Sample records for habitat restoration programs

  1. Wetlands reserve program: a partnership to restore wetlands and associated habitat

    Treesearch

    Randall L. Gray

    2005-01-01

    The 1990 Farm Bill created the Wetlands Reserve Program (WRP) to restore and protect wetland, which as of 2002 has enrolled over 1.4 million acres of wetland and upland habitat in 49 states and Puerto Rico. The program is administered by the U. S. Department of Agriculture Natural Resource Conservation Service and delivered in cooperation with many partners from the...

  2. Wildlife Habitat Restoration: Chapter 12

    USGS Publications Warehouse

    Conway, Courtney J.; Borgmann, Kathi L.; Morrison, Michael L.; Mathewson, Heather A.

    2015-01-01

    As the preceding chapters point out, many wildlife species and the habitat they depend on are in peril. However, opportunities exist to restore habitat for many imperiled wildlife species. But what is wildlife habitat restoration? We begin this chapter by defining habitat restoration and then provide recommendations on how to maximize success of future habitat restoration efforts for wildlife. Finally, we evaluate whether we have been successful in restoring wildlife habitat and supply recommendations to advance habitat restoration. Successful restoration requires clear and explicit goals that are based on our best understanding of what the habitat was like prior to the disturbing event. Ideally, a restoration project would include: (1) a summary of prerestoration conditions that define the existing status of wildlife populations and their habitat; (2) a description of habitat features required by the focal or indicator species for persistence; (3) an a priori description of measurable, quantitative metrics that define restoration goals and measures of success; (4) a monitoring plan; (5) postrestoration comparisons of habitat features and wildlife populations with adjacent unmodified areas that are similar to the restoration site; and (6) expert review of the entire restoration plan (i.e., the five aforementioned components).

  3. Monitoring habitat restoration projects: U.S. Fish and Wildlife Service Pacific Region Partners for Fish and Wildlife Program and Coastal Program Protocol

    USGS Publications Warehouse

    Woodward, Andrea; Hollar, Kathy

    2011-01-01

    The U.S. Fish and Wildlife Service's (FWS) Pacific Region (Region 1) includes more than 158 million acres (almost 247,000 square miles) of land base in Idaho, Oregon, Washington, Hawai`i, the Commonwealth of the Northern Mariana Islands, American Samoa, Guam, the Republic of Palau, the Federated States of Micronesia, and the Republic of the Marshall Islands. Region 1 is ecologically diverse with landscapes that range from coral reefs, broadleaf tropical forests, and tropical savannahs in the Pacific Islands, to glacial streams and lakes, lush old-growth rainforests, inland fjords, and coastal shoreline in the Pacific Northwest, to the forested mountains, shrub-steppe desert, and native grasslands in the Inland Northwest. Similarly, the people of the different landscapes perceive, value, and manage their natural resources in ways unique to their respective regions and cultures. The Partners for Fish and Wildlife Program (Partners Program) and Coastal Program work with a variety of partners in Region 1 including individual landowners, watershed councils, land trusts, Soil and Water Conservation Districts, non-governmental organizations, Tribal governments, Native Hawaiian organizations, and local, State, and Federal agencies. The Partners Program is the FWS's vanguard for working with private landowners to voluntarily restore and conserve fish and wildlife habitat. Using non-regulatory incentives, the Partners Program engages willing partners to conserve and protect valuable fish and wildlife habitat on their property and in their communities. This is accomplished by providing the funding support and technical and planning tools needed to make on-the-ground conservation affordable, feasible, and effective. The primary goals of the Pacific Region Partners Program are to: Promote citizen and community-based stewardship efforts for fish and wildlife conservation Contribute to the recovery of at-risk species, Protect the environmental integrity of the National Wildlife

  4. 75 FR 34975 - Notice of Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration Strategy; Request... interagency Estuary Habitat Restoration Council, is providing notice of the Council's intent to revise the ''Estuary Habitat Restoration Strategy'' and requesting public comments to guide its revision. DATES...

  5. Northern bobwhite response to habitat restoration in eastern oklahoma

    USGS Publications Warehouse

    Crosby, Andrew D.; Elmore, R.D.; Leslie,, David M.

    2013-01-01

    In response to the decline of northern bobwhite (Colinus virginianus; hereafter, bobwhite) in eastern Oklahoma, USA, a cost-share incentive program for private landowners was initiated to restore early successional habitat. Our objectives were to determine whether the program had an effect on bobwhite occupancy in the restoration areas and evaluate how local-and landscape-level habitat characteristics affect occupancy in both restoration and control areas. We surveyed 14 sample units that received treatment between 2009 and 2011, and 17 sample units that were controls. We used single-season occupancy models, with year as a dummy variable, to test for an effect of restoration treatment and habitat variables on occupancy. We found no significant treatment effect. Model selection showed that occupancy was best explained by the combination of overstory canopy cover and habitat area at both the local and landscape scales. Moran's I revealed positive spatial autocorrelation in the 1,000-3,000-m distance band, indicating that the likelihood of bobwhite occupancy increased with proximity to other populations. We show that creating ≥ 20 ha of habitat within 1-3 km of existing bobwhite populations increases the chance of restoration being successful.

  6. Restoring and rehabilitating sagebrush habitats

    USGS Publications Warehouse

    Pyke, David A.; Knick, S.T.; Connelly, J.W.

    2011-01-01

    Less than half of the original habitat of the Greater Sage-Grouse (Centrocercus uropha-sianus) currently exists. Some has been perma-nently lost to farms and urban areas, but the remaining varies in condition from high quality to no longer adequate. Restoration of sagebrush (Artemisia spp.) grassland ecosystems may be pos-sible for resilient lands. However, Greater Sage-Grouse require a wide variety of habitats over large areas to complete their life cycle. Effective restoration will require a regional approach for prioritizing and identifying appropriate options across the landscape. A landscape triage method is recommended for prioritizing lands for restora-tion. Spatial models can indicate where to protect and connect intact quality habitat with other simi-lar habitat via restoration. The ecological site con-cept of land classification is recommended for characterizing potential habitat across the region along with their accompanying state and transi-tion models of plant community dynamics. These models assist in identifying if passive, manage-ment-based or active, vegetation manipulation?based restoration might accomplish the goals of improved Greater Sage-Grouse habitat. A series of guidelines help formulate questions that manag-ers might consider when developing restoration plans: (1) site prioritization through a landscape triage; (2) soil verification and the implications of soil features on plant establishment success; (3) a comparison of the existing plant community to the potential for the site using ecological site descriptions; (4) a determination of the current successional status of the site using state and transition models to aid in predicting if passive or active restoration is necessary; and (5) implemen-tation of post-treatment monitoring to evaluate restoration effectiveness and post-treatment man-agement implications to restoration success.

  7. ESTUARINE HABITAT RESTORATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thom, Ronald M.; Borde, Amy B.

    2015-09-01

    Restoring estuarine habitats generally means repairing damages caused by humans and natural forces. Because of the extensive human occupation, development, and use of coastal areas for centuries, the extensive estuarine habitats have been either destroyed or significantly impaired.

  8. Umatilla River Subbasin Fish Habitat Improvement Program, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Hilaire, Danny R.

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and,more » more recently, to channel re-design and reconstruction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary of Program activities for the 2004 calendar year (January 1 through December 31, 2004), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance, and (4) Monitoring and Evaluation. This report also summarizes Program Administrative, Interagency Coordination, and Public Education activities.« less

  9. Demographic Effects of Habitat Restoration for the Grey-Crowned Babbler Pomatostomus temporalis, in Victoria, Australia.

    PubMed

    Vesk, Peter A; Robinson, Doug; van der Ree, Rodney; Wilson, Caroline M; Saywell, Shirley; McCarthy, Michael A

    2015-01-01

    Considerable resources are spent on habitat restoration across the globe to counter the impacts of habitat loss and degradation on wildlife populations. But, because of time and resourcing constraints on many conservation programs, the effectiveness of these habitat restoration programs in achieving their long-term goals of improving the population viability of particular wildlife species is rarely assessed and many restoration programs cannot demonstrate their effectiveness. Without such demonstration, and in particular demonstrating the causal relationships between habitat restoration actions and demographic responses of the target species, investments in restoration to achieve population outcomes are of uncertain value. Here, we describe an approach that builds on population data collected for a threatened Australian bird - the Grey-crowned Babbler Pomatostomus temporalis - to evaluate how effectively targeted habitat restoration work improves its viability. We built upon an extensive historical survey by conducting surveys 13 years later at 117 sites stratified by presence/absence of restoration works and by detection or not of birds in the first survey. Our performance metric was the number of individuals in a social group, which is both a measure of local abundance and directly related to breeding success. We employed an occupancy model to estimate the response of Grey-crowned Babbler social group size to the effects of time, restoration works, local habitat as measured by the density of large trees, and distance to the nearest other known group of babblers. Babbler group size decreased over the survey period at sites without restoration works, but restoration works were effective in stemming declines where they were done. Restoration was responsible for a difference of about one bird per group of 3-5 individuals; this is an important effect on the reproductive success of the social group. Effectiveness of restoration works targeted at the Grey

  10. Demographic Effects of Habitat Restoration for the Grey-Crowned Babbler Pomatostomus temporalis, in Victoria, Australia

    PubMed Central

    Vesk, Peter A.; Robinson, Doug; van der Ree, Rodney; Wilson, Caroline M.; Saywell, Shirley; McCarthy, Michael A.

    2015-01-01

    Background Considerable resources are spent on habitat restoration across the globe to counter the impacts of habitat loss and degradation on wildlife populations. But, because of time and resourcing constraints on many conservation programs, the effectiveness of these habitat restoration programs in achieving their long-term goals of improving the population viability of particular wildlife species is rarely assessed and many restoration programs cannot demonstrate their effectiveness. Without such demonstration, and in particular demonstrating the causal relationships between habitat restoration actions and demographic responses of the target species, investments in restoration to achieve population outcomes are of uncertain value. Approach Here, we describe an approach that builds on population data collected for a threatened Australian bird – the Grey-crowned Babbler Pomatostomus temporalis - to evaluate how effectively targeted habitat restoration work improves its viability. We built upon an extensive historical survey by conducting surveys 13 years later at 117 sites stratified by presence/absence of restoration works and by detection or not of birds in the first survey. Our performance metric was the number of individuals in a social group, which is both a measure of local abundance and directly related to breeding success. We employed an occupancy model to estimate the response of Grey-crowned Babbler social group size to the effects of time, restoration works, local habitat as measured by the density of large trees, and distance to the nearest other known group of babblers. Results and implications Babbler group size decreased over the survey period at sites without restoration works, but restoration works were effective in stemming declines where they were done. Restoration was responsible for a difference of about one bird per group of 3-5 individuals; this is an important effect on the reproductive success of the social group. Effectiveness of

  11. Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems

    NASA Astrophysics Data System (ADS)

    James, W. R.; Nelson, J. A.

    2017-12-01

    Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.

  12. White Lake AOC Habitat Restoration Project

    EPA Pesticide Factsheets

    The Muskegon Conservation District and the White Lake Public Advisory Council in 2012 completed the White Lake AOC Shoreline Habitat Restoration Project to address the loss of shoreline and nearshore habitat.

  13. Restoration Lessons Learned from Bay Scallop Habitat Models

    EPA Science Inventory

    Habitat quality and quantity are important factors to consider when restoring bay scallop (Argopecten irradians) populations; however, data linking habitat attributes to bay scallop populations are lacking. This information is essential to guide restoration efforts to reverse sc...

  14. Umatilla River Subbasin Fish Habitat Improvement Program, 1996-2003 Summary Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Hilaire, Danny R.; Montgomery, Michael; Bailey, Timothy D.

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The last Annual Program Report was submitted in 1997, and described projects undertaken in 1995. This report describes Program activities carried out in 2003, along with a summary of projects undertaken during the years 1996 through 2002. The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestockmore » exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary table of past projects (1996-2002), along with a text description of more extensive habitat improvement projects, including: (1) Implementation of a four-phased project on the Lobato property (Birch Creek) beginning in 1996 and involving a demonstration bioengineering site and riparian improvements (fencing, planting), (2) Implementation of stable channel design/instream structure placement on the Houser property, East Birch Creek, beginning in 1998, an (3) Implementation of a joint, US Army Corps of Engineers/ODFW (cost share) project beginning in 2001 on the Brogoitti property, East Birch Creek, which involved implementation of stable channel design/construction and riparian improvement treatments.« less

  15. Evaluation of nekton use and habitat characteristics of restored Louisiana marsh

    USGS Publications Warehouse

    Thom, C.S.B.; Peyre, M.K.G.L.; Nyman, J.A.

    2004-01-01

    Marsh terracing and coconut fiber mats are two wetland restoration techniques implemented at Sabine National Wildlife Refuge, Louisiana, USA. Using nekton as an indicator of habitat quality, nekton community assemblages were compared between terraced, coconut-matted, unmanaged marsh (restoration goal), and open water (pre-restoration) habitats. Using a throw trap and a 3 m ?? 2 m straight seine, 192 nekton samples were collected over four dates in 2001 and 2002 at all habitats. Nekton abundance was similar at unmanaged marsh (restoration goal), coconut mat, and terrace edge, and significantly higher than at open water (pre-restoration) sites (P < 0.05). Coconut-matted habitat and unmanaged marsh edges had significantly higher numbers of benthic dependent species than terrace edges (P < 0.05), potentially because of differences in substrate. Terraced sites had lower organic matter and siltier substrate as compared to unmanaged marsh sites. At Sabine NWR, terracing increased nekton use as compared to pre-restoration conditions (open water samples) by providing marsh edge habitat, but failed to support a nekton community similar to unmanaged marsh (restoration goals) or coconut-matted sites. Future restoration projects may evaluate the combined use of coconut mats with terracing projects in order to enhance habitat for benthic dependent nekton.

  16. Storied experiences of school-based habitat restoration

    NASA Astrophysics Data System (ADS)

    Bell, Anne C.

    The purpose of this study has been to consider the eco-pedagogical promise of school-based habitat restoration. How does the practice of restoration foster a lived sense of being in a more-than-human world1 while inviting alternative approaches to teaching and learning? What opportunities does it offer to resist the societal forces and patterns, reinforced through the school system, which are eroding and effacing human relationships with other life? A literature review sets the broader context for an in-depth exploration of the experiences and understandings of participants (students, teachers, parents) involved in a case study. I proceeded with my research on the assumption that both the discursive and non-discursive dimensions of habitat restoration were key to appreciating its eco-pedagogical potential. Through participant observation over a ten month period, interviewing and a survey, I listened to some of the ways that habitat restoration challenged the typically disembodied, decontextualized organization of schooling by privileging hands-on involvement and encouraging attentive, caring relationships within the human and natural communities of which students were a part. I investigated particular storylines and metaphors which encoded and supported participants' endeavours, especially with regard to their potential to disrupt human-centered values and beliefs. This study suggests that the promise of habitat restoration lies in the openings created to attune to and interact with human and nonhuman others in fully embodied, locally situated and personally meaningful ways. Participants overwhelmingly attested to the importance of the experience of restoration which many deemed to be memorable and motivating and to provide fertile ground for future engagements in/for nature and society. As participants attended to the nuances and complexities of their interactions with a specific place and its inhabitants, their intimate involvement added a depth of feeling and

  17. Habitat Complexity Metrics to Guide Restoration of Large Rivers

    NASA Astrophysics Data System (ADS)

    Jacobson, R. B.; McElroy, B. J.; Elliott, C.; DeLonay, A.

    2011-12-01

    Restoration strategies on large, channelized rivers typically strive to recover lost habitat complexity, based on the assumption complexity and biophysical capacity are directly related. Although definition of links between complexity and biotic responses can be tenuous, complexity metrics have appeal because of their potential utility in quantifying habitat quality, defining reference conditions and design criteria, and measuring restoration progress. Hydroacoustic instruments provide many ways to measure complexity on large rivers, yet substantive questions remain about variables and scale of complexity that are meaningful to biota, and how complexity can be measured and monitored cost effectively. We explore these issues on the Missouri River, using the example of channel re-engineering projects that are intended to aid in recovery of the pallid sturgeon, an endangered benthic fish. We are refining understanding of what habitat complexity means for adult fish by combining hydroacoustic habitat assessments with acoustic telemetry to map locations during reproductive migrations and spawning. These data indicate that migrating sturgeon select points with relatively low velocity but adjacent to areas of high velocity (that is, with high velocity gradients); the integration of points defines pathways which minimize energy expenditures during upstream migrations of 10's to 100's of km. Complexity metrics that efficiently quantify migration potential at the reach scale are therefore directly relevant to channel restoration strategies. We are also exploring complexity as it relates to larval sturgeon dispersal. Larvae may drift for as many as 17 days (100's of km at mean velocities) before using up their yolk sac, after which they "settle" into habitats where they initiate feeding. An assumption underlying channel re-engineering is that additional channel complexity, specifically increased shallow, slow water, is necessary for early feeding and refugia. Development of

  18. HABITAT MODELING APPROACHES FOR RESTORATION SITE SELECTION

    EPA Science Inventory

    Numerous modeling approaches have been used to develop predictive models of species-environment and species-habitat relationships. These models have been used in conservation biology and habitat or species management, but their application to restoration efforts has been minimal...

  19. Functional variability of habitats within the Sacramento-San Joaquin Delta: Restoration implications

    USGS Publications Warehouse

    Lucas, L.V.; Cloern, J.E.; Thompson, J.K.; Monsen, N.E.

    2002-01-01

    We have now entered an era of large-scale attempts to restore ecological functions and biological communities in impaired ecosystems. Our knowledge base of complex ecosystems and interrelated functions is limited, so the outcomes of specific restoration actions are highly uncertain. One approach for exploring that uncertainty and anticipating the range of possible restoration outcomes is comparative study of existing habitats similar to future habitats slated for construction. Here we compare two examples of one habitat type targeted for restoration in the Sacramento-San Joaquin River Delta. We compare one critical ecological function provided by these shallow tidal habitats - production and distribution of phytoplankton biomass as the food supply to pelagic consumers. We measured spatial and short-term temporal variability of phytoplankton biomass and growth rate and quantified the hydrodynamic and biological processes governing that variability. Results show that the production and distribution of phytoplankton biomass can be highly variable within and between nearby habitats of the same type, due to variations in phytoplankton sources, sinks, and transport. Therefore, superficially similar, geographically proximate habitats can function very differently, and that functional variability introduces large uncertainties into the restoration process. Comparative study of existing habitats is one way ecosystem science can elucidate and potentially minimize restoration uncertainties, by identifying processes shaping habitat functionality, including those that can be controlled in the restoration design.

  20. Enhancing and restoring habitat for the desert tortoise

    USGS Publications Warehouse

    Abella, Scott R.; Berry, Kristin H.

    2016-01-01

    Habitat has changed unfavorably during the past 150 y for the desert tortoise Gopherus agassizii, a federally threatened species with declining populations in the Mojave Desert and western Sonoran Desert. To support recovery efforts, we synthesized published information on relationships of desert tortoises with three habitat features (cover sites, forage, and soil) and candidate management practices for improving these features for tortoises. In addition to their role in soil health and facilitating recruitment of annual forage plants, shrubs are used by desert tortoises for cover and as sites for burrows. Outplanting greenhouse-grown seedlings, protected from herbivory, has successfully restored (>50% survival) a variety of shrubs on disturbed desert soils. Additionally, salvaging and reapplying topsoil using effective techniques is among the more ecologically beneficial ways to initiate plant recovery after severe disturbance. Through differences in biochemical composition and digestibility, some plant species provide better-quality forage than others. Desert tortoises selectively forage on particular annual and herbaceous perennial species (e.g., legumes), and forage selection shifts during the year as different plants grow or mature. Nonnative grasses provide low-quality forage and contribute fuel to spreading wildfires, which damage or kill shrubs that tortoises use for cover. Maintaining a diverse “menu” of native annual forbs and decreasing nonnative grasses are priorities for restoring most desert tortoise habitats. Reducing herbivory by nonnative animals, carefully timing herbicide applications, and strategically augmenting annual forage plants via seeding show promise for improving tortoise forage quality. Roads, another disturbance, negatively affect habitat in numerous ways (e.g., compacting soil, altering hydrology). Techniques such as recontouring road berms to reestablish drainage patterns, vertical mulching (“planting” dead plant material

  1. Restoration through eradication? Removal of an invasive bioengineer restores some habitat function for a native predator.

    PubMed

    Holsman, Kirstin K; McDonald, P Sean; Barreyro, Pablo A; Armstrong, David A

    2010-12-01

    Invasive aquatic macrophytes increase structural complexity in recipient systems and alter trophic and physical resources; thus, eradication programs that remove plant structure have potential to restore some impaired ecological functions. In this study we evaluate how an invasive ecosystem engineer, Atlantic smooth cordgrass (Spartina alterniflora), interferes with the movement and foraging activity of a mobile predator, Dungeness crab (Cancer magister), and whether removal of aboveground cordgrass structure rapidly reestablishes access to foraging habitats. By 2004, smooth cordgrass had invaded >25% of crab foraging habitat in Willapa Bay, Washington (USA), and transformed it into a highly structured landscape. However, by 2007 successful eradication efforts had eliminated most meadows of the cordgrass. In order to investigate the effect of smooth cordgrass on the habitat function of littoral areas for foraging crabs, we integrated field, laboratory, and statistical modeling approaches. We conducted trapping surveys at multiple sites and used a hierarchical model framework to examine patterns in catches prior to and following cordgrass removal (i.e., before-after control-impact design, BACI). Prior to eradication, catches of Dungeness crabs in unstructured habitats were 4-19 times higher than catches in adjacent patches of live cordgrass. In contrast, the results of post-eradication trapping in 2007 indicated similar catch rates of crabs in unstructured habitats and areas formerly invaded by the cordgrass. Subsequent laboratory experiments and video observations demonstrated that the rigid physical structure of smooth cordgrass shoots reduces the ability of Dungeness crabs to access prey resources and increases the risk of stranding. Taken together, these findings suggest that eliminating the structural complexity of invasive macrophytes may rapidly restore some ecological function (i.e., foraging area) for migratory predators like Dungeness crab. However

  2. Physical habitat monitoring strategy (PHAMS) for reach-scale restoration effectiveness monitoring

    USGS Publications Warehouse

    Jones, Krista L.; O'Daniel, Scott J.; Beechie, Tim J.; Zakrajsek, John; Webster, John G.

    2015-04-14

    Habitat restoration efforts by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) have shifted from the site scale (1-10 meters) to the reach scale (100-1,000 meters). This shift was in response to the growing scientific emphasis on process-based restoration and to support from the 2007 Accords Agreement with the Bonneville Power Administration. With the increased size of restoration projects, the CTUIR and other agencies are in need of applicable monitoring methods for assessing large-scale changes in river and floodplain habitats following restoration. The goal of the Physical Habitat Monitoring Strategy is to outline methods that are useful for capturing reach-scale changes in surface and groundwater hydrology, geomorphology, hydrologic connectivity, and riparian vegetation at restoration projects. The Physical Habitat Monitoring Strategy aims to avoid duplication with existing regional effectiveness monitoring protocols by identifying complimentary reach-scale metrics and methods that may improve the ability of CTUIR and others to detect instream and riparian changes at large restoration projects.

  3. Changes in habitat availability for outmigrating juvenile salmon (Oncorhychus spp.) following estuary restoration

    USGS Publications Warehouse

    Ellings, Christopher S.; Davis, Melanie; Grossman, Eric E.; Hodgson, Sayre; Turner, Kelley L.; Woo PR, Isa; Nakai, Glynnis; Takekawa, Jean E.; Takekawa, John Y.

    2016-01-01

    The restoration of the Nisqually River Delta (Washington, U.S.A.) represents one of the largest efforts toward reestablishing the ecosystem function and resilience of modified habitat in the Puget Sound, particularly for anadromous salmonid species. The opportunity for outmigrating salmon to access and benefit from the expansion of available tidal habitat can be quantified by several physical attributes, which are related to the ecological and physiological responses of juvenile salmon. We monitored a variety of physical parameters to measure changes in opportunity potential from historic, pre-restoration, and post-restoration habitat conditions at several sites across the delta. These parameters included channel morphology, water quality, tidal elevation, and landscape connectivity. We conducted fish catch surveys across the delta to determine if salmon was utilizing restored estuary habitat. Overall major channel area increased 42% and major channel length increased 131% from pre- to post-restoration conditions. Furthermore, the results of our tidal inundation model indicated that major channels were accessible up to 75% of the time, as opposed to 30% pre-restoration. Outmigrating salmon utilized this newly accessible habitat as quickly as 1 year post-restoration. The presence of salmon in restored tidal channels confirmed rapid post-restoration increases in opportunity potential on the delta despite habitat quality differences between restored and reference sites.

  4. 75 FR 5765 - NOAA Coastal and Marine Habitat Restoration Project Supplemental Funding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... the approximately 3 percent of funding that remains from the original allocation provided to NMFS... manage and mitigate risks to the original habitat restoration investments and ensure program goals are... awarded funds as a result of the original competition. There is the possibility that NMFS may also fund...

  5. Habitat Selection and Behaviour of a Reintroduced Passerine: Linking Experimental Restoration, Behaviour and Habitat Ecology

    PubMed Central

    Bennett, Victoria A.; Doerr, Veronica A. J.; Doerr, Erik D.; Manning, Adrian D.; Lindenmayer, David B.; Yoon, Hwan-Jin

    2013-01-01

    Habitat restoration can play an important role in recovering functioning ecosystems and improving biodiversity. Restoration may be particularly important in improving habitat prior to species reintroductions. We reintroduced seven brown treecreeper (Climacteris picumnus) social groups into two nature reserves in the Australian Capital Territory in south-eastern Australia. This study provided a unique opportunity to understand the interactions between restoration ecology, behavioural ecology and habitat ecology. We examined how experimental restoration treatments (addition of coarse woody debris, variations in ground vegetation cover and nest box installation) influenced the behaviour and microhabitat use of radio-tracked individuals to evaluate the success of restoration treatments. The addition of coarse woody debris benefited the brown treecreeper through increasing the probability of foraging on a log or on the ground. This demonstrated the value of using behaviour as a bio-indicator for restoration success. Based on previous research, we predicted that variations in levels of ground vegetation cover would influence behaviour and substrate use, particularly that brown treecreepers would choose sites with sparse ground cover because this allows better access to food and better vigilance for predators. However, there was little effect of this treatment, which was likely influenced by the limited overall use of the ground layer. There was also little effect of nest boxes on behaviour or substrate use. These results somewhat confound our understanding of the species based on research from extant populations. Our results also have a significant impact regarding using existing knowledge on a species to inform how it will respond to reintroduction and habitat restoration. This study also places great emphasis on the value of applying an experimental framework to ecological restoration, particularly when reintroductions produce unexpected outcomes. PMID:23349923

  6. Restoring habitat corridors in fragmented landscapes using optimization and percolation models

    Treesearch

    Justin C. Williams; Stephanie A. Snyder

    2005-01-01

    Landscape fragmentation and habitat loss are significant threats to the conservation of biological diversity. Creating and restoring corridors between isolated habitat patches can help mitigate or reverse the impacts of fragmentation. It is important that restoration and protection efforts be undertaken in the most efficient and effective way possible because...

  7. A Multiple Watershed Approach to Assessing the Effects of Habitat Restoration Actions on Anadromous and Resident Fish Populations, Technical Report 2003-2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marmorek, David

    2004-03-01

    Habitat protection and restoration is a cornerstone of current strategies to restore ecosystems, recover endangered fish species, and rebuild fish stocks within the Columbia River Basin. Strategies featuring habitat restoration include the 2000 Biological Opinion on operation of the Federal Columbia River Power System (FCRPS BiOp) developed by the National Marine Fisheries Service (NMFS), the 2000 Biological Opinion on Bull Trout developed by the US Fish and Wildlife Service (USFWS), and Sub-Basin Plans developed under the Fish and Wildlife Program of the Northwest Power and Conservation Council (NWPCC). There is however little quantitative information about the effectiveness of different habitatmore » restoration techniques. Such information is crucial for helping scientists and program managers allocate limited funds towards the greatest benefits for fish populations. Therefore, it is critical to systematically test the hypotheses underlying habitat restoration actions for both anadromous and resident fish populations. This pilot project was developed through a proposal to the Innovative Projects fund of the NWPCC (ESSA 2002). It was funded by the Bonneville Power Administration (BPA) following reviews by the Independent Scientific Review Panel (ISRP 2002), the Columbia Basin Fish and Wildlife Authority (CBFWA 2002), the NWPCC and BPA. The study was designed to respond directly to the above described needs for information on the effectiveness of habitat restoration actions, including legal measures specified in the 2000 FCRPS BiOp (RPA 183, pg. 9-133, NMFS 2000). Due to the urgency of addressing these measures, the timeline of the project was accelerated from a duration of 18 months to 14 months. The purpose of this pilot project was to explore methods for evaluating past habitat restoration actions and their effects on fish populations. By doing so, the project will provide a foundation of retrospective analyses, on which to build prospective, multi

  8. Effects of ecosystem development on benthic secondary production in restored and created mangrove habitats

    EPA Science Inventory

    Wetland creation, enhancement, and restoration activities are commonly implemented to compensate for wetland loss or degradation. However, functional equivalence in restored and created wetland habitats is often poorly understood. In estuarine habitats, changes in habitat qualit...

  9. Guidelines for evaluating performance of oyster habitat restoration

    USGS Publications Warehouse

    Baggett, Lesley P.; Powers, Sean P.; Brumbaugh, Robert D.; Coen, Loren D.; DeAngelis, Bryan M.; Greene, Jennifer K.; Hancock, Boze T.; Morlock, Summer M.; Allen, Brian L.; Breitburg, Denise L.; Bushek, David; Grabowski, Jonathan H.; Grizzle, Raymond E.; Grosholz, Edwin D.; LaPeyre, Megan K.; Luckenbach, Mark W.; McGraw, Kay A.; Piehler, Michael F.; Westby, Stephanie R.; zu Ermgassen, Philine S. E.

    2015-01-01

    Restoration of degraded ecosystems is an important societal goal, yet inadequate monitoring and the absence of clear performance metrics are common criticisms of many habitat restoration projects. Funding limitations can prevent adequate monitoring, but we suggest that the lack of accepted metrics to address the diversity of restoration objectives also presents a serious challenge to the monitoring of restoration projects. A working group with experience in designing and monitoring oyster reef projects was used to develop standardized monitoring metrics, units, and performance criteria that would allow for comparison among restoration sites and projects of various construction types. A set of four universal metrics (reef areal dimensions, reef height, oyster density, and oyster size–frequency distribution) and a set of three universal environmental variables (water temperature, salinity, and dissolved oxygen) are recommended to be monitored for all oyster habitat restoration projects regardless of their goal(s). In addition, restoration goal-based metrics specific to four commonly cited ecosystem service-based restoration goals are recommended, along with an optional set of seven supplemental ancillary metrics that could provide information useful to the interpretation of prerestoration and postrestoration monitoring data. Widespread adoption of a common set of metrics with standardized techniques and units to assess well-defined goals not only allows practitioners to gauge the performance of their own projects but also allows for comparison among projects, which is both essential to the advancement of the field of oyster restoration and can provide new knowledge about the structure and ecological function of oyster reef ecosystems.

  10. Restored agricultural wetlands in Central Iowa: habitat quality and amphibian response

    USGS Publications Warehouse

    Reeves, Rebecca A.; Pierce, Clay; Smalling, Kelly L.; Klaver, Robert W.; Vandever, Mark W.; Battaglin, William A.; Muths, Erin L.

    2016-01-01

    Amphibians are declining throughout the United States and worldwide due, partly, to habitat loss. Conservation practices on the landscape restore wetlands to denitrify tile drainage effluent and restore ecosystem services. Understanding how water quality, hydroperiod, predation, and disease affect amphibians in restored wetlands is central to maintaining healthy amphibian populations in the region. We examined the quality of amphibian habitat in restored wetlands relative to reference wetlands by comparing species richness, developmental stress, and adult leopard frog (Lithobates pipiens) survival probabilities to a suite of environmental metrics. Although measured habitat variables differed between restored and reference wetlands, differences appeared to have sub-lethal rather than lethal effects on resident amphibian populations. There were few differences in amphibian species richness and no difference in estimated survival probabilities between wetland types. Restored wetlands had more nitrate and alkaline pH, longer hydroperiods, and were deeper, whereas reference wetlands had more amphibian chytrid fungus zoospores in water samples and resident amphibians exhibited increased developmental stress. Restored and reference wetlands are both important components of the landscape in central Iowa and maintaining a complex of fish-free wetlands with a variety of hydroperiods will likely contribute to the persistence of amphibians in this landscape.

  11. Seeding considerations in restoring big sagebrush habitat

    Treesearch

    Scott M. Lambert

    2005-01-01

    This paper describes methods of managing or seeding to restore big sagebrush communities for wildlife habitat. The focus is on three big sagebrush subspecies, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), basin big sagebrush (Artemisia tridentata ssp. tridentata), and mountain...

  12. Information to support to monitoring and habitat restoration on Ash Meadows National Wildlife Refuge

    USGS Publications Warehouse

    Scoppettone, G. Gary

    2013-01-01

    The Ash Meadows National Wildlife Refuge staff focuses on improving habitat for the highest incidence of endemic species for an area of its size in the continental United States. Attempts are being made to restore habitat to some semblance of its pre-anthropogenic undisturbed condition, and to provide habitat conditions to which native plant and animal species have evolved. Unfortunately, restoring the Ash Meadows’ Oases to its pre-anthropogenic undisturbed condition is almost impossible. First, there are constraints on water manipulation because there are private holdings within the refuge boundary; second, there has been at least one species extinction—the Ash Meadows pool fish (Empetrichthys merriami). It is also quite possible that thermal endemic invertebrate species were lost before ever being described. Perhaps the primary obstacle to restoring Ash Meadows to its pre-anthropogenic undisturbed conditions is the presence of invasive species. However, invasive species, such as red swamp crayfish (Procambarus clarki) and western mosquitofish (Gambusia affinis), are a primary driving force in restoring Ash Meadows’ spring systems, because under certain habitat conditions they can all but replace native species. Returning Ash Meadows’ physical landscape to some semblance of its pre-anthropogenic undisturbed condition through natural processes may take decades. Meanwhile, the natural dissolution of concrete and earthen irrigation channels threatens to allow cattail marshes to flourish instead of spring-brooks immediately downstream of spring discharge. This successional stage favors non-native crayfish and mosquitofish over the native Amargosa pupfish (Cyprinodon nevadensis). Thus, restoration is needed to control non-natives and to promote native species, and without such intervention the probability of native fish reduction or loss, is anticipated. The four studies in this report are intended to provide information for restoring native fish habitat and

  13. Habitat heterogeneity influences restoration efficacy: Implications of a habitat-specific management regime for an invaded marsh

    NASA Astrophysics Data System (ADS)

    Tang, Long; Gao, Yang; Wang, Cheng-Huan; Li, Bo; Chen, Jia-Kuan; Zhao, Bin

    2013-07-01

    Invasive species have to be managed to prevent adverse consequences. Spartina alterniflora has invaded many marshes where salinity and inundation are often key factors affecting vegetation. The former was surface clipped twice and native Phragmites australis was planted in invaded zones to examine the effects of habitat properties on the efficacy of invader control and native restoration. The results showed that two clipping treatments almost eliminated S. alterniflora in the zones with long inundation periods of 80 h/15 d but stimulated compensatory growth of S. alterniflora in the zones with short inundation periods. Transplanted P. australis performed better over time in zones with low salinity (<10.5 psu) but performed poorly in high-salinity zones, indicating that the efficacy of invader management and native restoration activities changes significantly along habitat gradients. With a progression from the dyke to the seaward side of the studied marsh, there was a long then short then long inundation period whereas salinity increased consistently. The study indicates that the high-frequency removal of the above-ground parts of S. alterniflora should be used only in the middle tidal zones and that native vegetation should be planted in zones above the mean high water level while the others zones in the saltmarsh should be restored to mud flats. Usually, invasive plants can flourish in highly heterogeneous habitats, which can influence management efficacy by influencing the re-growth of treated invaders and the performance of restored native species. Therefore, habitat-specific management regimes for invasive species can be expected to be more efficient because of their dependence on specific habitats.

  14. Columbia Estuary Ecosystem Restoration Program: Restoration Design Challenges for Topographic Mounds, Channel Outlets, and Reed Canarygrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenderfer, Heida L.; Borde, Amy B.; Sinks, Ian A.

    The purpose of this study was to provide science-based information to practitioners and managers of restoration projects in the Columbia Estuary Ecosystem Restoration Program (CEERP) regarding aspects of restoration techniques that currently pose known challenges and uncertainties. The CEERP is a program of the Bonneville Power Administration (BPA) and the U.S. Army Corps of Engineers (Corps), Portland District, in collaboration with the National Marine Fisheries Service and five estuary sponsors implementing restoration. The estuary sponsors are Columbia Land Trust, Columbia River Estuary Study Taskforce, Cowlitz Tribe, Lower Columbia Estuary Partnership, and Washington Department of Fish and Wildlife. The scope ofmore » the research conducted during federal fiscal year 2015 included three aspects of hydrologic reconnection that were selected based on available scientific information and feedback from restoration practitioners during project reviews: the design of mounds (also called hummocks, peninsulas, or berms); the control of reed canarygrass (Phalaris arundinaceae); and aspects of channel network design related to habitat connectivity for juvenile salmonids.« less

  15. Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn; Tohtz, Joel

    The construction of Hungry Horse Dam inundated 125 km of adfluvial trout habitat in the South Fork of the Flathead River and its tributaries, impacting natural fish reproduction and rearing. Rapid residential and commercial growth in the Flathead Watershed now threaten the best remaining habitats and restrict our opportunities to offset natural resource losses. Hydropower development and other land disturbances caused severe declines in the range and abundance of our focal resident fish species, bull trout and westslope cutthroat trout. Bull trout were listed as threatened in 1998 under the Endangered Species Act and westslope cutthroat were petitioned for listingmore » under ESA. Westslope cutthroat are a species of special concern in Montana and a species of special consideration by the Confederated Salish and Kootenai Tribes. The Secure & Protect Fisheries Habitat project follows the logical progression towards habitat restoration outlined in the Hungry Horse Dam Fisheries Mitigation Implementation Plan approved by the NWPPC in 1993. This project is also consistent with the 2000 Fish and Wildlife Program and the Flathead River Subbasin Plan that identifies the protection of habitats for these populations as one of the most critical needs in the subbasin and directs actions to offset habitat losses. The Flathead basin is one of the fastest growing human population centers in Montana. Riparian habitats are being rapidly developed and subdivided, causing habitat degradation and altering ecosystem functions. Remaining critical habitats in the Flathead Watershed need to be purchased or protected with conservation easements if westslope cutthroat and bull trout are to persist and expand within the subbasin. In addition, habitats degraded by past land uses need to be restored to maximize the value of remaining habitats and offset losses caused by the construction of Hungry Horse Dam. Securing and restoring remaining riparian habitat will benefit fish by shading and

  16. Laying the foundation for a comprehensive program of restoration for wildlife habitat in a riparian floodplain

    NASA Astrophysics Data System (ADS)

    Morrison, Michael L.; Tennant, Tracy; Scott, Thomas A.

    1994-11-01

    We analyzed the past and current distribution and abundance of vegetation and wildlife to develop a wildlife habitat restoration plan for the Sweetwater Regional Park, San Diego County, California. Overall, there has been a substantial loss of native amphibians and reptiles, including four amphibians, three lizards, and 11 snake species. The small-mammal community was depauperate and dominated by the exotic house mouse ( Mus musculus) and the native western harvest mouse ( Reithrodontomys megalotis). It appeared that either house mice are exerting a negative influence on most native species or that they are responding positively to habitat degradation. There has apparently been a net loss of 13 mammal species, including nine insectivores and rodents, a rabbit, and three large mammals. Willow ( Salix) cover and density and cottonwoods ( Populus fremontii) had the highest number of positive correlations with bird abundance. There has been an overall net loss of 12 breeding bird species; this includes an absolute loss of 18 species and a gain of six species. A restoration plan is described that provides for creation and maintenance of willow riparian, riparian woodland, and coastal sage scrub vegetation types; guides for separation of human activities and wildlife habitats; and management of feral and exotic species of plants and animals.

  17. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    USGS Publications Warehouse

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  18. Restoring High Priority Habitats for Birds: Aspen and Pine in the Interior West

    Treesearch

    Rex Sallabanks; Nils D. Christoffersen; Whitney W. Weatherford; Ralph Anderson

    2005-01-01

    This paper describes a long-term habitat restoration project in the Blue Mountains ecoregion, northeast Oregon, that we initiated in May 2000. We focused our restoration activities on two habitats previously identified as being high priority for birds: quaking aspen (Populus tremuloides) and ponderosa pine (Pinus ponderosa). In...

  19. The importance of fluvial hydraulics to fish-habitat restoration in low-gradient alluvial streams

    USGS Publications Warehouse

    Rabeni, Charles F.; Jacobson, Robert B.

    1993-01-01

    1. A major cause of degradation and loss of stream fish is alteration of physical habitat within and adjacent to the channel. We describe a potentially efficient approach to fish restoration based upon the relationship between fluvial hydraulics, geomorphology, and those habitats important to fish.2. The aquatic habitat in a low-gradient, alluvial stream in the Ozark Plateaus physiographical province was classified according to location in the channel, patterns of water flow, and structures that control flow. The resulting habitat types were ranked in terms of their temporal stability and ability to be manipulated.3. Delineation and quantification of discrete physical spaces in a stream, termed hydraulic habitat units, are shown to be useful in stream restoration programmes if the ecological importance of each habitat unit is known, and if habitats are defined by fluvial dynamics so that restoration is aided by natural forces.4. Examples, using different taxa, are given to illustrate management options.

  20. Framework for Evaluating Habitat Restoration Success with Respect to Fish Habitat- and Population-related Beneficial Use Impairments

    EPA Science Inventory

    A major challenge of evaluating restoration progress is establishing a cause-effect relationship between observed changes in fish abundance and ongoing aquatic habitat restoration. Since 1979, fish populations within the St. Louis River Area of Concern, which were severely degrad...

  1. Variable responses of fish assemblages, habitat, and stability to natural-channel-design restoration in Catskill Mountain streams

    USGS Publications Warehouse

    Baldigo, Barry P.; Ernst, Anne G.; Warren, Dana R.; Miller, Sarah J.

    2010-01-01

    Natural-channel-design (NCD) restorations were recently implemented within large segments of five first- and second-order streams in the Catskill Mountains of New York in an attempt to increase channel stability, reduce bed and bank erosion, and sustain water quality. In conjunction with these efforts, 54 fish and habitat surveys were done from 1999 to 2007 at six restored reaches and five stable control reaches to evaluate the effects of NCD restoration on fish assemblages, habitat, and bank stability. A before–after–control–impact study design and two-factor analysis of variance were used to quantify the net changes in habitat and fish population and community indices at treatment reaches relative to those at unaltered control reaches. The density and biomass of fish communities were often dominated by one or two small prey species and no or few predator species before restoration and by one or more trout (Salmonidae) species after restoration. Significant increases in community richness (30%), diversity (40%), species or biomass equitability (32%), and total biomass (up to 52%) in at least four of the six restored reaches demonstrate that NCD restorations can improve the health and sustainability of fish communities in geomorphically unstable Catskill Mountain streams over the short to marginally long term. Bank stability, stream habitat, and trout habitat suitability indices (HSIs) generally improved significantly at the restored reaches, but key habitat features and trout HSIs did not change or decreased at two of them. Fish communities and trout populations at these two reaches were not positively affected by NCD restorations. Though NCD restorations often had a positive effect on habitat and fish communities, our results show that the initial habitat conditions limit the relative improvements than can be achieved, habitat quality and stability do not necessarily respond in unison, and biotic and abiotic responses cannot always be generalized.

  2. Restoring monarch butterfly habitat in the Midwestern US: 'All hands on deck'

    USGS Publications Warehouse

    Thogmartin, Wayne E.; Lopez-Hoffman, Laura; Rohweder, Jason; Diffendorfer, James E.; Drum, Ryan G.; Semmens, Darius J.; Black, Scott; Caldwell, Iris; Cotter, Donita; Drobney, Pauline; Jackson, Laura L.; Gale, Michael; Helmers, Doug; Hilburger, Steven B.; Howard, Elizabeth; Oberhauser, Karen S.; Pleasants, John M.; Semmens, Brice X.; Taylor, Orley R.; Ward, Patrick; Weltzin, Jake F.; Wiederholt, Ruscena

    2017-01-01

    The eastern migratory population of monarch butterflies (Danaus plexippus plexippus) has declined by >80% within the last two decades. One possible cause of this decline is the loss of ≥1.3 billion stems of milkweed (Asclepias spp.), which monarchs require for reproduction. In an effort to restore monarchs to a population goal established by the US Fish and Wildlife Service and adopted by Mexico, Canada, and the US, we developed scenarios for amending the Midwestern US landscape with milkweed. Scenarios for milkweed restoration were developed for protected area grasslands, Conservation Reserve Program land, powerline, rail and roadside rights of way, urban/suburban lands, and land in agricultural production. Agricultural land was further divided into productive and marginal cropland. We elicited expert opinion as to the biological potential (in stems per acre) for lands in these individual sectors to support milkweed restoration and the likely adoption (probability) of management practices necessary for affecting restoration. Sixteen of 218 scenarios we developed for restoring milkweed to the Midwestern US were at levels (>1.3 billion new stems) necessary to reach the monarch population goal. One of these scenarios would convert all marginal agriculture to conserved status. The other 15 scenarios converted half of marginal agriculture (730 million stems), with remaining stems contributed by other societal sectors. Scenarios without substantive agricultural participation were insufficient for attaining the population goal. Agricultural lands are essential to reaching restoration targets because they occupy 77% of all potential monarch habitat. Barring fundamental changes to policy, innovative application of economic tools such as habitat exchanges may provide sufficient resources to tip the balance of the agro-ecological landscape toward a setting conducive to both robust agricultural production and reduced imperilment of the migratory monarch butterfly.

  3. Gauging resource exploitation by juvenile Chinook salmon (Oncorhynchus tshawytscha) in restoring estuarine habitat

    USGS Publications Warehouse

    Davis, Melanie; Ellings, Christopher S.; Woo, Isa; Hodgson, Sayre; Larsen, Kimberly A.; Nakai, Glynnis

    2018-01-01

    In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out-migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post-restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density-dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.

  4. Do management actions to restore rare habitat benefit native fish conservation? Distribution of juvenile native fish among shoreline habitats of the Colorado River

    USGS Publications Warehouse

    Dodrill, Michael J.; Yackulic, Charles B.; Gerig, Brandon; Pine, William E.; Korman, Josh; Finch, Colton

    2015-01-01

    Many management actions in aquatic ecosystems are directed at restoring or improving specific habitats to benefit fish populations. In the Grand Canyon reach of the Colorado River, experimental flow operations as part of the Glen Canyon Dam Adaptive Management Program have been designed to restore sandbars and associated backwater habitats. Backwaters can have warmer water temperatures than other habitats, and native fish, including the federally endangered humpback chub Gila cypha, are frequently observed in backwaters, leading to a common perception that this habitat is critical for juvenile native fish conservation. However, it is unknown how fish densities in backwaters compare with that in other habitats or what proportion of juvenile fish populations reside in backwaters. Here, we develop and fit multi-species hierarchical models to estimate habitat-specific abundances and densities of juvenile humpback chub, bluehead suckerCatostomus discobolus, flannelmouth sucker Catostomus latipinnis and speckled dace Rhinichthys osculus in a portion of the Colorado River. Densities of all four native fish were greatest in backwater habitats in 2009 and 2010. However, backwaters are rare and ephemeral habitats, so they contain only a small portion of the overall population. For example, the total abundance of juvenile humpback chub in this study was much higher in talus than in backwater habitats. Moreover, when we extrapolated relative densities based on estimates of backwater prevalence directly after a controlled flood, the majority of juvenile humpback chub were still found outside of backwaters. This suggests that the role of controlled floods in influencing native fish population trends may be limited in this section of the Colorado River. 

  5. Assessing the role of conspecific attraction in habitat restoration for Henslow's sparrows in Iowa

    USGS Publications Warehouse

    Vogel, Jennifer A.; Koford, Rolf R.; Otis, David L.

    2011-01-01

    The presence of conspecific individuals may provide important cues about habitat quality for territorial songbirds. We tested the ability of a conspecific song playback system to attract Henslow’s sparrows to previously unoccupied restored habitat. We successfully attracted Heslow’s sparrows to 3 of 7 treatment plots using conspecific song playbacks and we found no Henslow’s sparrows in control plots. The addition of social cues using playback systems in restored grassland habitats may aid conservation efforts of Henslow’s sparrows to available habitat.

  6. Tamarix as habitat for birds: Implications for riparian restoration in the Southwestern United States

    USGS Publications Warehouse

    Sogge, M.K.; Sferra, S.J.; Paxton, E.H.

    2008-01-01

    Exotic vegetation has become a major habitat component in many ecosystems around the world, sometimes dramatically changing the vegetation community structure and composition. In the southwestern United States, riparian ecosystems are undergoing major changes in part due to the establishment and spread of the exotic Tamarix (saltcedar, tamarisk). There are concerns about the suitability of Tamarix as habitat for birds. Although Tamarix habitats tend to support fewer species and individuals than native habitats, Arizona Breeding Bird Atlas data and Birds of North America accounts show that 49 species use Tamarix as breeding habitat. Importantly, the relative use of Tamarix and its quality as habitat vary substantially by geographic location and bird species. Few studies have examined how breeding in Tamarix actually affects bird survivorship and productivity; recent research on Southwestern Willow Flycatchers has found no negative effects from breeding in Tamarix habitats. Therefore, the ecological benefits and costs of Tamarix control are difficult to predict and are likely to be species specific and site specific. Given the likelihood that high-quality native riparian vegetation will not develop at all Tamarix control sites, restoration projects that remove Tamarix but do not assure replacement by high-quality native habitat have the potential to reduce the net riparian habitat value for some local or regional bird populations. Therefore, an assessment of potential negative impacts is important in deciding if exotic control should be conducted. In addition, measurable project objectives, appropriate control and restoration techniques, and robust monitoring are all critical to effective restoration planning and execution. ?? 2008 Society for Ecological Restoration International.

  7. A Restoration Design for Least Bell's Vireo Habitat in San Diego County

    Treesearch

    Kathryn J. Baird; John P. Rieger

    1989-01-01

    This paper describes the procedure for developing a specific habitat restoration model. Results of a detailed Least Bell's Vireo (Vireo bellii pusillus) habitat study on the Sweetwater River drainage, San Diego County California, generated the baseline vegetative and habitat data used. Mean percent cover, density, abundance, species composition...

  8. Restoring stream habitat connectivity: a proposed method for prioritizing the removal of resident fish passage barriers.

    PubMed

    O'Hanley, Jesse R; Wright, Jed; Diebel, Matthew; Fedora, Mark A; Soucy, Charles L

    2013-08-15

    Systematic methods for prioritizing the repair and removal of fish passage barriers, while growing of late, have hitherto focused almost exclusively on meeting the needs of migratory fish species (e.g., anadromous salmonids). An important but as of yet unaddressed issue is the development of new modeling approaches which are applicable to resident fish species habitat restoration programs. In this paper, we develop a budget constrained optimization model for deciding which barriers to repair or remove in order to maximize habitat availability for stream resident fish. Habitat availability at the local stream reach is determined based on the recently proposed C metric, which accounts for the amount, quality, distance and level of connectivity to different stream habitat types. We assess the computational performance of our model using geospatial barrier and stream data collected from the Pine-Popple Watershed, located in northeast Wisconsin (USA). The optimization model is found to be an efficient and practical decision support tool. Optimal solutions, which are useful in informing basin-wide restoration planning efforts, can be generated on average in only a few minutes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Sharp-tailed Grouse Restoration; Colville Tribes Restore Habitat for Sharp-tailed Grouse, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, Richard

    2004-01-01

    Columbian Sharp-Tailed Grouse (Tympanuchus phasianellus columbianus) (CSTG) are an important traditional and cultural species to the Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STOI), and other Tribes in the Region. They were once the most abundant upland bird in the Region. Currently, the largest remaining population in Washington State occurs on the CCT Reservation in Okanogan County. Increasing agricultural practices and other land uses has contributed to the decline of sharp-tail habitat and populations putting this species at risk. The decline of this species is not new (Yokum, 1952, Buss and Dziedzic, 1955, Zeigler, 1979, Meints 1991, and Crawfordmore » and Snyder 1994). The Tribes (CCT and STOI) are determined to protect, enhance and restore habitat for this species continued existence. When Grand Coulee and Chief Joseph Hydro-projects were constructed, inundated habitat used by this species was lost forever adding to overall decline. To compensate and prevent further habitat loss, the CCT proposed a project with Bonneville Power Administration (BPA) funding to address this species and their habitat requirements. The projects main focus is to address habitat utilized by the current CSTG population and determine ways to protect, restore, and enhance habitats for the conservation of this species over time. The project went through the NPPC Review Process and was funded through FY03 by BPA. This report addresses part of the current CCT effort to address the conservation of this species on the Colville Reservation.« less

  10. Site occupancy of brown-headed nuthatches varies with habitat restoration and range-limit context

    Treesearch

    Richard A. Stanton; Frank R. Thompson; Dylan C. Kesler

    2015-01-01

    Knowledge about species’ responses to habitat restoration can inform subsequent management and reintroduction planning. We used repeated call-response surveys to study brown-headed nuthatch (Sitta pusilla) patch occupancy at the current limits of its apparently expanding range in an area with active habitat restoration. We fit a probit occupancy...

  11. Restoring monarch butterfly habitat in the Midwestern US: ‘all hands on deck’

    NASA Astrophysics Data System (ADS)

    Thogmartin, Wayne E.; López-Hoffman, Laura; Rohweder, Jason; Diffendorfer, Jay; Drum, Ryan; Semmens, Darius; Black, Scott; Caldwell, Iris; Cotter, Donita; Drobney, Pauline; Jackson, Laura L.; Gale, Michael; Helmers, Doug; Hilburger, Steve; Howard, Elizabeth; Oberhauser, Karen; Pleasants, John; Semmens, Brice; Taylor, Orley; Ward, Patrick; Weltzin, Jake F.; Wiederholt, Ruscena

    2017-07-01

    The eastern migratory population of monarch butterflies (Danaus plexippus plexippus) has declined by >80% within the last two decades. One possible cause of this decline is the loss of ≥1.3 billion stems of milkweed (Asclepias spp.), which monarchs require for reproduction. In an effort to restore monarchs to a population goal established by the US Fish and Wildlife Service and adopted by Mexico, Canada, and the US, we developed scenarios for amending the Midwestern US landscape with milkweed. Scenarios for milkweed restoration were developed for protected area grasslands, Conservation Reserve Program land, powerline, rail and roadside rights of way, urban/suburban lands, and land in agricultural production. Agricultural land was further divided into productive and marginal cropland. We elicited expert opinion as to the biological potential (in stems per acre) for lands in these individual sectors to support milkweed restoration and the likely adoption (probability) of management practices necessary for affecting restoration. Sixteen of 218 scenarios we developed for restoring milkweed to the Midwestern US were at levels (>1.3 billion new stems) necessary to reach the monarch population goal. One of these scenarios would convert all marginal agriculture to conserved status. The other 15 scenarios converted half of marginal agriculture (730 million stems), with remaining stems contributed by other societal sectors. Scenarios without substantive agricultural participation were insufficient for attaining the population goal. Agricultural lands are essential to reaching restoration targets because they occupy 77% of all potential monarch habitat. Barring fundamental changes to policy, innovative application of economic tools such as habitat exchanges may provide sufficient resources to tip the balance of the agro-ecological landscape toward a setting conducive to both robust agricultural production and reduced imperilment of the migratory monarch butterfly.

  12. Effects of natural-channel-design restoration on habitat quality in Catskill Mountain streams, New York

    USGS Publications Warehouse

    Ernst, Anne G.; Baldigo, Barry P.; Mulvihill, Christiane; Vian, Mark

    2010-01-01

    Stream restoration has received much attention in recent years, yet there has been little effort to evaluate its impacts on physical habitat, stability, and biota. A popular but controversial stream restoration approach is natural channel design (NCD), which cannot be adequately evaluated without a long-term, independent assessment of its effects on stream habitat. Six reaches of five Catskill Mountain streams in southeastern New York were restored during 2000–2003 following NCD techniques to decrease bed and bank degradation, decrease sediment loads, and improve water quality. Habitat surveys were conducted during summer low flows from 2001 to 2007. The effects of the NCD projects on stream condition were assessed via a before–after–control–impact study design to quantify the net changes in stream and bank habitat variables relative to those in unaltered control reaches. Analysis of variance tests of three different measures of bank stability show that on average stream stability increased at treatment sites for 2–5 years after restoration. Mean channel depth, thalweg depth, and the pool–riffle ratio generally increased, whereas mean channel width, percent streambank coverage by trees, and shade decreased. Habitat suitability indices for local salmonid species increased at four of six reaches after restoration. The changes in channel dimensions rendered them generally more characteristic of stabler stream forms in the given valley settings. Although these studies were done relatively soon after project completion, our findings demonstrate that habitat conditions can be improved in degraded Catskill Mountain streams through NCD restoration.

  13. Can we enhance amphibians' habitat restoration in the post-mining areas?

    PubMed

    Klimaszewski, Krzysztof; Pacholik, Ewa; Snopek, Adam

    2016-09-01

    The study was aimed to evaluate the selected improvements of nature restoration in a depleted gravel pit. The study site consisted of four water reservoirs of different shapes and sizes, flooded after the gravel extraction ended. Ecological succession monitoring, conducted by the Warsaw University of Life Sciences students associated in the Student Scientific Association of Animal Sciences Faculty since the completion of mining, have focused on amphibians. A twofold approach upheld amphibian species population dynamics, as well as selected habitat elements. The restoration practices dedicated to habitat conditions enhancing have been proved to be definitely effective and useful for similar sites.

  14. Habitat restoration as a means of controlling non-native fish in a Mojave desert Oasis

    USGS Publications Warehouse

    Scoppettone, G.G.; Rissler, P.H.; Gourley, C.; Martinez, C.

    2005-01-01

    Non-native fish generally cause native fish decline, and once non-natives are established, control or elimination is usually problematic. Because non-native fish colonization has been greatest in anthropogenically altered habitats, restoring habitat similar to predisturbance conditions may offer a viable means of non-native fish control. In this investigation we identified habitats favoring native over non-native fish in a Mojave Desert oasis (Ash Meadows) and used this information to restore one of its major warm water spring systems (Kings Pool Spring). Prior to restoration, native fishes predominated in warm water (25-32??C) stream and spring-pool habitat, whereas non-natives predominated in cool water (???23??C) spring-pool and marsh/slack water habitat. Native Amargosa pupfish (Cyprinodon nevadensis) and Ash Meadows speckled dace (Rhinichthys osculus nevadensis) inhabited significantly faster mean water column velocities (MWCV) and greater total depth (TD) than non-native Sailfin molly (Poecilia latipinna) and Mosquitofish (Gambusia affinis) in warm water stream habitat, and Ash Meadows speckled dace inhabited significantly faster water than non-natives in cool water stream habitat. Modification of the outflow of Kings Pool Spring from marsh to warm water stream, with MWCV, TD, and temperature favoring native fish, changed the fish composition from predominantly non-native Sailfin molly and Mosquitofish to predominantly Ash Meadows pupfish. This result supports the hypothesis that restoring spring systems to a semblance of predisturbance conditions would promote recolonization of native fishes and deter non-native fish invasion and proliferation. ?? 2005 Society for Ecological Restoration International.

  15. Yakima Tributary Access and Habitat Program, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myra, D.; Ready, C.

    2003-12-01

    The Yakima Tributary Access and Habitat Program (YTAHP) was organized to restore salmonid passage to Yakima tributaries that historically supported salmonids and to improve habitat in areas where access is restored. This program intends to (a) screen unscreened diversion structures to prevent fish entrainment into artificial waterways; (b) provide for fish passage at man-made barriers, such as diversion dams, culverts, siphons and bridges; and (c) provide information and assistance to landowners interested in to contributing to the improvement of water quality, water reliability and stream habitat. The YTAHP developed from a number of groups actively engaged in watershed management, and/ormore » habitat restoration within the Yakima River Basin. These groups include the Washington State Fish and Wildlife (WDFW), Kittitas County Conservation District (KCCD), North Yakima Conservation District (NYCD), Kittitas County Water Purveyors (KCWP), and Ahtanum Irrigation District (AID). The US Bureau of Reclamation (Reclamation) and Yakama Nation (YN) both participated in the development of the objectives of YTAHP. Other entities that will be involved during permitting or project review may include the YN, the federal Natural Resources Conservation Service (NRCS), the US Fish and Wildlife Service (USFWS), the National Marine Fisheries Service (NMFS), and US Army Corps of Engineers (COE). The objectives of YTAHP are listed below and also include subtasks detailed in the report: (1) Conduct Early Action Projects; (2) Review Strategic Plan; (3) Restore Access, including stream inventory, prioritization, implementation; and (4) Provide opportunities to improve habitat and conserve resources. The BPA YTAHP funding supported activities of the program which are described in this report. These activities are primarily related to objective 1 (conduct early action projects) and parts of objectives 2-4. The work supported by YTAHP funding will support a series of scheduled projects

  16. Habitat Restoration on Mobile Bay

    NASA Astrophysics Data System (ADS)

    Murphy, B.

    2017-12-01

    Alabama has some of the most biodiversity found anywhere in our nation, however we are rapidly losing many of these species to habitat loss. Our marine science class realized our shoreline on our campus on Mobile Bay was disappearing and wanted to help. We collaborated with local scientists from Dauphin Island Sea Lab under the direction of Dr. Just Cebrian and our instructor, Dr. Megan McCall, to create a project to help restore the habitat. We had to first collect beach profile surveys and learn how to measure elevations. Next we installed plants that we measured and collected growth data. Our project went through a series of prototypes and corrective measures based on the type of wave energy we discovered on our shores. Finally we landed on a type of wave attenuator of crab traps filled with rock and staked into the sand. This coming year we will begin collecting data on any changes to the beach profile as well as fish counts to evaluate the effectiveness of our installation.

  17. Macroinvertebrate Taxonomic and Functional Trait Compositions within Lotic Habitats Affected By River Restoration Practices

    NASA Astrophysics Data System (ADS)

    White, J. C.; Hill, M. J.; Bickerton, M. A.; Wood, P. J.

    2017-09-01

    The widespread degradation of lotic ecosystems has prompted extensive river restoration efforts globally, but many studies have reported modest ecological responses to rehabilitation practices. The functional properties of biotic communities are rarely examined within post-project appraisals, which would provide more ecological information underpinning ecosystem responses to restoration practices and potentially pinpoint project limitations. This study examines macroinvertebrate community responses to three projects which aimed to physically restore channel morphologies. Taxonomic and functional trait compositions supported by widely occurring lotic habitats (biotopes) were examined across paired restored and non-restored (control) reaches. The multivariate location (average community composition) of taxonomic and functional trait compositions differed marginally between control and restored reaches. However, changes in the amount of multivariate dispersion were more robust and indicated greater ecological heterogeneity within restored reaches, particularly when considering functional trait compositions. Organic biotopes (macrophyte stands and macroalgae) occurred widely across all study sites and supported a high alpha (within-habitat) taxonomic diversity compared to mineralogical biotopes (sand and gravel patches), which were characteristic of restored reaches. However, mineralogical biotopes possessed a higher beta (between-habitat) functional diversity, although this was less pronounced for taxonomic compositions. This study demonstrates that examining the functional and structural properties of taxa across distinct biotopes can provide a greater understanding of biotic responses to river restoration works. Such information could be used to better understand the ecological implications of rehabilitation practices and guide more effective management strategies.

