanying the science document are two electronic tools: a Project Information Checklist to assist in evaluating whether a proposal includes all the information necessary to allow critical and thorough project evaluation; and a Project Evaluation Tool (in flow chart format) that guides reviewers through the steps necessary to critically evaluate the quality of the information submitted, the goals and objectives of the project, project planning and development, project design, geomorphic-habitat-species relevance, and risks to listed species. Materials for training Services staff and others in the efficient use of the science document and tools have also been developed. The longer term goals of this effort include: enabling consistent and comprehensive reviews that are completed in a timely fashion by regulators; facilitating improved project planning and design by proponents; encouraging projects that are attuned to their watershed

  1. The Influence of Angler Values, Involvement, Catch Orientation, Satisfaction, Agency Trust, and Demographics on Support for Habitat Protection and Restoration Versus Stocking in Publicly Managed Waters.

    PubMed

    Schroeder, Susan A; Fulton, David C; Altena, Eric; Baird, Heather; Dieterman, Douglas; Jennings, Martin

    2018-05-23

    Resource managers benefit from knowledge of angler support for fisheries management strategies. Factors including angler values (protection, utilitarian, and dominance), involvement (attraction, centrality, social, identity affirmation, and expression), catch-related motivations (catching some, many, and big fish, and keeping fish), satisfaction, agency trust, and demographics may relate to fisheries management preferences. Using results from a mail survey of Minnesota resident anglers, we explored how these factors were related to budget support for fish stocking relative to habitat protection/restoration. Results suggest that values, angler involvement, catch orientation, satisfaction, total and recent years fishing, age, and education influence relative support for stocking versus habitat protection/restoration. Utilitarian values, angling centrality, an orientation to catch many fish, satisfaction with the number of fish caught, number of recent years fishing, and age positively related to support for stocking over habitat management, while protection values, attraction to angling, total years fishing, and education level were negatively related to relative support for stocking.

  2. Implementation Plan. Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    In accordance with the Department of Energy`s National Environmental Policy Act implementing procedures in Volume 10 of the Code of Federal Regulations, Section 1021,312, the Environmental Restoration and Waste Management Programmatic Environmental Impact Statement Implementation Plan has two primary purposes: to provide guidance for the preparation of the Programmatic Environmental Impact Statement and to record the issues resulting from the scoping and the extended public participation process. The Implementation Plan identifies and discusses the following: background of Environmental Restoration and Waste Management activities, the purpose of the Programmatic Environmental Impact Statement, and the relationship of the Programmatic Environmental Impact Statementmore » to other Departmental initiatives (Chapter 1); need and purposes for action (Chapter 2); scoping process and results of the public participation program in defining the scope of the Programmatic Environmental Impact Statement, including a summary of the comments received and their disposition (Chapter 3); planned scope and content of the Programmatic Environmental Impact Statement (Chapter 4); consultations with other agencies and the role of cooperating agencies (Chapter 5); planned schedule of major Programmatic Environmental Impact Statement milestones (Chapter 6); and responsibilities for preparation of the Programmatic Environmental Impact Statement (Chapter 7).« less

  3. Clear Creek Watershed Flood Risk Management Habitat Assessments Using Habitat Evaluation Procedures (HEP): Analyses, Results and Documentation

    DTIC Science & Technology

    2013-07-01

    endangered species and their associated habitats as an important goal of ecosystem restoration and management. There is no doubt the determination of...accounting process developed to appraise habitat suitability for fish and wildlife species in response to potential change (USFWS 1980a-c). HEP is an... habitat to a species is likely to exhibit strong thresholds below which the habitat is usually unsuitable and above which further changes in habitat

  4. 78 FR 66058 - Habitat Conservation Plan for South Sacramento County, California

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Connector Joint Powers Authority, the Sacramento Regional County Sanitation District, the Sacramento County Water Agency, and a South Sacramento Habitat Conservation Plan Joint Powers Authority) for activities... listed fish or wildlife is defined under the Act as to harass, harm, pursue, hunt, shoot, wound, kill...

  5. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunitiesmore » for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream and 22

  6. Spatial variability of Chinook salmon spawning distribution and habitat preferences

    USGS Publications Warehouse

    Cram, Jeremy M.; Torgersen, Christian E.; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.

    2017-01-01

    We investigated physical habitat conditions associated with the spawning sites of Chinook Salmon Oncorhynchus tshawytscha and the interannual consistency of spawning distribution across multiple spatial scales using a combination of spatially continuous and discrete sampling methods. We conducted a census of aquatic habitat in 76 km of the upper main-stem Yakima River in Washington and evaluated spawning site distribution using redd survey data from 2004 to 2008. Interannual reoccupation of spawning areas was high, ranging from an average Pearson’s correlation of 0.62 to 0.98 in channel subunits and 10-km reaches, respectively. Annual variance in the interannual correlation of spawning distribution was highest in channel units and subunits, but it was low at reach scales. In 13 of 15 models developed for individual years (2004–2008) and reach lengths (800 m, 3 km, 6 km), stream power and depth were the primary predictors of redd abundance. Multiple channels and overhead cover were patchy but were important secondary and tertiary predictors of reach-scale spawning site selection. Within channel units and subunits, pool tails and thermal variability, which may be associated with hyporheic exchange, were important predictors of spawning. We identified spawning habitat preferences within reaches and channel units that are relevant for salmonid habitat restoration planning. We also identified a threshold (i.e., 2-km reaches) beyond which interannual spawning distribution was markedly consistent, which may be informative for prioritizing habitat restoration or conservation. Management actions may be improved through enhanced understanding of spawning habitat preferences and the consistency with which Chinook Salmon reoccupy spawning areas at different spatial scales.

  7. Using SaudiVeg Ecoinformatics in assessment, monitoring and proposing environmental restoration tools in central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Sheikh, Mohamed; Hennekens, Stephan; Alfarhan, Ahmed; Thomas, Jacob; Schaminee, Joop; El-Keblawy, Ali

    2017-04-01

    Successful restoration of degraded habitats requires information about the history and factors led to the deterioration of these habitats. This study analyzed SaudiVeg Ecoinformatics, which is a big phytosociological database about plant communities and other environmental factors affecting them in the Najd-Central Region of Saudi Arabia. A phytosociological survey with more than 3000 vegetation relevés was conducted during 2013. The data were used to correlate the plant community attributes, such as abundance and species diversity in natural and ruderal habitats with environmental factors, such as human impacts, soil physical and chemical properties, and land uses. The data were subjected to multivariate analyses using programs, such as TWINSPAN, DCA and CCA, via Juice package. Fourteen vegetation associations were described under provisional classification of the Central Saudi Arabia deserts. These associations were broadly grouped into desert vegetation types. One alliance group, Haloxylonion salicornici, is the most widespread and contains four associations on the wadis and desert plains. Three associations are dominant on the depression habitats (raudhas) and two associations of Tamarixidetum spp. on the wetland and salt pan habitats. Four associations inhabit the man-made habitat and abandoned field habitats and one association, the Neurado procumbentis-Heliotropietum digyni, dominates the overgrazed sandy dunes. As human impact is huge and increasing, the vegetation ecoinformatics of the present study would form a baseline description that could be used as a vital tool for future monitoring and for proposing environmental restoration processes in central Saudi Arabia. It could also help both Governmental and Non-governmental organizations (NGO) in formulating strategies and on-ground plans for protection, management and restoration of the natural vegetation.

  8. Louisiana's 2017 Master Plan for a Sustainable Coast

    NASA Astrophysics Data System (ADS)

    Haase, B.

    2017-12-01

    The Coastal Protection and Restoration Authority is charged with coordinating restoration and protection investments through the development and implementation of Louisiana's Comprehensive Master Plan for a Sustainable Coast. The first master plan was submitted to the Louisiana Legislature in 2007 and is mandated to be updated every five years. The plan's objectives are to reduce economic losses from flooding, promote sustainability by harnessing natural processes, provide habitats for commercial and recreational activities, sustain cultural heritage and promote a viable working coast. Two goals drive decision making about the appropriate suite of restoration and protection projects to include in the Plan: restore and maintain Louisiana's wetlands and provide flood protection for coastal Louisiana's citizens. As part of the decision making process, a wide range of additional metrics are used to evaluate the complex, competing needs of communities, industries, navigation and fisheries. The master plan decision making process includes the identification of individual protection and restoration projects that are evaluated with landscape, storm surge, and risk assessment models and then ranked by how well they perform over time across the set of decision drivers and metrics. High performing projects are assembled into alternatives constrained by available funding and river resources. The planning process is grounded not only on extensive scientific analysis but also on interdisciplinary collaboration between scientists, engineers, planners, community advocates, and coastal stakeholders which creates the long-term dialogue needed for complex environmental planning decisions. It is through this collaboration that recommended alternatives are reviewed and modified to develop the final Plan. Keywords:alternative formulation, comprehensive planning, ecosystem restoration, flood risk reduction and stakeholder engagement

  9. PROFILE: Integrated Management to Create New Breeding Habitat for Dalmatian Pelicans (Pelecanus crispus) in Greece

    PubMed

    Pyrovetsi

    1997-09-01

    / An integrated management plan to create favorable nesting habitat for the world-endangered Dalmatian pelicans, was tested at Kerkini irrigation reservoir, a Ramsar wetland. The lake is the major wintering site of Dalmatian pelicans in Europe, where the species lives year-round without breeding. The rise of water level at the reservoir during spring (exceeding 5 m) has an impact on the whole system, including several birds, which lose their nesting habitat. Although the integrity of the wetland demands ecological restoration with changes in its hydrologic regime, local socioeconomic conditions allow only habitat level interventions. During the planning phase of the management plan, both the ecological and social context of the interventions were considered. Monitoring of all pelican habitats and populations provided the scientific basis, while a socioecological survey on knowledge/attitudes of local fishermen toward wetland identified conflicts with specific resources and planned management. To gain public support, a broad information/education program was implemented. The education program for fishermen was based on the findings of the socioecological survey. The in situ management involved experimental construction of floating rafts, platforms over water, dredged-spoil islands, and platforms at various sites of the wetland. Monitoring of the managed habitats showed that most waterbirds used them for resting and roosting. Common terns nested on the rafts, cormorants on the platforms, and Dalmatian pelicans on the man-made island. Under the prevailing hydrologic and weather conditions, islands seem to be the most suitable habitat for pelican nesting. It is concluded that wildlife habitat management should integrate the ecological component, related to the needs of the species and ecosystem, with the social one, expressed by cooperation and involvement of the local community.KEY WORDS: Integrated management; Pelican; Nesting habitat; Habitat management; Reservoir

  10. Community wildfire protection planning: is the Healthy Forests Restoration Act's vagueness genius?

    Treesearch

    Pamela J. Jakes; Kristen C. Nelson; Sherry A. Enzler; Sam Burns; Antony S. Cheng; Victoria Sturtevant; Daniel R. Williams; Alexander Bujak; Rachel F. Brummel; Stephanie Grayzeck-Souter; Emily Staychock

    2011-01-01

    The Healthy Forests Restoration Act of 2003 (HFRA) encourages communities to develop community wildfire protection plans (CWPPs) to reduce their wildland fire risk and promote healthier forested ecosystems. Communities who have developed CWPPs have done so using many different processes, resulting in plans with varied form and content. We analysed data from 13 case-...

  11. The precision problem in conservation and restoration

    USGS Publications Warehouse

    Hiers, J. Kevin; Jackson, Stephen T.; Hobbs, Richard J.; Bernhardt, Emily S.; Valentine, Leonie E.

    2016-01-01

    Within the varied contexts of environmental policy, conservation of imperilled species populations, and restoration of damaged habitats, an emphasis on idealized optimal conditions has led to increasingly specific targets for management. Overly-precise conservation targets can reduce habitat variability at multiple scales, with unintended consequences for future ecological resilience. We describe this dilemma in the context of endangered species management, stream restoration, and climate-change adaptation. Inappropriate application of conservation targets can be expensive, with marginal conservation benefit. Reduced habitat variability can limit options for managers trying to balance competing objectives with limited resources. Conservation policies should embrace habitat variability, expand decision-space appropriately, and support adaptation to local circumstances to increase ecological resilience in a rapidly changing world.

  12. 76 FR 35408 - Essential Fish Habitat (EFH) Components of Fishery Management Plans (Northeast Multispecies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Fish Habitat (EFH) Components of Fishery Management Plans (Northeast Multispecies, Atlantic Sea Scallop...). SUMMARY: The New England Fishery Management Council (Council) is in the process of preparing a programmatic EIS for an Omnibus EFH Amendment to the fishery management plans (FMPs) for Northeast (NE...

  13. Using Regional Climate Projections to Guide Grassland Community Restoration in the Face of Climate Change

    PubMed Central

    Kane, Kristin; Debinski, Diane M.; Anderson, Chris; Scasta, John D.; Engle, David M.; Miller, James R.

    2017-01-01

    Grassland loss has been extensive worldwide, endangering the associated biodiversity and human well-being that are both dependent on these ecosystems. Ecologists have developed approaches to restore grassland communities and many have been successful, particularly where soils are rich, precipitation is abundant, and seeds of native plant species can be obtained. However, climate change adds a new filter needed in planning grassland restoration efforts. Potential responses of species to future climate conditions must also be considered in planning for long-term resilience. We demonstrate this methodology using a site-specific model and a maximum entropy approach to predict changes in habitat suitability for 33 grassland plant species in the tallgrass prairie region of the U.S. using the Intergovernmental Panel on Climate Change scenarios A1B and A2. The A1B scenario predicts an increase in temperature from 1.4 to 6.4°C, whereas the A2 scenario predicts temperature increases from 2 to 5.4°C and much greater CO2 emissions than the A1B scenario. Both scenarios predict these changes to occur by the year 2100. Model projections for 2040 under the A1B scenario predict that all but three modeled species will lose ~90% of their suitable habitat. Then by 2080, all species except for one will lose ~90% of their suitable habitat. Models run using the A2 scenario predict declines in habitat for just four species by 2040, but models predict that by 2080, habitat suitability will decline for all species. The A2 scenario appears based on our results to be the less severe climate change scenario for our species. Our results demonstrate that many common species, including grasses, forbs, and shrubs, are sensitive to climate change. Thus, grassland restoration alternatives should be evaluated based upon the long-term viability in the context of climate change projections and risk of plant species loss. PMID:28536591

  14. A disturbance-based ecosystem approach to maintaining and restoring freshwater habitats of evolutionarily significant units of anadromous salmonids in the Pacific Northwest.

    Treesearch

    G.H. Reeves; L.E. Benda; K.M. Burnett; P.A. Bisson; J.R. Sedell

    1995-01-01

    To preserve and recover evolutionarily significant units (ESUs) of anadromous salmonids Oncorhynchus spp. in the Pacific Northwest, long-term and short-term ecological processes that create and maintain freshwater habitats must be restored and protected. Aquatic ecosystems through- out the region are dynamic in space and time, and lack of...

  15. 77 FR 14347 - Proposed Information Collection; Comment Request; NOAA Restoration Center Performance Progress...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... Collection; Comment Request; NOAA Restoration Center Performance Progress Report AGENCY: National Oceanic and... is for an extension of a currently approved information collection. NOAA funds habitat restoration projects including grass-roots, community-based habitat restoration; debris prevention and removal; removal...

  16. Extended abstracts from the Coastal Habitats in Puget Sound (CHIPS) 2006 Workshop

    USGS Publications Warehouse

    Gelfenbaum, Guy R.; Fuentes, Tracy L.; Duda, Jeffrey J.; Grossman, Eric E.; Takesue, Renee K.

    2010-01-01

    Puget Sound is the second largest estuary in the United States. Its unique geology, climate, and nutrient-rich waters produce and sustain biologically productive coastal habitats. These same natural characteristics also contribute to a high quality of life that has led to a significant growth in human population and associated development. This population growth, and the accompanying rural and urban development, has played a role in degrading Puget Sound ecosystems, including declines in fish and wildlife populations, water-quality issues, and loss and degradation of coastal habitats.In response to these ecosystem declines and the potential for strategic large-scale preservation and restoration, a coalition of local, State, and Federal agencies, including the private sector, Tribes, and local universities, initiated the Puget Sound Nearshore Ecosystem Restoration Project (PSNERP). The Nearshore Science Team (NST) of PSNERP, along with the U.S. Geological Survey, developed a Science Strategy and Research Plan (Gelfenbaum and others, 2006) to help guide science activities associated with nearshore ecosystem restoration. Implementation of the Research Plan includes a call for State and Federal agencies to direct scientific studies to support PSNERP information needs. In addition, the overall Science Strategy promotes greater communication with decision makers and dissemination of scientific results to the broader scientific community.On November 14–16, 2006, the U.S. Geological Survey sponsored an interdisciplinary Coastal Habitats in Puget Sound (CHIPS) Research Workshop at Fort Worden State Park, Port Townsend, Washington. The main goals of the workshop were to coordinate, integrate, and link research on the nearshore of Puget Sound. Presented research focused on three themes: (1) restoration of large river deltas; (2) recovery of the nearshore ecosystem of the Elwha River; and (3) effects of urbanization on nearshore ecosystems. The more than 35 presentations

  17. Comparing the plant diversity between artificial forest and nature growth forest in a giant panda habitat.

    PubMed

    Kang, Dongwei; Wang, Xiaorong; Li, Shuang; Li, Junqing

    2017-06-15

    Artificial restoration is an important way to restore forests, but little is known about its effect on the habitat restoration of the giant panda. In the present study, we investigated the characteristics of artificial forest in the Wanglang Nature Reserve to determine whether through succession it has formed a suitable habitat for the giant panda. We compared artificial forest characteristics with those of natural habitat used by the giant panda. We found that the dominant tree species in artificial forest differed from those in the natural habitat. The artificial forest had lower plant species richness and diversity in the tree and shrub layers than did the latter, and its community structure was characterized by smaller tree and bamboo sizes, and fewer and lower bamboo clumps, but more trees and larger shrub sizes. The typical community collocation of artificial forest was a "Picea asperata + no-bamboo" model, which differs starkly from the giant panda's natural habitat. After several years of restoration, the artificial forest has failed to become a suitable habitat for the giant panda. Therefore, a simple way of planting individual trees cannot restore giant panda habitat; instead, habitat restoration should be based on the habitat requirements of the giant panda.

  18. Ecosystems, ecological restoration, and economics: does habitat or resource equivalency analysis mean other economic valuation methods are not needed?

    PubMed

    Shaw, W Douglass; Wlodarz, Marta

    2013-09-01

    Coastal and other area resources such as tidal wetlands, seagrasses, coral reefs, wetlands, and other ecosystems are often harmed by environmental damage that might be inflicted by human actions, or could occur from natural hazards such as hurricanes. Society may wish to restore resources to offset the harm, or receive compensation if this is not possible, but faces difficult choices among potential compensation projects. The optimal amount of restoration efforts can be determined by non-market valuation methods, service-to-service, or resource-to-resource approaches such as habitat equivalency analysis (HEA). HEA scales injured resources and lost services on a one-to-one trade-off basis. Here, we present the main differences between the HEA approach and other non-market valuation approaches. Particular focus is on the role of the social discount rate, which appears in the HEA equation and underlies calculations of the present value of future damages. We argue that while HEA involves elements of economic analysis, the assumption of a one-to-one trade-off between lost and restored services sometimes does not hold, and then other non-market economic valuation approaches may help in restoration scaling or in damage determination.

