Sample records for habitat selection decisions

  1. Inference from habitat-selection analysis depends on foraging strategies.

    PubMed

    Bastille-Rousseau, Guillaume; Fortin, Daniel; Dussault, Christian

    2010-11-01

    1. Several methods have been developed to assess habitat selection, most of which are based on a comparison between habitat attributes in used vs. unused or random locations, such as the popular resource selection functions (RSFs). Spatial evaluation of residency time has been recently proposed as a promising avenue for studying habitat selection. Residency-time analyses assume a positive relationship between residency time within habitat patches and selection. We demonstrate that RSF and residency-time analyses provide different information about the process of habitat selection. Further, we show how the consideration of switching rate between habitat patches (interpatch movements) together with residency-time analysis can reveal habitat-selection strategies. 2. Spatially explicit, individual-based modelling was used to simulate foragers displaying one of six foraging strategies in a heterogeneous environment. The strategies combined one of three patch-departure rules (fixed-quitting-harvest-rate, fixed-time and fixed-amount strategy), together with one of two interpatch-movement rules (random or biased). Habitat selection of simulated foragers was then assessed using RSF, residency-time and interpatch-movement analyses. 3. Our simulations showed that RSFs and residency times are not always equivalent. When foragers move in a non-random manner and do not increase residency time in richer patches, residency-time analysis can provide misleading assessments of habitat selection. This is because the overall time spent in the various patch types not only depends on residency times, but also on interpatch-movement decisions. 4. We suggest that RSFs provide the outcome of the entire selection process, whereas residency-time and interpatch-movement analyses can be used in combination to reveal the mechanisms behind the selection process. 5. We showed that there is a risk in using residency-time analysis alone to infer habitat selection. Residency-time analyses, however

  2. Selecting habitat management strategies on refuges

    USGS Publications Warehouse

    Schroeder, Richard L.; King, Wayne J.; Cornely, John E.

    1998-01-01

    This report is a joint effort of the Biological Resources Division, U.S. Geological Survey and the U.S. Fish and Wildlife Service (FWS) to provide National Wildlife Refuge (NWR) managers guidance on the selection and evaluation of habitat management strategies to meet stated objectives. The FWS recently completed a handbook on writing refuge management goals and objectives (U.S. Fish and Wildlife Service 1996a). the National Wildlife Refuge System Improvement Act of 1997 requires that National Wildlife Refuge System (NWRS) lands be managed according to approved Comprehensive Conservation Plans to guide management decisions and devise strategies for achieving refuge unit purposes and meeting the NWRS mission. It is expected that over the next several years most refuges will develop new or revised refuge goals and objectives for directing their habitat management strategies. This paper outlines the steps we recommend in selecting and evaluating habitat management strategies to meet specific refuge habitat objectives. We selected two examples to illustrate the process. Although each refuge is unique and will require specific information and solutions, these two examples can be used as guidance when selecting and evaluating habitat management strategies for other refuge resources: Example 1. Management of floodplain woods habitat for forest interior birds. The biological recourse of concern is the quality and quantity of floodplain woods habitat for eastern forest interior birds in the Cypress Creek NWR (U.S. Fish and Wildlife Service 1996b). Example 2. Management of habitat for biodiversity: Historical landscape proportions. The biological resource of concern is the change in diversity associated with man-induced changes in the distribution and abundance of habitat types at the Minnesota Valley NWR (U.S. Fish and Wildlife Service 1996c).

  3. Spatial variation in breeding habitat selection by Cerulean Warblers (Setophaga cerulea) throughout the Appalachian Mountains

    USGS Publications Warehouse

    Boves, Than J.; Buehler, David A.; Sheehan, James; Wood, Petra Bohall; Rodewald, Amanda D.; Larkin, Jeffrey L.; Keyser, Patrick D.; Newell, Felicity L.; Evans, Andrea; George, Gregory A.; Wigley, T.B.

    2013-01-01

    Studies of habitat selection are often of limited utility because they focus on small geographic areas, fail to examine behavior at multiple scales, or lack an assessment of the fitness consequences of habitat decisions. These limitations can hamper the identification of successful site-specific management strategies, which are urgently needed for severely declining species like Cerulean Warblers (Setophaga cerulea). We assessed how breeding habitat decisions made by Cerulean Warblers at multiple scales, and the subsequent effects of these decisions on nest survival, varied across the Appalachian Mountains. Selection for structural habitat features varied substantially among areas, particularly at the territory scale. Males within the least-forested landscapes selected microhabitat features that reflected more closed-canopy forest conditions, whereas males in highly forested landscapes favored features associated with canopy disturbance. Selection of nest-patch and nest-site attributes by females was more consistent across areas, with females selecting for increased tree size and understory cover and decreased basal area and midstory cover. Floristic preferences were similar across study areas: White Oak (Quercus alba), Cucumber-tree (Magnolia acuminata), and Sugar Maple (Acer saccharum) were preferred as nest trees, whereas red oak species (subgenus Erythrobalanus) and Red Maple (A. rubrum) were avoided. The habitat features that were related to nest survival also varied among study areas, and preferred features were negatively associated with nest survival at one area. Thus, our results indicate that large-scale spatial heterogeneity may influence local habitat-selection behavior and that it may be necessary to articulate site-specific management strategies for Cerulean Warblers.

  4. Habitat selection for parasite-free space by hosts of parasitic cowbirds

    USGS Publications Warehouse

    Forsman, J.T.; Martin, T.E.

    2009-01-01

    Choice of breeding habitat can have a major impact on fitness. Sensitivity of habitat choice to environmental cues predicting reproductive success, such as density of harmful enemy species, should be favored by natural selection. Yet, experimental tests of this idea are in short supply. Brown-headed cowbirds Molothrus ater commonly reduce reproductive success of a wide diversity of birds by parasitizing their nests. We used song playbacks to simulate high cowbird density and tested whether cowbird hosts avoid such areas in habitat selection. Host species that made settlement decisions during manipulations were significantly less abundant in the cowbird treatment as a group. In contrast, hosts that settled before manipulations started and non-host species did not respond to treatments. These results suggest that hosts of cowbirds can use vocal cues to assess parasitism risk among potential habitat patches and avoid high risk habitats. This can affect community structure by affecting habitat choices of species with differential vulnerability.

  5. Grizzly bear habitat selection is scale dependent.

    PubMed

    Ciarniello, Lana M; Boyce, Mark S; Seip, Dale R; Heard, Douglas C

    2007-07-01

    selection of resources can be dependent upon the availability of a particular vegetation type on the landscape. From a management perspective, decisions should be based on a hierarchical process of habitat selection, recognizing that selection patterns vary across scales.

  6. Smartphone technologies and Bayesian networks to assess shorebird habitat selection

    USGS Publications Warehouse

    Zeigler, Sara; Thieler, E. Robert; Gutierrez, Ben; Plant, Nathaniel G.; Hines, Megan K.; Fraser, James D.; Catlin, Daniel H.; Karpanty, Sarah M.

    2017-01-01

    Understanding patterns of habitat selection across a species’ geographic distribution can be critical for adequately managing populations and planning for habitat loss and related threats. However, studies of habitat selection can be time consuming and expensive over broad spatial scales, and a lack of standardized monitoring targets or methods can impede the generalization of site-based studies. Our objective was to collaborate with natural resource managers to define available nesting habitat for piping plovers (Charadrius melodus) throughout their U.S. Atlantic coast distribution from Maine to North Carolina, with a goal of providing science that could inform habitat management in response to sea-level rise. We characterized a data collection and analysis approach as being effective if it provided low-cost collection of standardized habitat-selection data across the species’ breeding range within 1–2 nesting seasons and accurate nesting location predictions. In the method developed, >30 managers and conservation practitioners from government agencies and private organizations used a smartphone application, “iPlover,” to collect data on landcover characteristics at piping plover nest locations and random points on 83 beaches and barrier islands in 2014 and 2015. We analyzed these data with a Bayesian network that predicted the probability a specific combination of landcover variables would be associated with a nesting site. Although we focused on a shorebird, our approach can be modified for other taxa. Results showed that the Bayesian network performed well in predicting habitat availability and confirmed predicted habitat preferences across the Atlantic coast breeding range of the piping plover. We used the Bayesian network to map areas with a high probability of containing nesting habitat on the Rockaway Peninsula in New York, USA, as an example application. Our approach facilitated the collation of evidence-based information on habitat selection

  7. Adaptive breeding habitat selection: Is it for the birds?

    USGS Publications Warehouse

    Chalfoun, Anna D.; Schmidt, Kenneth A.