  18. Shortleaf pine-bluestem habitat restoration in the Interior Highlands: Implications for stand growth and regeneration

    Treesearch

    James M. Guldin; John Strom; Warren Montague; Larry D. Hedrick

    2004-01-01

    National Forest managers in the Interior Highlands of Arkansas are restoring 155,000 acres of unburned shortleaf pine stands to shortleaf pine-bluestem habitat. Habitat restoration consists of longer rotations, removal of midstory hardwoods, and reintroduction of fire. A study was installed in the spring of 2000 to evaluate shortleaf pine regeneration and overstory...

  19. The effects of habitat restoration on endangered fishes in the Upper Klamath Basin

    NASA Astrophysics Data System (ADS)

    Vanderkooi, S.; Burdick, S.; Ellsworth, C.

    2009-12-01

    The Klamath Basin has been prominent in the debate over the use of water in the arid west for nearly a decade. Principle competing demands include threatened and endangered species, agriculture, recreation, and Tribal rights. In an effort to recover two endangered fish species, the Lost River sucker and the shortnose sucker, several large-scale restoration projects have recently been undertaken in the basin. These include restoration of 7000 acres of drained wetlands in the Williamson River Delta in 2007 and 2008 and the removal of Chiloquin Dam on the Sprague River in 2008. The objectives of these projects include increasing amounts of usable aquatic habitats, restoring watershed function, improving water quality, and improving access to and connectivity among habitats. The U.S. Geological Survey is involved in a series of collaborative, interdisciplinary research efforts to evaluate the effectiveness of these restoration projects. Effectiveness is being evaluated by physical, biological and ecological metrics. Our focus is on the biology and ecology of endangered suckers. In the Williamson River Delta, we’re collecting data on the distribution, habitat use, relative abundance, and health and condition of early life-history stages of endangered suckers. Results to date indicate larval as well as age-0 and age-1 juvenile suckers are using newly created habitats in the delta. Preliminary results from comparisons of age-0 suckers captured within and outside of the delta suggest those using the restored habitats are in better condition. In the Sprague River, we’re studying the behavior, run timing, and distribution of adult suckers during spawning migrations as well as the relative abundance, species composition, and timing of emigrating larval suckers. Preliminary results indicate adult suckers migrated into the reach previously impounded by Chiloquin Dam in greater numbers than in the past. While these results indicate a positive response to dam removal

  20. WETLAND AND COASTAL HABITAT CONSERVATION AND RESTORATION MX 6475307

    EPA Science Inventory

    From the date of the project award to March 2009, the project team will coordinate the Wetland and Coastal Habitat Conservation and Restoration committee established by the Governors’ Action Plan of the Gulf of Mexico Alliance. A series of workshops will be held in the Gulf Stat...

  1. Lower Klickitat Riparian and In-channel Habitat Restoration Project; Klickitat Watershed Enhancement, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conley, Will

    2004-01-01

    The overall goal of the Klickitat Watershed Enhancement Project (KWEP) is to restore watershed health to aid recovery of salmonid stocks in the Klickitat subbasin. An emphasis is placed on restoration and protection of stream reaches and watersheds supporting native anadromous fish production, particularly steelhead (Oncorhyncus mykiss; ESA- listed as 'Threatened' within the Mid-Columbia ESU) and spring Chinook (O. tshawytscha). Habitat restoration activities in the Klickitat subbasin augment goals and objectives of the Yakima Klickitat Fisheries Project (YKFP), NPPC Fish and Wildlife Program, Klickitat Subbasin Summary and the NMFS Biological Opinion (All-H paper). Work is conducted to enhance instream andmore » contributing upland habitat to facilitate increased natural production potential for native salmonid stocks. Efforts in the Klickitat Subbasin fall into two main categories: (1) identification and prioritization of sites for protection and restoration activities, (2) implementation of protection and restoration measures. KWEP personnel also assist monitoring efforts of the YKFP Monitoring & Evaluation Project. During the September 2002-August 2003 reporting period, KWEP personnel continued efforts to address feedback from the August 2000 Provincial Review that indicated a need for better information management and development of geographic priorities by: (1) Assisting development of the Strategic Habitat Plan for the Klickitat Lead Entity (Task A3.1) and Klickitat steelhead EDT model (Task A4.1); (2) Improving the functionality of reference point, habitat unit, and large woody debris modules of the habitat database as well as addition of a temperature module (Tasks A1.1-1.2); (3) Continuing development and acquisition of GIS data (Task A1.3); (4) Ongoing data collection efforts to fill information gaps including streamflow, habitat, and temperature (Objectives C1 and C2); and (5) Completion of planning, field work, and hydrologic modeling associated with

  2. Flow Restoration in the Columbia River Basin: An Evaluation of a Flow Restoration Accounting Framework

    NASA Astrophysics Data System (ADS)

    McCoy, Amy L.; Holmes, S. Rankin; Boisjolie, Brett A.

    2018-03-01

    Securing environmental flows in support of freshwater biodiversity is an evolving field of practice. An example of a large-scale program dedicated to restoring environmental flows is the Columbia Basin Water Transactions Program in the Pacific Northwest region of North America, which has been restoring flows in dewatered tributary habitats for imperiled salmon species over the past decade. This paper discusses a four-tiered flow restoration accounting framework for tracking the implementation and impacts of water transactions as an effective tool for adaptive management. The flow restoration accounting framework provides compliance and flow accounting information to monitor transaction efficacy. We review the implementation of the flow restoration accounting framework monitoring framework to demonstrate (a) the extent of water transactions that have been implemented over the past decade, (b) the volumes of restored flow in meeting flow targets for restoring habitat for anadromous fish species, and (c) an example of aquatic habitat enhancement that resulted from Columbia Basin Water Transactions Program investments. Project results show that from 2002 to 2015, the Columbia Basin Water Transactions Program has completed more than 450 water rights transactions, restoring approximately 1.59 million megaliters to date, with an additional 10.98 million megaliters of flow protected for use over the next 100 years. This has resulted in the watering of over 2414 stream kilometers within the Columbia Basin. We conclude with a discussion of the insights gained through the implementation of the flow restoration accounting framework. Understanding the approach and efficacy of a monitoring framework applied across a large river basin can be informative to emerging flow-restoration and adaptive management efforts in areas of conservation concern.

  3. Flow Restoration in the Columbia River Basin: An Evaluation of a Flow Restoration Accounting Framework.

    PubMed

    McCoy, Amy L; Holmes, S Rankin; Boisjolie, Brett A

    2018-03-01

    Securing environmental flows in support of freshwater biodiversity is an evolving field of practice. An example of a large-scale program dedicated to restoring environmental flows is the Columbia Basin Water Transactions Program in the Pacific Northwest region of North America, which has been restoring flows in dewatered tributary habitats for imperiled salmon species over the past decade. This paper discusses a four-tiered flow restoration accounting framework for tracking the implementation and impacts of water transactions as an effective tool for adaptive management. The flow restoration accounting framework provides compliance and flow accounting information to monitor transaction efficacy. We review the implementation of the flow restoration accounting framework monitoring framework to demonstrate (a) the extent of water transactions that have been implemented over the past decade, (b) the volumes of restored flow in meeting flow targets for restoring habitat for anadromous fish species, and (c) an example of aquatic habitat enhancement that resulted from Columbia Basin Water Transactions Program investments. Project results show that from 2002 to 2015, the Columbia Basin Water Transactions Program has completed more than 450 water rights transactions, restoring approximately 1.59 million megaliters to date, with an additional 10.98 million megaliters of flow protected for use over the next 100 years. This has resulted in the watering of over 2414 stream kilometers within the Columbia Basin. We conclude with a discussion of the insights gained through the implementation of the flow restoration accounting framework. Understanding the approach and efficacy of a monitoring framework applied across a large river basin can be informative to emerging flow-restoration and adaptive management efforts in areas of conservation concern.

  4. Quantifying restoration effectiveness using multi-scale habitat models: implications for sage-grouse in the Great Basin

    USGS Publications Warehouse

    Arkle, Robert S.; Pilliod, David S.; Hanser, Steven E.; Brooks, Matthew L.; Chambers, Jeanne C.; Grace, James B.; Knutson, Kevin C.; Pyke, David A.; Welty, Justin L.

    2014-01-01

    A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of occupancy in 211 randomly located plots within a 40 million ha portion of the species' range. We then used these models to predict sage-grouse habitat quality at 826 plots associated with 101 post-wildfire seeding projects implemented from 1990 to 2003. We also compared conditions at restoration sites to published habitat guidelines. Sage-grouse occupancy was positively related to plot- and landscape-level dwarf sagebrush (Artemisia arbuscula, A. nova, A. tripartita) and big sagebrush steppe prevalence, and negatively associated with non-native plants and human development. The predicted probability of sage-grouse occupancy at treated plots was low on average (0.09) and not substantially different from burned areas that had not been treated. Restoration sites with quality habitat tended to occur at higher elevation locations with low annual temperatures, high spring precipitation, and high plant diversity. Of 313 plots seeded after fire, none met all sagebrush guidelines for breeding habitats, but approximately 50% met understory guidelines, particularly for perennial grasses. This pattern was similar for summer habitat. Less than 2% of treated plots met winter habitat guidelines. Restoration actions did not increase the probability of burned areas meeting most guideline criteria. The probability of meeting guidelines was influenced by a latitudinal gradient, climate, and topography. Our results suggest that sage-grouse are relatively unlikely to use many burned areas within 20 years of fire, regardless of treatment. Understory habitat conditions are more likely to be adequate than overstory

  5. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit Rivers of the Laurentian Great Lakes

    USGS Publications Warehouse

    Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne

    2015-01-01

    Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.

  6. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    PubMed

    Markle, Chantel E; Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  7. Mapping anuran habitat suitability to estimate effects of grassland and wetland conservation programs

    USGS Publications Warehouse

    Mushet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    The conversion of the Northern Great Plains of North America to a landscape favoring agricultural commodity production has negatively impacted wildlife habitats. To offset impacts, conservation programs have been implemented by the U.S. Department of Agriculture and other agencies to restore grassland and wetland habitat components. To evaluate effects of these efforts on anuran habitats, we used call survey data and environmental data in ecological niche factor analyses implemented through the program Biomapper to quantify habitat suitability for five anuran species within a 196 km2 study area. Our amphibian call surveys identified Northern Leopard Frogs (Lithobates pipiens), Wood Frogs (Lithobates sylvaticus), Boreal Chorus Frogs (Pseudacris maculata), Great Plains Toads (Anaxyrus cognatus), and Woodhouse’s Toads (Anaxyrus woodhousii) occurring within the study area. Habitat suitability maps developed for each species revealed differing patterns of suitable habitat among species. The most significant findings of our mapping effort were 1) the influence of deep-water overwintering wetlands on suitable habitat for all species encountered except the Boreal Chorus Frog; 2) the lack of overlap between areas of core habitat for both the Northern Leopard Frog and Wood Frog compared to the core habitat for both toad species; and 3) the importance of conservation programs in providing grassland components of Northern Leopard Frog and Wood Frog habitat. The differences in habitats suitable for the five species we studied in the Northern Great Plains, i.e., their ecological niches, highlight the importance of utilizing an ecosystem based approach that considers the varying needs of multiple species in the development of amphibian conservation and management plans.

  8. Assessing Hazard Vulnerability, Habitat Conservation, and Restoration for the Enhancement of Mainland China's Coastal Resilience

    NASA Astrophysics Data System (ADS)

    Sajjad, Muhammad; Li, Yangfan; Tang, Zhenghong; Cao, Ling; Liu, Xiaoping

    2018-03-01

    Worldwide, humans are facing high risks from natural hazards, especially in coastal regions with high population densities. Rising sea levels due to global warming are making coastal communities' infrastructure vulnerable to natural disasters. The present study aims to provide a coupling approach of vulnerability and resilience through restoration and conservation of lost or degraded coastal natural habitats to reclamation under different climate change scenarios. The integrated valuation of ecosystems and tradeoffs model is used to assess the current and future vulnerability of coastal communities. The model employed is based on seven different biogeophysical variables to calculate a natural hazard index and to highlight the criticality of the restoration of natural habitats. The results show that roughly 25% of the coastline and more than 5 million residents are in highly vulnerable coastal areas of mainland China, and these numbers are expected to double by 2100. Our study suggests that restoration and conservation in recently reclaimed areas have the potential to reduce this vulnerability by 45%. Hence, natural habitats have proved to be a great defense against coastal hazards and should be prioritized in coastal planning and development. The findings confirm that natural habitats are critical for coastal resilience and can act as a recovery force of coastal functionality loss. Therefore, we recommend that the Chinese government prioritizes restoration (where possible) and conservation of the remaining habitats for the sake of coastal resilience to prevent natural hazards from escalating into disasters.

  9. Planning for Large Scale Habitat Restoration in the Socorro Valley, New Mexico

    Treesearch

    Gina Dello Russo; Yasmeen Najmi

    2006-01-01

    One initiative for large scale habitat restoration on the Rio Grande in central New Mexico is being led by a nonprofit organization, the Save Our Bosque Task Force. The Task Force has just completed a conceptual restoration plan for a 72-kilometer reach of river. The goals of the plan were to determine the potential for enhanced biological diversity through improved...

  10. Ecological Restoration of Coastal Sage Scrub and Its Potential Role in Habitat Conservation Plans.

    PubMed

    BOWLER

    2000-07-01

    Extensive acreage loss of coastal sage scrub (CSS), isolation of surviving stands, and the federal listing of several animal species with obligate relationships to this plant community, particularly the threatened California gnatcatcher (Polioptila californica), have led to attempts to create CSS to mitigate habitat lost to urban development and other causes. Many of these creations lie within habitat conservation plan (HCP) sites, and they could play a more prominent role by being repositories for plants taken from a single site having site-specific genetics. Among others, one technique that increases initial resemblance to natural stands uses digitized, to-scale photography, which has been ground-truthed to verify vascular plant associations, which appear as mosaics on a landscape. A combination of placing patches of salvaged, mature canopy plants within larger matrices of imprinted or container plant plots appears to significantly enhance immediate use by CSS obligate bird species, accelerate "spread" or expansion of CSS, and can also introduce many epiphytic taxa that otherwise would be slow or unable to occupy developing CSS creations. Reptile, amphibian, butterfly, and rodent diversity in a salvaged canopy restoration case study at the University of California, Irvine, showed CSS species foraging and inhabiting transplanted canopy patches. Using restoration techniques to expand existing CSS stands has more promise than creating isolated patches, and the creation of canopies resembling CSS mid-fire cycle stands is now common. Gnatcatchers and other birds use restorations for foraging and occasional nesting, and in some cases created stands along "biological corridors" appear to be useful to bird movement. Patches of transplanted sage scrub shrubs along habitat edges appear to break up linear edge effects. There are no data on which long-term survival, succession, or postfire behavior can be predicted for CSS restoration sites, and postfire community changes

  11. An assessment of stream habitat and nutrients in the Elwha River basin: implications for restoration

    USGS Publications Warehouse

    Munn, Mark D.; Black, R.W.; Haggland, A.L.; Hummling, M.A.; Huffman, R.L.

    1999-01-01

    The Elwha River was once famous for its 10 runs of anadromous salmon which included chinook that reportedly exceeded 45 kilograms. These runs either ceased to exist or were significantly depleted after the construction of the Elwha (1912) and Glines Canyon (1927) Dams, which resulted in the blockage of more than 113 kilometers of mainstem river and tributary habitat. In 1992, in response to the loss of the salmon runs in the Elwha River Basin, President George Bush signed the Elwha River Ecosystem and Fisheries Restoration Act, which authorizes the Secretary of the Interior to remove both dams for ecosystem restoration. The objective of this U.S. Geological Survey (USGS) study was to begin describing baseline conditions for assessing changes that will result from restoration. The first step was to review available physical, chemical, and biological information on the Elwha River Basin. We found that most studies have focused on anadromous fish and habitat and that little information is available on water quality, habitat classification, geomorphic processes, and riparian and aquatic biological communities. There is also a lack of sufficient data on baseline conditions for assessing future changes if restoration occurs. The second component of this study was to collect water-quality and habitat data, filling information gaps. This information will permit a better understanding of the relation between physical habitat and nutrient conditions and changes that may result from salmon restoration. We collected data in the fall of 1997 and found that the concentrations of nitrogen and phosphorous were generally low, with most samples having concentrations below detection limits. Detectable concentrations of nitrogen were associated with sites in the lower reach of the Elwha River, whereas the few detections of phosphorus were at sites throughout the basin. Nutrient data indicate that the Elwha River and its tributaries are oligotrophic. Results of the stream

  12. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration

    PubMed Central

    Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada’s mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931–2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna. PMID:29444129

  13. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmussen, Lynn

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nezmore » Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.« less

  14. Contrast of degraded and restored stream habitat using an individual-based salmon model

    Treesearch

    S. F. Railsback; M. Gard; Bret Harvey; Jason White; J.K.H. Zimmerman

    2013-01-01

    Stream habitat restoration projects are popular, but can be expensive and difficult to evaluate. We describe inSALMO, an individual-based model designed to predict habitat effects on freshwater life stages (spawning through juvenile out-migration) of salmon. We applied inSALMO to Clear Creek, California, simulating the production of total and large (>5 cm FL)...

  15. A GIS Approach to Prioritizing Habitat for Restoration Using Neotropical Migrant Songbird Criteria

    NASA Astrophysics Data System (ADS)

    Holzmueller, Eric J.; Gaskins, Michael D.; Mangun, Jean C.

    2011-07-01

    Restoration efforts to increase wildlife habitat quality in agricultural landscapes have limited funding and are typically done on a first come, first serve basis. In order to increase the efficiency of these restoration efforts, a prioritized ranking system is needed to obtain the greatest increase in habitat quality possible for the fewest amount of hectares restored. This project examines the use of a GIS based multi-criteria approach to prioritize lands for reforestation along the Kaskaskia River in Illinois. Loss of forested area and corresponding increase in forest fragmentation has decreased songbird habitat quality across the Midwestern United States. We prioritized areas for reforestation based on nine landscape metrics: available agricultural land, forest cover gaps, edge density, proximity to river, 200 m corridor area, total forest core area, fringe core area, distance to primary core value, and primary core area. The multi-criteria analysis revealed that high priority areas for reforestation were most likely to be close to the riparian corridor and existing large blocks of forest. Analysis of simulated reforestation (0, 0.5, 1.0, 5.0 10.0, 25.0, and 50.0% of highest priority parcels reforested) revealed different responses for multiple landscape metrics used to quantify forest fragmentation following reforestation, but indicated that the study area would get the greatest rate of return on reforestation efforts by reforesting 10.0% of the highest priority areas. This project demonstrates how GIS and a multi-criteria analysis approach can be used to increase the efficiency of restoration projects. This approach should be considered by land managers when attempting to identify the location and quantity of area for restoration within a landscape.

  16. A GIS approach to prioritizing habitat for restoration using neotropical migrant songbird criteria.

    PubMed

    Holzmueller, Eric J; Gaskins, Michael D; Mangun, Jean C

    2011-07-01

    Restoration efforts to increase wildlife habitat quality in agricultural landscapes have limited funding and are typically done on a first come, first serve basis. In order to increase the efficiency of these restoration efforts, a prioritized ranking system is needed to obtain the greatest increase in habitat quality possible for the fewest amount of hectares restored. This project examines the use of a GIS based multi-criteria approach to prioritize lands for reforestation along the Kaskaskia River in Illinois. Loss of forested area and corresponding increase in forest fragmentation has decreased songbird habitat quality across the Midwestern United States. We prioritized areas for reforestation based on nine landscape metrics: available agricultural land, forest cover gaps, edge density, proximity to river, 200 m corridor area, total forest core area, fringe core area, distance to primary core value, and primary core area. The multi-criteria analysis revealed that high priority areas for reforestation were most likely to be close to the riparian corridor and existing large blocks of forest. Analysis of simulated reforestation (0, 0.5, 1.0, 5.0 10.0, 25.0, and 50.0% of highest priority parcels reforested) revealed different responses for multiple landscape metrics used to quantify forest fragmentation following reforestation, but indicated that the study area would get the greatest rate of return on reforestation efforts by reforesting 10.0% of the highest priority areas. This project demonstrates how GIS and a multi-criteria analysis approach can be used to increase the efficiency of restoration projects. This approach should be considered by land managers when attempting to identify the location and quantity of area for restoration within a landscape.

  17. WATER QUALITY AND OYSTER HEALTH (CRASSOSTREA VIRGINICA): AN INTEGRATED APPROACH TO DETERMINING HABITAT RESTORATION POTENTIAL

    EPA Science Inventory

    Volety, Aswani K., S. Gregory Tolley and James T. Winstead. 2001. Water Quality and Oyster Health (Crassostrea virginica): An Integrated Approach to Determining Habitat Restoration Potential (Abstract). Presented at the 5th International Conference on Shellfish Restoration, 18-21...

  18. Metric Selection for Ecosystem Restoration

    DTIC Science & Technology

    2013-06-01

    focus on wetlands, submerged aquatic vegetation, oyster reefs, riparian forest, and wet prairie (Miner 2005). The objective of these Corps...of coastal habitats, Volume Two: Tools for monitoring coastal habitats. NOAA Coastal Ocean Program Decision Analysis Series No. 23. Silver Spring, MD...NOAA National Centers for Coastal Ocean Science. Thom, R. M., and K. F. Wellman. 1996. Planning aquatic ecosystem restoration monitoring programs

  19. 75 FR 71325 - Wildlife Habitat Incentive Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... Wildlife Habitat Incentive Program AGENCY: Commodity Credit Corporation, Natural Resources Conservation... final rule for the Wildlife Habitat Incentive Program (WHIP). This final rule sets forth how NRCS, using... Albert Cerna, National Wildlife Habitat Incentive Program Manager, Financial Assistance Programs Division...

  20. River habitat assessment for ecological restoration of Wei River Basin, China.

    PubMed

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  1. Habitat Restoration and Monitoring in Urban Streams: The Case of Tryon Creek in Portland, OR

    NASA Astrophysics Data System (ADS)

    Rios Touma, B. P.; Prescott, C.; Axtell, S.; Kondolf, G. M.

    2013-12-01

    Habitat enhancement in urban streams can be important for threatened species but challenging, because of altered catchment hydrology and urban encroachment on floodplains and channel banks. In Portland (OR) restoration actions have been undertaken at the watershed scale (e.g.: storm water management, protection of sites with high watershed value) to improve water quality, and at reach scale, when water quality and quantity are adequate, to increase habitat heterogeneity and stabilize banks. To evaluate reach-scale restoration projects in the Tryon Creek watershed, we sampled benthic macroinvertebrates and conducted habitat quality surveys pre-project and over 4 years post- project. Species sensitive to pollution and diversity of trophic groups increased after restoration. Although taxonomical diversity increased after restoration, but was still low compared to reference streams. We found no significant changes in trait proportions and functional diversity. Functional diversity, proportion of shredders and semivoltine invertebrates were significantly higher in reference streams than the restored stream reaches. We hypothesized that inputs of coarse particulate organic matter and land use at watershed scale may explain the differences in biodiversity between restored and reference stream reaches. Variables such as substrate composition, canopy cover or large wood pieces did not change from pre- to post-project, so could not explain the changes in the community. This may have been partly attributable to insensitivity of the visual estimate methods used, but likely also reflects an importance influence of watershed variables on aquatic biota - suggesting watershed actions may be more effective for the ecological recovery of streams. For future projects, we recommend multihabitat benthic sampling supported by studies of channel geomorphology to better understand stream response to restoration actions.

  2. Habitat conditions of montane meadows associated with restored and unrestored stream channels of California

    Treesearch

    K. L. Pope; D. S. Montoya; J. N. Brownlee; J. Dierks; T. E. Lisle

    2015-01-01

    Mountain meadow habitats are valued for their ecological importance. They attenuate floods, improve water quality, and support high biodiversity. Many meadow habitats in the western US are degraded, and efforts are increasing to restore these montane meadow ecosystems. Rewatering projects such as pond-and-plug quickly raise the water table by blocking the existing...

  3. Arroyo Management Plan (Alameda County): A Plan for Implementing Access and Restoring Riparian Habitats

    Treesearch

    Kent E. Watson; Jim Horner; Louise Mozingo

    1989-01-01

    Innovative techniques for restoring riparian habitats are of little value without a community endorsed plan for their implementation. A flood control district commissioned the Arroyo Management Plan in order to determine how it might provide public access and improve habitat along its current and future channels in a fast-growing area of Northern California. The Plan,...

  4. 77 FR 13095 - Intent To Prepare an Environmental Impact Statement for NOAA Restoration Center Programmatic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... Coastal Wetland Planning, Protection and Restoration Act (CWPPRA) Program, and the Great Lakes Habitat... Prepare an Environmental Impact Statement for NOAA Restoration Center Programmatic Coastal Habitat... (PEIS) to evaluate the potential environmental impacts of different ranges of coastal and marine habitat...

  5. Modeling Biota-Sediment Accumulation Factors in fish for AOC habitat restoration projects

    EPA Science Inventory

    We compiled contaminated sediment data for Dioxins and Dioxin Like PCBs for the St. Louis River Area of Concern as part of a health impact assessment for the proposed Kingsbury Bay Grassy Point Habitat Restoration project. To incorporate potential Biota-Sediment Accumulation Fac...

  6. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    PubMed

    Matchett, Elliott L; Fleskes, Joseph P

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  7. Kingsbury Bay-Grassy Point habitat restoration project: A Health Impact Assessment-oral presentation

    EPA Science Inventory

    Undertaking large-scale aquatic habitat restoration projects in prominent waterfront locations, such as city parks, provides an opportunity to both improve ecological integrity and enhance community well-being. However, to consider both opportunities simultaneously, a community-b...

  8. Landscape Context Mediates Avian Habitat Choice in Tropical Forest Restoration

    PubMed Central

    Reid, J. Leighton; Mendenhall, Chase D.; Rosales, J. Abel; Zahawi, Rakan A.; Holl, Karen D.

    2014-01-01

    Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage. We sampled bird communities over two years in 13 restoration sites and two old-growth forests in southern Costa Rica. Restoration sites were established on degraded farmlands in a variety of landscape contexts, and each included a 0.25-ha plantation, island treatment (trees planted in patches), and unplanted control. We analyzed four attributes of bird communities including frugivore abundance, nectarivore abundance, migrant insectivore richness, and compositional similarity of bird communities in restoration plots to bird communities in old-growth forests. All four bird community variables were greater in plantations and/or islands than in control treatments. Frugivore and nectarivore abundance decreased with increasing tree cover in the landscape surrounding restoration plots, whereas compositional similarity to old-growth forests was greatest in plantations embedded in landscapes with high tree cover. Migrant insectivore richness was unaffected by landscape tree cover. Our results agree with previous studies showing that increasing levels of investment in active restoration are positively related to bird richness and abundance, but differences in the effects of landscape tree cover on foraging guilds and community composition suggest that trade-offs between biodiversity conservation and bird-mediated ecosystem functioning may be important for prioritizing restoration sites. PMID:24595233

  9. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, T.P.

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physicalmore » characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River

  10. Habitat restoration from an ecosystem goods and services perspective: Application of a spatially explicit individual-based model

    EPA Science Inventory

    Estuarine ecosystems provide many services to humans, but these ecosystems are also under pressure from human development, which has led to large investments in habitat protection and restoration. Restoration in estuaries is typically focused on emergent and submerged vegetation ...

  11. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California’s Central Valley

    PubMed Central

    Fleskes, Joseph P.

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  12. Projected impacts of climate, urbanization, water management, and wetland restoration on waterbird habitat in California’s Central Valley

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  13. Lower Columbia River and Estuary Ecosystem Restoration Program Reference Site Study: 2011 Restoration Analysis - FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borde, Amy B.; Cullinan, Valerie I.; Diefenderfer, Heida L.

    The Reference Site (RS) study is part of the research, monitoring, and evaluation (RME) effort developed by the Action Agencies (Bonneville Power Administration [BPA], U.S. Army Corps of Engineers, Portland District [USACE], and U.S. Bureau of Reclamation) in response to Federal Columbia River Power System (FCRPS) Biological Opinions (BiOp). While the RS study was initiated in 2007, data have been collected at relatively undisturbed reference wetland sites in the LCRE by PNNL and collaborators since 2005. These data on habitat structural metrics were previously summarized to provide baseline characterization of 51 wetlands throughout the estuarine and tidal freshwater portions ofmore » the 235-km LCRE; however, further analysis of these data has been limited. Therefore, in 2011, we conducted additional analyses of existing field data previously collected for the Columbia Estuary Ecosystem Restoration Program (CEERP) - including data collected by PNNL and others - to help inform the multi-agency restoration planning and ecosystem management work underway in the LCRE.« less

  14. Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture.

    PubMed

    M'Gonigle, Leithen K; Ponisio, Lauren C; Cutler, Kerry; Kremen, Claire

    2015-09-01

    Widespread evidence of pollinator declines has led to policies supporting habitat restoration including in agricultural landscapes. Yet, little is yet known about the effectiveness of these restoration techniques for promoting stable populations and communities of pollinators, especially in intensively managed agricultural landscapes. Introducing floral resources, such as flowering hedgerows, to enhance intensively cultivated agricultural landscapes is known to increase the abundances of native insect pollinators in and around restored areas. Whether this is a result of local short-term concentration at flowers or indicative of true increases in the persistence and species richness of these communities remains unclear. It is also unknown whether this practice supports species of conservation concern (e.g., those with more specialized dietary requirements). Analyzing occupancies of native bees and syrphid flies from 330 surveys across 15 sites over eight years, we found that hedgerow restoration promotes rates of between-season persistence and colonization as compared with unrestored field edges. Enhanced persistence and colonization, in turn, led to the formation of more species-rich communities. We also find that hedgerows benefit floral resource specialists more than generalists, emphasizing the value of this restoration technique for conservation in agricultural landscapes.

  15. RESTORATION OF 100 SQUARE MILES OF SHELLFISH HABITAT IN LAKE PONTCHARTRAIN MX974852

    EPA Science Inventory

    The project will document the adverse effects of episodic hypoxia on the biotic integrity of Lake Pontchartrain and provide quantitative data on environmental benefits derived from the restoration of 100 square miles of clam habitat in Lake Pontchartrain. This project will prov...

  16. An expert panel process to evaluate habitat restoration actions in the Columbia River estuary.

    PubMed

    Krueger, Kirk L; Bottom, Daniel L; Hood, W Gregory; Johnson, Gary E; Jones, Kim K; Thom, Ronald M

    2017-03-01

    We describe a process for evaluating proposed ecosystem restoration projects intended to improve survival of juvenile salmon in the Columbia River estuary (CRE). Changes in the Columbia River basin (northwestern USA), including hydropower development, have contributed to the listing of 13 salmon stocks as endangered or threatened under the U.S. Endangered Species Act. Habitat restoration in the CRE, from Bonneville Dam to the ocean, is part of a basin-wide, legally mandated effort to mitigate federal hydropower impacts on salmon survival. An Expert Regional Technical Group (ERTG) was established in 2009 to improve and implement a process for assessing and assigning "survival benefit units" (SBUs) to restoration actions. The SBU concept assumes site-specific restoration projects will increase juvenile salmon survival during migration through the 234 km CRE. Assigned SBUs are used to inform selection of restoration projects and gauge mitigation progress. The ERTG standardized the SBU assessment process to improve its scientific integrity, repeatability, and transparency. In lieu of experimental data to quantify the survival benefits of individual restoration actions, the ERTG adopted a conceptual model composed of three assessment criteria-certainty of success, fish opportunity improvements, and habitat capacity improvements-to evaluate restoration projects. Based on these criteria, an algorithm assigned SBUs by integrating potential fish density as an indicator of salmon performance. Between 2009 and 2014, the ERTG assessed SBUs for 55 proposed projects involving a total of 181 restoration actions located across 8 of 9 reaches of the CRE, largely relying on information provided in a project template based on the conceptual model, presentations, discussions with project sponsors, and site visits. Most projects restored tidal inundation to emergent wetlands, improved riparian function, and removed invasive vegetation. The scientific relationship of geomorphic and

  17. Assessment of Effectiveness and Limitations of Habitat Suitability Models for Wetland Restoration

    USGS Publications Warehouse

    Draugelis-Dale, Rassa O.

    2008-01-01

    Habitat suitability index (HSI) models developed for wildlife in the Louisiana Coastal Area Comprehensive Ecosystem Restoration Plan (LCA study) have been assessed for parameter and overall model quality. The success of the suitability models from the South Florida Water Management District for The Everglades restoration project and from the Spatially Explicit Species Index Models (SESI) of the Across Trophic Level System Simulation (ATLSS) Program of Florida warranted investigation with possible application of modeling theory to the current LCA study. General HSI models developed by the U.S. Fish and Wildlife Service were also investigated. This report presents examinations of theoretical formulae and comparisons of the models, performed by using diverse hypothetical settings of hydrological/biological ecosystems to highlight weaknesses as well as strengths among the models, limited to the American alligator and selected wading bird species (great blue heron, great egret, and white ibis). Recommendations were made for the LCA study based on these assessments. An enhanced HSI model for the LCA study is proposed for the American alligator, and a new HSI model for wading birds is introduced for the LCA study. Performance comparisons of the proposed models with the other suitability models are made by using the aforementioned hypothetical settings.

  18. Prospective environmental restoration/ restoration up front: a concept for an incentive-based program to increase restoration planning and implementation in the United States.

    PubMed

    Stahl, Ralph G; Gouguet, Ron; DeSantis, Amanda; Liu, Jenny; Ammann, Michael

    2008-01-01

    This article describes a concept variously termed prospective environmental restoration, restoration up front, or restoration banking. Briefly, the concept centers on the ability of an entity, public or private, to gain durable credits for undertaking proactive restoration activities. Once obtained, these credits can be applied to an existing liability, held in the event of a future liability, or traded or sold to others that might have need for the credits. In the case of a natural resource damage claim or response action, possessing or applying the credits does not negate the need for responsible entities to clean up spills or releases of hazardous substances or oil or to address their clean-up requirements under applicable federal and state statutes. Concepts similar to prospective environmental restoration/restoration up front include wetlands mitigation banking, conservation habitat banking, and emissions trading. Much of the concept and details provided herein stem from the practice of natural resource damage assessment, although that is not the sole driver for the concept. The concept could also apply where the credits could be used to offset other environmental liabilities, for example, to provide habitat mitigation where development is being planned. The authors believe that the concept, if widely applied, could reduce the time and costs associated with restoration and perhaps lead to an increase in voluntary restoration and conservation nationally. Currently, there are no state or federal regulations or policies that directly provide for this approach.

  19. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis: An Additional Year

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2009-01-01

    The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the Federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent upon the estuary. A pre-restoration baseline that includes characterization of life history types, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and determine restoration success. Otolith analysis was selected to examine Chinook salmon life history, growth, and residence in the Nisqually Estuary. Previously funded work on wild samples collected in 2004 established the growth rate and length of residence associated with various habitats. The purpose of the current study is to build on the previous work by incorporating otolith microstructure analysis from 2005 (second sampling year), to verify findings from 2004, and to evaluate between-year variation in otolith microstructure. Our results from this second year of analysis indicated no inter-annual variation in the appearance of the tidal delta check (TDCK) and delta-flats check (DFCK). However, a new life history type (fry migrant) was observed on samples collected in 2005. Fish caught in the tidal delta regardless of capture date spent an average of 17 days in the tidal delta. There was a corresponding increase in growth rate as the fish migrated from freshwater (FW) to tidal delta to nearshore (NS) habitats. Fish grew 33 percent faster in the tidal delta than in FW habitat and slightly faster (14 percent) in the delta flats (DF) habitat compared to the tidal delta.

  20. Home range and habitat selection patterns of mule deer in a restoration-treated ponderosa pine forest

    Treesearch

    R. Fenner Yarborough; Catherine S. Wightman

    2008-01-01

    (Please note, this is an abstract only) Forest restoration treatments are currently being conducted throughout the state of Arizona. Restoration treatments open the existing forest structure and may improve foraging habitat for mule deer (Odocoileus hemionus) but may reduce the suitability of day bed sites or decrease fawn recruitment due to removal of sufficient...

  1. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis

    USGS Publications Warehouse

    Lind-Null, Angela; Larsen, Kimberly; Reisenbichler, Reginald

    2007-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act. The preservation of the Nisqually delta ecosystem coupled with extensive restoration of approximately 1,000 acres of diked estuarine habitat is identified as the highest priority action for the recovery of naturally spawning Nisqually River Fall Chinook salmon (Oncorhynchus tshawytscha) in the Nisqually Chinook Recovery Plan. In order to evaluate the response of Chinook salmon to restoration, a pre-restoration baseline of life history diversity and estuary utilization must be established. Otolith analysis has been proposed as a means to measure Chinook salmon life history diversity, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: (1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, (2) compare pre and post restoration residence times and growth rates, and (3) suggest whether estuary restoration yields substantial benefits for Chinook salmon. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile Chinook salmon can exhibit a variety of life history trajectories ? some enter the sea (or Puget Sound) as fry, some rear in the estuary before entering the sea, and some rear in the river and then move rapidly through the estuary into the sea as smolts. The

  2. 75 FR 2517 - Notice of Solicitation for Estuary Habitat Restoration Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... related to climate change on the viability of the proposed restoration. This may take the form of considering climate change in the planning, design, siting, and construction of the project, or in testing new restoration technologies that may help to alleviate effects of climate change. This document describes project...

  3. Predicted effect of landscape position on wildlife habitat value of Conservation Reserve Enhancement Program wetlands in a tile-drained agricultural region

    USGS Publications Warehouse

    Otis, David L.; Crumpton, William R.; Green, David; Loan-Wilsey, Anna; Cooper, Tom; Johnson, Rex R.

    2013-01-01

    Justification for investment in restored or constructed wetland projects are often based on presumed net increases in ecosystem services. However, quantitative assessment of performance metrics is often difficult and restricted to a single objective. More comprehensive performance assessments could help inform decision-makers about trade-offs in services provided by alternative restoration program design attributes. The primary goal of the Iowa Conservation Reserve Enhancement Program is to establish wetlands that efficiently remove nitrates from tile-drained agricultural landscapes. A secondary objective is provision of wildlife habitat. We used existing wildlife habitat models to compare relative net change in potential wildlife habitat value for four alternative landscape positions of wetlands within the watershed. Predicted species richness and habitat value for birds, mammals, amphibians, and reptiles generally increased as the wetland position moved lower in the watershed. However, predicted average net increase between pre- and post-project value was dependent on taxonomic group. The increased average wetland area and changes in surrounding upland habitat composition among landscape positions were responsible for these differences. Net change in predicted densities of several grassland bird species at the four landscape positions was variable and species-dependent. Predicted waterfowl breeding activity was greater for lower drainage position wetlands. Although our models are simplistic and provide only a predictive index of potential habitat value, we believe such assessment exercises can provide a tool for coarse-level comparisons of alternative proposed project attributes and a basis for constructing informed hypotheses in auxiliary empirical field studies.

  4. Grand Ronde Basin Fish Habitat Enhancement Project, 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance R.; Morton, Winston H.

    2009-07-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing the opportunities for natural fishmore » production within the basin. This project originally provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented under revisions of the Fish and Wild Program as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires considerable time be spent developing rapport with landowners to gain acceptance, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources, is the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway

  5. Using ecosystem engineers as tools in habitat restoration and rewilding: beaver and wetlands.

    PubMed

    Law, Alan; Gaywood, Martin J; Jones, Kevin C; Ramsay, Paul; Willby, Nigel J

    2017-12-15

    Potential for habitat restoration is increasingly used as an argument for reintroducing ecosystem engineers. Beaver have well known effects on hydromorphology through dam construction, but their scope to restore wetland biodiversity in areas degraded by agriculture is largely inferred. Our study presents the first formal monitoring of a planned beaver-assisted restoration, focussing on changes in vegetation over 12years within an agriculturally-degraded fen following beaver release, based on repeated sampling of fixed plots. Effects are compared to ungrazed exclosures which allowed the wider influence of waterlogging to be separated from disturbance through tree felling and herbivory. After 12years of beaver presence mean plant species richness had increased on average by 46% per plot, whilst the cumulative number of species recorded increased on average by 148%. Heterogeneity, measured by dissimilarity of plot composition, increased on average by 71%. Plants associated with high moisture and light conditions increased significantly in coverage, whereas species indicative of high nitrogen decreased. Areas exposed to both grazing and waterlogging generally showed the most pronounced change in composition, with effects of grazing seemingly additive, but secondary, to those of waterlogging. Our study illustrates that a well-known ecosystem engineer, the beaver, can with time transform agricultural land into a comparatively species-rich and heterogeneous wetland environment, thus meeting common restoration objectives. This offers a passive but innovative solution to the problems of wetland habitat loss that complements the value of beavers for water or sediment storage and flow attenuation. The role of larger herbivores has been significantly overlooked in our understanding of freshwater ecosystem function; the use of such species may yet emerge as the missing ingredient in successful restoration. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights

  6. Conservation education and habitat restoration for the endangered Sagalla caecilian (Boulengerula niedeni) in Sagalla Hill, Kenya.

    PubMed

    K Malonza, Patrick

    2016-05-18

    The Sagalla caecilian (Boulengerula niedeni) is an endangered amphibian endemic to Sagalla Hill in the Taita Hills. This burrowing worm-like species prefers soft soil with high moisture and organic matter. The major threats to the Sagalla caecilian are soil erosion caused by steep slopes, bare ground and water siphoning/soil hardening from exotic eucalyptus trees. The purpose of this study was to get a better understanding of the local people's attitude towards this species and how they can contribute to its continued conservation through restoration of its remaining habitat. In this study, it was found that 96% of Sagalla people are aware of the species, its habits and its association with soils high in organic matter. It was also found that 96% of Sagalla people use organic manure from cow dung in their farms. Habitat restoration through planting of indigenous plants was found to be ongoing, especially on compounds of public institutions as well as on private lands. Although drought was found to be a challenge for seedlings development especially on the low elevation sites, destruction by livestock especially during the dry season is also a major threat. In this study, it was recommended that any future habitat restoration initiative should include strong chain-link fencing to protect the seedlings from livestock activity. Recognizing that the preferred habitats for the species are in the valleys, systematic planting of keystone plant species such as fig trees (Ficus) creates the best microhabitats. These are better than general woodlots of indigenous trees.

  7. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish productionmore » within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and

  8. Modeling Investigation of Spring Chinook Salmon Habitat in San Joaquin River Restoration Program

    NASA Astrophysics Data System (ADS)

    Liu, L.; Ramires, J.

    2013-12-01

    -averaged mathematic model is developed to simulate and predict the hydrodynamic conditions (e.g., current velocity, water surface elevation, etc.) of different alternatives and incorporate the disengaged portion of the SJR. The 2-D model will facilitate to better investigate flow features which are essential to the SJRRP. Flow simulations will allow for the exploration of flow patterns and enable the users to compare each alternative. By simulating and predicting flow conditions of each alternative, this project may offer an insightful understanding of the hydrodynamic occurrence of river alterations and aid in analyzing the passage for Chinook salmon. Key words: modeling; habitat; restoration

  9. A Spatially Based Area–Time Inundation Index Model Developed to Assess Habitat Opportunity in Tidal–Fluvial Wetlands and Restoration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Andre M.; Diefenderfer, Heida L.; Ward, Duane L.

    The hydrodynamics of tidal wetland areas in the lower Columbia River floodplain and estuary directly affect habitat opportunity for endangered salmonid fishes. Physical and biological structures and functions in the system are directly affected by inundation patterns influenced by tidal cycles, hydropower operations, river discharge, upriver water withdrawals, climate, and physical barriers such as dikes, culverts, and tide gates. Ongoing ecosystem restoration efforts are intended to increase the opportunity for salmon to access beneficial habitats by hydrologically reconnecting main-stem river channels and diked areas within the historical floodplain. To address the need to evaluate habitat opportunity, a geographic information system-basedmore » Area-Time Inundation Index Model (ATIIM) was developed. The ATIIM integrates in situ or modeled hourly water-surface elevation (WSE) data and advanced terrain processing of high-resolution elevation data. The ATIIM uses a spatially based wetted-area algorithm to determine site average bankfull elevation, two- and three-dimensional inundation extent, and other site metrics. Hydrological process metrics such as inundation frequency, duration, maximum area, and maximum frequency area can inform evaluation of proposed restoration sites; e.g., determine trade-offs between WSE and habitat opportunity, contrast alternative restoration designs, predict impacts of altered flow regimes, and estimate nutrient and biomass fluxes. In an adaptive management framework, this model can be used to provide standardized site comparisons and effectiveness monitoring of changes in the developmental trajectories of restoration sites. Results are presented for 11 wetlands representative of tidal marshes, tidal forested wetlands, and restoration sites.« less

  10. Mapping habitat suitability for at-risk plant species and its implications for restoration and reintroduction.

    PubMed

    Questad, Erin J; Kellner, James R; Kinney, Kealoha; Cordell, Susan; Asner, Gregory P; Thaxton, Jarrod; Diep, Jennifer; Uowolo, Amanda; Brooks, Sam; Inman-Narahari, Nikhil; Evans, Steven A; Tucker, Brian

    2014-03-01

    suggest that plant establishment and survival is associated with the habitat conditions identified by our model. The HSM can improve the survival of planted individuals, reduce the cost of restoration and reintroduction programs through targeted management activities in high-suitability areas, and expand the ability of managers to make landscape-scale decisions regarding land-use, land acquisition, and species recovery.

  11. Freshwater ecosystems and resilience of Pacific salmon: Habitat Management based on natural variability

    USGS Publications Warehouse

    Bisson, P.A.; Dunham, J.B.; Reeves, G.H.

    2009-01-01

    In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability. ?? 2009 by the author(s).

  12. California partners for fish and wildlife program: conserving birds through private partnerships

    Treesearch

    Debra Schlafmann; Philip Morrison

    2005-01-01

    The Partners for Fish and Wildlife Program, the U.S. Fish and Wildlife Service's (Service) habitat restoration assistance program for private landowners, was created primarily to improve habitat for waterfowl. Since its inception in 1987, however, the program has grown to include the restoration of all types of habitat. The purpose of this paper is to explain how...

  13. Targeted habitat restoration can reduce extinction rates in fragmented forests.

    PubMed

    Newmark, William D; Jenkins, Clinton N; Pimm, Stuart L; McNeally, Phoebe B; Halley, John M

    2017-09-05

    The Eastern Arc Mountains of Tanzania and the Atlantic Forest of Brazil are two of the most fragmented biodiversity hotspots. Species-area relationships predict that their habitat fragments will experience a substantial loss of species. Most of these extinctions will occur over an extended time, and therefore, reconnecting fragments could prevent species losses and allow locally extinct species to recolonize former habitats. An empirical relaxation half-life vs. area relationship for tropical bird communities estimates the time that it takes to lose one-half of all species that will be eventually lost. We use it to estimate the increase in species persistence by regenerating a forest connection 1 km in width among the largest and closest fragments at 11 locations. In the Eastern Arc Mountains, regenerating 8,134 ha of forest would create >316,000 ha in total of restored contiguous forest. More importantly, it would increase the persistence time for species by a factor of 6.8 per location or ∼2,272 years, on average, relative to individual fragments. In the Atlantic Forest, regenerating 6,452 ha of forest would create >251,000 ha in total of restored contiguous forest and enhance species persistence by a factor of 13.0 per location or ∼5,102 years, on average, relative to individual fragments. Rapidly regenerating forest among fragments is important, because mean time to the first determined extinction across all fragments is 7 years. We estimate the cost of forest regeneration at $21-$49 million dollars. It could provide one of the highest returns on investment for biodiversity conservation worldwide.

  14. Clackamas/Hood River Habitat Enhancement Program, 1987 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Ken; Cain, Thomas C.; Heller, David A.

    1988-03-01

    Fisheries habitat improvement work is being done on priority drainages in the Clackamas and Rood River sub-basins under program measure 704(c), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program. This report describes the work completed in 1987 for Bonneville Power Administration (BPA) project number 84-11, the Clackamas/Hood River Habitat Enhancement Program. The program is composed of six projects: Collawash River Habitat Improvement Project; Collawash River Falls Passage Improvement Project, Oak Grove Fork Habitat Improvement Project; Lake Branch/West Fork Hood River Habitat Improvement Project; Fifteenmile Creek Habitat Improvement Project; and Abundance, Behavior, andmore » Habitat Utilization by Coho Salmon and Steelhead Trout in Fish Creek, Oregon, As Influenced by Habitat Enhancement. This ongoing program was initiated in 1984, although some of the projects were begun with BPA funding support as early as 1983. The projects are complemented by a variety of habitat improvement and management activities funded from a variety of Forest Service sources. This report describes the activities implemented for five of the six projects. A separate annual report on the 1987 habitat improvement and monitoring/evaluation efforts in the Fish Creek drainage has been prepared. Species for management emphasis include spring chinook and coho salmon, and summer and winter steelhead trout. Project work in 1987 primarily focused on increasing the quantity and quality of available rearing habitat, and improving access at passage barriers. The underlying theme of the improvement work has been to increase habitat diversity through the introduction of ''structure''. Structure provided by logs and boulders serves to deflect, pond, or otherwise disrupt flow patterns within a stream channel. This alteration of flow patterns results in formation of an increased number of habitat niches (i.e. pools, glides, alcoves, etc. ) in which

  15. Crims Island-Restoration and monitoring of juvenile salmon rearing habitat in the Columbia River Estuary, Oregon, 2004-10

    USGS Publications Warehouse

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Under the 2004 Biological Opinion for operation of the Federal Columbia River Power System released by the National Marine Fisheries Service, the U.S. Army Corps of Engineers (USACE), the Bonneville Power Administration (BPA), and the Bureau of Reclamation (Reclamation) were directed to restore more than 4,047 hectares (10,000 acres) of tidal marsh in the Columbia River estuary by 2010. Restoration of Crims Island near Longview, Washington, restored 38.1 hectares of marsh and swamp in the tidal freshwater portion of the lower Columbia River. The goal of the restoration was to improve habitat for juveniles of Endangered Species Act (ESA)-listed salmon stocks and ESA-listed Columbian white-tailed deer. The U.S. Geological Survey (USGS) monitored and evaluated the fisheries and aquatic resources at Crims Island in 2004 prior to restoration (pre-restoration), which began in August 2004, and then post-restoration from 2006 to 2009. This report summarizes pre- and post-restoration monitoring data used by the USGS to evaluate project success. We evaluated project success by examining the interaction between juvenile salmon and a suite of broader ecological measures including sediments, plants, and invertebrates and their response to large-scale habitat alteration. The restoration action at Crims Island from August 2004 to September 2005 was to excavate a 0.6-meter layer of soil and dig channels in the interior of the island to remove reed canary grass and increase habitat area and tidal exchange. The excavation created 34.4 hectares of tidal emergent marsh where none previously existed and 3.7 hectares of intertidal and subtidal channels. Cattle that had grazed the island for more than 50 years were relocated. Soil excavated from the site was deposited in upland areas next to the tidal marsh to establish an upland forest. Excavation deepened and widened an existing T-shaped channel to increase tidal flow to the interior of the island. The western arm of the existing 'T

  16. Assessing Impacts of Hydropower Regulation on Salmonid Habitat Connectivity to Guide River Restoration

    NASA Astrophysics Data System (ADS)

    Buddendorf, Bas; Geris, Josie; Malcolm, Iain; Wilkinson, Mark; Soulsby, Chris

    2016-04-01

    Anthropogenic activity in riverine ecosystems has led to a substantial divergence from the natural state of many rivers globally. Many of Scotland's rivers have been regulated for hydropower with increasing intensity since the 1890s. At the same time they sustain substantial populations of Atlantic Salmon (Salmo salar L.), which have a range of requirements in terms of flow and access to habitat, depending on the different life-stages. River barriers for hydropower regulation can change the spatial and temporal connectivity within river networks, the impacts of which on salmon habitat are not fully understood. Insight into such changes in connectivity, and the link with the distribution and accessibility of suitable habitat and areas of high productivity, are essential to aid restoration and/or conservation efforts. This is because they indicate where such efforts might have a higher chance of being successful in terms of providing suitable habitat and increasing river productivity. In this study we applied a graph theory approach to assess historic (natural) and contemporary (regulated) in-stream habitat connectivity of the River Lyon, an important UK salmon river that is moderately regulated for hydropower. Historic maps and GIS techniques were used to construct the two contrasting river networks (i.e., natural vs. regulated). Subsequently, connectivity metrics were used to assess the impacts of hydropower infrastructure on upstream and downstream migration possibilities for adults and juveniles, respectively. A national juvenile salmon production model was used to weight the importance of reaches for juvenile salmon production. Results indicate that the impact of barriers in the Lyon on the connectivity indices depends on the type of barrier and its location within the network, but is generally low for both adults and juveniles, and that compared to the historic river network the reduction in the amount of suitable habitat and juvenile production is most marked

  17. Targeted habitat restoration can reduce extinction rates in fragmented forests

    PubMed Central

    Newmark, William D.; Pimm, Stuart L.; McNeally, Phoebe B.; Halley, John M.

    2017-01-01

    The Eastern Arc Mountains of Tanzania and the Atlantic Forest of Brazil are two of the most fragmented biodiversity hotspots. Species–area relationships predict that their habitat fragments will experience a substantial loss of species. Most of these extinctions will occur over an extended time, and therefore, reconnecting fragments could prevent species losses and allow locally extinct species to recolonize former habitats. An empirical relaxation half-life vs. area relationship for tropical bird communities estimates the time that it takes to lose one-half of all species that will be eventually lost. We use it to estimate the increase in species persistence by regenerating a forest connection 1 km in width among the largest and closest fragments at 11 locations. In the Eastern Arc Mountains, regenerating 8,134 ha of forest would create >316,000 ha in total of restored contiguous forest. More importantly, it would increase the persistence time for species by a factor of 6.8 per location or ∼2,272 years, on average, relative to individual fragments. In the Atlantic Forest, regenerating 6,452 ha of forest would create >251,000 ha in total of restored contiguous forest and enhance species persistence by a factor of 13.0 per location or ∼5,102 years, on average, relative to individual fragments. Rapidly regenerating forest among fragments is important, because mean time to the first determined extinction across all fragments is 7 years. We estimate the cost of forest regeneration at $21–$49 million dollars. It could provide one of the highest returns on investment for biodiversity conservation worldwide. PMID:28827340

  18. NASA Ames DEVELOP Interns Collaborate with the South Bay Salt Pond Restoration Project to Monitor and Study Restoration Efforts using NASA's Satellites

    NASA Technical Reports Server (NTRS)

    Newcomer, Michelle E.; Kuss, Amber Jean; Nguyen, Andrew; Schmidt, Cynthia L.

    2012-01-01

    In the past, natural tidal marshes in the south bay were segmented by levees and converted into ponds for use in salt production. In an effort to provide habitat for migratory birds and other native plants and animals, as well as to rebuild natural capital, the South Bay Salt Pond Restoration Project (SBSPRP) is focused on restoring a portion of the over 15,000 acres of wetlands in California's South San Francisco Bay. The process of restoration begins when a levee is breached; the bay water and sediment flow into the ponds and eventually restore natural tidal marshes. Since the spring of 2010 the NASA Ames Research Center (ARC) DEVELOP student internship program has collaborated with the South Bay Salt Pond Restoration Project (SBSPRP) to study the effects of these restoration efforts and to provide valuable information to assist in habitat management and ecological forecasting. All of the studies were based on remote sensing techniques -- NASA's area of expertise in the field of Earth Science, and used various analytical techniques such as predictive modeling, flora and fauna classification, and spectral detection, to name a few. Each study was conducted by a team of aspiring scientists as a part of the DEVELOP program at Ames.

  19. A spatially explicit decision support model for restoration of forest bird habitat

    USGS Publications Warehouse

    Twedt, D.J.; Uihlein, W.B.; Elliott, A.B.

    2006-01-01

    The historical area of bottomland hardwood forest in the Mississippi Alluvial Valley has been reduced by >75%. Agricultural production was the primary motivator for deforestation; hence, clearing deliberately targeted higher and drier sites. Remaining forests are highly fragmented and hydrologically altered, with larger forest fragments subject to greater inundation, which has negatively affected many forest bird populations. We developed a spatially explicit decision support model, based on a Partners in Flight plan for forest bird conservation, that prioritizes forest restoration to reduce forest fragmentation and increase the area of forest core (interior forest >1 km from 'hostile' edge). Our primary objective was to increase the number of forest patches that harbor >2000 ha of forest core, but we also sought to increase the number and area of forest cores >5000 ha. Concurrently, we targeted restoration within local (320 km2) landscapes to achieve >60% forest cover. Finally, we emphasized restoration of higher-elevation bottomland hardwood forests in areas where restoration would not increase forest fragmentation. Reforestation of 10% of restorable land in the Mississippi Alluvial Valley (approximately 880,000 ha) targeted at priorities established by this decision support model resulted in approximately 824,000 ha of new forest core. This is more than 32 times the amount of core forest added through reforestation of randomly located fields (approximately 25,000 ha). The total area of forest core (1.6 million ha) that resulted from targeted restoration exceeded habitat objectives identified in the Partners in Flight Bird Conservation Plan and approached the area of forest core present in the 1950s.

  20. Telemetry-Determined Habitat Use Informs Multi-Species Habitat Management in an Urban Harbour.

    PubMed

    Rous, Andrew M; Midwood, Jonathon D; Gutowsky, Lee F G; Lapointe, Nicolas W R; Portiss, Rick; Sciscione, Thomas; Wells, Mathew G; Doka, Susan E; Cooke, Steven J

    2017-01-01

    Widespread human development has led to impairment of freshwater coastal wetlands and embayments, which provide critical and unique habitat for many freshwater fish species. This is particularly evident in the Laurentian Great Lakes, where such habitats have been severely altered over the last century as a result of industrial activities, urbanization, dredging and infilling. In Toronto Harbour, extensive restoration efforts have been directed towards improving the amount and quality of aquatic habitat, especially for fishes. To evaluate the effectiveness of this restoration work, use of the restored area by both target species and the fish community as a whole must be assessed. Individuals from four species (Common Carp, Largemouth Bass, Northern Pike and Yellow Perch) were tagged and tracked continuously for 1 year using an acoustic telemetry array in Toronto Harbour area of Lake Ontario. Daily site fidelity was estimated using a mixed-effects logistic regression model. Daily site fidelity was influenced by habitat restoration and its interactions with species and body size, as well as season and its interactions with species and body size. Daily site fidelity was higher in restored sites compared to non-restored sites for Yellow Perch and Northern Pike, but lower for Largemouth Bass and Common Carp. For all species, daily site fidelity estimates were highest during the summer and lowest during autumn. The approach used here has merit for evaluating restoration success and informing future habitat management activities. Creating diverse habitats that serve multiple functions and species are more desirable than single-function-oriented or single-species-oriented designs.

  1. Telemetry-Determined Habitat Use Informs Multi-Species Habitat Management in an Urban Harbour

    NASA Astrophysics Data System (ADS)

    Rous, Andrew M.; Midwood, Jonathon D.; Gutowsky, Lee F. G.; Lapointe, Nicolas W. R.; Portiss, Rick; Sciscione, Thomas; Wells, Mathew G.; Doka, Susan E.; Cooke, Steven J.

    2017-01-01

    Widespread human development has led to impairment of freshwater coastal wetlands and embayments, which provide critical and unique habitat for many freshwater fish species. This is particularly evident in the Laurentian Great Lakes, where such habitats have been severely altered over the last century as a result of industrial activities, urbanization, dredging and infilling. In Toronto Harbour, extensive restoration efforts have been directed towards improving the amount and quality of aquatic habitat, especially for fishes. To evaluate the effectiveness of this restoration work, use of the restored area by both target species and the fish community as a whole must be assessed. Individuals from four species (Common Carp, Largemouth Bass, Northern Pike and Yellow Perch) were tagged and tracked continuously for 1 year using an acoustic telemetry array in Toronto Harbour area of Lake Ontario. Daily site fidelity was estimated using a mixed-effects logistic regression model. Daily site fidelity was influenced by habitat restoration and its interactions with species and body size, as well as season and its interactions with species and body size. Daily site fidelity was higher in restored sites compared to non-restored sites for Yellow Perch and Northern Pike, but lower for Largemouth Bass and Common Carp. For all species, daily site fidelity estimates were highest during the summer and lowest during autumn. The approach used here has merit for evaluating restoration success and informing future habitat management activities. Creating diverse habitats that serve multiple functions and species are more desirable than single-function-oriented or single-species-oriented designs.

  2. Sediment Transport into the Swinomish Navigation Channel, Puget Sound—Habitat Restoration versus Navigation Maintenance Needs

    DOE PAGES

    Khangaonkar, Tarang; Nugraha, Adi; Hinton, Steve; ...

    2017-04-21

    The 11 mile (1.6 km) Swinomish Federal Navigation Channel provides a safe and short passage to fishing and recreational craft in and out of Northern Puget Sound by connecting Skagit and Padilla Bays, US State abbrev., USA. A network of dikes and jetties were constructed through the Swinomish corridor between 1893 and 1936 to improve navigation functionality. Over the years, these river training dikes and jetties designed to minimize sedimentation in the channel have deteriorated, resulting in reduced protection of the channel. The need to repair or modify dikes/jetties for channel maintenance, however, may conflict with salmon habitat restoration goalsmore » aimed at improving access, connectivity and brackish water habitat. Several restoration projects have been proposed in the Skagit delta involving breaching, lowering, or removal of dikes. To assess relative merits of the available alternatives, a hydrodynamic model of the Skagit River estuary was developed using the Finite Volume Community Ocean Model (FVCOM). Here, in this paper, we present the refinement and calibration of the model using oceanographic data collected from the years 2006 and 2009 with a focus on the sediment and brackish water transport from the river and Skagit Bay tide flats to the Swinomish Channel. The model was applied to assess the feasibility of achieving the desired dual outcome of (a) reducing sedimentation and shoaling in the Swinomish Channel and (b) providing a direct migration pathway and improved conveyance of freshwater into the Swinomish Channel. Finally, the potential reduction in shoaling through site-specific structure repairs is evaluated. Similarly, the potential to significantly improve of brackish water habitat through dike breach restoration actions using the McGlinn Causeway project example, along with its impacts on sediment deposition in the Swinomish Navigation Channel, is examined« less

  3. Sediment Transport into the Swinomish Navigation Channel, Puget Sound—Habitat Restoration versus Navigation Maintenance Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang; Nugraha, Adi; Hinton, Steve

    The 11 mile (1.6 km) Swinomish Federal Navigation Channel provides a safe and short passage to fishing and recreational craft in and out of Northern Puget Sound by connecting Skagit and Padilla Bays, US State abbrev., USA. A network of dikes and jetties were constructed through the Swinomish corridor between 1893 and 1936 to improve navigation functionality. Over the years, these river training dikes and jetties designed to minimize sedimentation in the channel have deteriorated, resulting in reduced protection of the channel. The need to repair or modify dikes/jetties for channel maintenance, however, may conflict with salmon habitat restoration goalsmore » aimed at improving access, connectivity and brackish water habitat. Several restoration projects have been proposed in the Skagit delta involving breaching, lowering, or removal of dikes. To assess relative merits of the available alternatives, a hydrodynamic model of the Skagit River estuary was developed using the Finite Volume Community Ocean Model (FVCOM). Here, in this paper, we present the refinement and calibration of the model using oceanographic data collected from the years 2006 and 2009 with a focus on the sediment and brackish water transport from the river and Skagit Bay tide flats to the Swinomish Channel. The model was applied to assess the feasibility of achieving the desired dual outcome of (a) reducing sedimentation and shoaling in the Swinomish Channel and (b) providing a direct migration pathway and improved conveyance of freshwater into the Swinomish Channel. Finally, the potential reduction in shoaling through site-specific structure repairs is evaluated. Similarly, the potential to significantly improve of brackish water habitat through dike breach restoration actions using the McGlinn Causeway project example, along with its impacts on sediment deposition in the Swinomish Navigation Channel, is examined« less

  4. Potential of phytoremediation as a means for habitat restoration and cleanup of petroleum contaminated wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Qianxin; Mendelssohn, A.