  19. Habitat risk assessment for regional ocean planning in the U.S. Northeast and Mid-Atlantic.

    PubMed

    Wyatt, Katherine H; Griffin, Robert; Guerry, Anne D; Ruckelshaus, Mary; Fogarty, Michael; Arkema, Katie K

    2017-01-01

    Coastal habitats provide important benefits to people, including habitat for species targeted by fisheries and opportunities for tourism and recreation. Yet, such human activities also can imperil these habitats and undermine the ecosystem services they provide to people. Cumulative risk assessment provides an analytical framework for synthesizing the influence of multiple stressors across habitats and decision-support for balancing human uses and ecosystem health. To explore cumulative risk to habitats in the U.S. Northeast and Mid-Atlantic Ocean Planning regions, we apply the open-source InVEST Habitat Risk Assessment model to 13 habitats and 31 stressors in an exposure-consequence framework. In doing so, we advance the science priorities of EBM and both regional planning bodies by synthesizing the wealth of available data to improve our understanding of human uses and how they affect marine resources. We find that risk to ecosystems is greatest first, along the coast, where a large number of stressors occur in close proximity and secondly, along the continental shelf, where fewer, higher consequence activities occur. Habitats at greatest risk include soft and hard-bottom nearshore areas, tidal flats, soft-bottom shelf habitat, and rocky intertidal zones-with the degree of risk varying spatially. Across all habitats, our results indicate that rising sea surface temperatures, commercial fishing, and shipping consistently and disproportionally contribute to risk. Further, our findings suggest that management in the nearshore will require simultaneously addressing the temporal and spatial overlap as well as intensity of multiple human activities and that management in the offshore requires more targeted efforts to reduce exposure from specific threats. We offer a transparent, generalizable approach to evaluating cumulative risk to multiple habitats and illustrate the spatially heterogeneous nature of impacts along the eastern Atlantic coast and the importance of

  20. Habitat risk assessment for regional ocean planning in the U.S. Northeast and Mid-Atlantic

    PubMed Central

    Guerry, Anne D.; Ruckelshaus, Mary; Fogarty, Michael; Arkema, Katie K.

    2017-01-01

    Coastal habitats provide important benefits to people, including habitat for species targeted by fisheries and opportunities for tourism and recreation. Yet, such human activities also can imperil these habitats and undermine the ecosystem services they provide to people. Cumulative risk assessment provides an analytical framework for synthesizing the influence of multiple stressors across habitats and decision-support for balancing human uses and ecosystem health. To explore cumulative risk to habitats in the U.S. Northeast and Mid-Atlantic Ocean Planning regions, we apply the open-source InVEST Habitat Risk Assessment model to 13 habitats and 31 stressors in an exposure-consequence framework. In doing so, we advance the science priorities of EBM and both regional planning bodies by synthesizing the wealth of available data to improve our understanding of human uses and how they affect marine resources. We find that risk to ecosystems is greatest first, along the coast, where a large number of stressors occur in close proximity and secondly, along the continental shelf, where fewer, higher consequence activities occur. Habitats at greatest risk include soft and hard-bottom nearshore areas, tidal flats, soft-bottom shelf habitat, and rocky intertidal zones—with the degree of risk varying spatially. Across all habitats, our results indicate that rising sea surface temperatures, commercial fishing, and shipping consistently and disproportionally contribute to risk. Further, our findings suggest that management in the nearshore will require simultaneously addressing the temporal and spatial overlap as well as intensity of multiple human activities and that management in the offshore requires more targeted efforts to reduce exposure from specific threats. We offer a transparent, generalizable approach to evaluating cumulative risk to multiple habitats and illustrate the spatially heterogeneous nature of impacts along the eastern Atlantic coast and the importance of

  1. Sandy River Delta Habitat Restoration Project, Annual Report 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Virginia; Dobson, Robin L.

    The Sandy River Delta is located at the confluence of the Sandy and Columbia Rivers, just east of Troutdale, Oregon. It comprises about 1,400 land acres north of Interstate 84, managed by the USDA Forest Service, and associated river banks managed by the Oregon Division of State Lands. Three islands, Gary, Flag and Catham, managed by Metro Greenspaces and the State of Oregon lie to the east, the Columbia River lies to the north and east, and the urbanized Portland metropolitan area lies to the west across the Sandy River. Sandy River Delta was historically a wooded, riparian wetland withmore » components of ponds, sloughs, bottomland woodland, oak woodland, prairie, and low and high elevation floodplain. It has been greatly altered by past agricultural practices and the Columbia River hydropower system. Restoration of historic landscape components is a primary goal for this land. The Forest Service is currently focusing on restoration of riparian forest and wetlands. Restoration of open upland areas (meadow/prairie) would follow substantial completion of the riparian and wetland restoration. The Sandy River Delta is a former pasture infested with reed canary grass, blackberry and thistle. The limited over story is native riparian species such as cottonwood and ash. The shrub and herbaceous layers are almost entirely non-native, invasive species. Native species have a difficult time naturally regenerating in the thick, competing reed canary grass, Himalayan blackberry and thistle. A system of drainage ditches installed by past owners drains water from historic wetlands. The original channel of the Sandy River was diked in the 1930's, and the river diverted into the ''Little Sandy River''. The original Sandy River channel has subsequently filled in and largely become a slough. The FS acquired approximately 1,400 acres Sandy River Delta (SRD) in 1991 from Reynolds Aluminum (via the Trust for Public Lands). The Delta had been grazed for many years but shortly after

  2. Schoolyard Habitat Project Guide.

    ERIC Educational Resources Information Center

    Mason, Rich

    This project aims to provide basic steps for students to restore and create wildlife habitats on school grounds. Four chapters are included in this guide, and each chapter is divided into teacher and student sections. Chapter 1 provides necessary information for starting a habitat project. Chapters 2, 3, and 4 discuss the details for the Forest…

  3. Butterfly responses to prairie restoration through fire and grazing

    USGS Publications Warehouse

    Vogel, Jennifer A.; Debinski, Diane M.; Koford, Rolf R.; Miller, J.R.

    2007-01-01

    The development of land for modern agriculture has resulted in losses of native prairie habitat. The small, isolated patches of prairie habitat that remain are threatened by fire suppression, overgrazing, and invasion by non-native species. We evaluated the effects of three restoration practices (grazing only, burning only, and burning and grazing) on the vegetation characteristics and butterfly communities of remnant prairies. Total butterfly abundance was highest on prairies that were managed with burning and grazing and lowest on those that were only burned. Butterfly species richness did not differ among any of the restoration practices. Butterfly species diversity was highest on sites that were only burned. Responses of individual butterfly species to restoration practices were highly variable. In the best predictive regression model, total butterfly abundance was negatively associated with the percent cover of bare ground and positively associated with the percent cover of forbs. Canonical correspondence analysis revealed that sites with burned only and grazed only practices could be separated based on their butterfly community composition. Butterfly communities in each of the three restoration practices are equally species rich but different practices yield compositionally different butterfly communities. Because of this variation in butterfly species responses to different restoration practices, there is no single practice that will benefit all species or even all species within habitat-specialist or habitat-generalist habitat guilds. ?? 2007 Elsevier Ltd. All rights reserved.

  4. POWER TO DETECT REGIONAL TRENDS IN HABITAT CHARACTERISTICS

    EPA Science Inventory

    The condition of stream habitat draws considerable attention concerning the protection and recovery of salmonid populations in the West. Habitat degradation continues and substantial sums of money are spent on habitat restoration. However, aided by uncertainty concerning the ad...

  5. POWER TO DETECT REGIONAL TRENDS IN PHYSICAL HABITAT

    EPA Science Inventory

    The condition of stream habitat draws considerable attention concerning the protection and recovery of salmonid populations in the West. Habitat degradation continues and substantial sums of money are spent on habitat restoration. However, aided by uncertainty concerning the ad...

  6. Relative importance of social factors, conspecific density, and forest structure on space use by the endangered Red-cockaded Woodpecker: A new consideration for habitat restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garabedian, James E.; Moorman, Christopher E.; Peterson, M. Nils

    Understanding how the interplay between social behaviors and habitat structure influences space use is important for conservation of birds in restored habitat. We integrated fine-grained LiDAR-derived habitat data, spatial distribution of cavity trees, and spatially explicit behavioral observations in a multi-scale model to determine the relative importance of conspecific density, intraspecific interactions, and the distribution of cavities on space use by Red-cockaded Woodpeckers (Picoides borealis) on 2 sites in South Carolina, USA. We evaluated candidate models using information theoretic methods. Top scale-specific models included effects of conspecific density and number of cavity tree starts within 200 m of Red-cockaded Woodpeckermore » foraging locations, and effects of the number of intraspecific interactions within 400 m of Red-cockaded Woodpecker foraging locations. The top multi-scale model for 22 of 34 Red-cockaded Woodpecker groups included covariates for the number of groups within 200 m of foraging locations and LiDARderived habitat with moderate densities of large pines (Pinus spp.) and minimal hardwood overstory. These results indicate distribution of neighboring groups was the most important predictor of space use once a minimal set of structural habitat thresholds was reached, and that placing recruitment clusters as little as 400 m from foraging partitions of neighboring groups may promote establishment of new breeding groups in unoccupied habitat. The presence of neighboring groups likely provides cues to foraging Red-cockaded Woodpeckers that facilitate prospecting prior to juvenile dispersal and, to a lesser extent, indicates high-quality forage resources. Careful consideration of local distribution of neighboring groups in potential habitat may improve managers’ ability to increase Red-cockaded Woodpecker density on restored landscapes and mitigate isolation of Red-cockaded Woodpecker groups, a problem that negatively affects fitness

  7. Projecting the success of plant restoration with population viability analysis

    USGS Publications Warehouse

    Bell, T.J.; Bowles, M.L.; McEachern, A.K.; Brigham, C.A.; Schwartz, M.W.

    2003-01-01

    Conserving viable populations of plant species requires that they have high probabilities of long-term persistence within natural habitats, such as a chance of extinction in 100 years of less than 5% (Menges 1991, 1998; Brown 1994; Pavlik 1994; Chap. 1, this Vol.). For endangered and threatened species that have been severely reduces in range and whose habitats have been fragmented, important species conservation strategies may include augmenting existing populations or restoring new viable populations (Bowles and Whelan 1994; Chap. 2, this Vol.). Restoration objectives may include increasing population numbers to reduce extinction probability, deterministic manipulations to develop a staged cohort structure, or more complex restoration of a desired genetic structure to allow outcrossing or increase effective population size (DeMauro 1993, 1994; Bowles et al. 1993, 1998; Pavlik 1994; Knapp and Dyer 1998; Chap. 2, this Vol.). These efforts may require translocation of propagules from existing (in situ) populations, or from ex situ botanic gardens or seed storage facilities (Falk et al. 1996; Guerrant and Pavlik 1998; Chap. 2, this Vol.). Population viability analysis (PVA) can provide a critical foundation for plant restoration, as it models demographic projections used to evaluate the probability of population persistence and links plant life history with restoration strategies. It is unknown how well artificially created populations will meet demographic modeling requirements (e.g., due to artificial cohort transitions) and few, if any, PVAs have been applied to restorations. To guide application of PVA to restored populations and to illustrate potential difficulties, we examine effects of planting different life stages, model initial population sizes needed to achieve population viability, and compare demographic characteristics between natural and restored populations. We develop and compare plant population restoration viability analysis (PRVA) case studies of

  8. What is forest restoration?

    Treesearch

    John A. Stanturf

    2005-01-01

    The need to repair habitat and restore forest structure and funciton is recognized throughout the temperate and boreal zones as a component of sustainable forest management (Krishnaswamy and Hanson 1999; Dobson et al. 1997). Forest restoration is a complex task, complicated by diverse ecological and social conditions, that challenges our understanding of forest...

  9. Estuarine science and decision-support tools to restore Puget Sound delta and estuarine ecosystems: The Skagit River Delta

    NASA Astrophysics Data System (ADS)

    Grossman, E. E.; Rosenbauer, R. J.; Takesue, R. K.; Gelfenbaum, G.; Reisenbichler, R.; Paulson, A.; Sexton, N. R.; Labiosa, B.; Beamer, E. M.; Hood, G.; Wyllie-Echeverria, S.

    2006-12-01

    Historic land use, ongoing resource extraction, and population expansion throughout Puget Sound have scientists and managers rapidly seeking effective restoration strategies to recover salmon (a cultural icon, as well as, a host of other endangered species and threatened habitats. Of principal concern is the reduction of salmon (Oncorhynchus spp.) and diminished carrying capacity of critical habitat in deltaic regions. Delta habitats, essential to salmon survival, have lost 70 to 80 % area since ~1850 and are now adjusting to a new suite of environmental changes associated with land use practices, including wetland restoration, and regional climate change. The USGS Coastal Habitats in Puget Sound Project, in collaboration with partners from the Skagit River System Cooperative, University of Washington, and other federal, state, and local agencies, is integrating geologic, biologic, hydrologic, and socioeconomic information to quantify changes in the distribution and function of deltaic-estuarine nearshore habitats and better predict "possible futures". We are combining detailed geologic and geochemical analyses of sedimentary environments, plant biomarkers (n-alkanes, PAHs, fatty-acids, and sterols), and compound-specific isotopes to estimate historic habitat coverage, eelgrass (Zostera marina) abundance and modern characteristics of nutrient cycling. Hydrologic and sediment transport processes are being measured to characterize physical processes shaping modern habitats including sediment transport and freshwater mixing that control the temporal and spatial pattern of substrate and water column conditions available as habitat. We are using geophysical, remote sensing, and modeling techniques to determine large-scale coastal morphologic and land-use change and characterize how alteration of physical, hydrologic, and biogeochemical processes influence the dynamics of freshwater mixing, and sediment and nutrient transport in the nearshore. To assist restoration

  10. Making habitat connectivity a reality.

    PubMed

    Keeley, Annika T H; Basson, Galli; Cameron, D Richard; Heller, Nicole E; Huber, Patrick R; Schloss, Carrie A; Thorne, James H; Merenlender, Adina M

    2018-06-19

    For over 40 years, habitat corridors have been a solution for sustaining wildlife in fragmented landscapes, and now are often suggested as a climate adaptation strategy. However, while a plethora of connectivity plans exist, protecting and restoring habitat connectivity through on-the-ground action has been slow. We identified implementation challenges and opportunities through a literature review of project implementation, a science-practice workshop, and interviews with conservation professionals. Our research indicates that connectivity challenges and solutions tend to be context-specific, dependent on land ownership patterns, socioeconomic factors, and the policy framework. We found evidence that developing and promoting a common vision shared by a diverse set of stakeholders including nontraditional conservation actors, such as water districts and recreation departments, and through communication among and between partners and the public is key to successful implementation. Other factors that lead to successful implementation include undertaking empirical studies to prioritize and validate corridors and the identification of related co-benefits of corridor projects. Engaging partners involved in land management and planning, such as non-governmental conservation organizations, public agencies, and private landowners is critical to effective strategy implementation. A clear regulatory framework including unambiguous connectivity conservation mandates would increase public resource allocation, and incentive programs are needed to promote private sector engagement. We argue that connectivity conservation must more rapidly move from planning to implementation and provide an evidence-based solution made up of key elements for successful on-the-ground connectivity implementation. The components of this new framework constitute the social processes necessary to advance habitat connectivity for biodiversity conservation and resilient landscapes under climate change

  11. Phase III Early Restoration Meeting | NOAA Gulf Spill Restoration

    Science.gov Websites

    Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News Publications Press Releases Story programmatic approach to early restoration planning for Phase III and future early restoration plans. Open

  12. Freshwater ecosystems and resilience of Pacific salmon: Habitat Management based on natural variability

    USGS Publications Warehouse

    Bisson, P.A.; Dunham, J.B.; Reeves, G.H.

    2009-01-01

    In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability. ?? 2009 by the author(s).

  13. The Precision Problem in Conservation and Restoration.

    PubMed

    Hiers, J Kevin; Jackson, Stephen T; Hobbs, Richard J; Bernhardt, Emily S; Valentine, Leonie E

    2016-11-01

    Within the varied contexts of environmental policy, conservation of imperilled species populations, and restoration of damaged habitats, an emphasis on idealized optimal conditions has led to increasingly specific targets for management. Overly-precise conservation targets can reduce habitat variability at multiple scales, with unintended consequences for future ecological resilience. We describe this dilemma in the context of endangered species management, stream restoration, and climate-change adaptation. Inappropriate application of conservation targets can be expensive, with marginal conservation benefit. Reduced habitat variability can limit options for managers trying to balance competing objectives with limited resources. Conservation policies should embrace habitat variability, expand decision-space appropriately, and support adaptation to local circumstances to increase ecological resilience in a rapidly changing world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Prioritizing Restoration in the Hangman Creek Watershed: Predicting Baseflow through Sub-basin Modeling

    NASA Astrophysics Data System (ADS)

    Navickis-Brasch, A. S.; Fiedler, F. R.

    2013-12-01

    Land use changes since European settlement have significantly impaired the beneficial uses of Coeur d'Alene (CDA) Tribe water bodies in the Hangman Creek watershed. The cumulative impacts have resulted in a 303 (d) designation by the Environmental Protection Agency (EPA), extirpated the only salmon run on the reservation, and reduced tributary connectivity by isolating many native fish populations. Considering salmon were an essential part of tribal identity and cultural activities, the tribe initiated a 100-year management plan to restore the 155,000-acre portion of the Hangman Creek watershed located on the CDA reservation. The restoration management plan focuses on sustaining subsistence and cultural activities by reestablishing stream connectivity and providing sustainable aquatic habitats as well as restoring watershed processes and improving water quality. Ultimately, the restoration goal is to improve the habitat suitability of Hangman Creek for the eventual return of salmon. To accomplish these goals, it is essential to prioritize and sequence activities that most effectively support restoration. While watershed modeling provides a commonly accepted holistic approach to simulating watershed responses, it appears the effectiveness of models in predicting restoration success, particularly with respect to the effects of restoration on baseflow, have not been well documented. In addition, creating a representative watershed model capable of accounting for a watershed scale spatial and temporal variability generally requires extensive field measurements. This presents a challenge for developing a model of Hangman Creek, since the watershed is mostly ungauged with only limited data available at a few monitoring sites. Our approach to developing a restoration prioritization plan is to first model a subbasin in the watershed with similar characteristics and restoration goals, then utilize the subbasin model to project future baseflow responses in the larger

  15. Land Retirement as a Habitat Restoration Tool

    NASA Astrophysics Data System (ADS)

    Singh, P. N.; Wallender, W. W.

    2007-12-01

    the root zone. Salt on the surface may then be wind blown to adjacent areas creating a potential environmental hazard. Using field results from the U.S. Department of the Interior Land Retirement Demonstration Project at the Tranquillity site located in western Fresno County, principles of mass balance in a fixed control volume, the HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, and PEST, a model-independent parameter optimizer, we have investigated the processes of soil water and salinity movement in the root zone and the deep vadose zone. Various combinations of evapotranspiration, soil water retention properties, water table condition and top and bottom boundary condition were tested. We show that certain Land Retirement scenarios decrease shallow water table and soil water salinity and enhance development of native plants as a means to facilitate habitat restoration for certain combination of soil and bottom boundary condition. Other combinations are not sustainable.