    2012-01-01

    The question of why animals choose particular habitats has important implications for understanding behavioral evolution and distribution of organisms in the wild and for delineating between habitats of different quality for conservation and management. Habitats chosen by animals can influence fitness outcomes via the costs (e.g., predation risk) and benefits (e.g., food availability) of habitat use. Habitat preferences should therefore be under selection to favor those that confer fitness advantages (Clark and Shutler 1999). Indeed, prevailing theory suggests that the habitat preferences of animals should be adaptive, such that fitness is higher in preferred habitats (Hildén 1965, Southwood 1977, Martin 1998). However, studies have often identified apparent mismatches between observed habitat preferences and fitness outcomes across a wide variety of taxa (Valladares and Lawton 1991, Mayhew 1997, Kolbe and Janzen 2002, Arlt and Pärt 2007, Mägi et al. 2009). Certainly, one limitation of studies may be that assessment of “fitness” is typically constrained to fitness surrogates such as nest success rather than lifetime reproductive success or classic Fisherian fitness (Endler 1986). Nevertheless, important habitat choices such as nest sites influence the probability that temporarily sedentary, dependent young are discovered by enemies such as predators and parasites. We therefore expect, on average, to see congruence between evolved habitat preferences and relevant components of fitness (e.g., nest success). Here, we (1) review the prevalence of apparent mismatches between avian breeding-habitat preferences and fitness outcomes using nest-site selection as a focus; (2) describe several potential mechanisms for such mismatches, including anthropogenic, methodological, and ecological–evolutionary; and (3) suggest a framework for understanding the contexts in which habitat preferences represent adaptive decisions, with a primary focus on ecological information

  8. Scale-Dependent Habitat Selection and Size-Based Dominance in Adult Male American Alligators

    PubMed Central

    Strickland, Bradley A.; Vilella, Francisco J.; Belant, Jerrold L.

    2016-01-01

    Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance

  9. Scale-dependent habitat selection and size-based dominance in adult male American alligators

    USGS Publications Warehouse

    Strickland, Bradley A.; Vilella, Francisco; Belant, Jerrold L.

    2016-01-01

    Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance

  10. Habitat selection by marine larvae in changing chemical environments.

    PubMed

    Lecchini, D; Dixson, D L; Lecellier, G; Roux, N; Frédérich, B; Besson, M; Tanaka, Y; Banaigs, B; Nakamura, Y

    2017-01-15

    The replenishment and persistence of marine species is contingent on dispersing larvae locating suitable habitat and surviving to a reproductive stage. Pelagic larvae rely on environmental cues to make behavioural decisions with chemical information being important for habitat selection at settlement. We explored the sensory world of crustaceans and fishes focusing on the impact anthropogenic alterations (ocean acidification, red soil, pesticide) have on conspecific chemical signals used by larvae for habitat selection. Crustacean (Stenopus hispidus) and fish (Chromis viridis) larvae recognized their conspecifics via chemical signals under control conditions. In the presence of acidified water, red soil or pesticide, the ability of larvae to chemically recognize conspecific cues was altered. Our study highlights that recruitment potential on coral reefs may decrease due to anthropogenic stressors. If so, populations of fishes and crustaceans will continue their rapid decline; larval recruitment will not replace and sustain the adult populations on degraded reefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Does learning or instinct shape habitat selection?

    PubMed

    Nielsen, Scott E; Shafer, Aaron B A; Boyce, Mark S; Stenhouse, Gordon B

    2013-01-01

    Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos) in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct) would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments.

  12. Habitat Selection and Risk of Predation: Re-colonization by Lynx had Limited Impact on Habitat Selection by Roe Deer

    PubMed Central

    Samelius, Gustaf; Andrén, Henrik; Kjellander, Petter; Liberg, Olof

    2013-01-01

    Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx – the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1) before and after lynx re-established in the study area and (2) in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection). Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations. PMID:24069419

  13. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    PubMed

    Samelius, Gustaf; Andrén, Henrik; Kjellander, Petter; Liberg, Olof

    2013-01-01

    Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1) before and after lynx re-established in the study area and (2) in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection). Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  14. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Treesearch

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  15. Does Learning or Instinct Shape Habitat Selection?

    PubMed Central

    Nielsen, Scott E.; Shafer, Aaron B. A.; Boyce, Mark S.; Stenhouse, Gordon B.

    2013-01-01

    Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos) in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct) would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments. PMID:23341983

  16. Microhabitat Selection by Marine Mesoconsumers in a Thermally Heterogeneous Habitat: Behavioral Thermoregulation or Avoiding Predation Risk?

    PubMed Central

    Vaudo, Jeremy J.; Heithaus, Michael R.

    2013-01-01

    Habitat selection decisions by consumers has the potential to shape ecosystems. Understanding the factors that influence habitat selection is therefore critical to understanding ecosystem function. This is especially true of mesoconsumers because they provide the link between upper and lower tropic levels. We examined the factors influencing microhabitat selection of marine mesoconsumers – juvenile giant shovelnose rays (Glaucostegus typus), reticulate whiprays (Himantura uarnak), and pink whiprays (H. fai) – in a coastal ecosystem with intact predator and prey populations and marked spatial and temporal thermal heterogeneity. Using a combination of belt transects and data on water temperature, tidal height, prey abundance, predator abundance and ray behavior, we found that giant shovelnose rays and reticulate whiprays were most often found resting in nearshore microhabitats, especially at low tidal heights during the warm season. Microhabitat selection did not match predictions derived from distributions of prey. Although at a course scale, ray distributions appeared to match predictions of behavioral thermoregulation theory, fine-scale examination revealed a mismatch. The selection of the shallow nearshore microhabitat at low tidal heights during periods of high predator abundance (warm season) suggests that this microhabitat may serve as a refuge, although it may come with metabolic costs due to higher temperatures. The results of this study highlight the importance of predators in the habitat selection decisions of mesoconsumers and that within thermal gradients, factors, such as predation risk, must be considered in addition to behavioral thermoregulation to explain habitat selection decisions. Furthermore, increasing water temperatures predicted by climate change may result in complex trade-offs that might have important implications for ecosystem dynamics. PMID:23593501

  17. Restricted cross-scale habitat selection by American beavers.

    PubMed

    Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-12-01

    Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.

  18. Restricted cross-scale habitat selection by American beavers

    PubMed Central

    Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-01-01

    Abstract Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection. PMID:29492032

  19. Habitat Use and Selection by Giant Pandas.

    PubMed

    Hull, Vanessa; Zhang, Jindong; Huang, Jinyan; Zhou, Shiqiang; Viña, Andrés; Shortridge, Ashton; Li, Rengui; Liu, Dian; Xu, Weihua; Ouyang, Zhiyun; Zhang, Hemin; Liu, Jianguo

    2016-01-01

    Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca). We constructed spatial autoregressive resource utilization functions (RUF) to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types) at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking.

  20. Habitat Use and Selection by Giant Pandas

    PubMed Central

    Hull, Vanessa; Zhang, Jindong; Huang, Jinyan; Zhou, Shiqiang; Viña, Andrés; Shortridge, Ashton; Li, Rengui; Liu, Dian; Xu, Weihua; Ouyang, Zhiyun; Zhang, Hemin; Liu, Jianguo

    2016-01-01

    Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca). We constructed spatial autoregressive resource utilization functions (RUF) to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types) at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking. PMID:27627805

  1. Teaching animal habitat selection using wildlife tracking equipment

    USGS Publications Warehouse

    Laskowski, Jessica; Gillespie, Caitlyn R.; Corral, Lucia; Oden, Amy; Fricke, Kent A.; Fontaine, Joseph J.

    2016-01-01

    We present a hands-on outdoor activity coupled with classroom discussion to teach students about wildlife habitat selection, the process by which animals choose where to live. By selecting locations or habitats with many benefits (e.g., food, shelter, mates) and few costs (e.g., predators), animals improve their ability to survive and reproduce. Biologists track animal movement using radio telemetry technology to study habitat selection so they can better provide species with habitats that promote population growth. We present a curriculum in which students locate “animals” (transmitters) using radio telemetry equipment and apply math skills (use of fractions and percentages) to assess their “animal's” habitat selection by comparing the availability of habitat types with the proportion of “animals” they find in each habitat type.