    1996-12-31

    Oil spills in coastal wetlands often kill vegetation and leave oil in the wetland sediment for many years. The potential of phytoremediation as a means for habitat restoration and cleanup of oiled marshes was studied with marsh mesocosms. Soil sods of Spartina alterniflora and Spartina patens (common coastal marsh grasses) were dosed at the rates of 0, 4, 8, 16 and 24 1 m{sup {minus}2} of south Louisiana crude oil. Plant mortality occurred at high oil dosages (8 1 m{sup {minus}2} and above). Two years after application of the oil to the soil sods, these two Spartina species were transplantedmore » into oiled and unoiled sods to determine the potential for habitat restoration and oil phytoremediation. Fertilizer (at rates of 666 kg N/ha, 272 kg P/ha and 514 kg K/Ha) was applied after transplanting. Regrowth biomass of S. alterniflora, S. patens and the combination of these two species was significantly increased by application of fertilizer one year after transplanting. The regrowth biomass was not significantly affected by oil as high as 250 mg g{sup 1} dry soil for combined biomass of the two species and was significantly higher with oil for Spartina alterniflora although the biomass of S. patens was affected at the highest oil content in the soil, suggesting the potential of habitat restoration by transplanting after oil spills. Oil degradation was enhanced by phytoremediation in combination with fertilization. The oil degradation rate was negligible in the absence of vegetation, but it was significantly higher in the presence of transplanted vegetation and fertilizer. Whether increased degradation of residual oil was due to the enhancement of soil microbial activity by the fertilizer or by phytoremediation is presently being investigated.« less

  5. Restoration of waterbird habitats in Chesapeake Bay: Great expectations or Sisyphus revisited?

    USGS Publications Warehouse

    Erwin, R.M.; Beck, R.A.

    2007-01-01

    In the past half century, many waterbird populations in Chesapeake Bay have declined or shifted ranges, indicating major ecological changes have occurred. While many studies have focused on the problems associated with environmental degradation such as the losses of coastal wetlands and submerged vegetation, a number of restoration efforts have been launched in the past few decades to reverse the "sea of despair." Most pertinent to waterbirds, restoration of submerged aquatic vegetation (SAV) beds, tidal wetland restoration, oyster reef restoration, and island creation/restoration have benefited a number of species. State and federal agencies and non-government agencies have formed partnerships to spawn many projects ranging in size from less than 0.5 ha to ca. 1,000 ha. While most SAV, wetland, and oyster reef projects have struggled to different degrees over the past ten to twenty years with inconsistent methods, irregular monitoring, and unknown reasons for failures, recent improvements in techniques and application of adaptive management have been made. The large dredge-material island projects at Hart-Miller Island near Baltimore, Poplar Island west of Tilghman Island, Maryland, and Craney Island in Portsmouth, Virginia have provided large outdoor "laboratories" for wildlife, fishery, and wetland habitat creation. All three have proven to be important for nesting waterbirds and migrant shorebirds and waterfowl; however nesting populations at all three islands have been compromised to different degrees by predators. Restoration success for waterbirds and other natural resources depends on: (1) establishing realistic, quantifiable objectives and performance criteria, (2) continued monitoring and management (e.g., predator control), (3) targeted research to determine causality, and (4) careful evaluation under an adaptive management regime.

  6. Restoration of waterbird habitats in Chesapeake Bay: Great expectations or Sisyphus revisited?

    USGS Publications Warehouse

    Erwin, R.M.; Beck, R.A.; Erwin, R. Michael; Watts, Bryan D.; Haramis, G.Michael; Perry, Matthew C.; Hobson, Keith A.

    2007-01-01

    In the past half century, many waterbird populations in Chesapeake Bay have declined or shifted ranges, indicating major ecological changes have occurred. While many studies have focused on the problems associated with environmental degradation such as the losses of coastal wetlands and submerged vegetation, a number of restoration efforts have been launched in the past few decades to reverse the 'sea of despair.' Most pertinent to waterbirds, restoration of submerged aquatic vegetation (SAV) beds, tidal wetland restoration, oyster reef restoration, and island creation/restoration have benefited a number of species. State and federal agencies and non government agencies have formed partnerships to spawn many projects ranging in size from less than 0.5 ha to ca. 1,000 ha. While most SAV, wetland, and oyster reef projects have struggled to different degrees over the past ten to twenty years with inconsistent methods, irregular monitoring, and unknown reasons for failures, recent improvements in techniques and application of adaptive management have been made. The large dredge-material island at Hart-Miller Island near Baltimore, Poplar Island west of Tilghman Island, Maryland, and Craney Island Portsmouth, Virginia have provided large outdoor 'laboratories' for wildlife, fishery, and wetland habitat creation. All three have proven to be important for nesting waterbirds and migrant shorebirds and waterfowl; however nesting populations at all three islands have been compromised to different degrees by predators. Restoration success for waterbirds and other natural resources depends on: (1) establishing realistic, quantifiable objectives and performance criteria, (2) continued monitoring and management (e.g., predator control), (3) targeted research to determine causality, and (4) careful evaluation under an adaptive management regime.

  7. Napa River Sediment TMDL Implementation and Habitat Enhancement Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Napa River Sediment TMDL Implementation and Habitat Enhancement Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  8. The RESTORE program of restorative justice for sex crimes: vision, process, and outcomes.

    PubMed

    Koss, Mary P

    2014-06-01

    The article reports empirical evaluation of RESTORE, a restorative justice (RJ) conferencing program adapted to prosecutor-referred adult misdemeanor and felony sexual assaults. RESTORE conferences included voluntary enrollment, preparation, and a face-to-face meeting where primary and secondary victims voice impacts, and responsible persons acknowledge their acts and together develop a re-dress plan that is supervised for 1 year. Process data included referral and consent rates, participant characteristics, observational ratings of conferences compared with program design, services delivered, and safety monitoring. Outcome evaluation used 22 cases to assess (a) pre-post reasons for choosing RESTORE, (b) preparation and conference experiences, (c) overall program and justice satisfaction, and (d) completion rates. This is the first peer-reviewed quantitative evaluation of RJ conferencing for adult sexual assault. Although the data have limitations, the results support cautious optimism regarding feasibility, safety, and satisfactory outcomes. They help envision how conferencing could expand and individualize justice options for sexual assault.

  9. Sediment cores and chemistry for the Kootenai River White Sturgeon Habitat Restoration Project, Boundary County, Idaho

    USGS Publications Warehouse

    Barton, Gary J.; Weakland, Rhonda J.; Fosness, Ryan L.; Cox, Stephen E.; Williams, Marshall L.

    2012-01-01

    The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. This project is oriented toward recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. Projects currently (2010) under consideration include modifying the channel and flood plain, installing in-stream structures, and creating wetlands to improve the physical and biological functions of the ecosystem. River restoration is a complex undertaking that requires a thorough understanding of the river. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey collected and analyzed the physical and chemical nature of sediment cores collected at 24 locations in the river. Core depths ranged from 4.6 to 15.2 meters; 21 cores reached a depth of 15.2 meters. The sediment was screened for the presence of chemical constituents that could have harmful effects if released during restoration activities. The analysis shows that concentrations of harmful chemical constituents do not exceed guideline limits that were published by the U.S. Army Corps of Engineers in 2006.

  10. Riparian Restoration and Watershed Management: Some Examples from the California Coast

    Treesearch

    Laurel Marcus

    1989-01-01

    Managing and restoring watersheds often involves recreation of riparian habitats. The natural functions of riparian forest natural to slow flood water, stabilize stream banks and trap sediments can be used in restoring disturbed creek systems. The State Coastal Conservancy's wetland enhancement program is preserving wetlands on the California coast through repair...

  11. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation

    PubMed Central

    Pollock, Michael M.; Schilling, Jason W.; Olden, Julian D.; Lawler, Joshua J.; Torgersen, Christian E.

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors—information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17

  12. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation

    USGS Publications Warehouse

    Dittbrenner, Benjamin J.; Pollack, Michael M.; Schilling, Jason W.; Olden, Julian D.; Lawler, Joshua J.; Torgersen, Christian E.

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors—information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17

  13. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation.

    PubMed

    Dittbrenner, Benjamin J; Pollock, Michael M; Schilling, Jason W; Olden, Julian D; Lawler, Joshua J; Torgersen, Christian E

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors-information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17% are

  14. Avian response to shade‐layer restoration in coffee plantations in Puerto Rico

    USGS Publications Warehouse

    Irizarry, Amarilys D.; Collazo, Jaime A.; Pacifici, Krishna; Reich, Brian J.; Battle, Kathryn E.

    2018-01-01

    Documenting the evolving processes associated with habitat restoration and how long it takes to detect avian demographic responses is crucial to evaluate the success of restoration initiatives and to identify ways to improve their effectiveness. The importance of this endeavor prompted the U.S. Fish and Wildlife Service and the USDA Natural Resources Conservation Service to evaluate their sun‐to‐shade coffee restoration program in Puerto Rico initiated in 2003. We quantified the responses of 12 resident avian species using estimates of local occupancy and extinction probabilities based on surveys conducted in 2015–2017 at 65 restored farms grouped according to time‐since‐initial‐restoration (TSIR): new (2011–2014), intermediate (2007–2010), and old (2003–2006). We also surveyed 40 forest sites, which served as reference sites. Vegetation complexity increased with TSIR, ranging between 35 and 40% forest cover in farms 6–9 years TSIR. Forest specialists (e.g. Loxigilla portoricencis) exhibited highest average occupancy in farms initially classified as intermediate (6–9 years) and old (>10 years), paralleling occupancy in secondary forests. Occupancy of open‐habitat specialists (e.g. Tiaris olivaceus) was more variable, but higher in recently restored farms. Restoring the shade layer has the potential to heighten ecological services derived from forest specialists (e.g. frugivores) without losing the services of many open‐habitat specialists (e.g. insectivores). Annual local extinction probability for forest specialists decreased with increasing habitat complexity, strengthening the potential value of shade restoration as a tool to enhance habitat for avifauna that evolved in forested landscapes.

  15. Developing a broader scientific foundation for river restoration: Columbia River food webs

    USGS Publications Warehouse

    Naiman, Robert J.; Alldredge, Richard; Beauchamp, David A.; Bisson, Peter A.; Congleton, James; Henny, Charles J.; Huntly, Nancy; Lamberson, Roland; Levings, Colin; Merrill, Erik N.; Pearcy, William G.; Rieman, Bruce E.; Ruggerone, Gregory T.; Scarnecchia, Dennis; Smouse, Peter E.; Wood, Chris C.

    2012-01-01

    Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial communities. The current emphasis on restoring habitat structure—without explicitly considering food webs—has been less successful than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on ecologically effective restoration. We identify three priority food web-related issues that potentially impede successful river restoration: uncertainty about habitat carrying capacity, proliferation of chemicals and contaminants, and emergence of hybrid food webs containing a mixture of native and invasive species. Additionally, there is the need to place these food web considerations in a broad temporal and spatial framework by understanding the consequences of altered nutrient, organic matter (energy), water, and thermal sources and flows, reconnecting critical habitats and their food webs, and restoring for changing environments. As an illustration, we discuss how the Columbia River Basin, site of one of the largest aquatic/riparian restoration programs in the United States, would benefit from implementing a food web perspective. A food web perspective for the Columbia River would complement ongoing approaches and enhance the ability to meet the vision and legal obligations of the US Endangered Species Act, the Northwest Power Act (Fish and Wildlife Program), and federal treaties with Northwest Indian Tribes while meeting fundamental needs for improved river management.

  16. Developing a broader scientific foundation for river restoration: Columbia River food webs

    PubMed Central

    Naiman, Robert J.; Alldredge, J. Richard; Beauchamp, David A.; Bisson, Peter A.; Congleton, James; Henny, Charles J.; Huntly, Nancy; Lamberson, Roland; Levings, Colin; Merrill, Erik N.; Pearcy, William G.; Rieman, Bruce E.; Ruggerone, Gregory T.; Scarnecchia, Dennis; Smouse, Peter E.; Wood, Chris C.

    2012-01-01

    Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial communities. The current emphasis on restoring habitat structure—without explicitly considering food webs—has been less successful than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on ecologically effective restoration. We identify three priority food web-related issues that potentially impede successful river restoration: uncertainty about habitat carrying capacity, proliferation of chemicals and contaminants, and emergence of hybrid food webs containing a mixture of native and invasive species. Additionally, there is the need to place these food web considerations in a broad temporal and spatial framework by understanding the consequences of altered nutrient, organic matter (energy), water, and thermal sources and flows, reconnecting critical habitats and their food webs, and restoring for changing environments. As an illustration, we discuss how the Columbia River Basin, site of one of the largest aquatic/riparian restoration programs in the United States, would benefit from implementing a food web perspective. A food web perspective for the Columbia River would complement ongoing approaches and enhance the ability to meet the vision and legal obligations of the US Endangered Species Act, the Northwest Power Act (Fish and Wildlife Program), and federal treaties with Northwest Indian Tribes while meeting fundamental needs for improved river management. PMID:23197837

  17. Assessing shoreline exposure and oyster habitat suitability maximizes potential success for sustainable shoreline protection using restored oyster reefs

    USGS Publications Warehouse

    LaPeyre, Megan K.; Serra, Kayla; Joyner, T. Andrew; Humphries, Austin T.

    2015-01-01

    Oyster reefs provide valuable ecosystem services that contribute to coastal resilience. Unfortunately, many reefs have been degraded or removed completely, and there are increased efforts to restore oysters in many coastal areas. In particular, much attention has recently been given to the restoration of shellfish reefs along eroding shorelines to reduce erosion. Such fringing reef approaches, however, often lack empirical data to identify locations where reefs are most effective in reducing marsh erosion, or fully take into account habitat suitability. Using monitoring data from 5 separate fringing reef projects across coastal Louisiana, we quantify shoreline exposure (fetch + wind direction + wind speed) and reef impacts on shoreline retreat. Our results indicate that fringing oyster reefs have a higher impact on shoreline retreat at higher exposure shorelines. At higher exposures, fringing reefs reduced marsh edge erosion an average of 1.0 m y−1. Using these data, we identify ranges of shoreline exposure values where oyster reefs are most effective at reducing marsh edge erosion and apply this knowledge to a case study within one Louisiana estuary. In Breton Sound estuary, we calculate shoreline exposure at 500 random points and then overlay a habitat suitability index for oysters. This method and the resulting visualization show areas most likely to support sustainable oyster populations as well as significantly reduce shoreline erosion. Our results demonstrate how site selection criteria, which include shoreline exposure and habitat suitability, are critical to ensuring greater positive impacts and longevity of oyster reef restoration projects.

  18. Quantifying restoration effectiveness using multi-scale habitat models: Implications for sage-grouse in the Great Basin

    Treesearch

    Robert S. Arkle; David S. Pilliod; Steven E. Hanser; Matthew L. Brooks; Jeanne C. Chambers; James B. Grace; Kevin C. Knutson; David A. Pyke; Justin L. Welty; Troy A. Wirth

    2014-01-01

    A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of...

  19. Restoration ecology: longterm evaluation as an essential feature of rehabilitation

    USGS Publications Warehouse

    Gannon, John E.

    1993-01-01

    In its brief existence as a recognized scientific discipline, restoration ecology has focused almost exclusively on terrestrial and wetland habitat. As a consequence, aquatic restoration and rehabilitation, an important component of restoration ecology is a relatively new discipline. This article examines the ecosystem approach to rehabilitation of the Great Lakes Basin and proposes that waterfront redevlopment and terrestrial and wetland habitat restoration should be accompanied by aquatic habitat restoration. Furthermore, aquatic habitat restoration must include rehabilitation of hard-bottom substrates and structures as well as pollution cleanup and management of soft sediments. Lastly, the article suggests that longterm evaluation is indispensable for aquatic habitat restoration and rehabiliation to be truly successful in the Great Lakes region. Only through longterm evaluation can we determine whether habitat restoration goals have been met at specific sites and transfer successful lessons learned at other locations.

  20. Riverine habitat dynamics

    USGS Publications Warehouse

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  1. Palila restoration research, 1996−2012

    USGS Publications Warehouse

    Banko, Paul C.; Farmer, Chris; Atkinson, Carter T.; Brinck, Kevin W.; Camp, Richad; Cole, Colleen; Canner, Raymond; Dougill, Steve; Goltz, Daniel; Gray, Elizabeth; Hess, Steven C.; Higashino, Jennifer; Jarvi, Susan I.; Johnson, Luanne; Laniawe, Leona; Laut, Megan; Miller, Linda; Murray, Christopher J.; Nelson, Daniel; Leonard, David L.; Oboyshi, Peter; Patch-Highfill, Leanne; Pollock, David D.; Rapozo, Kalei; Schwarzfeld, Marla; Slotterback, John; Stephens, Robert M.; Banko, Paul C.; Farmer, Chris

    2014-01-01

    The Palila Restoration Project was initiated in 1996 by the U.S. Geological Survey to assist government agencies mitigate the effects of realigning Saddle Road (Highway 200) through Palila Critical Habitat (U.S. Fish and Wildlife Service 1998, Federal Highway Administration 1999). Ecological research on the palila (Loxioides bailleui), an endangered Hawaiian forest bird, carried out by the U.S. Geological Survey (formerly organized as the Research Division of U.S. Fish and Wildlife Service) since 1987 and research conducted by the Palila Restoration Project provided the scientific bases for developing a recovery strategy (U.S. Fish and Wildlife Service 2006) and its adaptive implementation. The main objectives of the Palila Restoration Project were to develop techniques for reintroducing the palila to a portion of its former range, investigate the biological threats to the palila and its habitat, and synthesize the existing body of ecological knowledge concerning the palila. Five broad study themes formed the research framework: 1. Population reintroduction and restoration 2. Demography and breeding ecology 3. Habitat use and food ecology 4. Vegetation ecology 5. Predator ecology and management An element that was not included in the research program of the project was the ecology and management of introduced ungulates, which has historically constituted the single greatest threat to Palila Critical Habitat (Banko et al. 2009). The absence of ungulate studies should not be interpreted to mean that we believe ungulates no longer damage palila habitat. Other research has already established that removing alien browsers and grazers from Mauna Kea is essential for the recovery of the subalpine forest on which palila now depend (Scowcroft and Giffin 1983; Scowcroft and Sakai 1983; Scowcroft and Conrad 1988, 1992; Hess et al. 1999). Moreover, the Federal District Court of Hawai‘i has ordered the state of Hawai‘i to remove browsing ungulates from Palila Critical

  2. Are restored side channels sustainable aquatic habitat features? Predicting the potential persistence of side channels as aquatic habitats based on their fine sedimentation dynamics

    NASA Astrophysics Data System (ADS)

    Riquier, Jérémie; Piégay, Hervé; Lamouroux, Nicolas; Vaudor, Lise

    2017-10-01

    The restoration of side channels (also referred to as abandoned channels, former channels, floodplain channels, or side arms) is increasingly implemented to improve the ecological integrity of river-floodplain systems. However, the design of side channel restoration projects remains poorly informed by theory or empirical observations despite the increasing number of projects. Moreover, feedback regarding the hydromorphological adjustment of restored channels is rarely documented, making it difficult to predict channel persistence as aquatic habitats. In this study, we analyze the spatial and temporal patterns of fine sediment deposition (< 2 mm) in 16 side channels of the Rhône River, France, restored in 1999-2006 by a combination of dredging and/or partial to full reconnection of their extremities and as a by-product of an increase in minimum flow through the bypassed main channels. We develop prediction tools to assess the persistence of restored channels as aquatic habitats, using between five and seven monitoring surveys per channel (spanning 7-15 years after restoration). Observed channel-averaged sedimentation rates ranged from 0 to 40.3 cm·y- 1 and reached 90.3 cm·y- 1 locally. Some channels exhibited a significant decline of sedimentation rates through time, whereas others maintained rather constant rates. Scouring processes (i.e., self-rejuvenation capacity) were occasionally documented in 15 channels. Six of the 16 studied channels appeared to be self-sustaining. The 10 others accumulated more and more fine sediment deposits after restoration. Parametric modeling of sedimentation rates suggested that among these 10 channels, four have long life-durations (i.e., more than a century), three have intermediate life-durations (i.e., likely between three and nine decades), and three others have short life-durations (i.e., likely between two and five decades). Observed channel-averaged sedimentation rates can be predicted from the frequency and magnitude (i

  3. Restoring bottomland hardwood ecosystems in the Lower Mississippi Alluvial Valley

    Treesearch

    John A. Stanturf; Emile S. Gardiner; Paul B. Hamel; Margaret S. Devall; Theodor D. Leininger; Melvin E. Warren

    2000-01-01

    Programs to restore southern bottomland hardwood forests to the floodplains of the Mississippi have been tested on Federal land and are now being applied to private holdings. The initial goals were to provide wildlife habitat and improve water quality, but other benefits—possible income from biomass and carbon credits—may make restoration cost-effective, even for small...

  4. Recolonization after habitat restoration leads to decreased genetic variation in populations of a terrestrial orchid.

    PubMed

    Vandepitte, K; Gristina, A S; De Hert, K; Meekers, T; Roldán-Ruiz, I; Honnay, O

    2012-09-01

    Colonization is crucial to habitat restoration projects that rely on the spontaneous regeneration of the original vegetation. However, as a previously declining plant species spreads again, the likelihood of founder effects increases through recurrent population founding and associated serial bottlenecks. We related Amplified Fragment Length Polymorphism markers genetic variation and fitness to colonization history for all extant populations of the outcrossing terrestrial orchid Dactylorhiza incarnata in an isolated coastal dune complex. Around 1970, D. incarnata suffered a severe bottleneck yet ultimately persisted and gradually spread throughout the spatially segregated dune slacks, aided by the restoration of an open vegetation. Genetic assignment demonstrated dispersal to vacant sites from few nearby extant populations and very limited inflow from outside the spatially isolated reserve. Results further indicated that recurrent founding from few local sources resulted in the loss of genetic diversity and promoted genetic divergence (F(ST) = 0.35) among populations, but did not influence population fitness. The few source populations initially available and the limited inflow of genes from outside the study reserve, as a consequence of habitat degradation and spatial isolation, may have magnified the genetic effects of recurrent population founding. © 2012 Blackwell Publishing Ltd.

  5. Rebuilding Habitat and Shoreline Resilience through Improved Flood Control Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Rebuilding Habitat and Shoreline Resilience through Improved Flood Control Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  6. Habitat Re-Creation (Ecological Restoration) as a Strategy for Conserving Insect Communities in Highly Fragmented Landscapes

    PubMed Central

    Shuey, John A.

    2013-01-01

    Because of their vast diversity, measured by both numbers of species as well as life history traits, insects defy comprehensive conservation planning. Thus, almost all insect conservation efforts target individual species. However, serious insect conservation requires goals that are set at the faunal level and conservation success requires strategies that conserve intact communities. This task is complicated in agricultural landscapes by high levels of habitat fragmentation and isolation. In many regions, once widespread insect communities are now functionally trapped on islands of ecosystem remnants and subject to a variety of stressors associated with isolation, small population sizes and artificial population fragmentation. In fragmented landscapes ecological restoration can be an effective strategy for reducing localized insect extinction rates, but insects are seldom included in restoration design criteria. It is possible to incorporate a few simple conservation criteria into restoration designs that enhance impacts to entire insect communities. Restoration can be used as a strategy to address fragmentation threats to isolated insect communities if insect communities are incorporated at the onset of restoration planning. Fully incorporating insect communities into restoration designs may increase the cost of restoration two- to three-fold, but the benefits to biodiversity conservation and the ecological services provided by intact insect communities justify the cost. PMID:26462535

  7. Habitat Re-Creation (Ecological Restoration) as a Strategy for Conserving Insect Communities in Highly Fragmented Landscapes.

    PubMed

    Shuey, John A

    2013-12-05

    Because of their vast diversity, measured by both numbers of species as well as life history traits, insects defy comprehensive conservation planning. Thus, almost all insect conservation efforts target individual species. However, serious insect conservation requires goals that are set at the faunal level and conservation success requires strategies that conserve intact communities. This task is complicated in agricultural landscapes by high levels of habitat fragmentation and isolation. In many regions, once widespread insect communities are now functionally trapped on islands of ecosystem remnants and subject to a variety of stressors associated with isolation, small population sizes and artificial population fragmentation. In fragmented landscapes ecological restoration can be an effective strategy for reducing localized insect extinction rates, but insects are seldom included in restoration design criteria. It is possible to incorporate a few simple conservation criteria into restoration designs that enhance impacts to entire insect communities. Restoration can be used as a strategy to address fragmentation threats to isolated insect communities if insect communities are incorporated at the onset of restoration planning. Fully incorporating insect communities into restoration designs may increase the cost of restoration two- to three-fold, but the benefits to biodiversity conservation and the ecological services provided by intact insect communities justify the cost.

  8. Detroit River habitat inventory

    USGS Publications Warehouse

    Manny, Bruce A.

    2003-01-01

    This inventory complements a previous survey of habitat in Ontario waters of the Detroit River (OMNR,1993). It is a starting point for balanced and sustained use of the river for natural resource conservation and economic development. The objectives of the inventory were to: (1) locate candidate sites for protection and restoration of fish and wildlife habitat in Michigan waters of the Detroit River; (2) describe the ownership and size of each site, as well as its potential for habitat protection and restoration; and (3) subjectively assess the extent to which existing habitat along the river is productive of fish and wildlife and protected from land uses that have degraded or destroyed such habitat.

  9. Using Video to Communicate Scientific Findings -- Habitat Connections in Urban Streams

    NASA Astrophysics Data System (ADS)

    Harned, D. A.; Moorman, M.; Fitzpatrick, F. A.; McMahon, G.

    2011-12-01

    The U.S Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) provides information about (1) water-quality conditions and how those conditions vary locally, regionally, and nationally, (2) water-quality trends, and (3) factors that affect those conditions. As part of the NAWQA Program, the Effects of Urbanization on Stream Ecosystems (EUSE) study examined the vulnerability and resilience of streams to urbanization. Completion of the EUSE study has resulted in over 20 scientific publications. Video podcasts are being used in addition to these publications to communicate the relevance of these scientific findings to more general audiences such as resource managers, educational groups, public officials, and the general public. An example of one of the podcasts is a film examining effects of urbanization on stream habitat. "Habitat Connections in Urban Streams" explores how urbanization changes some of the physical features that provide in-stream habitat and examines examples of stream restoration projects designed to improve stream form and function. The "connections" theme is emphasized, including the connection of in-stream habitats from the headwaters to the stream mouth; connections between stream habitat and the surrounding floodplains, wetlands and basin; and connections between streams and people-- resource managers, public officials, scientists, and the general public. Examples of innovative stream restoration projects in Baltimore Maryland; Milwaukee, Wisconsin; and Portland Oregon are shown with interviews of managers, engineers, scientists, and others describing the projects. The film is combined with a website with links to extended film versions of the stream-restoration project interviews. The website and films are an example of USGS efforts aimed at improving science communication to a general audience. The film is available for access from the EUSE website: http://water.usgs.gov/nawqa/urban/html/podcasts.html. Additional films are

  10. Riparian valley oak (Quercus lobata) forest restoration on the middle Sacramento River, California

    Treesearch

    F. Thomas Griggs; Gregory H. Golet

    2002-01-01

    In 1989 The Nature Conservancy initiated a riparian horticultural restoration program on the floodplain of the middle Sacramento River, California. At nearly all restoration sites Valley oak (Quercus lobata Nee) comprised a major component of the planting design. Valley oaks are a keystone tree species of lowland floodplain habitats in California...

  11. Restoring forbs for sage grouse habitat: Fire, microsites, and establishment methods

    USGS Publications Warehouse

    Wirth, Troy A.; Pyke, David A.

    2003-01-01

    The decline and range reduction of sage grouse populations are primarily due to permanent loss and degradation of sagebrusha??grassland habitat. Several studies have shown that sage grouse productivity may be limited by the availability of certain preferred highly nutritious forb species that have also declined within sagebrush ecosystems of the Intermountain West, U.S.A. The purpose of this study was to determine the suitability of three species of forbs for revegetation projects where improving sage grouse habitat is a goal. Species suitability was determined by evaluating the emergence, survival, and reproduction of Crepis modocensis, C. occidentalis, and Astragalus purshii in response to method of establishment (seeding or transplanting), site preparation treatment (burned or unburned), and microsite (mound or interspace) in an Artemisia tridentata ssp. wyomingensis vegetation association in south central Oregon. For seeded plants A. purshii had the lowest emergence (8%) of all three species. Both seeded Crepis species had similar overall emergence (38%). Significantly more Crepis seedlings emerged from shrub mounds in unburned areas (50%) than in any other fire-by-microsite treatment (33 to 36%). Approximately 10% more Crepis seedlings survived in mounds compared with interspaces. Nearly twice as many emerging Crepis seedlings survived in the burned areas as opposed to unburned areas (p < 0.01). This resulted in more plant establishment in burned mounds despite higher emergence in unburned mounds. Astragalus purshii seedlings also survived better in burned areas (p = 0.06) but had no differential response to microsite. Fire enhanced survival of both Crepis and A. purshii transplants (p = 0.08 and p = 0.001). We believe additional research is needed to improve A. purshii emergence before it will become an effective plant for restoring sage grouse habitat. Conversely, we conclude that these Crepis species provide a viable revegetation option for improving sage

  12. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkman, Jed

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reportingmore » period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.« less

  13. RELATIONS OF FISH AND SHELLFISH DISTRIBUTIONS TO HABITAT AND WATER QUALITY IN THE MOBILE BAY ESTUARY, USA

    EPA Science Inventory

    The Mobile Bay estuary provides rich habitat for many fish and shellfish, including those identified as economically and ecologically important. The National Estuary Program has focused on restoration of degraded estuarine habitat on which these species depend. To support this ...

  14. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunitiesmore » for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream and 22

  15. Methylmercury Screening Models for Surface Water Habitat Restoration: A Case Study in Duluth-Superior Harbor

    DTIC Science & Technology

    2017-11-01

    three models used in this study (HERMES, WASP, and SERAFM) were applied very differently and, in some ways, comparing them in Table 10 is...ER D C/ EL T R- 17 -1 9 Dredging Innovations Group Methylmercury Screening Models for Surface Water Habitat Restoration: A Case Study in...Case Study in Duluth-Superior Harbor Philip T. Gidley, Joseph P. Kreitinger, Mansour Zakikhani, and Burton C. Suedel Environmental Laboratory

  16. Habitat Selection and Post-Release Movement of Reintroduced Brown Treecreeper Individuals in Restored Temperate Woodland

    PubMed Central

    Bennett, Victoria A.; Doerr, Veronica A. J.; Doerr, Erik D.; Manning, Adrian D.; Lindenmayer, David B.; Yoon, Hwan-Jin

    2012-01-01

    It is essential to choose suitable habitat when reintroducing a species into its former range. Habitat quality may influence an individual’s dispersal decisions and also ultimately where they choose to settle. We examined whether variation in habitat quality (quantified by the level of ground vegetation cover and the installation of nest boxes) influenced the movement, habitat choice and survival of a reintroduced bird species. We experimentally reintroduced seven social groups (43 individuals) of the brown treecreeper (Climacteris picumnus) into two nature reserves in south-eastern Australia. We radio-tracked 18 brown treecreepers from release in November 2009 until February 2010. We observed extensive movements by individuals irrespective of the release environment or an individual’s gender. This indicated that individuals were capable of dispersing and actively selecting optimum habitat. This may alleviate pressure on wildlife planners to accurately select the most optimum release sites, so long as the species’ requirements are met. There was significant variation in movement between social groups, suggesting that social factors may be a more important influence on movement than habitat characteristics. We found a significant effect of ground vegetation cover on the likelihood of settlement by social groups, with high rates of settlement and survival in dry forests, rather than woodland (where the species typically resides), which has implications for the success of woodland restoration. However, overall the effects of variation in habitat quality were not as strong as we had expected, and resulted in some unpredicted effects such as low survival and settlement in woodland areas with medium levels of ground vegetation cover. The extensive movement by individuals and unforeseen effects of habitat characteristics make it difficult to predict the outcome of reintroductions, the movement behaviour and habitat selection of reintroduced individuals, particularly

  17. The Importance of the Regional Species Pool, Ecological Species Traits and Local Habitat Conditions for the Colonization of Restored River Reaches by Fish

    PubMed Central

    Stoll, Stefan; Kail, Jochem; Lorenz, Armin W.; Sundermann, Andrea; Haase, Peter

    2014-01-01

    It is commonly assumed that the colonization of restored river reaches by fish depends on the regional species pools; however, quantifications of the relationship between the composition of the regional species pool and restoration outcome are lacking. We analyzed data from 18 German river restoration projects and adjacent river reaches constituting the regional species pools of the restored reaches. We found that the ability of statistical models to describe the fish assemblages established in the restored reaches was greater when these models were based on ‘biotic’ variables relating to the regional species pool and the ecological traits of species rather than on ‘abiotic’ variables relating to the hydromorphological habitat structure of the restored habitats and descriptors of the restoration projects. For species presence in restored reaches, ‘biotic’ variables explained 34% of variability, with the occurrence rate of a species in the regional species pool being the most important variable, while ’abiotic’ variables explained only the negligible amount of 2% of variability. For fish density in restored reaches, about twice the amount of variability was explained by ‘biotic’ (38%) compared to ‘abiotic’ (21%) variables, with species density in the regional species pool being most important. These results indicate that the colonization of restored river reaches by fish is largely determined by the assemblages in the surrounding species pool. Knowledge of species presence and abundance in the regional species pool can be used to estimate the likelihood of fish species becoming established in restored reaches. PMID:24404187

  18. Phase IV of Early Restoration | NOAA Gulf Spill Restoration

    Science.gov Websites

    Trustees published the Final Phase IV Early Restoration Plan and Environmental Assessments. The plan habitats. Useful Links: Final Phase IV Early Restoration Plan and Environmental Assessments (pdf, 4.8 MB ) Final Phase IV Early Restoration Plan and Environmental Assessments Executive Summary (pdf, 729 KB

  19. San Francisco Bay living shorelines: Restoring Eelgrass and Olympia Oysters for habitat and shore protection: Chapter 17

    USGS Publications Warehouse

    Boyer, Katharyn E.; Zabin, Chela; De La Cruz, Susan; Grosholz, Edwin D.; Orr, Michelle; Lowe, Jeremy; Latta, Marilyn; Miller, Jen; Kiriakopolos, Stephanie; Pinnell, Cassie; Kunz, Damien; Modéran, Julien; Stockmann, Kevin; Ayala, Geana; Abbott, Robert; Obernolte, Rena

    2017-01-01

    Living shorelines projects utilize a suite of sediment stabilization and habitat restoration techniques to maintain or build the shoreline, while creating habitat for a variety of species, including invertebrates, fish, and birds (see National Oceanic and Atmospheric Administration [NOAA] 2015 for an overview). The term “living shorelines” denotes provision of living space and support for estuarine and coastal organisms through the strategic placement of native vegetation and natural materials. This green coastal infrastructure can serve as an alternative to bulkheads and other engineering solutions that provide little to no habitat in comparison (Arkema et al. 2013; Gittman et al. 2014; Scyphers et al. 2011). In the United States, the living shorelines approach has been implemented primarily on the East and Gulf Coasts, where it has been shown to enhance habitat values and increase connectivity between wetlands, mudflats, and subtidal lands, while reducing shoreline erosion during storms and even hurricanes (Currin et al. 2015; Gittman et al. 2014, 2015).

  20. Phase III of Early Restoration | NOAA Gulf Spill Restoration

    Science.gov Websites

    information about this phase of Early Restoration, including fact sheets on each project. The final Phase III 44 projects are documented in a final Record of Decision. Information about Phase III of Early Archive Home Phase III of Early Restoration Phase III of Early Restoration Beach habitat would be restored

  1. The critical role of islands for waterbird breeding and foraging habitat in managed ponds of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California

    USGS Publications Warehouse

    Ackerman, Joshua T.; Hartman, C. Alex; Herzog, Mark P.; Smith, Lacy M.; Moskal, Stacy M.; De La Cruz, Susan E. W.; Yee, Julie L.; Takekawa, John Y.

    2014-01-01

    The South Bay Salt Pond Restoration Project aims to restore 50–90 percent of former salt evaporation ponds into tidal marsh in South San Francisco Bay, California. However, large numbers of waterbirds use these ponds annually as nesting and foraging habitat. Islands within ponds are particularly important habitat for nesting, foraging, and roosting waterbirds. To maintain current waterbird populations, the South Bay Salt Pond Restoration Project plans to create new islands within former salt ponds in South San Francisco Bay. In a series of studies, we investigated pond and individual island attributes that are most beneficial to nesting, foraging, and roosting waterbirds.

  2. TEXAS DICKINSON BAY ISLANDS RESTORATION PROJECT MX964016

    EPA Science Inventory

    The Dickinson Bay Islands Restoration Project will restore approximately ten acres of intertidal marsh, three acres of oyster reef, and 18 acres of bird rookery habitat. The total acreage of restored habitat will be close to 30 acres.

  3. Technology needs for environmental restoration remedial action. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.S.

    1992-11-01

    This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This ismore » not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.« less

  4. Anthropogenic Habitats Facilitate Dispersal of an Early Successional Obligate: Implications for Restoration of an Endangered Ecosystem.

    PubMed

    Amaral, Katrina E; Palace, Michael; O'Brien, Kathleen M; Fenderson, Lindsey E; Kovach, Adrienne I

    2016-01-01

    Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists.

  5. Anthropogenic Habitats Facilitate Dispersal of an Early Successional Obligate: Implications for Restoration of an Endangered Ecosystem

    PubMed Central

    Amaral, Katrina E.; Palace, Michael; O’Brien, Kathleen M.; Fenderson, Lindsey E.; Kovach, Adrienne I.

    2016-01-01

    Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists. PMID:26954014

  6. Ecological restoration as a strategy for conserving biological diversity

    NASA Astrophysics Data System (ADS)

    Jordan, William R.; Peters, Robert L.; Allen, Edith B.

    1988-01-01

    Though the restoration of disturbed ecosystems has so far played a relatively modest role in the effort to conserve biological diversity, there are reasons to suspect that its role will increase and that its contribution to the maintenance of diversity will ultimately prove crucial as techniques are further refined and as pristine areas for preservation become scarcer and more expensive. It is now possible to restore a number of North American communities with some confidence. However, it should be noted that many current efforts to return degraded lands to productive use, like attempts to reclaim land disturbed by mining, try only for rehabilitation to a socially acceptable condition and fall considerably short of actually restoring a native ecological community. Possible uses for restoration in the conservation of biodiversity include not only the creation of habitat on derelict sites, but also techniques for enlarging and redesigning existing reserves. Restoration may even make it possible to move reserves entirely in response to long-term events, such as changes in climate. Restoration in the form of reintroduction of single species to preexisting or restored habitat is also a critical link in programs to conserve species ex situ in the expectation of eventually returning them to the wild. And restoration provides opportunities to increase diversity through activities as diverse as management of utility corridors, transportation rights-of-way, and parks.

  7. Bridging the conservation design and delivery gap for wetland bird habitat maintenance and restoration in the Midwestern United States

    USGS Publications Warehouse

    Thogmartin, W.E.; Potter, B.; Soulliere, G.

    2011-01-01

    The U.S. Fish and Wildlife Service's adoption of Strategic Habitat Conservation is intended to increase the effectiveness and efficiency of conservation delivery by targeting effort in areas where biological benefits are greatest. Conservation funding has not often been allocated in accordance with explicit biological endpoints, and the gap between conservation design (the identification of conservation priority areas) and delivery needs to be bridged to better meet conservation goals for multiple species and landscapes. We introduce a regional prioritization scheme for North American Wetlands Conservation Act funding which explicitly addresses Midwest regional goals for wetland-dependent birds. We developed decision-support maps to guide conservation of breeding and non-breeding wetland bird habitat. This exercise suggested ~55% of the Midwest consists of potential wetland bird habitat, and areas suited for maintenance (protection) were distinguished from those most suited to restoration. Areas with greater maintenance focus were identified for central Minnesota, southeastern Wisconsin, the Upper Mississippi and Illinois rivers, and the shore of western Lake Erie and Saginaw Bay. The shores of Lakes Michigan and Superior accommodated fewer waterbird species overall, but were also important for wetland bird habitat maintenance. Abundant areas suited for wetland restoration occurred in agricultural regions of central Illinois, western Iowa, and northern Indiana and Ohio. Use of this prioritization scheme can increase effectiveness, efficiency, transparency, and credibility to land and water conservation efforts for wetland birds in the Midwestern United States.

  8. Identifying Impacts of Hydropower Regulation on Salmonid Habitats to Guide River Restoration for Existing Schemes and Mitigate Adverse Effects of Future Developments

    NASA Astrophysics Data System (ADS)

    Buddendorf, B.; Geris, J.; Malcolm, I.; Wilkinson, M.; Soulsby, C.

    2015-12-01

    A decrease in longitudinal connectivity in riverine ecosystems resulting from the construction of transverse barriers has been identified as a major threat to biodiversity. For example, Atlantic Salmon (Salmo salar) have a seasonal variety of hydraulic habitat requirements for their different life stages. However, hydropower impoundments impact the spatial and temporal connectivity of natural habitat along many salmon rivers in ways that are not fully understood. Yet, these changes may affect the sustainability of habitat at local and regional scales and so ultimately the conservation of the species. Research is therefore needed both to aid the restoration and management of rivers impacted by previous hydropower development and guide new schemes to mitigate potentially adverse effects. To this end we assessed the effects of hydropower development on the flow related habitat conditions for different salmon life stages in Scottish rivers at different spatial scales. We used GIS techniques to map the changes in structural connectivity at regional scales, applying a weighting for habitat quality. Next, we used hydrological models to simulate past and present hydrologic conditions that in turn drive reach-scale hydraulic models to assess the impacts of regulation on habitat suitability in both space and time. Preliminary results indicate that: 1) impacts on connectivity depend on the location of the barrier within the river network; 2) multiple smaller barriers may have a potentially lower impact than a single larger barrier; 3) there is a relationship between habitat and connectivity where losing less but more suitable habitat potentially has a disproportionally large impact; 4) the impact of flow regulation can lead to a deterioration of habitat quality, though the effects are spatially variable and the extent of the impact depends on salmon life stage. This work can form a basis for using natural processes to perform targeted and cost-effective restoration of rivers.

  9. Grasslands. Habitat Ecology Learning Program (HELP). Teachers' Manual.

    ERIC Educational Resources Information Center

    Wildlife Conservation Society, Bronx, NY.

    The goal of this guide is to address a major environmental dilemma: worldwide habitat destruction and the disappearance of species. This guide is one of six that are included in the Habitat Ecology Learning Program (HELP), a holistic life science curriculum that involves students in an in-depth study of ecology. HELP includes six teaching guides…

  10. Deserts. Habitat Ecology Learning Program (HELP). Teachers' Manual.

    ERIC Educational Resources Information Center

    Wildlife Conservation Society, Bronx, NY.

    The goal of this guide is to address a major environmental dilemma: worldwide habitat destruction and the disappearance of species. This guide is one of six that are included in the Habitat Ecology Learning Program (HELP), a holistic life science curriculum that involves students in an in-depth study of ecology. HELP includes six teaching guides…

  11. Assessing freshwater habitat of adult anadromous alewives using multiple approaches

    USGS Publications Warehouse

    Mather, Martha E.; Frank, Holly J.; Smith, Joseph M.; Cormier, Roxann D.; Muth, Robert M.; Finn, John T.

    2012-01-01

    After centuries of disturbance, environmental professionals now recognize the need to restore coastal watersheds for native fish and protect the larger ecosystems on which fish and other aquatic biota depend. Anadromous fish species are an important component of coastal ecosystems that are often adversely affected by human activities. Restoring native anadromous fish species is a common focus of both fish and coastal watershed restoration. Yet restoration efforts have met with uneven success, often due to lack of knowledge about habitat availability and use. Using habitat surveys and radio tracking of adult anadromous alewives Alosa pseudoharengus during their spring spawning migration, we illustrate a method for quantifying habitat using multiple approaches and for relating mobile fish distribution to habitat. In the Ipswich River, Massachusetts, measuring habitat units and physical conditions at transects (width, depth, and velocity) provided an ecological basis for the interpretation of landscape patterns of fish distribution. Mapping habitat units allowed us to efficiently census habitat relevant to alewives for the entire 20.6 river kilometers of interest. Our transect data reinforced the results of the habitat unit survey and provided useful, high‐resolution ecological data for restoration efforts. Tagged alewives spent little time in riffle–run habitats and substantial time in pools, although the locations of pool occupancy varied. The insights we provide here can be used to (1) identify preferred habitats into which anadromous fish can be reintroduced in order to maximize fish survival and reproduction and (2) pinpoint habitat types in urgent need of protection or restoration.

  12. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 1. Concepts for understanding and applying restoration

    USGS Publications Warehouse

    Pyke, David A.; Chambers, Jeanne C.; Pellant, Mike; Knick, Steven T.; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Schupp, Eugene W.; Roundy, Bruce A.; Brunson, Mark; McIver, James D.

    2015-10-26

    Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrushobligate animals. This restoration handbook is the first in a three-part series on restoration of sagebrush ecosystems. In Part 1, we discuss concepts surrounding landscape and restoration ecology of sagebrush ecosystems and greater sage-grouse that habitat managers and restoration practitioners need to know to make informed decisions regarding where and how to restore specific areas. We will describe the plant dynamics of sagebrush steppe ecosystems and their responses to major disturbances, fire, and defoliation. We will introduce the concepts of ecosystem resilience to disturbances and resistance to invasions of annual grasses within sagebrush steppe. An introduction to soils and ecological site information will provide insights into the specific plants that can be restored in a location. Soil temperature and moisture regimes are described as a tool for determining resilience and resistance and the potential for various restoration actions. Greater sage-grouse are considered landscape birds that require large areas of intact sagebrush steppe; therefore, we describe concepts of landscape ecology that aid our decisions regarding habitat restoration. We provide a brief overview of

  13. Using Implementation and Program Theory to Examine Communication Strategies in National Wildlife Federation's Backyard Wildlife Habitat Program

    ERIC Educational Resources Information Center

    Palmer, Dain; Dann, Shari L.

    2004-01-01

    Our evaluative approach used implementation theory and program theory, adapted from Weiss (1998) to examine communication processes and results for a national wildlife habitat stewardship education program. Using a mail survey of 1427 participants certified in National Wildlife Federation's (NWF) Backyard Wildlife Habitat (BWH) program and a study…

  14. Beneficial use of dredged material for habitat creation, enhancement, and restoration in New York-New Jersey Harbor.

    PubMed

    Yozzo, David J; Wilber, Pace; Will, Robert J

    2004-10-01

    A comprehensive Dredged Material Management Plan (DMMP) has been developed by the US Army Corps of Engineers, New York District (USACE-NYD) and the Port Authority of New York and New Jersey (PANY/NJ). The primary objective of the DMMP is to identify cost-effective and environmentally acceptable alternatives for the placement of dredged material derived from ongoing and proposed navigation improvements within the PANY/NJ. A significant portion of this dredged material is classified as unsuitable for open-ocean disposal. One suite of alternatives presented within the DMMP is the beneficial use of dredged material for habitat creation, enhancement, and restoration within the NY/NJ Harbor Estuary. Proposed beneficial use/habitat development projects include the use of dredged material for construction of artificial reefs, oyster reef restoration, intertidal wetland and mudflat creation, bathymetric recontouring, filling dead-end canals/basins, creation of bird/wildlife islands, and landfill/brownfields reclamation. Preliminary screening of the proposed beneficial use alternatives identified advantages, disadvantages, potential volumes, and estimated costs associated with each project type. Continued study of the proposed beneficial use alternatives has identified areas of environmental research or technology development where further investigation is warranted.

  15. Bat activity following restoration prescribed burning in the central Appalachian Upland and riparian habitats

    USGS Publications Warehouse

    Austin, Lauren V.; Silvis, Alexander; Ford, W. Mark; Muthersbaugh, Michael; Powers, Karen E.

    2018-01-01

    After decades of fire suppression in eastern North America, land managers now are prioritizing prescribed fire as a management tool to restore or maintain fire-adapted vegetation communities. However, in long—fire-suppressed landscapes, such as the central and southern Appalachians, it is unknown how bats will respond to prescribed fire in both riparian and upland forest habitats. To address these concerns, we conducted zero-crossing acoustic surveys of bat activity in burned, unburned, riparian, and non-riparian areas in the central Appalachians, Virginia, USA. Burn and riparian variables had model support (ΔAICc < 4) to explain activity of all bat species. Nonetheless, parameter estimates for these conditions were small and confidence intervals overlapped zero for all species, indicating effect sizes were marginal. Our results suggest that bats respond to fire differently between upland and riparian forest habitats, but overall, large landscape-level prescribed fire has a slightly positive to neutral impact on all bats species identified at our study site post—fire application.

  16. Mapping the current and potential distribution of red spruce in Virginia: implications for the restoration of degraded high elevation habitat

    Treesearch

    Heather Griscom; Helmut Kraenzle; Zachary. Bortolot

    2010-01-01

    The objective of our project is to create a habitat suitability model to predict potential and future red spruce forest distributions. This model will be used to better understand the influence of climate change on red spruce distribution and to help guide forest restoration efforts.

  17. Microhabitat use by brook trout inhabiting small tributaries and a large river main stem: Implications for stream habitat restoration in the central Appalachians

    USGS Publications Warehouse

    Hansbarger, Jeff L.; Petty, J. Todd; Mazik, Patricia M.

    2008-01-01

    Brook trout (Salvelinus fontinalis) habitat restoration is needed across a range of stream sizes; however, studies quantifying brook trout habitat preferences in streams of differing sizes are rare. We used radio-telemetry to quantify adult brook trout microhabitat use in a central Appalachian watershed, the upper Shavers Fork of the Cheat River in eastern West Virginia. Our objectives were to: 1) quantify non-random microhabitat use by adult brook trout in the Shavers Fork main stem (drainage area = 32 km2) and an adjacent tributary, Rocky Run (drainage area = 7 km2); and 2) construct stream-specific habitat suitability curves (HSCs) for four important microhabitat variables (depth, average current velocity, maximum current velocity within one meter, and distance to cover). Brook trout used a subset of available microhabitats in both the main stem and Rocky Run: trout tended to occupy microhabitats that were deeper, higher velocity, and closer to cover than expected by chance alone. Although specific microhabitat values differed between the main stem and tributary populations, the overall patterns in brook trout microhabitat use were consistent regardless of stream size. Habitat suitability curves were constructed based on brook trout microhabitat use and will be used to design and monitor the effectiveness of future habitat restoration efforts in the Shavers Fork watershed. Our results suggest that habitat enhancement projects that increase the availability of deep, high velocity microhabitats adjacent to cover would benefit brook trout in both small tributaries and larger river main stems.

  18. Environmentally Sensitive Areas Surveys Program threatened and endangered species survey: Progress report. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, A.L.; Awl, D.J.; Gabrielsen, C.A.

    The Endangered Species Act (originally passed in 1973) is a Federal statute that protects both animal and plant species. The Endangered Species Act identifies species which are, without careful management, in danger of becoming extinct and species that are considered threatened. Along with the designation of threatened or endangered, the Endangered Species Act provides for the identification of appropriate habitat for these species. Since 1993, the United States Department of Energy`s (DOE) Environmental Restoration (ER) Program has supported a program to survey the Oak Ridge Reservation (ORR) for threatened and endangered species. The Environmentally Sensitive Areas Surveys Program initiated vascularmore » plant surveys during fiscal year 1993 and vertebrate animal surveys during fiscal year 1994 to determine the baseline condition of threatened and endangered species on the ORR at the present time. Data collected during these surveys are currently aiding Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Remedial Investigations on the ORR. They also provide data for ER and Waste Management decision documents, ensure that decisions have technical and legal defensibility, provide a baseline for ensuring compliance with principal legal requirements and will increase public confidence in DOE`s adherence to all related environmental resources rules, laws, regulations, and instructions. This report discusses the progress to date of the threatened and endangered species surveys of the ORR.« less

  19. Otolith analysis of pre-restoration habitat use by Chinook salmon in the delta-flats and nearshore regions of the Nisqually River Estuary

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2010-01-01

    The Nisqually Fall Chinook population is one of 27 salmon stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent on the estuary. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith analysis was selected as a tool to examine Chinook salmon life history, growth, and residence in the Nisqually River estuary. Previously funded work on samples collected in 2004 (marked and unmarked) and 2005 (unmarked only) partially established a juvenile baseline on growth rates and length of residence associated with various habitats (freshwater, forested riverine tidal, emergent forested transition, estuarine emergent marsh, delta-flats and nearshore). However, residence times and growth rates for the delta-flats (DF) and nearshore (NS) habitats have been minimally documented due to small sample sizes. The purpose of the current study is to incorporate otolith microstructural analysis using otoliths from fish collected within the DF and NS habitats during sampling years 2004-08 to increase sample size and further evaluate between-year variation in otolith microstructure. Our results from this analysis indicated the delta-flats check (DFCK) on unmarked and marked Chinook samples in 2005-08 varied slightly in appearance from that seen on samples previously analyzed only from 2004. A fry migrant life history was observed on otoliths of unmarked Chinook collected in 2005, 2007, and 2008. Generally, freshwater mean increment width of unmarked fish, on average, was smaller compared to marked

  20. Plant composition in oak savanna and woodland restoration at Prairie Fork Conservation Area in Missouri

    Treesearch

    Nadia E. Navarrete-Tindall; J.W. Van Sambeek; Jamie Coe; Warren Taylor

    2007-01-01

    The wooded areas of the Prairie Fork Conservation Area in central Missouri are typical of the oak/hickory forest/prairie transition zone that will require active management to restore pre-settlement, grass dominated savannas and open woodlands to improve habitat for wildlife. We initiated a management program to restore savannas and woodlands by reducing the midstory (...

  1. 48 CFR 228.102-70 - Defense Environmental Restoration Program construction contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Restoration Program construction contracts. 228.102-70 Section 228.102-70 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS BONDS AND INSURANCE Bonds 228.102-70 Defense Environmental Restoration Program construction contracts...

  2. Controlling cheatgrass in winter range to restore habitat and endemic fire

    Treesearch

    Jennifer L. Vollmer; Joseph G. Vollmer

    2008-01-01

    Habitat managers can better prepare a program for prescribed burns, wildfire management, and maximum forage biomass by understanding the response of key shrubs to the tools utilized to reduce cheatgrass (Bromus spp.) competition. Application of Plateau® herbicide, prior to annual brome germination, at rates up to 8 oz/acre with or without surfactant...

  3. Predictive Seagrass Habitat Model

    EPA Science Inventory

    Restoration of ecosystem services provided by seagrass habitats in estuaries requires a firm understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We explored the application...

  4. Evaluation of Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Diefenderfer, Heida L.; Thom, Ronald M.

    This is the seventh and final annual report of a project (2004–2010) addressing evaluation of the cumulative effects of habitat restoration actions in the 235-km-long lower Columbia River and estuary. The project, called the Cumulative Effects (CE) study, was conducted for the U.S. Army Corps of Engineers Portland District by a collaboration of research agencies led by the Pacific Northwest National Laboratory. We achieved the primary goal of the CE study to develop a methodology to evaluate the cumulative effects of habitat actions in the Columbia Estuary Ecosystem Restoration Program. We delivered 1) standard monitoring protocols and methods to prioritizemore » monitoring activities; 2) the theoretical and empirical basis for a CE methodology using levels-of-evidence; 3) evaluations of cumulative effects using ecological relationships, geo-referenced data, hydrodynamic modeling, and meta-analyses; and 4) an adaptive management process to coordinate and coalesce restoration efforts in the LCRE. A solid foundation has been laid for future comprehensive evaluations of progress made by the Columbia Estuary Ecosystem Restoration Program to understand, conserve, and restore ecosystems in the lower Columbia River and estuary.« less

  5. Trends and habitat associations of waterbirds using the South Bay Salt Pond Restoration Project, San Francisco Bay, California

    USGS Publications Warehouse

    De La Cruz, Susan E. W.; Smith, Lacy M.; Moskal, Stacy M.; Strong, Cheryl; Krause, John; Wang, Yiwei; Takekawa, John Y.

    2018-04-02

    Executive SummaryThe aim of the South Bay Salt Pond Restoration Project (hereinafter “Project”) is to restore 50–90 percent of former salt evaporation ponds to tidal marsh in San Francisco Bay (SFB). However, hundreds of thousands of waterbirds use these ponds over winter and during fall and spring migration. To ensure that existing waterbird populations are supported while tidal marsh is restored in the Project area, managers plan to enhance the habitat suitability of ponds by adding islands and berms to change pond topography, manipulating water salinity and depth, and selecting appropriate ponds to maintain for birds. To help inform these actions, we used 13 years of monthly (October–April) bird abundance data from Project ponds to (1) assess trends in waterbird abundance since the inception of the Project, and (2) evaluate which pond habitat characteristics were associated with highest abundances of different avian guilds and species. For comparison, we also evaluated waterbird abundance trends in active salt production ponds using 10 years of monthly survey data.We assessed bird guild and species abundance trends through time, and created separate trend curves for Project and salt production ponds using data from every pond that was counted in a year. We divided abundance data into three seasons—fall (October–November), winter (December–February), and spring (March–April). We used the resulting curves to assess which periods had the highest bird abundance and to identify increasing or decreasing trends for each guild and species.

  6. Using Habitat Equivalency Analysis to Assess the Cost Effectiveness of Restoration Outcomes in Four Institutional Contexts

    NASA Astrophysics Data System (ADS)

    Scemama, Pierre; Levrel, Harold

    2016-01-01

    At the national level, with a fixed amount of resources available for public investment in the restoration of biodiversity, it is difficult to prioritize alternative restoration projects. One way to do this is to assess the level of ecosystem services delivered by these projects and to compare them with their costs. The challenge is to derive a common unit of measurement for ecosystem services in order to compare projects which are carried out in different institutional contexts having different goals (application of environmental laws, management of natural reserves, etc.). This paper assesses the use of habitat equivalency analysis (HEA) as a tool to evaluate ecosystem services provided by restoration projects developed in different institutional contexts. This tool was initially developed to quantify the level of ecosystem services required to compensate for non-market impacts coming from accidental pollution in the US. In this paper, HEA is used to assess the cost effectiveness of several restoration projects in relation to different environmental policies, using case studies based in France. Four case studies were used: the creation of a market for wetlands, public acceptance of a port development project, the rehabilitation of marshes to mitigate nitrate loading to the sea, and the restoration of streams in a protected area. Our main conclusion is that HEA can provide a simple tool to clarify the objectives of restoration projects, to compare the cost and effectiveness of these projects, and to carry out trade-offs, without requiring significant amounts of human or technical resources.

  7. Using Habitat Equivalency Analysis to Assess the Cost Effectiveness of Restoration Outcomes in Four Institutional Contexts.

    PubMed

    Scemama, Pierre; Levrel, Harold

    2016-01-01

    At the national level, with a fixed amount of resources available for public investment in the restoration of biodiversity, it is difficult to prioritize alternative restoration projects. One way to do this is to assess the level of ecosystem services delivered by these projects and to compare them with their costs. The challenge is to derive a common unit of measurement for ecosystem services in order to compare projects which are carried out in different institutional contexts having different goals (application of environmental laws, management of natural reserves, etc.). This paper assesses the use of habitat equivalency analysis (HEA) as a tool to evaluate ecosystem services provided by restoration projects developed in different institutional contexts. This tool was initially developed to quantify the level of ecosystem services required to compensate for non-market impacts coming from accidental pollution in the US. In this paper, HEA is used to assess the cost effectiveness of several restoration projects in relation to different environmental policies, using case studies based in France. Four case studies were used: the creation of a market for wetlands, public acceptance of a port development project, the rehabilitation of marshes to mitigate nitrate loading to the sea, and the restoration of streams in a protected area. Our main conclusion is that HEA can provide a simple tool to clarify the objectives of restoration projects, to compare the cost and effectiveness of these projects, and to carry out trade-offs, without requiring significant amounts of human or technical resources.

  8. Temperate Forests. Habitat Ecology Learning Program (HELP). Teachers' Manual.

    ERIC Educational Resources Information Center

    Wildlife Conservation Society, Bronx, NY.

    The goal of this guide is to address a major environmental dilemma: worldwide habitat destruction and the disappearance of species. This guide is one of six that are included in the Habitat Ecology Learning Program (HELP), a holistic life science curriculum that involves students in an in-depth study of ecology. HELP includes six teaching guides…

  9. Lower Walnut Creek Restoration

    EPA Pesticide Factsheets

    Lower Walnut Creek Restoration Project will restore and enhance coastal wetlands along southern shoreline of Suisun Bay from Suisun Bay upstream along Walnut Creek, improving habitat quality, diversity, and connectivity along three miles of creek channel.

  10. RESTORATION OF STREAM PHYSICAL HABITAT AND FOOD RESOURCES: INFLUENCE ON JUVENILE COHO GROWTH AND SALMON DERIVED NUTRIENT INCORPORATION IN COASTAL OREGON STREAMS

    EPA Science Inventory

    ABSTRACT - Stream restoration in Western Oregon and Washington includes physical habitat improvement and salmon carcass additions. However, few studies examine the effects of carcass placement on juvenile fish in western Oregon, and in particular the interaction with physical hab...

  11. Palila Restoration Research, 1996−2012. Summary and management implications

    USGS Publications Warehouse

    Banko, Paul C.; Farmer, Chris; Dougill, Steve; Johnson, Luanne

    2015-01-01

    The Palila Restoration Project was initiated in 1996 by the U.S. Geological Survey to assist government agencies mitigate the effects of realigning Saddle Road (Highway 200) through Palila Critical Habitat (U.S. Fish and Wildlife Service 1998, Federal Highway Administration 1999). Ecological research on the palila (Loxioides bailleui), an endangered Hawaiian forest bird, carried out by the U.S. Geological Survey (formerly organized as the Research Division of U.S. Fish and Wildlife Service) since 1987 and research conducted by the Palila Restoration Project provided the scientific bases for developing a recovery strategy (U.S. Fish and Wildlife Service 2006) and its adaptive implementation. The main objectives of the Palila Restoration Project were to develop techniques for reintroducing the palila to a portion of its former range, investigate the biological threats to the palila and its habitat, and synthesize the existing body of ecological knowledge concerning the palila. Five broad study themes formed the research framework: 1. Population reintroduction and restoration 2. Demography and breeding ecology 3. Habitat use and food ecology 4. Vegetation ecology 5. Predator ecology and management An element that was not included in the research program of the project was the ecology and management of introduced ungulates, which has historically constituted the single greatest threat to Palila Critical Habitat (Banko et al. 2009). The absence of ungulate studies should not be interpreted to mean that we believe ungulates no longer damage palila habitat. Other research has already established that removing alien browsers and grazers from Mauna Kea is essential for the recovery of the subalpine forest on which palila now depend (Scowcroft and Giffin 1983; Scowcroft and Sakai 1983; Scowcroft and Conrad 1988, 1992; Hess et al. 1999). Moreover, the Federal District Court of Hawai‘i has ordered the State of Hawai‘i to remove browsing ungulates from Palila Critical

  12. Optimal Conservation Outcomes Require Both Restoration and Protection

    PubMed Central

    Possingham, Hugh P.; Bode, Michael; Klein, Carissa J.