  16. A High Resolution Hydrodynamic Model of Puget Sound to Support Nearshore Restoration Feasibility Analysis and Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang; Yang, Zhaoqing

    2011-01-01

    Estuarine and coastal hydrodynamic processes are sometimes neglected in the design and planning of nearshore restoration actions. Despite best intentions, efforts to restore nearshore habitats can result in poor outcomes if circulation and transport which also affect freshwater-saltwater interactions are not properly addressed. Limitations due to current land use can lead to selection of sub-optimal restoration alternatives that may result in undesirable consequences, such as flooding, deterioration of water quality, and erosion, requiring immediate remedies and costly repairs. Uncertainty with achieving restoration goals, such as recovery of tidal exchange, supply of sediment and nutrients, and establishment of fish migration pathways,more » may be minimized by using numerical models designed for application to the nearshore environment. A high resolution circulation and transport model of the Puget Sound, in the state of Washington, was developed to assist with nearshore habitat restoration design and analysis, and to answer the question “can we achieve beneficial restoration outcomes at small local scale, as well as at a large estuary-wide scale?” The Puget Sound model is based on an unstructured grid framework to define the complex Puget Sound shoreline using a finite volume coastal ocean model (FVCOM). The capability of the model for simulating the important nearshore processes, such as circulation in complex multiple tidal channels, wetting and drying of tide flats, and water quality and sediment transport as part of restoration feasibility, are illustrated through examples of restoration projects in Puget Sound.« less

  17. A Method for Evaluating Outcomes of Restoration When No Reference Sites Exist

    Treesearch

    J. Stephen Brewer; Timothy Menzel

    2009-01-01

    Ecological restoration typically seeks to shift species composition toward that of existing reference sites. Yet, comparing the assemblages in restored and reference habitats assumes that similarity to the reference habitat is the optimal outcome of restoration and does not provide a perspective on regionally rare off-site species. When no such reference assemblages of...

  18. Evidence-based dentistry for planning restorative treatments: barriers and potential solutions.

    PubMed

    Afrashtehfar, K I; Eimar, H; Yassine, R; Abi-Nader, S; Tamimi, F

    2017-11-01

    Evidence-based dentistry (EBD) can help provide the best treatment option for every patient, however, its implementation in restorative dentistry is very limited. This study aimed at assessing the barriers preventing the implementation of EBD among dental undergraduate and graduate students in Montreal, and explore possible solutions to overcome these barriers. A cross-sectional survey was conducted by means of a paper format self-administrated questionnaire distributed among dental students. The survey assessed the barriers and potential solutions for implementation of an evidence-based practice. Sixty-one students completed the questionnaire. Forty-one percent of respondents found evidence-based literature to be the most reliable source of information for restorative treatment planning, however, only 16% used it. They considered that finding reliable information was difficult and they sometimes encountered conflicting information when consulting different sources. Dental students had positive attitudes towards the need for better access to evidence-based literature to assist learning and decision making in restorative treatment planning and to improve treatment outcomes. Even for dentists trained in EBD, online searching takes too much time, and even though it can provide information of better quality than personal intuition, it might not be enough to identify the best available evidence. Even though dental students are aware of the importance of EBD in restorative dentistry they rarely apply the concept, mainly due to time constraints. For this reason, implementation of EBD would probably require faster access to evidence-based knowledge. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Lower Columbia River and Estuary Ecosystem Restoration Program Reference Site Study: 2011 Restoration Analysis - FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borde, Amy B.; Cullinan, Valerie I.; Diefenderfer, Heida L.

    The Reference Site (RS) study is part of the research, monitoring, and evaluation (RME) effort developed by the Action Agencies (Bonneville Power Administration [BPA], U.S. Army Corps of Engineers, Portland District [USACE], and U.S. Bureau of Reclamation) in response to Federal Columbia River Power System (FCRPS) Biological Opinions (BiOp). While the RS study was initiated in 2007, data have been collected at relatively undisturbed reference wetland sites in the LCRE by PNNL and collaborators since 2005. These data on habitat structural metrics were previously summarized to provide baseline characterization of 51 wetlands throughout the estuarine and tidal freshwater portions ofmore » the 235-km LCRE; however, further analysis of these data has been limited. Therefore, in 2011, we conducted additional analyses of existing field data previously collected for the Columbia Estuary Ecosystem Restoration Program (CEERP) - including data collected by PNNL and others - to help inform the multi-agency restoration planning and ecosystem management work underway in the LCRE.« less

  20. Rangeland restoration for Hirola, the world's most endangered antelope

    USDA-ARS?s Scientific Manuscript database

    Rangeland restoration can improve habitat for threatened species such as the hirola antelope (Beatragus hunteri) that inhabit savannas of eastern Kenya. However, restoration success likely varies across soil types and target restoration species, as well as according to restoration approach. We teste...

  1. Joint analysis of stressors and ecosystem services to enhance restoration effectiveness.

    PubMed

    Allan, J David; McIntyre, Peter B; Smith, Sigrid D P; Halpern, Benjamin S; Boyer, Gregory L; Buchsbaum, Andy; Burton, G A; Campbell, Linda M; Chadderton, W Lindsay; Ciborowski, Jan J H; Doran, Patrick J; Eder, Tim; Infante, Dana M; Johnson, Lucinda B; Joseph, Christine A; Marino, Adrienne L; Prusevich, Alexander; Read, Jennifer G; Rose, Joan B; Rutherford, Edward S; Sowa, Scott P; Steinman, Alan D

    2013-01-02

    With increasing pressure placed on natural systems by growing human populations, both scientists and resource managers need a better understanding of the relationships between cumulative stress from human activities and valued ecosystem services. Societies often seek to mitigate threats to these services through large-scale, costly restoration projects, such as the over one billion dollar Great Lakes Restoration Initiative currently underway. To help inform these efforts, we merged high-resolution spatial analyses of environmental stressors with mapping of ecosystem services for all five Great Lakes. Cumulative ecosystem stress is highest in near-shore habitats, but also extends offshore in Lakes Erie, Ontario, and Michigan. Variation in cumulative stress is driven largely by spatial concordance among multiple stressors, indicating the importance of considering all stressors when planning restoration activities. In addition, highly stressed areas reflect numerous different combinations of stressors rather than a single suite of problems, suggesting that a detailed understanding of the stressors needing alleviation could improve restoration planning. We also find that many important areas for fisheries and recreation are subject to high stress, indicating that ecosystem degradation could be threatening key services. Current restoration efforts have targeted high-stress sites almost exclusively, but generally without knowledge of the full range of stressors affecting these locations or differences among sites in service provisioning. Our results demonstrate that joint spatial analysis of stressors and ecosystem services can provide a critical foundation for maximizing social and ecological benefits from restoration investments.

  2. Joint analysis of stressors and ecosystem services to enhance restoration effectiveness

    PubMed Central

    Allan, J. David; McIntyre, Peter B.; Smith, Sigrid D. P.; Halpern, Benjamin S.; Boyer, Gregory L.; Buchsbaum, Andy; Burton, G. A.; Campbell, Linda M.; Chadderton, W. Lindsay; Ciborowski, Jan J. H.; Doran, Patrick J.; Eder, Tim; Infante, Dana M.; Johnson, Lucinda B.; Joseph, Christine A.; Marino, Adrienne L.; Prusevich, Alexander; Read, Jennifer G.; Rose, Joan B.; Rutherford, Edward S.; Sowa, Scott P.; Steinman, Alan D.

    2013-01-01

    With increasing pressure placed on natural systems by growing human populations, both scientists and resource managers need a better understanding of the relationships between cumulative stress from human activities and valued ecosystem services. Societies often seek to mitigate threats to these services through large-scale, costly restoration projects, such as the over one billion dollar Great Lakes Restoration Initiative currently underway. To help inform these efforts, we merged high-resolution spatial analyses of environmental stressors with mapping of ecosystem services for all five Great Lakes. Cumulative ecosystem stress is highest in near-shore habitats, but also extends offshore in Lakes Erie, Ontario, and Michigan. Variation in cumulative stress is driven largely by spatial concordance among multiple stressors, indicating the importance of considering all stressors when planning restoration activities. In addition, highly stressed areas reflect numerous different combinations of stressors rather than a single suite of problems, suggesting that a detailed understanding of the stressors needing alleviation could improve restoration planning. We also find that many important areas for fisheries and recreation are subject to high stress, indicating that ecosystem degradation could be threatening key services. Current restoration efforts have targeted high-stress sites almost exclusively, but generally without knowledge of the full range of stressors affecting these locations or differences among sites in service provisioning. Our results demonstrate that joint spatial analysis of stressors and ecosystem services can provide a critical foundation for maximizing social and ecological benefits from restoration investments. PMID:23248308

  3. Historic evidence for a link between riparian vegetation and bank erosion in the context of instream habitat restoration

    NASA Astrophysics Data System (ADS)

    Salant, N.; Baillie, M. B.; Schmidt, J. C.; Intermountain CenterRiver Rehabilitation; Restoration

    2010-12-01

    An analysis of historic aerial photographs of the upper Strawberry River, Utah, demonstrates that rates of lateral bank erosion peaked with the loss of riparian cover during periods of willow removal for livestock grazing. Erosion rates have declined over the past two decades, concurrent with the removal of livestock grazing, modest increases in riparian cover, and the return of natural flows. Contrary to perception, present-day erosion rates are actually lower than pre-disturbance rates. Recent restoration activities to stabilize stream banks were based on the assumption that high erosion rates were contributing excess sediment to the streambed and degrading spawning gravels. However, our results show that while the historic loss of riparian vegetation contributed to an increase in bank erosion rates, bank erosion rates were not high prior to restoration. Furthermore, streambed samples show that the percentage of fine sediment in the substrate is insufficient to have a significant biological impact, supporting the finding that present-day bank erosion rates are not excessive relative to pre-disturbance rates. Current bank stabilization efforts were therefore motivated by a limited understanding of system conditions and history, suggesting that these restoration activities are unnecessary and misconceived. Our results demonstrate the large influence of riparian vegetation on bank erosion and instream habitat, as well as the importance of incorporating system history into restoration design.

  4. A Wildlife Habitat Improvement Plan.

    ERIC Educational Resources Information Center

    Rogers, S. Elaine

    The document presents an overview of Stony Acres, a "sanctuary" for wildlife as well as a place for recreation enjoyment and education undertakings. A review of the history of wildlife habitat management at Stony Acres and the need for continued and improved wildlife habitat management for the property are discussed in Chapter I. Chapter…

  5. Twenty years of stream restoration in Finland: little response by benthic macroinvertebrate communities.

    PubMed

    Louhi, Pauliina; Mykrä, Heikki; Paavola, Riku; Huusko, Ari; Vehanen, Teppo; Mäki-Petäys, Aki; Muotka, Timo

    2011-09-01

    The primary focus of many in-stream restoration projects is to enhance habitat diversity for salmonid fishes, yet the lack of properly designed monitoring studies, particularly ones with pre-restoration data, limits any attempts to assess whether restoration has succeeded in improving salmonid habitat. Even less is known about the impacts of fisheries-related restoration on other, non-target biota. We examined how restoration aiming at the enhancement of juvenile brown trout (Salmo trutta L.) affects benthic macroinvertebrates, using two separate data sets: (1) a before-after-control-impact (BACI) design with three years before and three after restoration in differently restored and control reaches of six streams; and (2) a space-time substitution design including channelized, restored, and near-natural streams with an almost 20-year perspective on the recovery of invertebrate communities. In the BACI design, total macroinvertebrate density differed significantly from before to after restoration. Following restoration, densities decreased in all treatments, but less so in the controls than in restored sections. Taxonomic richness also decreased from before to after restoration, but this happened similarly in all treatments. In the long-term comparative study, macroinvertebrate species richness showed no difference between the channel types. Community composition differed significantly between the restored and natural streams, but not between restored and channelized streams. Overall, the in-stream restoration measures used increased stream habitat diversity but did not enhance benthic biodiversity. While many macroinvertebrates may be dispersal limited, our study sites should not have been too distant to reach within almost two decades. A key explanation for the weak responses by macroinvertebrate communities may have been historical. When Fennoscandian streams were channelized for log floating, the loss of habitat heterogeneity was only partial. Therefore, habitat

  6. Restoration in Sand-slugged Streams and Drought---the Granite Creeks Project.

    NASA Astrophysics Data System (ADS)

    Lake, P. S.; Bond, N.; Glaister, A.; Downes, B.

    2005-05-01

    European settlement, with accompanying land clearance and heavy grazing, of the Strathbogie Ranges in central Victoria, Australia, resulted in the massive export of sediment to lowland streams. These streams, originally configured as "chains of ponds", were filled with "sand slugs" that generated a raised flat streambed depleted in habitat heterogeneity. The invertebrate fauna of the sand slugs is similar to that of sandbed streams elsewhere, but lacks an abundant hyporheos. The fish fauna was reduced in diversity and abundance. In 2001 habitat restoration in the sand slugs commenced after pre-restoration samples were taken.Timber structures, made from railway sleepers, were installed and subsequently created scour pools. Fish responded positively to restoration measure, but no significant effect was apparent for the invertebrates. In 2001-2004 a very severe drought occurred causing the streams to cease to flow and in the sand-slugged sections faunal abundance declined greatly due to the loss of residential habitat and the lack of refugia. Thus, the large-scale effects of severe drought thwarted the effects of localized habitat restoration, stressing the point that in restoring habitat it is also imperative to generate resilience to the prevailing disturbance regime-a regime that may be exacerbated by human activities.

  7. Assessment of Instream Restoration in the Cache River, Illinois: Macroinvertebrate Community Structure on Rock Weirs Compared to Snag and Streambed Habitats

    NASA Astrophysics Data System (ADS)

    Walther, D. A.; Whiles, M. R.

    2005-05-01

    Rock weirs were constructed in a degraded section of the Cache River in southern Illinois in 2001 and 2003 to prevent channel incision and protect riparian wetlands. We sampled macroinvertebrates in two older weirs and in two sites downstream of the restored section in April 2003, October 2003, and April 2004 to evaluate differences in community structure between weir, snag, and streambed (scoured clay) habitats. Three recently constructed weirs were also sampled in April 2004. Functional composition differed among sample dates and habitats. Although collector-gatherers consistently dominated streambed habitats, functional composition on weirs and snags was more variable. Filterer and predator biomass was generally higher on weirs, and snags harbored the only shredders collected in the system (Pycnopsyche spp.). Weirs generally supported higher biomass of Ephemeroptera, Plecoptera, and Trichoptera than other habitats. For example, mean EPT biomass on weirs in 2003 (April=187 mgAFDM/m2; October=899 mgAFDM/m2) was 4 to 10-fold higher than EPT biomass in snag or streambed habitats. Late instar Pycnopsyche contributed 41% of snag biomass in April 2004, resulting in EPT biomass similar to rock weirs. Results indicate rock weirs provide suitable stable substrate for macroinvertebrates and may enhance populations of sensitive EPT taxa in degraded systems.

  8. Palila restoration research, 1996−2012

    USGS Publications Warehouse

    Banko, Paul C.; Farmer, Chris; Atkinson, Carter T.; Brinck, Kevin W.; Camp, Richad; Cole, Colleen; Canner, Raymond; Dougill, Steve; Goltz, Daniel; Gray, Elizabeth; Hess, Steven C.; Higashino, Jennifer; Jarvi, Susan I.; Johnson, Luanne; Laniawe, Leona; Laut, Megan; Miller, Linda; Murray, Christopher J.; Nelson, Daniel; Leonard, David L.; Oboyshi, Peter; Patch-Highfill, Leanne; Pollock, David D.; Rapozo, Kalei; Schwarzfeld, Marla; Slotterback, John; Stephens, Robert M.; Banko, Paul C.; Farmer, Chris

    2014-01-01

    The Palila Restoration Project was initiated in 1996 by the U.S. Geological Survey to assist government agencies mitigate the effects of realigning Saddle Road (Highway 200) through Palila Critical Habitat (U.S. Fish and Wildlife Service 1998, Federal Highway Administration 1999). Ecological research on the palila (Loxioides bailleui), an endangered Hawaiian forest bird, carried out by the U.S. Geological Survey (formerly organized as the Research Division of U.S. Fish and Wildlife Service) since 1987 and research conducted by the Palila Restoration Project provided the scientific bases for developing a recovery strategy (U.S. Fish and Wildlife Service 2006) and its adaptive implementation. The main objectives of the Palila Restoration Project were to develop techniques for reintroducing the palila to a portion of its former range, investigate the biological threats to the palila and its habitat, and synthesize the existing body of ecological knowledge concerning the palila. Five broad study themes formed the research framework: 1. Population reintroduction and restoration 2. Demography and breeding ecology 3. Habitat use and food ecology 4. Vegetation ecology 5. Predator ecology and management An element that was not included in the research program of the project was the ecology and management of introduced ungulates, which has historically constituted the single greatest threat to Palila Critical Habitat (Banko et al. 2009). The absence of ungulate studies should not be interpreted to mean that we believe ungulates no longer damage palila habitat. Other research has already established that removing alien browsers and grazers from Mauna Kea is essential for the recovery of the subalpine forest on which palila now depend (Scowcroft and Giffin 1983; Scowcroft and Sakai 1983; Scowcroft and Conrad 1988, 1992; Hess et al. 1999). Moreover, the Federal District Court of Hawai‘i has ordered the state of Hawai‘i to remove browsing ungulates from Palila Critical

  9. Habitat use by giant panda in relation to man-made forest in Wanglang Nature Reserve of China.

    PubMed

    Kang, Dongwei; Wang, Xiaorong; Yang, Hongwei; Duan, Lijuan; Li, Junqing

    2014-12-01

    To evaluate the effectiveness of human restoration in species conservation, in this study, we undertook a field survey of giant panda (Ailuropoda melanoleuca) habitat and man-made forest habitat in Wanglang Nature Reserve of China. Our results revealed that giant panda did not use the man-made forest in this area so far, and that there were significant differences between the giant panda habitat and the man-made forest habitat. Compared with giant panda habitat, the man-made forest habitat was characterized by lower shrub coverage, thinner trees and lower bamboo density. To improve the effectiveness of human restoration, the habitat requirement of giant panda should be fully consider in the whole process of habitat restoration.

  10. Scale-dependent geomorphic responses to active restoration and implications for cutthroat trout

    NASA Astrophysics Data System (ADS)

    Salant, N.; Miller, S. W.

    2009-12-01

    The predominant goal of instream habitat restoration is to increase the diversity, density and/or biomass of aquatic organisms through enhanced physical heterogeneity and increased food availability. In physically homogenized systems, habitat restoration is most commonly achieved at the reach-scale through the addition of structures or channel reconfiguration. Despite the completion of over 6,000 restoration projects in the United States, studies of fish responses to habitat restoration have largely produced equivocal results. Paradoxically, restoration monitoring overwhelmingly focuses on fish response without understanding how these responses link to the physical variables being altered and the scale at which geomorphic changes occur. Our study investigates whether instream habitat restoration affects geomorphic conditions at spatial scales relevant to the organism of interest (i.e. the spatial scale of the variables limiting to that organism). We measure the effects of active restoration on geomorphic metrics at three spatial scales (local, unit, and reach) using a before-after-control-impact design in a historically disturbed and heavily managed cutthroat trout stream. Observed trout habitat preferences (for spawning and juvenile/adult residence) are used to identify the limiting physical variables and are compared to the scale of spatially explicit geomorphic responses. Four reaches representing three different stages of restoration (before, one month and one year after) are surveyed for local-scale physical conditions, unit- and reach-scale morphology, resident fish use, and redd locations. Local-scale physical metrics include depth, nearbed and average velocity, overhead cover, particle size, and water quality metrics. Point measurements stratified by morphological unit are used to determine physical variability among unit types. Habitat complexity and availability are assessed at the reach-scale from topographic surveys and unit maps. Our multi

  11. WoonyBird Restoration Plant Selector Manual

    EPA Science Inventory

    Modifying greenspaces to enhance habitat value has been proposed as a means towards protecting or restoring biodiversity in urban landscapes. As part of a framework for developing low-cost, low-impact enhancements that can be incorporated during the restoration of greenspaces to ...