  2. Intercohort density dependence drives brown trout habitat selection

    NASA Astrophysics Data System (ADS)

    Ayllón, Daniel; Nicola, Graciela G.; Parra, Irene; Elvira, Benigno; Almodóvar, Ana

    2013-01-01

    Habitat selection can be viewed as an emergent property of the quality and availability of habitat but also of the number of individuals and the way they compete for its use. Consequently, habitat selection can change across years due to fluctuating resources or to changes in population numbers. However, habitat selection predictive models often do not account for ecological dynamics, especially density dependent processes. In stage-structured population, the strength of density dependent interactions between individuals of different age classes can exert a profound influence on population trajectories and evolutionary processes. In this study, we aimed to assess the effects of fluctuating densities of both older and younger competing life stages on the habitat selection patterns (described as univariate and multivariate resource selection functions) of young-of-the-year, juvenile and adult brown trout Salmo trutta. We observed all age classes were selective in habitat choice but changed their selection patterns across years consistently with variations in the densities of older but not of younger age classes. Trout of an age increased selectivity for positions highly selected by older individuals when their density decreased, but this pattern did not hold when the density of younger age classes varied. It suggests that younger individuals are dominated by older ones but can expand their range of selected habitats when density of competitors decreases, while older trout do not seem to consider the density of younger individuals when distributing themselves even though they can negatively affect their final performance. Since these results may entail critical implications for conservation and management practices based on habitat selection models, further research should involve a wider range of river typologies and/or longer time frames to fully understand the patterns of and the mechanisms underlying the operation of density dependence on brown trout habitat

  3. Sage-grouse habitat selection during winter in Alberta

    USGS Publications Warehouse

    Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.

    2010-01-01

    Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.

  4. Habitat selection by postbreeding female diving ducks: Influence of habitat attributes and conspecifics

    USGS Publications Warehouse

    Austin, Jane E.; O'Neil, Shawn T.; Warren, Jeffrey M.

    2017-01-01

    Habitat selection studies of postbreeding waterfowl have rarely focused on within-wetland attributes such as water depth, escape cover, and food availability. Flightless waterfowl must balance habitat selection between avoiding predation risks and feeding. Reproductively successful female ducks face the greatest challenges because they begin the definitive prebasic molt at or near the end of brood rearing, when their body condition is at a low point. We assessed the relative importance of habitat attributes and group effects in habitat selection by postbreeding female lesser scaup Aythya affinis on a 2332-ha montane wetland complex during the peak flightless period (August) over seven years. Hypothesis-based habitat attributes included percent open water, open water:emergent edge density, water depth, percent flooded bare substrate, fetch (distance wind can travel unobstructed), group size, and several interactions representing functional responses to interannual variation in water levels. Surveys of uniquely marked females were conducted within randomly ordered survey blocks. We fitted two-part generalized linear mixed-effects models to counts of marked females within survey blocks, which allowed us to relate habitat attributes to relative probability of occurrence and, given the presence of a marked female, abundance of marked individuals. Postbreeding female scaup selected areas with water depths > 40 cm, large open areas, and intermediate edge densities but showed no relation to flooded bare substrate, suggesting their habitat preferences were more influenced by avoiding predation risks and disturbances than in meeting foraging needs. Grouping behavior by postbreeding scaup suggests habitat selection is influenced in part by behavioral components and/or social information, conferring energetic and survival benefits (predation and disturbance risks) but potentially also contributing to competition for food resources. This study demonstrates the importance of

  5. Fish habitat selection in a large hydropeaking river: Strong individual and temporal variations revealed by telemetry.

    PubMed

    Capra, Hervé; Plichard, Laura; Bergé, Julien; Pella, Hervé; Ovidio, Michaël; McNeil, Eric; Lamouroux, Nicolas

    2017-02-01

    Modeling individual fish habitat selection in highly variable environments such as hydropeaking rivers is required for guiding efficient management decisions. We analyzed fish microhabitat selection in the heterogeneous hydraulic and thermal conditions (modeled in two-dimensions) of a reach of the large hydropeaking Rhône River locally warmed by the cooling system of a nuclear power plant. We used modern fixed acoustic telemetry techniques to survey 18 fish individuals (five barbels, six catfishes, seven chubs) signaling their position every 3s over a three-month period. Fish habitat selection depended on combinations of current microhabitat hydraulics (e.g. velocity, depth), past microhabitat hydraulics (e.g. dewatering risk or maximum velocities during the past 15days) and to a lesser extent substrate and temperature. Mixed-effects habitat selection models indicated that individual effects were often stronger than specific effects. In the Rhône, fish individuals appear to memorize spatial and temporal environmental changes and to adopt a "least constraining" habitat selection. Avoiding fast-flowing midstream habitats, fish generally live along the banks in areas where the dewatering risk is high. When discharge decreases, however, they select higher velocities but avoid both dewatering areas and very fast-flowing midstream habitats. Although consistent with the available knowledge on static fish habitat selection, our quantitative results demonstrate temporal variations in habitat selection, depending on individual behavior and environmental history. Their generality could be further tested using comparative experiments in different environmental configurations. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Habitat selection of Tragulus napu and Tragulus javanicus using MaxEnt analysis

    NASA Astrophysics Data System (ADS)

    Taher, Taherah Mohd; Lihan, Tukimat; Mustapha, Muzzneena Ahmad; Nor, Shukor Mohd

    2018-04-01

    Large areas are converted into commercial land use such as agriculture and urban as a result from the increasing economic and population demand. This situation is largely affecting wildlife and its habitat. Malaysia as one of the largest oil palm-producing countries, should take precaution into conserving its forest and wildlife diversity. Although big mammal such as elephant and tiger are significant for wildlife diversity, medium and small mammals also contribute to the biological richness in Malaysia. This study aims to predict suitable habitat of medium mammal, Tragulus napu and Tragulus javanicus in the study area and identify its habitat characteristics. The method applied in this study uses maximum entropy (MaxEnt) modeling which utilized species distribution data and selected environmental variables to alienate potential habitat in the study area. The characteristic of the habitat was identified from the result of MaxEnt analysis. This method of habitat modeling shows different extent of predicted suitable habitat in the study area of both species in which Tragulus napu has a limited distribution compared to Tragulus javanicus. However, some characteristics are similar in both habitats. The knowledge on species habitat characteristics is important to predict wildlife habitat in order to make best decision on land use management and conservation.

  7. Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore.

    PubMed

    Bjørneraas, Kari; Herfindal, Ivar; Solberg, Erling Johan; Sæther, Bernt-Erik; van Moorter, Bram; Rolandsen, Christer Moe

    2012-01-01

    Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.

  8. Mixed conditional logistic regression for habitat selection studies.

    PubMed

    Duchesne, Thierry; Fortin, Daniel; Courbin, Nicolas

    2010-05-01

    1. Resource selection functions (RSFs) are becoming a dominant tool in habitat selection studies. RSF coefficients can be estimated with unconditional (standard) and conditional logistic regressions. While the advantage of mixed-effects models is recognized for standard logistic regression, mixed conditional logistic regression remains largely overlooked in ecological studies. 2. We demonstrate the significance of mixed conditional logistic regression for habitat selection studies. First, we use spatially explicit models to illustrate how mixed-effects RSFs can be useful in the presence of inter-individual heterogeneity in selection and when the assumption of independence from irrelevant alternatives (IIA) is violated. The IIA hypothesis states that the strength of preference for habitat type A over habitat type B does not depend on the other habitat types also available. Secondly, we demonstrate the significance of mixed-effects models to evaluate habitat selection of free-ranging bison Bison bison. 3. When movement rules were homogeneous among individuals and the IIA assumption was respected, fixed-effects RSFs adequately described habitat selection by simulated animals. In situations violating the inter-individual homogeneity and IIA assumptions, however, RSFs were best estimated with mixed-effects regressions, and fixed-effects models could even provide faulty conclusions. 4. Mixed-effects models indicate that bison did not select farmlands, but exhibited strong inter-individual variations in their response to farmlands. Less than half of the bison preferred farmlands over forests. Conversely, the fixed-effect model simply suggested an overall selection for farmlands. 5. Conditional logistic regression is recognized as a powerful approach to evaluate habitat selection when resource availability changes. This regression is increasingly used in ecological studies, but almost exclusively in the context of fixed-effects models. Fitness maximization can imply