    2015-01-01

    Conservation outcomes are principally achieved through the protection of intact habitat or the restoration of degraded habitat. Restoration is generally considered a lower priority action than protection because protection is thought to provide superior outcomes, at lower costs, without the time delay required for restoration. Yet while it is broadly accepted that protected intact habitat safeguards more biodiversity and generates greater ecosystem services per unit area than restored habitat, conservation lacks a theory that can coherently compare the relative outcomes of the two actions. We use a dynamic landscape model to integrate these two actions into a unified conservation theory of protection and restoration. Using nonlinear benefit functions, we show that both actions are crucial components of a conservation strategy that seeks to optimise either biodiversity conservation or ecosystem services provision. In contrast to conservation orthodoxy, in some circumstances, restoration should be strongly preferred to protection. The relative priority of protection and restoration depends on their costs and also on the different time lags that are inherent to both protection and restoration. We derive a simple and easy-to-interpret heuristic that integrates these factors into a single equation that applies equally to biodiversity conservation and ecosystem service objectives. We use two examples to illustrate the theory: bird conservation in tropical rainforests and coastal defence provided by mangrove forests. PMID:25625277

  13. Optimal conservation outcomes require both restoration and protection.

    PubMed

    Possingham, Hugh P; Bode, Michael; Klein, Carissa J

    2015-01-01

    Conservation outcomes are principally achieved through the protection of intact habitat or the restoration of degraded habitat. Restoration is generally considered a lower priority action than protection because protection is thought to provide superior outcomes, at lower costs, without the time delay required for restoration. Yet while it is broadly accepted that protected intact habitat safeguards more biodiversity and generates greater ecosystem services per unit area than restored habitat, conservation lacks a theory that can coherently compare the relative outcomes of the two actions. We use a dynamic landscape model to integrate these two actions into a unified conservation theory of protection and restoration. Using nonlinear benefit functions, we show that both actions are crucial components of a conservation strategy that seeks to optimise either biodiversity conservation or ecosystem services provision. In contrast to conservation orthodoxy, in some circumstances, restoration should be strongly preferred to protection. The relative priority of protection and restoration depends on their costs and also on the different time lags that are inherent to both protection and restoration. We derive a simple and easy-to-interpret heuristic that integrates these factors into a single equation that applies equally to biodiversity conservation and ecosystem service objectives. We use two examples to illustrate the theory: bird conservation in tropical rainforests and coastal defence provided by mangrove forests.

  14. Use of Land Use Land Cover Change Mapping Products in Aiding Coastal Habitat Conservation and Restoration Efforts of the Mobile Bay NEP

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Swann, Roberta; Smooth, James

    2010-01-01

    The Mobile Bay region has undergone significant land use land cover change (LULC) over the last 35 years, much of which is associated with urbanization. These changes have impacted the region s water quality and wildlife habitat availability. In addition, much of the region is low-lying and close to the Gulf, which makes the region vulnerable to hurricanes, climate change (e.g., sea level rise), and sometimes man-made disasters such as the Deepwater Horizon (DWH) oil spill. Land use land cover change information is needed to help coastal zone managers and planners to understand and mitigate the impacts of environmental change on the region. This presentation discusses selective results of a current NASA-funded project in which Landsat data over a 34-year period (1974-2008) is used to produce, validate, refine, and apply land use land cover change products to aid coastal habitat conservation and restoration needs of the Mobile Bay National Estuary Program (MB NEP). The project employed a user defined classification scheme to compute LULC change mapping products for the entire region, which includes the majority of Mobile and Baldwin counties. Additional LULC change products have been computed for select coastal HUC-12 sub-watersheds adjacent to either Mobile Bay or the Gulf of Mexico, as part of the MB NEP watershed profile assessments. This presentation will include results of additional analyses of LULC change for sub-watersheds that are currently high priority areas, as defined by MB NEP. Such priority sub-watersheds include those that are vulnerable to impacts from the DWH oil spill, as well as sub-watersheds undergoing urbanization. Results demonstrating the nature and permanence of LULC change trends for these higher priority sub-watersheds and results characterizing change for the entire 34-year period and at approximate 10-year intervals across this period will also be presented. Future work will include development of value-added coastal habitat quality

  15. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 3. Site level restoration decisions

    USGS Publications Warehouse

    Pyke, David A.; Chambers, Jeanne C.; Pellant, Mike; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Roundy, Bruce A.; Schupp, Eugene W.; Knick, Steven T.; Brunson, Mark; McIver, James D.

    2017-02-14

    Sagebrush steppe ecosystems in the United States currently (2016) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) depends on large landscapes of intact habitat of sagebrush and perennial grasses for their existence. In addition, other sagebrush-obligate animals have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals, livestock, and wild horses, and to provide ecosystem services for humans now and for future generations.When a decision is made on where restoration treatments should be applied, there are a number of site-specific decisions managers face before selecting the appropriate type of restoration. This site-level decision tool for restoration of sagebrush steppe ecosystems is organized in nine steps.Step 1 describes the process of defining site-level restoration objectives.Step 2 describes the ecological site characteristics of the restoration site. This covers soil chemistry and texture, soil moisture and temperature regimes, and the vegetation communities the site is capable of supporting.Step 3 compares the current vegetation to the plant communities associated with the site State and Transition models.Step 4 takes the manager through the process of current land uses and past disturbances that may influence restoration success.Step 5 is a brief discussion of how weather before and after treatments may impact restoration success.Step 6 addresses restoration treatment types and their potential positive and negative impacts on the ecosystem and on habitats, especially for greater sage

  16. Understanding Existing Salmonid Habitat Availability and Connectivity to Improve River Management

    NASA Astrophysics Data System (ADS)

    Duffin, J.; Yager, E.; Tonina, D.; Benjankar, R. M.

    2017-12-01

    In the Pacific Northwest river restoration is common for salmon conservation. Mangers need methods to help target restoration to problem areas in rivers to create habitat that meets a species' needs. Hydraulic models and habitat suitability curves provide basic information on habitat availability and overall quality, but these analyses need to be expanded to address habitat quality based on the accessibility of habitats required for multiple life stages. Scientists are starting to use connectivity measurements to understand the longitudinal proximity of habitat patches, which can be used to address the habitat variability of a reach. By evaluating the availability and quality of habitat and calculating the connectivity between complementary habitats, such as spawning and rearing habitats, we aim to identify areas that should be targeted for restoration. To meet these goals, we assessed Chinook salmon habitat on the Lemhi River in Idaho. The depth and velocity outputs from a 2D hydraulic model are used in conjunction with locally created habitat suitability curves to evaluate the availability and quality of habitat for multiple Chinook salmon life stages. To assess the variability of the habitat, connectivity between habitat patches necessary for different life stages is calculated with a proximity index. A spatial representation of existing habitat quality and connectivity between complimentary habitats can be linked to river morphology by the evaluation of local geomorphic characteristics, including sinuosity and channel units. The understanding of the current habitat availability for multiple life stage needs, the connectivity between these habitat patches, and their relationship with channel morphology can help managers better identify restoration needs and direct their limited resources.

  17. 76 FR 14372 - New Mexico Collaborative Forest Restoration Program Technical Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... DEPARTMENT OF AGRICULTURE Forest Service New Mexico Collaborative Forest Restoration Program Technical Advisory Panel AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The New Mexico Collaborative Forest Restoration Program Technical Advisory Panel will meet in Albuquerque, New Mexico. The...

  18. A Process-Based Assessment for Watershed Restoration Planning, Chehalis River Basin, USA

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Thompson, J.; Seixas, G.; Fogel, C.; Hall, J.; Chamberlin, J.; Kiffney, P.; Pollock, M. M.; Pess, G. R.

    2016-12-01

    Three key questions in identifying and prioritizing river restoration are: (1) How have habitats changed?, (2) What are the causes of those habitat changes?, and (3) How of those changes affected the species of interest? To answer these questions and assist aquatic habitat restoration planning in the Chehalis River basin, USA, we quantified habitat changes across the river network from headwaters to the estuary. We estimated historical habitat capacity to support salmonids using a combination of historical assessments, reference sites, and models. We also estimated current capacity from recent or newly created data sets. We found that losses of floodplain habitats and beaver ponds were substantial, while the estuary was less modified. Both tributary and main channel habitats—while modified—did not show particularly large habitat changes. Assessments of key processes that form and sustain habitats indicate that riparian functions (shading and wood recruitment) have been significantly altered, although peak and low flows have also been altered in some locations. The next step is to link our habitat assessments to salmon life-cycle models to evaluate which life stages and habitat types currently constrain population sizes of spring and fall Chinook salmon, coho salmon, and steelhead. By comparing model runs that represent different components of habitat losses identified in the analysis above, life-cycle models help identify which habitat losses have most impacted each species and population. This assessment will indicate which habitat types provide the greatest restoration potential, and help define a guiding vision for restoration efforts. Future analyses may include development and evaluation of alternative restoration scenarios, including different climate change scenarios, to refine our understanding of which restoration actions provide the greatest benefit to a salmon population.

  19. Chapter 1: Assessing pollinator habitat services to optimize conservation programs

    USGS Publications Warehouse

    Iovanna, Richard; Ando , Amy W.; Swinton, Scott; Hellerstein, Daniel; Kagan, Jimmy; Mushet, David M.; Otto, Clint R.; Rewa, Charles A.

    2017-01-01

    Pollination services have received increased attention over the past several years, and protecting foraging area is beginning to be reflected in conservation policy. This case study considers the prospects for doing so in a more analytically rigorous manner, by quantifying the pollination services for sites being considered for ecological restoration. The specific policy context is the Conservation Reserve Program (CRP), which offers financial and technical assistance to landowners seeking to convert sensitive cropland back to some semblance of the prairie (or, to a lesser extent, forest or wetland) ecosystem that preceded it. Depending on the mix of grasses and wildflowers that are established, CRP enrollments can provide pollinator habitat. Further, depending on their location, they will generate related services, such as biological control of crop pests, recreation, and aesthetics. While offers to enroll in CRP compete based on cost and some anticipated benefits, the eligibility and ranking criteria do not reflect these services to a meaningful degree. Therefore, we develop a conceptual value diagram to identify the sequence of steps and associated models and data necessary to quantify the full range of services, and find that critical data gaps, some of which are artifacts of policy, preclude the application of benefit-relevant indicators (BRIs) or monetization. However, we also find that there is considerable research activity underway to fill these gaps. In addition, a modeling framework has been developed that can estimate field-level effects on services as a function of landscape context. The approach is inherently scalable and not limited in geographic scope, which is essential for a program with a national footprint. The parameters in this framework are sufficiently straightforward that expert judgment could be applied as a stopgap approach until empirically derived estimates are available. While monetization of benefit-relevant indicators of yield

  20. Earth is a Marine Habitat. Habitat Conservation Program.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This brochure is intended to educate the public about the need to conserve and preserve the earth's environment (man's habitat). It contains an introduction to the ocean world and threats to coastal habitat. Photos and narrative revolve around the theme "Earth is a Marine Habitat." Sections include: "The Web of…

  1. An Evaluation of Butterfly Gardens for Restoring Habitat for the Monarch Butterfly (Lepidoptera: Danaidae).

    PubMed

    Cutting, Brian T; Tallamy, Douglas W

    2015-10-01

    The eastern migratory monarch butterfly (Danaus plexippus L.) population in North America hit record low numbers during the 2013-2014 overwintering season, prompting pleas by scientists and conservation groups to plant the butterfly's milkweed host plants (Asclepias spp.) in residential areas. While planting butterfly gardens with host plants seems like an intuitive action, no previous study has directly compared larval survival in gardens and natural areas to demonstrate that gardens are suitable habitats for Lepidoptera. In this study, milkweed was planted in residential gardens and natural areas. In 2009 and 2010, plants were monitored for oviposition by monarch butterflies and survival of monarch eggs and caterpillars. Monarchs oviposited significantly more frequently in gardens than in natural sites, with 2.0 and 6.2 times more eggs per plant per observation in 2009 and 2010, respectively. There were no significant differences in overall subadult survival between gardens and natural areas. Significant differences in survival were measured for egg and larval cohorts when analyzed separately, but these were not consistent between years. These results suggest that planting gardens with suitable larval host plants can be an effective tool for restoring habitat for monarch butterflies. If planted over a large area, garden plantings may be useful as a partial mitigation for dramatic loss of monarch habitat in agricultural settings. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Determinants of field edge habitat restoration on farms in California's Sacramento Valley.

    PubMed

    Garbach, Kelly; Long, Rachael Freeman

    2017-03-15

    Degradation and loss of biodiversity and ecosystem services pose major challenges in simplified agricultural landscapes. Consequently, best management practices to create or restore habitat areas on field edges and other marginal areas have received a great deal of recent attention and policy support. Despite this, remarkably little is known about how landholders (farmers and landowners) learn about field edge management practices and which factors facilitate, or hinder, adoption of field edge plantings. We surveyed 109 landholders in California's Sacramento Valley to determine drivers of adoption of field edge plantings. The results show the important influence of landholders' communication networks, which included two key roles: agencies that provide technical support and fellow landholders. The networks of landholders that adopted field edge plantings included both fellow landholders and agencies, whereas networks of non-adopters included either landholders or agencies. This pattern documents that social learning through peer-to-peer information exchange can serve as a complementary and reinforcing pathway with technical learning that is stimulated by traditional outreach and extension programs. Landholder experience with benefits and concerns associated with field edge plantings were also significant predictors of adoption. Our results suggest that technical learning, stimulated by outreach and extension, may provide critical and necessary support for broad-scale adoption of field-edge plantings, but that this alone may not be sufficient. Instead, outreach and extension efforts may need to be strategically expanded to incorporate peer-to-peer communication, which can provide critical information on benefits and concerns. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Bedload entrainment in low-gradient paraglacial coastal rivers of Maine, U.S.A.: Implications for habitat restoration

    NASA Astrophysics Data System (ADS)

    Snyder, Noah P.; Castele, Michael R.; Wright, Jed R.

    2009-02-01

    The rivers of coastal Maine flow through mainstem lakes and long low-gradient reaches that break the continuum of bedload transport expected in nonparaglacial landscapes. Stream erosion of glacial deposits supplies coarse sediment to these systems. The land use history includes intensive timber harvest and associated dam construction, which may have altered the frequency of substrate-mobilizing events. These watersheds are vital habitat for the last remaining wild anadromous Atlantic salmon in the United States. Future adjustments in channel morphology and habitat quality (via natural stream processes or restoration projects) depend on erosion, transport, and deposition of coarse sediment. These factors motivate our study of competence at four sites in the Sheepscot and Narraguagus watersheds. Three of the four sites behaved roughly similarly, with particle entrainment during intervals that include winter ice and spring flood conditions, and relatively minor bed mobilization during moderate floods in the summer and fall (with a recurrence interval of 2-3 years). The fourth site, on the Sheepscot River mainstem, exhibits more vigorous entrainment of marked particles and more complex three-dimensional channel morphology. This contrast is partially due to local geomorphic conditions that favor high shear stresses (particularly relatively steep gradient), but also likely to nourishment of the bedload saltation system by recruitment from an eroding glacial deposit upstream. Our results suggest that the frequency and magnitude of bedload transport are reach specific, depending on factors including local channel geometry, upstream sediment supply and transport, and formation of anchor ice. This presents a challenge for stream practitioners in this region: different reaches may require contrasting management strategies. Our results underscore the importance of understanding channel processes at a given site and assessing conditions upstream and downstream as a prerequisite

  4. The Influence of Angler Values, Involvement, Catch Orientation, Satisfaction, Agency Trust, and Demographics on Support for Habitat Protection and Restoration Versus Stocking in Publicly Managed Waters.

    PubMed

    Schroeder, Susan A; Fulton, David C; Altena, Eric; Baird, Heather; Dieterman, Douglas; Jennings, Martin

    2018-05-23

    Resource managers benefit from knowledge of angler support for fisheries management strategies. Factors including angler values (protection, utilitarian, and dominance), involvement (attraction, centrality, social, identity affirmation, and expression), catch-related motivations (catching some, many, and big fish, and keeping fish), satisfaction, agency trust, and demographics may relate to fisheries management preferences. Using results from a mail survey of Minnesota resident anglers, we explored how these factors were related to budget support for fish stocking relative to habitat protection/restoration. Results suggest that values, angler involvement, catch orientation, satisfaction, total and recent years fishing, age, and education influence relative support for stocking versus habitat protection/restoration. Utilitarian values, angling centrality, an orientation to catch many fish, satisfaction with the number of fish caught, number of recent years fishing, and age positively related to support for stocking over habitat management, while protection values, attraction to angling, total years fishing, and education level were negatively related to relative support for stocking.

  5. Clear Creek Watershed Flood Risk Management Habitat Assessments Using Habitat Evaluation Procedures (HEP): Analyses, Results and Documentation

    DTIC Science & Technology

    2013-07-01

    endangered species and their associated habitats as an important goal of ecosystem restoration and management. There is no doubt the determination of...accounting process developed to appraise habitat suitability for fish and wildlife species in response to potential change (USFWS 1980a-c). HEP is an... habitat to a species is likely to exhibit strong thresholds below which the habitat is usually unsuitable and above which further changes in habitat

  6. How Nature Works. Habitat Ecology Learning Program (HELP). Teachers' Manual.

    ERIC Educational Resources Information Center

    Wildlife Conservation Society, Bronx, NY.

    The goal of this guide is to address a major environmental dilemma: worldwide habitat destruction and the disappearance of species. This guide is one of six that are included in the Habitat Ecology Learning Program (HELP), a holistic life science curriculum that involves students in an in-depth study of ecology. HELP includes six teaching guides…

  7. CTUIR Grande Ronde River Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1995-1999 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen B.

    2000-08-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Bonneville Power Administration (BPA) entered into a contract agreement beginning in 1996 to fund watershed restoration and enhancement actions and contribute to recovery of fish and wildlife resources and water quality in the Grande Ronde River Basin. The CTUIR's habitat program is closely coordinated with the Grande Ronde Model Watershed Program and multiple agencies and organizations within the basin. The CTUIR has focused during the past 4 years in the upper portions of the Grande Ronde Subbasin (upstream of LaGrande, Oregon) on several major project areas in the Meadow, McCoy,more » and McIntyre Creek watersheds and along the mainstem Grande Ronde River. This Annual Report provides an overview of individual projects and accomplishments.« less

  8. The precision problem in conservation and restoration

    USGS Publications Warehouse

    Hiers, J. Kevin; Jackson, Stephen T.; Hobbs, Richard J.; Bernhardt, Emily S.; Valentine, Leonie E.

    2016-01-01

    Within the varied contexts of environmental policy, conservation of imperilled species populations, and restoration of damaged habitats, an emphasis on idealized optimal conditions has led to increasingly specific targets for management. Overly-precise conservation targets can reduce habitat variability at multiple scales, with unintended consequences for future ecological resilience. We describe this dilemma in the context of endangered species management, stream restoration, and climate-change adaptation. Inappropriate application of conservation targets can be expensive, with marginal conservation benefit. Reduced habitat variability can limit options for managers trying to balance competing objectives with limited resources. Conservation policies should embrace habitat variability, expand decision-space appropriately, and support adaptation to local circumstances to increase ecological resilience in a rapidly changing world.

  9. A disturbance-based ecosystem approach to maintaining and restoring freshwater habitats of evolutionarily significant units of anadromous salmonids in the Pacific Northwest.

    Treesearch

    G.H. Reeves; L.E. Benda; K.M. Burnett; P.A. Bisson; J.R. Sedell

    1995-01-01

    To preserve and recover evolutionarily significant units (ESUs) of anadromous salmonids Oncorhynchus spp. in the Pacific Northwest, long-term and short-term ecological processes that create and maintain freshwater habitats must be restored and protected. Aquatic ecosystems through- out the region are dynamic in space and time, and lack of...

  10. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico.

    PubMed

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-12-04

    We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. We found 16% of suitable habitat (6% of the study area) distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area) distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82%) occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM). We identified 88,190 ha (10% of the study area) of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA) contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  11. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    PubMed Central

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-01-01

    Background We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We found 16% of suitable habitat (6% of the study area) distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area) distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82%) occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM). We identified 88,190 ha (10% of the study area) of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA) contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Conclusion Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool. PMID:17144922

  12. 77 FR 14347 - Proposed Information Collection; Comment Request; NOAA Restoration Center Performance Progress...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... Collection; Comment Request; NOAA Restoration Center Performance Progress Report AGENCY: National Oceanic and... is for an extension of a currently approved information collection. NOAA funds habitat restoration projects including grass-roots, community-based habitat restoration; debris prevention and removal; removal...

  13. The Soil Program of the Restoration Seedbank Initiative: addressing knowledge gaps in degraded soils for use in dryland restoration

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Bateman, Amber; Erickson, Todd E.; Turner, Shane; Merritt, David J.

    2017-04-01

    Global environmental changes and other anthropogenic impacts are rapidly transforming the structure and functioning of ecosystems worldwide. These changes are leading to land degradation with an estimated 25 % of the global land surface being affected. Landscape-scale restoration of these degraded ecosystems has therefore been recognised globally as an international priority. In the resource-rich biodiverse semi-arid Pilbara region of north-west Western Australia hundreds of thousands of hectares are disturbed due to established and emerging iron-ore mine operations. At this scale, the need to develop cost-effective large-scale solutions to restore these landscapes becomes imperative to preserve biodiversity and achieve functionality and sustainability of these ecosystems. The Restoration Seedbank Initiative (RSB) (http://www.plants.uwa.edu.au/ research/restoration-seedbank-initiative) is a five-year multidisciplinary research project that aims to build knowledge and design strategies to restore mine-impacted landscapes in the Pilbara and other arid and semi-arid landscapes worldwide (Kildiseheva et al., 2016). The RSB comprises four research programs that focus on seedbank management and curation, seed storage, seed enhancement, and the use of alternative soil substrates (soil or growing medium program) respectively. These multi-disciplinary programs address the significant challenges of landscape scale restoration in arid systems. In the soil program we follow an integrated approach that includes the characterization of undisturbed ecosystems, assessment of restored soils with the use of soil quality indicators, and design of alternative soil substrates to support the establishment of native plant communities. A series of glasshouse studies and field trials have been conducted in the last three years to advance our knowledge on soil limitations and to provide solutions to effectively overcome these challenges in arid ecosystem restoration. These studies include

  14. 77 FR 57074 - Indirect Cost Rates for the Damage Assessment, Remediation, and Restoration Program for Fiscal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... Damage Assessment, Remediation, and Restoration Program for Fiscal Year 2011 AGENCY: National Oceanic and..., Remediation, and Restoration Program for Fiscal Year 2011. SUMMARY: The National Oceanic and Atmospheric Administration's (NOAA's) Damage Assessment, Remediation, and Restoration Program (DARRP) is announcing new...

  15. Comparing the plant diversity between artificial forest and nature growth forest in a giant panda habitat.

    PubMed

    Kang, Dongwei; Wang, Xiaorong; Li, Shuang; Li, Junqing

    2017-06-15

    Artificial restoration is an important way to restore forests, but little is known about its effect on the habitat restoration of the giant panda. In the present study, we investigated the characteristics of artificial forest in the Wanglang Nature Reserve to determine whether through succession it has formed a suitable habitat for the giant panda. We compared artificial forest characteristics with those of natural habitat used by the giant panda. We found that the dominant tree species in artificial forest differed from those in the natural habitat. The artificial forest had lower plant species richness and diversity in the tree and shrub layers than did the latter, and its community structure was characterized by smaller tree and bamboo sizes, and fewer and lower bamboo clumps, but more trees and larger shrub sizes. The typical community collocation of artificial forest was a "Picea asperata + no-bamboo" model, which differs starkly from the giant panda's natural habitat. After several years of restoration, the artificial forest has failed to become a suitable habitat for the giant panda. Therefore, a simple way of planting individual trees cannot restore giant panda habitat; instead, habitat restoration should be based on the habitat requirements of the giant panda.

  16. Ecosystems, ecological restoration, and economics: does habitat or resource equivalency analysis mean other economic valuation methods are not needed?

    PubMed

    Shaw, W Douglass; Wlodarz, Marta

    2013-09-01

    Coastal and other area resources such as tidal wetlands, seagrasses, coral reefs, wetlands, and other ecosystems are often harmed by environmental damage that might be inflicted by human actions, or could occur from natural hazards such as hurricanes. Society may wish to restore resources to offset the harm, or receive compensation if this is not possible, but faces difficult choices among potential compensation projects. The optimal amount of restoration efforts can be determined by non-market valuation methods, service-to-service, or resource-to-resource approaches such as habitat equivalency analysis (HEA). HEA scales injured resources and lost services on a one-to-one trade-off basis. Here, we present the main differences between the HEA approach and other non-market valuation approaches. Particular focus is on the role of the social discount rate, which appears in the HEA equation and underlies calculations of the present value of future damages. We argue that while HEA involves elements of economic analysis, the assumption of a one-to-one trade-off between lost and restored services sometimes does not hold, and then other non-market economic valuation approaches may help in restoration scaling or in damage determination.

  17. Schoolyard Habitat Project Guide.

    ERIC Educational Resources Information Center

    Mason, Rich

    This project aims to provide basic steps for students to restore and create wildlife habitats on school grounds. Four chapters are included in this guide, and each chapter is divided into teacher and student sections. Chapter 1 provides necessary information for starting a habitat project. Chapters 2, 3, and 4 discuss the details for the Forest…

  18. Butterfly responses to prairie restoration through fire and grazing

    USGS Publications Warehouse

    Vogel, Jennifer A.; Debinski, Diane M.; Koford, Rolf R.; Miller, J.R.

    2007-01-01

    The development of land for modern agriculture has resulted in losses of native prairie habitat. The small, isolated patches of prairie habitat that remain are threatened by fire suppression, overgrazing, and invasion by non-native species. We evaluated the effects of three restoration practices (grazing only, burning only, and burning and grazing) on the vegetation characteristics and butterfly communities of remnant prairies. Total butterfly abundance was highest on prairies that were managed with burning and grazing and lowest on those that were only burned. Butterfly species richness did not differ among any of the restoration practices. Butterfly species diversity was highest on sites that were only burned. Responses of individual butterfly species to restoration practices were highly variable. In the best predictive regression model, total butterfly abundance was negatively associated with the percent cover of bare ground and positively associated with the percent cover of forbs. Canonical correspondence analysis revealed that sites with burned only and grazed only practices could be separated based on their butterfly community composition. Butterfly communities in each of the three restoration practices are equally species rich but different practices yield compositionally different butterfly communities. Because of this variation in butterfly species responses to different restoration practices, there is no single practice that will benefit all species or even all species within habitat-specialist or habitat-generalist habitat guilds. ?? 2007 Elsevier Ltd. All rights reserved.

  19. POWER TO DETECT REGIONAL TRENDS IN HABITAT CHARACTERISTICS

    EPA Science Inventory

    The condition of stream habitat draws considerable attention concerning the protection and recovery of salmonid populations in the West. Habitat degradation continues and substantial sums of money are spent on habitat restoration. However, aided by uncertainty concerning the ad...

  20. POWER TO DETECT REGIONAL TRENDS IN PHYSICAL HABITAT

    EPA Science Inventory

    The condition of stream habitat draws considerable attention concerning the protection and recovery of salmonid populations in the West. Habitat degradation continues and substantial sums of money are spent on habitat restoration. However, aided by uncertainty concerning the ad...

  1. Relative importance of social factors, conspecific density, and forest structure on space use by the endangered Red-cockaded Woodpecker: A new consideration for habitat restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garabedian, James E.; Moorman, Christopher E.; Peterson, M. Nils

    Understanding how the interplay between social behaviors and habitat structure influences space use is important for conservation of birds in restored habitat. We integrated fine-grained LiDAR-derived habitat data, spatial distribution of cavity trees, and spatially explicit behavioral observations in a multi-scale model to determine the relative importance of conspecific density, intraspecific interactions, and the distribution of cavities on space use by Red-cockaded Woodpeckers (Picoides borealis) on 2 sites in South Carolina, USA. We evaluated candidate models using information theoretic methods. Top scale-specific models included effects of conspecific density and number of cavity tree starts within 200 m of Red-cockaded Woodpeckermore » foraging locations, and effects of the number of intraspecific interactions within 400 m of Red-cockaded Woodpecker foraging locations. The top multi-scale model for 22 of 34 Red-cockaded Woodpecker groups included covariates for the number of groups within 200 m of foraging locations and LiDARderived habitat with moderate densities of large pines (Pinus spp.) and minimal hardwood overstory. These results indicate distribution of neighboring groups was the most important predictor of space use once a minimal set of structural habitat thresholds was reached, and that placing recruitment clusters as little as 400 m from foraging partitions of neighboring groups may promote establishment of new breeding groups in unoccupied habitat. The presence of neighboring groups likely provides cues to foraging Red-cockaded Woodpeckers that facilitate prospecting prior to juvenile dispersal and, to a lesser extent, indicates high-quality forage resources. Careful consideration of local distribution of neighboring groups in potential habitat may improve managers’ ability to increase Red-cockaded Woodpecker density on restored landscapes and mitigate isolation of Red-cockaded Woodpecker groups, a problem that negatively affects fitness

  2. What is forest restoration?

    Treesearch

    John A. Stanturf

    2005-01-01

    The need to repair habitat and restore forest structure and funciton is recognized throughout the temperate and boreal zones as a component of sustainable forest management (Krishnaswamy and Hanson 1999; Dobson et al. 1997). Forest restoration is a complex task, complicated by diverse ecological and social conditions, that challenges our understanding of forest...

  3. The Precision Problem in Conservation and Restoration.

    PubMed

    Hiers, J Kevin; Jackson, Stephen T; Hobbs, Richard J; Bernhardt, Emily S; Valentine, Leonie E

    2016-11-01

    Within the varied contexts of environmental policy, conservation of imperilled species populations, and restoration of damaged habitats, an emphasis on idealized optimal conditions has led to increasingly specific targets for management. Overly-precise conservation targets can reduce habitat variability at multiple scales, with unintended consequences for future ecological resilience. We describe this dilemma in the context of endangered species management, stream restoration, and climate-change adaptation. Inappropriate application of conservation targets can be expensive, with marginal conservation benefit. Reduced habitat variability can limit options for managers trying to balance competing objectives with limited resources. Conservation policies should embrace habitat variability, expand decision-space appropriately, and support adaptation to local circumstances to increase ecological resilience in a rapidly changing world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. RESTORATION PLUS: A COLLABORATIVE RESEARCH PROGRAM TO DEVELOP AND EVALUATE ECOSYSTEM RESTORATION AND MANAGEMENT OPTIONS TO ACHIEVE ECOLOGICALLY AND ECONOMICALLY SUSTAINABLE SOLUTIONS

    EPA Science Inventory

    EPA is evaluating ecosystem restoration and management techniques to ensure they create sustainable solutions for degraded watersheds. ORD NRMRL initiated the Restoration Plus (RePlus) program in 2002 to a) evaluate ecosystem restoration and management options, b) assess the non-...

  5. Land Retirement as a Habitat Restoration Tool

    NASA Astrophysics Data System (ADS)

    Singh, P. N.; Wallender, W. W.

    2007-12-01

    the root zone. Salt on the surface may then be wind blown to adjacent areas creating a potential environmental hazard. Using field results from the U.S. Department of the Interior Land Retirement Demonstration Project at the Tranquillity site located in western Fresno County, principles of mass balance in a fixed control volume, the HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, and PEST, a model-independent parameter optimizer, we have investigated the processes of soil water and salinity movement in the root zone and the deep vadose zone. Various combinations of evapotranspiration, soil water retention properties, water table condition and top and bottom boundary condition were tested. We show that certain Land Retirement scenarios decrease shallow water table and soil water salinity and enhance development of native plants as a means to facilitate habitat restoration for certain combination of soil and bottom boundary condition. Other combinations are not sustainable.

  6. The conservation and restoration of wild bees.

    PubMed

    Winfree, Rachael

    2010-05-01

    Bees pollinate most of the world's wild plant species and provide economically valuable pollination services to crops; yet knowledge of bee conservation biology lags far behind other taxa such as vertebrates and plants. There are few long-term data on bee populations, which makes their conservation status difficult to assess. The best-studied groups are the genus Bombus (the bumble bees), and bees in the EU generally; both of these are clearly declining. However, it is not known to what extent these groups represent the approximately 20,000 species of bees globally. As is the case for insects in general, bees are underrepresented in conservation planning and protection efforts. For example, only two bee species are on the global IUCN Red List, and no bee is listed under the U.S. Endangered Species Act, even though many bee species are known to be in steep decline or possibly extinct. At present, bee restoration occurs mainly in agricultural contexts, funded by government programs such as agri-environment schemes (EU) and the Farm Bill (USA). This is a promising approach given that many bee species can use human-disturbed habitats, and bees provide valuable pollination services to crops. However, agricultural restorations only benefit species that persist in agricultural landscapes, and they are more expensive than preserving natural habitat elsewhere. Furthermore, such restorations benefit bees in only about half of studied cases. More research is greatly needed in many areas of bee conservation, including basic population biology, bee restoration in nonagricultural contexts, and the identification of disturbance-sensitive bee species.

  7. 50 CFR 80.14 - Application of Wildlife and Sport Fish Restoration Program funds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Application of Wildlife and Sport Fish Restoration Program funds. 80.14 Section 80.14 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM...

  8. A Method for Evaluating Outcomes of Restoration When No Reference Sites Exist

    Treesearch

    J. Stephen Brewer; Timothy Menzel

    2009-01-01

    Ecological restoration typically seeks to shift species composition toward that of existing reference sites. Yet, comparing the assemblages in restored and reference habitats assumes that similarity to the reference habitat is the optimal outcome of restoration and does not provide a perspective on regionally rare off-site species. When no such reference assemblages of...

  9. Assessing the suitable habitat for reintroduction of brown trout (Salmo trutta forma fario) in a lowland river: A modeling approach.

    PubMed

    Boets, Pieter; Gobeyn, Sacha; Dillen, Alain; Poelman, Eddy; Goethals, Peter L M

    2018-05-01

    Huge efforts have been made during the past decades to improve the water quality and to restore the physical habitat of rivers and streams in western Europe. This has led to an improvement in biological water quality and an increase in fish stocks in many countries. However, several rheophilic fish species such as brown trout are still categorized as vulnerable in lowland streams in Flanders (Belgium). In order to support cost-efficient restoration programs, habitat suitability modeling can be used. In this study, we developed an ensemble of habitat suitability models using metaheuristic algorithms to explore the importance of a large number of environmental variables, including chemical, physical, and hydromorphological characteristics to determine the suitable habitat for reintroduction of brown trout in the Zwalm River basin (Flanders, Belgium), which is included in the Habitats Directive. Mean stream velocity, water temperature, hiding opportunities, and presence of pools or riffles were identified as the most important variables determining the habitat suitability. Brown trout mainly preferred streams with a relatively high mean reach stream velocity (0.2-1 m/s), a low water temperature (7-15°C), and the presence of pools. The ensemble of models indicated that most of the tributaries and headwaters were suitable for the species. Synthesis and applications . Our results indicate that this modeling approach can be used to support river management, not only for brown trout but also for other species in similar geographical regions. Specifically for the Zwalm River basin, future restoration of the physical habitat, removal of the remaining migration barriers and the development of suitable spawning grounds could promote the successful restoration of brown trout.

  10. 75 FR 39135 - Voluntary Public Access and Habitat Incentive Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... Public Access and Habitat Incentive Program AGENCY: Farm Service Agency and Commodity Credit Corporation... available through the Farm Service Agency (FSA) home page at http://www.fsa.usda.gov/ . FOR FURTHER... Program (CREP) land; (4) Supplement funding and services from other Federal, State, tribal government, or...

  11. Rangeland restoration for Hirola, the world's most endangered antelope

    USDA-ARS?s Scientific Manuscript database

    Rangeland restoration can improve habitat for threatened species such as the hirola antelope (Beatragus hunteri) that inhabit savannas of eastern Kenya. However, restoration success likely varies across soil types and target restoration species, as well as according to restoration approach. We teste...

  12. Historic evidence for a link between riparian vegetation and bank erosion in the context of instream habitat restoration

    NASA Astrophysics Data System (ADS)

    Salant, N.; Baillie, M. B.; Schmidt, J. C.; Intermountain CenterRiver Rehabilitation; Restoration

    2010-12-01

    An analysis of historic aerial photographs of the upper Strawberry River, Utah, demonstrates that rates of lateral bank erosion peaked with the loss of riparian cover during periods of willow removal for livestock grazing. Erosion rates have declined over the past two decades, concurrent with the removal of livestock grazing, modest increases in riparian cover, and the return of natural flows. Contrary to perception, present-day erosion rates are actually lower than pre-disturbance rates. Recent restoration activities to stabilize stream banks were based on the assumption that high erosion rates were contributing excess sediment to the streambed and degrading spawning gravels. However, our results show that while the historic loss of riparian vegetation contributed to an increase in bank erosion rates, bank erosion rates were not high prior to restoration. Furthermore, streambed samples show that the percentage of fine sediment in the substrate is insufficient to have a significant biological impact, supporting the finding that present-day bank erosion rates are not excessive relative to pre-disturbance rates. Current bank stabilization efforts were therefore motivated by a limited understanding of system conditions and history, suggesting that these restoration activities are unnecessary and misconceived. Our results demonstrate the large influence of riparian vegetation on bank erosion and instream habitat, as well as the importance of incorporating system history into restoration design.

  13. Twenty years of stream restoration in Finland: little response by benthic macroinvertebrate communities.

    PubMed

    Louhi, Pauliina; Mykrä, Heikki; Paavola, Riku; Huusko, Ari; Vehanen, Teppo; Mäki-Petäys, Aki; Muotka, Timo

    2011-09-01

    The primary focus of many in-stream restoration projects is to enhance habitat diversity for salmonid fishes, yet the lack of properly designed monitoring studies, particularly ones with pre-restoration data, limits any attempts to assess whether restoration has succeeded in improving salmonid habitat. Even less is known about the impacts of fisheries-related restoration on other, non-target biota. We examined how restoration aiming at the enhancement of juvenile brown trout (Salmo trutta L.) affects benthic macroinvertebrates, using two separate data sets: (1) a before-after-control-impact (BACI) design with three years before and three after restoration in differently restored and control reaches of six streams; and (2) a space-time substitution design including channelized, restored, and near-natural streams with an almost 20-year perspective on the recovery of invertebrate communities. In the BACI design, total macroinvertebrate density differed significantly from before to after restoration. Following restoration, densities decreased in all treatments, but less so in the controls than in restored sections. Taxonomic richness also decreased from before to after restoration, but this happened similarly in all treatments. In the long-term comparative study, macroinvertebrate species richness showed no difference between the channel types. Community composition differed significantly between the restored and natural streams, but not between restored and channelized streams. Overall, the in-stream restoration measures used increased stream habitat diversity but did not enhance benthic biodiversity. While many macroinvertebrates may be dispersal limited, our study sites should not have been too distant to reach within almost two decades. A key explanation for the weak responses by macroinvertebrate communities may have been historical. When Fennoscandian streams were channelized for log floating, the loss of habitat heterogeneity was only partial. Therefore, habitat

  14. Restoration in Sand-slugged Streams and Drought---the Granite Creeks Project.

    NASA Astrophysics Data System (ADS)

    Lake, P. S.; Bond, N.; Glaister, A.; Downes, B.

    2005-05-01

    European settlement, with accompanying land clearance and heavy grazing, of the Strathbogie Ranges in central Victoria, Australia, resulted in the massive export of sediment to lowland streams. These streams, originally configured as "chains of ponds", were filled with "sand slugs" that generated a raised flat streambed depleted in habitat heterogeneity. The invertebrate fauna of the sand slugs is similar to that of sandbed streams elsewhere, but lacks an abundant hyporheos. The fish fauna was reduced in diversity and abundance. In 2001 habitat restoration in the sand slugs commenced after pre-restoration samples were taken.Timber structures, made from railway sleepers, were installed and subsequently created scour pools. Fish responded positively to restoration measure, but no significant effect was apparent for the invertebrates. In 2001-2004 a very severe drought occurred causing the streams to cease to flow and in the sand-slugged sections faunal abundance declined greatly due to the loss of residential habitat and the lack of refugia. Thus, the large-scale effects of severe drought thwarted the effects of localized habitat restoration, stressing the point that in restoring habitat it is also imperative to generate resilience to the prevailing disturbance regime-a regime that may be exacerbated by human activities.

  15. 76 FR 61089 - Indirect Cost Rates for the Damage Assessment, Remediation, and Restoration Program for Fiscal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... Damage Assessment, Remediation, and Restoration Program for Fiscal Years 2009 and 2010 AGENCY: National... Damage Assessment, Remediation, and Restoration Program for Fiscal Years 2009 and 2010. SUMMARY: The National Oceanic and Atmospheric Administration's (NOAA's) Damage Assessment, Remediation, and Restoration...

  16. Using SaudiVeg Ecoinformatics in assessment, monitoring and proposing environmental restoration tools in central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Sheikh, Mohamed; Hennekens, Stephan; Alfarhan, Ahmed; Thomas, Jacob; Schaminee, Joop; El-Keblawy, Ali

    2017-04-01

    Successful restoration of degraded habitats requires information about the history and factors led to the deterioration of these habitats. This study analyzed SaudiVeg Ecoinformatics, which is a big phytosociological database about plant communities and other environmental factors affecting them in the Najd-Central Region of Saudi Arabia. A phytosociological survey with more than 3000 vegetation relevés was conducted during 2013. The data were used to correlate the plant community attributes, such as abundance and species diversity in natural and ruderal habitats with environmental factors, such as human impacts, soil physical and chemical properties, and land uses. The data were subjected to multivariate analyses using programs, such as TWINSPAN, DCA and CCA, via Juice package. Fourteen vegetation associations were described under provisional classification of the Central Saudi Arabia deserts. These associations were broadly grouped into desert vegetation types. One alliance group, Haloxylonion salicornici, is the most widespread and contains four associations on the wadis and desert plains. Three associations are dominant on the depression habitats (raudhas) and two associations of Tamarixidetum spp. on the wetland and salt pan habitats. Four associations inhabit the man-made habitat and abandoned field habitats and one association, the Neurado procumbentis-Heliotropietum digyni, dominates the overgrazed sandy dunes. As human impact is huge and increasing, the vegetation ecoinformatics of the present study would form a baseline description that could be used as a vital tool for future monitoring and for proposing environmental restoration processes in central Saudi Arabia. It could also help both Governmental and Non-governmental organizations (NGO) in formulating strategies and on-ground plans for protection, management and restoration of the natural vegetation.

  17. Assessment of Instream Restoration in the Cache River, Illinois: Macroinvertebrate Community Structure on Rock Weirs Compared to Snag and Streambed Habitats

    NASA Astrophysics Data System (ADS)

    Walther, D. A.; Whiles, M. R.

    2005-05-01

    Rock weirs were constructed in a degraded section of the Cache River in southern Illinois in 2001 and 2003 to prevent channel incision and protect riparian wetlands. We sampled macroinvertebrates in two older weirs and in two sites downstream of the restored section in April 2003, October 2003, and April 2004 to evaluate differences in community structure between weir, snag, and streambed (scoured clay) habitats. Three recently constructed weirs were also sampled in April 2004. Functional composition differed among sample dates and habitats. Although collector-gatherers consistently dominated streambed habitats, functional composition on weirs and snags was more variable. Filterer and predator biomass was generally higher on weirs, and snags harbored the only shredders collected in the system (Pycnopsyche spp.). Weirs generally supported higher biomass of Ephemeroptera, Plecoptera, and Trichoptera than other habitats. For example, mean EPT biomass on weirs in 2003 (April=187 mgAFDM/m2; October=899 mgAFDM/m2) was 4 to 10-fold higher than EPT biomass in snag or streambed habitats. Late instar Pycnopsyche contributed 41% of snag biomass in April 2004, resulting in EPT biomass similar to rock weirs. Results indicate rock weirs provide suitable stable substrate for macroinvertebrates and may enhance populations of sensitive EPT taxa in degraded systems.

  18. Habitat use by giant panda in relation to man-made forest in Wanglang Nature Reserve of China.

    PubMed

    Kang, Dongwei; Wang, Xiaorong; Yang, Hongwei; Duan, Lijuan; Li, Junqing

    2014-12-01

    To evaluate the effectiveness of human restoration in species conservation, in this study, we undertook a field survey of giant panda (Ailuropoda melanoleuca) habitat and man-made forest habitat in Wanglang Nature Reserve of China. Our results revealed that giant panda did not use the man-made forest in this area so far, and that there were significant differences between the giant panda habitat and the man-made forest habitat. Compared with giant panda habitat, the man-made forest habitat was characterized by lower shrub coverage, thinner trees and lower bamboo density. To improve the effectiveness of human restoration, the habitat requirement of giant panda should be fully consider in the whole process of habitat restoration.

  19. Scale-dependent geomorphic responses to active restoration and implications for cutthroat trout

    NASA Astrophysics Data System (ADS)

    Salant, N.; Miller, S. W.

    2009-12-01

    The predominant goal of instream habitat restoration is to increase the diversity, density and/or biomass of aquatic organisms through enhanced physical heterogeneity and increased food availability. In physically homogenized systems, habitat restoration is most commonly achieved at the reach-scale through the addition of structures or channel reconfiguration. Despite the completion of over 6,000 restoration projects in the United States, studies of fish responses to habitat restoration have largely produced equivocal results. Paradoxically, restoration monitoring overwhelmingly focuses on fish response without understanding how these responses link to the physical variables being altered and the scale at which geomorphic changes occur. Our study investigates whether instream habitat restoration affects geomorphic conditions at spatial scales relevant to the organism of interest (i.e. the spatial scale of the variables limiting to that organism). We measure the effects of active restoration on geomorphic metrics at three spatial scales (local, unit, and reach) using a before-after-control-impact design in a historically disturbed and heavily managed cutthroat trout stream. Observed trout habitat preferences (for spawning and juvenile/adult residence) are used to identify the limiting physical variables and are compared to the scale of spatially explicit geomorphic responses. Four reaches representing three different stages of restoration (before, one month and one year after) are surveyed for local-scale physical conditions, unit- and reach-scale morphology, resident fish use, and redd locations. Local-scale physical metrics include depth, nearbed and average velocity, overhead cover, particle size, and water quality metrics. Point measurements stratified by morphological unit are used to determine physical variability among unit types. Habitat complexity and availability are assessed at the reach-scale from topographic surveys and unit maps. Our multi

  20. WoonyBird Restoration Plant Selector Manual

    EPA Science Inventory

    Modifying greenspaces to enhance habitat value has been proposed as a means towards protecting or restoring biodiversity in urban landscapes. As part of a framework for developing low-cost, low-impact enhancements that can be incorporated during the restoration of greenspaces to ...

  1. Motivation and Outcomes for University Students in a Restorative Justice Program

    ERIC Educational Resources Information Center

    Gallagher Dahl, Meghan; Meagher, Peter; Vander Velde, Stacy

    2014-01-01

    A restorative justice program (RJP) was developed at a large university in the housing student conduct office. Students accused of misconduct who participated in a restorative justice (RJ) conference completed surveys regarding their motivations and perceived outcomes. Results showed that students who were motivated to make reparations to others…

  2. Sage-grouse habitat restoration symposium proceedings

    Treesearch

    Nancy L. Shaw; Mike Pellant; Stephen B. Monsen

    2005-01-01

    Declines in habitat of greater sage-grouse and Gunnison sage-grouse across the western United States are related to degradation, loss, and fragmentation of sagebrush ecosystems resulting from development of agricultural lands, grazing practices, changes in wildfire regimes, increased spread of invasive species, gas and oil development, and other human impacts. These...

  3. 78 FR 53425 - Indirect Cost Rates for the Damage Assessment, Remediation, and Restoration Program for Fiscal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... DEPARTMENT OF COMMERCE Indirect Cost Rates for the Damage Assessment, Remediation, and Restoration.... ACTION: Notice of Indirect Cost Rates for the Damage Assessment, Remediation, and Restoration Program for... Assessment, Remediation, and Restoration Program (DARRP) is announcing new indirect cost rates on the...

  4. Remote sensing for restoration ecology: Application for restoring degraded, damaged, transformed, or destroyed ecosystems.

    PubMed

    Reif, Molly K; Theel, Heather J

    2017-07-01

    Restoration monitoring is generally perceived as costly and time consuming, given the assumptions of successfully restoring ecological functions and services of a particular ecosystem or habitat. Opportunities exist for remote sensing to bolster the restoration science associated with a wide variety of injured resources, including resources affected by fire, hydropower operations, chemical releases, and oil spills, among others. In the last decade, the role of remote sensing to support restoration monitoring has increased, in part due to the advent of high-resolution satellite sensors as well as other sensor technology, such as lidar. Restoration practitioners in federal agencies require monitoring standards to assess restoration performance of injured resources. This review attempts to address a technical need and provides an introductory overview of spatial data and restoration metric considerations, as well as an in-depth review of optical (e.g., spaceborne, airborne, unmanned aerial vehicles) and active (e.g., radar, lidar) sensors and examples of restoration metrics that can be measured with remotely sensed data (e.g., land cover, species or habitat type, change detection, quality, degradation, diversity, and pressures or threats). To that end, the present article helps restoration practitioners assemble information not only about essential restoration metrics but also about the evolving technological approaches that can be used to best assess them. Given the need for monitoring standards to assess restoration success of injured resources, a universal monitoring framework should include a range of remote sensing options with which to measure common restoration metrics. Integr Environ Assess Manag 2017;13:614-630. Published 2016. This article is a US Government work and is in the public domain in the USA. Published 2016. This article is a US Government work and is in the public domain in the USA.

  5. Silviculture and monitoring guidelines for integrating restoration of dry mixed-conifer forest and spotted owl habitat management in the eastern Cascade Range

    Treesearch

    John Lehmkuhl; William Gaines; David Peterson; John Bailey; Andrew Youngblood

    2015-01-01

    This report addresses the need for developing consistent regional guidelines for stand-level management that integrates goals and objectives for dry forest restoration and habitat management for the northern spotted owl. It is an outcome of a focused 3-day workshop attended by 25 scientists, managers, and regulators in Hood River, Oregon, September 5–7, 2012. The...

  6. The Role of Species Traits in Mediating Functional Recovery during Matrix Restoration

    PubMed Central

    Barnes, Andrew D.; Emberson, Rowan M.; Krell, Frank-Thorsten; Didham, Raphael K.

    2014-01-01

    Reversing anthropogenic impacts on habitat structure is frequently successful through restoration, but the mechanisms linking habitat change, community reassembly and recovery of ecosystem functioning remain unknown. We test for the influence of edge effects and matrix habitat restoration on the reassembly of dung beetle communities and consequent recovery of dung removal rates across tropical forest edges. Using path modelling, we disentangle the relative importance of community-weighted trait means and functional trait dispersion from total biomass effects on rates of dung removal. Community trait composition and biomass of dung beetle communities responded divergently to edge effects and matrix habitat restoration, yielding opposing effects on dung removal. However, functional dispersion—used in this study as a measure of niche complementarity—did not explain a significant amount of variation in dung removal rates across habitat edges. Instead, we demonstrate that the path to functional recovery of these altered ecosystems depends on the trait-mean composition of reassembling communities, over and above purely biomass-dependent processes that would be expected under neutral theory. These results suggest that any ability to manage functional recovery of ecosystems during habitat restoration will demand knowledge of species' roles in ecosystem processes. PMID:25502448

  7. The role of species traits in mediating functional recovery during matrix restoration.

    PubMed

    Barnes, Andrew D; Emberson, Rowan M; Krell, Frank-Thorsten; Didham, Raphael K

    2014-01-01

    Reversing anthropogenic impacts on habitat structure is frequently successful through restoration, but the mechanisms linking habitat change, community reassembly and recovery of ecosystem functioning remain unknown. We test for the influence of edge effects and matrix habitat restoration on the reassembly of dung beetle communities and consequent recovery of dung removal rates across tropical forest edges. Using path modelling, we disentangle the relative importance of community-weighted trait means and functional trait dispersion from total biomass effects on rates of dung removal. Community trait composition and biomass of dung beetle communities responded divergently to edge effects and matrix habitat restoration, yielding opposing effects on dung removal. However, functional dispersion--used in this study as a measure of niche complementarity--did not explain a significant amount of variation in dung removal rates across habitat edges. Instead, we demonstrate that the path to functional recovery of these altered ecosystems depends on the trait-mean composition of reassembling communities, over and above purely biomass-dependent processes that would be expected under neutral theory. These results suggest that any ability to manage functional recovery of ecosystems during habitat restoration will demand knowledge of species' roles in ecosystem processes.

  8. Assessing patterns of fish demographics and habitat in stream networks

    EPA Science Inventory

    Effective habitat restoration planning requires correctly anticipating demographic responses to altered habitats. New applications of Passive Integrated Transponder (PIT) tag technology to fish-habitat research have provided critical insights into fish movement, growth, and surv...

  9. Klamath Basin: A Watershed Approach to Support Habitat Restoration, Species Recovery, and Water Resource Planning

    USGS Publications Warehouse

    VanderKooi, S.P.; Thorsteinson, L.

    2007-01-01

    Water allocation among human and natural resource uses in the American West is challenging. Western rivers have been largely managed for hydropower, irrigation, drinking water, and navigation. Today land and water use practices have gained importance, particularly as aging dams are faced with re-licensing requirements and provisions of the Endangered Species and Clean Water Acts. Rising demand for scarce water heightens the need for scientific research to predict consequences of management actions on habitats, human resource use, and fish and wildlife. Climate change, introduction of invasive species, or restoration of fish passage can have large, landscape-scaled consequences - research must expand to encompass the appropriate scale and by applying multiple scientific disciplines to complex ecosystem challenges improve the adaptive management framework for decision-making.

  10. Evidence-based evaluation of the cumulative effects of ecosystem restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenderfer, Heida L.; Johnson, Gary E.; Thom, Ronald M.

    Evaluating the cumulative effects of large-scale ecological restoration programs is necessary to inform adaptive ecosystem management and provide society with resilient and sustainable services. However, complex linkages between restorative actions and ecosystem responses make evaluations problematic. Despite long-term federal investments in restoring aquatic ecosystems, no standard evaluation method has been adopted and most programs focus on monitoring and analysis, not synthesis and evaluation. In this paper, we demonstrate a new transdisciplinary approach integrating techniques from evidence-based medicine, critical thinking, and cumulative effects assessment. Tiered hypotheses are identified using an ecosystem conceptual model. The systematic literature review at the core ofmore » evidence-based assessment becomes one of many lines of evidence assessed collectively, using critical thinking strategies and causal criteria from a cumulative effects perspective. As a demonstration, we analyzed data from 166 locations on the Columbia River and estuary representing 12 indicators of habitat and fish response to floodplain restoration actions intended to benefit threatened and endangered salmon. Synthesis of seven lines of evidence showed that hydrologic reconnection promoted macrodetritis export, prey availability, and fish access and feeding. The evidence was sufficient to infer cross-boundary, indirect, compounding and delayed cumulative effects, and suggestive of nonlinear, landscape-scale, and spatial density effects. On the basis of causal inferences regarding food web functions, we concluded that the restoration program has a cumulative beneficial effect on juvenile salmon. As a result, this evidence-based approach will enable the evaluation of restoration in complex coastal and riverine ecosystems where data have accumulated without sufficient synthesis.« less

  11. Evidence-based evaluation of the cumulative effects of ecosystem restoration

    DOE PAGES

    Diefenderfer, Heida L.; Johnson, Gary E.; Thom, Ronald M.; ...

    2016-03-18

    Evaluating the cumulative effects of large-scale ecological restoration programs is necessary to inform adaptive ecosystem management and provide society with resilient and sustainable services. However, complex linkages between restorative actions and ecosystem responses make evaluations problematic. Despite long-term federal investments in restoring aquatic ecosystems, no standard evaluation method has been adopted and most programs focus on monitoring and analysis, not synthesis and evaluation. In this paper, we demonstrate a new transdisciplinary approach integrating techniques from evidence-based medicine, critical thinking, and cumulative effects assessment. Tiered hypotheses are identified using an ecosystem conceptual model. The systematic literature review at the core ofmore » evidence-based assessment becomes one of many lines of evidence assessed collectively, using critical thinking strategies and causal criteria from a cumulative effects perspective. As a demonstration, we analyzed data from 166 locations on the Columbia River and estuary representing 12 indicators of habitat and fish response to floodplain restoration actions intended to benefit threatened and endangered salmon. Synthesis of seven lines of evidence showed that hydrologic reconnection promoted macrodetritis export, prey availability, and fish access and feeding. The evidence was sufficient to infer cross-boundary, indirect, compounding and delayed cumulative effects, and suggestive of nonlinear, landscape-scale, and spatial density effects. On the basis of causal inferences regarding food web functions, we concluded that the restoration program has a cumulative beneficial effect on juvenile salmon. As a result, this evidence-based approach will enable the evaluation of restoration in complex coastal and riverine ecosystems where data have accumulated without sufficient synthesis.« less

  12. Forward-looking farmers owning multiple potential wetland restoration sites: implications for efficient restoration

    NASA Astrophysics Data System (ADS)

    Schroder (Kushch), Svetlana; Lang, Zhengxin; Rabotyagov, Sergey

    2018-04-01

    Wetland restoration can increase the provision of multiple non-market ecosystem services. Environmental and socio-economic factors need to be accounted for when land is withdrawn from agriculture and wetlands are restored. We build multi-objective optimization models to provide decision support for wetland restoration in the Le Sueur river watershed in Southern Minnesota. We integrate environmental objectives of sediment reduction and habitat protection with socio-economic factors associated with the overlap of private land with potential wetland restoration sites in the watershed and the costs representing forward-looking farmers voluntarily taking land out of agricultural production in favor of wetland restoration. Our results demonstrate that the inclusion of these factors early on in the restoration planning process affects both the total costs of the restoration project and the spatial distribution of optimally selected wetland restoration sites.

  13. The effects of island forest restoration on open habitat specialists: the endangered weevil Hadramphus spinipennis Broun and its host-plant Aciphylla dieffenbachii Kirk.

    PubMed

    Fountain, Emily D; Malumbres-Olarte, Jagoba; Cruickshank, Robert H; Paterson, Adrian M

    2015-01-01

    Human alteration of islands has made restoration a key part of conservation management. As islands are restored to their original state, species interactions change and some populations may be impacted. In this study we examine the coxella weevil, (Hadramphus spinipennis Broun) and its host-plant Dieffenbach's speargrass (Aciphylla dieffenbachii Kirk), which are both open habitat specialists with populations on Mangere and Rangatira Islands, Chathams, New Zealand. Both of these islands were heavily impacted by the introduction of livestock; the majority of the forest was removed and the weevil populations declined due to the palatability of their host-plant to livestock. An intensive reforestation program was established on both islands over 50 years ago but the potential impacts of this restoration project on the already endangered H. spinipennis are poorly understood. We combined genetic and population data from 1995 and 2010-2011 to determine the health and status of these species on both islands. There was some genetic variation between the weevil populations on each island but little variation within the species as a whole. The interactions between the weevil and its host-plant populations appear to remain intact on Mangere, despite forest regeneration. A decline in weevils and host-plant on Rangatira does not appear to be caused by canopy regrowth. We recommend that (1) these populations be monitored for ongoing effects of long-term reforestation, (2) the cause of the decline on Rangatira be investigated, and (3) the two populations of weevils be conserved as separate evolutionarily significant units.

  14. Restoration of urban waterways and vacant areas: the first steps toward sustainability.

    PubMed Central

    Cairns, J; Palmer, S E

    1995-01-01

    Increased population pressure and human activities have significantly altered the effectiveness of functions of ecosystems ("ecosystem services") at the local and regional scale. Of primary importance is the decrease in water quality due to urban storm water runoff. A number of communities have initiated restoration strategies to improve water quality standards. One such strategy is the incorporation of riparian walkways with native flora. As a result of such restoration efforts, habitats for native fauna have improved, and the number and diversity of wildlife have increased in urban settings. Restoration of urban habitats also provides social and economic benefits to the surrounding community. Efforts to mitigate the loss of ecological resources by restoring native habitats on lots that cannot be developed or on abandoned lots hold a high, unrealized potential. Habitat restoration not only provides natural diversions to urban surroundings, but also enlightens and educates individual citizens about the importance of balanced ecosystems and the role of humans within ecosystems. Education is the primary step toward creating ecologically sustainable communities. Images p452-a PMID:7656873

  15. Ant Foraging As an Indicator of Tropical Dry Forest Restoration.

    PubMed

    Hernández-Flores, J; Osorio-Beristain, M; Martínez-Garza, C

    2016-08-01

    Variation in foraging behavior may indicate differences in food availability and allow assessment of restoration actions. Ants are prominent bioindicators used in assessing ecological responses to disturbance. However, behavioral data have been poorly incorporated as an index. The foraging performance of red harvester ants was quantified in order to evaluate the success of a restoration ecology experiment in the tropical dry forest of Sierra de Huautla, Morelos, in central Mexico. Foraging performance by granivorous, Pogonomyrmex barbatus, ants was diminished after 6 and 8 years of cattle grazing and wood harvest were excluded as part of a restoration experiment in a highly degraded biome. Despite investing more time in foraging, ant colonies in exclusion plots showed lower foraging success and acquired less seed biomass than colonies in control plots. In line with the predictions of optimal foraging theory, in restored plots where ant foraging performance was poor, ants harvested a higher diversity of seeds. Reduced foraging success and increased harvest of non-preferred foods in exclusion plots were likely due to the growth of herbaceous vegetation, which impedes travel by foragers. Moreover, by 8 years of exclusion, 37% of nests in exclusion plots had disappeared compared to 0% of nests in control plots. Ants' foraging success and behavior were sensitive to changes in habitat quality due to the plant successional process triggered by a restoration intervention. This study spotlights on the utility of animal foraging behavior in the evaluation of habitat restoration programs. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Habitat Evaluation Procedures (HEP) Report : Oleson Tracts of the Tualatin River National Wildlife Refuge, 2001-2002 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allard, Donna; Smith, maureen; Schmidt, Peter

    Located in the northern Willamette River basin, Tualatin River National Wildlife Refuge (Refuge) was established in 1992 with an approved acquisition boundary to accommodate willing sellers with potentially restorable holdings within the Tualatin River floodplain. The Refuge's floodplain of seasonal and emergent wetlands, Oregon ash riparian hardwood, riparian shrub, coniferous forest, and Garry oak communities are representative of remnant plant communities historically common in the Willamette River valley and offer an opportunity to compensate for wildlife habitat losses associated with the Willamette River basin federal hydroelectric projects. The purchase of the Oleson Units as additions to the Refuge using Bonnevillemore » Power Administration (BPA) funds will partially mitigate for wildlife habitat and target species losses incurred as a result of construction and inundation activities at Dexter and Detroit Dams. Lands acquired for mitigation of Federal Columbia River Power System (FCRPS) impacts to wildlife are evaluated using the Habitat Evaluation Procedures (HEP) methodology, which quantifies how many Habitat Units (HUs) are to be credited to BPA. HUs or credits gained lessen BPA's debt, which was formally tabulated in the FCRPS Loss Assessments and adopted as part of the Northwest Power and Conservation Council's Fish and Wildlife Program as a BPA obligation (NWPCC, 1994 and 2000). There are two basic management scenarios to consider for this evaluation: (1) Habitats can be managed without restoration activities to benefit wildlife populations, or (2) Habitats can be restored using a number of techniques to improve habitat values more quickly. Without restoration, upland and wetland areas may be periodically mowed and disced to prevent invasion of exotic vegetation, volunteer trees and shrubs may grow to expand forested areas, and cooperative farming may be employed to provide forage for migrating and wintering waterfowl. Abandoned cropland would

  17. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, Christopher D.; DeSteven, Diane; Kilgo, John C.

    Barton, Christopher, D., Diane DeSteven and John C. Kilgo. 2004. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina). Ecol. Rest. 22(4):291-292. Abstract: Carolina bays and smaller depression wetlands support diverse plant communities and provide critical habitat for semi-aquatic fauna throughout the Coastal Plain region of the southeastern United States. Historically, many depression wetlands were altered or destroyed by surface ditching, drainage, and agricultural or silviculture uses. These important habitats are now at further risk of alteration and loss following a U.S. Supreme Court decision in 2001 restricting federal regulation of isolated wetlands. Thus, there is increasedmore » attention towards protecting intact sites and developing methods to restore others. The U.S. Department of Energy's (DOE) 312-mi2 (800-km2) Savannah River Site (SRS) in west-central South Carolina includes about 350 Carolina bays and bay-like wetland depressions, of which about two-thirds were degraded or destroyed prior to federal acquisition of the land. Although some of the altered wetlands have recovered naturally, others still have active active drainage ditches and contain successional forests typical of drained sites. In 1997, DOE established a wetland mitigation bank to compensate for unavoidable wetland impacts on the SRS. This effort provided an opportunity fir a systematic research program to investigate wetland restoration techniques and ecological responses. Consequently, research and management staffs from the USDA Forest Service, Westinghouse Savannah River Corporation, the Savannah River Technology Center, the Savannah River Ecology Laboratory (SREL) and several universities developed a collaborative project to restore degraded depression wetlands on the SRS. The mitigation project seeks cost-effective methods to restore the hydrology and vegetation typical of natural depression wetlands, and so enhance habitats for

  18. Effects of flooding and tamarisk removal on habitat for sensitive fish species in the San Rafael River, Utah: implications for fish habitat enhancement and future restoration efforts.