  12. Sage-grouse habitat restoration symposium proceedings

    Treesearch

    Nancy L. Shaw; Mike Pellant; Stephen B. Monsen

    2005-01-01

    Declines in habitat of greater sage-grouse and Gunnison sage-grouse across the western United States are related to degradation, loss, and fragmentation of sagebrush ecosystems resulting from development of agricultural lands, grazing practices, changes in wildfire regimes, increased spread of invasive species, gas and oil development, and other human impacts. These...

  13. 15 CFR 990.53 - Restoration selection-developing restoration alternatives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Restoration selection-developing... OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.53 Restoration selection—developing restoration alternatives. (a) General. (1) If the information on injury...

  14. 15 CFR 990.53 - Restoration selection-developing restoration alternatives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Restoration selection-developing... OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE DAMAGE ASSESSMENTS Restoration Planning Phase § 990.53 Restoration selection—developing restoration alternatives. (a) General. (1) If the information on injury...

  15. 78 FR 16655 - Draft Damage Assessment, Restoration Plan and Environmental Assessment for the T/B DBL 152 Oil...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ..., Restoration Plan and Environmental Assessment for the T/B DBL 152 Oil Spill in the Gulf of Mexico AGENCY... Damage Assessment and Restoration Plan and Environmental Assessment for the T/B DBL 152 Oil Spill in the..., T/B DBL 152 oil spill in the Gulf of Mexico. The purpose of this notice is to inform the public of...

  16. Wind River subbasin restoration: U.S. Geological Survey annual report November 2012 through December 2013

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.

    2014-01-01

    Evaluating restoration efforts is of interest to many managers and agencies so that funding and time are allocated for best results. The evaluation of various life-histories of Lower Columbia River steelhead within the Wind River subbasin will provide information to better track populations, and to direct habitat restoration and water allocation planning. Increasingly detailed Viable Salmonid Population information, such as that provided by PIT-tagging and instream PTISs networks like those we are building and operating in the Wind River subbasin, will provide data to inform policy and management, as life-history strategies and production bottlenecks are identified and understood.

  17. Evaluating Ecosystem effects of oyster restoration in the Mississippi Sound

    NASA Astrophysics Data System (ADS)

    Klutse, C. K.; Milroy, S. P.

    2016-02-01

    Oyster reefs along the northern Gulf of Mexico are primarily formed by the eastern oyster, Crassostrea virginica, and are among the few biogenic natural habitats in the region. The increasing awareness of ecosystem services that habitat-forming bivalves provide, and the decline of the native species' population has led to a myriad of restoration efforts which have yielded varying results. Successful reef restoration efforts requires a deeper understanding of how variations in the timing and scales of environmental stressors control the survival, growth, and recruitment of reef associated species like oysters, shrimps, pelagic and benthic fish species. A modeling approach has been designed for exploring optimal growth conditions for oysters, studying the effect of seasonal trends in environmental stressors on the growth and survival of reef-associated species, and performing scenario testing for alternative restoration plans in the Mississippi Sound. The model uses a carbon budget approach, accounts for different functional groups within the trophic network on the reef, and operates on daily temporal resolution. Preliminary results indicate that restoration efforts may maximize benefits from the interactions between different salinity regimes and growth as well as mortality of oysters at three different class sizes of sacks, seeds, and spats. The study also seeks to evaluate the effects of different restoration efforts on promotion and recruitments in oyster populations as well as other reef-associated fishes and invertebrates. The current capabilities of the model can be scaled up to include evaluating changes in ecosystem goods and assessing their contributions to human well-being, the results of which will inform management decisions. Keywords: ecosystem modeling, oyster ecology, ecosystem-based management.

  18. 76 FR 44036 - Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander, AT&T Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ...] Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander, AT&T Portable Generator... Federally listed animal, the California tiger salamander. The applicant would implement a conservation... permanently convert 1.24 acres of upland grassland habitat for the California tiger salamander into a new...

  19. 26 CFR 1.412(c)(1)-3T - Applying the minimum funding requirements to restored plans (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (temporary). (a) In general—(1) Restoration method. The restoration method is a funding method that adapts... spread gain method that maintains an unfunded liability. A plan may adopt any cost method that satisfies...

  20. Remote sensing for restoration ecology: Application for restoring degraded, damaged, transformed, or destroyed ecosystems.

    PubMed

    Reif, Molly K; Theel, Heather J

    2017-07-01

    Restoration monitoring is generally perceived as costly and time consuming, given the assumptions of successfully restoring ecological functions and services of a particular ecosystem or habitat. Opportunities exist for remote sensing to bolster the restoration science associated with a wide variety of injured resources, including resources affected by fire, hydropower operations, chemical releases, and oil spills, among others. In the last decade, the role of remote sensing to support restoration monitoring has increased, in part due to the advent of high-resolution satellite sensors as well as other sensor technology, such as lidar. Restoration practitioners in federal agencies require monitoring standards to assess restoration performance of injured resources. This review attempts to address a technical need and provides an introductory overview of spatial data and restoration metric considerations, as well as an in-depth review of optical (e.g., spaceborne, airborne, unmanned aerial vehicles) and active (e.g., radar, lidar) sensors and examples of restoration metrics that can be measured with remotely sensed data (e.g., land cover, species or habitat type, change detection, quality, degradation, diversity, and pressures or threats). To that end, the present article helps restoration practitioners assemble information not only about essential restoration metrics but also about the evolving technological approaches that can be used to best assess them. Given the need for monitoring standards to assess restoration success of injured resources, a universal monitoring framework should include a range of remote sensing options with which to measure common restoration metrics. Integr Environ Assess Manag 2017;13:614-630. Published 2016. This article is a US Government work and is in the public domain in the USA. Published 2016. This article is a US Government work and is in the public domain in the USA.

  1. Silviculture and monitoring guidelines for integrating restoration of dry mixed-conifer forest and spotted owl habitat management in the eastern Cascade Range

    Treesearch

    John Lehmkuhl; William Gaines; David Peterson; John Bailey; Andrew Youngblood

    2015-01-01

    This report addresses the need for developing consistent regional guidelines for stand-level management that integrates goals and objectives for dry forest restoration and habitat management for the northern spotted owl. It is an outcome of a focused 3-day workshop attended by 25 scientists, managers, and regulators in Hood River, Oregon, September 5–7, 2012. The...

  2. The role of melaleuca control in Everglades restoration: accomplishments and future plans

    USDA-ARS?s Scientific Manuscript database

    The invasive tree Melaleuca quinquenervia (Cav.) S.T. Blake, melaleuca, was first introduced to Florida in 1886 for ornamental use. It was later planted for bank stabilization and as a forestry crop. Melaleuca now invades a variety of habitats, changing the hydroperiod and fire regime, reducing plan...

  3. The Role of Species Traits in Mediating Functional Recovery during Matrix Restoration

    PubMed Central

    Barnes, Andrew D.; Emberson, Rowan M.; Krell, Frank-Thorsten; Didham, Raphael K.

    2014-01-01

    Reversing anthropogenic impacts on habitat structure is frequently successful through restoration, but the mechanisms linking habitat change, community reassembly and recovery of ecosystem functioning remain unknown. We test for the influence of edge effects and matrix habitat restoration on the reassembly of dung beetle communities and consequent recovery of dung removal rates across tropical forest edges. Using path modelling, we disentangle the relative importance of community-weighted trait means and functional trait dispersion from total biomass effects on rates of dung removal. Community trait composition and biomass of dung beetle communities responded divergently to edge effects and matrix habitat restoration, yielding opposing effects on dung removal. However, functional dispersion—used in this study as a measure of niche complementarity—did not explain a significant amount of variation in dung removal rates across habitat edges. Instead, we demonstrate that the path to functional recovery of these altered ecosystems depends on the trait-mean composition of reassembling communities, over and above purely biomass-dependent processes that would be expected under neutral theory. These results suggest that any ability to manage functional recovery of ecosystems during habitat restoration will demand knowledge of species' roles in ecosystem processes. PMID:25502448

  4. The role of species traits in mediating functional recovery during matrix restoration.

    PubMed

    Barnes, Andrew D; Emberson, Rowan M; Krell, Frank-Thorsten; Didham, Raphael K

    2014-01-01

    Reversing anthropogenic impacts on habitat structure is frequently successful through restoration, but the mechanisms linking habitat change, community reassembly and recovery of ecosystem functioning remain unknown. We test for the influence of edge effects and matrix habitat restoration on the reassembly of dung beetle communities and consequent recovery of dung removal rates across tropical forest edges. Using path modelling, we disentangle the relative importance of community-weighted trait means and functional trait dispersion from total biomass effects on rates of dung removal. Community trait composition and biomass of dung beetle communities responded divergently to edge effects and matrix habitat restoration, yielding opposing effects on dung removal. However, functional dispersion--used in this study as a measure of niche complementarity--did not explain a significant amount of variation in dung removal rates across habitat edges. Instead, we demonstrate that the path to functional recovery of these altered ecosystems depends on the trait-mean composition of reassembling communities, over and above purely biomass-dependent processes that would be expected under neutral theory. These results suggest that any ability to manage functional recovery of ecosystems during habitat restoration will demand knowledge of species' roles in ecosystem processes.

  5. Wind River Watershed Restoration 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, Patrick J.; Jezorek, Ian G.

    2008-11-10

    Transponder (PIT) tags to track growth and movement of individuals. We snorkeled nine stream sections during 2004. Juvenile steelhead populations have varied greatly between streams and between years. Numbers of age-0 steelhead have increased substantially since 2000 within the MINE reach (rkm 35.0-40.0) section of the upper Wind River. Because of potential negative interactions with steelhead, naturally spawned populations of introduced juvenile Chinook salmon are of concern in the mainstem of the Wind River. During 2004, we deployed over 3,000 PIT tags in the Wind River subbasin, primarily in juvenile steelhead, but also in juvenile Chinook. We are compiling a dataset of recapture information on these tagged fish as well as interrogation information from Bonneville Dam and other sites. The habitat and fish data collected have been used in Ecosystem Diagnosis and Treatment modeling efforts, the Wind River Subbasin Plan, and the Total Maximum Daily Load report from Washington Department of Ecology. Continued monitoring of changes in habitat, combined with data on fish populations, will help guide planning efforts of land and fish managers. As long-term active and passive restoration actions are implemented in the Wind River and its tributaries, these data will provide the ability to measure change. Because the Wind River subbasin has no steelhead hatchery or supplementation, these data will be useful to compare population trends in subbasins with hatchery or supplementation management.« less

  6. Transforming Ecosystems: When, Where, and How to Restore Contaminated Sites

    PubMed Central

    Rohr, Jason R; Farag, Aïda M; Cadotte, Marc W; Clements, William H; Smith, James R; Ulrich, Cheryl P; Woods, Richard

    2016-01-01

    Chemical contamination has impaired ecosystems, reducing biodiversity and the provisioning of functions and services. This has spurred a movement to restore contaminated ecosystems and develop and implement national and international regulations that require it. Nevertheless, ecological restoration remains a young and rapidly growing discipline and its intersection with toxicology is even more nascent and underdeveloped. Consequently, we provide guidance to scientists and practitioners on when, where, and how to restore contaminated ecosystems. Although restoration has many benefits, it also can be expensive, and in many cases systems can recover without human intervention. Hence, the first question we address is: “When should we restore contaminated ecosystems?” Second, we provide suggestions on what to restore—biodiversity, functions, services, all 3, or something else—and where to restore given expected changes to habitats driven by global climate change. Finally, we provide guidance on how to restore contaminated ecosystems. To do this, we analyze critical aspects of the literature dealing with the ecology of restoring contaminated ecosystems. Additionally, we review approaches for translating the science of restoration to on-the-ground actions, which includes discussions of market incentives and the finances of restoration, stakeholder outreach and governance models for ecosystem restoration, and working with contractors to implement restoration plans. By explicitly considering the mechanisms and strategies that maximize the success of the restoration of contaminated sites, we hope that our synthesis serves to increase and improve collaborations between restoration ecologists and ecotoxicologists and set a roadmap for the restoration of contaminated ecosystems. PMID:26033665

  7. Transforming ecosystems: When, where, and how to restore contaminated sites

    USGS Publications Warehouse

    Rohr, Jason R.; Farag, Aïda M.; Cadotte, Marc W.; Clements, William H.; Smith, James R.; Ulrich, Cheryl P.; Woods, Richard

    2016-01-01

    Chemical contamination has impaired ecosystems, reducing biodiversity and the provisioning of functions and services. This has spurred a movement to restore contaminated ecosystems and develop and implement national and international regulations that require it. Nevertheless, ecological restoration remains a young and rapidly growing discipline and its intersection with toxicology is even more nascent and underdeveloped. Consequently, we provide guidance to scientists and practitioners on when, where, and how to restore contaminated ecosystems. Although restoration has many benefits, it also can be expensive, and in many cases systems can recover without human intervention. Hence, the first question we address is: “When should we restore contaminated ecosystems?” Second, we provide suggestions on what to restore—biodiversity, functions, services, all 3, or something else—and where to restore given expected changes to habitats driven by global climate change. Finally, we provide guidance on how to restore contaminated ecosystems. To do this, we analyze critical aspects of the literature dealing with the ecology of restoring contaminated ecosystems. Additionally, we review approaches for translating the science of restoration to on-the-ground actions, which includes discussions of market incentives and the finances of restoration, stakeholder outreach and governance models for ecosystem restoration, and working with contractors to implement restoration plans. By explicitly considering the mechanisms and strategies that maximize the success of the restoration of contaminated sites, we hope that our synthesis serves to increase and improve collaborations between restoration ecologists and ecotoxicologists and set a roadmap for the restoration of contaminated ecosystems.

  8. Comparison of statistical and theoretical habitat models for conservation planning: the benefit of ensemble prediction

    Treesearch

    D. Todd Jones-Farrand; Todd M. Fearer; Wayne E. Thogmartin; Frank R. Thompson; Mark D. Nelson; John M. Tirpak

    2011-01-01

    Selection of a modeling approach is an important step in the conservation planning process, but little guidance is available. We compared two statistical and three theoretical habitat modeling approaches representing those currently being used for avian conservation planning at landscape and regional scales: hierarchical spatial count (HSC), classification and...

  9. Oak Grove Fork Habitat Improvement Project, 1988 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettin, Scott

    The Lower Oak Grove Fork of the Clackamas River is a fifth-order tributary of the Clackamas River drainage supporting depressed runs of coho and chinook salmon, and summer and winter steelhead. Habitat condition rating for the Lower Oak Grove is good, but smelt production estimates are below the average for Clackamas River tributaries. Limiting factors in the 3.8 miles of the Lower Oak Grove supporting anadromous fish include an overall lack of quality spawning and rearing habitat. Beginning in 1986. measures to improve fish habitat in the Lower Oak Grove were developed in coordination with the Oregon Department of Fishmore » and Wildlife (ODF&W) and Portland General Electric (PGE) fisheries biologists. Prior to 1986, no measures had been applied to the stream to mitigate for PGE's storage and regulation of flows in the Oak Grove Fork (Timothy Lake, Harriet Lake). Catchable rainbow trout are stocked by ODF&W two or three times a year during the trout fishing season in the lowermost portion of the Oak Grove Fork near two Forest Service campgrounds (Ripplebrook and Rainbow). The 1987 field season marked the third year of efforts to improve fish habitat of the Lower Oak Grove Fork and restore anadromous fish production. The efforts included the development of an implementation plan for habitat improvement activities in the Lower Oak Grove Fork. post-project monitoring. and maintenance of the 1986 improvement structures. No new structures were constructed or placed in 1987. Fiscal year 1988 brought a multitude of changes which delayed implementation of plans developed in 1987. The most prominent change was the withdrawal of the proposed Spotted Owl Habitat Area (SOHA) which overlapped the Oak Grove project implementation area. Another was the change in the Forest Service biologist responsible for implementation and design of this project.« less

  10. Restoration of urban waterways and vacant areas: the first steps toward sustainability.

    PubMed Central

    Cairns, J; Palmer, S E

    1995-01-01

    Increased population pressure and human activities have significantly altered the effectiveness of functions of ecosystems ("ecosystem services") at the local and regional scale. Of primary importance is the decrease in water quality due to urban storm water runoff. A number of communities have initiated restoration strategies to improve water quality standards. One such strategy is the incorporation of riparian walkways with native flora. As a result of such restoration efforts, habitats for native fauna have improved, and the number and diversity of wildlife have increased in urban settings. Restoration of urban habitats also provides social and economic benefits to the surrounding community. Efforts to mitigate the loss of ecological resources by restoring native habitats on lots that cannot be developed or on abandoned lots hold a high, unrealized potential. Habitat restoration not only provides natural diversions to urban surroundings, but also enlightens and educates individual citizens about the importance of balanced ecosystems and the role of humans within ecosystems. Education is the primary step toward creating ecologically sustainable communities. Images p452-a PMID:7656873

  11. Sustainable Cattle Ranching in Practice: Moving from Theory to Planning in Colombia's Livestock Sector

    NASA Astrophysics Data System (ADS)

    Lerner, Amy M.; Zuluaga, Andrés Felipe; Chará, Julián; Etter, Andrés; Searchinger, Timothy

    2017-08-01

    A growing population with increasing consumption of milk and dairy require more agricultural output in the coming years, which potentially competes with forests and other natural habitats. This issue is particularly salient in the tropics, where deforestation has traditionally generated cattle pastures and other commodity crops such as corn and soy. The purpose of this article is to review the concepts and discussion associated with reconciling food production and conservation, and in particular with regards to cattle production, including the concepts of land-sparing and land-sharing. We then present these concepts in the specific context of Colombia, where there are efforts to increase both cattle production and protect tropical forests, in order to discuss the potential for landscape planning for sustainable cattle production. We outline a national planning approach, which includes disaggregating the diverse cattle sector and production types, identifying biophysical, and economic opportunities and barriers for sustainable intensification in cattle ranching, and analyzing areas suitable for habitat restoration and conservation, in order to plan for both land-sparing and land-sharing strategies. This approach can be used in other contexts across the world where there is a need to incorporate cattle production into national goals for carbon sequestration and habitat restoration and conservation.