  9. Frugivore-Mediated Selection in A Habitat Transformation Scenario

    PubMed Central

    Fontúrbel, Francisco E.; Medel, Rodrigo

    2017-01-01

    Plant-animal interactions are strong drivers of phenotypic evolution. However, the extent to which anthropogenic habitat transformation creates new selective scenarios for plant-animal interactions is a little explored subject. We examined the effects of native forest replacement by exotic Eucalyptus trees on the frugivore-mediated phenotypic selection coefficients imposed by the relict marsupial Dromiciops gliroides upon traits involved in frugivore attraction and germination success of the mistletoe Tristerix corymbosus (Loranthaceae). We found significant gradients for seed weight and sugar content along the native - transformed habitat gradient. While selection for larger seed weight was more relevant in native habitats, fruits with intermediate sugar content were promoted in transformed habitats. The spatial habitat structure and microclimate features such as the degree of sunlight received influenced the natural selection processes, as they correlated with the phenotypic traits analysed. The response of this plant-frugivore interaction to human disturbance seemed to be context-dependent, in which extremely transformed habitats would offer new opportunities for natural selection on dispersal-related traits. Even in recent transformation events like this, human disturbance acts as a strong contemporary evolution driver. PMID:28349942

  10. A management-oriented framework for selecting metrics used to assess habitat- and path-specific quality in spatially structured populations

    USGS Publications Warehouse

    Nicol, Sam; Wiederholt, Ruscena; Diffendorfer, James E.; Mattsson, Brady; Thogmartin, Wayne E.; Semmens, Darius J.; Laura Lopez-Hoffman,; Norris, Ryan

    2016-01-01

    Mobile species with complex spatial dynamics can be difficult to manage because their population distributions vary across space and time, and because the consequences of managing particular habitats are uncertain when evaluated at the level of the entire population. Metrics to assess the importance of habitats and pathways connecting habitats in a network are necessary to guide a variety of management decisions. Given the many metrics developed for spatially structured models, it can be challenging to select the most appropriate one for a particular decision. To guide the management of spatially structured populations, we define three classes of metrics describing habitat and pathway quality based on their data requirements (graph-based, occupancy-based, and demographic-based metrics) and synopsize the ecological literature relating to these classes. Applying the first steps of a formal decision-making approach (problem framing, objectives, and management actions), we assess the utility of metrics for particular types of management decisions. Our framework can help managers with problem framing, choosing metrics of habitat and pathway quality, and to elucidate the data needs for a particular metric. Our goal is to help managers to narrow the range of suitable metrics for a management project, and aid in decision-making to make the best use of limited resources.

  11. Determining habitat quality for species that demonstrate dynamic habitat selection

    USGS Publications Warehouse

    Beerens, James M.; Frederick, Peter C; Noonburg, Erik G; Gawlik, Dale E.

    2015-01-01

    Determining habitat quality for wildlife populations requires relating a species' habitat to its survival and reproduction. Within a season, species occurrence and density can be disconnected from measures of habitat quality when resources are highly seasonal, unpredictable over time, and patchy. Here we establish an explicit link among dynamic selection of changing resources, spatio-temporal species distributions, and fitness for predictive abundance and occurrence models that are used for short-term water management and long-term restoration planning. We used the wading bird distribution and evaluation models (WADEM) that estimate (1) daily changes in selection across resource gradients, (2) landscape abundance of flocks and individuals, (3) conspecific foraging aggregation, and (4) resource unit occurrence (at fixed 400 m cells) to quantify habitat quality and its consequences on reproduction for wetland indicator species. We linked maximum annual numbers of nests detected across the study area and nesting success of Great Egrets (Ardea alba), White Ibises (Eudocimus albus), and Wood Storks (Mycteria americana) over a 20-year period to estimated daily dynamics of food resources produced by WADEM over a 7490 km2 area. For all species, increases in predicted species abundance in March and high abundance in April were strongly linked to breeding responses. Great Egret nesting effort and success were higher when birds also showed greater conspecific foraging aggregation. Synthesis and applications: This study provides the first empirical evidence that dynamic habitat selection processes and distributions of wading birds over environmental gradients are linked with reproductive measures over periods of decades. Further, predictor variables at a variety of temporal (daily-multiannual) resolutions and spatial (400 m to regional) scales effectively explained variation in ecological processes that change habitat quality. The process used here allows managers to develop

  12. Factors influencing habitat selection by arboreal pit vipers.

    PubMed

    Sawant, Nitin S; Jadhav, Trupti D

    2013-01-01

    We studied factors influencing habitat selection by two arboreal species of pit viper, namely Trimeresurus malabaricus (Malabar pit viper) and T. gramineus (Bamboo pit viper). The macrohabitat of these species was classified as forest, forest edge, or open habitat. To determine microhabitat selection, a variety of features at every other snake location were measured. Whether or not the animal was found in a tree, the tree species, its height of perch, position on the branch (distal/ apical/middle), diameter of the branch, the tree canopy (thick/sparse) and vegetation of the area (thick/sparse) were recorded. Assessment of habitat was done to determine how patterns of habitat use vary seasonally. Shaded ambient (air) temperatures and humidity were recorded. Data pertaining to 90 individuals of T. malabaricus and 100 individuals of T. gramineus were recorded. Trimeresurus malabaricus selected home ranges that included areas with thick vegetation and were encountered at regions of higher altitude. Neither of the species was found in open habitats. Both of the species preferred diverse habitats and were spread over the entire available space during the monsoon; they did not show any preference for the perch height during different seasons. Males had a positive correlation between body mass and preferred perch diameter. The present study suggests that several factors play an important role in habitat selection by these arboreal pit vipers, thus making them highly habitat-specific.

  13. Lunar base habitat designs: Characterizing the environment, and selecting habitat designs for future trade-offs

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Ferrall, Joseph; Seshan, P. K.

    1993-01-01

    A survey of distinct conceptual lunar habitat designs covering the pre- and post-Apollo era is presented. The impact of the significant lunar environmental challenges such as temperature, atmosphere, radiation, soil properties, meteorites, and seismic activity on the habitat design parameters are outlined. Over twenty habitat designs were identified and classified according to mission type, crew size; total duration of stay, modularity, environmental protection measures, and emplacement. Simple selection criteria of (1) post-Apollo design, (2) uniqueness of the habitat design, (3) level of thoroughness in design layout, (4) habitat dimensions are provided, and (5) materials of construction for the habitat shell are specified, are used to select five habitats for future trade studies. Habitat emplacement scenarios are created to examine the possible impact of emplacement of the habitat in different locations, such as lunar poles vs. equatorial, above ground vs. below ground, etc.

  14. Assessing habitat selection when availability changes

    USGS Publications Warehouse

    Arthur, S.; Garner, G.; ,

    1996-01-01

    We present a method of comparing data on habitat use and availability that allows availability to differ among observations. This method is applicable when habitats change over time and when animals are unable to move throughout a predetermined study area between observations. We used maximum-likelihood techniques to derive an index that estimates the probability that each habitat type would be used if all were equally available. We also demonstrate how these indices can be used to compare relative use of available habitats, assign them ranks, and assess statistical differences between pairs of indices. The set of these indices for all habitats can be compared between groups of animals that represent different seasons, sex or age classes, or experimental treatments. This method allows quantitative comparisons among types and is not affected by arbitrary decisions about which habitats to include in the study. We provide an example by comparing the availability of four categories of sea ice concentration to their use by adult female polar bears, whose movements were monitored by satellite radio tracking in the Bering and Chukchi Seas during 1990. Use of ice categories by bears was nonrandom, and the pattern of use differed between spring and late summer seasons.