    PubMed

    Keller, Daniel L; Laub, Brian G; Birdsey, Paul; Dean, David J

    2014-09-01

    Tamarisk removal is a widespread restoration practice on rivers in the southwestern USA, but impacts of removal on fish habitat have rarely been investigated. We examined whether tamarisk removal, in combination with a large spring flood, had the potential to improve fish habitat on the San Rafael River in southeastern Utah. We quantified habitat complexity and the distribution of wood accumulation in a tamarisk removal site (treated) and a non-removal site (untreated) in 2010, 1 year prior to a large magnitude and long-duration spring flood. We used aerial imagery to analyze river changes in the treated and untreated sites. Areas of channel movement were significantly larger in the treated site compared to the untreated site, primarily because of geomorphic characteristics of the channel, including higher sinuosity and the presence of an ephemeral tributary. However, results suggest that tamarisk removal on the outside of meander bends, where it grows directly on the channel margins, can promote increased channel movement. Prior to the flood, wood accumulations were concentrated in sections of channel where tamarisk had been removed. Pools, riffles, and backwaters occurred more frequently within 30 m upstream and downstream of wood accumulations compared to areas within 30 m of random points. Pools associated with wood accumulations were also significantly larger and deeper than those associated with random points. These results suggest that the combination of tamarisk removal and wood input can increase the potential for channel movement during spring floods thereby diversifying river habitat and improving conditions for native fish.

  19. Effects of Flooding and Tamarisk Removal on Habitat for Sensitive Fish Species in the San Rafael River, Utah: Implications for Fish Habitat Enhancement and Future Restoration Efforts

    NASA Astrophysics Data System (ADS)

    Keller, Daniel L.; Laub, Brian G.; Birdsey, Paul; Dean, David J.

    2014-09-01

    Tamarisk removal is a widespread restoration practice on rivers in the southwestern USA, but impacts of removal on fish habitat have rarely been investigated. We examined whether tamarisk removal, in combination with a large spring flood, had the potential to improve fish habitat on the San Rafael River in southeastern Utah. We quantified habitat complexity and the distribution of wood accumulation in a tamarisk removal site (treated) and a non-removal site (untreated) in 2010, 1 year prior to a large magnitude and long-duration spring flood. We used aerial imagery to analyze river changes in the treated and untreated sites. Areas of channel movement were significantly larger in the treated site compared to the untreated site, primarily because of geomorphic characteristics of the channel, including higher sinuosity and the presence of an ephemeral tributary. However, results suggest that tamarisk removal on the outside of meander bends, where it grows directly on the channel margins, can promote increased channel movement. Prior to the flood, wood accumulations were concentrated in sections of channel where tamarisk had been removed. Pools, riffles, and backwaters occurred more frequently within 30 m upstream and downstream of wood accumulations compared to areas within 30 m of random points. Pools associated with wood accumulations were also significantly larger and deeper than those associated with random points. These results suggest that the combination of tamarisk removal and wood input can increase the potential for channel movement during spring floods thereby diversifying river habitat and improving conditions for native fish.

  20. 2D Hydrodynamic Based Logic Modeling Tool for River Restoration Decision Analysis: A Quantitative Approach to Project Prioritization

    NASA Astrophysics Data System (ADS)

    Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.

    2014-12-01

    In the field of river restoration sciences there is a growing need for analytical modeling tools and quantitative processes to help identify and prioritize project sites. 2D hydraulic models have become more common in recent years and with the availability of robust data sets and computing technology, it is now possible to evaluate large river systems at the reach scale. The Trinity River Restoration Program is now analyzing a 40 mile segment of the Trinity River to determine priority and implementation sequencing for its Phase II rehabilitation projects. A comprehensive approach and quantitative tool has recently been developed to analyze this complex river system referred to as: 2D-Hydrodynamic Based Logic Modeling (2D-HBLM). This tool utilizes various hydraulic output parameters combined with biological, ecological, and physical metrics at user-defined spatial scales. These metrics and their associated algorithms are the underpinnings of the 2D-HBLM habitat module used to evaluate geomorphic characteristics, riverine processes, and habitat complexity. The habitat metrics are further integrated into a comprehensive Logic Model framework to perform statistical analyses to assess project prioritization. The Logic Model will analyze various potential project sites by evaluating connectivity using principal component methods. The 2D-HBLM tool will help inform management and decision makers by using a quantitative process to optimize desired response variables with balancing important limiting factors in determining the highest priority locations within the river corridor to implement restoration projects. Effective river restoration prioritization starts with well-crafted goals that identify the biological objectives, address underlying causes of habitat change, and recognizes that social, economic, and land use limiting factors may constrain restoration options (Bechie et. al. 2008). Applying natural resources management actions, like restoration prioritization, is

  1. Prioritizing Sites for Protection and Restoration for Grizzly Bears (Ursus arctos) in Southwestern Alberta, Canada.

    PubMed

    Braid, Andrew C R; Nielsen, Scott E

    2015-01-01

    As the influence of human activities on natural systems continues to expand, there is a growing need to prioritize not only pristine sites for protection, but also degraded sites for restoration. We present an approach for simultaneously prioritizing sites for protection and restoration that considers landscape patterns for a threatened population of grizzly bears (Ursus arctos) in southwestern Alberta, Canada. We considered tradeoffs between bottom-up (food resource supply) and top-down (mortality risk from roads) factors affecting seasonal habitat quality for bears. Simulated annealing was used to prioritize source-like sites (high habitat productivity, low mortality risk) for protection, as well as sink-like sites (high habitat productivity, high mortality risk) for restoration. Priority source-like habitats identified key conservation areas where future developments should be limited, whereas priority sink-like habitats identified key areas for mitigating road-related mortality risk with access management. Systematic conservation planning methods can be used to complement traditional habitat-based methods for individual focal species by identifying habitats where conservation actions (both protection and restoration) have the highest potential utility.

  2. Prescribed burning for understory restoration

    Treesearch

    Kenneth W. Outcalt

    2006-01-01

    Because the longleaf ecosystem evolved with and is adapted to frequent fire, every 2 to 8 years, prescribed burning is often useful for restoring understory communities to a diverse ground layer of grasses, herbs, and small shrubs. This restoration provides habitat for a number of plant and animal species that are restricted to or found mostly in longleaf pine...

  3. Habitat Evaluation Procedure (HEP) Report for the Pend Oreille Wetlands Wildlife Project, Technical Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, Darren

    The Habitat Evaluation Procedure (HEP), developed in 1980 by the U.S. Fish and Wildlife Service (USFWS 1980a, USFWS 1980b), uses a habitat/species based approach to assessing project impacts, and is a convenient tool to document the predicted effects of proposed management actions. The Northwest Power Planning Council (NPPC) endorsed the use of HEP in its Columbia River Basin Fish and Wildlife Program to evaluate wildlife benefits and impacts associated with the development and operation of the federal Columbia River Basin hydroelectric system (NPPC 1994). The Albeni Falls Interagency Work Group (AFIWG) used HEP in 1987 to evaluate wildlife habitat lossesmore » attributed to the Albeni Falls hydroelectric facility (Martin et al. 1988). In 1992, the AFIWG (Idaho Department of Fish and Game; Kalispel, Coeur d'Alene, and Kootenai Tribes) began implementing activities to mitigate these losses. Implementation activities include protecting, restoring and enhancing wildlife habitat. HEPs are used extensively within the NPPC's Columbia River Basin Fish and Wildlife Program. Wildlife managers use HEP to determine habitat lost from the construction of the federal hydroelectric projects and habitat gained through NPPC mitigation program. Habitat Suitability Index (HSI) models for each of the seven target species are used to determine habitat quality and quantity losses for representative habitat cover types for this project. Target species include Bald Eagle, black-capped chickadee, Canada goose, mallard, muskrat, white-tailed deer and yellow warbler. In 2002, a HEP team determined the habitat condition of the 436-acre Pend Oreille Wetlands Wildlife Project (Figure 1). The HEP team consisted of the following members and agencies: Roy Finley, Kalispel Natural Resource Department (KNRD); Neil Lockwood, KNRD; Brian Merson, KNRD; Sonny Finley, KNRD; Darren Holmes, KNRD; Anna, Washington Dept. of Fish and Game (WDFW); and Scott, WDFW. Baseline Habitat Units (HU) will be credited

  4. Rain Forests. Habitat Ecology Learning Program (H.E.L.P.), Teachers' Manual.

    ERIC Educational Resources Information Center

    Wildlife Conservation Society, Bronx, NY.

    The goal of this guide is to address a major environmental dilemma: worldwide habitat destruction and the disappearance of species. This guide is one of six that are included in the Habitat Ecology Learning Program (HELP), a holistic life science curriculum that involves students in an in-depth study of ecology. HELP includes six teaching guides…

  5. Linking hydrologic, physical and chemical habitat environments for the potential assessment of fish community rehabilitation in a developing city

    NASA Astrophysics Data System (ADS)

    Zhao, C. S.; Yang, S. T.; Liu, C. M.; Dou, T. W.; Yang, Z. L.; Yang, Z. Y.; Liu, X. L.; Xiang, H.; Nie, S. Y.; Zhang, J. L.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-04-01

    Aquatic ecological rehabilitation is increasingly attracting considerable public and research attention. An effective method that requires less data and expertise would help in the assessment of rehabilitation potential and in the monitoring of rehabilitation activities as complicated theories and excessive data requirements on assemblage information make many current assessment models expensive and limit their wide use. This paper presents an assessment model for restoration potential which successfully links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. In this model three newly developed sub-models, integrated habitat index (IHSI), integrated ecological niche breadth (INB) and integrated ecological niche overlap (INO), are established to study spatial heterogeneity of the restoration potential of fish assemblages based on gradient methods of habitat suitability index and ecological niche models. To reduce uncertainties in the model, as many fish species as possible, including important native fish, were selected as dominant species with monitoring occurring over several seasons to comprehensively select key habitat factors. Furthermore, a detrended correspondence analysis (DCA) was employed prior to a canonical correspondence analysis (CCA) of the data to avoid the "arc effect" in the selection of key habitat factors. Application of the model to data collected at Jinan City, China proved effective reveals that three lower potential regions that should be targeted in future aquatic ecosystem rehabilitation programs. They were well validated by the distribution of two habitat parameters: river width and transparency. River width positively influenced and transparency negatively influenced fish assemblages. The model can be applied for monitoring the effects of fish assemblage restoration

  6. Habitat selection by juvenile Mojave Desert tortoises

    USGS Publications Warehouse

    Todd, Brian D; Halstead, Brian J.; Chiquoine, Lindsay P.; Peaden, J. Mark; Buhlmann, Kurt A.; Tuberville, Tracey D.; Nafus, Melia G.

    2016-01-01

    Growing pressure to develop public lands for renewable energy production places several protected species at increased risk of habitat loss. One example is the Mojave desert tortoise (Gopherus agassizii), a species often at the center of conflicts over public land development. For this species and others on public lands, a better understanding of their habitat needs can help minimize negative impacts and facilitate protection or restoration of habitat. We used radio-telemetry to track 46 neonate and juvenile tortoises in the Eastern Mojave Desert, California, USA, to quantify habitat at tortoise locations and paired random points to assess habitat selection. Tortoise locations near burrows were more likely to be under canopy cover and had greater coverage of perennial plants (especially creosote [Larrea tridentata]), more coverage by washes, a greater number of small-mammal burrows, and fewer white bursage (Ambrosia dumosa) than random points. Active tortoise locations away from burrows were closer to washes and perennial plants than were random points. Our results can help planners locate juvenile tortoises and avoid impacts to habitat critical for this life stage. Additionally, our results provide targets for habitat protection and restoration and suggest that diverse and abundant small-mammal populations and the availability of creosote bush are vital for juvenile desert tortoises in the Eastern Mojave Desert.

  7. Dealing with public concerns in restoring fire to the forest

    Treesearch

    Leslie A. C. Weldon

    1996-01-01

    Public support is important to all restoration efforts on public lands. Some types of restoration activities are easier for the public to support than others. Restoring wetlands, habitat restoration for salmon or burrowing owls, and vegetative rehabilitation are generally acceptable practices. Most restoration projects and activities such as these do not have much...

  8. Standard Review Plan for Environmental Restoration Program Quality Management Plans. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-01

    The Department of Energy, Richland Operations Office (RL) Manual Environmental Restoration Program Quality System Requirements (QSR) for the Hanford Site, defines all quality requirements governing Hanford Environmental Restoration (ER) Program activities. The QSR requires that ER Program participants develop Quality Management Plans (QMPs) that describe how the QSR requirements will be implemented for their assigned scopes of work. This standard review plan (SRP) describes the ER program participant responsibilities for submittal of QMPs to the RL Environmental Restoration Division for review and the RL methodology for performing the reviews of participant QMPS. The SRP serves the following functions: acts asmore » a guide in the development or revision of QMPs to assure that the content is complete and adequate; acts as a checklist to be used by the RL staff in their review of participant QMPs; acts as an index or matrix between the requirements of the QSR and implementing methodologies described in the QMPs; decreases the time and subjectivity of document reviews; and provides a formal, documented method for describing exceptions, modifications, or waivers to established ER Program quality requirements.« less

  9. 50 CFR 80.25 - Multiyear financing under the Dingell-Johnson Sport Fish Restoration Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-Johnson Sport Fish Restoration Program. 80.25 Section 80.25 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH... SPORT FISH RESTORATION ACTS § 80.25 Multiyear financing under the Dingell-Johnson Sport Fish Restoration...

  10. South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaney, Mark D.

    2009-04-15

    The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fishmore » production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment

  11. Habitat Evaluation Procedures (HEP) Report : Rainwater Wildlife Area, 1998-2001 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen

    vegetation species, allowance of normative processes such as fire occurrence, and facilitating development of natural stable stream channels and associated floodplains. Implementation of habitat enhancement and restoration activities could generate an additional 1,850 habitat units in 10 years. Baseline and estimated future habitat units total 7,035.3 for the Rainwater Wildlife Area. Habitat protection, enhancement and restoration will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program. Longer-term benefits of protection and enhancement activities include increases in native species diversity and plant community resiliency in all cover types. Watershed conditions, including floodplain/riparian, and instream habitat quality should improve as well providing multiple benefits for terrestrial and aquatic resources. While such benefits are not necessarily recognized by HEP models and reflected in the number of habitat units generated, they are consistent with the NPPC Fish and Wildlife Program.« less

  12. Habitat Evaluation Procedure (HEP) Report for the Pend Oreille Wetlands Wildlife II Project, Technical Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, Darren

    The Habitat Evaluation Procedure (HEP), developed in 1980 by the U.S. Fish and Wildlife Service (USFWS 1980a, USFWS 1980b), uses a habitat/species based approach to assessing project impacts, and is a convenient tool to document the predicted effects of proposed management actions. The Northwest Power Planning Council (NPPC) endorsed the use of HEP in its Columbia River Basin Fish and Wildlife Program to evaluate wildlife benefits and impacts associated with the development and operation of the federal Columbia River Basin hydroelectric system (NPPC 1994). The Albeni Falls Interagency Work Group (AFIWG) used HEP in 1987 to evaluate wildlife habitat lossesmore » attributed to the Albeni Falls hydroelectric facility (Martin et al. 1988). In 1992, the AFIWG (Idaho Department of Fish and Game; Kalispel, Coeur d'Alene, and Kootenai Tribes) began implementing activities to mitigate these losses. Implementation activities include protecting, restoring and enhancing wildlife habitat. HEPs are used extensively within the NPPC's Columbia River Basin Fish and Wildlife Program. Wildlife managers use HEP to determine habitat lost from the construction of the federal hydroelectric projects and habitat gained through NPPC mitigation program. Habitat Suitability Index (HSI) models for each of the seven target species are used to determine habitat quality and quantity losses for representative habitat cover types for this project. Target species include Bald Eagle, black-capped chickadee, Canada goose, mallard, muskrat, white-tailed deer and yellow warbler. In 2002, a HEP team determined the habitat condition of the 164-acre Pend Oreille Wetlands Wildlife II Project (Figure 1). The HEP team consisted of the following members and agencies: Roy Finley, Kalispel Natural Resource Department (KNRD); Neil Lockwood, KNRD; Brian Merson, KNRD; Sonny Finley, KNRD; Darren Holmes, KNRD; Anna, Washington Dept. of Fish and Game (WDFW); and Scott, WDFW. Baseline Habitat Units (HU) will be

  13. Using remote sensing data to assess salmon habitat status in rivers and floodplains of Puget Sound, USA

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Pess, G. R.; Hall, J.; Timpane-Padgham, B.; Stefankiv, O.; Liermann, M. C.; Fresh, K.; Rowse, M.

    2015-12-01

    Natural processes create dynamic habitat features in large rivers and floodplains, and past land uses that restrict fluvial processes have altered habitat conditions in those environments in Puget Sound, USA. As a result, Chinook salmon and steelhead are listed as threatened species under the US Endangered Species Act (ESA). To help restore these salmon populations, restoration actions often focus on removing constraints on natural processes to restore fluvial dynamics and ultimately restore critical salmon habitats on floodplains. An important aspect of this restoration effort is monitoring whether habitat conditions are improving as anticipated, yet there are currently few protocols available for monitoring trends in large river and floodplain habitats. We identified several remote-sensing metrics that are indicators of salmon habitat condition, and developed repeatable protocols for measuring those metrics. We then tested their sensitivity to land use change by comparing habitat conditions among land cover classes (developed, agriculture, forested, and mixed). As expected, metrics of habitat complexity or condition such as side-channel length, node density, wood jam area, or riparian buffer widths were highest in forested sites and lowest in agriculture and urban sites. By contrast, percent disconnected floodplain and percent armored banks were highest in developed sites and lowest in forested sites. Our results indicate that remote sensing metrics are sensitive enough to detect differences in habitat status among land cover classes, and therefore help us understand the impact of various land uses on habitat conditions. However, detecting trends in habitat condition through time may be difficult because magnitudes of change through time are very small.

  14. Understory vegetation as an indicator for floodplain forest restoration in the Mississippi River Alluvial Valley, U.S.A

    Treesearch

    Diane De Steven; Stephen P. Faulkner; Bobby D. Keeland; Michael J. Baldwin; John W. McCoy; Steven C. Hughes

    2015-01-01

    In the Mississippi River Alluvial Valley (MAV), complete alteration of river-floodplain hydrology allowed for widespread conversion of forested bottomlands to intensive agriculture, resulting in nearly 80% forest loss. Governmental programs have attempted to restore forest habitat and functions within this altered landscape by the methods of tree planting (...

  15. Land-use changes and the physical habitat of streams - a review with emphasis on studies within the U.S. Geological Survey Federal-State Cooperative Program

    USGS Publications Warehouse

    Jacobson, Robert B.; Femmer, Suzanne R.; McKenney, Rose A.

    2001-01-01

    Understanding the links between land-use changes and physical stream habitat responses is of increasing importance to guide resource management and stream restoration strategies. Transmission of runoff and sediment to streams can involve complex responses of drainage basins, including time lags, thresholds, and cumulative effects. Land-use induced runoff and sediment yield often combine with channel-scale disturbances that decrease flow resistance and erosion resistance, or increase stream energy. The net effects of these interactions on physical stream habitat—depth, velocity, substrate, cover, and temperature—are a challenge to predict. Improved diagnosis and predictive understanding of future change usually require multifaceted, multi-scale, and multidisciplinary studies based on a firm understanding of the history and processes operating in a drainage basin. The U.S. Geological Survey Federal-State Cooperative Program has been instrumental in fostering studies of the links between land use and stream habitat nationwide.

  16. Key tiger habitats in the Garo Hills of Meghalaya

    Treesearch

    Ashish Kumar; Bruce G. Marcot

    2010-01-01

    We describe assumed tiger habitat characteristics and attempt to identify potential tiger habitats in the Garo Hills region of Meghalaya, North East India. Conserving large forest tracts and protected wildlife habitats provides an opportunity for restoring populations of wide-ranging wildlife such as tigers and elephants. Based on limited field observations coupled...

  17. A spatial modeling approach to identify potential butternut restoration sites in Mammoth Cave National Park

    USGS Publications Warehouse

    Thompson, L.M.; Van Manen, F.T.; Schlarbaum, S.E.; DePoy, M.

    2006-01-01

    Incorporation of disease resistance is nearly complete for several important North American hardwood species threatened by exotic fungal diseases. The next important step toward species restoration would be to develop reliable tools to delineate ideal restoration sites on a landscape scale. We integrated spatial modeling and remote sensing techniques to delineate potential restoration sites for Butternut (Juglans cinerea L.) trees, a hardwood species being decimated by an exotic fungus, in Mammoth Cave National Park (MCNP), Kentucky. We first developed a multivariate habitat model to determine optimum Butternut habitats within MCNP. Habitat characteristics of 54 known Butternut locations were used in combination with eight topographic and land use data layers to calculate an index of habitat suitability based on Mahalanobis distance (D2). We used a bootstrapping technique to test the reliability of model predictions. Based on a threshold value for the D2 statistic, 75.9% of the Butternut locations were correctly classified, indicating that the habitat model performed well. Because Butternut seedlings require extensive amounts of sunlight to become established, we used canopy cover data to refine our delineation of favorable areas for Butternut restoration. Areas with the most favorable conditions to establish Butternut seedlings were limited to 291.6 ha. Our study provides a useful reference on the amount and location of favorable Butternut habitat in MCNP and can be used to identify priority areas for future Butternut restoration. Given the availability of relevant habitat layers and accurate location records, our approach can be applied to other tree species and areas. ?? 2006 Society for Ecological Restoration International.

  18. Predicting the effects of proposed Mississippi River diversions on oyster habitat quality; application of an oyster habitat suitability index model

    USGS Publications Warehouse

    Soniat, Thomas M.; Conzelmann, Craig P.; Byrd, Jason D.; Roszell, Dustin P.; Bridevaux, Joshua L.; Suir, Kevin J.; Colley, Susan B.

    2013-01-01

    In an attempt to decelerate the rate of coastal erosion and wetland loss, and protect human communities, the state of Louisiana developed its Comprehensive Master Plan for a Sustainable Coast. The master plan proposes a combination of restoration efforts including shoreline protection, marsh creation, sediment diversions, and ridge, barrier island, and hydrological restoration. Coastal restoration projects, particularly the large-scale diversions of fresh water from the Mississippi River, needed to supply sediment to an eroding coast potentially impact oyster populations and oyster habitat. An oyster habitat suitability index model is presented that evaluates the effects of a proposed sediment and freshwater diversion into Lower Breton Sound. Voluminous freshwater, needed to suspend and broadly distribute river sediment, will push optimal salinities for oysters seaward and beyond many of the existing reefs. Implementation and operation of the Lower Breton Sound diversion structure as proposed would render about 6,173 ha of hard bottom immediately east of the Mississippi River unsuitable for the sustained cultivation of oysters. If historical harvests are to be maintained in this region, a massive and unprecedented effort to relocate private leases and restore oyster bottoms would be required. Habitat suitability index model results indicate that the appropriate location for such efforts are to the east and north of the Mississippi River Gulf Outlet.

  19. Protect and Restore Red River Watershed, 2007-2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bransford, Stephanie

    2009-05-04

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPAmore » efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).« less

  20. CTUIR Grande Ronde River Basin Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1996-1998 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen B.

    1999-07-01

    This Annual Report provides a detailed overview of watershed restoration accomplishments achieved by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and project partners in the Upper Grande Ronde River Basin under contract with the Bonneville Power Administration (BPA) during the period July 1, 1997 through June 30, 1998. The Contract Agreement entitled McCoy Meadows Watershed Restoration Project (Project No.96-83-01) includes habitat restoration planning, design, and implementation in two project areas--the McCoy Meadows Ranch located in the Meadow, McCoy, and McIntyre Creek subbasins on private land and the Mainstem Grande Ronde River Habitat Enhancement Project located on private andmore » National Forest System lands near Bird Tract Springs along the Grande Ronde River. During the contract period, the CTUIR and partners (Mark and Lorna Tipperman, landowners), Oregon Department of Environmental Quality (ODEQ), U.S. Environmental Protection Agency (EPA), Oregon Department of Fish and Wildlife (ODFW), and Natural Resource Conservation Service (NRCS) initiated phase 1 construction of the McCoy Meadows Restoration Project. Phase 1 involved reintroduction of a segment of McCoy Creek from its existing channelized configuration into a historic meander channel. Project efforts included bioengineering and tree/shrub planting and protection, transporting salvaged cottonwood tree boles and limbs from offsite source to the project area for utilization by resident beaver populations for forage and dam construction materials, relocation of existing BPA/ODFW riparian corridor fencing to outer edges of meadow floodplain, establishment of pre-project photo points, and coordination of other monitoring and evaluation efforts being led by other project partners including groundwater monitoring wells, channel cross sections, water quality monitoring stations, juvenile population sampling index sites, redd surveys, and habitat surveys. Project activities also

  1. An index of reservoir habitat impairment

    USGS Publications Warehouse

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  2. Revised Methods for Characterizing Stream Habitat in the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Waite, Ian R.; D'Arconte, Patricia J.; Meador, Michael R.; Maupin, Molly A.; Gurtz, Martin E.

    1998-01-01

    Stream habitat is characterized in the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. The goal of stream habitat characterization is to relate habitat to other physical, chemical, and biological factors that describe water-quality conditions. To accomplish this goal, environmental settings are described at sites selected for water-quality assessment. In addition, spatial and temporal patterns in habitat are examined at local, regional, and national scales. This habitat protocol contains updated methods for evaluating habitat in NAWQA Study Units. Revisions are based on lessons learned after 6 years of applying the original NAWQA habitat protocol to NAWQA Study Unit ecological surveys. Similar to the original protocol, these revised methods for evaluating stream habitat are based on a spatially hierarchical framework that incorporates habitat data at basin, segment, reach, and microhabitat scales. This framework provides a basis for national consistency in collection techniques while allowing flexibility in habitat assessment within individual Study Units. Procedures are described for collecting habitat data at basin and segment scales; these procedures include use of geographic information system data bases, topographic maps, and aerial photographs. Data collected at the reach scale include channel, bank, and riparian characteristics.

  3. Bat response to carolina bays and wetland restoration in the southeastern U.S. Coastal Plain.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, Jennifer M.; Michael A. Menzel; John C. Kilgo

    2005-09-01

    Abstract: Bat activity in the southeastern United States is concentrated over riparian areas and wetland habitats. The restoration and creation of wetlands for mitigation purposes is becoming common in the Southeast. Understanding the effects of these restoration efforts on wetland flora and fauna is thus becoming increasingly important. Because bats (Order: Chiroptera) consist of many species that are of conservation concern and are commonly associated with wetland and riparian habitats in the Southeast (making them a good general indicator for the condition of wetland habitats), we monitored bat activity over restored and reference Carolina bays surrounded by pine savanna (Pinusmore » spp.) or mixed pine-hardwood habitat types at the Savannah River Site in South Carolina. In order to determine how wetland restoration efforts affected the bat community, we monitored bat activity above drained Carolina bays pre- and post-restoration. Our results indicate that bat activity was greater over reference (i.e., undrained) than drained bays prior to the restorative efforts. One year following combined hydrologic and vegetation treatment, however, bat activity was generally greater over restored than reference bays. Bat activity was also greater over both reference and restored bays than in random, forested interior locations. We found significantly more bat activity after restoration than prior to restoration for all but one species in the treatment bays, suggesting that Carolina bay restoration can have almost immediate positive impacts on bat activity.« less

  4. 75 FR 11194 - San Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation Plan, San... meetings for the San Diego County Water Authority's (Water Authority/Applicant) draft Natural Communities Conservation Plan (NCCP)/Habitat Conservation Plan (HCP) prepared in application to us for an incidental take...

  5. Power and Authority in the Student-Instructor Relationship in a Restorative Practices-Based Graduate Program

    ERIC Educational Resources Information Center

    Bailie, John W., III

    2012-01-01

    This study examined power and authority in the student-instructor relationship in a restorative practices-based graduate program. This qualitative investigation utilized a narrative approach. Ten alumni of the International Institute for Restorative Practices master's degree programs were engaged in a one-time face-to-face interview and document…

  6. 76 FR 65182 - Indirect Cost Rates for the Damage Assessment, Remediation, and Restoration Program for Fiscal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Indirect Cost Rates for the Damage Assessment, Remediation, and Restoration Program for Fiscal Years 2009 and 2010 AGENCY: National... Atmospheric Administration's (NOAA's) Damage Assessment, Remediation, and Restoration Program (DARRP) is...

  7. Keeping Pace with Climate Change: Habitat Protection in the Face of Uncertainty

    NASA Astrophysics Data System (ADS)

    Flitcroft, R. L.; Burnett, K.; Giannico, G.

    2014-12-01

    Estuaries provide critical habitat for many economically and culturally important species. In the Pacific Northwest, intertidal and subtidal areas provide critical habitat for production of native and commercial oysters (Olympia oyster Ostrea lurida and Pacific oyster Crassostrea gigas, respectively) that in turn provide refuge and rearing habitat for Dungeness Crab, Metacarcinus magister. Environments ranging from subtidal through freshwater zones provide nursery areas for juvenile salmonids at different development stages in their life history. Most Oregon estuaries have been significantly altered by humans over the past century, reducing the quantity and diversity of available habitats. Management agencies have responded with projects to restore and enhance estuarine habitats. Unfortunately, future climate change and sea-level rise could render many current restoration projects ineffective over time. Planning for habitat restoration that keeps pace with climate change will be critical to the sustainable production of seafood and maintenance of ecosystem function. However, land managers and citizens lack the spatially-explicit data needed to incorporate the potential effects of climate change and sea-level rise into planning for habitat improvement projects in estuarine areas. To meet this need, we developed simple models using LiDAR to characterize the geomorphologies of multiple Oregon estuaries. We were able to map the margin of current mean high tide, and contour intervals associated with different potential increases in mean high tide. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting changes in estuary shape. For each estuary, we assessed changes in the amount and complexity of edge habitats. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance

  8. USGS Science for Restoration of South Florida: The South Florida Ecosystem Program

    USGS Publications Warehouse

    McPherson, Benjamin F.; Gerould, Sarah; Higer, Aaron L.

    1999-01-01

    As land and resource managers see the value of their resources diminish, and the public watches the environments they knew as children become degraded, there are increasing calls to restore what has been lost, or to build productive ecosystems that will be healthy and sustainable under the conditions of human use. The U.S. Geological Survey's (USGS) Placed-Based Studies Program was established to provide sound science for resource managers in critical ecosystems such as South Florida (fig. 1). The program, which began in south Florida in 1995, provides relevant information, high-quality data, and models to support decisions for ecosystem restoration and management. The program applies multi- and interdisciplinary science to address regional and subregional environmental resources issues.

  9. The U.S. Geological Survey and the Chesapeake Bay; the role of science in environmental restoration

    USGS Publications Warehouse

    Phillips, Scott

    2002-01-01

    The Chesapeake Bay is the Nation's largest estuary and historically supported one of the most productive fisheries in the world. In addition to supporting aquatic communities and wildlife, the bay's watershed serves the economic and recreational needs of 15 million people. The fertile soils of the watershed support significant agricultural production. Unfortunately, the commercial, economic, and recreational value of the bay and its watershed has been degraded by poor water quality, loss of habitat, and overharvesting of living resources. Since the early 1980's, the Chesapeake Bay Program, which is a partnership among Maryland, Virginia, Pennsylvania, the District of Columbia, the Federal Government, and the Chesapeake Bay Commission, has been formulating and implementing restoration goals to restore living resources, minimize habitat loss, and reduce the amount of nutrients, sediment, and toxic substances entering the bay. The U.S. Geological Survey has the critical role of providing unbiased scientific information to be used in helping to formulate, implement, and assess the effectiveness of restoration goals in the bay and its watershed.

  10. Pest Control and Pollination Cost-Benefit Analysis of Hedgerow Restoration in a Simplified Agricultural Landscape.

    PubMed

    Morandin, L A; Long, R F; Kremen, C

    2016-05-11

    Field edge habitat in homogeneous agricultural landscapes can serve multiple purposes including enhanced biodiversity, water quality protection, and habitat for beneficial insects, such as native bees and natural enemies. Despite this ecosystem service value, adoption of field border plantings, such as hedgerows, on large-scale mono-cropped farms is minimal. With profits primarily driving agricultural production, a major challenge affecting hedgerow plantings is linked to establishment costs and the lack of clear economic benefits on the restoration investment. Our study documented that hedgerows are economically viable to growers by enhancing beneficial insects and natural pest control and pollination on farms. With pest control alone, our model shows that it would take 16 yr to break even from insecticide savings on the US$4,000 cost of a typical 300-m hedgerow field edge planting. By adding in pollination benefits by native bees, where honey bees (Apis mellifera L.) may be limiting, the return time is reduced to 7 yr. USDA cost share programs allow for a quicker return on a hedgerow investment. Our study shows that over time, small-scale restoration can be profitable, helping to overcome the barrier of cost associated with field edge habitat restoration on farms. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the United States.

  11. Geospatial interface and model for predicting potential seagrass habitat

    EPA Science Inventory

    Restoration of ecosystem services provided by seagrass habitats in estuaries requires a clear understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We have developed a geos...

  12. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoverson, Eric D.; Amonette, Alexandra

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meachammore » Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and

  13. Genetic effects of habitat restoration in the Laurentian Great Lakes: an assessment of lake sturgeon origin and genetic diversity

    USGS Publications Warehouse

    Jamie Marie Marranca,; Amy Welsh,; Roseman, Edward F.

    2015-01-01

    Lake sturgeon (Acipenser fulvescens) have experienced significant habitat loss, resulting in reduced population sizes. Three artificial reefs were built in the Huron-Erie corridor in the Great Lakes to replace lost spawning habitat. Genetic data were collected to determine the source and numbers of adult lake sturgeon spawning on the reefs and to determine if the founder effect resulted in reduced genetic diversity. DNA was extracted from larval tail clips and 12 microsatellite loci were amplified. Larval genotypes were then compared to 22 previously studied spawning lake sturgeon populations in the Great Lakes to determine the source of the parental population. The effective number of breeders (Nb) was calculated for each reef cohort. The larval genotypes were then compared to the source population to determine if there were any losses in genetic diversity that are indicative of the founder effect. The St. Clair and Detroit River adult populations were found to be the source parental population for the larvae collected on all three artificial reefs. There were large numbers of contributing adults relative to the number of sampled larvae. There was no significant difference between levels of genetic diversity in the source population and larval samples from the artificial reefs; however, there is some evidence for a genetic bottleneck in the reef populations likely due to the founder effect. Habitat restoration in the Huron-Erie corridor is likely resulting in increased habitat for the large lake sturgeon population in the system and in maintenance of the population's genetic diversity.

  14. Rapid genetic restoration of a keystone species exhibiting delayed demographic response

    USDA-ARS?s Scientific Manuscript database

    Genetic founder effects are often expected when animals colonize restored habitat in fragmented landscapes, but empirical data on genetic responses to restoration are limited. We examined the genetic response of banner-tailed kangaroo rats (Dipodomys spectabilis) to landscape-scale grassland restor...

  15. Alligator, Alligator mississippiensis, habitat suitability index model

    USGS Publications Warehouse

    Waddle, J. Hardin

    2017-01-01

    The 2012 Coastal Master Plan utilized Habitat Suitability Indices (HSIs) to evaluate potential project effects on wildlife species. Even though HSIs quantify habitat condition, which may not directly correlate to species abundance, they remain a practical and tractable way to assess changes in habitat quality from various restoration actions. As part of the legislatively mandated five year update to the 2012 plan, the wildlife habitat suitability indices were updated and revised using literature and existing field data where available. The outcome of these efforts resulted in improved, or in some cases entirely new suitability indices. This report describes the development of the habitat suitability indices for the American alligator, Alligator mississippiensis.

  16. Understanding the value of local ecological knowledge and practices for habitat restoration in human-altered floodplain systems: a case from Bangladesh.

    PubMed

    Mamun, Abdullah-Al

    2010-05-01

    Worldwide there is a declining trend in natural fish catch (FAO, The state of world fisheries and aquaculture. http://www.fao.org/documents/show_cdr.asp?url_file=/docrep/007/y5600e/y5600e00.htm , 2002) and Bangladesh is no exception. The vast inland fisheries of Bangladesh have been declining over the years, largely a result of human alteration of the aquatic habitats arising from human interventions in the floodplain systems such as the establishment of water control structures which favor agricultural production but reduce fish habitats. It can be assumed that conventional management measures are not adequate to conserve natural fisheries and exploring alternative knowledge systems to complement existing management is warranted. This paper focuses on local ecological knowledge and several other local practices held by fishers engaging directly with floodplain ecosystems. These knowledge systems and practices may be valuable tools for understanding ecosystems processes and related changes and developing local level responses to avert negative consequences of such changes. This may help in devising alternatives to ecosystem management and the conservation of floodplain fish habitats of Bangladesh and elsewhere in the world. This study was conducted in a natural depression (locally called beel) and its surrounding floodplain system located in north central Bangladesh which has become highly degraded. The results of the study indicate that the fishers and local users of the floodplain ecosystems are rich in local ecological knowledge concerning the hydrology of the floodplains and small lakes, the habitat preferences of fish, the role of agricultural crops on fish habitats, and the impact of habitat human interventions in aquatic ecosystems. Given the apparent inadequacy of the present management regime, this article argues for an inclusion of local knowledge and practices into habitat management as a more holistic approach to floodplain habitat restoration and

  17. Whitebark Pine Germination, Rust Resistance, and Cold Hardiness Among Seed Sources in the Inland Northwest: Planting Strategies for Restoration

    Treesearch

    Mary F. Mahalovich; Karen E. Burr; David L. Foushee

    2006-01-01

    A synthesis of several studies highlights above-average performing seed sources (n = 108) of whitebark pine (Pinus albicaulis), which practitioners can utilize for restoration, wildlife habitat improvement, and operational planting programs. It is the first report of this magnitude of blister rust resistance for this species. Whitebark pine does have...

  18. Case Study-Removal and Restoration of In-stream Sediment Ponds

    EPA Pesticide Factsheets

    Presentation from 2011 on goals and objectives of Case study was to restore impacted streams to a proper dimension, pattern, and profile with an emphasis on restoration of stream and riparian habitats.

  19. Using Species Distribution Models to Predict Potential Landscape Restoration Effects on Puma Conservation

    PubMed Central

    Angelieri, Cintia Camila Silva; Adams-Hosking, Christine; Ferraz, Katia Maria Paschoaletto Micchi de Barros

    2016-01-01

    A mosaic of intact native and human-modified vegetation use can provide important habitat for top predators such as the puma (Puma concolor), avoiding negative effects on other species and ecological processes due to cascade trophic interactions. This study investigates the effects of restoration scenarios on the puma’s habitat suitability in the most developed Brazilian region (São Paulo State). Species Distribution Models incorporating restoration scenarios were developed using the species’ occurrence information to (1) map habitat suitability of pumas in São Paulo State, Southeast, Brazil; (2) test the relative contribution of environmental variables ecologically relevant to the species habitat suitability and (3) project the predicted habitat suitability to future native vegetation restoration scenarios. The Maximum Entropy algorithm was used (Test AUC of 0.84 ± 0.0228) based on seven environmental non-correlated variables and non-autocorrelated presence-only records (n = 342). The percentage of native vegetation (positive influence), elevation (positive influence) and density of roads (negative influence) were considered the most important environmental variables to the model. Model projections to restoration scenarios reflected the high positive relationship between pumas and native vegetation. These projections identified new high suitability areas for pumas (probability of presence >0.5) in highly deforested regions. High suitability areas were increased from 5.3% to 8.5% of the total State extension when the landscapes were restored for ≥ the minimum native vegetation cover rule (20%) established by the Brazilian Forest Code in private lands. This study highlights the importance of a landscape planning approach to improve the conservation outlook for pumas and other species, including not only the establishment and management of protected areas, but also the habitat restoration on private lands. Importantly, the results may inform environmental

  20. Using Species Distribution Models to Predict Potential Landscape Restoration Effects on Puma Conservation.

    PubMed

    Angelieri, Cintia Camila Silva; Adams-Hosking, Christine; Ferraz, Katia Maria Paschoaletto Micchi de Barros; de Souza, Marcelo Pereira; McAlpine, Clive Alexander

    2016-01-01

    A mosaic of intact native and human-modified vegetation use can provide important habitat for top predators such as the puma (Puma concolor), avoiding negative effects on other species and ecological processes due to cascade trophic interactions. This study investigates the effects of restoration scenarios on the puma's habitat suitability in the most developed Brazilian region (São Paulo State). Species Distribution Models incorporating restoration scenarios were developed using the species' occurrence information to (1) map habitat suitability of pumas in São Paulo State, Southeast, Brazil; (2) test the relative contribution of environmental variables ecologically relevant to the species habitat suitability and (3) project the predicted habitat suitability to future native vegetation restoration scenarios. The Maximum Entropy algorithm was used (Test AUC of 0.84 ± 0.0228) based on seven environmental non-correlated variables and non-autocorrelated presence-only records (n = 342). The percentage of native vegetation (positive influence), elevation (positive influence) and density of roads (negative influence) were considered the most important environmental variables to the model. Model projections to restoration scenarios reflected the high positive relationship between pumas and native vegetation. These projections identified new high suitability areas for pumas (probability of presence >0.5) in highly deforested regions. High suitability areas were increased from 5.3% to 8.5% of the total State extension when the landscapes were restored for ≥ the minimum native vegetation cover rule (20%) established by the Brazilian Forest Code in private lands. This study highlights the importance of a landscape planning approach to improve the conservation outlook for pumas and other species, including not only the establishment and management of protected areas, but also the habitat restoration on private lands. Importantly, the results may inform environmental

  1. Dispersal constraints for stream invertebrates: setting realistic timescales for biodiversity restoration.

    PubMed

    Parkyn, Stephanie M; Smith, Brian J

    2011-09-01

    Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.

  2. Dispersal Constraints for Stream Invertebrates: Setting Realistic Timescales for Biodiversity Restoration

    NASA Astrophysics Data System (ADS)

    Parkyn, Stephanie M.; Smith, Brian J.

    2011-09-01

    Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.

  3. Ecological structure and function in a restored versus natural salt marsh

    PubMed Central

    Rezek, Ryan J.; Lebreton, Benoit; Sterba-Boatwright, Blair

    2017-01-01

    Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions. PMID:29261795

  4. Ecological structure and function in a restored versus natural salt marsh.

    PubMed

    Rezek, Ryan J; Lebreton, Benoit; Sterba-Boatwright, Blair; Beseres Pollack, Jennifer

    2017-01-01

    Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions.

  5. Lower Red River Meadow Restoration Project : Biennial Report 1996-97.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LRK Communications; Wildlife Habitat Institute; Pocket Water, Inc.

    2003-07-01

    The Red River has been straightened and the riparian vegetation corridor eliminated in several reaches within the watershed. The river responded by incision resulting in over-steepened banks, increased sedimentation, elevated water temperatures, depressed groundwater levels, reduced floodplain function, and degraded fish habitat. The Lower Red River Meadow Restoration Project is a multi-phase ecosystem enhancement effort that restores natural physical and biological processes and functions to stabilize the stream channel and establish high quality habitats for fish and wildlife. A natural channel restoration philosophy guides the design and on the ground activities, allowing the channel to evolve into a state ofmore » dynamic equilibrium. Two years of planning, two years of restoration in Phases I and II, and one year post-restoration monitoring are complete. By excavating new bends and reconnecting historic meanders, Phase I and II channel realignment increased channel length by 3,060 feet, decreased channel gradient by 25 percent, and increased sinuosity from 1.7 to 2.3. Cross-sectional shapes and point bars were modified to maintain deep pool habitat at low flow and to reconnect the meadow floodplain. Improved soil moisture conditions will help sustain the 31,500 native riparian plantings reestablished within these two phases. Overall, short-term restoration performance was successful. Analyses of long-term parameters document either post-restoration baseline conditions or early stages of evolution toward desired conditions. An adaptive management strategy has helped to improve restoration designs, methods, and monitoring. Lessons learned are being transferred to a variety of audiences to advance the knowledge of ecological restoration and wise management of watersheds.« less

  6. Fluvial Geomorphology and River Restoration: Uneasy Allies (Invited)

    NASA Astrophysics Data System (ADS)

    Kondolf, G. M.

    2009-12-01

    A growing body of literature demonstrates that river restoration based on understanding of geomorphic and ecological process is more likely to be sustainable than form-based approaches. In the early days of river ‘restoration’ in North America, most projects involved bank stabilization, habitat structure placement, or construction of rocked meandering channels, at odds with restoration of the dynamic processes we now see as fundamental to effective, sustainable restoration. Recent years have seen a growing body of restoration programs emphasizing restoration of connectivity and geomorphic process. This evolution has been reflected in publications, from the form-based approach advocated in the early 1990s by an NRC panel (which did not include a geomorphologist) to more recent works by interdisciplinary panels emphasizing process restoration. Large-scale river restoration came later to Europe, motivated by the EU Water Framework Directive (2000) requirements that member states implement measures to improve ecological status of degraded rivers. Interestingly, European approaches to restoration have often reflected a more nuanced understanding of process, including deliberate recreation of unstable braided channels, removal of bank protection, and reconnecting floodplains. In part this may reflect a reaction to the more thorough post-war channelization of rivers in western Europe. In part it may also reflect a greater influence of academic and research laboratories upon practitioners than in the US, where a strong anti-intellectual strain, cultural preference for easy fixes, and reluctance to conduct objective post-project assessments have contributed to the adoption of form-based approaches by many public agencies.

  7. Poplar Island Environmental Restoration Project: Challenges in waterbird restoration on an island in Chesapeake Bay

    USGS Publications Warehouse

    Erwin, R.M.; Miller, J.; Reese, J.G.

    2007-01-01

    At 460 hectares, the Paul Sarbanes Environmental Restoration Project at Poplar Island, Talbot County, Maryland, represents the largest 'beneficial use' dredged material project of the U. S. Army Corps of Engineers (a cooperative project with Maryland Port Administration). Begun in 1998, the 15-year restoration project will ultimately consist of roughly 220 ha of uplands and 220 ha of tidal wetland habitats, with limited areas of dike roads, perimeter riprap, and unvegetated mudflats. Wetland restoration began in one small section (or 'cell') in 2002, but not all cells will be filled with dredged material until at least 2013. As a major objective of the restoration, six species of waterbirds were identified as 'priority species' for Chesapeake Bay: American black duck (Anas rubripes), snowy egret (Egretta thula), cattle egret (Bubulcus ibis), osprey (Pandion haliaetus), common tern (Sterna hirundo), and least tern (S. antillarum). Monitoring of nesting activities of these species from 2002 to 2005 indicated that all species except black ducks colonized the site rapidly. More than 800 pairs of common terns nested in 2003 to 2004. Because of predation by red fox (Vulpes vulpes) and great horned owl (Bubo virginianus), reproductive success was very low for the terns. Trapping was effective in removing the foxes, and other controls have been applied to opportunistic nesting species including herring gulls (Larus argentatus) and Canada geese (Branta canadensis). An effective public education program on the island has helped address concerns about animal control.

  8. Optimizing water depth for wetland-dependent wildlife could increase wetland restoration success, water efficiency, and water security

    USGS Publications Warehouse

    Nadeau, Christopher P.; Conway, Courtney J.

    2015-01-01

    Securing water for wetland restoration efforts will be increasingly difficult as human populations demand more water and climate change alters the hydrologic cycle. Minimizing water use at a restoration site could help justify water use to competing users, thereby increasing future water security. Moreover, optimizing water depth for focal species will increase habitat quality and the probability that the restoration is successful. We developed and validated spatial habitat models to optimize water depth within wetland restoration projects along the lower Colorado River intended to benefit California black rails (Laterallus jamaicensis coturniculus). We observed a 358% increase in the number of black rails detected in the year after manipulating water depth to maximize the amount of predicted black rail habitat in two wetlands. The number of black rail detections in our restoration sites was similar to those at our reference site. Implementing the optimal water depth in each wetland decreased water use while simultaneously increasing habitat suitability for the focal species. Our results also provide experimental confirmation of past descriptive accounts of black rail habitat preferences and provide explicit water depth recommendations for future wetland restoration efforts for this species of conservation concern; maintain surface water depths between saturated soil and 100 mm. Efforts to optimize water depth in restored wetlands around the world would likely increase the success of wetland restorations for the focal species while simultaneously minimizing and justifying water use.

  9. Going deeper into phosphorus adsorbents for lake restoration: Combined effects of magnetic particles, intraspecific competition and habitat heterogeneity pressure on Daphnia magna.

    PubMed

    Del Arco, Ana; Parra, Gema; de Vicente, Inmaculada

    2018-02-01

    Aquatic population responses to chemical exposure may be exacerbated by intraspecific competition pressures, being also shaped by habitat heterogeneity. Magnetic particles (MPs) have been recently proposed as promising phosphorus (P) adsorbents for lake restoration. This study focuses on assessing the effects of MPs on the abundance of the crustacean Daphnia magna under different levels of both intraspecific competition pressure and habitat heterogeneity. The experimental design consisted of two experiments (in homogeneous and heterogeneous habitats) done in glass jars with four concentrations of MPs: controls of 0g MPsL -1 , and treatments of 1, 1.5 and 2g MPsL -1 . In addition, competition treatments were established by using different population densities, and hence, no competition (C), low (L) and high (H) competition pressures were simulated. The experiments lasted for 7 days, with a 4-day pre-exposure period, in which competition was all allowed to take place, and a 3-day post-exposure period. Twenty-four hours after adding MPs, the MPs were removed by applying a magnetic separation technique. The results showed that competition pressures occurred and significantly reduced population abundances during the pre-exposure period. During the post-exposure period, the combined effects of competition and MPs were detected in both homogeneous (Ho-) and heterogeneous (He-) habitat experiments, showing a significantly drastic reduction in abundances. In fact, the lethal concentration for 50% of the population (LC 50 - 24h) was 0 and 0.16g MPsL -1 in the Ho- and He-experiments respectively, indicating that the addition and especially the removal of MPs cause extreme mortality. These results indicated that even though competition plays a role in shaping populations, its influence was down-weighted by the stronger pressures of MPs. In addition, as no significant differences between homogeneous and heterogeneous habitats were found, we may state that the refuge offered was

  10. Tradeoffs between homing and habitat quality for spawning site selection by hatchery-origin Chinook salmon

    USGS Publications Warehouse

    Cram, Jeremy M.; Torgersen, Christian E.; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.

    2013-01-01

    Spawning site selection by female salmon is based on complex and poorly understood tradeoffs between the homing instinct and the availability of appropriate habitat for successful reproduction. Previous studies have shown that hatchery-origin Chinook salmon (Oncorhynchus tshawytscha) released from different acclimation sites return with varying degrees of fidelity to these areas. To investigate the possibility that homing fidelity is associated with aquatic habitat conditions, we quantified physical habitat throughout 165 km in the upper Yakima River basin (Washington, USA) and mapped redd and carcass locations from 2004 to 2008. Principal components analysis identified differences in substrate, cover, stream width, and gradient among reaches surrounding acclimation sites, and canonical correspondence analysis revealed that these differences in habitat characteristics were associated with spatial patterns of spawning (p < 0.01). These analyses indicated that female salmon may forego spawning near their acclimation area if the surrounding habitat is unsuitable. Evaluating the spatial context of acclimation areas in relation to surrounding habitat may provide essential information for effectively managing supplementation programs and prioritizing restoration actions.

  11. Physical Habitat and Energy Inputs Determine Freshwater Invertebrate Communities in Reference and Cranberry Farm Impacted Northeastern Coastal Zone Streams

    NASA Astrophysics Data System (ADS)

    Lander, D. M. P.; McCanty, S. T.; Dimino, T. F.; Christian, A. D.

    2016-02-01

    The River Continuum Concept (RCC) predicts stream biological communities based on dominant physical structures and energy inputs into streams and predicts how these features and corresponding communities change along the stream continuum. Verifying RCC expectations is important for creating valid points of comparison during stream ecosystem evaluation. These reference expectations are critical for restoration projects, such as the restoration of decommissioned cranberry bogs. Our research compares the physical habitat and freshwater invertebrate functional feeding groups (FWIFFG) of reference, active cranberry farming, and cranberry farm passive restoration sites in Northeastern Coastal Zone streams of Massachusetts to the specific RCC FWIFFG predictions. We characterized stream physical habitat using a semi-quantitative habitat characterization protocol and sampled freshwater invertebrates using the U.S. EPA standard 20-jab multi-habitat protocol. We expected that stream habitat would be most homogeneous at active farming stations, intermediate at restoration stations, and most heterogeneous at reference stations. Furthermore, we expected reference stream FWIFFG would be accurately predicted by the RCC and distributions at restoration and active sites would vary significantly. Habitat data was analyzed using a principle component analysis and results confirmed our predictions showing more homogeneous habitat for the active and reference stations, while showing a more heterogeneous habitat at the reference stations. The FWIFFG chi-squared analysis showed significant deviation from our specific RCC FWIFFG predictions. Because published FWIFFG distributions did not match our empirical values for a least disturbed Northeastern Coastal Zone headwater stream, using our data as a community structure template for current and future restoration projects is not recommend without further considerations.

  12. Chesapeake Bay Watershed - Protecting the Chesapeake Bay and its rivers through science, restoration, and partnership

    USGS Publications Warehouse

    ,

    2012-01-01

    The Chesapeake Bay, the Nation's largest estuary, has been degraded due to the impact of human-population increase, which has doubled since 1950, resulting in degraded water quality, loss of habitat, and declines in populations of biological communities. Since the mid-1980s, the Chesapeake Bay Program (CBP), a multi-agency partnership which includes the Department of Interior (DOI), has worked to restore the Bay ecosystem. The U.S. Geological Survey (USGS) has the critical role of providing unbiased scientific information that is utilized to document and understand ecosystem change to help assess the effectiveness of restoration strategies in the Bay and its watershed. The USGS revised its Chesapeake Bay science plan for 2006-2011 to address the collective needs of the CBP, DOI, and USGS with a mission to provide integrated science for improved understanding and management of the Bay ecosystem. The USGS science themes for this mission are: Causes and consequences of land-use change; Impact of climate change and associated hazards; Factors affecting water quality and quantity; Ability of habitat to support fish and bird populations; and Synthesis and forecasting to improve ecosystem assessment, conservation, and restoration.

  13. Approaches to defining reference regimes for river restoration planning

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.

    2014-12-01

    Reference conditions or reference regimes can be defined using three general approaches, historical analysis, contemporary reference sites, and theoretical or empirical models. For large features (e.g., floodplain channels and ponds) historical data and maps are generally reliable. For smaller features (e.g., pools and riffles in small tributaries), field data from contemporary reference sites are a reasonable surrogate for historical data. Models are generally used for features that have no historical information or present day reference sites (e.g., beaver pond habitat). Each of these approaches contributes to a watershed-wide understanding of current biophysical conditions relative to potential conditions, which helps create not only a guiding vision for restoration, but also helps quantify and locate the largest or most important restoration opportunities. Common uses of geomorphic and biological reference conditions include identifying key areas for habitat protection or restoration, and informing the choice of restoration targets. Examples of use of each of these three approaches to define reference regimes in western USA illustrate how historical information and current research highlight key restoration opportunities, focus restoration effort in areas that can produce the largest ecological benefit, and contribute to estimating restoration potential and assessing likelihood of achieving restoration goals.

  14. Anuran site occupancy and species richness as tools for evaluating restoration of a hydrologically-modified landscape

    USGS Publications Warehouse

    Walls, Susan; Waddle, J. Hardin; Barichivich, William J.; Bartoszek, Ian A.; Brown, Mary E.; Hefner, J. M.; Schuman, Melinda J.

    2014-01-01

    A fundamental goal of wetland restoration is to reinstate pre-disturbance hydrological conditions to degraded landscapes, facilitating recolonization by native species and the production of resilient, functional ecosystems. To evaluate restoration success, baseline conditions need to be determined and a reference target needs to be established that will serve as an ecological blueprint in the restoration process. During the summer wet seasons of 2010 and 2011, we used automated recording units to monitor a community of calling anuran amphibians in the Picayune Strand State Forest of Southwest Florida, USA. This area is undergoing hydrological restoration as part of the Comprehensive Everglades Restoration Plan. We compared occurrence of anurans at sites in the restoration area, to nearby locations in relatively undisturbed habitat (reference sites). We assessed the utility of the latter as restoration targets, using a hierarchical model of community species occupancy to estimate the probability of occurrence of anurans in restoration and reference locations. We detected 14 species, 13 of which were significantly more likely to occur in reference areas. All 14 species were estimated by our model to occur at these sites but, across both years, only 8–13 species were estimated to occur at restoration sites. The composition and structure of these habitats within and adjacent to the Picayune Strand State Forest indicate that they are suitable targets for habitat restoration, as measured by amphibian occurrence and species richness. These areas are important sources for recolonization of anuran amphibians as the hydrologically degraded Picayune Strand undergoes restoration to mitigate the effects of overdrainage and habitat loss.

  15. The Areal Extent of Brown Shrimp Habitat Suitability in Mobile Bay, Alabama USA: Targeting Vegetated Habitat Restoration

    EPA Science Inventory

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the U.S. Protection and management of these vital GOM habitats are critical t...

  16. Ecological values of shallow-water habitats: Implications for the restoration of disturbed ecosystems

    USGS Publications Warehouse

    Lopez, C.B.; Cloern, J.E.; Schraga, T.S.; Little, A.J.; Lucas, L.V.; Thompson, J.K.; Burau, J.R.

    2006-01-01

    A presumed value of shallow-habitat enhanced pelagic productivity derives from the principle that in nutrient-rich aquatic systems phytoplankton growth rate is controlled by light availability, which varies inversely with habitat depth. We measured a set of biological indicators across the gradient of habitat depth within the Sacramento-San Joaquin River Delta (California) to test the hypothesis that plankton biomass, production, and pelagic energy flow also vary systematically with habitat depth. Results showed that phytoplankton biomass and production were only weakly related to phytoplankton growth rates whereas other processes (transport, consumption) were important controls. Distribution of the invasive clam Corbicula fluminea was patchy, and heavily colonized habitats all supported low phytoplankton biomass and production and functioned as food sinks. Surplus primary production in shallow, uncolonized habitats provided potential subsidies to neighboring recipient habitats. Zooplankton in deeper habitats, where grazing exceeded phytoplankton production, were likely supported by significant fluxes of phytoplankton biomass from connected donor habitats. Our results provide three important lessons for ecosystem science: (a) in the absence of process measurements, derived indices provide valuable information to improve our mechanistic understanding of ecosystem function and to benefit adaptive management strategies; (b) the benefits of some ecosystem functions are displaced by water movements, so the value of individual habitat types can only be revealed through a regional perspective that includes connectedness among habitats; and (c) invasive species can act as overriding controls of habitat function, adding to the uncertainty of management outcomes. ?? 2006 Springer Science+Business Media, Inc.

  17. Stream Community Structure: An Analysis of Riparian Forest Buffer Restoration in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Orzetti, L. L.; Jones, R. C.

    2005-05-01

    Forested riparian buffer zones have been proposed as an important aid in curtailing upland sources of pollution before they reach stream surface waters, and enhancing habitat for stream organisms. Our objective was to test the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining the stream macrobenthic community structure. To test our hypothesis, we collected riffle benthic and water samples, and performed habitat evaluations at 30 stream sites in the mid-Atlantic Piedmont, ranging in buffer age from 0 to greater than 50 years of age. Results showed that habitat, water quality, and benthic macroinvertebrate metrics improved with age of restored buffer. Habitat scores were driven mostly by instream substrate availability and width and age of riparian buffer zones. Water quality parameters varied within buffer age groups depending age of surrounding forest vegetation. Benthic invertebrate taxa richness, % EPT, % Plecoptera, % Ephemeroptera, and the FBI all improved with age of buffer zone. Instream habitat quality was the greatest driver of benthic macroinvertebrate community diversity and health, and appeared to plateau within 10-15 years of restoration with noticeable improvements occurring within 5-10 years post restoration.

  18. Rapid genetic restoration of a keystone species exhibiting delayed demographic response.

    PubMed

    Cosentino, Bradley J; Schooley, Robert L; Bestelmeyer, Brandon T; McCarthy, Alison J; Sierzega, Kevin

    2015-12-01

    Genetic founder effects are often expected when animals colonize restored habitat in fragmented landscapes, but empirical data on genetic responses to restoration are limited. We examined the genetic response of banner-tailed kangaroo rats (Dipodomys spectabilis) to landscape-scale grassland restoration in the Chihuahuan Desert of New Mexico, USA. Dipodomys spectabilis is a grassland specialist and keystone species. At sites treated with herbicide to remove shrubs, colonization by D. spectabilis is slow and populations persist at low density for ≥10 years (≥6 generations). Persistence at low density and low gene flow may cause strong founder effects. We compared genetic structure of D. spectabilis populations between treated sites and remnant grasslands, and we examined how the genetic response to restoration depended on treatment age, area, and connectivity to source populations. Allelic richness and heterozygosity were similar between treated sites and remnant grasslands. Allelic richness at treated sites was greatest early in the restoration trajectory, and genetic divergence did not differ between recently colonized and established populations. These results indicated that founder effects during colonization of treated sites were weak or absent. Moreover, our results suggested founder effects were not mitigated by treatment area or connectivity. Dispersal is negatively density-dependent in D. spectabilis, and we hypothesize that high gene flow may occur early in the restoration trajectory when density is low. Our study shows genetic diversity can be recovered more rapidly than demographic components of populations after habitat restoration and that founder effects are not inevitable for animals colonizing restored habitat in fragmented landscapes. © 2015 John Wiley & Sons Ltd.

  19. Potential Impacts and Management Implications of Climate Change on Tampa Bay Estuary Critical Coastal Habitats

    NASA Astrophysics Data System (ADS)

    Sherwood, Edward T.; Greening, Holly S.

    2014-02-01

    The Tampa Bay estuary is a unique and valued ecosystem that currently thrives between subtropical and temperate climates along Florida's west-central coast. The watershed is considered urbanized (42 % lands developed); however, a suite of critical coastal habitats still persists. Current management efforts are focused toward restoring the historic balance of these habitat types to a benchmark 1950s period. We have modeled the anticipated changes to a suite of habitats within the Tampa Bay estuary using the sea level affecting marshes model under various sea level rise (SLR) scenarios. Modeled changes to the distribution and coverage of mangrove habitats within the estuary are expected to dominate the overall proportions of future critical coastal habitats. Modeled losses in salt marsh, salt barren, and coastal freshwater wetlands by 2100 will significantly affect the progress achieved in "Restoring the Balance" of these habitat types over recent periods. Future land management and acquisition priorities within the Tampa Bay estuary should consider the impending effects of both continued urbanization within the watershed and climate change. This requires the recognition that: (1) the Tampa Bay estuary is trending towards a mangrove-dominated system; (2) the current management paradigm of "Restoring the Balance" may no longer provide realistic, attainable goals; (3) restoration that creates habitat mosaics will prove more resilient in the future; and (4) establishing subtidal and upslope "refugia" may be a future strategy in this urbanized estuary to allow sensitive habitat types (e.g., seagrass and salt barren) to persist under anticipated climate change and SLR impacts.