  12. Sustainable Cattle Ranching in Practice: Moving from Theory to Planning in Colombia's Livestock Sector.

    PubMed

    Lerner, Amy M; Zuluaga, Andrés Felipe; Chará, Julián; Etter, Andrés; Searchinger, Timothy

    2017-08-01

    A growing population with increasing consumption of milk and dairy require more agricultural output in the coming years, which potentially competes with forests and other natural habitats. This issue is particularly salient in the tropics, where deforestation has traditionally generated cattle pastures and other commodity crops such as corn and soy. The purpose of this article is to review the concepts and discussion associated with reconciling food production and conservation, and in particular with regards to cattle production, including the concepts of land-sparing and land-sharing. We then present these concepts in the specific context of Colombia, where there are efforts to increase both cattle production and protect tropical forests, in order to discuss the potential for landscape planning for sustainable cattle production. We outline a national planning approach, which includes disaggregating the diverse cattle sector and production types, identifying biophysical, and economic opportunities and barriers for sustainable intensification in cattle ranching, and analyzing areas suitable for habitat restoration and conservation, in order to plan for both land-sparing and land-sharing strategies. This approach can be used in other contexts across the world where there is a need to incorporate cattle production into national goals for carbon sequestration and habitat restoration and conservation.

  13. 43 CFR 10005.14 - Resource features applicable to the plan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Habitat, including: (1) Protection of existing wetlands, (2) Restoration of drained or otherwise degraded wetlands, (3) Enhancement of wetland habitat. (f) Upland Habitat, including: (1) Protection or restoration... and/or recreation resources. Biological projects may focus on the protection or restoration of an...

  14. Evaluating landscape options for corridor restoration between giant panda reserves.

    PubMed

    Wang, Fang; McShea, William J; Wang, Dajun; Li, Sheng; Zhao, Qing; Wang, Hao; Lu, Zhi

    2014-01-01

    The establishment of corridors can offset the negative effects of habitat fragmentation by connecting isolated habitat patches. However, the practical value of corridor planning is minimal if corridor identification is not based on reliable quantitative information about species-environment relationships. An example of this need for quantitative information is planning for giant panda conservation. Although the species has been the focus of intense conservation efforts for decades, most corridor projects remain hypothetical due to the lack of reliable quantitative researches at an appropriate spatial scale. In this paper, we evaluated a framework for giant panda forest corridor planning. We linked our field survey data with satellite imagery, and conducted species occupancy modelling to examine the habitat use of giant panda within the potential corridor area. We then conducted least-cost and circuit models to identify potential paths of dispersal across the landscape, and compared the predicted cost under current conditions and alternative conservation management options considered during corridor planning. We found that due to giant panda's association with areas of low elevation and flat terrain, human infrastructures in the same area have resulted in corridor fragmentation. We then identified areas with high potential to function as movement corridors, and our analysis of alternative conservation scenarios showed that both forest/bamboo restoration and automobile tunnel construction would significantly improve the effectiveness of corridor, while residence relocation would not significantly improve corridor effectiveness in comparison with the current condition. The framework has general value in any conservation activities that anticipate improving habitat connectivity in human modified landscapes. Specifically, our study suggested that, in this landscape, automobile tunnels are the best means to remove current barriers to giant panda movements caused by

  15. Evaluating Landscape Options for Corridor Restoration between Giant Panda Reserves

    PubMed Central

    Wang, Fang; McShea, William J.; Wang, Dajun; Li, Sheng; Zhao, Qing; Wang, Hao; Lu, Zhi

    2014-01-01

    The establishment of corridors can offset the negative effects of habitat fragmentation by connecting isolated habitat patches. However, the practical value of corridor planning is minimal if corridor identification is not based on reliable quantitative information about species-environment relationships. An example of this need for quantitative information is planning for giant panda conservation. Although the species has been the focus of intense conservation efforts for decades, most corridor projects remain hypothetical due to the lack of reliable quantitative researches at an appropriate spatial scale. In this paper, we evaluated a framework for giant panda forest corridor planning. We linked our field survey data with satellite imagery, and conducted species occupancy modelling to examine the habitat use of giant panda within the potential corridor area. We then conducted least-cost and circuit models to identify potential paths of dispersal across the landscape, and compared the predicted cost under current conditions and alternative conservation management options considered during corridor planning. We found that due to giant panda's association with areas of low elevation and flat terrain, human infrastructures in the same area have resulted in corridor fragmentation. We then identified areas with high potential to function as movement corridors, and our analysis of alternative conservation scenarios showed that both forest/bamboo restoration and automobile tunnel construction would significantly improve the effectiveness of corridor, while residence relocation would not significantly improve corridor effectiveness in comparison with the current condition. The framework has general value in any conservation activities that anticipate improving habitat connectivity in human modified landscapes. Specifically, our study suggested that, in this landscape, automobile tunnels are the best means to remove current barriers to giant panda movements caused by

  16. Early Restoration PEIS Public Meeting | NOAA Gulf Spill Restoration

    Science.gov Websites

    , or PEIS, to evaluate the potential environmental effects of types of early restoration actions, as Early Restoration Plan. The PEIS also will evaluate the cumulative effects of early restoration. We are

  17. Effects of flooding and tamarisk removal on habitat for sensitive fish species in the San Rafael River, Utah: implications for fish habitat enhancement and future restoration efforts.

    PubMed

    Keller, Daniel L; Laub, Brian G; Birdsey, Paul; Dean, David J

    2014-09-01

    Tamarisk removal is a widespread restoration practice on rivers in the southwestern USA, but impacts of removal on fish habitat have rarely been investigated. We examined whether tamarisk removal, in combination with a large spring flood, had the potential to improve fish habitat on the San Rafael River in southeastern Utah. We quantified habitat complexity and the distribution of wood accumulation in a tamarisk removal site (treated) and a non-removal site (untreated) in 2010, 1 year prior to a large magnitude and long-duration spring flood. We used aerial imagery to analyze river changes in the treated and untreated sites. Areas of channel movement were significantly larger in the treated site compared to the untreated site, primarily because of geomorphic characteristics of the channel, including higher sinuosity and the presence of an ephemeral tributary. However, results suggest that tamarisk removal on the outside of meander bends, where it grows directly on the channel margins, can promote increased channel movement. Prior to the flood, wood accumulations were concentrated in sections of channel where tamarisk had been removed. Pools, riffles, and backwaters occurred more frequently within 30 m upstream and downstream of wood accumulations compared to areas within 30 m of random points. Pools associated with wood accumulations were also significantly larger and deeper than those associated with random points. These results suggest that the combination of tamarisk removal and wood input can increase the potential for channel movement during spring floods thereby diversifying river habitat and improving conditions for native fish.

  18. Effects of Flooding and Tamarisk Removal on Habitat for Sensitive Fish Species in the San Rafael River, Utah: Implications for Fish Habitat Enhancement and Future Restoration Efforts

    NASA Astrophysics Data System (ADS)

    Keller, Daniel L.; Laub, Brian G.; Birdsey, Paul; Dean, David J.

    2014-09-01

    Tamarisk removal is a widespread restoration practice on rivers in the southwestern USA, but impacts of removal on fish habitat have rarely been investigated. We examined whether tamarisk removal, in combination with a large spring flood, had the potential to improve fish habitat on the San Rafael River in southeastern Utah. We quantified habitat complexity and the distribution of wood accumulation in a tamarisk removal site (treated) and a non-removal site (untreated) in 2010, 1 year prior to a large magnitude and long-duration spring flood. We used aerial imagery to analyze river changes in the treated and untreated sites. Areas of channel movement were significantly larger in the treated site compared to the untreated site, primarily because of geomorphic characteristics of the channel, including higher sinuosity and the presence of an ephemeral tributary. However, results suggest that tamarisk removal on the outside of meander bends, where it grows directly on the channel margins, can promote increased channel movement. Prior to the flood, wood accumulations were concentrated in sections of channel where tamarisk had been removed. Pools, riffles, and backwaters occurred more frequently within 30 m upstream and downstream of wood accumulations compared to areas within 30 m of random points. Pools associated with wood accumulations were also significantly larger and deeper than those associated with random points. These results suggest that the combination of tamarisk removal and wood input can increase the potential for channel movement during spring floods thereby diversifying river habitat and improving conditions for native fish.

  19. Avian response to shade‐layer restoration in coffee plantations in Puerto Rico

    USGS Publications Warehouse

    Irizarry, Amarilys D.; Collazo, Jaime A.; Pacifici, Krishna; Reich, Brian J.; Battle, Kathryn E.

    2018-01-01

    Documenting the evolving processes associated with habitat restoration and how long it takes to detect avian demographic responses is crucial to evaluate the success of restoration initiatives and to identify ways to improve their effectiveness. The importance of this endeavor prompted the U.S. Fish and Wildlife Service and the USDA Natural Resources Conservation Service to evaluate their sun‐to‐shade coffee restoration program in Puerto Rico initiated in 2003. We quantified the responses of 12 resident avian species using estimates of local occupancy and extinction probabilities based on surveys conducted in 2015–2017 at 65 restored farms grouped according to time‐since‐initial‐restoration (TSIR): new (2011–2014), intermediate (2007–2010), and old (2003–2006). We also surveyed 40 forest sites, which served as reference sites. Vegetation complexity increased with TSIR, ranging between 35 and 40% forest cover in farms 6–9 years TSIR. Forest specialists (e.g. Loxigilla portoricencis) exhibited highest average occupancy in farms initially classified as intermediate (6–9 years) and old (>10 years), paralleling occupancy in secondary forests. Occupancy of open‐habitat specialists (e.g. Tiaris olivaceus) was more variable, but higher in recently restored farms. Restoring the shade layer has the potential to heighten ecological services derived from forest specialists (e.g. frugivores) without losing the services of many open‐habitat specialists (e.g. insectivores). Annual local extinction probability for forest specialists decreased with increasing habitat complexity, strengthening the potential value of shade restoration as a tool to enhance habitat for avifauna that evolved in forested landscapes.

  20. Developing metapopulation connectivity criteria from genetic and habitat data to recover the endangered Mexican wolf.

    PubMed

    Carroll, Carlos; Fredrickson, Richard J; Lacy, Robert C

    2014-02-01

    Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders. We used population viability analysis that incorporated pedigree data to evaluate the relation between connectivity and persistence for a restored Mexican wolf metapopulation of 3 populations of equal size. Decreasing dispersal rates greatly increased extinction risk for small populations (<150-200), especially as dispersal rates dropped below 0.5 genetically effective migrants per generation. We compared observed migration rates in the Northern Rocky Mountains (NRM) wolf metapopulation to 2 habitat-based effective distance metrics, least-cost and resistance distance. We then used effective distance between potential primary core populations in a restored Mexican wolf metapopulation to evaluate potential dispersal rates. Although potential connectivity was lower in the Mexican wolf versus the NRM wolf metapopulation, a connectivity rate of >0.5 genetically effective migrants per generation may be achievable via natural dispersal under current landscape conditions. When sufficient data are available, these methods allow planners to move beyond general aspirational connectivity goals or rules of thumb to develop objective and measurable connectivity criteria that more effectively support species recovery. The shift from simple connectivity rules of thumb to species-specific analyses parallels the previous shift from general minimum-viable-population thresholds to detailed viability modeling in endangered species recovery planning. © 2013 Society for Conservation

  1. Thatcher Bay, Washington, Nearshore Restoration Assessment

    USGS Publications Warehouse

    Breems, Joel; Wyllie-Echeverria, Sandy; Grossman, Eric E.; Elliott, Joel

    2009-01-01

    coring and GIS-based interpolation techniques. Additionally, pilot studies were conducted to characterize in place sediment redox, organic composition, and sulfide impacts to nearshore flora and fauna. We found that the presence of wood-waste in Thatcher Bay may alter the quality of the benthic habitat by contributing to elevated levels of total organic composition (TOC) of the sediment. Increased TOC favors anaerobic respiration in marine sediments, and sulfide, a toxic by-product of this process, was found at levels as high as 17.5 mg L-1 in Thatcher Bay. The Thatcher Bay sulfide levels are several orders of magnitude higher than those known to impact benthic invertebrates. Eelgrass, Zostera marina, located on the western margin of Thatcher Bay, was surveyed by using underwater video surveys. This baseline distribution will in part be used to measure the impact of any future remediation efforts. Additionally, the distribution and survey data can provide an estimate of propagule source for future colonization of restored sediment. Three restoration alternatives were considered, and a ranking matrix was developed to score each alternative against site-specific and regional criteria. The process identified the removal of wood-waste from a water-based platform as the preferred alternative. Our multidisciplinary investigation identified the location, thickness, and potential impacts of wood-waste that has persisted in the nearshore environment of Thatcher Bay since at least 1942. We also provide a process to efficiently evaluate alternatives to remediate the impact of this historical disturbance and to potentially contribute to an increase of nearshore diversity and productivity at this site. Elements of this approach could inform restoration planning at similarly impacted sites throughout the region.

  2. Prescribed burning for understory restoration

    Treesearch

    Kenneth W. Outcalt

    2006-01-01

    Because the longleaf ecosystem evolved with and is adapted to frequent fire, every 2 to 8 years, prescribed burning is often useful for restoring understory communities to a diverse ground layer of grasses, herbs, and small shrubs. This restoration provides habitat for a number of plant and animal species that are restricted to or found mostly in longleaf pine...

  3. Habitat selection by juvenile Mojave Desert tortoises

    USGS Publications Warehouse

    Todd, Brian D; Halstead, Brian J.; Chiquoine, Lindsay P.; Peaden, J. Mark; Buhlmann, Kurt A.; Tuberville, Tracey D.; Nafus, Melia G.

    2016-01-01

    Growing pressure to develop public lands for renewable energy production places several protected species at increased risk of habitat loss. One example is the Mojave desert tortoise (Gopherus agassizii), a species often at the center of conflicts over public land development. For this species and others on public lands, a better understanding of their habitat needs can help minimize negative impacts and facilitate protection or restoration of habitat. We used radio-telemetry to track 46 neonate and juvenile tortoises in the Eastern Mojave Desert, California, USA, to quantify habitat at tortoise locations and paired random points to assess habitat selection. Tortoise locations near burrows were more likely to be under canopy cover and had greater coverage of perennial plants (especially creosote [Larrea tridentata]), more coverage by washes, a greater number of small-mammal burrows, and fewer white bursage (Ambrosia dumosa) than random points. Active tortoise locations away from burrows were closer to washes and perennial plants than were random points. Our results can help planners locate juvenile tortoises and avoid impacts to habitat critical for this life stage. Additionally, our results provide targets for habitat protection and restoration and suggest that diverse and abundant small-mammal populations and the availability of creosote bush are vital for juvenile desert tortoises in the Eastern Mojave Desert.

  4. Phased Restoration Plan for Degraded Land in North Korea by the Clustered Distribution Pattern of Suitable Afforestation Plants

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Lee, W. K.; Choi, H. A.; Yoo, H.; Song, C.; Son, Y.; Cha, S.; Bae, S. W.

    2017-12-01

    Degraded forest of North Korea (DPRK; The Democratic People's Republic of Koprea) is not only confined itself, it could cause serious problem in Korean Peninsula. The importance of restoration for degraded land has increased to improve an healthy ecosystem and solve a shortage of food in North Korea lately. On the other hand, although effort of North Korea government, degraded problem have consistently got worse. There are two main reasons it does not show effectively. The most critical one is absence of technique and information to restore, they concentrate urgent problem which is related to a poor food supply. The other problem is that they demand an efficiency plan in a short period. In these aspect, this study aims selecting suitable tree by spatial characteristics and establishing phased restoration plan to support policy decision about a degraded land in North Korea. The suitable tree for restoration is taken from references which involve natural plant distribution of North and South Korea (ROK; Republic of Korea). Optimal environmental predicted map is deducted from accumulated data of plant physiology whose endemic environmental optimal range individually. It is integrated a map by order of priorities that first is suitable tree species according to the region, and second is clustering distribution rate in a same species. The two types of priority is applied to weighting method. The research result shows that 23 afforestation species fit to restore, and lager distributed plants agree with the major species in Korean Peninsula. The integrated map considers weight of priorities, and it appears that Picea jezoensis is matched the widest. The integrated map shows a view of suitable restoration according to the space, but this is finespun to utilize in a policy. Therefore It provides 3 step plan to support policy decision by Block Statistics, as 12.5km (long-term general plan), 5km (medium-term detailed plan), 1km (short-term implementation plan).

  5. Community occupancy responses of small mammals to restoration treatments in ponderosa pine forests, northern Arizona, USA.

    PubMed

    Kalies, E L; Dickson, B G; Chambers, C L; Covington, W W

    2012-01-01

    In western North American conifer forests, wildfires are increasing in frequency and severity due to heavy fuel loads that have accumulated after a century of fire suppression. Forest restoration treatments (e.g., thinning and/or burning) are being designed and implemented at large spatial and temporal scales in an effort to reduce fire risk and restore forest structure and function. In ponderosa pine (Pinus ponderosa) forests, predominantly open forest structure and a frequent, low-severity fire regime constituted the evolutionary environment for wildlife that persisted for thousands of years. Small mammals are important in forest ecosystems as prey and in affecting primary production and decomposition. During 2006-2009, we trapped eight species of small mammals at 294 sites in northern Arizona and used occupancy modeling to determine community responses to thinning and habitat features. The most important covariates in predicting small mammal occupancy were understory vegetation cover, large snags, and treatment. Our analysis identified two generalist species found at relatively high occupancy rates across all sites, four open-forest species that responded positively to treatment, and two dense-forest species that responded negatively to treatment unless specific habitat features were retained. Our results indicate that all eight small mammal species can benefit from restoration treatments, particularly if aspects of their evolutionary environment (e.g., large trees, snags, woody debris) are restored. The occupancy modeling approach we used resulted in precise species-level estimates of occupancy in response to habitat attributes for a greater number of small mammal species than in other comparable studies. We recommend our approach for other studies faced with high variability and broad spatial and temporal scales in assessing impacts of treatments or habitat alteration on wildlife species. Moreover, since forest planning efforts are increasingly focusing on

  6. Dealing with public concerns in restoring fire to the forest

    Treesearch

    Leslie A. C. Weldon

    1996-01-01

    Public support is important to all restoration efforts on public lands. Some types of restoration activities are easier for the public to support than others. Restoring wetlands, habitat restoration for salmon or burrowing owls, and vegetative rehabilitation are generally acceptable practices. Most restoration projects and activities such as these do not have much...

  7. Guidance for Habitat Restoration Monitoring: Framework for Monitoring Plan Development and Implementation (User’s Guide)

    DTIC Science & Technology

    2004-08-01

    release; distribution is unlimited. ENGINEERING SERVICE CENTER Port Hueneme, California 93043-4370 (This page intentionally blank.) REPORT DOCUMENTATION...responses. For example, an extended period of drought may greatly retard, set back, or even prevent establishment of a desired plant species or...Categories of Potential Chemical Monitoring Dataa Monitoring Variable Habitat Type Water Quality pH REDOX DO Salinity Freshwater wetlands S−M S–M M S–M

  8. Transforming ecosystems: When, where, and how to restore contaminated sites.

    PubMed

    Rohr, Jason R; Farag, Aïda M; Cadotte, Marc W; Clements, William H; Smith, James R; Ulrich, Cheryl P; Woods, Richard

    2016-04-01

    Chemical contamination has impaired ecosystems, reducing biodiversity and the provisioning of functions and services. This has spurred a movement to restore contaminated ecosystems and develop and implement national and international regulations that require it. Nevertheless, ecological restoration remains a young and rapidly growing discipline and its intersection with toxicology is even more nascent and underdeveloped. Consequently, we provide guidance to scientists and practitioners on when, where, and how to restore contaminated ecosystems. Although restoration has many benefits, it also can be expensive, and in many cases systems can recover without human intervention. Hence, the first question we address is: "When should we restore contaminated ecosystems?" Second, we provide suggestions on what to restore-biodiversity, functions, services, all 3, or something else--and where to restore given expected changes to habitats driven by global climate change. Finally, we provide guidance on how to restore contaminated ecosystems. To do this, we analyze critical aspects of the literature dealing with the ecology of restoring contaminated ecosystems. Additionally, we review approaches for translating the science of restoration to on-the-ground actions, which includes discussions of market incentives and the finances of restoration, stakeholder outreach and governance models for ecosystem restoration, and working with contractors to implement restoration plans. By explicitly considering the mechanisms and strategies that maximize the success of the restoration of contaminated sites, we hope that our synthesis serves to increase and improve collaborations between restoration ecologists and ecotoxicologists and set a roadmap for the restoration of contaminated ecosystems. © 2015 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC.