  15. Scale-dependent habitat selection in migratory frugivorous passerines

    NASA Astrophysics Data System (ADS)

    Sapir, Nir; Abramsky, Zvika; Shochat, Eyal; Izhaki, Ido

    2004-11-01

    Frugivorous migrants may select fruit-rich habitats en route to attain high food rewards, yet their stopover behavior may also be shaped by other considerations, such as predation risk. During 1996 2001 we investigated autumn stopover habitat use of three Sylvia warblers (sylviids; S. hortensis, S. atricapilla and S. curruca) and three Turdidae chats (turdids; Cercotrichas galactotes, Oenanthe hispanica and Phoenicurus phoenicurus) in planted groves of the fruiting tree Pistacia atlantica in Lahav Forest, Israel, which is located at the edge of a desert. We used fecal analysis, a constant-effort trapping scheme and field observations to estimate the extent of frugivory, and bird habitat and microhabitat selection with regard to natural fruit and foliage densities. We also measured bird microhabitat selection in a set of fruit-manipulated trees. We trapped a total of 2,357 birds during the course of the study. Although sylviids exhibited higher frugivory level than turdids, both species groups exhibited a similar significantly positive correlation between bird and fruit densities at the habitat scale. However, at the microhabitat scale, sylviids selected densely foliated trees, whilst turdids were randomly distributed among trees. Our findings suggest that both species groups selected fruit-rich stopover habitats to take advantage of the high food availability before the demanding migration journey. No other mechanism except predation avoidance can explain the sylviids’ microhabitat selection; the migrants used foliage cover to reduce bird detectability by raptors. We conclude that en route passerines may use staging habitats in a sophisticated manner, by adopting scale-related behavior with regard to the availability of food and refuge cover.

  16. Decision analysis for habitat conservation of an endangered, range-limited salamander

    USGS Publications Warehouse

    Robinson, Orin J.; McGowan, Conor P.; Apodaca, J.J.

    2016-01-01

    Many species of conservation concern are habitat limited and often a major focus of management for these species is habitat acquisition and/or restoration. Deciding the location of habitat restoration or acquisition to best benefit a protected species can be a complicated subject with competing management objectives, ecological uncertainties and stochasticity. Structured decision making (SDM) could be a useful approach for explicitly incorporating those complexities while still working toward species conservation and/or recovery. We applied an SDM approach to Red Hills salamander Phaeognathus hubrichti habitat conservation decision making. Phaeognathus hubrichti is a severely range-limited endemic species in south central Alabama and has highly specific habitat requirements. Many known populations live on private lands and the primary mode of habitat protection is habitat conservation planning, but such plans are non-binding and not permanent. Working with stakeholders, we developed an objectives hierarchy linking land acquisition or protection actions to fundamental objectives. We built a model to assess and compare the quality of the habitat in the known range of P. hubrichti. Our model evaluated key habitat attributes of 5814 pixels of 1 km2 each and ranked the pixels from best to worst with respect to P. hubrichti habitat requirements. Our results are a spatially explicit valuation of each pixel, with respect to its probable benefit to P. hubrichti populations. The results of this effort will be used to rank pixels from most to least beneficial, then identify land owners in the most useful areas for salamanders who are willing to sell or enter into a permanent easement agreement.

  17. Selection of habitats by Emperor Geese during brood rearing

    USGS Publications Warehouse

    Schmutz, J.A.

    2001-01-01

    Although forage quality strongly affects gosling growth and consequently juvenile survival, the relative use of different plant communities by brood rearing geese has been poorly studied. On the Yukon-Kuskokwim Delta, Alaska, population growth and juvenile recruitment of Emperor Geese (Chen canagica) are comparatively low, and it is unknown whether their selection of habitats during brood rearing differs from other goose species. Radio-telemetry was used to document the use of habitats by 56 families of Emperor Geese in a 70 km2 portion of the Yukon-Kuskokwim Delta during brood rearing in 1994-1996. When contrasted with available habitats (a set of six habitat classes), as estimated from 398 random sampling locations, Emperor Geese strongly selected Saline Ponds, Mudflat, and Ramenskii Meadow habitats and avoided Levee Meadow, Bog Meadow, and Sedge Meadow. These selected habitats were the most saline, comprised one-third of the study area, and 43% of all locations were in Ramenskii Meadow. I contrasted these Emperor Goose locations with habitats used by the composite goose community, as inferred from the presence of goose feces at random locations. The marked difference between groups in this comparison implied that Cackling Canada Geese (Branta canadensis minima) and Greater White-fronted Geese (Anser albifrons) collectively selected much different brood rearing habitats than Emperor Geese. Received 20 February 2001, accepted 18 April 2001.

  18. Balancing energy budget in a central-place forager: which habitat to select in a heterogeneous environment?

    PubMed

    Patenaude-Monette, Martin; Bélisle, Marc; Giroux, Jean-François

    2014-01-01

    Foraging animals are influenced by the distribution of food resources and predation risk that both vary in space and time. These constraints likely shape trade-offs involving time, energy, nutrition, and predator avoidance leading to a sequence of locations visited by individuals. According to the marginal-value theorem (MVT), a central-place forager must either increase load size or energy content when foraging farther from their central place. Although such a decision rule has the potential to shape movement and habitat selection patterns, few studies have addressed the mechanisms underlying habitat use at the landscape scale. Our objective was therefore to determine how Ring-billed gulls (Larus delawarensis) select their foraging habitats while nesting in a colony located in a heterogeneous landscape. Based on locations obtained by fine-scale GPS tracking, we used resource selection functions (RSFs) and residence time analyses to identify habitats selected by gulls for foraging during the incubation and brood rearing periods. We then combined this information to gull survey data, feeding rates, stomach contents, and calorimetric analyses to assess potential trade-offs. Throughout the breeding season, gulls selected landfills and transhipment sites that provided higher mean energy intake than agricultural lands or riparian habitats. They used landfills located farther from the colony where no deterrence program had been implemented but avoided those located closer where deterrence measures took place. On the other hand, gulls selected intensively cultured lands located relatively close to the colony during incubation. The number of gulls was then greater in fields covered by bare soil and peaked during soil preparation and seed sowing, which greatly increase food availability. Breeding Ring-billed gulls thus select habitats according to both their foraging profitability and distance from their nest while accounting for predation risk. This supports the

  19. Habitat Selection and Post-Release Movement of Reintroduced Brown Treecreeper Individuals in Restored Temperate Woodland

    PubMed Central

    Bennett, Victoria A.; Doerr, Veronica A. J.; Doerr, Erik D.; Manning, Adrian D.; Lindenmayer, David B.; Yoon, Hwan-Jin

    2012-01-01

    It is essential to choose suitable habitat when reintroducing a species into its former range. Habitat quality may influence an individual’s dispersal decisions and also ultimately where they choose to settle. We examined whether variation in habitat quality (quantified by the level of ground vegetation cover and the installation of nest boxes) influenced the movement, habitat choice and survival of a reintroduced bird species. We experimentally reintroduced seven social groups (43 individuals) of the brown treecreeper (Climacteris picumnus) into two nature reserves in south-eastern Australia. We radio-tracked 18 brown treecreepers from release in November 2009 until February 2010. We observed extensive movements by individuals irrespective of the release environment or an individual’s gender. This indicated that individuals were capable of dispersing and actively selecting optimum habitat. This may alleviate pressure on wildlife planners to accurately select the most optimum release sites, so long as the species’ requirements are met. There was significant variation in movement between social groups, suggesting that social factors may be a more important influence on movement than habitat characteristics. We found a significant effect of ground vegetation cover on the likelihood of settlement by social groups, with high rates of settlement and survival in dry forests, rather than woodland (where the species typically resides), which has implications for the success of woodland restoration. However, overall the effects of variation in habitat quality were not as strong as we had expected, and resulted in some unpredicted effects such as low survival and settlement in woodland areas with medium levels of ground vegetation cover. The extensive movement by individuals and unforeseen effects of habitat characteristics make it difficult to predict the outcome of reintroductions, the movement behaviour and habitat selection of reintroduced individuals, particularly

  20. Selecting compact habitat reserves for species with differential habitat size needs

    Treesearch

    Vladimir Marianov; Charles ReVelle; Stephanie Snyder

    2008-01-01

    We propose a model for the design of protected habitat reserves, which maximizes the number of species represented at least once in a limited set of reserved sites or parcels. Most models for reserve design do not differentiate eligible habitat sites by their size. Also, they assume that protection is guaranteed through the selection of one site for any species, not...

  1. Masticophis flagellum selects florida scrub habitat at multiple spatial scales

    USGS Publications Warehouse

    Halstead, B.J.; Mushinsky, H.R.; McCoy, E.D.