  20. Potential impacts and management implications of climate change on Tampa Bay estuary critical coastal habitats.

    PubMed

    Sherwood, Edward T; Greening, Holly S

    2014-02-01

    The Tampa Bay estuary is a unique and valued ecosystem that currently thrives between subtropical and temperate climates along Florida's west-central coast. The watershed is considered urbanized (42 % lands developed); however, a suite of critical coastal habitats still persists. Current management efforts are focused toward restoring the historic balance of these habitat types to a benchmark 1950s period. We have modeled the anticipated changes to a suite of habitats within the Tampa Bay estuary using the sea level affecting marshes model under various sea level rise (SLR) scenarios. Modeled changes to the distribution and coverage of mangrove habitats within the estuary are expected to dominate the overall proportions of future critical coastal habitats. Modeled losses in salt marsh, salt barren, and coastal freshwater wetlands by 2100 will significantly affect the progress achieved in "Restoring the Balance" of these habitat types over recent periods. Future land management and acquisition priorities within the Tampa Bay estuary should consider the impending effects of both continued urbanization within the watershed and climate change. This requires the recognition that: (1) the Tampa Bay estuary is trending towards a mangrove-dominated system; (2) the current management paradigm of "Restoring the Balance" may no longer provide realistic, attainable goals; (3) restoration that creates habitat mosaics will prove more resilient in the future; and (4) establishing subtidal and upslope "refugia" may be a future strategy in this urbanized estuary to allow sensitive habitat types (e.g., seagrass and salt barren) to persist under anticipated climate change and SLR impacts.

  1. Rainwater Wildlife Area Habitat Evaluation Procedures Report; A Columbia Basin Wildlife Mitigation Project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen B.

    vegetation species, allowance of normative processes such as fire occurrence, and facilitating development of natural stable stream channels and associated floodplains. Implementation of habitat enhancement and restoration activities could generate an additional 1,850 habitat units in 10 years. Baseline and estimated future habitat units total 7,035.3 for the Rainwater Wildlife Area. Habitat protection, enhancement and restoration will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program.« less

  2. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek,more » Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a

  3. China's Primary Programs of Terrestrial Ecosystem Restoration: Initiation, Implementation, and Challenges

    NASA Astrophysics Data System (ADS)

    Yin, Runsheng; Yin, Guiping

    2010-03-01

    China has undertaken several major programs of terrestrial ecosystem restoration (ERPs) in recent years, including the Natural Forest Protection Program (NFPP) and the Sloping Land Conversion Program (SLCP). There have been reports on the implementation of these programs, their preliminary impacts, and the problems encountered in carrying them out; a great deal has been learned from these studies. Nonetheless, China’s ERPs are not limited to the NFPP and the SLCP. Because a complete documentation and a timely update of these major efforts are still missing from the literature, it is difficult to gauge the scope of these programs and the scale of their impacts. In addition, a more thorough and critical analysis of both the general ERP policy and the specific technical measures used in implementing the ERPs remains urgently needed. The purpose of this article is to tackle these tasks. Overall, with the huge government investments in the ERPs, tremendous progress has been made in implementing them. To complete them successfully and to fundamentally improve the targeted ecosystems, however, it is essential for China to have a more balanced and comprehensive approach to ecological restoration. This approach must include: adopting better planning and management practices; strengthening the governance of program implementation; emphasizing the active engagement of local people; establishing an independent, competent monitoring network; and conducting adequate assessments of program effectiveness and impact.

  4. Restoring the Great Lakes: DOI stories of success and partnership in implementing the Great Lakes Restoration Initiative

    USGS Publications Warehouse

    ,; ,; ,; ,; ,

    2013-01-01

    The Great Lakes are a monumentally unique national treasure containing nearly ninety-five percent of the United States' fresh surface water. Formed by receding glaciers, the Great Lakes support a thriving, resilient ecosystem rich with fish, wildlife, and abundant natural resources. The Great Lakes also support an array of commercial uses, including shipping, and provide a source of recreation, drinking water, and other critical services that drive the economy of the region and the Nation. Regrettably, activities such as clear cutting of mature forests, over-harvesting of fish populations, industrial pollution, invasive species, and agricultural runoffs have degraded these treasured lakes over the decades creating long-term impacts to the surrounding watershed. Fortunately, the people who live, work, and recreate in the region recognize the critical importance of a healthy Great Lakes ecosystem, and have come together to support comprehensive restoration. To stimulate and promote the goal of a healthy Great Lakes region, President Obama and Congress created the Great Lakes Restoration Initiative (GLRI) in 2009. This program provides the seed money to clean up legacy pollution, restore habitats, protect wildlife, combat invasive species, and address agricultural runoff in the Great Lakes watershed. At the same time GLRI promotes public outreach, education, accountability, and partnerships.

  5. Factors affecting coastal wetland loss and restoration

    USGS Publications Warehouse

    Cahoon, D.R.; Phillips, S.W.

    2007-01-01

    Opening paragraph: Tidal and nontidal wetlands in the Chesapeake Bay watershed provide vital hydrologic, water-quality, and ecological functions. Situated at the interface of land and water, these valuable habitats are vulnerable to alteration and loss by human activities including direct conversion to non-wetland habitat by dredge-and-fill activities from land development, and to the effects of excessive nutrients, altered hydrology and runoff, contaminants, prescribed fire management, and invasive species. Processes such as sea-level rise and climate change also impact wetlands. Although local, State, and Federal regulations provide for protection of wetland resources, the conversion and loss of wetland habitats continue in the Bay watershed. Given the critical values of wetlands, the Chesapeake 2000 Agreement has a goal to achieve a net gain in wetlands by restoring 25,000 acres of tidal and nontidal wetlands by 2010. The USGS has synthesized findings on three topics: (1) sea-level rise and wetland loss, (2) wetland restoration, and (3) factors affecting wetland diversity.

  6. The role of tidal marsh restoration in fish management in the San Francisco Estuary

    USGS Publications Warehouse

    Herbold, Bruce; Baltz, Donald; Brown, Larry R.; Grossinger, Robin; Kimmerer, Wim J.; Lehman, Peggy W.; Moyle, Peter B.; Nobriga, Matthew L.; Simenstad, Charles A.

    2015-01-01

    Tidal marsh restoration is an important management issue in the San Francisco Estuary (estuary). Restoration of large areas of tidal marsh is ongoing or planned in the lower estuary (up to 6,000 ha, Callaway et al. 2011). Large areas are proposed for restoration in the upper estuary under the Endangered Species Act biological opinions (3,237 ha) and the Bay Delta Conservation Plan (26,305 ha). In the lower estuary, tidal marsh has proven its value to a wide array of species that live within it (Palaima 2012). In the Sacramento–San Joaquin Delta (Delta), one important function ascribed to restoration of freshwater tidal marshes is that they make large contributions to the food web of fish in open waters (BDCP 2013). The Ecosystem Restoration Program ascribed a suite of ecological functions to tidal marsh restoration, including habitat and food web benefits to native fish (CDFW 2010). This background was the basis for a symposium, Tidal Marshes and Native Fishes in the Delta: Will Restoration Make a Difference? held at the University of California, Davis, on June 10, 2013. This paper summarizes conclusions the authors drew from the symposium.

  7. RESTORATION PLUS: A COLLABORATIVE ENVIRONMENTAL PROTECTION AGENCY RESEARCH PROGRAM TO DEVELOP AND EVALUATE ECOSYSTEM RESTORATION AND MANAGEMENT OPTIONS TO ACHIEVE ECOLOGICALLY AND ECONOMICALLY SUSTAINABLE SOLUTIONS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) is evaluating ecosystem restoration and management techniques to ensure they create sustainable solutions for degraded watersheds. The ORD/NRMRL initiated the Restoration Plus (RePlus) program in 2002, which emphasizes collabora...

  8. The cost and feasibility of marine coastal restoration.

    PubMed

    Bayraktarov, Elisa; Saunders, Megan I; Abdullah, Sabah; Mills, Morena; Beher, Jutta; Possingham, Hugh P; Mumby, Peter J; Lovelock, Catherine E

    2016-06-01

    Land-use change in the coastal zone has led to worldwide degradation of marine coastal ecosystems and a loss of the goods and services they provide. Restoration is the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed and is critical for habitats where natural recovery is hindered. Uncertainties about restoration cost and feasibility can impede decisions on whether, what, how, where, and how much to restore. Here, we perform a synthesis of 235 studies with 954 observations from restoration or rehabilitation projects of coral reefs, seagrass, mangroves, salt-marshes, and oyster reefs worldwide, and evaluate cost, survival of restored organisms, project duration, area, and techniques applied. Findings showed that while the median and average reported costs for restoration of one hectare of marine coastal habitat were around US$80000 (2010) and US$1600000 (2010), respectively, the real total costs (median) are likely to be two to four times higher. Coral reefs and seagrass were among the most expensive ecosystems to restore. Mangrove restoration projects were typically the largest and the least expensive per hectare. Most marine coastal restoration projects were conducted in Australia, Europe, and USA, while total restoration costs were significantly (up to 30 times) cheaper in countries with developing economies. Community- or volunteer-based marine restoration projects usually have lower costs. Median survival of restored marine and coastal organisms, often assessed only within the first one to two years after restoration, was highest for saltmarshes (64.8%) and coral reefs (64.5%) and lowest for seagrass (38.0%). However, success rates reported in the scientific literature could be biased towards publishing successes rather than failures. The majority of restoration projects were short-lived and seldom reported monitoring costs. Restoration success depended primarily on the ecosystem, site selection, and techniques

  9. NASA Habitat Demonstration Unit (HDU) Deep Space Habitat Analog

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Kennedy, Kriss J.; Gill, Tracy

    2013-01-01

    The NASA Habitat Demonstration Unit (HDU) vertical cylinder habitat was established as a exploration habitat testbed platform for integration and testing of a variety of technologies and subsystems that will be required in a human-occupied planetary surface outpost or Deep Space Habitat (DSH). The HDU functioned as a medium-fidelity habitat prototype from 2010-2012 and allowed teams from all over NASA to collaborate on field analog missions, mission operations tests, and system integration tests to help shake out equipment and provide feedback for technology development cycles and crew training. This paper documents the final 2012 configuration of the HDU, and discusses some of the testing that took place. Though much of the higher-fidelity functionality has 'graduated' into other NASA programs, as of this writing the HDU, renamed Human Exploration Research Analog (HERA), will continue to be available as a volumetric and operational mockup for NASA Human Research Program (HRP) research from 2013 onward.

  10. Using scenario modeling for red spruce restoration planning in West Virginia

    Treesearch

    Melissa A. Thomas-Van Gundy; Brian R. Sturtevant

    2014-01-01

    Active restoration of threatened or endangered species habitat may seem in conflict with the provisions of the Endangered Species Act because of the prohibition of "take," which can include habitat modification as well as death or harm to individuals. Risk-averse managers may choose to forego active management in known or presumed endangered species habitat...

  11. Vegetation community response to tidal marsh restoration of a large river estuary

    USGS Publications Warehouse

    Belleveau, Lisa J.; Takekawa, John Y.; Woo, Isa; Turner, Kelley L.; Barham, Jesse B.; Takekawa, Jean E.; Ellings, Christopher S.; Chin-Leo, Gerardo

    2015-01-01

    Estuaries are biologically productive and diverse ecosystems that provide ecosystem services including protection of inland areas from flooding, filtering freshwater outflows, and providing habitats for fish and wildlife. Alteration of historic habitats, including diking for agriculture, has decreased the function of many estuarine systems, and recent conservation efforts have been directed at restoring these degraded areas to reestablish their natural resource function. The Nisqually Delta in southern Puget Sound is an estuary that has been highly modified by restricting tidal flow, and recent restoration of the delta contributed to one of the largest tidal salt marsh restorations in the Pacific Northwest. We correlated the response of nine major tidal marsh species to salinities at different elevation zones. Our results indicated that wetland species richness was not related to soil pore-water salinity (R2 = 0.03), but were stratified into different elevation zones (R2 = 0.47). Thus, restoration that fosters a wide range of elevations will provide the most diverse plant habitat, and potentially, the greatest resilience to environmental change.

  12. Landscape restoration for greater sage-grouse: implications for multiscale planning and monitoring

    Treesearch

    Michael J. Wisdom; Mary M. Rowland; Miles A. Hemstrom; Barbara C. Wales

    2005-01-01

    Habitats and populations of greater sage-grouse (Centrocercus urophasianus) have declined throughout western North America in response to a myriad of detrimental land uses. Successful restoration of this species' habitat, therefore, is of keen interest to Federal land agencies who oversee management of most remaining habitat. To illustrate the...

  13. Restoring Wyoming big sagebrush

    Treesearch

    Cindy R. Lysne

    2005-01-01

    The widespread occurrence of big sagebrush can be attributed to many adaptive features. Big sagebrush plays an essential role in its communities by providing wildlife habitat, modifying local environmental conditions, and facilitating the reestablishment of native herbs. Currently, however, many sagebrush steppe communities are highly fragmented. As a result, restoring...

  14. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V.

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snakemore » River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach

  15. An Ecohydrological Approach to Riparian Restoration Planning in the American Southwest

    NASA Astrophysics Data System (ADS)

    Leverich, G. T.; Orr, B.; Diggory, Z.; Dudley, T.; Hatten, J.; Hultine, K. R.; Johnson, M. P.; Orr, D.

    2014-12-01

    Riparian systems across the American southwest region are under threat from a growing and intertwined cast of natural and anthropogenic stressors, including flooding, drought, invasion by non-native plants, wildfire, urban encroachment, and land- and water-use practices. In relatively remote and unregulated systems like the upper Gila River in Arizona, riparian habitat value has persisted reasonably well despite much of it being densely infested with non-native tamarisk (salt cedar). A new concern in the watershed, however, is the eventual arrival of the tamarisk leaf beetle that is expected to soon colonize the tamarisk-infested riparian corridor as the beetle continues to spread across the southwest region. While there are numerous potential benefits to tamarisk suppression (e.g., groundwater conservation, riparian habitat recovery, fire-risk reduction), short-term negative consequences are also possible, such as altered channel hydraulics and canopy defoliation during bird nesting season (e.g., the endangered southwestern willow flycatcher). In preparation for anticipated impacts following beetle colonization, we developed a holistic restoration framework to promote recovery of native riparian habitat and subsequent local increases in avian population. Pivotal to this process was an ecohydrological assessment that identified sustainable restoration sites based on consideration of natural and anthropogenic factors that, together, influence restoration opportunities—flood-scour dynamics, vegetation community structure and resilience, surface- and groundwater availability, soil texture and salinity, wildfire potential, and land-use activities. Data collected included high-resolution remote-sensing products, GIS-based delineation of geomorphic activity, and vegetation field mapping. These data along with other information generated, including pre-biocontrol vegetation monitoring and flycatcher-habitat modeling, were synthesized to produce a comprehensive

  16. Incorporating food web dynamics into ecological restoration: A modeling approach for river ecosystems

    USGS Publications Warehouse

    Bellmore, J. Ryan; Benjamin, Joseph R.; Newsom, Michael; Bountry, Jennifer A.; Dombroski, Daniel

    2017-01-01

    Restoration is frequently aimed at the recovery of target species, but also influences the larger food web in which these species participate. Effects of restoration on this broader network of organisms can influence target species both directly and indirectly via changes in energy flow through food webs. To help incorporate these complexities into river restoration planning we constructed a model that links river food web dynamics to in-stream physical habitat and riparian vegetation conditions. We present an application of the model to the Methow River, Washington (USA), a location of on-going restoration aimed at recovering salmon. Three restoration strategies were simulated: riparian vegetation restoration, nutrient augmentation via salmon carcass addition, and side-channel reconnection. We also added populations of nonnative aquatic snails and fish to the modeled food web to explore how changes in food web structure mediate responses to restoration. Simulations suggest that side-channel reconnection may be a better strategy than carcass addition and vegetation planting for improving conditions for salmon in this river segment. However, modeled responses were strongly sensitive to changes in the structure of the food web. The addition of nonnative snails and fish modified pathways of energy through the food web, which negated restoration improvements. This finding illustrates that forecasting responses to restoration may require accounting for the structure of food webs, and that changes in this structure—as might be expected with the spread of invasive species—could compromise restoration outcomes. Unlike habitat-based approaches to restoration assessment that focus on the direct effects of physical habitat conditions on single species of interest, our approach dynamically links the success of target organisms to the success of competitors, predators, and prey. By elucidating the direct and indirect pathways by which restoration affects target species

  17. The effect of an industrial effluent on an urban stream benthic community: water quality vs habitat quality.

    PubMed

    Nedeau, Ethan J; Merritt, Richard W; Kaufman, Michael G

    2003-01-01

    We studied the effect of an industrial effluent on the water quality, habitat quality, and benthic macroinvertebrates of an urban stream in southwestern Michigan (USA). The effluent affected water quality by raising in-stream temperatures 13-18 degree C during colder months and carrying high amounts of iron (> 20 x higher than ambient) that covered the streambed. The effluent also affected habitat conditions by increasing total stream discharge by 50-150%, causing a significant change in substrate and flow conditions. We used three methods to collect benthic macroinvertebrates in depositional and erosional habitats and to understand the relative importance of habitat quality and water quality alterations. Macroinvertebrate response variables included taxonomic richness, abundance, and proportional abundance of sensitive taxonomic groups. Results indicated that the effluent had a positive effect on macroinvertebrate communities by increasing the quantity of riffle habitat, but a negative effect on macroinvertebrate communities by reducing water quality. Results illustrated the need for careful consideration of habitat quality and water quality in restoration or remediation programs.

  18. Spatio-Temporal Process Variability in Watershed Scale Wetland Restoration Planning

    NASA Astrophysics Data System (ADS)

    Evenson, G. R.

    2012-12-01

    Watershed scale restoration decision making processes are increasingly informed by quantitative methodologies providing site-specific restoration recommendations - sometimes referred to as "systematic planning." The more advanced of these methodologies are characterized by a coupling of search algorithms and ecological models to discover restoration plans that optimize environmental outcomes. Yet while these methods have exhibited clear utility as decision support toolsets, they may be critiqued for flawed evaluations of spatio-temporally variable processes fundamental to watershed scale restoration. Hydrologic and non-hydrologic mediated process connectivity along with post-restoration habitat dynamics, for example, are commonly ignored yet known to appreciably affect restoration outcomes. This talk will present a methodology to evaluate such spatio-temporally complex processes in the production of watershed scale wetland restoration plans. Using the Tuscarawas Watershed in Eastern Ohio as a case study, a genetic algorithm will be coupled with the Soil and Water Assessment Tool (SWAT) to reveal optimal wetland restoration plans as measured by their capacity to maximize nutrient reductions. Then, a so-called "graphical" representation of the optimization problem will be implemented in-parallel to promote hydrologic and non-hydrologic mediated connectivity amongst existing wetlands and sites selected for restoration. Further, various search algorithm mechanisms will be discussed as a means of accounting for temporal complexities such as post-restoration habitat dynamics. Finally, generalized patterns of restoration plan optimality will be discussed as an alternative and possibly superior decision support toolset given the complexity and stochastic nature of spatio-temporal process variability.

  19. Implementing watershed investment programs to restore fire-adapted forests for watershed services

    NASA Astrophysics Data System (ADS)

    Springer, A. E.

    2013-12-01

    Payments for ecosystems services and watershed investment programs have created new solutions for restoring upland fire-adapted forests to support downstream surface-water and groundwater uses. Water from upland forests supports not only a significant percentage of the public water supplies in the U.S., but also extensive riparian, aquatic, and groundwater dependent ecosystems. Many rare, endemic, threatened, and endangered species are supported by the surface-water and groundwater generated from the forested uplands. In the Ponderosa pine forests of the Southwestern U.S., post Euro-American settlement forest management practices, coupled with climate change, has significantly impacted watershed functionality by increasing vegetation cover and associated evapotranspiration and decreasing runoff and groundwater recharge. A large Collaborative Forest Landscape Restoration Program project known as the Four Forests Restoration Initiative is developing landscape scale processes to make the forests connected to these watersheds more resilient. However, there are challenges in financing the initial forest treatments and subsequent maintenance treatments while garnering supportive public opinion to forest thinning projects. A solution called the Flagstaff Watershed Protection Project is utilizing City tax dollars collected through a public bond to finance forest treatments. Exit polling from the bond election documented the reasons for the 73 % affirmative vote on the bond measure. These forest treatments have included in their actions restoration of associated ephemeral stream channels and spring ecosystems, but resources still need to be identified for these actions. A statewide strategy for developing additional forest restoration resources outside of the federal financing is being explored by state and local business and governmental leaders. Coordination, synthesis, and modeling supported by a NSF Water Sustainability and Climate project has been instrumental in

  20. 76 FR 9590 - Fisheries and Habitat Conservation and Migratory Birds Programs; Draft Land-Based Wind Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ..., wildlife and their habitats resulting from construction, operation and maintenance of land-based, wind... these draft Guidelines for all wind turbines, including community scale operations. All comments we...] RIN 1018-AX45 Fisheries and Habitat Conservation and Migratory Birds Programs; Draft Land-Based Wind...

  1. Middle Rio Grande Bosque Ecosystem Restoration Feasibility Study Habitat Assessment Using Habitat Evaluation Procedures (HEP): Analyses, Results and Documentation

    DTIC Science & Technology

    2012-08-01

    habitat to a greater number of wildlife species than any other ecological community in the region and serve as a critical travel corridor for many... species , especially migratory birds moving with the change of seasons. Yet although these riparian ecosystems are considered to be the most... habitat for many key wildlife species . Estimates of riparian habitat loss in the South- west range from 40% to 90% (Dahl 1990), and desert riparian

  2. Expanding a community's justice response to sex crimes through advocacy, prosecutorial, and public health collaboration: introducing the RESTORE program.

    PubMed

    Koss, Mary P; Bachar, Karen J; Hopkins, C Quince; Carlson, Carolyn

    2004-12-01

    Problems in criminal justice system response to date-acquaintance rape and nonpenetration sexual offenses include (a) they are markers of a sexual offending career, yet are viewed as minor; (b) perpetrators are not held accountable in ways that reduce reoffense; and (c) criminal justice response disappoints and traumatizes victims. To address these problems, a collaboration of victim services, prosecutors, legal scholars, and public health professionals are implementing and evaluating RESTORE, a victim-driven, community-based restorative justice program for selected sex crimes. RESTORE prepares survivors, responsible persons (offenders), and both parties' families and friends for face-to-face dialogue to identify the harm and develop a redress plan. The program then monitors the offender's compliance for 12 months. The article summarizes empirical data on problems in criminal justice response, defines restorative justice models, and examines outcome. Then the RESTORE program processes and goals are described. The article highlights community collaboration in building and sustaining this program.

  3. Forest restoration at Redwood National Park: a case study of an emerging program

    Treesearch

    Jason R. Teraoka

    2012-01-01

    For more than 30 years, Redwood National Park has been working to establish a Forest Restoration Program to rehabilitate its impaired, second-growth forests. This case study outlines the Park’s history of using silviculture as a restoration tool, which began in 1978 after the Park's expansion. The most recent effort was the 1,700 acre South Fork of Lost Man Creek...

  4. Application of restoration scenarios to basin-scale demographics of coho salmon inferred from pit-tags

    EPA Science Inventory

    Effective habitat restoration planning requires correctly anticipating demographic responses to altered habitats. New applications of Passive Integrated Transponder (PIT) tag technology to fish-habitat research have provided critical insights into fish movement, growth, and surv...

  5. Ecological Monitoring and Compliance Program 2008 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Dennis J.; Anderson, David C.; Hall, Derek B.

    2009-04-30

    The Ecological Monitoring and Compliance Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2008. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring ofmore » the Nonproliferation Test and Evaluation Complex (NPTEC).« less

  6. Active season microhabitat and vegetation selection by giant gartersnakes associated with a restored marsh in California

    USGS Publications Warehouse

    Halstead, Brian J.; Valcarcel, Patricia; Wylie, Glenn D.; Coates, Peter S.; Casazza, Michael L.; Rosenberg, Daniel K.

    2016-01-01

    Studies of habitat selection can reveal important patterns to guide habitat restoration and management for species of conservation concern. Giant gartersnakes Thamnophis gigas are endemic to the Central Valley of California, where >90% of their historical wetland habitat has been converted to agricultural and other uses. Information about the selection of habitats by individual giant gartersnakes would guide habitat restoration by indicating which habitat features and vegetation types are likely to be selected by these rare snakes. We examined activity patterns and selection of microhabitats and vegetation types by adult female giant gartersnakes with radiotelemetry at a site composed of rice agriculture and restored wetlands using a paired case-control study design. Adult female giant gartersnakes were 14.7 (95% credible interval [CRI] = 9.4–23.7) times more likely to be active (foraging, mating, or moving) when located in aquatic habitats than when located in terrestrial habitats. Microhabitats associated with cover—particularly emergent vegetation, terrestrial vegetation, and litter—were positively selected by giant gartersnakes. Individual giant gartersnakes varied greatly in their selection of rice and rock habitats, but varied little in their selection of open water. Tules Schoenoplectus acutus were the most strongly selected vegetation type, and duckweed Lemna spp., water-primrose Ludwigia spp., forbs, and grasses also were positively selected at the levels of availability observed at our study site. Management practices that promote the interface of water with emergent aquatic and herbaceous terrestrial vegetation will likely benefit giant gartersnakes. Given their strong selection of tules, restoration of native tule marshes will likely provide the greatest benefit to these threatened aquatic snakes.

  7. Restoring and Maintaining Riparian Habitat on Private Pastureland

    Treesearch

    Nancy Reichard

    1989-01-01

    Protecting riparian habitat from livestock grazing on private land is a complex task that requires paying attention to sociological and economic as well as physical and biological factors. Six livestock exclusion fencing projects on private property in northwestern California are described. The importance of long term maintenance and the need for landowner incentives...

  8. Small mammal habitat use within restored riparian habitats adjacent to channelized streams in Mississippi

    USDA-ARS?s Scientific Manuscript database

    Riparian zones of channelized agricultural streams in northwestern Mississippi typically consist of narrow vegetative corridors low in habitat diversity and lacking riparian wetlands. Land clearing practices and stream channelization has led to the development of gully erosion and further fragmenta...

  9. Endangered species management and ecosystem restoration: Finding the common ground

    USGS Publications Warehouse

    Casazza, Michael L.; Overton, Cory T.; Bui, Thuy-Vy D.; Hull, Joshua M.; Albertson, Joy D.; Bloom, Valary K.; Bobzien, Steven; McBroom, Jennifer; Latta, Marilyn; Olofson, Peggy; Rohmer, Tobias M.; Schwarzbach, Steven E.; Strong, Donald R.; Grijalva, Erik; Wood, Julian K.; Skalos, Shannon; Takekawa, John Y.

    2016-01-01

    Management actions to protect endangered species and conserve ecosystem function may not always be in precise alignment. Efforts to recover the California Ridgway’s Rail (Rallus obsoletus obsoletus; hereafter, California rail), a federally and state-listed species, and restoration of tidal marsh ecosystems in the San Francisco Bay estuary provide a prime example of habitat restoration that has conflicted with species conservation. On the brink of extinction from habitat loss and degradation, and non-native predators in the 1990s, California rail populations responded positively to introduction of a non-native plant, Atlantic cordgrass (Spartina alterniflora). California rail populations were in substantial decline when the non-native Spartina was initially introduced as part of efforts to recover tidal marshes. Subsequent hybridization with the native Pacific cordgrass (Spartina foliosa) boosted California rail populations by providing greater cover and increased habitat area. The hybrid cordgrass (S. alterniflora × S. foliosa) readily invaded tidal mudflats and channels, and both crowded out native tidal marsh plants and increased sediment accretion in the marsh plain. This resulted in modification of tidal marsh geomorphology, hydrology, productivity, and species composition. Our results show that denser California rail populations occur in invasive Spartina than in native Spartina in San Francisco Bay. Herbicide treatment between 2005 and 2012 removed invasive Spartina from open intertidal mud and preserved foraging habitat for shorebirds. However, removal of invasive Spartina caused substantial decreases in California rail populations. Unknown facets of California rail ecology, undesirable interim stages of tidal marsh restoration, and competing management objectives among stakeholders resulted in management planning for endangered species or ecosystem restoration that favored one goal over the other. We have examined this perceived conflict and propose

  10. An Evidence-Based Evaluation of the Cumulative Effects of Tidal Freshwater and Estuarine Ecosystem Restoration on Endangered Juvenile Salmon in the Columbia River: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenderfer, Heida L.; Johnson, Gary E.; Thom, Ronald M.

    The listing of 13 salmon and steelhead stocks in the Columbia River basin (hereafter collectively referred to as “salmon”) under the Endangered Species Act of 1973, as amended, has stimulated tidal wetland restoration in the lower 235 kilometers of the Columbia River and estuary for juvenile salmon habitat functions. The purpose of the research reported herein was to evaluate the effect on listed salmon of the restoration effort currently being conducted under the auspices of the federal Columbia Estuary Ecosystem Restoration Program (CEERP). Linking changes in the quality and landscape pattern of tidal wetlands in the lower Columbia River andmore » estuary (LCRE) to salmon recovery is a complex problem because of the characteristics of the ecosystem, the salmon, the restoration actions, and available sampling technologies. Therefore, we designed an evidence-based approach to develop, synthesize, and evaluate information to determine early-stage (~10 years) outcomes of the CEERP. We developed an ecosystem conceptual model and from that, a primary hypothesis that habitat restoration activities in the LCRE have a cumulative beneficial effect on juvenile salmon. There are two necessary conditions of the hypothesis: • habitat-based indicators of ecosystem controlling factors, processes, and structures show positive effects from restoration actions, and • fish-based indicators of ecosystem processes and functions show positive effects from restoration actions and habitats undergoing restoration. Our evidence-based approach to evaluate the primary hypothesis incorporated seven lines of evidence, most of which are drawn from the LCRE. The lines of evidence are spatial and temporal synergies, cumulative net ecosystem improvement, estuary-wide meta-analysis, offsite benefits to juvenile salmon, landscape condition evaluation, and evidence-based scoring of global literature. The general methods we used to develop information for the lines of evidence included field

  11. 50 CFR 80.122 - May an agency deduct the costs of generating program income from gross income?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH... SPORT FISH RESTORATION ACTS Program Income § 80.122 May an agency deduct the costs of generating program...-funded habitat-management or facilities-construction project. (2) Cost of publishing research results as...

  12. Lessons Learned from an Industry, Government and University Collaboration to Restore Stream Habitats and Mitigate Effects

    NASA Astrophysics Data System (ADS)

    Jones, Nicholas E.; Scrimgeour, Garry J.; Tonn, William M.

    2017-01-01

    Restoration ecologists conduct both basic and applied research using a diversity of funding and collaborative models. Over the last 17 years we have assessed the effectiveness of a stream compensation project in Canada's north, where an independent university-based research program was a condition of the regulatory approval process. This resulted in a non-traditional university-government-industry partnership. Here we share seven lessons that we learned from our collective experiences with the research partnership and use the Ekati diamond mine as a case study to illustrate and support lessons learned. Our advice includes opinions on the importance of: engaging collaborators early, defining roles and responsibilities, data sharing and standardization, the use of natural streams to set restoration targets, expect setbacks and surprises, treating restoration as an opportunity to experiment, and how to define success. Many of the lessons learned are broadly applicable to those whom embark on research collaborations among industry, universities, and consulting companies within a regulatory framework and may be of particular value to collaborators in early stages of their career.

  13. Restoration of Soldier Spring: an isolated habitat for native Apache trout

    Treesearch

    Jonathan W. Long; B. Mae Burnette; Alvin L. Medina; Joshua L. Parker

    2004-01-01

    Degradation of streams is a threat to the recovery of the Apache trout, an endemic fish of the White Mountains of Arizona. Historic efforts to improve trout habitat in the Southwest relied heavily on placement of in-stream log structures. However, the effects of structural interventions on trout habitat and populations have not been adequately evaluated. We treated an...

  14. Habitat selection by Forster's Terns (Sterna forsteri) at multiple spatial scales in an urbanized estuary: The importance of salt ponds

    USGS Publications Warehouse

    Bluso-Demers, Jill; Ackerman, Joshua T.; Takekawa, John Y.; Peterson, Sarah

    2016-01-01

    The highly urbanized San Francisco Bay Estuary, California, USA, is currently undergoing large-scale habitat restoration, and several thousand hectares of former salt evaporation ponds are being converted to tidal marsh. To identify potential effects of this habitat restoration on breeding waterbirds, habitat selection of radiotagged Forster's Terns (Sterna forsteri) was examined at multiple spatial scales during the pre-breeding and breeding seasons of 2005 and 2006. At each spatial scale, habitat selection ratios were calculated by season, year, and sex. Forster's Terns selected salt pond habitats at most spatial scales and demonstrated the importance of salt ponds for foraging and roosting. Salinity influenced the types of salt pond habitats that were selected. Specifically, Forster's Terns strongly selected lower salinity salt ponds (0.5–30 g/L) and generally avoided higher salinity salt ponds (≥31 g/L). Forster's Terns typically used tidal marsh and managed marsh habitats in proportion to their availability, avoided upland and tidal flat habitats, and strongly avoided open bay habitats. Salt ponds provide important habitat for breeding waterbirds, and restoration efforts to convert former salt ponds to tidal marsh may reduce the availability of preferred breeding and foraging areas.

  15. The Wildlife Habitat Education Program: Moving from Contest Participation to Implementation

    ERIC Educational Resources Information Center

    Allen, Kevin; Elmore, R. Dwayne; Harper, Craig

    2013-01-01

    Do members participating in the Wildlife Habitat Education Program (WHEP) apply knowledge gained by implementing wildlife management practices at the local level? 4-H members who participated in the National WHEP Contest from 2003-2005 and 2007-2011 completed an evaluation at the end of each contest. The evaluation asked participants if they…

  16. Adding Interferometer Restoration and Upgrade: Learning by Doing with the NINE Program

    NASA Astrophysics Data System (ADS)

    Saby, Linnea

    2017-01-01

    During the summer of 2016, participants in the National and International Non-Traditional Exchange (NINE) Program were responsible for the restoration and upgrade of N2I2, an instructional interferometer located on New Mexico Tech's Socorro campus. The NINE program is a National Radio Astronomy Observatory (NRAO) initiative geared towards providing training in project management and other STEM functional areas to underrepresented groups around the world. A description of this restoration project illustrates both the experience of a NINE program participant and, more specifically, how principles of engineering and project management were applied to achieve project objectives.N2I2 was created by a joint NRAO-New Mexico Tech (NMT) team and became operational in 2004. The original instrument comprised two ten-foot dishes which recieved signals that were added using a simple power combiner, and data was interpreted using software on computers located in a nearby control room. The theory of adding interferometry was re-discovered for the design of this unique telescope. N2I2 was built using simple hardware with the intention of allowing interested community members and students from middle school to graduate school to learn about the principles of radio astronomy.Unfortunately, between 2008 and 2016 N2I2 was not used on a regular basis and fell into disrepair. NINE program director Lory Wingate accepted the responsibility of restoring the instrument as an experiential learning opportunity for the Socorro, New Mexico NINE team.During their 9 week assignment, the NINE team created a project plan, replaced and upgraded antenna hardware, developed operation and maintenance manuals, and refurbished the control room. A project plan was created for the addition of a third antenna and that plan was successfully carried out during August and September of 2016.Ultimately, functionality was successfully restored and improved, a maintenance plan was put into place, and community

  17. Restoring complexity: second-growth forests and habitat diversity.

    Treesearch

    Valerie Rapp

    2002-01-01

    Old-growth forests supply many important values, including critical habitat for some wildlife species. These forests are most useful for some wildlife species when they exist in large blocks. But many areas dedicated to old-growth values on federal lands are fragmented by patches of second-growth forests planted after timber harvest. These second-growth forests are...

  18. Pesticide concentrations in frog tissue and wetland habitats in alandscape dominated by agriculture

    USGS Publications Warehouse

    Smalling, Kelly L.; Reeves, Rebecca; Muths, Erin L.; Vandever, Mark W.; Battaglin, William A.; Hladik, Michelle; Pierce, Clay L.

    2015-01-01

    Habitat loss and exposure to pesticides are likely primary factors contributing to amphibian decline in agricultural landscapes. Conservation efforts have attempted to restore wetlands lost through landscape modifications to reduce contaminant loads in surface waters and providing quality habitat to wildlife. The benefits of this increased wetland area, perhaps especially for amphibians, may be negated if habitat quality is insufficient to support persistent populations. We examined the presence of pesticides and nutrients in water and sediment as indicators of habitat quality and assessed the bioaccumulation of pesticides in the tissue of two native amphibian species Pseudacris maculata (chorus frogs) and Lithobates pipiens (leopard frogs) at six wetlands (3 restored and 3 reference) in Iowa, USA. Restored wetlands are positioned on the landscape to receive subsurface tile drainage water while reference wetlands receive water from overland run-off and shallow groundwater sources. Concentrations of the pesticides frequently detected in water and sediment samples were not different between wetland types. The median concentration of atrazine in surface water was 0.2 μg/L. Reproductive abnormalities in leopard frogs have been observed in other studies at these concentrations. Nutrient concentrations were higher in the restored wetlands but lower than concentrations thought lethal to frogs. Complex mixtures of pesticides including up to 8 fungicides, some previously unreported in tissue, were detected with concentrations ranging from 0.08 to 1500 μg/kg wet weight. No significant differences in pesticide concentrations were observed between species, although concentrations tended to be higher in leopard frogs compared to chorus frogs, possibly because of differences in life histories. Our results provide information on habitat quality in restored wetlands that will assist state and federal agencies, landowners, and resource managers in identifying and

  19. Drought offset ecological restoration program-induced increase in vegetation activity in the Beijing-Tianjin Sand Source Region, China.

    PubMed

    Wu, Zhitao; Wu, Jianjun; He, Bin; Liu, Jinghui; Wang, Qianfeng; Zhang, Hong; Liu, Yong

    2014-10-21

    To improve the ecological conditions, the Chinese government adopted six large-scale ecological restoration programs including 'Three-North Shelterbelt Project', "Grain for Green Project" and "Beijing-Tianjin Sand Source Control Project". Meanwhile, these ecologically vulnerable areas have experienced frequent droughts. However, little attention has been paid to the impact of drought on the effectiveness of these programs. Taking Beijing-Tianjin Sand Source Region (BTSSR) as study area, we investigated the role of droughts and ecological restoration program on trends of vegetation activities and to address the question of a possible "drought signal" in assessing effectiveness of ecological restoration program. The results demonstrate the following: (1) Vegetation activity increased in the BTSSR during 2000-2010, with 58.44% of the study area showing an increased NDVI, of which 11.80% had a significant increase at 0.95 confidential level. The decreasing NDVI trends were mainly concentrated in a southwest-to-northeast strip in the study area. (2) Drought was the main driving force for a decreasing trend of vegetation activity in the southwest-to-northeast regions of the BTSSR at the regional and spatial scales. Summer droughts in 2007 and 2009 contributed to the decreasing trend in NDVI. The severe and extreme droughts in summer reduced the NDVI by approximately 13.06% and 23.55%, respectively. (3) The residual analysis result showed that human activities, particularly the ecological restoration programs, have a positive impact on vegetation change. Hence, the decreasing trends in the southwest-to-northeast regions of the BTSSR cannot be explained by the improper ecological restoration program and is partly explained by droughts, especially summer droughts. Therefore, drought offset the ecological restoration program-induced increase in vegetation activity in the BTSSR.

  20. Habitat split and the global decline of amphibians.

    PubMed

    Becker, Carlos Guilherme; Fonseca, Carlos Roberto; Haddad, Célio Fernando Baptista; Batista, Rômulo Fernandes; Prado, Paulo Inácio

    2007-12-14

    The worldwide decline in amphibians has been attributed to several causes, especially habitat loss and disease. We identified a further factor, namely "habitat split"-defined as human-induced disconnection between habitats used by different life history stages of a species-which forces forest-associated amphibians with aquatic larvae to make risky breeding migrations between suitable aquatic and terrestrial habitats. In the Brazilian Atlantic Forest, we found that habitat split negatively affects the richness of species with aquatic larvae but not the richness of species with terrestrial development (the latter can complete their life cycle inside forest remnants). This mechanism helps to explain why species with aquatic larvae have the highest incidence of population decline. These findings reinforce the need for the conservation and restoration of riparian vegetation.

  1. Oak restoration trials: Santa Catalina Island

    Treesearch

    Lisa Stratton

    2002-01-01

    Two restoration trials involving four oak species have been implemented as part of a larger restoration program for Catalina Island. In 1997 the Catalina Island Conservancy began an active program of restoration after 50 years of ranching and farming activities on the island. The restoration program includes removing feral goats and pigs island-wide and converting 80...

  2. Restoring Coastal Plants to Improve Global Carbon Storage: Reaping What We Sow

    PubMed Central

    Irving, Andrew D.; Connell, Sean D.; Russell, Bayden D.

    2011-01-01

    Long-term carbon capture and storage (CCS) is currently considered a viable strategy for mitigating rising levels of atmospheric CO2 and associated impacts of global climate change. Until recently, the significant below-ground CCS capacity of coastal vegetation such as seagrasses, salt marshes, and mangroves has largely gone unrecognized in models of global carbon transfer. However, this reservoir of natural, free, and sustainable carbon storage potential is increasingly jeopardized by alarming trends in coastal habitat loss, totalling 30–50% of global abundance over the last century alone. Human intervention to restore lost habitats is a potentially powerful solution to improve natural rates of global CCS, but data suggest this approach is unlikely to substantially improve long-term CCS unless current restoration efforts are increased to an industrial scale. Failure to do so raises the question of whether resources currently used for expensive and time-consuming restoration projects would be more wisely invested in arresting further habitat loss and encouraging natural recovery. PMID:21479244

  3. Fishery resource utilization of a restored estuarine borrow pit: a beneficial use of dredged material case study.

    PubMed

    Reine, Kevin; Clarke, Douglas; Ray, Gary; Dickerson, Charles

    2013-08-15

    Numerous pits in coastal waters are subject to degraded water quality and benthic habitat conditions, resulting in degraded fish habitat. A pit in Barnegat Bay, New Jersey (USA) was partially filled with dredged sediment to increase flushing, alleviate hypoxia, and enhance benthic assemblages. Restoration objectives were assessed in terms of benthic community parameters and fishery resource occupation. Restoration resulted in increased benthic diversity (bottom samples) and the absence of water column stratification. Fisheries resources occupied the entire water column, unlike pre-restoration conditions where finfish tended to avoid the lower water column. The partial restoration option effectively reproduced an existing borrow pit configuration (Hole #5, control), by decreasing total depth from -11 m to -5.5 m, thereby creating a habitat less susceptible to hypoxic/anoxic conditions, while retaining sufficient vertical relief to maintain associations with juvenile weakfish and other forage fishes. Partially filling pits using dredged material represents a viable restoration alternative. Published by Elsevier Ltd.

  4. PROFILE: Integrated Management to Create New Breeding Habitat for Dalmatian Pelicans (Pelecanus crispus) in Greece

    PubMed

    Pyrovetsi

    1997-09-01

    / An integrated management plan to create favorable nesting habitat for the world-endangered Dalmatian pelicans, was tested at Kerkini irrigation reservoir, a Ramsar wetland. The lake is the major wintering site of Dalmatian pelicans in Europe, where the species lives year-round without breeding. The rise of water level at the reservoir during spring (exceeding 5 m) has an impact on the whole system, including several birds, which lose their nesting habitat. Although the integrity of the wetland demands ecological restoration with changes in its hydrologic regime, local socioeconomic conditions allow only habitat level interventions. During the planning phase of the management plan, both the ecological and social context of the interventions were considered. Monitoring of all pelican habitats and populations provided the scientific basis, while a socioecological survey on knowledge/attitudes of local fishermen toward wetland identified conflicts with specific resources and planned management. To gain public support, a broad information/education program was implemented. The education program for fishermen was based on the findings of the socioecological survey. The in situ management involved experimental construction of floating rafts, platforms over water, dredged-spoil islands, and platforms at various sites of the wetland. Monitoring of the managed habitats showed that most waterbirds used them for resting and roosting. Common terns nested on the rafts, cormorants on the platforms, and Dalmatian pelicans on the man-made island. Under the prevailing hydrologic and weather conditions, islands seem to be the most suitable habitat for pelican nesting. It is concluded that wildlife habitat management should integrate the ecological component, related to the needs of the species and ecosystem, with the social one, expressed by cooperation and involvement of the local community.KEY WORDS: Integrated management; Pelican; Nesting habitat; Habitat management; Reservoir

  5. Geomorphic mapping to support river restoration on the Trinity River downstream from Lewiston Dam, California, 1980-2011

    USGS Publications Warehouse

    Curtis, Jennifer A.; Guerrero, Timothy M.

    2015-01-01

    Historic land use, dam construction, water storage, and flow diversions in the Trinity River watershed have resulted in downstream geomorphic change, loss of salmonid habitat, and declines in salmonid populations. The USGS in cooperation with the Trinity River Restoration Program, a multi-agency partnership tasked with implementing federally mandated restoration, completed a geomorphic change assessment to inform the planning process for future restoration work. This report documents an ARCMAP geodatabase (v.10.0) containing geomorphic features digitized from a series of rectified orthophotographs (http://dx.doi.org/10.5066/F7TT4P04). Upland, riparian, and channel features were digitized from six available base images (1980, 1997, 2001, 2006, 2009, and 2011). This report describes the structure of the geodatabase and the methods used to delineate individual geomorphic features.

  6. Riparian soil seed banks and the potential for passive restoration of giant reed infested areas in Webb County, Texas

    USDA-ARS?s Scientific Manuscript database

    Habitat restoration projects can use seed bank information as early warning systems of patterns or degrees of habitat degradation; as changes in above ground vegetation directly impact below ground seed distribution. In multiple strategy restoration efforts, seed bank quality can be used as a decidi...

  7. The ROC program: accelerated restoration of competency in a jail setting.

    PubMed

    Rice, Kevin; Jennings, Jerry L

    2014-01-01

    In 29 months of operation, the restoration of competency (ROC) program provided treatment services to 192 incompetent to stand trial patients in a jail setting. The ROC restored competency for 55% of the patients in an average of 57 days compared to the state hospital average of 180 days. The average cost of treatment/restoration per admission was $15,568 compared to the state hospital average of $81,000. The ROC model accelerates needed treatment for mentally ill defendants, cuts demand for costly state hospital forensic beds, and assists jails in better managing inmates with severe psychiatric disorders--yielding major cost savings and improved care. In addition to preventing readmissions and negative behavioral episodes, the ROC improved the broader forensic system by eliminating the state hospital waiting list, accelerating access to psychiatric services, promoting local access for lawyers and family, and gaining stakeholder satisfaction.

  8. The effect of urban growth on landscape-scale restoration for a fire-dependent songbird

    USGS Publications Warehouse

    Pickens, Bradley A.; Marcus, Jeffrey F.; Carpenter, John P.; Anderson, Scott; Taillie, Paul J.; Collazo, Jaime A.

    2017-01-01

    A landscape-scale perspective on restoration ecology has been advocated, but few studies have informed restoration with landscape metrics or addressed broad-scale threats. Threats such as urban growth may affect restoration effectiveness in a landscape context. Here, we studied longleaf pine savanna in the rapidly urbanizing southeastern United States where a habitat-specialist bird, Bachman's sparrow (Peucaea aestivalis), is closely associated with savanna vegetation structure and frequent fire. Our objectives were to construct a species distribution model for Bachman's sparrow, determine the relationship between fire and urbanization, quantify the urban growth effect (2010–2090), identify potential restoration areas, and determine the interaction between restoration potential and urban growth by 2050. Number of patches, patch size, and isolation metrics were used to evaluate scenarios. The species distribution model was 88% accurate and emphasized multiscale canopy cover characteristics, fire, and percent habitat. Fires were less common <600 m from urban areas, and this fire suppression effect exacerbated urban growth effects. For restoration scenarios, canopy cover reduction by 30% resulted in nearly double the amount of habitat compared to the prescribed fire scenario; canopy cover reduction resulted in larger patch sizes and less patch isolation compared to current conditions. The effect of urban growth on restoration scenarios was unequal. Seventy-four percent of restoration areas from the prescribed fire scenario overlapped with projected urban growth, whereas the canopy cover reduction scenario only overlapped by 9%. We emphasize the benefits of simultaneously considering the effects of urban growth and landscape-scale restoration potential to promote a landscape with greater patch sizes and less isolation.

  9. EPA Awards Restore America's Estuaries with nearly $4 million to manage Southeast New England grant program

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency today announced a major grant to Restore America’s Estuaries under the Southeast New England Program (SNEP) of $3,945,172. With this grant, Restore America’s Estuaries will manage a competitive sub-award gr

  10. Soil microbial community restoration in conservation reserve program semi-arid grasslands

    USDA-ARS?s Scientific Manuscript database

    The Conservation Reserve Program (CRP) in the Southern High Plains (SHP) is known to play a crucial role in maintaining ecosystem health by reducing soil erosion. However, the restoration of its soil biological health (biological community and its function) over time have not been clearly elucidated...

  11. Defining and Identifying Functional Habitat to Inform Species Recovery on a Large Regulated River

    NASA Astrophysics Data System (ADS)

    Erwin, S.; Jacobson, R. B.; Elliott, C. M.; Gemeinhardt, T.; Welker, T.; DeLonay, A. J.; Chojnacki, K.

    2014-12-01

    Goals and objectives for the restoration of aquatic ecosystems often focus on species recovery, but often the primary tools available to managers involve the manipulation of flow regime and physical habitat. Management decisions thus rely on hypotheses about the links between management actions, the response of physical habitat, and the assumed response of a target organism. Ongoing efforts to inform management of the Missouri River as part of Missouri River Restoration Project are focused on the recovery of three endangered species, including the pallid sturgeon (Scaphirhynchus albus), which is endemic to the Mississippi River basin. Recovery of the pallid sturgeon is hampered by uncertainties surrounding the definition and dynamics of ecologically significant habitats for the fish across a range of life stages. Of special interest are constructed side-channel chutes. Construction of these features has emerged as one of the primary restoration techniques used on the Lower Missouri River, yet much remains to be learned about the effectiveness of these chutes in the effort to recover pallid sturgeon. It remains unclear whether these constructed features provide habitat that may be beneficial to the species and for which life stages. Biologists hypothesize that these areas may be critical for larval retention, refugia, food production, foraging, or spawning. We present the integration of a suite of data - high-resolution hydroacoustic data, hydrodynamic modeling, biotic inventories, and laboratory experiments - designed to refine our understanding of habitat dynamics critical during the early life stages of the pallid sturgeon. We present our findings in the context of ongoing restoration activities in the basin and describe how fundamental science exploring habitat dynamics may be incorporated within the existing adaptive management framework.

  12. Habitat acquisition strategies for grassland birds in an urbanizing landscape

    Treesearch

    Stephanie A. Snyder; James R. Miller; Adam M. Skibbe; Robert G. Haight

    2007-01-01

    Habitat protection for grassland birds is an important component of open space land acquisition in suburban Chicago. We use optimization decision models to develop recommendations for land protection and analyze tradeoffs between alternative goals. One goal is to acquire (and restore if necessary) as much grassland habitat as possible for a given budget. Because a...

  13. Progress toward lake trout restoration in Lake Michigan

    USGS Publications Warehouse

    Holey, Mark E.; Rybicki, Ronald W.; Eck, Gary W.; Brown, Edward H.; Marsden, J. Ellen; Lavis, Dennis S.; Toneys, Michael L.; Trudeau, Tom N.; Horrall, Ross M.

    1995-01-01

    Progress toward lake trout restoration in Lake Michigan is described through 1993. Extinction of the native lake trout fishery by sea lamprey predation, augmented by exploitation and habitat destruction, resulted in an extensive stocking program of hatchery-reared lake trout that began in 1965. Sea lamprey abundance was effectively controlled using selective chemical toxicants. The initial stocking produced a measurable wild year class of lake trout by 1976 in Grand Traverse Bay, but failed to continue probably due to excessive exploitation. The overall lack of successful reproduction lakewide by the late 1970s led to the development and implementation in 1985 of a focused inter-agency lakewide restoration plan by a technical committee created through the Lake Committee structure of the Great Lakes Fishery Commission. Strategies implemented in 1985 by the plan included setting a 40% total mortality goal lakewide, creating two large refuges designed to encompass historically the most productive spawning habitat and protect trout stocked over their home range, evaluating several lake trout strains, and setting stocking priorities throughout the lake. Target levels for stocking in the 1985 Plan have never been reached, and are much less than the estimated lakewide recruitment of yearlings by the native lake trout stocks. Since 1985, over 90% of the available lake trout have been stocked over the best spawning habitat, and colonization of the historically productive offshore reefs has occurred. Concentrations of spawning lake trout large enough for successful reproduction, based on observations of successful hatchery and wild stocks, have developed at specific reefs. Continued lack of recruitment at these specific sites suggests that something other than stotk abundance has limited success. Poor survival of lake trout eggs, assumed to be related to contaminant burden, occurred in the late 1970s and early 1980s, but survival has since increased to equal survival in the

  14. Comparison of bird community indices for riparian restoration planning and monitoring

    USGS Publications Warehouse

    Young, Jock S.; Ammon, Elisabeth M.; Weisburg, Peter J.; Dilts, Thomas E.; Newton, Wesley E.; Wong-Kone, Diane C.; Heki, Lisa G.

    2013-01-01

    The use of a bird community index that characterizes ecosystem integrity is very attractive to conservation planners and habitat managers, particularly in the absence of any single focal species. In riparian areas of the western USA, several attempts at arriving at a community index signifying a functioning riparian bird community have been made previously, mostly resorting to expert opinions or national conservation rankings for species weights. Because extensive local and regional bird monitoring data were available for Nevada, we were able to develop three different indices that were derived empirically, rather than from expert opinion. We formally examined the use of three species weighting schemes in comparison with simple species richness, using different definitions of riparian species assemblage size, for the purpose of predicting community response to changes in vegetation structure from riparian restoration. For the three indices, species were weighted according to the following criteria: (1) the degree of riparian habitat specialization based on regional data, (2) the relative conservation ranking of landbird species, and (3) the degree to which a species is under-represented compared to the regional species pool for riparian areas. To evaluate the usefulness of these indices for habitat restoration planning and monitoring, we modeled them using habitat variables that are expected to respond to riparian restoration efforts, using data from 64 sampling sites in the Walker River Basin in Nevada and California. We found that none of the species-weighting schemes performed any better as an index for evaluating overall habitat condition than using species richness alone as a community index. Based on our findings, the use of a fairly complete list of 30–35 riparian specialists appears to be the best indicator group for predicting the response of bird communities to the restoration of riparian vegetation.

  15. Installation Restoration Program. Confirmation/Quantification Stage 1. Phase 2

    DTIC Science & Technology

    1985-03-07

    INSTALLATION RESTORATION PROGRAM i0 PHASE II - CONFIRMATION/QUANTIFICATION 0STAGE 1 KIRTLAND AFB KIRTLAND AFB, NEW MEXICO 87117 IIl PREPARED BY SCIENCE...APPLICATIONS INTERNATIONAL CORPORATION 505 MARQUETTE NW, SUITE 1200 ALBUQUERQUE, NEW MEXICO 871021 5MARCH 1985 FINAL REPORT FROM FEB 1983 TO MAR 1985...QUANTIFICATION STAGE 1 i FINAL REPORT FOR IKIRTLAND AFB KIRTLAND AFB, NEW MEXICO 87117U HEADQUARTERS MILITARY AIRLIFT COMMAND COMMAND SURGEON’S OFFICE (HQ MAC

  16. A geospatial modelling approach to predict seagrass habitat recovery under multiple stressor regimes

    EPA Science Inventory

    Restoration of estuarine seagrass habitats requires a clear understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We have developed and demonstrated a geospatial modeling a...

  17. Nutrient Removal through Oyster Habitat Restoration in the Indian River Lagoon, Florida

    NASA Astrophysics Data System (ADS)

    Gallagher, S. M.; Schmidt, C. A.; Walters, L.; Blank, R.

    2017-12-01

    In 2016, an algae bloom in the Indian River Lagoon (IRL) caused a state of emergency in Florida. As with many estuaries, nutrient loading in the IRL has led to periodic eutrophication. While previous studies have shown oyster bed restoration reduces suspended organic matter in estuaries, similar reductions to net nutrient loads are not well established. In addition, previous studies have focused on seasonal variation rather than ongoing yearly effects. Here, we determine the net nitrogen and phosphorus effects of oyster restoration in the IRL over seven years. Analysis of aerial images from 1943 and 2009 showed 14.7 ha of oyster beds were destroyed by boat traffic in the IRL (40% loss). According to our measurements of restored oyster bed sediment, this equates to a maximum of 1,580,000 kg•N•yr-1 of lost denitrification potential; this is equivalent to 150% of estimated current nitrogen loading in the IRL. Oyster restoration began in the IRL in 2007 and has recovered 7.7% of the lost beds and denitrification potential (1.13 ha and 107,000 kg•N•yr-1•ha-1). In all cases, denitrification reached a maximum within two years and remained significantly higher than open sediment for at least the seven years observed. Denitrification benefits came at the cost of mobilizing a maximum of 3450 kg ha-1 of recalcitrant phosphorus from restored bed sediment. This effect was limited to the two years following restoration, whereas increased denitrification was ongoing. Overall, our results show oyster restoration achieved maximum denitrification within two years and maintained significant denitrification benefits for at least seven years. In addition, our results are useful for future oyster restoration projects since they quantify nitrogen benefits in terms of phosphorus mobilization.

  18. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  19. 77 FR 41147 - Endangered and Threatened Wildlife and Plants; Designation of Revised Critical Habitat for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... segments and associated flycatcher habitat are anticipated to support the strategy, rationale, and science... strategy, rationale, and science of flycatcher conservation in order to meet territory and habitat-related... costs associated with monitoring and education activities, fencing, habitat restoration and creation...

  20. Decision analysis for habitat conservation of an endangered, range-limited salamander

    USGS Publications Warehouse

    Robinson, Orin J.; McGowan, Conor P.; Apodaca, J.J.

    2016-01-01

    Many species of conservation concern are habitat limited and often a major focus of management for these species is habitat acquisition and/or restoration. Deciding the location of habitat restoration or acquisition to best benefit a protected species can be a complicated subject with competing management objectives, ecological uncertainties and stochasticity. Structured decision making (SDM) could be a useful approach for explicitly incorporating those complexities while still working toward species conservation and/or recovery. We applied an SDM approach to Red Hills salamander Phaeognathus hubrichti habitat conservation decision making. Phaeognathus hubrichti is a severely range-limited endemic species in south central Alabama and has highly specific habitat requirements. Many known populations live on private lands and the primary mode of habitat protection is habitat conservation planning, but such plans are non-binding and not permanent. Working with stakeholders, we developed an objectives hierarchy linking land acquisition or protection actions to fundamental objectives. We built a model to assess and compare the quality of the habitat in the known range of P. hubrichti. Our model evaluated key habitat attributes of 5814 pixels of 1 km2 each and ranked the pixels from best to worst with respect to P. hubrichti habitat requirements. Our results are a spatially explicit valuation of each pixel, with respect to its probable benefit to P. hubrichti populations. The results of this effort will be used to rank pixels from most to least beneficial, then identify land owners in the most useful areas for salamanders who are willing to sell or enter into a permanent easement agreement.

  1. Reptile and amphibian responses to restoration of fire-maintained pine woodlands

    Treesearch

    Roger W Perry; D. Craig Rudolph; Ronald E. Thill

    2009-01-01

    Fire-maintained woodlands and savannas are important ecosystems for vertebrates in many regions of the world. These ecosystems are being restored by forest managers, but little information exists on herpetofaunal responses to this restoration in areas dominated by shortleaf pine (Pinus echinata). We compared habitat characteristics and...

  2. Male Kirtland's Warblers' patch-level response to landscape structure during periods of varying population size and habitat amounts

    USGS Publications Warehouse

    Donner, D.M.; Ribic, C.A.; Probst, J.R.

    2009-01-01

    Forest planners must evaluate how spatiotemporal changes in habitat amount and configuration across the landscape as a result of timber management will affect species' persistence. However, there are few long-term programs available for evaluation. We investigated the response of male Kirtland's Warbler (Dendroica kirtlandii) to 26 years of changing patch and landscape structure during a large, 26-year forestry-habitat restoration program within the warbler's primary breeding range. We found that the average density of male Kirtland's Warblers was related to a different combination of patch and landscape attributes depending on the species' regional population level and habitat amounts on the landscape (early succession jack pine (Pinus banksiana) forests; 15-42% habitat cover). Specifically, patch age and habitat regeneration type were important at low male population and total habitat amounts, while patch age and distance to an occupied patch were important at relatively high population and habitat amounts. Patch age and size were more important at increasing population levels and an intermediate amount of habitat. The importance of patch age to average male density during all periods reflects the temporal buildup and decline of male numbers as habitat suitability within the patch changed with succession. Habitat selection (i.e., preference for wildfire-regenerated habitat) and availability may explain the importance of habitat type and patch size during lower population and habitat levels. The relationship between male density and distance when there was the most habitat on the landscape and the male population was large and still increasing may be explained by the widening spatial dispersion of the increasing male population at the regional scale. Because creating or preserving habitat is not a random process, management efforts would benefit from more investigations of managed population responses to changes in spatial structure that occur through habitat gain

  3. Long-term outcomes of forest restoration in an urban park

    Treesearch

    Brady L. Simmons; Richard A. Hallett; Nancy Falxa Sonti; D. S. N. Auyeung; Jacqueline W. T. Lu

    2016-01-01

    Creating, restoring, and sustaining forests in urban areas are complicated by habitat fragmentation, invasive species, and degraded soils. Although there is some research on the outcomes of urban reforestation plantings during the first 5 years, there is little research on longer term outcomes. Here, we compare the successional trajectories of restored and unrestored...

  4. Pesticide concentrations in frog tissue and wetland habitats in a landscape dominated by agriculture.

    PubMed

    Smalling, Kelly L; Reeves, Rebecca; Muths, Erin; Vandever, Mark; Battaglin, William A; Hladik, Michelle L; Pierce, Clay L

    2015-01-01

    Habitat loss and exposure to pesticides are likely primary factors contributing to amphibian decline in agricultural landscapes. Conservation efforts have attempted to restore wetlands lost through landscape modifications to reduce contaminant loads in surface waters and providing quality habitat to wildlife. The benefits of this increased wetland area, perhaps especially for amphibians, may be negated if habitat quality is insufficient to support persistent populations. We examined the presence of pesticides and nutrients in water and sediment as indicators of habitat quality and assessed the bioaccumulation of pesticides in the tissue of two native amphibian species Pseudacris maculata (chorus frogs) and Lithobates pipiens (leopard frogs) at six wetlands (3 restored and 3 reference) in Iowa, USA. Restored wetlands are positioned on the landscape to receive subsurface tile drainage water while reference wetlands receive water from overland run-off and shallow groundwater sources. Concentrations of the pesticides frequently detected in water and sediment samples were not different between wetland types. The median concentration of atrazine in surface water was 0.2 μg/L. Reproductive abnormalities in leopard frogs have been observed in other studies at these concentrations. Nutrient concentrations were higher in the restored wetlands but lower than concentrations thought lethal to frogs. Complex mixtures of pesticides including up to 8 fungicides, some previously unreported in tissue, were detected with concentrations ranging from 0.08 to 1,500 μg/kg wet weight. No significant differences in pesticide concentrations were observed between species, although concentrations tended to be higher in leopard frogs compared to chorus frogs, possibly because of differences in life histories. Our results provide information on habitat quality in restored wetlands that will assist state and federal agencies, landowners, and resource managers in identifying and implementing

  5. The Morphology of Streams Restored for Market and Nonmarket Purposes: Insights From a Mixed Natural-Social Science Approach

    NASA Astrophysics Data System (ADS)

    Singh, J.; Doyle, M.; Lave, R.; Robertson, M.