  9. Evaluating some proposed matrices for scoring sub-optimal red-cockaded woodpecker foraging habitat in relation to the 2003 recovery plan

    Treesearch

    Donald J. Lipscomb; Thomas M. Williams

    2006-01-01

    We have used RCWFAT (an ARC-INFO program that evaluates RCW habitat) to examine the 2003 Red Cockaded Woodpecker (RCW) Recovery Plan, which will influence silvicultural activities on large tracts of southeastern forests. The new plan includes 11 specific characteristics of forest stands that constitute “Good Quality Foraging Habitat” (GQFH) and requires 120 to 200...

  10. Chesapeake Bay Watershed - Protecting the Chesapeake Bay and its rivers through science, restoration, and partnership

    USGS Publications Warehouse

    ,

    2012-01-01

    The Chesapeake Bay, the Nation's largest estuary, has been degraded due to the impact of human-population increase, which has doubled since 1950, resulting in degraded water quality, loss of habitat, and declines in populations of biological communities. Since the mid-1980s, the Chesapeake Bay Program (CBP), a multi-agency partnership which includes the Department of Interior (DOI), has worked to restore the Bay ecosystem. The U.S. Geological Survey (USGS) has the critical role of providing unbiased scientific information that is utilized to document and understand ecosystem change to help assess the effectiveness of restoration strategies in the Bay and its watershed. The USGS revised its Chesapeake Bay science plan for 2006-2011 to address the collective needs of the CBP, DOI, and USGS with a mission to provide integrated science for improved understanding and management of the Bay ecosystem. The USGS science themes for this mission are: Causes and consequences of land-use change; Impact of climate change and associated hazards; Factors affecting water quality and quantity; Ability of habitat to support fish and bird populations; and Synthesis and forecasting to improve ecosystem assessment, conservation, and restoration.

  11. High value of ecological information for river connectivity restoration

    USGS Publications Warehouse

    Sethi, Suresh; O'Hanley, Jesse R.; Gerken, Jonathon; Ashline, Joshua; Bradley, Catherine

    2017-01-01

    ContextEfficient restoration of longitudinal river connectivity relies on barrier mitigation prioritization tools that incorporate stream network spatial structure to maximize ecological benefits given limited resources. Typically, ecological benefits of barrier mitigation are measured using proxies such as the amount of accessible riverine habitat.ObjectivesWe developed an optimization approach for barrier mitigation planning which directly incorporates the ecology of managed taxa, and applied it to an urbanizing salmon-bearing watershed in Alaska.MethodsA novel river connectivity metric that exploits information on the distribution and movement of managed taxon was embedded into a barrier prioritization framework to identify optimal mitigation actions given limited restoration budgets. The value of ecological information on managed taxa was estimated by comparing costs to achieve restoration targets across alternative barrier prioritization approaches.ResultsBarrier mitigation solutions informed by life history information outperformed those using only river connectivity proxies, demonstrating high value of ecological information for watershed restoration. In our study area, information on salmon ecology was typically valued at 0.8–1.2 M USD in costs savings to achieve a given benefit level relative to solutions derived only from stream network information, equating to 16–28% of the restoration budget.ConclusionsInvesting in ecological studies may achieve win–win outcomes of improved understanding of aquatic ecology and greater watershed restoration efficiency.

  12. Umatilla River Subbasin Fish Habitat Improvement Program, 1996-2003 Summary Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Hilaire, Danny R.; Montgomery, Michael; Bailey, Timothy D.

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The last Annual Program Report was submitted in 1997, and described projects undertaken in 1995. This report describes Program activities carried out in 2003, along with a summary of projects undertaken during the years 1996 through 2002. The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestockmore » exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary table of past projects (1996-2002), along with a text description of more extensive habitat improvement projects, including: (1) Implementation of a four-phased project on the Lobato property (Birch Creek) beginning in 1996 and involving a demonstration bioengineering site and riparian improvements (fencing, planting), (2) Implementation of stable channel design/instream structure placement on the Houser property, East Birch Creek, beginning in 1998, an (3) Implementation of a joint, US Army Corps of Engineers/ODFW (cost share) project beginning in 2001 on the Brogoitti property, East Birch Creek, which involved implementation of stable channel design/construction and riparian improvement treatments.« less

  13. Phase III Early Restoration Public Meetings | NOAA Gulf Spill Restoration

    Science.gov Websites

    Archive Home Phase III Early Restoration Public Meetings Phase III Early Restoration Public Meetings share Posted on December 6, 2013 | Assessment and Early Restoration Restoration Area Title: Phase III Early on the draft plan for the third phase of Early Restoration, which proposes more than $625 million in

  14. Testing the robustness of management decisions to uncertainty: Everglades restoration scenarios.

    PubMed

    Fuller, Michael M; Gross, Louis J; Duke-Sylvester, Scott M; Palmer, Mark

    2008-04-01

    To effectively manage large natural reserves, resource managers must prepare for future contingencies while balancing the often conflicting priorities of different stakeholders. To deal with these issues, managers routinely employ models to project the response of ecosystems to different scenarios that represent alternative management plans or environmental forecasts. Scenario analysis is often used to rank such alternatives to aid the decision making process. However, model projections are subject to uncertainty in assumptions about model structure, parameter values, environmental inputs, and subcomponent interactions. We introduce an approach for testing the robustness of model-based management decisions to the uncertainty inherent in complex ecological models and their inputs. We use relative assessment to quantify the relative impacts of uncertainty on scenario ranking. To illustrate our approach we consider uncertainty in parameter values and uncertainty in input data, with specific examples drawn from the Florida Everglades restoration project. Our examples focus on two alternative 30-year hydrologic management plans that were ranked according to their overall impacts on wildlife habitat potential. We tested the assumption that varying the parameter settings and inputs of habitat index models does not change the rank order of the hydrologic plans. We compared the average projected index of habitat potential for four endemic species and two wading-bird guilds to rank the plans, accounting for variations in parameter settings and water level inputs associated with hypothetical future climates. Indices of habitat potential were based on projections from spatially explicit models that are closely tied to hydrology. For the American alligator, the rank order of the hydrologic plans was unaffected by substantial variation in model parameters. By contrast, simulated major shifts in water levels led to reversals in the ranks of the hydrologic plans in 24.1-30.6% of

  15. Aquatic Trophic Productivity model: A decision support model for river restoration planning in the Methow River, Washington

    USGS Publications Warehouse

    Benjamin, Joseph R.; Bellmore, J. Ryan

    2016-05-19

    In this report, we outline the structure of a stream food-web model constructed to explore how alternative river restoration strategies may affect stream fish populations. We have termed this model the “Aquatic Trophic Productivity model” (ATP). We present the model structure, followed by three case study applications of the model to segments of the Methow River watershed in northern Washington. For two case studies (middle Methow River and lower Twisp River floodplain), we ran a series of simulations to explore how food-web dynamics respond to four distinctly different, but applied, strategies in the Methow River watershed: (1) reconnection of floodplain aquatic habitats, (2) riparian vegetation planting, (3) nutrient augmentation (that is, salmon carcass addition), and (4) enhancement of habitat suitability for fish. For the third case study, we conducted simulations to explore the potential fish and food-web response to habitat improvements conducted in 2012 at the Whitefish Island Side Channel, located in the middle Methow River.

  16. Strategic plan for the Coordinated Intermountain Restoration Project

    USGS Publications Warehouse

    Pyke, David A.; Pellant, Michael L.

    2002-01-01

    agencies within the region. U.S. Geological Survey funds will support (1) continued development of VegSpec, a computer program that is a restoration expert system, (2) research to examine changes in ecosystem processes when native plant-dominated communities shift to communities dominated by exotic annual grasses, and (3) research to address mechanisms for establishing native plants in locations dominated by exotic annual grasses. Through these initial funds, USGS hopes to leverage additional research with other agencies (e.g., BLM’s Great Basin Restoration Initiative or the Native Plant Materials Development Project, which is an interagency program to supply and manage native plant materials for restoration and rehabilitation on Federal lands) or funding organizations (e.g., the U.S. Department of Agriculture’s [USDA] National Research Initiative Competitive Grants Program, or the USDA’s and U.S. Department of the Interior’s [USDOI] Joint Fire Science Program), and to obtain additional research partners (e.g., university or Federal scientists) willing to expand this effort to address all aspects of this strategic plan.

  17. Multi-scale habitat selection of the endangered Hawaiian Goose

    USGS Publications Warehouse

    Leopold, Christina R.; Hess, Steven C.

    2013-01-01

    After a severe population reduction during the mid-20th century, the endangered Hawaiian Goose (Branta sandvicensis), or Nēnē, has only recently re-established its seasonal movement patterns on Hawai‘i Island. Little is currently understood about its movements and habitat use during the nonbreeding season. The objectives of this research were to identify habitats preferred by two subpopulations of the Nēnē and how preferences shift seasonally at both meso-and fine scales. From 2009 to 2011, ten Nēnē ganders were outfitted with 40-to 45-g satellite transmitters with GPS capability. We used binary logistic regression to compare habitat use versus availability and an information-theoretic approach for model selection. Meso-scale habitat modeling revealed that Nēnē preferred exotic grass and human-modified landscapes during the breeding and molting seasons and native subalpine shrubland during the nonbreeding season. Fine-scale habitat modeling further indicated preference for exotic grass, bunch grass, and absence of trees. Proximity to water was important during molt, suggesting that the presence of water may provide escape from introduced mammalian predators while Nēnē are flightless. Finescale species-composition data added relatively little to understanding of Nēnē habitat preferences modeled at the meso scale, suggesting that the meso-scale is appropriate for management planning. Habitat selection during our study was consistent with historical records, although dissimilar from more recent studies of other subpopulations. Nēnē make pronounced seasonal movements between existing reserves and use distinct habitat types; understanding annual patterns has implications for the protection and restoration of important seasonal habitats.

  18. A haptics-assisted cranio-maxillofacial surgery planning system for restoring skeletal anatomy in complex trauma cases.

    PubMed

    Olsson, Pontus; Nysjö, Fredrik; Hirsch, Jan-Michaél; Carlbom, Ingrid B

    2013-11-01

       Cranio-maxillofacial (CMF) surgery to restore normal skeletal anatomy in patients with serious trauma to the face can be both complex and time-consuming. But it is generally accepted that careful pre-operative planning leads to a better outcome with a higher degree of function and reduced morbidity in addition to reduced time in the operating room. However, today's surgery planning systems are primitive, relying mostly on the user's ability to plan complex tasks with a two-dimensional graphical interface.    A system for planning the restoration of skeletal anatomy in facial trauma patients using a virtual model derived from patient-specific CT data. The system combines stereo visualization with six degrees-of-freedom, high-fidelity haptic feedback that enables analysis, planning, and preoperative testing of alternative solutions for restoring bone fragments to their proper positions. The stereo display provides accurate visual spatial perception, and the haptics system provides intuitive haptic feedback when bone fragments are in contact as well as six degrees-of-freedom attraction forces for precise bone fragment alignment.    A senior surgeon without prior experience of the system received 45 min of system training. Following the training session, he completed a virtual reconstruction in 22 min of a complex mandibular fracture with an adequately reduced result.    Preliminary testing with one surgeon indicates that our surgery planning system, which combines stereo visualization with sophisticated haptics, has the potential to become a powerful tool for CMF surgery planning. With little training, it allows a surgeon to complete a complex plan in a short amount of time.

  19. 78 FR 34402 - Final Environmental Impact Statement, Habitat Conservation Plan, and Implementing Agreement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ...-FF03E15000] Final Environmental Impact Statement, Habitat Conservation Plan, and Implementing Agreement, Ni... Environmental Impact Statement (FEIS) associated with an application received from NiSource Inc. (hereafter ``Ni... Endangered Species Act of 1973, as amended (ESA). If issued, the ITP would authorize NiSource to take 10...

  20. Using remote sensing data to assess salmon habitat status in rivers and floodplains of Puget Sound, USA

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Pess, G. R.; Hall, J.; Timpane-Padgham, B.; Stefankiv, O.; Liermann, M. C.; Fresh, K.; Rowse, M.

    2015-12-01

    Natural processes create dynamic habitat features in large rivers and floodplains, and past land uses that restrict fluvial processes have altered habitat conditions in those environments in Puget Sound, USA. As a result, Chinook salmon and steelhead are listed as threatened species under the US Endangered Species Act (ESA). To help restore these salmon populations, restoration actions often focus on removing constraints on natural processes to restore fluvial dynamics and ultimately restore critical salmon habitats on floodplains. An important aspect of this restoration effort is monitoring whether habitat conditions are improving as anticipated, yet there are currently few protocols available for monitoring trends in large river and floodplain habitats. We identified several remote-sensing metrics that are indicators of salmon habitat condition, and developed repeatable protocols for measuring those metrics. We then tested their sensitivity to land use change by comparing habitat conditions among land cover classes (developed, agriculture, forested, and mixed). As expected, metrics of habitat complexity or condition such as side-channel length, node density, wood jam area, or riparian buffer widths were highest in forested sites and lowest in agriculture and urban sites. By contrast, percent disconnected floodplain and percent armored banks were highest in developed sites and lowest in forested sites. Our results indicate that remote sensing metrics are sensitive enough to detect differences in habitat status among land cover classes, and therefore help us understand the impact of various land uses on habitat conditions. However, detecting trends in habitat condition through time may be difficult because magnitudes of change through time are very small.

  1. Integrating remotely acquired and field data to assess effects of setback levees on riparian and aquatic habitat in glacial-melt water rivers

    USGS Publications Warehouse

    Konrad, C.P.; Black, R.W.; Voss, F.; Neale, C. M. U.

    2008-01-01

    Setback levees, in which levees are reconstructed at a greater distance from a river channel, are a promising restoration technique particularly for alluvial rivers with broad floodplains where river-floodplain connectivity is essential to ecological processes. Documenting the ecological outcomes of restoration activities is essential for assessing the comparative benefits of different restoration approaches and for justifying new restoration projects. Remote sensing of aquatic habitats offers one approach for comprehensive, objective documentation of river and floodplain habitats, but is difficult in glacial rivers because of high suspended-sediment concentrations, braiding and a lack of large, well-differentiated channel forms such as riffles and pools. Remote imagery and field surveys were used to assess the effects of recent and planned setback levees along the Puyallup River and, more generally, the application of multispectral imagery for classifying aquatic and riparian habitats in glacial-melt water rivers. Airborne images were acquired with a horizontal ground resolution of 0.5 m in three spectral bands (0.545-0.555, 0.665-0.675 and 0.790-0.810 ??m) spanning from green to near infrared (NIR) wavelengths. Field surveys identified river and floodplain habitat features and provided the basis for a comparative hydraulic analysis. Broad categories of aquatic habitat (smooth and rough water surface), exposed sediment (sand and boulder) and vegetated surfaces (herbaceous and deciduous shrub/forest) were classified accurately using the airborne images. Other categories [e.g. conifers, boulder, large woody debtis (LWD)] and subdivisions of broad categories (e.g. riffles and runs) were not successfully classified either because these features did not form large patches that could be identified on the imagery or their spectral reflectances were not distinct from those of other habitat types. Airborne imagery was critical for assessing fine-scale aquatic habitat

  2. Key tiger habitats in the Garo Hills of Meghalaya

    Treesearch

    Ashish Kumar; Bruce G. Marcot

    2010-01-01

    We describe assumed tiger habitat characteristics and attempt to identify potential tiger habitats in the Garo Hills region of Meghalaya, North East India. Conserving large forest tracts and protected wildlife habitats provides an opportunity for restoring populations of wide-ranging wildlife such as tigers and elephants. Based on limited field observations coupled...

  3. NOAA Gulf Spill Restoration |

    Science.gov Websites

    Plan, Focusing on Recreational Use and Nutrient Reduction Louisiana Trustees Release Fourth Draft Restoration Plan, Focusing on Recreational Use and Nutrient Reduction Read More... Florida Trustee Implementation Group Releases Phase V.2 Final Restoration Plan Florida Trustee Implementation Group Releases

  4. Remote sensing for restoration planning: how the big picture can inform stakeholders

    Treesearch

    Susan Cordell; Erin J. Questad; Gregory P. Asner; Kealoha M. Kinney; Jarrod M. Thaxton; Amanda Uowolo; Sam Brooks; Mark W. Chynoweth

    2016-01-01

    The use of remote sensing in ecosystem management has transformed how land managers, practitioners, and policymakers evaluate ecosystem loss, gain, and change at multiple spatial and temporal scales. Less developed is the use of these spatial tools for planning, implementing, and evaluating ecosystem restoration projects and especially so in multifunctional...

  5. Planning | NOAA Gulf Spill Restoration

    Science.gov Websites

    restoration in the Gulf. Since the Deepwater Horizon oil spill, we've worked hard to develop both broad includes an assessment of the injury to natural resources caused by the oil spill and the types of billion with BP. Early Restoration In 2011, one year after the Deepwater Horizon oil spill, BP agreed to

  6. A spatial modeling approach to identify potential butternut restoration sites in Mammoth Cave National Park

    USGS Publications Warehouse

    Thompson, L.M.; Van Manen, F.T.; Schlarbaum, S.E.; DePoy, M.

    2006-01-01

    Incorporation of disease resistance is nearly complete for several important North American hardwood species threatened by exotic fungal diseases. The next important step toward species restoration would be to develop reliable tools to delineate ideal restoration sites on a landscape scale. We integrated spatial modeling and remote sensing techniques to delineate potential restoration sites for Butternut (Juglans cinerea L.) trees, a hardwood species being decimated by an exotic fungus, in Mammoth Cave National Park (MCNP), Kentucky. We first developed a multivariate habitat model to determine optimum Butternut habitats within MCNP. Habitat characteristics of 54 known Butternut locations were used in combination with eight topographic and land use data layers to calculate an index of habitat suitability based on Mahalanobis distance (D2). We used a bootstrapping technique to test the reliability of model predictions. Based on a threshold value for the D2 statistic, 75.9% of the Butternut locations were correctly classified, indicating that the habitat model performed well. Because Butternut seedlings require extensive amounts of sunlight to become established, we used canopy cover data to refine our delineation of favorable areas for Butternut restoration. Areas with the most favorable conditions to establish Butternut seedlings were limited to 291.6 ha. Our study provides a useful reference on the amount and location of favorable Butternut habitat in MCNP and can be used to identify priority areas for future Butternut restoration. Given the availability of relevant habitat layers and accurate location records, our approach can be applied to other tree species and areas. ?? 2006 Society for Ecological Restoration International.