    2009-01-01

    The use of space by individual animals strongly influences the spatial extent, abundance, and growth rates of their populations. We analyzed the spatial ecology and habitat selection of Masticophis flagellum (the coachwhip) at three different scales to determine which habitats are most important to this species. Home ranges and mean daily displacements of M. flagellum in Florida were large compared to individuals in other populations of this species. Home ranges contained a greater proportion of Florida scrub habitat than did the study site as a whole, and individuals selected Florida scrub habitat within their home ranges. For both selection of the home range within the study site and selection of habitats within the home range, mesic cutthroat and hydric swamp habitats were avoided. Standardized selection ratios of Florida scrub patches were positively correlated with lizard abundance. Several non-mutually exclusive mechanisms, including foraging success (prey abundance, prey vulnerability, and foraging efficiency), abundance of refugia, and thermoregulatory opportunity may underlie the selection of Florida scrub by M. flagellum. Historic rarity and anthropogenic loss and fragmentation of Florida scrub habitat, coupled with the long-distance movements, large home ranges, and selection of Florida scrub by M. flagellum, indicate that large contiguous tracts of land containing Florida scrub will be essential for the persistence of M. flagellum in central Florida. ?? 2009 by The Herpetologists' League, Inc.

  2. Teaching Animal Habitat Selection Using Wildlife Tracking Equipment

    ERIC Educational Resources Information Center

    Laskowski, Jessica; Gillespie, Caitlyn; Corral, Lucia; Oden, Amy; Fricke, Kent; Fontaine, Joseph J.

    2016-01-01

    We present a hands-on outdoor activity coupled with classroom discussion to teach students about wildlife habitat selection, the process by which animals choose where to live. By selecting locations or habitats with many benefits (e.g., food, shelter, mates) and few costs (e.g., predators), animals improve their ability to survive and reproduce.…

  3. Spawning habitat selection of hickory shad

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, J.E.

    2011-01-01

    We examined the spawning habitat selectivity of hickory shad Alosa mediocris, an anadromous species on the Atlantic coast of North America. Using plankton tows and artificial substrates (spawning pads), we collected hickory shad eggs in the Roanoke River, North Carolina, to identify spawning timing, temperature, and microhabitat use. Hickory shad eggs were collected by both sampling gears in March and April. The results from this and three other studies in North Carolina indicate that spawning peaks at water temperatures between 12.0??C and 14.9??C and that approximately 90% occurs between 11.0??C and 18.9??C. Hickory shad eggs were collected in run and riffle habitats. Water velocity and substrate were significantly different at spawning pads with eggs than at those without eggs, suggesting that these are important microhabitat factors for spawning. Hickory shad eggs were usually collected in velocities of at least 0.1 m/s and on all substrates except those dominated by silt. Eggs were most abundant on gravel, cobble, and boulder substrates. Hickory shad spawned further upstream in years when water discharge rates at Roanoke Rapids were approximately average during March and April (2005 and 2007), as compared with a severe drought year (2006), suggesting that water flows may affect not only spawning site selection but also the quantity and quality of spawning habitat available at a macrohabitat scale. Using our field data and a Bayesian approach to resource selection analysis, we developed a preliminary habitat suitability model for hickory shad. This Bayesian approach provides an objective framework for updating the model as future studies of hickory shad spawning habitat are conducted. ?? American Fisheries Society 2011.

  4. Evaluating the habitat capability model for Merriam's turkeys

    Treesearch

    Mark A. Rumble; Stanley H. Anderson

    1995-01-01

    Habitat capability (HABCAP) models for wildlife assist land managers in predicting the consequences of their management decisions. Models must be tested and refined prior to using them in management planning. We tested the predicted patterns of habitat selection of the R2 HABCAP model using observed patterns of habitats selected by radio-marked Merriam’s turkey (

  5. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    NASA Astrophysics Data System (ADS)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access

  6. Quantifying spatial habitat loss from hydrocarbon development through assessing habitat selection patterns of mule deer.

    PubMed

    Northrup, Joseph M; Anderson, Charles R; Wittemyer, George

    2015-11-01

    Extraction of oil and natural gas (hydrocarbons) from shale is increasing rapidly in North America, with documented impacts to native species and ecosystems. With shale oil and gas resources on nearly every continent, this development is set to become a major driver of global land-use change. It is increasingly critical to quantify spatial habitat loss driven by this development to implement effective mitigation strategies and develop habitat offsets. Habitat selection is a fundamental ecological process, influencing both individual fitness and population-level distribution on the landscape. Examinations of habitat selection provide a natural means for understanding spatial impacts. We examined the impact of natural gas development on habitat selection patterns of mule deer on their winter range in Colorado. We fit resource selection functions in a Bayesian hierarchical framework, with habitat availability defined using a movement-based modeling approach. Energy development drove considerable alterations to deer habitat selection patterns, with the most substantial impacts manifested as avoidance of well pads with active drilling to a distance of at least 800 m. Deer displayed more nuanced responses to other infrastructure, avoiding pads with active production and roads to a greater degree during the day than night. In aggregate, these responses equate to alteration of behavior by human development in over 50% of the critical winter range in our study area during the day and over 25% at night. Compared to other regions, the topographic and vegetative diversity in the study area appear to provide refugia that allow deer to behaviorally mediate some of the impacts of development. This study, and the methods we employed, provides a template for quantifying spatial take by industrial activities in natural areas and the results offer guidance for policy makers, mangers, and industry when attempting to mitigate habitat loss due to energy development. © 2015 The Authors

  7. Determinants of Habitat Selection by Hatchling Australian Freshwater Crocodiles

    PubMed Central

    Somaweera, Ruchira; Webb, Jonathan K.; Shine, Richard

    2011-01-01

    Animals almost always use habitats non-randomly, but the costs and benefits of using specific habitat types remain unknown for many types of organisms. In a large lake in northwestern Australia (Lake Argyle), most hatchling (<12-month-old) freshwater crocodiles (Crocodylus johnstoni) are found in floating vegetation mats or grassy banks rather than the more widely available open banks. Mean body sizes of young crocodiles did not differ among the three habitat types. We tested four potential explanations for non-random habitat selection: proximity to nesting sites, thermal conditions, food availability, and exposure to predation. The three alternative habitat types did not differ in proximity to nesting sites, or in thermal conditions. Habitats with higher food availability harboured more hatchlings, and feeding rates (obtained by stomach-flushing of recently-captured crocodiles) were highest in such areas. Predation risk may also differ among habitats: we were twice as likely to capture a crocodile after seeing it in open-bank sites than in the other two habitat types. Thus, habitat selection of hatchling crocodiles in this system may be driven both by prey availability and by predation risk. PMID:22163308

  8. Reef fishes can recognize bleached habitat during settlement: sea anemone bleaching alters anemonefish host selection.

    PubMed

    Scott, Anna; Dixson, Danielle L

    2016-05-25

    Understanding how bleaching impacts the settlement of symbiotic habitat specialists and whether there is flexibility in settlement choices with regard to habitat quality is essential given our changing climate. We used five anemonefishes (Amphiprion clarkii, Amphiprion latezonatus, Amphiprion ocellaris, Amphiprion percula and Premnas biaculeatus) and three host sea anemones (Entacmaea quadricolor, Heteractis crispa and Heteractis magnifica) in paired-choice flume experiments to determine whether habitat naive juveniles have the olfactory capabilities to distinguish between unbleached and bleached hosts, and how this may affect settlement decisions. All anemonefishes were able to distinguish between bleached and unbleached hosts, and responded only to chemical cues from species-specific host anemones irrespective of health status, indicating a lack of flexibility in host use. While bleached hosts were selected as habitat, this occurred only when unbleached options were unavailable, with the exception of A. latezonatus, which showed strong preferences for H. crispa regardless of health. This study highlights the potential deleterious indirect impacts of declining habitat quality during larval settlement in habitat specialists, which could be important in the field, given that bleaching events are becoming increasingly common. © 2016 The Author(s).

  9. Reef fishes can recognize bleached habitat during settlement: sea anemone bleaching alters anemonefish host selection

    PubMed Central

    Scott, Anna; Dixson, Danielle L.