    2015-12-01

    Stream restoration is increasingly driven by compensatory mitigation; impacts to streams associated with typical land development activities must be offset via restoration of streams elsewhere. This policy creates an environment where restored stream 'credits' are traded under market-like conditions, comparable to wetland mitigation, carbon offsets, or endangered species habitat banking. The effect of mitigation on restoration design and construction is unknown. We use geomorphic surveys to quantify the differences between restored and nonrestored streams, and the difference between streams restored for market purposes (compensatory mitigation) from those restored for nonmarket programs. Physical study sites are located in the state of North Carolina, USA. We also analyze the social and political-economic drivers of the stream restoration and mitigation industry using analysis of policy documents and interviews with key personnel including regulators, mitigation bankers, stream designers, and scientists. Restored streams are typically wider, shallower and geomorphically more homogeneous than nonrestored streams. For example, nonrestored streams are typically characterized by more than an order of magnitude variability in radius of curvature and meander wavelength within a single study reach. By contrast, the radius of curvature in many restored streams does not vary for nearly the entire project reach. Streams restored for the mitigation market are typically headwater streams and part of a large, complex of long restored main channels, and many restored tributaries; streams restored for nonmarket purposes are typically shorter and consist of the main channel only. Interviews reveal that social forces shape the morphology of restored streams. Designers integrate many influences including economic and regulatory constraints, but traditions of practice have a large influence as well. Home to a fairly mature stream mitigation banking market, North Carolina can provide

  6. Hydrologic modeling as a predictive basis for ecological restoration of salt marshes

    USGS Publications Warehouse

    Roman, C.T.; Garvine, R.W.; Portnoy, J.W.

    1995-01-01

    Roads, bridges, causeways, impoundments, and dikes in the coastal zone often restrict tidal flow to salt marsh ecosystems. A dike with tide control structures, located at the mouth of the Herring River salt marsh estuarine system (Wellfleet, Massachusetts) since 1908, has effectively restricted tidal exchange, causing changes in marsh vegetation composition, degraded water quality, and reduced abundance of fish and macroinvertebrate communities. Restoration of this estuary by reintroduction of tidal exchange is a feasible management alternative. However, restoration efforts must proceed with caution as residential dwellings and a golf course are located immediately adjacent to and in places within the tidal wetland. A numerical model was developed to predict tide height levels for numerous alternative openings through the Herring River dike. Given these model predictions and knowledge of elevations of flood-prone areas, it becomes possible to make responsible decisions regarding restoration. Moreover, tidal flooding elevations relative to the wetland surface must be known to predict optimum conditions for ecological recovery. The tide height model has a universal role, as demonstrated by successful application at a nearby salt marsh restoration site in Provincetown, Massachusetts. Salt marsh restoration is a valuable management tool toward maintaining and enhancing coastal zone habitat diversity. The tide height model presented in this paper will enable both scientists and resource professionals to assign a degree of predictability when designing salt marsh restoration programs.

  7. Oak conservation and restoration on private forestlands: negotiating a social-ecological landscape.

    PubMed

    Knoot, Tricia G; Schulte, Lisa A; Rickenbach, Mark

    2010-01-01

    In the midwestern United States, oak (Quercus spp.) forests are considered critical habitat for conserving biodiversity and are a declining resource. Ecological conditions, such as deer herbivory and competition from more mesic broad-leaved deciduous species, have been linked to poor oak regeneration. In the Midwest, where up to 90% of forestland is privately owned, a greater understanding of social dimensions of oak regeneration success is especially critical to designing effective restoration strategies. We sought to determine factors that serve as direct and indirect constraints to oak restoration and identify policy mechanisms that could improve the likelihood for restoration success. We conducted in-depth qualitative interviews with 32 natural resource professionals working in the Midwest Driftless Area. We found that most professionals anticipate that oak will remain only a component of the future forest. Furthermore, they identified the general unwillingness of landowners to adopt oak restoration practices as a primary driving force of regional forest change. The professionals pointed to interdependent ecological and social factors, occurring at various scales (e.g., economic cost of management, deer herbivory, and exurban residential development) as influencing landowner oak restoration decisions. Professionals emphasized the importance of government cost-share programs and long-term personal relationships to securing landowner acceptance of oak restoration practices. However, given finite societal resources, ecologically- and socially-targeted approaches were viewed as potential ways to optimize regional success.

  8. Oak Conservation and Restoration on Private Forestlands: Negotiating a Social-Ecological Landscape

    NASA Astrophysics Data System (ADS)

    Knoot, Tricia G.; Schulte, Lisa A.; Rickenbach, Mark

    2010-01-01

    In the midwestern United States, oak ( Quercus spp.) forests are considered critical habitat for conserving biodiversity and are a declining resource. Ecological conditions, such as deer herbivory and competition from more mesic broad-leaved deciduous species, have been linked to poor oak regeneration. In the Midwest, where up to 90% of forestland is privately owned, a greater understanding of social dimensions of oak regeneration success is especially critical to designing effective restoration strategies. We sought to determine factors that serve as direct and indirect constraints to oak restoration and identify policy mechanisms that could improve the likelihood for restoration success. We conducted in-depth qualitative interviews with 32 natural resource professionals working in the Midwest Driftless Area. We found that most professionals anticipate that oak will remain only a component of the future forest. Furthermore, they identified the general unwillingness of landowners to adopt oak restoration practices as a primary driving force of regional forest change. The professionals pointed to interdependent ecological and social factors, occurring at various scales (e.g., economic cost of management, deer herbivory, and exurban residential development) as influencing landowner oak restoration decisions. Professionals emphasized the importance of government cost-share programs and long-term personal relationships to securing landowner acceptance of oak restoration practices. However, given finite societal resources, ecologically- and socially-targeted approaches were viewed as potential ways to optimize regional success.

  9. Habitat degradation may affect niche segregation patterns in lizards

    NASA Astrophysics Data System (ADS)

    Pelegrin, N.; Chani, J. M.; Echevarria, A. L.; Bucher, E. H.

    2013-08-01

    Lizards partition resources in three main niche dimensions: time, space and food. Activity time and microhabitat use are strongly influenced by thermal environment, and may differ between species according to thermal requirements and tolerance. As thermal characteristics are influenced by habitat structure, microhabitat use and activity of lizards can change in disturbed habitats. We compared activity and microhabitat use of two abundant lizard species of the Semi-arid Chaco of Argentina between a restored and a highly degraded Chaco forest, to determine how habitat degradation affects lizard segregation in time and space, hypothesizing that as activity and microhabitat use of lizards are related to habitat structure, activity and microhabitat use of individual species can be altered in degraded habitats, thus changing segregation patterns between them. Activity changed from an overlapped pattern in a restored forest to a segregated pattern in a degraded forest. A similar trend was observed for microhabitat use, although to a less extent. No correlation was found between air temperature and lizard activity, but lizard activity varied along the day and among sites. Contrary to what was believed, activity patterns of neotropical diurnal lizards are not fixed, but affected by multiple factors related to habitat structure and possibly to interspecific interactions. Changes in activity patterns and microhabitat use in degraded forests may have important implications when analyzing the effects of climate change on lizard species, due to synergistic effects.

  10. Variability and convergence in benthic communities in created salt marshes transitioning into mangrove habitats

    EPA Science Inventory

    Wetland creation, enhancement, and restoration activities are commonly implemented to compensate for wetland loss or degradation in coastal ecosystems. Although assessments of structural condition are commonly used to monitor habitat restoration effectiveness, functional equivale...

  11. Ecological Responses to Trout Habitat Rehabilitation in a Northern Michigan Stream

    NASA Astrophysics Data System (ADS)

    Rosi-Marshall, Emma J.; Moerke, Ashley H.; Lamberti, Gary A.

    2006-07-01

    Monitoring of stream restoration projects is often limited and success often focuses on a single taxon (e.g., salmonids), even though other aspects of stream structure and function may also respond to restoration activities. The Ottawa National Forest (ONF), Michigan, conducted a site-specific trout habitat improvement to enhance the trout fishery in Cook’s Run, a 3rd-order stream that the ONF determined was negatively affected by past logging. Our objectives were to determine if the habitat improvement increased trout abundances and enhanced other ecological variables (overall habitat quality, organic matter retention, seston concentration, periphyton abundance, sediment organic matter content, and macroinvertebrate abundance and diversity) following rehabilitation. The addition of skybooms (underbank cover structures) and k-dams (pool-creating structures) increased the relative abundance of harvestable trout (>25 cm in total length) as intended but not overall trout abundances. Both rehabilitation techniques also increased maximum channel depth and organic matter retention, but only k-dams increased overall habitat quality. Neither approach significantly affected other ecological variables. The modest ecological response to this habitat improvement likely occurred because the system was not severely degraded beforehand, and thus small, local changes in habitat did not measurably affect most physical and ecological variables measured. However, increases in habitat volume and in organic matter retention may enhance stream biota in the long term.

  12. Temporal variation in development of ecosystem services from oyster reef restoration

    USGS Publications Warehouse

    LaPeyre, Megan K.; Humphries, Austin T.; Casas, Sandra M.; La Peyre, Jerome F.

    2014-01-01

    Restoration ecology relies heavily on ecosystem development theories that generally assume development of fully functioning natural systems over time, but often fail to identify the time-frame required for provision of desired functions, or acknowledge different pathways of functional development. In estuaries, a decline of overall habitat quality and functioning has led to significant efforts to restore critical ecosystem services, recently through the creation and restoration of oyster reefs. Oyster reef restoration generally occurs with goals of (1) increasing water quality via filtration through sustainable oyster recruitment, (2) stabilizing shorelines, and (3) creating and enhancing critical estuarine habitat for fish and invertebrates. We restored over 260 m2 of oyster reef habitat in coastal Louisiana and followed the development and provision of these ecosystem services from 2009 through 2012. Oysters recruited to reefs immediately, with densities of oysters greater than 75 mm exceeding 80 ind m−2 after 3 years, and provision of filtration rates of 1002 ± 187 L h−1 m−2; shoreline stabilization effects of the created reefs were minimal over the three years of monitoring, with some evidence of positive shoreline stabilization during higher wind/energy events only; increased nekton abundance of resident, but not larger transient fish was immediately measurable at the reefs, however, this failed to increase through time. Our results provide critical insights into the development trajectories of ecosystem services provided by restored oyster reefs, as well as the mechanisms mediating these changes. This is critical both ecologically to understand how and where a reef thrives, and for policy and management to guide decision-making related to oyster reef restoration and the crediting and accounting of ecosystem services.

  13. Bearing restoration by grinding

    NASA Technical Reports Server (NTRS)

    Hanau, H.; Parker, R. J.; Zaretsky, E. V.; Chen, S. M.; Bull, H. L.

    1976-01-01

    A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.; Thom, R.; Whiting, A.

    Habitat restoration in the Columbia River estuary (CRE) is an important off-site mitigation action in the 2000 Biological Opinion (BiOp), an operation of the Federal Columbia River Power System. The CRE, defined as the tidally influenced stretch of river from the mouth to Bonneville Dam 146 miles upstream, is part of the migration pathway for anadromous fish in the Columbia Basin, including salmon listed under the Endangered Species Act (ESA). Salmon in various stages of life, from fry to adults, use tidal channels and wetlands in the CRE to feed, find refuge from predators, and transition physiologically from freshwater tomore » saltwater. Over the last 100 years, however, the area of some wetland habitats has decreased by as much as 70% because of dike and levee building, flow regulation, and other activities. In response to the decline in available habitat, the BiOp's Reasonable and Prudent Alternative (RPA) included mandates to 'develop a plan addressing the habitat needs of juvenile salmon and steelhead in the estuary' (RPA Action 159) and 'develop and implement an estuary restoration program with a goal of protecting and enhancing 10,000 acres of tidal wetlands and other key habitats' (RPA Action 160). To meet Action 159 and support Action 160, this document develops a science-based approach designed to improve ecosystem functions through habitat restoration activities in the CRE. The CRE habitat restoration program's goal and principles focus on habitat restoration projects in an ecosystem context. Since restoration of an entire ecosystem is not generally practical, individual habitat restoration projects have the greatest likelihood of success when they are implemented with an ecosystem perspective. The program's goal is: Implementation of well-coordinated, scientifically sound projects designed to enhance, protect, conserve, restore, and create 10,000 acres of tidal wetlands and other key habitats to aid rebuilding of ESA-listed salmon populations and

  15. Barrier island habitat map and vegetation survey—Dauphin Island, Alabama, 2015

    USGS Publications Warehouse

    Enwright, Nicholas M.; Borchert, Sinéad M.; Day, Richard H.; Feher, Laura C.; Osland, Michael J.; Wang, Lei; Wang, Hongqing

    2017-08-04

    Barrier islands are dynamic environments due to their position at the land-sea interface. Storms, waves, tides, currents, and relative sea-level rise are powerful forces that shape barrier island geomorphology and habitats (for example, beach, dune, marsh, and forest). Hurricane Katrina in 2005 and the Deep Water Horizon oil spill in 2010 are two major events that have affected habitats and natural resources on Dauphin Island, Alabama. The latter event prompted a collaborative effort between the U.S. Geological Survey, the U.S. Army Corps of Engineers, and the State of Alabama funded by the National Fish and Wildlife Foundation to investigate viable, sustainable restoration options that protect and restore the natural resources of Dauphin Island, Alabama.In order to understand the feasibility and sustainability of various restoration scenarios, it is important to understand current conditions on Dauphin Island. To further this understanding, a detailed 19-class habitat map for Dauphin Island was produced from 1-foot aerial infrared photography collected on December 4, 2015, and lidar data collected in January 2015. We also conducted a ground survey of habitat types, vegetation community structure, and elevations in November and December 2015. These products provide baseline data regarding the ecological and general geomorphological attributes of the area, which can be compared with observations from other dates for tracking changes over time.

  16. Defining and evaluating the umbrella species concept for conserving and restoring landscape connectivity.

    PubMed

    Breckheimer, Ian; Haddad, Nick M; Morris, William F; Trainor, Anne M; Fields, William R; Jobe, R Todd; Hudgens, Brian R; Moody, Aaron; Walters, Jeffrey R

    2014-12-01

    Conserving or restoring landscape connectivity between patches of breeding habitat is a common strategy to protect threatened species from habitat fragmentation. By managing connectivity for some species, usually charismatic vertebrates, it is often assumed that these species will serve as conservation umbrellas for other species. We tested this assumption by developing a quantitative method to measure overlap in dispersal habitat of 3 threatened species-a bird (the umbrella), a butterfly, and a frog-inhabiting the same fragmented landscape. Dispersal habitat was determined with Circuitscape, which was parameterized with movement data collected for each species. Despite differences in natural history and breeding habitat, we found substantial overlap in the spatial distributions of areas important for dispersal of this suite of taxa. However, the intuitive umbrella species (the bird) did not have the highest overlap with other species in terms of the areas that supported connectivity. Nevertheless, we contend that when there are no irreconcilable differences between the dispersal habitats of species that cohabitate on the landscape, managing for umbrella species can help conserve or restore connectivity simultaneously for multiple threatened species with different habitat requirements. © 2014 Society for Conservation Biology.

  17. A Markov decision process for managing habitat for Florida scrub-jays

    USGS Publications Warehouse

    Johnson, Fred A.; Breininger, David R.; Duncan, Brean W.; Nichols, James D.; Runge, Michael C.; Williams, B. Ken

    2011-01-01

    Florida scrub-jays Aphelocoma coerulescens are listed as threatened under the Endangered Species Act due to loss and degradation of scrub habitat. This study concerned the development of an optimal strategy for the restoration and management of scrub habitat at Merritt Island National Wildlife Refuge, which contains one of the few remaining large populations of scrub-jays in Florida. There are documented differences in the reproductive and survival rates of scrubjays among discrete classes of scrub height (<120 cm or "short"; 120-170 cm or "optimal"; .170 cm or "tall"; and a combination of tall and optimal or "mixed"), and our objective was to calculate a state-dependent management strategy that would maximize the long-term growth rate of the resident scrub-jay population. We used aerial imagery with multistate Markov models to estimate annual transition probabilities among the four scrub-height classes under three possible management actions: scrub restoration (mechanical cutting followed by burning), a prescribed burn, or no intervention. A strategy prescribing the optimal management action for management units exhibiting different proportions of scrub-height classes was derived using dynamic programming. Scrub restoration was the optimal management action only in units dominated by mixed and tall scrub, and burning tended to be the optimal action for intermediate levels of short scrub. The optimal action was to do nothing when the amount of short scrub was greater than 30%, because short scrub mostly transitions to optimal height scrub (i.e., that state with the highest demographic success of scrub-jays) in the absence of intervention. Monte Carlo simulation of the optimal policy suggested that some form of management would be required every year. We note, however, that estimates of scrub-height transition probabilities were subject to several sources of uncertainty, and so we explored the management implications of alternative sets of transition probabilities

  18. Base Realignment and Closure (BRAC) Environmental Restoration Program Management Plan

    DTIC Science & Technology

    1999-04-01

    ENVIRONMENTAL PROGRAM 5 4.1 Environmental Restoration (Cleanup, Compliance and Unexploded Ordnance) 6 4.2 National Environmental Policy Act (NEPA...Realignment Act) to create a process to close bases and realign the force infrastructure. The law addressed National Environmental Policy Act (NEPA...primarily through provisions contained in the National Defense Authorization Acts for Fiscal Years 1992 through 1997. Appendix A of the BRAC Reuse

  19. Results of a field test and follow-up study of a restorative care training program.

    PubMed

    Walker, Bonnie L; Harrington, Susan S

    2013-09-01

    To implement restorative care in assisted living facilities, staff and administrators need to understand the philosophy and learn methods to help residents maintain optimal function. In this study, researchers investigated the use of a Web-based training program to improve the restorative care knowledge, attitudes, and practices of assisted living administrators and staff. The study design was one group repeated measure to consider the impact of the training program on participant's knowledge of restorative care and restorative care techniques, attitudes toward restorative care, and self-reported practices. Participants included 266 administrators and 203 direct care staff from assisted living facilities in eight states. Measurements were done at baseline (pretest), following the instruction (posttest), and one month later (follow-up). Researchers found that participants (n=469) significantly improved their scores from pre- to posttest. In a follow-up study (n=244), over half of participants reported making changes at their facility as a result of the restorative care training. Most of the changes are related to care practices, such as an emphasis on encouraging, motivating, and offering positive feedback to residents. Researchers concluded that there is a need for restorative care training for both administrators and staff of assisted living facilities. The study also demonstrates that a brief training session (2h or less) can bring about significant change in the learner's knowledge of facts, attitudes, and practices. It demonstrates that much of that change continues for at least 1 month after the training. It also demonstrates the loss of knowledge and points out the need for training to be followed up with continuing education and administrator encouragement. Furthermore, this study demonstrates that the Web is a feasible method of delivering restorative care training to assisted living facility administrators and staff. Copyright © 2012 Elsevier Ltd. All

  20. A spatial model to prioritize sagebrush landscapes in the intermountain west (U.S.A.) for restoration

    USGS Publications Warehouse

    Meinke, C.W.; Knick, S.T.; Pyke, D.A.

    2009-01-01

    The ecological integrity of Sagebrush (Artemisia spp.) ecosystems in the Intermountain West (U.S.A.) has been diminished by synergistic relationships among human activities, spread of invasive plants, and altered disturbance regimes. An aggressive effort to restore Sagebrush habitats is necessary if we are to stabilize or improve current habitat trajectories and reverse declining population trends of dependent wildlife. Existing economic resources, technical impediments, and logistic difficulties limit our efforts to a fraction of the extensive area undergoing fragmentation, degradation, and loss. We prioritized landscapes for restoring Sagebrush habitats within the intermountain western region of the United States using geographic information system (GIS) modeling techniques to identify areas meeting a set of conditions based on (1) optimum abiotic and biotic conditions favorable for revegetation of Sagebrush; (2) potential to increase connectivity of Sagebrush habitats in the landscape to benefit wildlife; (3) location of population strongholds for Greater Sage-Grouse (Centrocercus urophasianus, a species of conservation concern); and (4) potential impediments to successful restoration created by Cheatgrass (Bromus tectorum, an invasive exotic annual grass). Approximately 5.8 million ha in southwestern Idaho, northern Nevada, and eastern Oregon met our criteria for restoring Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) and 5.1 million ha had high priority for restoring Mountain big sagebrush (A. tridentata ssp. vaseyana). Our results represent an integral component in a hierarchical framework after which site-specific locations for treatments can be focused within high-priority areas. Using this approach, long-term restoration strategies can be implemented that combine local-scale treatments and objectives with large-scale ecological processes and priorities. ?? 2008 Society for Ecological Restoration International.

  1. Assessment of interim flow water-quality data of the San Joaquin River restoration program and implications for fishes, California, 2009-11

    USGS Publications Warehouse

    Wulff, Marissa L.; Brown, Larry R.

    2015-01-01

    After more than 50 years of extensive water diversion for urban and agriculture use, a major settlement was reached among the U.S. Departments of the Interior and Commerce, the Natural Resources Defense Council, and the Friant Water Users Authority in an effort to restore the San Joaquin River. The settlement received Federal court approval in October 2006 and established the San Joaquin River Restoration Program, a multi-agency collaboration between State and Federal agencies to restore and maintain fish populations, including Chinook salmon, in the main stem of the river between Friant Dam and the confluence with the Merced River. This is to be done while avoiding or minimizing adverse water supply effects to all of the Friant Division contractors that could result from restoration flows required by the settlement. The settlement stipulates that water- and sediment-quality data be collected to help assess the restoration goals. This report summarizes and evaluates water-quality data collected in the main stem of the San Joaquin River between Friant Dam and the Merced River by the U.S. Bureau of Reclamation for the San Joaquin River Restoration Program during 2009-11. This summary and assessment consider sampling frequency for adequate characterization of variability, sampling locations for sufficient characterization of the San Joaquin River Restoration Program restoration reach, sampling methods for appropriate media (water and sediment), and constituent reporting limits. After reviewing the water- and sediment-quality results for the San Joaquin River Restoration Program, several suggestions were made to the Fisheries Management Work Group, a division of the San Joaquin River Restoration Program that focuses solely on the reintroduction strategies and health of salmon and other native fishes in the river. Water-quality results for lead and total organic carbon exceeded the Surface Water Ambient Monitoring Program Basin Plan Objectives for the San Joaquin Basin

  2. Description of Nesting Habitat for Least Bell's Vireo in San Diego County

    Treesearch

    Bonnie J. Hendricks; John P. Rieger

    1989-01-01

    Least Bell's Vireo (Vireo bellii pusillus) nesting sites on three rivers in coastal southern California were characterized to provide data for a habitat restoration plan for this endangered species. In addition, riparian areas outside vireo territories were sampled to compare with nesting habitat. The parameters measured were percent cover,...

  3. Landscape habitat suitability index software

    Treesearch

    William D. Dijak; Chadwick D. Rittenhouse; Michael A. Larson; Frank R. III Thompson; Joshua J. Millspaugh

    2007-01-01

    Habitat suitability index (HSI) models are traditionally used to evaluate habitat quality for wildlife at a local scale. Rarely have such models incorporated spatial relationships of habitat components. We introduce Landscape HSImodels, a new Microsoft Windowst (Microsoft, Redmond, WA)-based program that incorporates local habitat as well as landscape-scale attributes...

  4. Prestoration: Using species in restoration that will persist now and into the future

    USGS Publications Warehouse

    Butterfield, B.J.; Copeland, Stella; Munson, Seth M.; Roybal, C.M.; Wood, Troy E.

    2017-01-01

    Climate change presents new challenges for selecting species for restoration. If migration fails to keep pace with climate change, as models predict, the most suitable sources for restoration may not occur locally at all. To address this issue we propose a strategy of “prestoration”: utilizing species in restoration for which a site represents suitable habitat now and into the future. Using the Colorado Plateau, USA as a case study, we assess the ability of grass species currently used regionally in restoration to persist into the future using projections of ecological niche models (or climate envelope models) across a suite of climate change scenarios. We then present a technique for identifying new species that best compensate for future losses of suitable habitat by current target species. We found that the current suite of species, selected by a group of experts, is predicted to perform reasonably well in the short-term, but that losses of prestorable habitat by mid-century would approach 40%. Using an algorithm to identify additional species, we found that fewer than ten species could compensate for nearly all of the losses incurred by the current target species. This case study highlights the utility of integrating ecological niche modeling and future climate forecasts to predict the utility of species in restoring under climate change across a wide range of spatial and temporal scales.

  5. Visions of Restoration in Fire-Adapted Forest Landscapes: Lessons from the Collaborative Forest Landscape Restoration Program.

    PubMed

    Urgenson, Lauren S; Ryan, Clare M; Halpern, Charles B; Bakker, Jonathan D; Belote, R Travis; Franklin, Jerry F; Haugo, Ryan D; Nelson, Cara R; Waltz, Amy E M

    2017-02-01

    Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.

  6. Visions of Restoration in Fire-Adapted Forest Landscapes: Lessons from the Collaborative Forest Landscape Restoration Program

    NASA Astrophysics Data System (ADS)

    Urgenson, Lauren S.; Ryan, Clare M.; Halpern, Charles B.; Bakker, Jonathan D.; Belote, R. Travis; Franklin, Jerry F.; Haugo, Ryan D.; Nelson, Cara R.; Waltz, Amy E. M.

    2017-02-01

    Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.

  7. Final Environmental Assessment Addressing Riparian Restoration and Stabilization at Grand Forks Air Force Base, North Dakota

    DTIC Science & Technology

    2012-09-01

    birds , including state-listed species that occur in the project area. Habitat restoration and management...wildlife and their habitat , state-listed species , species of concern, and migratory birds . Minor disturbance of vegetation and habitat from... species , species of concern, migratory birds , and their occasional-use habitat . Direct, minor effects from the permanent loss of

  8. A systematic review of ecological attributes that confer resilience to climate change in environmental restoration

    PubMed Central

    Timpane-Padgham, Britta L.

    2017-01-01

    Ecological restoration is widely practiced as a means of rehabilitating ecosystems and habitats that have been degraded or impaired through human use or other causes. Restoration practices now are confronted by climate change, which has the potential to influence long-term restoration outcomes. Concepts and attributes from the resilience literature can help improve restoration and monitoring efforts under changing climate conditions. We systematically examined the published literature on ecological resilience to identify biological, chemical, and physical attributes that confer resilience to climate change. We identified 45 attributes explicitly related to climate change and classified them as individual- (9), population- (6), community- (7), ecosystem- (7), or process-level attributes (16). Individual studies defined resilience as resistance to change or recovery from disturbance, and only a few studies explicitly included both concepts in their definition of resilience. We found that individual and population attributes generally are suited to species- or habitat-specific restoration actions and applicable at the population scale. Community attributes are better suited to habitat-specific restoration at the site scale, or system-wide restoration at the ecosystem scale. Ecosystem and process attributes vary considerably in their type and applicability. We summarize these relationships in a decision support table and provide three example applications to illustrate how these classifications can be used to prioritize climate change resilience attributes for specific restoration actions. We suggest that (1) including resilience as an explicit planning objective could increase the success of restoration projects, (2) considering the ecological context and focal scale of a restoration action is essential in choosing appropriate resilience attributes, and (3) certain ecological attributes, such as diversity and connectivity, are more commonly considered to confer

  9. A systematic review of ecological attributes that confer resilience to climate change in environmental restoration.

    PubMed

    Timpane-Padgham, Britta L; Beechie, Tim; Klinger, Terrie

    2017-01-01

    Ecological restoration is widely practiced as a means of rehabilitating ecosystems and habitats that have been degraded or impaired through human use or other causes. Restoration practices now are confronted by climate change, which has the potential to influence long-term restoration outcomes. Concepts and attributes from the resilience literature can help improve restoration and monitoring efforts under changing climate conditions. We systematically examined the published literature on ecological resilience to identify biological, chemical, and physical attributes that confer resilience to climate change. We identified 45 attributes explicitly related to climate change and classified them as individual- (9), population- (6), community- (7), ecosystem- (7), or process-level attributes (16). Individual studies defined resilience as resistance to change or recovery from disturbance, and only a few studies explicitly included both concepts in their definition of resilience. We found that individual and population attributes generally are suited to species- or habitat-specific restoration actions and applicable at the population scale. Community attributes are better suited to habitat-specific restoration at the site scale, or system-wide restoration at the ecosystem scale. Ecosystem and process attributes vary considerably in their type and applicability. We summarize these relationships in a decision support table and provide three example applications to illustrate how these classifications can be used to prioritize climate change resilience attributes for specific restoration actions. We suggest that (1) including resilience as an explicit planning objective could increase the success of restoration projects, (2) considering the ecological context and focal scale of a restoration action is essential in choosing appropriate resilience attributes, and (3) certain ecological attributes, such as diversity and connectivity, are more commonly considered to confer

  10. Ecoengineering with Ecohydrology: Successes and failures in estuarine restoration

    NASA Astrophysics Data System (ADS)

    Elliott, Michael; Mander, Lucas; Mazik, Krysia; Simenstad, Charles; Valesini, Fiona; Whitfield, Alan; Wolanski, Eric

    2016-07-01

    Ecological Engineering (or Ecoengineering) is increasingly used in estuaries to re-create and restore ecosystems degraded by human activities, including reduced water flow or land poldered for agricultural use. Here we focus on ecosystem recolonization by the biota and their functioning and we separate Type A Ecoengineering where the physico-chemical structure is modified on the basis that ecological structure and functioning will then follow, and Type B Ecoengineering where the biota are engineered directly such as through restocking or replanting. Modifying the physical system to create and restore natural processes and habitats relies on successfully applying Ecohydrology, where suitable physical conditions, especially hydrography and sedimentology, are created to recover estuarine ecology by natural or human-mediated colonisation of primary producers and consumers, or habitat creation. This successional process then allows wading birds and fish to reoccupy the rehabilitated areas, thus restoring the natural food web and recreating nursery areas for aquatic biota. We describe Ecohydrology principles applied during Ecoengineering restoration projects in Europe, Australia, Asia, South Africa and North America. These show some successful and sustainable approaches but also others that were less than successful and not sustainable despite the best of intentions (and which may even have harmed the ecology). Some schemes may be 'good for the ecologists', as conservationists consider it successful that at least some habitat was created, albeit in the short-term, but arguably did little for the overall ecology of the area in space or time. We indicate the trade-offs between the short- and long-term value of restored and created ecosystems, the success at developing natural structure and functioning in disturbed estuaries, the role of this in estuarine and wetland management, and the costs and benefits of Ecoengineering to the socio-ecological system. These global case

  11. Topographic heterogeneity influences fish use of an experimentally restored tidal marsh.

    PubMed

    Larkin, Daniel J; Madon, Sharook P; West, Janelle M; Zedler, Joy B

    2008-03-01

    Ecological theory predicts that incorporating habitat heterogeneity into restoration sites should enhance diversity and key functions, yet research is limited on how topographic heterogeneity affects higher trophic levels. Our large (8-ha) southern California restoration experiment tested effects of tidal creek networks and pools on trophic structure of salt marsh habitat and high-tide use by two regionally dominant fish species, California killifish (Fundulus parvipinnis) and longjaw mudsucker (Gillichthys mirabilis). We expected tidal creeks to function as "conduits" that would enhance connectivity between subtidal and intertidal habitat and pools to serve as microhabitat "oases" for fishes. Pools did provide abundant invertebrate prey and were a preferred microhabitat for F. parvipinnis, even when the entire marsh was inundated (catch rates were 61% higher in pools). However, G. mirabilis showed no preference for pools. At a larger scale, effects of tidal creek networks were also mixed. Areas containing creeks had 12% higher catch rates of G. mirabilis, but lower catch rates and feeding rates of F. parvipinnis. Collectively, the results indicate that restoring multiple forms of heterogeneity is required to provide opportunities for multiple target consumers.

  12. Native plant development and restoration program for the Great Basin, USA

    Treesearch

    N. L. Shaw; M. Pellant; P. Olweli; S. L. Jensen; E. D. McArthur

    2008-01-01

    The Great Basin Native Plant Selection and Increase Project, organized by the USDA Bureau of Land Management, Great Basin Restoration Initiative and the USDA Forest Service, Rocky Mountain Research Station in 2000 as a multi-agency collaborative program (http://www.fs.fed.us/rm/boise/research/shrub/greatbasin.shtml), has the objective of improving the availability of...

  13. Quantifying The Influence Of Time-Since-Creation On Benthic Secondary Production In Created Coastal Habitats

    EPA Science Inventory

    Wetland creation, enhancement, and restoration activities are commonly implemented to compensate for wetland loss or degradation in freshwater and coastal ecosystems. While assessments on structural condition are common in monitoring habitat restoration, functional equivalence i...

  14. 77 FR 18999 - New Mexico Collaborative Forest Restoration Program Technical Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... Collaborative Forest Restoration Program Technical Advisory Panel will meet in Albuquerque, New Mexico. The... the Hyatt Place Albuquerque/ Uptown, 6901 Arvada Avenue NE., Albuquerque, NM 87110, (505) 872-9000... Service, 333 Broadway SE., Albuquerque, NM 87102. Comments may also be sent via email to [email protected

  15. 75 FR 34973 - New Mexico Collaborative Forest Restoration Program Technical Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Collaborative Forest Restoration Program Technical Advisory Panel will meet in Albuquerque, New Mexico. The... meeting will be held at the Hyatt Place Albuquerque/ Uptown, 6901 Arvada Avenue, NE., Albuquerque, NM... International Forestry Staff, USDA Forest Service, 333 Broadway SE., Albuquerque, NM 87102. Comments may also be...

  16. Ecological Monitoring and Compliance Program 2009 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, J. Dennis; Anderson, David C.; Hall, Derek B.

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC, during calendar year 2009. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferationmore » Test and Evaluation Complex. During 2009, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.« less

  17. Bee communities along a prairie restoration chronosequence: similar abundance and diversity, distinct composition.

    PubMed

    Tonietto, Rebecca K; Ascher, John S; Larkin, Daniel J

    2017-04-01

    Recognition of the importance of bee conservation has grown in response to declines of managed honey bees and some wild bee species. Habitat loss has been implicated as a leading cause of declines, suggesting that ecological restoration is likely to play an increasing role in bee conservation efforts. In the midwestern United States, restoration of tallgrass prairie has traditionally targeted plant community objectives without explicit consideration for bees. However, restoration of prairie vegetation is likely to provide ancillary benefits to bees through increased foraging and nesting resources. We investigated community assembly of bees across a chronosequence of restored eastern tallgrass prairies and compared patterns to those in control and reference habitats (old fields and prairie remnants, respectively). We collected bees for 3 yr and measured diversity and abundance of in-bloom flowering plants, vegetation structure, ground cover, and surrounding land use as predictors of bee abundance and bee taxonomic and functional diversity. We found that site-level variables, but not site type or restoration age, were significant predictors of bee abundance (bloom diversity, P = 0.004; bare ground cover, P = 0.02) and bee diversity (bloom diversity, P = 0.01). There were significant correlations between overall composition of bee and blooming plant communities (Mantel test, P = 0.002), and both plant and bee assemblages in restorations were intermediate between those of old fields and remnant prairies. Restorations exhibited high bee beta diversity, i.e., restored sites' bee assemblages were taxonomically and functionally differentiated from each other. This pattern was strong in younger restorations (<20 yr old), but absent from older restorations (>20 yr), suggesting restored prairie bee communities become more similar to one another and more similar to remnant prairie bee communities over time with the arrival of more species and functional groups of

  18. The effect of urban growth on landscape-scale restoration for a fire-dependent songbird.

    PubMed

    Pickens, Bradley A; Marcus, Jeffrey F; Carpenter, John P; Anderson, Scott; Taillie, Paul J; Collazo, Jaime A

    2017-04-15

    A landscape-scale perspective on restoration ecology has been advocated, but few studies have informed restoration with landscape metrics or addressed broad-scale threats. Threats such as urban growth may affect restoration effectiveness in a landscape context. Here, we studied longleaf pine savanna in the rapidly urbanizing southeastern United States where a habitat-specialist bird, Bachman's sparrow (Peucaea aestivalis), is closely associated with savanna vegetation structure and frequent fire. Our objectives were to construct a species distribution model for Bachman's sparrow, determine the relationship between fire and urbanization, quantify the urban growth effect (2010-2090), identify potential restoration areas, and determine the interaction between restoration potential and urban growth by 2050. Number of patches, patch size, and isolation metrics were used to evaluate scenarios. The species distribution model was 88% accurate and emphasized multiscale canopy cover characteristics, fire, and percent habitat. Fires were less common <600 m from urban areas, and this fire suppression effect exacerbated urban growth effects. For restoration scenarios, canopy cover reduction by 30% resulted in nearly double the amount of habitat compared to the prescribed fire scenario; canopy cover reduction resulted in larger patch sizes and less patch isolation compared to current conditions. The effect of urban growth on restoration scenarios was unequal. Seventy-four percent of restoration areas from the prescribed fire scenario overlapped with projected urban growth, whereas the canopy cover reduction scenario only overlapped by 9%. We emphasize the benefits of simultaneously considering the effects of urban growth and landscape-scale restoration potential to promote a landscape with greater patch sizes and less isolation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The science and practice of river restoration

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen; Lane, Stuart N.; Wilcox, Andrew C.

    2015-08-01

    River restoration is one of the most prominent areas of applied water-resources science. From an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of channel form, restoration has expanded to incorporate a wide variety of management activities designed to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers, and entire river networks in urban, agricultural, and less intensively human-altered environments. We critically examine how contemporary practitioners approach river restoration and challenges for implementing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems, and the role of restoration as a social process. We also examine challenges for scientific understanding in river restoration. These include: how physical complexity supports biogeochemical function, stream metabolism, and stream ecosystem productivity; characterizing response curves of different river components; understanding sediment dynamics; and increasing appreciation of the importance of incorporating climate change considerations and resiliency into restoration planning. Finally, we examine changes in river restoration within the past decade, such as increasing use of stream mitigation banking; development of new tools and technologies; different types of process-based restoration; growing recognition of the importance of biological-physical feedbacks in rivers; increasing expectations of water quality improvements from restoration; and more effective communication between practitioners and river scientists.

  20. Friendly Habitat, Endangered Species: Ecological Theory and the Demise of a High School Mandarin Program

    ERIC Educational Resources Information Center

    Shouse, Roger C.; Sun, Jinai

    2013-01-01

    This article presents a case study examining the demise of a high school Mandarin language program in a school district that appeared to offer an exceptionally friendly habitat for its survival. Though members of the school board majority who voted against funding the program offered rational explanations for their decision (e.g., insufficient…

  1. Restoration ecology: two-sex dynamics and cost minimization.

    PubMed

    Molnár, Ferenc; Caragine, Christina; Caraco, Thomas; Korniss, Gyorgy

    2013-01-01

    We model a spatially detailed, two-sex population dynamics, to study the cost of ecological restoration. We assume that cost is proportional to the number of individuals introduced into a large habitat. We treat dispersal as homogeneous diffusion in a one-dimensional reaction-diffusion system. The local population dynamics depends on sex ratio at birth, and allows mortality rates to differ between sexes. Furthermore, local density dependence induces a strong Allee effect, implying that the initial population must be sufficiently large to avert rapid extinction. We address three different initial spatial distributions for the introduced individuals; for each we minimize the associated cost, constrained by the requirement that the species must be restored throughout the habitat. First, we consider spatially inhomogeneous, unstable stationary solutions of the model's equations as plausible candidates for small restoration cost. Second, we use numerical simulations to find the smallest rectangular cluster, enclosing a spatially homogeneous population density, that minimizes the cost of assured restoration. Finally, by employing simulated annealing, we minimize restoration cost among all possible initial spatial distributions of females and males. For biased sex ratios, or for a significant between-sex difference in mortality, we find that sex-specific spatial distributions minimize the cost. But as long as the sex ratio maximizes the local equilibrium density for given mortality rates, a common homogeneous distribution for both sexes that spans a critical distance yields a similarly low cost.

  2. Restoration Ecology: Two-Sex Dynamics and Cost Minimization

    PubMed Central

    Molnár, Ferenc; Caragine, Christina; Caraco, Thomas; Korniss, Gyorgy

    2013-01-01

    We model a spatially detailed, two-sex population dynamics, to study the cost of ecological restoration. We assume that cost is proportional to the number of individuals introduced into a large habitat. We treat dispersal as homogeneous diffusion in a one-dimensional reaction-diffusion system. The local population dynamics depends on sex ratio at birth, and allows mortality rates to differ between sexes. Furthermore, local density dependence induces a strong Allee effect, implying that the initial population must be sufficiently large to avert rapid extinction. We address three different initial spatial distributions for the introduced individuals; for each we minimize the associated cost, constrained by the requirement that the species must be restored throughout the habitat. First, we consider spatially inhomogeneous, unstable stationary solutions of the model’s equations as plausible candidates for small restoration cost. Second, we use numerical simulations to find the smallest rectangular cluster, enclosing a spatially homogeneous population density, that minimizes the cost of assured restoration. Finally, by employing simulated annealing, we minimize restoration cost among all possible initial spatial distributions of females and males. For biased sex ratios, or for a significant between-sex difference in mortality, we find that sex-specific spatial distributions minimize the cost. But as long as the sex ratio maximizes the local equilibrium density for given mortality rates, a common homogeneous distribution for both sexes that spans a critical distance yields a similarly low cost. PMID:24204810

  3. No net loss of fish habitat: a review and analysis of habitat compensation in Canada.

    PubMed

    Harper, D J; Quigley, J T

    2005-09-01

    The achievement of No Net Loss (NNL) through habitat compensation has rarely been assessed in Canada. Files relating to 124 Fisheries Act Section 35(2) authorizations issued by Fisheries and Oceans Canada for the harmful alteration, disruption, and destruction of fish habitat (HADD) were collected and reviewed. Data extracted from these files were pooled and analyzed to provide an indication of the types of HADDs that have been authorized in Canada, what habitats have been affected, and what habitat management approaches have been used when compensating for HADDs and monitoring and ensuring the success of the compensation. Determinations regarding the effectiveness of habitat compensation in achieving NNL were made. Impacts to 419,562 m2 of fish habitat from the 124 authorized HADDs were offset by 1,020,388 m2 of compensatory habitat. Eighty percent of the authorizations had compensation ratios (compensation area:HADD area) of 2:1 or less, and 25% of the authorizations had a compensation ratio that was less than 1:1. In-channel and riparian habitat were the most frequently impacted habitats. Urban development and roads and highways resulted in the greatest areal loss of habitat. The compensation option that was most often selected was the creation of in-kind habitat. The mean duration of post-construction monitoring programs was 3.7 years. Determinations of NNL could only be made for 17 authorizations as a result of poor proponent compliance with monitoring requirements and the qualitative assessment procedures used by the monitoring programs. Adequate resources, proper training, and standardized approaches to data management and monitoring programs are required to ensure that the conservation goal of NNL can be achieved in Canada.

  4. Habitat suitability index model of the sea cucumber Apostichopus japonicus (Selenka): A case study of Shandong Peninsula, China.

    PubMed

    Zhang, Zhipeng; Zhou, Jian; Song, Jingjing; Wang, Qixiang; Liu, Hongjun; Tang, Xuexi

    2017-09-15

    A habitat suitability index (HSI) model for the sea cucumber Apostichopus japonicus (Selenka) was established in the present study. Based on geographic information systems, the HSI model was used to identify potential sites around the Shandong Peninsula suitable for restoration of immature (<25g) and mature (>25g) A. japonicus. Six habitat factors were used as input variables for the HSI model: sediment classification, water temperature, salinity, water depth, pH and dissolved oxygen. The weighting of each habitat factor was defined through the Delphi method. Sediment classification was the most important condition affecting the HSI of A. japonicus in the different study areas, while water temperature was the most important condition in different seasons. The HSI of Western Laizhou Bay was relatively low, meaning the site was not suitable for aquaculture-based restoration of A. japonicus. In contrast, Xiaoheishan Island, Rongcheng Bay and Qingdao were preferable sites, suitable as habitats for restoration efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Altered mangrove wetlands as habitat for estuarine nekton: are dredged channels and tidal creeks equivalent?

    USGS Publications Warehouse

    Krebs, Justin M.; Brame, Adam B.; McIvor, Carole C.

    2007-01-01

    Hasty decisions are often made regarding the restoration of "altered" habitats, when in fact the ecological value of these habitats may be comparable to natural ones. To assess the "value" of altered mangrove-lined habitats for nekton, we sampled for 1 yr within three Tampa Bay wetlands. Species composition, abundance, and spatial distribution of nekton assemblages in permanent subtidal portions of natural tidal creeks and wetlands altered by construction of mosquito-control ditches and stormwater-drainage ditches were quantified through seasonal seine sampling. Results of repeated-measures analysis of variance and ordination of nekton community data suggested differences in species composition and abundance between natural and altered habitat, though not consistently among the three wetlands. In many cases, mosquito ditches were more similar in assemblage structure to tidal creeks than to stormwater ditches. In general, mosquito ditches and stormwater ditches were the most dissimilar in terms of nekton community structure. These dissimilarities were likely due to differences in design between the two types of ditches. Mosquito ditches tend to fill in over time and are thus more ephemeral features in the landscape. In contrast, stormwater ditches are a more permanent altered habitat that remain open due to periodic flushing from heavy runoff. Results indicate that environmental conditions (e.g., salinity, current velocity, vegetative structure) may provide a more useful indication of potential habitat "value" for nekton than whether the habitat has been altered. The type of ditching is therefore more important than ditching per se when judging the habitat quality of these altered channels for fishes, shrimps and crabs. Planning should entail careful consideration of environmental conditions rather than simply restoring for restoration's sake.

  6. Projecting cumulative benefits of multiple river restoration projects: an example from the Sacramento-San Joaquin River system in California

    USGS Publications Warehouse

    Kondolf, G. Mathias; Angermeier, Paul L.; Cummins, Kenneth; Dunne, Thomas; Healey, Michael; Kimmerer, Wim; Moyle, Peter B.; Murphy, Dennis; Patten, Duncan; Railsback, Steve F.; Reed, Denise J.; Spies, Robert B.; Twiss, Robert

    2008-01-01

    Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to “restore” pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.

  7. The Effects of the Wildlife Habitat Evaluation Program on Targeted Life Skills

    ERIC Educational Resources Information Center

    Allen, Kevin; Elmore, R. Dwayne

    2012-01-01

    Does participation in the Wildlife Habitat Evaluation Program (WHEP) help develop life skills? 4-H members and coaches who participated in the National WHEP Contest between the years 2003-2005 and 2007-2009 were asked to complete an evaluation at the end of each contest. A portion of the evaluation asked participants and coaches to determine if…

  8. Red spruce restoration modeling in LANDIS

    Treesearch

    Melissa. Thomas-Van Gundy

    2010-01-01

    Scenarios for the restoration of red spruce (Picea rubens)-dominated forests on the Monongahela National Forest were created in the landscape simulation model LANDIS. The resulting landscapes were compared to existing habitat suitability index models for the Virginia northern flying squirrel (VNFS) and Cheat Mountain salamander (CMS) as a measure of...

  9. Building social capital in forest communities: Analysis of New Mexico's Collaborative Forest Restoration Program

    Treesearch

    Tyler Prante; Jennifer A. Thacher; Daniel W. McCollum; Robert P. Berrens

    2007-01-01

    In part because of its emphasis on building social capital, the Collaborative Forest Restoration Program (CFRP) in New Mexico represents a unique experiment in public lands management. This study uses logit probability modeling to investigate what factors determined CFRP funding, which totaled $26 million between 2001 and 2006. Results reveal program preferences for...

  10. 78 FR 66380 - Final Environmental Impact Statement for the Restoration of the Mariposa Grove of Giant Sequoias...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... sequoia habitat, wetlands, and soundscapes within the Mariposa Grove, this alternative would relocate... for restoration of wetlands, soundscapes, and giant sequoia habitat within the Mariposa Grove by...

  11. Space use and habitat selection of migrant and resident American Avocets in San Francisco Bay

    USGS Publications Warehouse

    Demers, Scott A.; Takekawa, John Y.; Ackerman, Joshua T.; Warnock, N.; Athearn, N.D.

    2010-01-01

    San Francisco Bay is a wintering area for shorebirds, including American Avocets (Recurvirostra americana). Recently, a new resident population of avocets has emerged, presumably because of the development of tidal marshes into salt-evaporation ponds. In habitat restoration now underway, as many as 90% of salt ponds will be restored to tidal marsh. However, it is unknown if wintering and resident avocets coexist and if their requirements for space and habitat differ, necessitating different management for their populations to be maintained during restoration. We captured and radio-marked wintering avocets at a salt pond and a tidal flat to determine their population status (migrant or resident) and examine their space use and habitat selection. Of the radio-marked avocets, 79% were migrants and 21% were residents. At the salt pond, residents' fidelity to their location of capture was higher, and residents moved less than did migrants from the same site. Conversely, on the tidal flat, fidelity of residents to their site of capture was lower, and residents' home ranges were larger than those of migrants from the same site. Habitat selection of migrants and residents differed little; however, capture site influenced habitat selection far more than the birds' status as migrants or residents. Our study suggests that individual avocets have high site fidelity while wintering in San Francisco Bay, although the avocet as a species is plastic in its space use and habitat selection. This plasticity may allow wintering migrant and resident avocets to adapt to habitat change in San Francisco Bay. ?? The Cooper Ornithological Society 2010.

  12. Towards Restoration of Missing Underwater Forests

    PubMed Central

    Vergés, Adriana; Coleman, Melinda A.; Steinberg, Peter D.

    2014-01-01

    Degradation of natural habitats due to urbanization is a major cause of biodiversity loss. Anthropogenic impacts can drive phase shifts from productive, complex ecosystems to less desirable, less diverse systems that provide fewer services. Macroalgae are the dominant habitat-forming organisms on temperate coastlines, providing habitat and food to entire communities. In recent decades, there has been a decline in macroalgal cover along some urbanised shorelines, leading to a shift from diverse algal forests to more simple turf algae or barren habitats. Phyllospora comosa, a major habitat forming macroalga in south-eastern Australia, has disappeared from the urban shores of Sydney. Its disappearance is coincident with heavy sewage outfall discharges along the metropolitan coast during 1970s and 1980s. Despite significant improvements in water-quality since that time, Phyllospora has not re-established. We experimentally transplanted adult Phyllospora into two rocky reefs in the Sydney metropolitan region to examine the model that Sydney is now suitable for the survival and recruitment of Phyllospora and thus assess the possibility of restoring Phyllospora back onto reefs where it was once abundant. Survival of transplanted individuals was high overall, but also spatially variable: at one site most individuals were grazed, while at the other site survival was similar to undisturbed algae and procedural controls. Transplanted algae reproduced and recruitment rates were higher than in natural populations at one experimental site, with high survival of new recruits after almost 18 months. Low supply and settlement success of propagules in the absence of adults and herbivory (in some places) emerge as three potential processes that may have been preventing natural re-establishment of this alga. Understanding of the processes and interactions that shape this system are necessary to provide ecologically sensible goals and the information needed to successfully restore

  13. Arthropod food web restoration following removal of an invasive wetland plant.

    PubMed

    Gratton, Claudio; Denno, Robert F

    2006-04-01

    Restoration of habitats impacted by invasive plants is becoming an increasingly important tool in the management of native biodiversity, though most studies do not go beyond monitoring the abundance of particular taxonomic groups, such as the return of native vegetation. Yet, the reestablishment of trophic interactions among organisms in restored habitats is equally important if we are to monitor and understand how ecosystems recover. This study examined whether food web interactions among arthropods (as inferred by abundance of naturally occurring stable isotopes of C [delta13C] and N [delta15N]) were reestablished in the restoration of a coastal Spartina alterniflora salt marsh that had been invaded by Phragmites australis. From patterns of C and N stable isotopes we infer that trophic interactions among arthropods in the native salt marsh habitats are characterized by reliance on the dominant marsh plant Spartina as a basal resource. Herbivores such as delphacid planthoppers and mirid bugs have isotope signatures characteristic of Spartina, and predatory arthropods such as dolicopodid flies and spiders likewise have delta13C and delta15N signatures typical of Spartina-derived resources (approximately -13 per thousand and 10 per thousand, respectively). Stable isotope patterns also suggest that the invasion of Phragmites into salt marshes and displacement of Spartina significantly alter arthropod food web interactions. Arthropods in Phragmites-dominated sites have delta13C isotope values between -18 per thousand and -20 per thousand, suggesting reliance on detritus and/or benthic microalgae as basal resources and not on Phragmites, which has a delta13C approximately -26 per thousand. Since most Phragmites herbivores are either feeding internally or are rare transients from nearby Spartina, these resources do not provide significant prey resources for other arthropod consumers. Rather, predator isotope signatures in the invaded habitats indicate dependence on

  14. 78 FR 16244 - New Mexico Collaborative Forest Restoration Program Technical Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... Collaborative Forest Restoration Program Technical Advisory Panel will meet in Albuquerque, New Mexico. The... at the Hyatt Place Albuquerque/ Uptown, 6901 Arvada Avenue NE., Albuquerque, NM 87110, (505) 872-9000... Service, 333 Broadway SE., Albuquerque, NM 87102. Comments may also be sent via email to [email protected

  15. Discrete choice modeling of shovelnose sturgeon habitat selection in the Lower Missouri River

    USGS Publications Warehouse

    Bonnot, T.W.; Wildhaber, M.L.; Millspaugh, J.J.; DeLonay, A.J.; Jacobson, R.B.; Bryan, J.L.

    2011-01-01

    Substantive changes to physical habitat in the Lower Missouri River, resulting from intensive management, have been implicated in the decline of pallid (Scaphirhynchus albus) and shovelnose (S. platorynchus) sturgeon. To aid in habitat rehabilitation efforts, we evaluated habitat selection of gravid, female shovelnose sturgeon during the spawning season in two sections (lower and upper) of the Lower Missouri River in 2005 and in the upper section in 2007. We fit discrete choice models within an information theoretic framework to identify selection of means and variability in three components of physical habitat. Characterizing habitat within divisions around fish better explained selection than habitat values at the fish locations. In general, female shovelnose sturgeon were negatively associated with mean velocity between them and the bank and positively associated with variability in surrounding depths. For example, in the upper section in 2005, a 0.5 m s-1 decrease in velocity within 10 m in the bank direction increased the relative probability of selection 70%. In the upper section fish also selected sites with surrounding structure in depth (e.g., change in relief). Differences in models between sections and years, which are reinforced by validation rates, suggest that changes in habitat due to geomorphology, hydrology, and their interactions over time need to be addressed when evaluating habitat selection. Because of the importance of variability in surrounding depths, these results support an emphasis on restoring channel complexity as an objective of habitat restoration for shovelnose sturgeon in the Lower Missouri River.

  16. Assessing Landscape Constraints on Species Abundance: Does the Neighborhood Limit Species Response to Local Habitat Conservation Programs?

    PubMed Central

    Jorgensen, Christopher F.; Powell, Larkin A.; Lusk, Jeffery J.; Bishop, Andrew A.; Fontaine, Joseph J.

    2014-01-01

    Landscapes in agricultural systems continue to undergo significant change, and the loss of biodiversity is an ever-increasing threat. Although habitat restoration is beneficial, management actions do not always result in the desired outcome. Managers must understand why management actions fail; yet, past studies have focused on assessing habitat attributes at a single spatial scale, and often fail to consider the importance of ecological mechanisms that act across spatial scales. We located survey sites across southern Nebraska, USA and conducted point counts to estimate Ring-necked Pheasant abundance, an economically important species to the region, while simultaneously quantifying landscape effects using a geographic information system. To identify suitable areas for allocating limited management resources, we assessed land cover relationships to our counts using a Bayesian binomial-Poisson hierarchical model to construct predictive Species Distribution Models of relative abundance. Our results indicated that landscape scale land cover variables severely constrained or, alternatively, facilitated the positive effects of local land management for Ring-necked Pheasants. PMID:24918779

  17. Assessing landscape constraints on species abundance: Does the neighborhood limit species response to local habitat conservation programs?

    USGS Publications Warehouse

    Jorgensen, Christopher F.; Powell, Larkin A.; Lusk, Jeffrey J.; Bishop, Andrew A.; Fontaine, Joseph J.

    2014-01-01

    Landscapes in agricultural systems continue to undergo significant change, and the loss of biodiversity is an ever-increasing threat. Although habitat restoration is beneficial, management actions do not always result in the desired outcome. Managers must understand why management actions fail; yet, past studies have focused on assessing habitat attributes at a single spatial scale, and often fail to consider the importance of ecological mechanisms that act across spatial scales. We located survey sites across southern Nebraska, USA and conducted point counts to estimate Ring-necked Pheasant abundance, an economically important species to the region, while simultaneously quantifying landscape effects using a geographic information system. To identify suitable areas for allocating limited management resources, we assessed land cover relationships to our counts using a Bayesian binomial-Poisson hierarchical model to construct predictive Species Distribution Models of relative abundance. Our results indicated that landscape scale land cover variables severely constrained or, alternatively, facilitated the positive effects of local land management for Ring-necked Pheasants.

  18. Ecosystem Services Derived from Wetland Conservation Practices in the United States Prairie Pothole Region with an Emphasis on the U.S. Department of Agriculture Conservation Reserve and Wetlands Reserve Programs

    USGS Publications Warehouse

    Gleason, Robert A.; Laubhan, Murray K.; Euliss, Ned H.

    2008-01-01

    Implementation of the U.S. Department of Agriculture (USDA) Conservation Reserve Program (CRP) and Wetlands Reserve Program (WRP) has resulted in the restoration of approximately 2,200,000 ha (5,436,200 acres) of wetland and grassland habitats in the Prairie Pothole Region. These restored habitats are known to provide various ecosystem services; however, little work has been conducted to quantify and verify benefits on program lands (lands enrolled in the CRP and WRP) in agriculturally dominated landscapes of the Prairie Pothole Region. To address this need, the U.S. Geological Survey (USGS), in collaboration with the USDA Farm Service Agency and Natural Resources Conservation Service, initiated a study to develop and apply approaches to quantify changes in ecosystem services resulting from wetland restoration activities funded by the USDA. To accomplish this goal, the USGS conducted a comprehensive, stratified survey of 204 catchments (wetland and surrounding uplands contributing runoff to the wetland) in 1997 and 270 catchments in 2004 to gather data necessary for estimating various ecosystem services. In 1997 and 2004, the surveys included catchments with seasonal and semipermanent wetlands that were restored as part of USDA conservation programs, as well as nonprogram catchments in native prairie. Additionally, in 2004 data collection was expanded to include temporary wetlands for all treatments and nonprogram cropped catchments for all wetland classes: temporary, seasonal, and semipermanent. A key element in the sample design is that catchments span an alteration gradient ranging from highly altered, such as cropland, to minimally altered, such as native prairie. Therefore, we evaluated restoration programs by comparing changes in program (restored) catchments to nonprogram (cropland and native prairie) catchments. Information collected during both surveys included easily measured soil, vegetation, and morphological variables that were used to estimate the

  19. Determining habitat quality for species that demonstrate dynamic habitat selection

    USGS Publications Warehouse

    Beerens, James M.; Frederick, Peter C; Noonburg, Erik G; Gawlik, Dale E.

    2015-01-01

    Determining habitat quality for wildlife populations requires relating a species' habitat to its survival and reproduction. Within a season, species occurrence and density can be disconnected from measures of habitat quality when resources are highly seasonal, unpredictable over time, and patchy. Here we establish an explicit link among dynamic selection of changing resources, spatio-temporal species distributions, and fitness for predictive abundance and occurrence models that are used for short-term water management and long-term restoration planning. We used the wading bird distribution and evaluation models (WADEM) that estimate (1) daily changes in selection across resource gradients, (2) landscape abundance of flocks and individuals, (3) conspecific foraging aggregation, and (4) resource unit occurrence (at fixed 400 m cells) to quantify habitat quality and its consequences on reproduction for wetland indicator species. We linked maximum annual numbers of nests detected across the study area and nesting success of Great Egrets (Ardea alba), White Ibises (Eudocimus albus), and Wood Storks (Mycteria americana) over a 20-year period to estimated daily dynamics of food resources produced by WADEM over a 7490 km2 area. For all species, increases in predicted species abundance in March and high abundance in April were strongly linked to breeding responses. Great Egret nesting effort and success were higher when birds also showed greater conspecific foraging aggregation. Synthesis and applications: This study provides the first empirical evidence that dynamic habitat selection processes and distributions of wading birds over environmental gradients are linked with reproductive measures over periods of decades. Further, predictor variables at a variety of temporal (daily-multiannual) resolutions and spatial (400 m to regional) scales effectively explained variation in ecological processes that change habitat quality. The process used here allows managers to develop

  20. Harvesting considerations for ecosystem restoration projects

    Treesearch

    Dana Mitchell; John Klepac

    2014-01-01

    There is a need to identify and develop cost effective harvesting systems for ecosystem restoration projects. In the Western United States, pinyon-juniper woodlands are expanding into sagebrush and rangeland ecosystems. In many areas, this growth negatively impacts water, wildlife habitat, biodiversity, and other resources. In other areas, such as Texas and Oklahoma,...

  1. Restoring big sagebrush after controlling encroaching western juniper with fire: aspect and subspecies effects

    USDA-ARS?s Scientific Manuscript database

    The need for restoration of shrubs is increasingly recognized around the world. In the western USA, restoration of mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) Beetle) after controlling encroaching conifers is a priority to improve sagebrush-associated wildlife habitat. ...

  2. Effectiveness of a lifestyle exercise program for older people receiving a restorative home care service: a pragmatic randomized controlled trial.

    PubMed

    Burton, Elissa; Lewin, Gill; Clemson, Lindy; Boldy, Duncan

    2013-01-01

    Restorative home care services are short-term and aimed at maximizing a person's ability to live independently. They are multidimensional and often include an exercise program to improve strength, mobility, and balance. The aim of this study was to determine whether a lifestyle exercise program would be undertaken more often and result in greater functional gains than the current structured exercise program delivered as part of a restorative home care service for older adults. A pragmatic randomized controlled trial was conducted in an organization with an established restorative home care service. Individuals who were to have an exercise program as part of their service were randomized to receive either a lifestyle and functional exercise program called LiFE (as this was a new program, the intervention) or the structured exercise program currently being used in the service (control). Exercise data collected by the individuals throughout and pre and post intervention testing was used to measure balance, strength, mobility, falls efficacy, vitality, function, and disability. There was no difference between the groups in the amounts of exercise undertaken during the 8-week intervention period. Outcome measurement indicated that the LiFE program was as effective, and on 40% of the measures, more effective, than the structured exercise program. Organizations delivering restorative home care services that include an exercise component should consider whether LiFE rather than the exercise program they are currently using could help their clients achieve better outcomes.

  3. Research/Evaluate Restoration of NE Oregon Streams: Effects of Livestock Exclosures (Corridor Fencing) on Riparian Vegetation, Stream Geomorphic Features and Fish Populations; Final Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, J. Boone

    The Pacific Northwest Electric Power Planning and Conservation Act of 1980 indicated ''The council shall properly develop and adopt a program to protect, mitigate, and enhance fish and wildlife, including related spawning grounds and habitat on the Columbia River and its tributaries.'' As a result, the Bonneville Power Administration (BPA) has spent millions of dollars on various instream projects throughout the Columbia Basin with the goal of increasing system-wide production of anadromous fisheries through a combination of habitat restoration and enhancement measures. For two decades, numerous BPA-funded projects have been initiated in the upper Columbia River Basin for the expressmore » intent of improving the aquatic habitats of anadromous salmonids. Largely missing from most of these projects has been any rigorous evaluation of project success or failure. Some field reviews of some habitat projects have been undertaken (e.g., Beschta et al. 1991, Kauffman et al. 1993) and provide an overview of major problems and opportunities associated with selected projects. However, there continues to be a lack of quantifiable information, collected in a systematic manner that could be used as the basis for scientifically assessing the effects of individual projects on riparian/aquatic habitats, functions, or processes. Recent publications (e.g., NRC 1992, ISG 1996, NRC 1996, Beschta 1997, and Kauffman et al. 1997) have identified and summarized important concepts associated with the restoration and improvement of aquatic ecosystems. While such conceptual approaches provide an important structure for those undertaking restoration efforts, there remains a paucity of basic information throughout the upper Columbia Basin on the hydrologic, geomorphic, and biologic responses that occur from various enhancement approaches. Basic data on the spatial and temporal responses of restoration approaches would provide: (1) a better understanding of project effects upon aquatic

  4. Population viability impacts of habitat additions and subtractions: A simulation experiment with endangered kangaroo rats

    EPA Science Inventory

    Species viability is influenced by the quality, quantity and configuration of habitat. For species at risk, a principal challenge is to identify landscape configurations that, if realized, would improve a population’s viability or restoration potential. Critical habitat patche...