  7. The importance of nature's invisible fabric: food web structure mediates modeled responses to river restoration

    NASA Astrophysics Data System (ADS)

    Bellmore, R.; Benjamin, J.; Newsom, M.; Bountry, J.; Dombroski, D.

    2016-12-01

    Restoration is frequently aimed at the recovery of target species, but also influences the larger food web in which these species participate. Effects of restoration on this broader network of organisms can influence target species both directly and indirectly via changes in energy flow through food webs. To help incorporate these complexities into river restoration planning we constructed a food web model that links river food web dynamics to in-stream physical habitat and riparian vegetation conditions. We present an application of this model to the Methow River, Washington (USA), a location of on-going restoration aimed at recovering salmon. Three restoration strategies were simulated: riparian vegetation restoration, nutrient augmentation via salmon carcass addition, and floodplain reconnection. To explore how food web structure mediates responses to these actions, we modified the food web by adding populations of invasive aquatic snails and nonnative fish. Simulations suggest that floodplain reconnection may be a better strategy than carcass addition and vegetation planting for improving conditions for salmon in this river segment. However, modeled responses were strongly sensitive to changes in the structure of the food web. The addition of invasive snails and nonnative fishes modified pathways of energy through the food web, which negated restoration improvements. This finding illustrates that forecasting responses to restoration may require accounting for the structure of food webs, and that changes in this structure—as might be expected with the spread of invasive species—could compromise restoration outcomes. By elucidating the direct and indirect pathways by which restoration affects target species, dynamic food web models can improve restoration planning by fostering a deeper understanding of system connectedness and dynamics.

  8. Restoration of oyster reefs in an estuarine lake: population dynamics and shell accretion

    USGS Publications Warehouse

    Casas, Sandra M.; La Peyre, Jerome F.; La Peyre, Megan K.

    2015-01-01

    Restoration activities inherently depend on understanding the spatial and temporal variation in basic demographic rates of the species of interest. For species that modify and maintain their own habitat such as the eastern oyster Crassostrea virginica, understanding demographic rates and their impacts on population and habitat success are crucial to ensuring restoration success. We measured oyster recruitment, density, size distribution, biomass, mortality and Perkinsus marinus infection intensity quarterly for 3 yr on shallow intertidal reefs created with shell cultch in March 2009. All reefs were located within Sister Lake, LA. Reefs were placed in pairs at 3 different locations within the lake; pairs were placed in low and medium energy sites within each location. Restored reefs placed within close proximity (<8 km) experienced very different development trajectories; there was high inter-site and inter-annual variation in recruitment and mortality of oysters, with only slight variation in growth curves. Despite this high variation in population dynamics, all reefs supported dense oyster populations (728 ± 102 ind. m-2) and high live oyster biomass (>14.6 kg m-2) at the end of 3 yr. Shell accretion, on average, exceeded estimated rates required to keep pace with local subsidence and shell loss. Variation in recruitment, growth and survival drives local site-specific population success, which highlights the need to understand local water quality, hydrodynamics, and metapopulation dynamics when planning restoration.

  9. Protect and Restore Red River Watershed, 2007-2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bransford, Stephanie

    2009-05-04

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPAmore » efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).« less

  10. An index of reservoir habitat impairment

    USGS Publications Warehouse

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  11. Bat response to carolina bays and wetland restoration in the southeastern U.S. Coastal Plain.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, Jennifer M.; Michael A. Menzel; John C. Kilgo

    2005-09-01

    Abstract: Bat activity in the southeastern United States is concentrated over riparian areas and wetland habitats. The restoration and creation of wetlands for mitigation purposes is becoming common in the Southeast. Understanding the effects of these restoration efforts on wetland flora and fauna is thus becoming increasingly important. Because bats (Order: Chiroptera) consist of many species that are of conservation concern and are commonly associated with wetland and riparian habitats in the Southeast (making them a good general indicator for the condition of wetland habitats), we monitored bat activity over restored and reference Carolina bays surrounded by pine savanna (Pinusmore » spp.) or mixed pine-hardwood habitat types at the Savannah River Site in South Carolina. In order to determine how wetland restoration efforts affected the bat community, we monitored bat activity above drained Carolina bays pre- and post-restoration. Our results indicate that bat activity was greater over reference (i.e., undrained) than drained bays prior to the restorative efforts. One year following combined hydrologic and vegetation treatment, however, bat activity was generally greater over restored than reference bays. Bat activity was also greater over both reference and restored bays than in random, forested interior locations. We found significantly more bat activity after restoration than prior to restoration for all but one species in the treatment bays, suggesting that Carolina bay restoration can have almost immediate positive impacts on bat activity.« less

  12. 78 FR 54478 - Endangered and Threatened Wildlife and Plants; Permits; Low-Effect Habitat Conservation Plan for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... the Utah Prairie Dog in Iron County, Utah AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice... Draft Low-effect Habitat Conservation Plan for the Utah prairie dog in Iron County, Utah, for review and... Conservation Plan for the Utah prairie dog in Iron County, Utah. The Iron County Commission has prepared a...

  13. Systems Modeling to Improve River, Riparian, and Wetland Habitat Quality and Area

    NASA Astrophysics Data System (ADS)

    Alafifi, A.

    2016-12-01

    The suitability of watershed habitat to support the livelihood of its biota primarily depends on managing flow. Ecological restoration requires finding opportunities to reallocate available water in a watershed to increase ecological benefits and maintain other beneficial uses. We present the Watershed Area of Suitable Habitat (WASH) systems model that recommends reservoir releases, streamflows, and water allocations throughout a watershed to maximize the ecosystem habitat quality. WASH embeds and aggregates area-weighted metrics for aquatic, floodplain, and wetland habitat components as an ecosystem objective to maximize, while maintaining water deliveries for domestic and agricultural uses, mass balance, and available budget for restoration actions. The metrics add spatial and temporal functionality and area coverage to traditional habitat quality indexes and can accommodate multiple species of concern. We apply the WASH model to the Utah portion of the Bear River watershed which includes 8 demand sites, 5 reservoirs and 37 nodes between the Utah-Idaho state line and the Great Salt Lake. We recommend water allocations to improve current conservation efforts and show tradeoffs between human and ecosystem uses of water. WASH results are displayed on an open-source web mapping application that allows stakeholders to access, visualize, and interact with the model data and results and compare current and model-recommended operations. Results show that the Bear River is largely developed and appropriated for human water uses. However, increasing reservoirs winter and early spring releases and minimizing late spring spill volumes can significantly improve habitat quality without harming agricultural or urban water users. The spatial and temporal reallocation of spring spills to environmental uses creates additional 70 thousand acres of suitable habitat in the watershed without harming human users. WASH also quantifies the potential environmental gains and losses from

  14. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning.

    PubMed

    Terrado, Marta; Sabater, Sergi; Chaplin-Kramer, Becky; Mandle, Lisa; Ziv, Guy; Acuña, Vicenç

    2016-01-01

    There is a growing pressure of human activities on natural habitats, which leads to biodiversity losses. To mitigate the impact of human activities, environmental policies are developed and implemented, but their effects are commonly not well understood because of the lack of tools to predict the effects of conservation policies on habitat quality and/or diversity. We present a straightforward model for the simultaneous assessment of terrestrial and aquatic habitat quality in river basins as a function of land use and anthropogenic threats to habitat that could be applied under different management scenarios to help understand the trade-offs of conservation actions. We modify the InVEST model for the assessment of terrestrial habitat quality and extend it to freshwater habitats. We assess the reliability of the model in a severely impaired basin by comparing modeled results to observed terrestrial and aquatic biodiversity data. Estimated habitat quality is significantly correlated with observed terrestrial vascular plant richness (R(2)=0.76) and diversity of aquatic macroinvertebrates (R(2)=0.34), as well as with ecosystem functions such as in-stream phosphorus retention (R(2)=0.45). After that, we analyze different scenarios to assess the suitability of the model to inform changes in habitat quality under different conservation strategies. We believe that the developed model can be useful to assess potential levels of biodiversity, and to support conservation planning given its capacity to forecast the effects of management actions in river basins. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A restoration practitioner's guide to the restoration gene pool concept

    Treesearch

    Thomas A. Jones; Thomas A. Monaco

    2007-01-01

    Choosing plant materials for each desired species is often one of the most difficult steps in developing a restoration plan. The Restoration Gene Pool concept was developed to clarify the options available to the ecological restoration practitioner in terms of plant materials. We present a decision-making flowchart incorporating the issues delineated in the Restoration...

  16. Geospatial interface and model for predicting potential seagrass habitat

    EPA Science Inventory

    Restoration of ecosystem services provided by seagrass habitats in estuaries requires a clear understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We have developed a geos...

  17. Rainwater Wildlife Area Habitat Evaluation Procedures Report; A Columbia Basin Wildlife Mitigation Project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen B.

    vegetation species, allowance of normative processes such as fire occurrence, and facilitating development of natural stable stream channels and associated floodplains. Implementation of habitat enhancement and restoration activities could generate an additional 1,850 habitat units in 10 years. Baseline and estimated future habitat units total 7,035.3 for the Rainwater Wildlife Area. Habitat protection, enhancement and restoration will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program.« less

  18. Combining ecosystem services assessment with structured decision making to support ecological restoration planning.

    PubMed

    Martin, David M; Mazzotta, Marisa; Bousquin, Justin

    2018-04-10

    Accounting for ecosystem services in environmental decision making is an emerging research topic. Modern frameworks for ecosystem services assessment emphasize evaluating the social benefits of ecosystems, in terms of who benefits and by how much, to aid in comparing multiple courses of action. Structured methods that use decision analytic-approaches are emerging for the practice of ecological restoration. In this article, we combine ecosystem services assessment with structured decision making to estimate and evaluate measures of the potential benefits of ecological restoration with a case study in the Woonasquatucket River watershed, Rhode Island, USA. We partnered with a local watershed management organization to analyze dozens of candidate wetland restoration sites for their abilities to supply five ecosystem services-flood water retention, scenic landscapes, learning opportunities, recreational opportunities, and birds. We developed 22 benefit indicators related to the ecosystem services as well as indicators for social equity and reliability that benefits will sustain in the future. We applied conceptual modeling and spatial analysis to estimate indicator values for each candidate restoration site. Lastly, we developed a decision support tool to score and aggregate the values for the organization to screen the restoration sites. Results show that restoration sites in urban areas can provide greater social benefits than sites in less urban areas. Our research approach is general and can be used to investigate other restoration planning studies that perform ecosystem services assessment and fit into a decision-making process.

  19. A system to evaluate the scientific quality of biological and restoration objectives using National Wildlife Refuge Comprehensive Conservation Plans as a case study

    USGS Publications Warehouse

    Schroeder, R.L.

    2006-01-01

    It is widely accepted that plans for restoration projects should contain specific, measurable, and science-based objectives to guide restoration efforts. The United States Fish and Wildlife Service (USFWS) is in the process of developing Comprehensive Conservation Plans (CCPs) for more than 500 units in the National Wildlife Refuge System (NWRS). These plans contain objectives for biological and ecosystem restoration efforts on the refuges. Based on USFWS policy, a system was developed to evaluate the scientific quality of such objectives based on three critical factors: (1) Is the objective specific, measurable, achievable, results-oriented, and time-fixed? (2) What is the extent of the rationale that explains the assumptions, logic, and reasoning for the objective? (3) How well was available science used in the development of the objective? The evaluation system scores each factor on a scale of 1 (poor) to 4 (excellent) according to detailed criteria. The biological and restoration objectives from CCPs published as of September 2004 (60 total) were evaluated. The overall average score for all biological and restoration objectives was 1.73. Average scores for each factor were: Factor 1-1.97; Factor 2-1.86; Factor 3-1.38. The overall scores increased from 1997 to 2004. Future restoration efforts may benefit by using this evaluation system during the process of plan development, to ensure that biological and restoration objectives are of the highest scientific quality possible prior to the implementation of restoration plans, and to allow for improved monitoring and adaptive management.

  20. 75 FR 62850 - Endangered and Threatened Wildlife and Plants; Permit; Habitat Conservation Plan for Operation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ...] Endangered and Threatened Wildlife and Plants; Permit; Habitat Conservation Plan for Operation and... as endangered or threatened. The term ``take'' means to harass, harm, pursue, hunt, shoot, wound.... Both adults and fledglings are known to [[Page 62851

  1. Genetic effects of habitat restoration in the Laurentian Great Lakes: an assessment of lake sturgeon origin and genetic diversity

    USGS Publications Warehouse

    Jamie Marie Marranca,; Amy Welsh,; Roseman, Edward F.

    2015-01-01

    Lake sturgeon (Acipenser fulvescens) have experienced significant habitat loss, resulting in reduced population sizes. Three artificial reefs were built in the Huron-Erie corridor in the Great Lakes to replace lost spawning habitat. Genetic data were collected to determine the source and numbers of adult lake sturgeon spawning on the reefs and to determine if the founder effect resulted in reduced genetic diversity. DNA was extracted from larval tail clips and 12 microsatellite loci were amplified. Larval genotypes were then compared to 22 previously studied spawning lake sturgeon populations in the Great Lakes to determine the source of the parental population. The effective number of breeders (Nb) was calculated for each reef cohort. The larval genotypes were then compared to the source population to determine if there were any losses in genetic diversity that are indicative of the founder effect. The St. Clair and Detroit River adult populations were found to be the source parental population for the larvae collected on all three artificial reefs. There were large numbers of contributing adults relative to the number of sampled larvae. There was no significant difference between levels of genetic diversity in the source population and larval samples from the artificial reefs; however, there is some evidence for a genetic bottleneck in the reef populations likely due to the founder effect. Habitat restoration in the Huron-Erie corridor is likely resulting in increased habitat for the large lake sturgeon population in the system and in maintenance of the population's genetic diversity.

  2. Strategic conservation planning for the Eastern North Carolina/Southeastern Virginia Strategic Habitat Conservation Team

    USGS Publications Warehouse

    Alexander-Vaughn, Louise B.; Collazo, Jaime A.; Drew, C. Ashton

    2014-01-01

    The Eastern North Carolina/Southeastern Virginia Strategic Habitat Conservation Team (ENCSEVA) is a partnership among local federal agencies and programs with a mission to apply Strategic Habitat Conservation to accomplish priority landscape-level conservation within its geographic region. ENCSEVA seeks to further landscape-scale conservation through collaboration with local partners. To accomplish this mission, ENCSEVA is developing a comprehensive Strategic Habitat Conservation Plan (Plan) to provide guidance for its members, partners, and collaborators by establishing mutual conservation goals, objectives, strategies, and metrics to gauge the success of conservation efforts. Identifying common goals allows the ENCSEVA team to develop strategies that leverage joint resources and are more likely to achieve desired impacts across the landscape. The Plan will also provide an approach for ENCSEVA to meet applied research needs (identify knowledge gaps), foster adaptive management principles, identify conservation priorities, prioritize threats (including potential impacts of climate change), and identify the required capacity to implement strategies to create more resilient landscapes. ENCSEVA seeks to support the overarching goals of the South Atlantic Landscape Conservation Cooperative (SALCC) and to provide scientific and technical support for conservation at landscape scales as well as inform the management of natural resources in response to shifts in climate, habitat fragmentation and loss, and other landscape-level challenges (South Atlantic LCC 2012). The ENCSEVA ecoregion encompasses the northern third of the SALCC geography and offers a unique opportunity to apply landscape conservation at multiple scales through the guidance of local conservation and natural resource management efforts and by reporting metrics that reflect the effectiveness of those efforts (Figure 1). The Environmental Decision Analysis Team, housed within the North Carolina Cooperative

  3. Rapid genetic restoration of a keystone species exhibiting delayed demographic response

    USDA-ARS?s Scientific Manuscript database

    Genetic founder effects are often expected when animals colonize restored habitat in fragmented landscapes, but empirical data on genetic responses to restoration are limited. We examined the genetic response of banner-tailed kangaroo rats (Dipodomys spectabilis) to landscape-scale grassland restor...

  4. 76 FR 41510 - Draft Environmental Impact Statement and Habitat Conservation Plan for Commercial Wind Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ...] Draft Environmental Impact Statement and Habitat Conservation Plan for Commercial Wind Energy... regional- level construction, operation, and maintenance associated with multiple commercial wind energy...; Attention: Laila Lienesch; Facsimile: 505/248-6922 (Attention: Laila Lienesch); E-Mail: WindEnergy...

  5. Understanding the value of local ecological knowledge and practices for habitat restoration in human-altered floodplain systems: a case from Bangladesh.

    PubMed

    Mamun, Abdullah-Al

    2010-05-01

    Worldwide there is a declining trend in natural fish catch (FAO, The state of world fisheries and aquaculture. http://www.fao.org/documents/show_cdr.asp?url_file=/docrep/007/y5600e/y5600e00.htm , 2002) and Bangladesh is no exception. The vast inland fisheries of Bangladesh have been declining over the years, largely a result of human alteration of the aquatic habitats arising from human interventions in the floodplain systems such as the establishment of water control structures which favor agricultural production but reduce fish habitats. It can be assumed that conventional management measures are not adequate to conserve natural fisheries and exploring alternative knowledge systems to complement existing management is warranted. This paper focuses on local ecological knowledge and several other local practices held by fishers engaging directly with floodplain ecosystems. These knowledge systems and practices may be valuable tools for understanding ecosystems processes and related changes and developing local level responses to avert negative consequences of such changes. This may help in devising alternatives to ecosystem management and the conservation of floodplain fish habitats of Bangladesh and elsewhere in the world. This study was conducted in a natural depression (locally called beel) and its surrounding floodplain system located in north central Bangladesh which has become highly degraded. The results of the study indicate that the fishers and local users of the floodplain ecosystems are rich in local ecological knowledge concerning the hydrology of the floodplains and small lakes, the habitat preferences of fish, the role of agricultural crops on fish habitats, and the impact of habitat human interventions in aquatic ecosystems. Given the apparent inadequacy of the present management regime, this article argues for an inclusion of local knowledge and practices into habitat management as a more holistic approach to floodplain habitat restoration and

  6. Implementing the 2012 North American Waterfowl Management Plan revision: Populations, habitat, and people

    USGS Publications Warehouse

    Humburg, Dale D.; Anderson, Michael G.; Brasher, Michael G.; Carter, Michael F.; Eadie, John M.; Fulton, David C.; Johnson, Fred A.; Runge, Michael C.; Vrtiska, Mark P.

    2018-01-01

    The North American Waterfowl Management Plan (NAWMP) has established a model for wildlife conservation planning over the last 3 decades. Management at a continental scale, leveraged funding, regional partnerships, and a strong science basis have been notable features. Periodic updates to the NAWMP occurred since implementation in 1986; however, a fundamental revision was accomplished in 2012 after extensive stakeholder engagement. An explicit fundamental goal for waterfowl conservation supporters was added in 2012, complementing existing goals for sustainable populations and sufficient habitat found in previous updates. We present a synopsis of progress toward implementation of the 2012 NAWMP and challenge the waterfowl management community to continue with meaningful steps toward achieving NAWMP goals. Adding goals and objectives for supporters increases potential relevance of NAWMP; however, it also presents a level of complexity that was not entirely anticipated. Additionally, the 2012 NAWMP recognized that traditional support from waterfowl hunters alone will not be sufficient to support waterfowl conservation in the future. Simultaneous consideration of multiple objectives, although implicit before, now is a specific focus for habitat and harvest management affecting hunters and other users of the waterfowl resource. The waterfowl management community is faced with revisiting objectives and management actions related to harvest regulations, landscape priorities, habitat conservation, and public engagement to garner broader support. These persistent management challenges are tangible and relevant candidates for greater integration. Ultimately, the structures and processes supporting waterfowl management also will need to be reconsidered.