    2016-01-01

    Understanding how bleaching impacts the settlement of symbiotic habitat specialists and whether there is flexibility in settlement choices with regard to habitat quality is essential given our changing climate. We used five anemonefishes (Amphiprion clarkii, Amphiprion latezonatus, Amphiprion ocellaris, Amphiprion percula and Premnas biaculeatus) and three host sea anemones (Entacmaea quadricolor, Heteractis crispa and Heteractis magnifica) in paired-choice flume experiments to determine whether habitat naive juveniles have the olfactory capabilities to distinguish between unbleached and bleached hosts, and how this may affect settlement decisions. All anemonefishes were able to distinguish between bleached and unbleached hosts, and responded only to chemical cues from species-specific host anemones irrespective of health status, indicating a lack of flexibility in host use. While bleached hosts were selected as habitat, this occurred only when unbleached options were unavailable, with the exception of A. latezonatus, which showed strong preferences for H. crispa regardless of health. This study highlights the potential deleterious indirect impacts of declining habitat quality during larval settlement in habitat specialists, which could be important in the field, given that bleaching events are becoming increasingly common. PMID:27226472

  10. Desert amphibian selection of arid land breeding habitat undermines reproductive effort.

    PubMed

    Kiesow, Anja B; Griffis-Kyle, Kerry L

    2017-12-01

    Understanding how animals select habitat is important for understanding how to better conserve those species. As droughts become more frequent and water availability declines in many systems, understanding selection of water sources becomes even more important for conservation. Tinajas and anthropogenic catchments are critical ephemeral breeding sites for Sonoran Desert anurans. Tadpoles have been documented in both water types even though anthropogenic catchments can contain very high concentrations of ammonia. We currently do not know how amphibians are selecting breeding habitat. We tested three hypotheses of habitat selection based on resource quality, resource quality and territoriality, and proximity of water site to other water sites. Male Anaxyrus punctatus called from all sites regardless of habitat quality or male quality; however, they were found more often at sites within 2 km of other sites. This suggests that male desert anurans are selecting close breeding habitat regardless of quality for breeding, indicating ammoniated sites are likely either population sinks or ecological traps. Consequently, adding anthropogenic water sites, without managing to reduce ammonia, will provide low quality habitat that could cause long-term declines in desert anuran populations.

  11. Multi-scale habitat selection modeling: A review and outlook

    Treesearch

    Kevin McGarigal; Ho Yi Wan; Kathy A. Zeller; Brad C. Timm; Samuel A. Cushman

    2016-01-01

    Scale is the lens that focuses ecological relationships. Organisms select habitat at multiple hierarchical levels and at different spatial and/or temporal scales within each level. Failure to properly address scale dependence can result in incorrect inferences in multi-scale habitat selection modeling studies.

  12. Weather conditions drive dynamic habitat selection in a generalist predator.

    PubMed

    Sunde, Peter; Thorup, Kasper; Jacobsen, Lars B; Rahbek, Carsten

    2014-01-01

    Despite the dynamic nature of habitat selection, temporal variation as arising from factors such as weather are rarely quantified in species-habitat relationships. We analysed habitat use and selection (use/availability) of foraging, radio-tagged little owls (Athene noctua), a nocturnal, year-round resident generalist predator, to see how this varied as a function of weather, season and availability. Use of the two most frequently used land cover types, gardens/buildings and cultivated fields varied more than 3-fold as a simple function of season and weather through linear effects of wind and quadratic effects of temperature. Even when controlling for the temporal context, both land cover types were used more evenly than predicted from variation in availability (functional response in habitat selection). Use of two other land cover categories (pastures and moist areas) increased linearly with temperature and was proportional to their availability. The study shows that habitat selection by generalist foragers may be highly dependent on temporal variables such as weather, probably because such foragers switch between weather dependent feeding opportunities offered by different land cover types. An opportunistic foraging strategy in a landscape with erratically appearing feeding opportunities in different land cover types, may possibly also explain decreasing selection of the two most frequently used land cover types with increasing availability.

  13. Movement is the glue connecting home ranges and habitat selection.

    PubMed

    Van Moorter, Bram; Rolandsen, Christer M; Basille, Mathieu; Gaillard, Jean-Michel

    2016-01-01

    Animal space use has been studied by focusing either on geographic (e.g. home ranges, species' distribution) or on environmental (e.g. habitat use and selection) space. However, all patterns of space use emerge from individual movements, which are the primary means by which animals change their environment. Individuals increase their use of a given area by adjusting two key movement components: the duration of their visit and/or the frequency of revisits. Thus, in spatially heterogeneous environments, animals exploit known, high-quality resource areas by increasing their residence time (RT) in and/or decreasing their time to return (TtoR) to these areas. We expected that spatial variation in these two movement properties should lead to observed patterns of space use in both geographic and environmental spaces. We derived a set of nine predictions linking spatial distribution of movement properties to emerging space-use patterns. We predicted that, at a given scale, high variation in RT and TtoR among habitats leads to strong habitat selection and that long RT and short TtoR result in a small home range size. We tested these predictions using moose (Alces alces) GPS tracking data. We first modelled the relationship between landscape characteristics and movement properties. Then, we investigated how the spatial distribution of predicted movement properties (i.e. spatial autocorrelation, mean, and variance of RT and TtoR) influences home range size and hierarchical habitat selection. In landscapes with high spatial autocorrelation of RT and TtoR, a high variation in both RT and TtoR occurred in home ranges. As expected, home range location was highly selective in such landscapes (i.e. second-order habitat selection); RT was higher and TtoR lower within the selected home range than outside, and moose home ranges were small. Within home ranges, a higher variation in both RT and TtoR was associated with higher selectivity among habitat types (i.e. third-order habitat

  14. Naturally acidified habitat selects for ocean acidification–tolerant mussels

    PubMed Central

    Thomsen, Jörn; Stapp, Laura S.; Haynert, Kristin; Schade, Hanna; Danelli, Maria; Lannig, Gisela; Wegner, K. Mathias; Melzner, Frank

    2017-01-01

    Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae (Mytilus edulis) in a periodically CO2-enriched habitat. The larval fitness of the population originating from the CO2-enriched habitat was compared to the response of a population from a nonenriched habitat in a common garden experiment. The high CO2–adapted population showed higher fitness under elevated Pco2 (partial pressure of CO2) than the non-adapted cohort, demonstrating, for the first time, an evolutionary response of a natural mussel population to ocean acidification. To assess the rate of adaptation, we performed a selection experiment over three generations. CO2 tolerance differed substantially between the families within the F1 generation, and survival was drastically decreased in the highest, yet realistic, Pco2 treatment. Selection of CO2-tolerant F1 animals resulted in higher calcification performance of F2 larvae during early shell formation but did not improve overall survival. Our results thus reveal significant short-term selective responses of traits directly affected by ocean acidification and long-term adaptation potential in a key bivalve species. Because immediate response to selection did not directly translate into increased fitness, multigenerational studies need to take into consideration the multivariate nature of selection acting in natural habitats. Combinations of short-term selection with long-term adaptation in populations from CO2-enriched versus nonenriched natural habitats represent promising approaches for estimating adaptive potential of organisms facing global change. PMID:28508039

  15. Naturally acidified habitat selects for ocean acidification-tolerant mussels.

    PubMed

    Thomsen, Jörn; Stapp, Laura S; Haynert, Kristin; Schade, Hanna; Danelli, Maria; Lannig, Gisela; Wegner, K Mathias; Melzner, Frank

    2017-04-01

    Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae ( Mytilus edulis ) in a periodically CO 2 -enriched habitat. The larval fitness of the population originating from the CO 2 -enriched habitat was compared to the response of a population from a nonenriched habitat in a common garden experiment. The high CO 2 -adapted population showed higher fitness under elevated P co 2 (partial pressure of CO 2 ) than the non-adapted cohort, demonstrating, for the first time, an evolutionary response of a natural mussel population to ocean acidification. To assess the rate of adaptation, we performed a selection experiment over three generations. CO 2 tolerance differed substantially between the families within the F 1 generation, and survival was drastically decreased in the highest, yet realistic, P co 2 treatment. Selection of CO 2 -tolerant F 1 animals resulted in higher calcification performance of F 2 larvae during early shell formation but did not improve overall survival. Our results thus reveal significant short-term selective responses of traits directly affected by ocean acidification and long-term adaptation potential in a key bivalve species. Because immediate response to selection did not directly translate into increased fitness, multigenerational studies need to take into consideration the multivariate nature of selection acting in natural habitats. Combinations of short-term selection with long-term adaptation in populations from CO 2 -enriched versus nonenriched natural habitats represent promising approaches for estimating adaptive potential of organisms facing global change.