  5. Identifying sites for elk restoration in Arkansas

    USGS Publications Warehouse

    Telesco, R.L.; Van Manen, F.T.; Clark, J.D.; Cartwright, Michael E.

    2007-01-01

    We used spatial data to identify potential areas for elk (Cervus elaphus) restoration in Arkansas. To assess habitat, we used locations of 239 elk groups collected from helicopter surveys in the Buffalo National River area of northwestern Arkansas, USA, from 1992 to 2002. We calculated the Mahalanobis distance (D2) statistic based on the relationship between those elk-group locations and a suite of 9 landscape variables to evaluate winter habitat in Arkansas. We tested model performance in the Buffalo National River area by comparing the D2 values of pixels representing areas with and without elk pellets along 19 fixed-width transects surveyed in March 2002. Pixels with elk scat had lower D2 values than pixels in which we found no pellets (logistic regression: Wald χ2 = 24.37, P < 0.001), indicating that habitat characteristics were similar to those selected by the aerially surveyed elk. Our D2 model indicated that the best elk habitat primarily occurred in northern and western Arkansas and was associated with areas of high landscape heterogeneity, heavy forest cover, gently sloping ridge tops and valleys, low human population density, and low road densities. To assess the potential for elk–human conflicts in Arkansas, we used the analytical hierarchy process to rank the importance of 8 criteria based on expert opinion from biologists involved in elk management. The biologists ranked availability of forage on public lands as having the strongest influence on the potential for elk–human conflict (33%), followed by human population growth rate (22%) and the amount of private land in row crops (18%). We then applied those rankings in a weighted linear summation to map the relative potential for elk–human conflict. Finally, we used white-tailed deer (Odocoileus virginianus) densities to identify areas where success of elk restoration may be hampered due to meningeal worm (Parelaphostrongylus tenuis) transmission. By combining results of the 3 spatial data layers

  6. Snapshot of a Multi-Year Multidisciplinary Environmental Mapping and Restoration Project

    ERIC Educational Resources Information Center

    Lusignan, Molly; Abilock, Debbie

    2008-01-01

    This article presents a snapshot of the authors' first restoration project with young children which grew out of a fourth- and fifth-grade forestry curriculum. The restoration project was part of a long-term plan for enhancing the wild areas of the campus for wildlife habitat and for educational use. It is a native oak woodland and riparian…

  7. Why is Habitat Restoration Near the Gulf of Mexico Essential?

    EPA Pesticide Factsheets

    Gulf of Mexico coastal wetlands protect coastal areas from storm damage and sea level rise, support tourism, hunting, and fishing, serve as nesting and foraging habitat for wildlife, improve water quality by removing pollutants, and minimize erosion.

  8. A FRAMEWORK FOR THE ASSESSMENT OF WILDLIFE HABITAT VALUE OF NEW ENGLAND SALT MARSHES

    EPA Science Inventory

    Resource managers are frequently asked to make decisions that affect the protection and restoration of wetland habitats. The desire is often to base at least some part of this decision process on an assessment of wildlife habitat value, an acknowledged and important wetland func...

  9. Process-based principles for restoring river ecosystems

    Treesearch

    Timothy J. Beechie; David A. Sear; Julian D. Olden; George R. Pess; John M. Buffington; Hamish Moir; Philip Roni; Michael M. Pollock

    2010-01-01

    Process-based restoration aims to reestablish normative rates and magnitudes of physical, chemical, and biological processes that sustain river and floodplain ecosystems. Ecosystem conditions at any site are governed by hierarchical regional, watershed, and reach-scale processes controlling hydrologic and sediment regimes; floodplain and aquatic habitat...

  10. Gravel addition as a habitat restoration technique for tailwaters

    Treesearch

    Ryan McManamay; D. Orth; Charles Dolloff; Mark Cantrell

    2010-01-01

    We assessed the efficacy of passive gravel addition at forming catostomid spawning habitat under various flow regimes in the Cheoah River, a high-gradient tailwater river in North Carolina. The purpose was to provide a case study that included recommendations for future applications. A total of 76.3 m3 (162 tons) of washed gravel (10-50 mm) was passively dumped down...

  11. Sandy River Delta Habitat Restoration Project, Annual Report 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Virginia; Dobson, Robin L.

    The Sandy River Delta is located at the confluence of the Sandy and Columbia Rivers, just east of Troutdale, Oregon. It comprises about 1,400 land acres north of Interstate 84, managed by the USDA Forest Service, and associated river banks managed by the Oregon Division of State Lands. Three islands, Gary, Flag and Catham, managed by Metro Greenspaces and the State of Oregon lie to the east, the Columbia River lies to the north and east, and the urbanized Portland metropolitan area lies to the west across the Sandy River. Sandy River Delta was historically a wooded, riparian wetland withmore » components of ponds, sloughs, bottomland woodland, oak woodland, prairie, and low and high elevation floodplain. It has been greatly altered by past agricultural practices and the Columbia River hydropower system. Restoration of historic landscape components is a primary goal for this land. The Forest Service is currently focusing on restoration of riparian forest and wetlands. Restoration of open upland areas (meadow/prairie) would follow substantial completion of the riparian and wetland restoration. The Sandy River Delta is a former pasture infested with reed canary grass, blackberry and thistle. The limited over story is native riparian species such as cottonwood and ash. The shrub and herbaceous layers are almost entirely non-native, invasive species. Native species have a difficult time naturally regenerating in the thick, competing reed canary grass, Himalayan blackberry and thistle. A system of drainage ditches installed by past owners drains water from historic wetlands. The original channel of the Sandy River was diked in the 1930's, and the river diverted into the ''Little Sandy River''. The original Sandy River channel has subsequently filled in and largely become a slough. The FS acquired approximately 1,400 acres Sandy River Delta (SRD) in 1991 from Reynolds Aluminum (via the Trust for Public Lands). The Delta had been grazed for many years but shortly after

  12. Targeting incentives to reduce habitat fragmentation

    Treesearch

    David Lewis; Andrew Plantinga; Junjie Wu

    2009-01-01

    This article develops a theoretical model to analyze the spatial targeting of incentives for the restoration of forested landscapes when wildlife habitat can be enhanced by reducing fragmentation. The key theoretical result is that the marginal net benefits of increasing forest can be convex, in which case corner solutions--converting either none or all of the...

  13. Facilitating political decisions using species distribution models to assess restoration measures in heavily modified estuaries.

    PubMed

    Heuner, Maike; Weber, Arnd; Schröder, Uwe; Kleinschmit, Birgit; Schröder, Boris

    2016-09-15

    The European Water Framework Directive requires a good ecological potential for heavily modified water bodies. This standard has not been reached for most large estuaries by 2015. Management plans for estuaries fall short in linking implementations between restoration measures and underlying spatial analyses. The distribution of emergent macrophytes - as an indicator of habitat quality - is here used to assess the ecological potential. Emergent macrophytes are capable of settling on gentle tidal flats where hydrodynamic stress is comparatively low. Analyzing their habitats based on spatial data, we set up species distribution models with 'elevation relative to mean high water', 'mean bank slope', and 'length of bottom friction' from shallow water up to the vegetation belt as key predictors representing hydrodynamic stress. Effects of restoration scenarios on habitats were assessed applying these models. Our findings endorse species distribution models as crucial spatial planning tools for implementing restoration measures in modified estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Chinook salmon use of spawning patches: relative roles of habitat quality, size, and connectivity.

    PubMed

    Isaak, Daniel J; Thurow, Russell F; Rieman, Bruce E; Dunham, Jason B

    2007-03-01

    Declines in many native fish populations have led to reassessments of management goals and shifted priorities from consumptive uses to species preservation. As management has shifted, relevant environmental characteristics have evolved from traditional metrics that described local habitat quality to characterizations of habitat size and connectivity. Despite the implications this shift has for how habitats may be prioritized for conservation, it has been rare to assess the relative importance of these habitat components. We used an information-theoretic approach to select the best models from sets of logistic regressions that linked habitat quality, size, and connectivity to the occurrence of chinook salmon (Oncorhynchus tshawytscha) nests. Spawning distributions were censused annually from 1995 to 2004, and data were complemented with field measurements that described habitat quality in 43 suitable spawning patches across a stream network that drained 1150 km2 in central Idaho. Results indicated that the most plausible models were dominated by measures of habitat size and connectivity, whereas habitat quality was of minor importance. Connectivity was the strongest predictor of nest occurrence, but connectivity interacted with habitat size, which became relatively more important when populations were reduced. Comparison of observed nest distributions to null model predictions confirmed that the habitat size association was driven by a biological mechanism when populations were small, but this association may have been an area-related sampling artifact at higher abundances. The implications for habitat management are that the size and connectivity of existing habitat networks should be maintained whenever possible. In situations where habitat restoration is occurring, expansion of existing areas or creation of new habitats in key areas that increase connectivity may be beneficial. Information about habitat size and connectivity also could be used to strategically

  15. Restoring Resiliency: Case Studies from Pacific Northwest Estuarine Eelgrass (Zostera marina L.) Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thom, Ronald M.; Diefenderfer, Heida L.; Vavrinec, John

    2012-01-01

    The purpose of many ecological restoration projects is to establish an ecosystem with fully developed structure and function that exhibits resistance to and resilience from disturbances. Coastal restoration projects in the Pacific Northwest provide opportunities to understand what is required to restore the resilience of eelgrass (Zostera marina L.) populations. Factors influencing resilience observed in three case studies of eelgrass restoration include minimum viable population, adaptations of transplant populations, and natural and anthropogenic disturbances at restoration sites. The evaluation of resiliency depends on selecting appropriate monitoring metrics and the frequency and duration of monitoring. Eelgrass area, cover and shoot densitymore » provide useful and reliable metrics for quantifying resilience of restored meadows. Further, five years of monitoring of these metrics provides data that can reasonably predict the long-term viability of a planted plot. Eelgrass appears to be a resilient ecosystem in general, though one that data suggest may exhibit tipping points brought about by compounded environmental conditions outside of its tolerance ranges. Explicit inclusion of resilience in the planning and practice of habitat restoration may reduce uncertainties and improve the performance of restored systems by increasing buffering capacity, nurturing sources of renewal (e.g., seeds and rhizomes), and managing for habitat forming and maintaining processes (e.g., sediment dynamics) at multiple scales.« less

  16. River and riparian restoration in the southwest: Results of the National River Restoration Science Synthesis project

    USGS Publications Warehouse

    Follstad, Shah J.J.; Dahm, Clifford N.; Gloss, S.P.; Bernhardt, E.S.

    2007-01-01

    Restoration activity has exponentially increased across the Southwest since 1990. Over 37,000 records were compiled into the National River Restoration Science Synthesis (NRRSS) database to summarize restoration trends and assess project effectiveness. We analyzed data from 576 restoration projects in the Southwest (NRRSS-SW). More than 50% of projects were less than or equal to 3 km in length. The most common restoration project intent categories were riparian management, water quality management, in-stream habitat improvement, and flow modification. Common project activities were well matched to goals. Conservative estimates of total restoration costs exceeded $500 million. Most restoration dollars have been allocated to flow modification and water quality management. Monitoring was linked to 28% of projects across the Southwest, as opposed to just 10% nationwide. Mean costs were statistically similar whether or not projects were monitored. Results from 48 telephone interviews provided validation of NRRSS-SW database analyses but showed that project costs are often underreported within existing datasets. The majority of interviewees considered their projects to be successful, most often based upon observed improvements to biota or positive public reaction rather than evaluation of field data. The efficacy of restoration is difficult to ascertain given the dearth of information contained within most datasets. There is a great need for regional entities that not only track information on project implementation but also maintain and analyze monitoring data associated with restoration. Agencies that fund or regulate restoration should reward projects that emphasize monitoring and evaluation as much as project implementation. ?? 2007 Society for Ecological Restoration International.

  17. Characteristics of summer and fall diurnal resting habitat used by American martens in coastal northwestern California

    Treesearch

    K. M. Slauson; W. J. Zielinski

    2009-01-01

    American martens use resting habitat between periods of activity to provide both thermal refugia and protection from predators. Maintenance or restoration of key elements of marten resting habitat, such as resting structures, requires that managers recognize their characteristics to protect them, or manage for their creation. We measured resting habitat at 4 scales: (1...

  18. Introduction to stream network habitat analysis

    USGS Publications Warehouse

    Bartholow, John M.; Waddle, Terry J.

    1986-01-01

    Increasing demands on stream resources by a variety of users have resulted in an increased emphasis on studies that evaluate the cumulative effects of basinwide water management programs. Network habitat analysis refers to the evaluation of an entire river basin (or network) by predicting its habitat response to alternative management regimes. The analysis principally focuses on the biological and hydrological components of the riv er basin, which include both micro- and macrohabitat. (The terms micro- and macrohabitat are further defined and discussed later in this document.) Both conceptual and analytic models are frequently used for simplifying and integrating the various components of the basin. The model predictions can be used in developing management recommendations to preserve, restore, or enhance instream fish habitat. A network habitat analysis should begin with a clear and concise statement of the study objectives and a thorough understanding of the institutional setting in which the study results will be applied. This includes the legal, social, and political considerations inherent in any water management setting. The institutional environment may dictate the focus and level of detail required of the study to a far greater extent than the technical considerations. After the study objectives, including species on interest, and institutional setting are collectively defined, the technical aspects should be scoped to determine the spatial and temporal requirements of the analysis. A macro level approach should be taken first to identify critical biological elements and requirements. Next, habitat availability is quantified much as in a "standard" river segment analysis, with the likely incorporation of some macrohabitat components, such as stream temperature. Individual river segments may be aggregated to represent the networkwide habitat response of alternative water management schemes. Things learned about problems caused or opportunities generated may

  19. Survey of beaver-related restoration practices in rangeland streams of the western USA

    Treesearch

    David S. Pilliod; Ashley T. Rohde; Susan Charnley; Rachael R. Davee; Jason B. Dunham; Hannah Gosnell; Gordon E. Grant; Mark B. Hausner; Justin L. Huntington; Caroline Nash

    2018-01-01

    Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the...

  20. Thatcher Bay, Washington, Nearshore Restoration Assessment

    USGS Publications Warehouse

    Breems, Joel; Wyllie-Echeverria, Sandy; Grossman, Eric E.; Elliott, Joel

    2009-01-01

    The San Juan Archipelago, located at the confluence of the Puget Sound, the Straits of Juan de Fuca in Washington State, and the Straits of Georgia, British Columbia, Canada, provides essential nearshore habitat for diverse salmonid, forage fish, and bird populations. With 408 miles of coastline, the San Juan Islands provide a significant portion of the available nearshore habitat for the greater Puget Sound and are an essential part of the regional efforts to restore Puget Sound (Puget Sound Shared Strategy 2005). The nearshore areas of the San Juan Islands provide a critical link between the terrestrial and marine environments. For this reason the focus on restoration and conservation of nearshore habitat in the San Juan Islands is of paramount importance. Wood-waste was a common by-product of historical lumber-milling operations. To date, relatively little attention has been given to the impact of historical lumber-milling operations in the San Juan Archipelago. Thatcher Bay, on Blakely Island, located near the east edge of the archipelago, is presented here as a case study on the restoration potential for a wood-waste contaminated nearshore area. Case study components include (1) a brief discussion of the history of milling operations. (2) an estimate of the location and amount of the current distribution of wood-waste at the site, (3) a preliminary examination of the impacts of wood-waste on benthic flora and fauna at the site, and (4) the presentation of several restoration alternatives for the site. The history of milling activity in Thatcher Bay began in 1879 with the construction of a mill in the southeastern part of the bay. Milling activity continued for more than 60 years, until the mill closed in 1942. Currently, the primary evidence of the historical milling operations is the presence of approximately 5,000 yd3 of wood-waste contaminated sediments. The distribution and thickness of residual wood-waste at the site was determined by using sediment

  1. Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia

    NASA Astrophysics Data System (ADS)

    Blandon, Abigayil; zu Ermgassen, Philine S. E.

    2014-03-01

    Seagrass provides many ecosystem services that are of considerable value to humans, including the provision of nursery habitat for commercial fish stock. Yet few studies have sought to quantify these benefits. As seagrass habitat continues to suffer a high rate of loss globally and with the growing emphasis on compensatory restoration, valuation of the ecosystem services associated with seagrass habitat is increasingly important. We undertook a meta-analysis of juvenile fish abundance at seagrass and control sites to derive a quantitative estimate of the enhancement of juvenile fish by seagrass habitats in southern Australia. Thirteen fish of commercial importance were identified as being recruitment enhanced in seagrass habitat, twelve of which were associated with sufficient life history data to allow for estimation of total biomass enhancement. We applied von Bertalanffy growth models and species-specific mortality rates to the determined values of juvenile enhancement to estimate the contribution of seagrass to commercial fish biomass. The identified species were enhanced in seagrass by 0.98 kg m-2 y-1, equivalent to ˜$A230,000 ha-1 y-1. These values represent the stock enhancement where all fish species are present, as opposed to realized catches. Having accounted for the time lag between fish recruiting to a seagrass site and entering the fishery and for a 3% annual discount rate, we find that seagrass restoration efforts costing $A10,000 ha-1 have a potential payback time of less than five years, and that restoration costing $A629,000 ha-1 can be justified on the basis of enhanced commercial fish recruitment where these twelve fish species are present.

  2. Diverse characteristics of wetlands restored under the Wetlands Reserve Program in the Southeastern United States

    Treesearch

    Diane De Steven; Joel M. Gramling

    2012-01-01

    The Wetlands Reserve Program (WRP) restores converted or degraded wetlands on private working lands; however, the nature and outcomes of such efforts are undocumented in the Southeastern U.S. Identification of wetland types is needed to assess the program's conservation benefits, because ecological functions differ with hydrogeomorphic (HGM) type. We reviewed...

  3. Spatial and stage-structured population model of the American crocodile for comparison of comprehensive Everglades Restoration Plan (CERP) alternatives

    USGS Publications Warehouse

    Green, Timothy W.; Slone, Daniel H.; Swain, Eric D.; Cherkiss, Michael S.; Lohmann, Melinda; Mazzotti, Frank J.; Rice, Kenneth G.

    2010-01-01

    As part of the U.S. Geological Survey Priority Ecosystems Science (PES) initiative to provide the ecological science required during Everglades restoration, we have integrated current regional hydrologic models with American crocodile (Crocodylus acutus) research and monitoring data to create a model that assesses the potential impact of Comprehensive Everglades Restoration Plan (CERP) efforts on the American crocodile. A list of indicators was created by the Restoration Coordination and Verification (RECOVER) component of CERP to help determine the success of interim restoration goals. The American crocodile was established as an indicator of the ecological condition of mangrove estuaries due to its reliance upon estuarine environments characterized by low salinity and adequate freshwater inflow. To gain a better understanding of the potential impact of CERP restoration efforts on the American crocodile, a spatially explicit crocodile population model has been created that has the ability to simulate the response of crocodiles to various management strategies for the South Florida ecosystem. The crocodile model uses output from the Tides and Inflows in the Mangroves of the Everglades (TIME) model, an application of the Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) simulator. TIME has the capability to link to the South Florida Water Management Model (SFWMM), which is the primary regional tool used to assess CERP restoration scenarios. A crocodile habitat suitability index and spatial parameter maps that reflect salinity, water depth, habitat, and nesting locations are used as driving functions to construct crocodile finite rate of increase maps under different management scenarios. Local stage-structured models are integrated with a spatial landscape grid to display crocodile movement behavior in response to changing environmental conditions. Restoration efforts are expected to affect salinity levels throughout the habitat of

  4. Longleaf pine plantations: Growth and yield modeling in an ecosystem restoration context

    Treesearch

    J.C.G. Goelz

    2001-01-01

    Restoration of longleaf pine within its historical range is actively conducted by private individuals and public agencies due to the inherent beauty of the ecosystem and the suitability as habitat for red cockaded woodpeckers and other wildlife. Managers of land restored to longleaf pine desire models that will allow long-term projections to facilitate management...

  5. Pink shrimp as an indicator for restoration of everglades ecosystems

    USGS Publications Warehouse

    Browder, Joan A.; Robblee, M.B.

    2009-01-01

    The pink shrimp, Farfantepenaeus duorarum, familiar to most Floridians as either food or bait shrimp, is ubiquitous in South Florida coastal and offshore waters and is proposed as an indicator for assessing restoration of South Florida's southern estuaries: Florida Bay, Biscayne Bay, and the mangrove estuaries of the lower southwest coast. Relationships between pink shrimp and salinity have been determined in both field and laboratory studies. Salinity is directly relevant to restoration because the salinity regimes of South Florida estuaries, critical nursery habitat for the pink shrimp, will be altered by changes in the quantity, timing, and distribution of freshwater inflow planned as part of the Comprehensive Everglades Restoration Project (CERP). Here we suggest performance measures based on pink shrimp density (number per square meter) in the estuaries and propose a restoration assessment and scoring scheme using these performance measures that can readily be communicated to managers, policy makers, and the interested public. The pink shrimp is an appropriate restoration indicator because of its ecological as well as its economic importance and also because scientific interest in pink shrimp in South Florida has produced a wealth of information about the species and relatively long time series of data on both juveniles in estuarine nursery habitats and adults on the fishing grounds. We suggest research needs for improving the pink shrimp performance measure.

  6. Butterfly (Papilionoidea and Hesperioidea) assemblages associated with natural, exotic, and restored riparian habitats along the lower Colorado River, USA

    USGS Publications Warehouse

    Nelson, S.M.; Andersen, D.C.

    1999-01-01

    Butterfly assemblages were used to compare revegetated and natural riparian areas along the lower Colorado River. Species richness and correspondence analyses of assemblages showed that revegetated sites had fewer biological elements than more natural sites along the Bill Williams River. Data suggest that revegetated sites do not provide resources needed by some members of the butterfly assemblage, especially those species historically associated with the cottonwood/willow ecosystem. Revegetated sites generally lacked nectar resources, larval host plants, and closed canopies. The riparian system along the regulated river segment that contains these small revegetated sites also appears to have diminished habitat heterogeneity and uncoupled riparian corridors.Revegetated sites were static environments without the successional stages caused by flooding disturbance found in more natural systems. We hypothesize that revegetation coupled with a more natural hydrology is important for restoration of butterfly assemblages along the lower Colorado River. 

  7. Patch dynamics and the timing of colonization-abandonment events by male Kirtland’s Warblers in an early succession habitat

    USGS Publications Warehouse

    Donner, Deahn M.; Ribic, Christine; Probst, John R.

    2010-01-01

    Habitat colonization and abandonment affects the distribution of a species in space and time, ultimately influencing the duration of time habitat is used and the total area of habitat occupied in any given year. Both aspects have important implications to long-term conservation planning. The importance of patch isolation and area to colonization–extinction events is well studied, but little information exists on how changing regional landscape structure and population dynamics influences the variability in the timing of patch colonization and abandonment events. We used 26 years of Kirtland’s Warbler (Dendroica kirtlandii) population data taken during a habitat restoration program (1979–2004) across its historical breeding range to examine the influence of patch attributes and temporal large-scale processes, specifically the rate of habitat turnover and fraction of occupied patches, on the year-to-year timing of patch colonization and abandonment since patch origin. We found the timing of patch colonization and abandonment was influenced by patch and large-scale regional factors. In this system, larger patches were typically colonized earlier (i.e., at a younger age) and abandoned later than smaller patches. Isolated patches (i.e., patches farther from another occupied patch) were generally colonized later and abandoned earlier. Patch habitat type affected colonization and abandonment; colonization occurred at similar patch ages between plantation and wildfire areas (9 and 8.5 years, respectively), but plantations were abandoned at earlier ages (13.9 years) than wildfire areas (16.4 years) resulting in shorter use. As the fraction of occupied patches increased, patches were colonized and abandoned at earlier ages. Patches were abandoned at older ages when the influx of new habitat patches was at low and high rates. Our results provide empirical support for the temporal influence of patch dynamics (i.e., patch destruction, creation, and succession) on

  8. Ecosystem restoration on the California Channel Islands

    USGS Publications Warehouse

    Halvorson, W.L.

    2004-01-01

    Restoration of natural habitat has become increasingly important over the last three decades in the United States, first as mitigation for development (especially in wetlands), and more recently in natural areas. This latter restoration has come about as land managing agencies have seen the need to reverse the impact of past land uses and agencies like the National Park Service have taken on the responsibility for less-than-pristine lands. Restorations have typically been carried out with little prior study and with no follow-up monitoring. On the Channel Islands, the need for restoration is great, but the desire is to base this restoration on sound ecological understanding. By conducting surveys, implementing long-term research and monitoring, and by conducting population and community dynamics research, the necessary data is obtained to arrive at such an understanding. Once management actions have been taken to effect restoration, monitoring is used to determine the success of those actions. The intention is to gain enough of an understanding of the islands' ecosystems that we can manage to restore, not just populations of native plants and animals, but also the processes of a naturally functioning ecosystem. ?? International Scientific Publications, New Delhi.

  9. 50 CFR 80.122 - May an agency deduct the costs of generating program income from gross income?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE AND SPORT... DINGELL-JOHNSON SPORT FISH RESTORATION ACTS Program Income § 80.122 May an agency deduct the costs of... to a grant-funded habitat-management or facilities-construction project. (2) Cost of publishing...

  10. 50 CFR 80.122 - May an agency deduct the costs of generating program income from gross income?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE AND SPORT... DINGELL-JOHNSON SPORT FISH RESTORATION ACTS Program Income § 80.122 May an agency deduct the costs of... to a grant-funded habitat-management or facilities-construction project. (2) Cost of publishing...

  11. A Role for Agroforestry in Forest Restoration in the Lower Mississippi Alluvial Valley

    Treesearch

    Michael G. Dosskey; Gary Bentrup; Michele Schoeneberger

    2012-01-01

    Agroforestry options are explored for restoring important functions and values of bottomland hardwood (BLH) forests in the lower Mississippi River Alluvial Valley (LMAV). Agroforestry practices can augment the size and quality of BLH habitat, provide corridors between BLH areas, and enable restoration of natural hydrologic patterns and water quality. Agroforestry...

  12. Assessing Restoration Effects on River Hydromorphology Using the Process-based Morphological Quality Index in Eight European River Reaches

    NASA Astrophysics Data System (ADS)

    Belletti, B.; Nardi, L.; Rinaldi, M.; Poppe, M.; Brabec, K.; Bussettini, M.; Comiti, F.; Gielczewski, M.; Golfieri, B.; Hellsten, S.; Kail, J.; Marchese, E.; Marcinkowski, P.; Okruszko, T.; Paillex, A.; Schirmer, M.; Stelmaszczyk, M.; Surian, N.

    2018-01-01

    The Morphological Quality Index (MQI) and the Morphological Quality Index for monitoring (MQIm) have been applied to eight case studies across Europe with the objective of analyzing the hydromorphological response to various restoration measures and of comparing the results of the MQI and MQIm as a morphological assessment applied at the reach scale, with a conventional site scale physical-habitat assessment method. For each restored reach, the two indices were applied to the pre-restoration and post-restoration conditions. The restored reach was also compared to an adjacent, degraded reach. Results show that in all cases the restoration measures improved the morphological quality of the reach, but that the degree of improvement depends on many factors, including the initial morphological conditions, the length of the restored portion in relation to the reach length, and on the type of intervention. The comparison with a conventional site scale physical-habitat assessment method shows that the MQI and MQIm are best suited for the evaluation of restoration effects on river hydromorphology at the geomorphologically-relevant scale of the river reach.

  13. Assessing Restoration Effects on River Hydromorphology Using the Process-based Morphological Quality Index in Eight European River Reaches.

    PubMed

    Belletti, B; Nardi, L; Rinaldi, M; Poppe, M; Brabec, K; Bussettini, M; Comiti, F; Gielczewski, M; Golfieri, B; Hellsten, S; Kail, J; Marchese, E; Marcinkowski, P; Okruszko, T; Paillex, A; Schirmer, M; Stelmaszczyk, M; Surian, N

    2018-01-01

    The Morphological Quality Index (MQI) and the Morphological Quality Index for monitoring (MQIm) have been applied to eight case studies across Europe with the objective of analyzing the hydromorphological response to various restoration measures and of comparing the results of the MQI and MQIm as a morphological assessment applied at the reach scale, with a conventional site scale physical-habitat assessment method. For each restored reach, the two indices were applied to the pre-restoration and post-restoration conditions. The restored reach was also compared to an adjacent, degraded reach. Results show that in all cases the restoration measures improved the morphological quality of the reach, but that the degree of improvement depends on many factors, including the initial morphological conditions, the length of the restored portion in relation to the reach length, and on the type of intervention. The comparison with a conventional site scale physical-habitat assessment method shows that the MQI and MQIm are best suited for the evaluation of restoration effects on river hydromorphology at the geomorphologically-relevant scale of the river reach.

  14. Seasonal habitat-use patterns of nekton in a tide-restricted and unrestricted New England salt marsh

    USGS Publications Warehouse

    Raposa, K.B.; Roman, C.T.

    2001-01-01

    Many New England salt marshes remain tide-restricted or are undergoing tidal restoration. Hydrologic manipulation of salt marshes affects marsh biogeochemistry and vegetation patterns, but responses by fishes and decapod crustaceans (nekton) remain unclear, This study examines nekton habitat-use patterns in the tide-restricted Hatches Harbor salt marsh (Provincetown, Massachusetts) relative to a downstream, unrestricted marsh. Nekton assemblages were sampled in tidal creek, marsh pool, and salt marsh surface habitats. Pools and creeks were sampled every two weeks for one year to account for seasonal variability, and the marsh surface was sampled at two-week intervals in summer and fall. Density, richness, and community composition of nekton in creek and marsh surface habitats were similar between the unrestricted and restricted marsh, but use of pools differed drastically on the two sides of the tide-restricting dike. In 95% of the cases tested, restricted marsh habitats provided equal or greater habitat value for nekton than the same habitat in the unrestricted marsh (based on density), suggesting that the restricted marsh did not provide a degraded habitat for most species. For some species, the restricted marsh provided nursery, breeding, and overwintering habitat during different seasons, and tidal restoration of this salt marsh must be approached with care to prevent losses of these valuable marsh functions.

  15. Making habitat connectivity a reality.

    PubMed

    Keeley, Annika T H; Basson, Galli; Cameron, D Richard; Heller, Nicole E; Huber, Patrick R; Schloss, Carrie A; Thorne, James H; Merenlender, Adina M

    2018-06-19

    For over 40 years, habitat corridors have been a solution for sustaining wildlife in fragmented landscapes, and now are often suggested as a climate adaptation strategy. However, while a plethora of connectivity plans exist, protecting and restoring habitat connectivity through on-the-ground action has been slow. We identified implementation challenges and opportunities through a literature review of project implementation, a science-practice workshop, and interviews with conservation professionals. Our research indicates that connectivity challenges and solutions tend to be context-specific, dependent on land ownership patterns, socioeconomic factors, and the policy framework. We found evidence that developing and promoting a common vision shared by a diverse set of stakeholders including nontraditional conservation actors, such as water districts and recreation departments, and through communication among and between partners and the public is key to successful implementation. Other factors that lead to successful implementation include undertaking empirical studies to prioritize and validate corridors and the identification of related co-benefits of corridor projects. Engaging partners involved in land management and planning, such as non-governmental conservation organizations, public agencies, and private landowners is critical to effective strategy implementation. A clear regulatory framework including unambiguous connectivity conservation mandates would increase public resource allocation, and incentive programs are needed to promote private sector engagement. We argue that connectivity conservation must more rapidly move from planning to implementation and provide an evidence-based solution made up of key elements for successful on-the-ground connectivity implementation. The components of this new framework constitute the social processes necessary to advance habitat connectivity for biodiversity conservation and resilient landscapes under climate change

  16. Large-scale restoration mitigate land degradation and support the establishment of green infrastructure

    NASA Astrophysics Data System (ADS)

    Tóthmérész, Béla; Mitchley, Jonathan; Jongepierová, Ivana; Baasch, Annett; Fajmon, Karel; Kirmer, Anita; Prach, Karel; Řehounková, Klára; Tischew, Sabine; Twiston-Davies, Grace; Dutoit, Thierry; Buisson, Elise; Jeunatre, Renaud; Valkó, Orsolya; Deák, Balázs; Török, Péter

    2017-04-01

    Sustaining the human well-being and the quality of life, it is essential to develop and support green infrastructure (strategically planned network of natural and semi-natural areas with other environmental features designed and managed to deliver a wide range of ecosystem services). For developing and sustaining green infrastructure the conservation and restoration of biodiversity in natural and traditionally managed habitats is essential. Species-rich landscapes in Europe have been maintained over centuries by various kinds of low-intensity use. Recently, they suffered by losses in extent and diversity due to land degradation by intensification or abandonment. Conservation of landscape-scale biodiversity requires the maintenance of species-rich habitats and the restoration of lost grasslands. We are focusing on landscape-level restoration studies including multiple sites in wide geographical scale (including Czech Republic, France, Germany, Hungary, and UK). In a European-wide perspective we aimed at to address four specific questions: (i) What were the aims and objectives of landscape-scale restoration? (ii) What results have been achieved? (iii) What are the costs of large-scale restoration? (iv) What policy tools are available for the restoration of landscape-scale biodiversity? We conclude that landscape-level restoration offers exciting new opportunities to reconnect long-disrupted ecological processes and to restore landscape connectivity. Generally, these measures enable to enhance the biodiversity at the landscape scale. The development of policy tools to achieve restoration at the landscape scale are essential for the achievement of the ambitious targets of the Convention on Biological Diversity and the European Biodiversity Strategy for ecosystem restoration.

  17. Vegetation development following stream/river restoration: more natural fluvial dynamics and morphology, return of aquatic and riparian plant species?

    NASA Astrophysics Data System (ADS)

    Soons, M. B.

    2012-04-01

    After centuries of human interventions in stream/river dynamics and morphology aimed at optimizing landscapes for agricultural and industrial purposes, new insights have inspired water managers to try and combine stream and river ecosystem functions with the conservation of biodiversity. Around the world, aquatic and riparian species have declined strongly due to pollution, destruction and fragmentation of their habitat, so that biodiversity conservation initiatives primarily focus on habitat restoration. In the past decades many stream and river restoration projects have been carried out and often hydrological dynamics and morphology have been restored to a more natural state. However, the successful restoration of aquatic and riparian habitats very often failed to result in restoration of their biodiversity. This lack of success from a biodiversity conservation perspective is usually attributed to 'dispersal limitation', meaning that the habitat may be restored, but species fail to reach the site and re-colonize it. Especially re-colonization by aquatic and riparian plant species is important, as such species function as ecosystem engineers: their presence alters fluvial dynamics and morphology, generates additional habitat heterogeneity and provides habitat and food for animal species. Following minor disturbances, re-colonization is often possible through locally remaining populations, by seeds in the seed bank or by surviving plant fragments. However, following major disturbances, colonization and establishment from other source populations are necessary. This usually occurs through dispersal of seeds (and in more aquatic species also by dispersal of vegetative fragments) into the restored wetland area. As dispersal occurs predominantly over short distances and source populations of aquatic and riparian species may be lacking in the surroundings, dispersal may be a limiting factor in the development of aquatic and riparian vegetation at a restored site. But

  18. Additional disturbances as a beneficial tool for restoration of post-mining sites: a multi-taxa approach.

    PubMed

    Řehounková, Klára; Čížek, Lukáš; Řehounek, Jiří; Šebelíková, Lenka; Tropek, Robert; Lencová, Kamila; Bogusch, Petr; Marhoul, Pavel; Máca, Jan

    2016-07-01

    Open interior sands represent a highly threatened habitat in Europe. In recent times, their associated organisms have often found secondary refuges outside their natural habitats, mainly in sand pits. We investigated the effects of different restoration approaches, i.e. spontaneous succession without additional disturbances, spontaneous succession with additional disturbances caused by recreational activities, and forestry reclamation, on the diversity and conservation values of spiders, beetles, flies, bees and wasps, orthopterans and vascular plants in a large sand pit in the Czech Republic, Central Europe. Out of 406 species recorded in total, 112 were classified as open sand specialists and 71 as threatened. The sites restored through spontaneous succession with additional disturbances hosted the largest proportion of open sand specialists and threatened species. The forestry reclamations, in contrast, hosted few such species. The sites with spontaneous succession without disturbances represent a transition between these two approaches. While restoration through spontaneous succession favours biodiversity in contrast to forestry reclamation, additional disturbances are necessary to maintain early successional habitats essential for threatened species and open sand specialists. Therefore, recreational activities seem to be an economically efficient restoration tool that will also benefit biodiversity in sand pits.

  19. Quartermaster Reach Restoration Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Quartermaster Reach Restoration Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  20. Coastal Louisiana Wetlands Restoration Monitoring with Global Fiducials Program (GFP) Imagery

    NASA Astrophysics Data System (ADS)

    Fisher, G.

    2012-12-01

    Coastal Louisiana has experienced dramatic landscape change over the past century due to human induced changes to the environment as well as an onslaught of major coastal storms. Coastal Louisiana loses on average 25-35 square miles of land per year. The USGS has partnered with the National Oceanographic and Atmospheric Administration (NOAA) - National Marine Fisheries Service to provide cyclical remote sensing data for selected restoration sites along the coast of Louisiana. Three of these sites are actively maintained in the GFP archive - Atchafalaya River Delta, East Timbalier Island, and Pecan Island. These three sites coincide with NOAA restoration sites that have been monitored since early 2000. The GFP has provided a consistent set of remote sensing data that has greatly benefited the long-term monitoring of these restoration sites. Long-term monitoring of these sites includes both pre- and post-hurricane season data collection used to identify landscape change along the coast. The long-term monitoring also has helped to identify areas of success in the restoration projects, as well as areas that have continued to decline in spite of restoration efforts. These three sites are significant to the program because they provide a variety of coastal landscape types: an open water barrier island environment at East Timbalier Island; coastal wetlands at Pecan Island, which have experienced subsidence of the marsh and convergence to an open water environment; and a deltaic marsh environment at Atchafalaya River Delta. Long-term monitoring of these sites has provided a wealth of knowledge about the changes occurring, as well as a valuable tool for reliable shoreline measurements. Continued monitoring is necessary to accurately assess the condition of these areas as environmental conditions continue to shape the landscape.

  1. Primary restoration : guidance document for natural resource damage assessment under the Oil Pollution Act of 1990

    DOT National Transportation Integrated Search

    1996-08-01

    The purpose of the [document] is to review the state of the art for restoration of certain habitats and biological natural resources and evaluate potential restoration actions following injury to natural resources resulting from the discharge of oil.

  2. Restoring arid western habitats: Native plants maximize wildlife conservation effectiveness

    Treesearch

    Kas Dumroese; Jeremy Pinto; Deborah M. Finch

    2016-01-01

    Greater sage-grouse (Centrocercus urophasianus) and monarch butterflies (Danaus plexippus) and other pollinating insects have garnered a lot of attention recently from federal and state wildlife officials. These two species and pollinators share dwindling sagebrush habitat in the western United States that is putting their populations at risk. Sagebrush...

  3. Building a potential wetland restoration indicator for the contiguous United States

    PubMed Central

    Horvath, Elena K.; Christensen, Jay R.; Mehaffey, Megan H.; Neale, Anne C.

    2018-01-01

    Wetlands provide key functions in the landscape from improving water quality, to regulating flows, to providing wildlife habitat. Over half of the wetlands in the contiguous United States (CONUS) have been converted to agricultural and urban land uses. However, over the last several decades, research has shown the benefits of wetlands to hydrologic, chemical, biological processes, spurring the creation of government programs and private initiatives to restore wetlands. Initiatives tend to focus on individual wetland creation, yet the greatest benefits are achieved when strategic restoration planning occurs across a watershed or multiple watersheds. For watershed-level wetland restoration planning to occur, informative data layers on potential wetland areas are needed. We created an indicator of potential wetland areas (PWA), using nationally available datasets to identify characteristics that could support wetland ecosystems, including: poorly drained soils and low-relief landscape positions as indicated by a derived topographic data layer. We compared our PWA with the National Wetlands Inventory (NWI) from 11 states throughout the CONUS to evaluate their alignment. The state-level percentage of NWI-designated wetlands directly overlapping the PWA ranged from 39 to 95%. When we included NWI that was immediately adjacent to the overlapping NWI, our range of correspondence to NWI ranged from 60 to 99%. Wetland restoration is more likely on certain landscapes (e.g., agriculture) than others due to the lack of substantive infrastructure and the potential for the restoration of hydrology; therefore, we combined the National Land Cover Dataset (NLCD) with the PWA to identify potentially restorable wetlands on agricultural land (PRW-Ag). The PRW-Ag identified a total of over 46 million ha with the potential to support wetlands. The largest concentrations of PRW-Ag occurred in the glaciated corn belt of the upper Mississippi River from Ohio to the Dakotas and in the

  4. Building a potential wetland restoration indicator for the contiguous United States.

    PubMed

    Horvath, Elena K; Christensen, Jay R; Mehaffey, Megan H; Neale, Anne C

    2017-01-01

    Wetlands provide key functions in the landscape from improving water quality, to regulating flows, to providing wildlife habitat. Over half of the wetlands in the contiguous United States (CONUS) have been converted to agricultural and urban land uses. However, over the last several decades, research has shown the benefits of wetlands to hydrologic, chemical, biological processes, spurring the creation of government programs and private initiatives to restore wetlands. Initiatives tend to focus on individual wetland creation, yet the greatest benefits are achieved when strategic restoration planning occurs across a watershed or multiple watersheds. For watershed-level wetland restoration planning to occur, informative data layers on potential wetland areas are needed. We created an indicator of potential wetland areas (PWA), using nationally available datasets to identify characteristics that could support wetland ecosystems, including: poorly drained soils and low-relief landscape positions as indicated by a derived topographic data layer. We compared our PWA with the National Wetlands Inventory (NWI) from 11 states throughout the CONUS to evaluate their alignment. The state-level percentage of NWI-designated wetlands directly overlapping the PWA ranged from 39 to 95%. When we included NWI that was immediately adjacent to the overlapping NWI, our range of correspondence to NWI ranged from 60 to 99%. Wetland restoration is more likely on certain landscapes (e.g., agriculture) than others due to the lack of substantive infrastructure and the potential for the restoration of hydrology; therefore, we combined the National Land Cover Dataset (NLCD) with the PWA to identify potentially restorable wetlands on agricultural land (PRW-Ag). The PRW-Ag identified a total of over 46 million ha with the potential to support wetlands. The largest concentrations of PRW-Ag occurred in the glaciated corn belt of the upper Mississippi River from Ohio to the Dakotas and in the

  5. Projecting the success of plant restoration with population viability analysis

    USGS Publications Warehouse

    Bell, T.J.; Bowles, M.L.; McEachern, A.K.; Brigham, C.A.; Schwartz, M.W.

    2003-01-01

    Conserving viable populations of plant species requires that they have high probabilities of long-term persistence within natural habitats, such as a chance of extinction in 100 years of less than 5% (Menges 1991, 1998; Brown 1994; Pavlik 1994; Chap. 1, this Vol.). For endangered and threatened species that have been severely reduces in range and whose habitats have been fragmented, important species conservation strategies may include augmenting existing populations or restoring new viable populations (Bowles and Whelan 1994; Chap. 2, this Vol.). Restoration objectives may include increasing population numbers to reduce extinction probability, deterministic manipulations to develop a staged cohort structure, or more complex restoration of a desired genetic structure to allow outcrossing or increase effective population size (DeMauro 1993, 1994; Bowles et al. 1993, 1998; Pavlik 1994; Knapp and Dyer 1998; Chap. 2, this Vol.). These efforts may require translocation of propagules from existing (in situ) populations, or from ex situ botanic gardens or seed storage facilities (Falk et al. 1996; Guerrant and Pavlik 1998; Chap. 2, this Vol.). Population viability analysis (PVA) can provide a critical foundation for plant restoration, as it models demographic projections used to evaluate the probability of population persistence and links plant life history with restoration strategies. It is unknown how well artificially created populations will meet demographic modeling requirements (e.g., due to artificial cohort transitions) and few, if any, PVAs have been applied to restorations. To guide application of PVA to restored populations and to illustrate potential difficulties, we examine effects of planting different life stages, model initial population sizes needed to achieve population viability, and compare demographic characteristics between natural and restored populations. We develop and compare plant population restoration viability analysis (PRVA) case studies of

  6. Costs and regional impacts of restoration thinning programs on the national forests in eastern Oregon.

    Treesearch

    Darius M. Adams; Gregory S. Latta

    2005-01-01

    An intertemporal spatial equilibrium model of the eastern Oregon softwood log market was employed to estimate the market and economic welfare impacts of restoration thinning programs established on national forests in the region. Programs treated only lands with sawtimber thinning volume and varied by the extent of public subsidies for costs, the types of costs that...

  7. An ecological genetic delineation of local seed-source provenance for ecological restoration

    PubMed Central

    Krauss, Siegfried L; Sinclair, Elizabeth A; Bussell, John D; Hobbs, Richard J

    2013-01-01

    An increasingly important practical application of the analysis of spatial genetic structure within plant species is to help define the extent of local provenance seed collection zones that minimize negative impacts in ecological restoration programs. Here, we derive seed sourcing guidelines from a novel range-wide assessment of spatial genetic structure of 24 populations of Banksia menziesii (Proteaceae), a widely distributed Western Australian tree of significance in local ecological restoration programs. An analysis of molecular variance (AMOVA) of 100 amplified fragment length polymorphism (AFLP) markers revealed significant genetic differentiation among populations (ΦPT = 0.18). Pairwise population genetic dissimilarity was correlated with geographic distance, but not environmental distance derived from 15 climate variables, suggesting overall neutrality of these markers with regard to these climate variables. Nevertheless, Bayesian outlier analysis identified four markers potentially under selection, although these were not correlated with the climate variables. We calculated a global R-statistic using analysis of similarities (ANOSIM) to test the statistical significance of population differentiation and to infer a threshold seed collection zone distance of ∼60 km (all markers) and 100 km (outlier markers) when genetic distance was regressed against geographic distance. Population pairs separated by >60 km were, on average, twice as likely to be significantly genetically differentiated than population pairs separated by <60 km, suggesting that habitat-matched sites within a 30-km radius around a restoration site genetically defines a local provenance seed collection zone for B. menziesii. Our approach is a novel probability-based practical solution for the delineation of a local seed collection zone to minimize negative genetic impacts in ecological restoration. PMID:23919158

  8. Quantifying habitat benefits of channel reconfigurations on a highly regulated river system, Lower Missouri River, USA

    USGS Publications Warehouse

    Erwin, Susannah O.; Jacobson, Robert B.; Elliott, Caroline M.

    2017-01-01

    We present a quantitative analysis of habitat availability in a highly regulated lowland river, comparing a restored reach with two reference reaches: an un-restored, channelized reach, and a least-altered reach. We evaluate the effects of channel modifications in terms of distributions of depth and velocity as well as distributions and availability of habitats thought to be supportive of an endangered fish, the pallid sturgeon (Scaphirhynchus albus). It has been hypothesized that hydraulic conditions that support food production and foraging may limit growth and survival of juvenile pallid sturgeon. To evaluate conditions that support these habitats, we constructed two-dimensional hydrodynamic models for the three study reaches, two located in the Lower Missouri River (channelized and restored reaches) and one in the Yellowstone River (least-altered reach). Comparability among the reaches was improved by scaling by bankfull discharge and bankfull channel area. The analysis shows that construction of side-channel chutes and increased floodplain connectivity increase the availability of foraging habitat, resulting in a system that is more similar to the reference reach on the Yellowstone River. The availability of food-producing habitat is low in all reaches at flows less than bankfull, but the two reaches in the Lower Missouri River – channelized and restored – display a threshold-like response as flows overtop channel banks, reflecting the persistent effects of channelization on hydraulics in the main channel. These high lateral gradients result in punctuated ecological events corresponding to flows in excess of bankfull discharge. This threshold effect in the restored reach remains distinct from that of the least-altered reference reach, where hydraulic changes are less abrupt and overbank flows more gradually inundate the adjacent floodplain. The habitat curves observed in the reference reach on the Yellowstone River may not be attainable within the

  9. Managing Environmental Flows for Impounded Rivers in Semi-Arid Regions- A Habitat Suitability Index (HSI) Approach for the Assessment of River Habitat for Salmonid Populations

    NASA Astrophysics Data System (ADS)

    Pai, H.; Sivakumaran, K.; Villamizar, S. R.; Flanagan, J.; Guo, Q.; Harmon, T. C.

    2013-12-01

    Balancing ecosystem health in water-scarce, agriculturally dominated river basins remains a challenge. In dry water years, maintaining conditions for restored and sustained indigenous fish populations (a frequently used indicator for ecosystem health) is particularly challenging. Competing human demands include urban and agricultural water supplies, hydropower, and flood control. In many semi-arid regions, increasing drought intensity and frequency under future climate scenarios will combine with population increases to water scarcity. The goal of this work is to better understand how reservoir releases affect fish habitat and overall river aquatic ecosystem quality. Models integrating a diverse array of physical and biological processes and system state are used to forecast the river ecosystem response to changing drivers. We propose a distributed parameter-based Habitat Suitability Index (HSI) approach for assessing fish habitat quality. Our river ecosystem HSI maps are based on a combination of the following: (1) In situ data describing stream flow and water quality conditions; (2) Spatial observations, including surveyed cross-sections, aerial imagery and digital elevation maps (DEM) of the river and its riparian corridor; and (3) Simulated spatially distributed water depths, flow velocities, and temperatures estimated from 1D and 2D river flow and temperature models (HEC-RAS and CE-QUAL-W2, respectively). With respect to (2), image processing schemes are used to classify and map key habitat features, namely riparian edge and shallow underwater vegetation. HSI maps can be modified temporally to address specific life cycle requirements of indicator fish species. Results are presented for several reaches associated with the San Joaquin River Restoration Project, focusing on several components of the Chinook salmon life cycle. HSI maps and interpretations are presented in the context of a range of prescribed reservoir release hydrographs linked to California water

  10. Estuarine science and decision-support tools to restore Puget Sound delta and estuarine ecosystems: The Skagit River Delta

    NASA Astrophysics Data System (ADS)

    Grossman, E. E.; Rosenbauer, R. J.; Takesue, R. K.; Gelfenbaum, G.; Reisenbichler, R.; Paulson, A.; Sexton, N. R.; Labiosa, B.; Beamer, E. M.; Hood, G.; Wyllie-Echeverria, S.

    2006-12-01

    Historic land use, ongoing resource extraction, and population expansion throughout Puget Sound have scientists and managers rapidly seeking effective restoration strategies to recover salmon (a cultural icon, as well as, a host of other endangered species and threatened habitats. Of principal concern is the reduction of salmon (Oncorhynchus spp.) and diminished carrying capacity of critical habitat in deltaic regions. Delta habitats, essential to salmon survival, have lost 70 to 80 % area since ~1850 and are now adjusting to a new suite of environmental changes associated with land use practices, including wetland restoration, and regional climate change. The USGS Coastal Habitats in Puget Sound Project, in collaboration with partners from the Skagit River System Cooperative, University of Washington, and other federal, state, and local agencies, is integrating geologic, biologic, hydrologic, and socioeconomic information to quantify changes in the distribution and function of deltaic-estuarine nearshore habitats and better predict "possible futures". We are combining detailed geologic and geochemical analyses of sedimentary environments, plant biomarkers (n-alkanes, PAHs, fatty-acids, and sterols), and compound-specific isotopes to estimate historic habitat coverage, eelgrass (Zostera marina) abundance and modern characteristics of nutrient cycling. Hydrologic and sediment transport processes are being measured to characterize physical processes shaping modern habitats including sediment transport and freshwater mixing that control the temporal and spatial pattern of substrate and water column conditions available as habitat. We are using geophysical, remote sensing, and modeling techniques to determine large-scale coastal morphologic and land-use change and characterize how alteration of physical, hydrologic, and biogeochemical processes influence the dynamics of freshwater mixing, and sediment and nutrient transport in the nearshore. To assist restoration

  11. Tidal Flushing Restores the Physiological Condition of Fish Residing in Degraded Salt Marshes

    PubMed Central

    Dibble, Kimberly L.; Meyerson, Laura A.

    2012-01-01

    Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton’s K) to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0–1) while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration. PMID

  12. Tidal flushing restores the physiological condition of fish residing in degraded salt marshes.

    PubMed

    Dibble, Kimberly L; Meyerson, Laura A

    2012-01-01

    Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton's K) to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0-1) while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration.

  13. Conservation Reserve Program (CRP) contributions to wildlife habitat, management issues, challenges and policy choices--an annotated bibliography

    USGS Publications Warehouse

    Allen, Arthur W.; Vandever, Mark W.

    2012-01-01

    The following bibliography presents brief summaries of documents relevant to Conservation Reserve Program relations to wildlife habitat, habitat management in agriculturally dominated landscapes, and conservation policies potentially affecting wildlife habitats in agricultural ecosystems. Because the literature summaries furnished provide only sweeping overviews, users are urged to obtain and evaluate those papers appearing useful to obtain a more complete understanding of study findings and their implications to conservation in agricultural ecosystems. The bibliography contains references to reports that reach beyond topics that directly relate to the Conservation Reserve Program. Sections addressing grassland management and landowner surveys/opinions, for example, furnish information useful for enhancing development and administration of conservation policies affecting lands beyond those enrolled in conservation programs. Some sections of the bibliography (for example, agricultural conservation policy, economics, soils) are far from inclusive of all relevant material written on the subject. Hopefully, these sections will serve as fundamental introductions to related issues. In a few instances, references may be presented in more than one section of the bibliography. For example, individual papers specifically addressing both non-game and game birds are included in respective sections of the bibliography. Duplication of citations and associated notes has, however, been kept to a minimum.

  14. Spatial variability of Chinook salmon spawning distribution and habitat preferences

    USGS Publications Warehouse

    Cram, Jeremy M.; Torgersen, Christian E.; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.

    2017-01-01

    We investigated physical habitat conditions associated with the spawning sites of Chinook Salmon Oncorhynchus tshawytscha and the interannual consistency of spawning distribution across multiple spatial scales using a combination of spatially continuous and discrete sampling methods. We conducted a census of aquatic habitat in 76 km of the upper main-stem Yakima River in Washington and evaluated spawning site distribution using redd survey data from 2004 to 2008. Interannual reoccupation of spawning areas was high, ranging from an average Pearson’s correlation of 0.62 to 0.98 in channel subunits and 10-km reaches, respectively. Annual variance in the interannual correlation of spawning distribution was highest in channel units and subunits, but it was low at reach scales. In 13 of 15 models developed for individual years (2004–2008) and reach lengths (800 m, 3 km, 6 km), stream power and depth were the primary predictors of redd abundance. Multiple channels and overhead cover were patchy but were important secondary and tertiary predictors of reach-scale spawning site selection. Within channel units and subunits, pool tails and thermal variability, which may be associated with hyporheic exchange, were important predictors of spawning. We identified spawning habitat preferences within reaches and channel units that are relevant for salmonid habitat restoration planning. We also identified a threshold (i.e., 2-km reaches) beyond which interannual spawning distribution was markedly consistent, which may be informative for prioritizing habitat restoration or conservation. Management actions may be improved through enhanced understanding of spawning habitat preferences and the consistency with which Chinook Salmon reoccupy spawning areas at different spatial scales.

  15. It takes more than water: Restoring the Colorado River Delta

    USGS Publications Warehouse

    Pitt, Jennifer; Kendy, Eloise; Schlatter, Karen; Hinojosa-Huertaf, Osvel; Flessa, Karl W.; Shafroth, Patrick B.; Ramirez-Hernandez, Jorge; Nagler, Pamela L.; Glenn, Edward P.

    2017-01-01

    Environmental flows have become important tools for restoring rivers and associated riparian ecosystems (Arthington, 2012; Glenn et al., 2017). In March 2014, the United States and Mexico initiated a bold effort in restoration, delivering from Morelos Dam a “pulse flow” of water into the Colorado River in its delta for the purpose of learning about its environmental effects (Flessa et al., 2013; Bark et al., 2016). Specifically, scientists evaluated whether the pulse flow, albeit miniscule compared to historical floods, could provide the ecological functions needed to establish native, flood-dependent vegetation to restore natural habitat along the riparian corridor.

  16. Colonization, succession, and nutrition of macrobenthic assemblages in a restored wetland at Tijuana Estuary, California

    NASA Astrophysics Data System (ADS)

    Moseman, Serena M.; Levin, Lisa A.; Currin, Carolyn; Forder, Charlotte

    2004-08-01

    Modes of colonization, the successional trajectory, and trophic recovery of a macrofaunal community were analyzed over 19 months in the Friendship marsh, a 20-acre restored wetland in Tijuana Estuary, California. Traditional techniques for quantifying macrofaunal communities were combined with emerging stable isotopic approaches for evaluation of trophic recovery, making comparisons with a nearby natural Spartina foliosa habitat. Life history-based predictions successfully identified major colonization modes, although most taxa employed a variety of tactics for colonizing the restored marsh. The presence of S. foliosa did not seem to affect macrofaunal colonization or succession at the scale of this study. However, soil organic matter content in the restored marsh was positively correlated with insect densities, and high initial salinities may have limited the success of early colonists. Total macrofaunal densities recovered to natural marsh levels after 14 months and diversity, measured as species richness and the Shannon index ( H'), was comparable to the natural marsh by 19 months. Some compositional disparities between the natural and created communities persisted after 19 months, including lower percentages of surface-feeding polychaetes ( Polydora spp.) and higher percentages of dipteran insects and turbellarians in the Friendship marsh. As surficial structural similarity of infaunal communities between the Friendship and natural habitat was achieved, isotopic analyses revealed a simultaneous trajectory towards recovery of trophic structure. Enriched δ 13C signatures of benthic microalgae and infauna, observed in the restored marsh shortly after establishment compared to natural Spartina habitat, recovered after 19 months. However, the depletion in δ 15N signatures of macrofauna in the Friendship marsh indicated consumption of microalgae, particularly nitrogen-fixing cyanobacteria, while macroalgae and Spartina made a larger contribution to macrofaunal

  17. The passive river restoration approach as an efficient tool to improve the hydromorphological diversity of rivers - Case study from two river restoration projects in the German lower mountain range

    NASA Astrophysics Data System (ADS)

    Groll, M.

    2017-09-01

    Intensive use of European rivers during the last hundreds of years has led to profound changes in the physicochemical properties, river morphology, and aquatic faunistic communities. Rectifying these changes and improving the ecological state of all surface water bodies is the central aim of the European Water Frame Directive (WFD), and river restoration measures are the main tool to achieve this goal for many rivers. As the cost-effectiveness of all measures is crucial to the WFD implementation, the approach of the passive river restoration has become very popular over the last decades. But while costs of this approach are minimal, not much is known about the long-term effectiveness of passive river restorations. The research presented here provides essential and in-depth data about the effects of two such restoration measures on the riverbed morphology of a large river of the lower mountain region in Germany (type 9.2). More than 3200 data sets were acquired using the TRiSHa method (Typology of Riverbed Structures and Habitats). The results show a high spatial and temporal diversity and dynamic for all analyzed hydromorphologic parameters - ranging from riverbed sediments, organic structures like dead wood or macrophytes, to the distribution of 32 microhabitat types. The structures and their dynamic depend on the character of the study area (free-flowing or impounded), the location of the study sites within the research area (main channel or restored side channel), and on the occurrence of major flood events (the mapping and sampling were conducted annually from 2006 to 2008 with a 50-year flood event occurring in early 2007). These results show the potential of the passive restoration approach for creating morphologically diverse riverbeds, as habitat diversity and the spatial heterogeneity of the riverbed substrates increased significantly (e.g., more than 40% of all habitat types were only detected in the newly restored side channels). But the results also

  18. Plant invaders, global change and landscape restoration

    USGS Publications Warehouse

    Pyke, D.A.; Knick, S.T.

    2005-01-01

    Modifications in land uses, technology, transportation and biogeochemical cycles currently influence the spread of organisms by reducing the barriers that once restricted their movements. We provide an overview of the spatial and temporal extent for agents of environmental change (land and disturbance transformations, biogeochemical modifications, biotic additions and losses) and highlight those that strongly influence rangeland ecosystems. Restoration may provide a mechanism for ameliorating the impacts of invasive species, but applications of restoration practices over large scales, e.g. ecoregions, will yield benefits earlier when the landscape is prioritised by criteria that identify locations where critical restoration species can grow and where success will be high. We used the Great Basin, USA as our region of interest where the invasive annual grass, cheatgrass (Bromus tectorum), dominates millions of hectares. A landscape-level restoration model for sagebrush (Artemisia tridentata ssp. tridentata and ssp. wyomingensis) was developed to meet the goal of establishing priority habitat for wildlife. This approach could be used in long-range planning of rangeland ecosystems where funds and labour for restoration projects may vary annually. Copyright ?? NISC Pty Ltd.

  19. Hydrogeomorphological variability and ecological impacts in straight and restored river reach sections

    NASA Astrophysics Data System (ADS)

    Schäppi, B.; Molnar, P.; Perona, P.; Tockner, K.; Burlando, P.

    2009-04-01

    Healthy floodplain ecosystems are characterized by high habitat diversity which tends to be lost in straightened channelized rivers. River restoration projects aim to increase habitat heterogeneity by re-establishing natural flow conditions and/or re-activating geomorphic processes in straightened reaches. The success of such projects is usually measured by means of structural and functional hydrogeomorphic and ecological indicators. Important indicators include flow variables and morphological features such as flow depth, velocity, shore line length, exposed gravel area and wetted river width. Also important are the rates at which these variables and features change under varying streamflow. A high spatial variability in the indicators is generally connected with high habitat diversity. The temporal availability and spatial distribution of both aquatic and riparian habitats control the composition and diversity of benthic organisms, fish, and riparian communities. Spatial heterogeneity provides refugia, i.e. areas from which recolonization after a disturbance event may occur. In addition, it facilitates the transfer of organisms and matter across the aquatic and terrestrial interface, thereby increasing the overall functional performance of coupled river-riparian ecosystems. However the habitat diversity can be maintained over time only if there are frequent disturbances such as periodic floods that reset the system and create new germination sites for pioneer vegetation and rework the channel bed to form new aquatic habitat. Therefore the flow and morphology indicators need to be investigated on spatial as well as on temporal scales. Traditionally, these indicators are measured in the field albeit most measurements can be carried out only at low flow conditions. We propose that flow simulations with a 2d hydrodynamic model may be used for a fast and convenient assessment of indicators of flow variables and morphological features with relatively little calibration

  20. Chinook salmon use of spawning patches: Relative roles of habitat quality, size, and connectivity

    USGS Publications Warehouse

    Isaak, D.J.; Thurow, R.F.; Rieman, B.E.; Dunham, J.B.

    2007-01-01

    Declines in many native fish populations have led to reassessments of management goals and shifted priorities from consumptive uses to species preservation. As management has shifted, relevant environmental characteristics have evolved from traditional metrics that described local habitat quality to characterizations of habitat size and connectivity. Despite the implications this shift has for how habitats may be prioritized for conservation, it has been rare to assess the relative importance of these habitat components. We used an information-theoretic approach to select the best models from sets of logistic regressions that linked habitat quality, size, and connectivity to the occurrence of chinook salmon (Oncorhynchus tshawytscha) nests. Spawning distributions were censused annually from 1995 to 2004, and data were complemented with field measurements that described habitat quality in 43 suitable spawning patches across a stream network that drained 1150 km 2 in central Idaho. Results indicated that the most plausible models were dominated by measures of habitat size and connectivity, whereas habitat quality was of minor importance. Connectivity was the strongest predictor of nest occurrence, but connectivity interacted with habitat size, which became relatively more important when populations were reduced. Comparison of observed nest distributions to null model predictions confirmed that the habitat size association was driven by a biological mechanism when populations were small, but this association may have been an area-related sampling artifact at higher abundances. The implications for habitat management are that the size and connectivity of existing habitat networks should be maintained whenever possible. In situations where habitat restoration is occurring, expansion of existing areas or creation of new habitats in key areas that increase connectivity may be beneficial. Information about habitat size and connectivity also could be used to strategically