  7. Case Study-Removal and Restoration of In-stream Sediment Ponds

    EPA Pesticide Factsheets

    Presentation from 2011 on goals and objectives of Case study was to restore impacted streams to a proper dimension, pattern, and profile with an emphasis on restoration of stream and riparian habitats.

  8. Wind River subbasin restoration: Annual report of U.S. Geological Survey activities January 2014 through December 2014

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.

    2015-01-01

    Evaluating restoration efforts is of interest to many managers and agencies so that funding and time are allocated for best results. The evaluation of various life-histories of Lower Columbia River steelhead within the Wind River subbasin provides information to better track populations, and more effectively direct habitat restoration and water allocation planning. Increasingly detailed Viable Salmonid Population information (Crawford and Rumsey 2009), such as that provided by PIT-tagging and instream PTISs networks like those we build and operate in the Wind River subbasin, provide data to better inform policy and management, as life-history strategies and production bottlenecks are identified and understood.

  9. Idaho Habitat and Natural Production Monitoring Part I, 1993 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, Bruce A.; Petrosky, Charles E.

    The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating proposed and existing habitat improvement projects for rainbow-steelhead trout Oncorhynchus mykiss and chinook salmon O. tshawytscha in the Clearwater River and Salmon River drainages on a large scale for the past 8 years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. A mitigation record is being developed using increased carrying capacity and/or survival as the best measures ofmore » benefit from a habitat enhancement project. Determination of full benefit from a project depends on completion or maturation of the project and presence of adequate numbers of fish to document actual increases in fish production. The depressed status of upriver anadromous stocks has precluded measuring full benefits of any habitat project in Idaho. Partial benefit is credited to the mitigation record in the interim period of run restoration.« less

  10. Amphibian dynamics in constructed ponds on a wildlife refuge: developing expected responses to hydrological restoration

    USGS Publications Warehouse

    Hossack, Blake R.

    2017-01-01

    Management actions are based upon predictable responses. To form expected responses to restoration actions, I estimated habitat relationships and trends (2002–2015) for four pond-breeding amphibians on a wildlife refuge (Montana, USA) where changes to restore historical hydrology to the system greatly expanded (≥8 times) the flooded area of the primary breeding site for western toads (Anaxyrus boreas). Additional restoration actions are planned for the near future, including removing ponds that provide amphibian habitat. Multi-season occupancy models based on data from 15 ponds sampled during 7 years revealed that the number of breeding subpopulations increased modestly for Columbia spotted frogs (Rana luteiventris) and was stationary for long-toed salamanders (Ambystoma macrodactylum) and Pacific treefrogs (Pseudacris regilla). For these three species, pond depth was the characteristic that was associated most frequently with occupancy or changes in colonization and extinction. In contrast, a large decrease in colonization by western toads explained the decline from eight occupied ponds in 2002 to two ponds in 2015. This decline occurred despite an increase in wetland area and the colonization of a newly created pond. These changes highlight the challenges of managing for multiple species and how management responses can be unpredictable, possibly reducing the efficacy of targeted actions.

  11. Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaivoda, Alexis

    2004-02-01

    This report summarizes the project implementation and monitoring of all habitat activities in the Hood River basin that occurred over the October 1, 2002 to September 30, 2003 period (FY 03). Some of the objectives in the corresponding statement of work for this contract were not completed within FY 03. A description of the progress during FY 03 and reasoning for deviation from the original tasks and timeline are provided. OBJECTIVE 1 - Provide coordination of all activities, administrative oversight and assist in project implementation and monitoring activities. Administrative oversight and coordination of the habitat statement of work, budget, subcontracts,more » personnel, implementation, and monitoring was provided. OBJECTIVE 2 - Continue to coordinate, implement, and revise, as needed, the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan. The Hood River Fish Habitat Protection, Restoration, and Monitoring Plan was completed in 2000 (Coccoli et al., 2000). This document was utilized for many purposes including: drafting the Watershed Action Plan (Coccoli, 2002), ranking projects for funding, and prioritizing projects to target in the future. This document has been reviewed by many, including stakeholders, agencies, and interested parties. The Hood River Watershed Group Coordinator and author of the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan, Holly Coccoli, has updated and revised the plan. Changes will be reflected in the Hood River Subbasin Plan, and after submission of the Subbasin Plan, a formally revised version of the Monitoring Plan will be put out for review. This will more specifically address changes in the Hood River subbasin since 2000, and reflect changes to fish habitat and needs in the Hood River subbasin regarding monitoring. OBJECTIVE 3 - Evaluate and monitor the habitat, accessibility, and presence of winter steelhead, coho salmon, and resident trout upstream of the Middle Fork Irrigation District

  12. Dispersal constraints for stream invertebrates: setting realistic timescales for biodiversity restoration.

    PubMed

    Parkyn, Stephanie M; Smith, Brian J

    2011-09-01

    Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.

  13. Dispersal Constraints for Stream Invertebrates: Setting Realistic Timescales for Biodiversity Restoration

    NASA Astrophysics Data System (ADS)

    Parkyn, Stephanie M.; Smith, Brian J.

    2011-09-01

    Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.

  14. A Restoration Suitability Index Model for the Eastern Oyster (Crassostrea virginica) in the Mission-Aransas Estuary, TX, USA

    PubMed Central

    Beseres Pollack, Jennifer; Cleveland, Andrew; Palmer, Terence A.; Reisinger, Anthony S.; Montagna, Paul A.

    2012-01-01

    Oyster reefs are one of the most threatened marine habitats on earth, with habitat loss resulting from water quality degradation, coastal development, destructive fishing practices, overfishing, and storm impacts. For successful and sustainable oyster reef restoration efforts, it is necessary to choose sites that support long-term growth and survival of oysters. Selection of suitable sites is critically important as it can greatly influence mortality factors and may largely determine the ultimate success of the restoration project. The application of Geographic Information Systems (GIS) provides an effective methodology for identifying suitable sites for oyster reef restoration and removes much of the uncertainty involved in the sometimes trial and error selection process. This approach also provides an objective and quantitative tool for planning future oyster reef restoration efforts. The aim of this study was to develop a restoration suitability index model and reef quality index model to characterize locations based on their potential for successful reef restoration within the Mission-Aransas Estuary, Texas, USA. The restoration suitability index model focuses on salinity, temperature, turbidity, dissolved oxygen, and depth, while the reef quality index model focuses on abundance of live oysters, dead shell, and spat. Size-specific Perkinsus marinus infection levels were mapped to illustrate general disease trends. This application was effective in identifying suitable sites for oyster reef restoration, is flexible in its use, and provides a mechanism for considering alternative approaches. The end product is a practical decision-support tool that can be used by coastal resource managers to improve oyster restoration efforts. As oyster reef restoration activities continue at small and large-scales, site selection criteria are critical for assisting stakeholders and managers and for maximizing long-term sustainability of oyster resources. PMID:22792410

  15. Summary Document: Restoration Plan for Major Airports after a Bioterrorist Attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raber, E

    2007-01-11

    This document provides general guidelines for developing a Restoration Plan for a major airport following release of a biological warfare agent. San Francisco International Airport was selected as the example airport during development of the Plan to illustrate specific details. The spore forming bacterium Bacillus anthracis was selected as the biological agent of primary concern because it is the most difficult of known bioterrorism agents to inactivate and is considered to be one of the agents most likely to be used as a biological weapon. The focus of the Plan is on activities associated with the Characterization, Remediation, and Clearancemore » Phases that are defined herein. Activities associated with the Notification and First-Response Phases are briefly discussed in Appendixes A and B, respectively. In addition to the main text of this Plan and associated appendixes, a data supplement was developed specifically for San Francisco International Airport. Requests for the data supplement must be made directly to the Emergency Planning Operations Division of San Francisco International Airport.« less

  16. Ecological structure and function in a restored versus natural salt marsh

    PubMed Central

    Rezek, Ryan J.; Lebreton, Benoit; Sterba-Boatwright, Blair

    2017-01-01

    Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions. PMID:29261795

  17. Ecological structure and function in a restored versus natural salt marsh.

    PubMed

    Rezek, Ryan J; Lebreton, Benoit; Sterba-Boatwright, Blair; Beseres Pollack, Jennifer

    2017-01-01

    Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions.

  18. 14. EAST ELEVATION, COTTAGE. EXTERIOR NEARLY RESTORED. INTERIOR UNDERGOING RESTORATION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. EAST ELEVATION, COTTAGE. EXTERIOR NEARLY RESTORED. INTERIOR UNDERGOING RESTORATION. EUCALYPTUS TREE PLANTED BY GERTRUDE KEIL PLANNED FOR REMOVAL. - Gold Ridge Farm, 7777 Bodega Avenue, Sebastopol, Sonoma County, CA

  19. 76 FR 65744 - Draft Environmental Assessment and Draft Habitat Conservation Plan for Lower Colorado River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ...] Draft Environmental Assessment and Draft Habitat Conservation Plan for Lower Colorado River Authority... of availability of documents and announcement of public hearings. SUMMARY: The Lower Colorado River... issuance of an incidental take permit (ITP) to Lower Colorado River Authority Transmission Services...

  20. 43 CFR 10005.14 - Resource features applicable to the plan.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Habitat, including: (1) Protection of existing wetlands, (2) Restoration of drained or otherwise degraded wetlands, (3) Enhancement of wetland habitat. (f) Upland Habitat, including: (1) Protection or restoration... accordance with the Act, projects selected for funding must make substantial contributions to fish, wildlife...

  1. 43 CFR 10005.14 - Resource features applicable to the plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Habitat, including: (1) Protection of existing wetlands, (2) Restoration of drained or otherwise degraded wetlands, (3) Enhancement of wetland habitat. (f) Upland Habitat, including: (1) Protection or restoration... accordance with the Act, projects selected for funding must make substantial contributions to fish, wildlife...

  2. 43 CFR 10005.14 - Resource features applicable to the plan.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Habitat, including: (1) Protection of existing wetlands, (2) Restoration of drained or otherwise degraded wetlands, (3) Enhancement of wetland habitat. (f) Upland Habitat, including: (1) Protection or restoration... accordance with the Act, projects selected for funding must make substantial contributions to fish, wildlife...

  3. Optimizing water depth for wetland-dependent wildlife could increase wetland restoration success, water efficiency, and water security

    USGS Publications Warehouse

    Nadeau, Christopher P.; Conway, Courtney J.

    2015-01-01

    Securing water for wetland restoration efforts will be increasingly difficult as human populations demand more water and climate change alters the hydrologic cycle. Minimizing water use at a restoration site could help justify water use to competing users, thereby increasing future water security. Moreover, optimizing water depth for focal species will increase habitat quality and the probability that the restoration is successful. We developed and validated spatial habitat models to optimize water depth within wetland restoration projects along the lower Colorado River intended to benefit California black rails (Laterallus jamaicensis coturniculus). We observed a 358% increase in the number of black rails detected in the year after manipulating water depth to maximize the amount of predicted black rail habitat in two wetlands. The number of black rail detections in our restoration sites was similar to those at our reference site. Implementing the optimal water depth in each wetland decreased water use while simultaneously increasing habitat suitability for the focal species. Our results also provide experimental confirmation of past descriptive accounts of black rail habitat preferences and provide explicit water depth recommendations for future wetland restoration efforts for this species of conservation concern; maintain surface water depths between saturated soil and 100 mm. Efforts to optimize water depth in restored wetlands around the world would likely increase the success of wetland restorations for the focal species while simultaneously minimizing and justifying water use.

  4. Geomorphic mapping to support river restoration on the Trinity River downstream from Lewiston Dam, California, 1980-2011

    USGS Publications Warehouse

    Curtis, Jennifer A.; Guerrero, Timothy M.

    2015-01-01

    Historic land use, dam construction, water storage, and flow diversions in the Trinity River watershed have resulted in downstream geomorphic change, loss of salmonid habitat, and declines in salmonid populations. The USGS in cooperation with the Trinity River Restoration Program, a multi-agency partnership tasked with implementing federally mandated restoration, completed a geomorphic change assessment to inform the planning process for future restoration work. This report documents an ARCMAP geodatabase (v.10.0) containing geomorphic features digitized from a series of rectified orthophotographs (http://dx.doi.org/10.5066/F7TT4P04). Upland, riparian, and channel features were digitized from six available base images (1980, 1997, 2001, 2006, 2009, and 2011). This report describes the structure of the geodatabase and the methods used to delineate individual geomorphic features.

  5. Habitat suitability index models: A low effort system for planned coolwater and coldwater reservoirs

    USGS Publications Warehouse

    McConnell, William J.; Bergersen, Eric P.; Williamson, Kathryn L.

    1982-01-01

    A novel approach to reservoir habitat evaluation is described and habitat ratings are proposed for five fish species in coolwater and coldwater reservoirs. This approach has the advantages of procedural simplicity and ready availability of input data; consequently, it has potential utility as a screening tool in the early stages of the reservoir planning process.Habitat suitability is determined on the basis of a composite score for five "primary" reservoir attributes (temperature, turbidity, nonliving cover, drawdown, and shallow cove frequency). The va 1ue of each primary reservoi r attribute is determined from one or more "secondary" attributes, which are easily measured variables. Secondary attributes (for example, length of growing season or mean July air temperature) can be directly obtained, prior to construction, from published documents, maps, reservoir plans, and on-site inspections of the proposed reservoir basin.Evaluation criteria and ratings are presented for rainbow trout (Salmo gairdneri), white sucker (Catostomus commersonii), yellow perch (Perca flavescens), common carp (Cyprinus carpio), and black crappie (PomoxTS nigromaculatus). These ratings were derived from literature reviews and from persona 1 experi ence and knowl edge of the authors; however, the system is easily adaptable to change upon further review, differences of opinion by experts, or evaluation of test results under diverse conditions.This technique can be used to evaluate the suitability of a proposed reservoir for different species and to compare the outcomes of alternative construction plans. It could also be expanded to include additional species, which will improve its utility. The system should be useful in determining losses relative to benefits, trade-offs, and potential mitigation measures in reservoir projects.

  6. Mapping anuran habitat suitability to estimate effects of grassland and wetland conservation programs

    USGS Publications Warehouse

    Mushet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    The conversion of the Northern Great Plains of North America to a landscape favoring agricultural commodity production has negatively impacted wildlife habitats. To offset impacts, conservation programs have been implemented by the U.S. Department of Agriculture and other agencies to restore grassland and wetland habitat components. To evaluate effects of these efforts on anuran habitats, we used call survey data and environmental data in ecological niche factor analyses implemented through the program Biomapper to quantify habitat suitability for five anuran species within a 196 km2 study area. Our amphibian call surveys identified Northern Leopard Frogs (Lithobates pipiens), Wood Frogs (Lithobates sylvaticus), Boreal Chorus Frogs (Pseudacris maculata), Great Plains Toads (Anaxyrus cognatus), and Woodhouse’s Toads (Anaxyrus woodhousii) occurring within the study area. Habitat suitability maps developed for each species revealed differing patterns of suitable habitat among species. The most significant findings of our mapping effort were 1) the influence of deep-water overwintering wetlands on suitable habitat for all species encountered except the Boreal Chorus Frog; 2) the lack of overlap between areas of core habitat for both the Northern Leopard Frog and Wood Frog compared to the core habitat for both toad species; and 3) the importance of conservation programs in providing grassland components of Northern Leopard Frog and Wood Frog habitat. The differences in habitats suitable for the five species we studied in the Northern Great Plains, i.e., their ecological niches, highlight the importance of utilizing an ecosystem based approach that considers the varying needs of multiple species in the development of amphibian conservation and management plans.

  7. Going deeper into phosphorus adsorbents for lake restoration: Combined effects of magnetic particles, intraspecific competition and habitat heterogeneity pressure on Daphnia magna.

    PubMed

    Del Arco, Ana; Parra, Gema; de Vicente, Inmaculada

    2018-02-01

    Aquatic population responses to chemical exposure may be exacerbated by intraspecific competition pressures, being also shaped by habitat heterogeneity. Magnetic particles (MPs) have been recently proposed as promising phosphorus (P) adsorbents for lake restoration. This study focuses on assessing the effects of MPs on the abundance of the crustacean Daphnia magna under different levels of both intraspecific competition pressure and habitat heterogeneity. The experimental design consisted of two experiments (in homogeneous and heterogeneous habitats) done in glass jars with four concentrations of MPs: controls of 0g MPsL -1 , and treatments of 1, 1.5 and 2g MPsL -1 . In addition, competition treatments were established by using different population densities, and hence, no competition (C), low (L) and high (H) competition pressures were simulated. The experiments lasted for 7 days, with a 4-day pre-exposure period, in which competition was all allowed to take place, and a 3-day post-exposure period. Twenty-four hours after adding MPs, the MPs were removed by applying a magnetic separation technique. The results showed that competition pressures occurred and significantly reduced population abundances during the pre-exposure period. During the post-exposure period, the combined effects of competition and MPs were detected in both homogeneous (Ho-) and heterogeneous (He-) habitat experiments, showing a significantly drastic reduction in abundances. In fact, the lethal concentration for 50% of the population (LC 50 - 24h) was 0 and 0.16g MPsL -1 in the Ho- and He-experiments respectively, indicating that the addition and especially the removal of MPs cause extreme mortality. These results indicated that even though competition plays a role in shaping populations, its influence was down-weighted by the stronger pressures of MPs. In addition, as no significant differences between homogeneous and heterogeneous habitats were found, we may state that the refuge offered was

  8. Habitat mosaics and path analysis can improve biological conservation of aquatic biodiversity in ecosystems with low-head dams

    USGS Publications Warehouse

    Hitchman, Sean M.; Mather, Martha E.; Smith, Joseph M.; Fencl, Jane S.

    2018-01-01

    Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species

  9. Habitat mosaics and path analysis can improve biological conservation of aquatic biodiversity in ecosystems with low-head dams.

    PubMed

    Hitchman, Sean M; Mather, Martha E; Smith, Joseph M; Fencl, Jane S

    2018-04-01

    Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species richness

  10. Health and safety plan for the Environmental Restoration Program at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C. Jr.; Burman, S.N.; Cipriano, D.J. Jr.

    1994-08-01

    This Programmatic Health and Safety plan (PHASP) is prepared for the U.S. Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program. This plan follows the format recommended by the U.S. Environmental Protection Agency (EPA) for remedial investigations and feasibility studies and that recommended by the EM40 Health and Safety Plan (HASP) Guidelines (DOE February 1994). This plan complies with the Occupational Safety and Health Administration (OSHA) requirements found in 29 CFR 1910.120 and EM-40 guidelines for any activities dealing with hazardous waste operations and emergency response efforts and with OSHA requirements found in 29 CFR 1926.65.more » The policies and procedures in this plan apply to all Environmental Restoration sites and activities including employees of Energy Systems, subcontractors, and prime contractors performing work for the DOE ORNL ER Program. The provisions of this plan are to be carried out whenever activities are initiated that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management o