  16. Using dynamic population simulations to extend resource selection analyses and prioritize habitats for conservation

    USGS Publications Warehouse

    Heinrichs, Julie; Aldridge, Cameron L.; O'Donnell, Michael; Schumaker, Nathan

    2017-01-01

    Prioritizing habitats for conservation is a challenging task, particularly for species with fluctuating populations and seasonally dynamic habitat needs. Although the use of resource selection models to identify and prioritize habitat for conservation is increasingly common, their ability to characterize important long-term habitats for dynamic populations are variable. To examine how habitats might be prioritized differently if resource selection was directly and dynamically linked with population fluctuations and movement limitations among seasonal habitats, we constructed a spatially explicit individual-based model for a dramatically fluctuating population requiring temporally varying resources. Using greater sage-grouse (Centrocercus urophasianus) in Wyoming as a case study, we used resource selection function maps to guide seasonal movement and habitat selection, but emergent population dynamics and simulated movement limitations modified long-term habitat occupancy. We compared priority habitats in RSF maps to long-term simulated habitat use. We examined the circumstances under which the explicit consideration of movement limitations, in combination with population fluctuations and trends, are likely to alter predictions of important habitats. In doing so, we assessed the future occupancy of protected areas under alternative population and habitat conditions. Habitat prioritizations based on resource selection models alone predicted high use in isolated parcels of habitat and in areas with low connectivity among seasonal habitats. In contrast, results based on more biologically-informed simulations emphasized central and connected areas near high-density populations, sometimes predicted to be low selection value. Dynamic models of habitat use can provide additional biological realism that can extend, and in some cases, contradict habitat use predictions generated from short-term or static resource selection analyses. The explicit inclusion of population

  17. Roosting habitat use and selection by northern spotted owls during natal dispersal

    USGS Publications Warehouse

    Sovern, Stan G.; Forsman, Eric D.; Dugger, Catherine M.; Taylor, Margaret

    2015-01-01

    We studied habitat selection by northern spotted owls (Strix occidentalis caurina) during natal dispersal in Washington State, USA, at both the roost site and landscape scales. We used logistic regression to obtain parameters for an exponential resource selection function based on vegetation attributes in roost and random plots in 76 forest stands that were used for roosting. We used a similar analysis to evaluate selection of landscape habitat attributes based on 301 radio-telemetry relocations and random points within our study area. We found no evidence of within-stand selection for any of the variables examined, but 78% of roosts were in stands with at least some large (>50 cm dbh) trees. At the landscape scale, owls selected for stands with high canopy cover (>70%). Dispersing owls selected vegetation types that were more similar to habitat selected by adult owls than habitat that would result from following guidelines previously proposed to maintain dispersal habitat. Our analysis indicates that juvenile owls select stands for roosting that have greater canopy cover than is recommended in current agency guidelines.

  18. Chapter 2. Selecting Key Habitat Attributes for Monitoring

    Treesearch

    Gregory D. Hayward; Lowell H. Suring

    2013-01-01

    The success of habitat monitoring programs depends, to a large extent, on carefully selecting key habitat attributes to monitor. The challenge of choosing a limited but sufficient set of attributes will differ depending on the objectives of the monitoring program. In some circumstances, such as managing National Forest System lands for threatened and endangered species...

  19. Habitat selection by two beluga whale populations in the Chukchi and Beaufort seas.

    PubMed

    Hauser, Donna D W; Laidre, Kristin L; Stern, Harry L; Moore, Sue E; Suydam, Robert S; Richard, Pierre R

    2017-01-01

    There has been extensive sea ice loss in the Chukchi and Beaufort seas where two beluga whale (Delphinapterus leucas) populations occur between July-November. Our goal was to develop population-specific beluga habitat selection models that quantify relative use of sea ice and bathymetric features related to oceanographic processes, which can provide context to the importance of changing sea ice conditions. We established habitat selection models that incorporated daily sea ice measures (sea ice concentration, proximity to ice edge and dense ice) and bathymetric features (slope, depth, proximity to the continental slope, Barrow Canyon, and shore) to establish quantitative estimates of habitat use for the Eastern Chukchi Sea ('Chukchi') and Eastern Beaufort Sea ('Beaufort') populations. We applied 'used v. available' resource selection functions to locations of 65 whales tagged from 1993-2012, revealing large variations in seasonal habitat selection that were distinct between sex and population groups. Chukchi whales of both sexes were predicted to use areas in close proximity to Barrow Canyon (typically <200 km) as well as the continental slope in summer, although deeper water and denser ice were stronger predictors for males than females. Habitat selection differed more between sexes for Beaufort belugas. Beaufort males selected higher ice concentrations (≥40%) than females (0-40%) in July-August. Proximity to shore (<200 km) strongly predicted summer habitat of Beaufort females, while distance to the ice edge was important for male habitat selection, especially during westward migration in September. Overall, our results indicate that sea ice variables were rarely the primary drivers of beluga summer-fall habitat selection. While diminished sea ice may indirectly affect belugas through changes in the ecosystem, associations with bathymetric features that affect prey availability seemed key to habitat selection during summer and fall. These results provide a

  20. Habitat selection by juvenile Mojave Desert tortoises

    USGS Publications Warehouse

    Todd, Brian D; Halstead, Brian J.; Chiquoine, Lindsay P.; Peaden, J. Mark; Buhlmann, Kurt A.; Tuberville, Tracey D.; Nafus, Melia G.

    2016-01-01

    Growing pressure to develop public lands for renewable energy production places several protected species at increased risk of habitat loss. One example is the Mojave desert tortoise (Gopherus agassizii), a species often at the center of conflicts over public land development. For this species and others on public lands, a better understanding of their habitat needs can help minimize negative impacts and facilitate protection or restoration of habitat. We used radio-telemetry to track 46 neonate and juvenile tortoises in the Eastern Mojave Desert, California, USA, to quantify habitat at tortoise locations and paired random points to assess habitat selection. Tortoise locations near burrows were more likely to be under canopy cover and had greater coverage of perennial plants (especially creosote [Larrea tridentata]), more coverage by washes, a greater number of small-mammal burrows, and fewer white bursage (Ambrosia dumosa) than random points. Active tortoise locations away from burrows were closer to washes and perennial plants than were random points. Our results can help planners locate juvenile tortoises and avoid impacts to habitat critical for this life stage. Additionally, our results provide targets for habitat protection and restoration and suggest that diverse and abundant small-mammal populations and the availability of creosote bush are vital for juvenile desert tortoises in the Eastern Mojave Desert.

  1. Behavioural cues surpass habitat factors in explaining prebreeding resource selection by a migratory diving duck

    USGS Publications Warehouse

    O'Neil, Shawn T.; Warren, Jeffrey M.; Takekawa, John Y.; De La Cruz, Susan E. W.; Cutting, Kyle A.; Parker, Michael W.; Yee, Julie L.

    2014-01-01

    Prebreeding habitat selection in birds can often be explained in part by habitat characteristics. However, females may also select habitats on the basis of fidelity to areas of previous reproductive success or use by conspecifics. The relative influences of sociobehavioural attributes versus habitat characteristics in habitat selection has been primarily investigated in songbirds, while less is known about how these factors affect habitat selection processes in migratory waterfowl. Animal resource selection models often exhibit much unexplained variation; spatial patterns driven by social and behavioural characteristics may account for some of this. We radiomarked female lesser scaup, Aythya affinis, in the southwestern extent of their breeding range to explore hypotheses regarding relative roles of habitat quality, site fidelity and conspecific density in prebreeding habitat selection. We used linear mixed-effects models to relate intensity of use within female home ranges to habitat features, distance to areas of reproductive success during the previous breeding season and conspecific density. Home range habitats included shallow water (≤118 cm), moderate to high densities of flooded emergent vegetation/open water edge and open water areas with submerged aquatic vegetation. Compared with habitat features, conspecific female density and proximity to successful nesting habitats from the previous breeding season had greater influences on habitat use within home ranges. Fidelity and conspecific attraction are behavioural characteristics in some waterfowl species that may exert a greater influence than habitat features in influencing prebreeding space use and habitat selection within home ranges, particularly where quality habitat is abundant. These processes may be of critical importance to a better understanding of habitat selection in breeding birds.

  2. Thermoregulatory performance and habitat selection of the eastern box turtle (Terrapene carolina carolina)

    PubMed Central

    Parlin, Adam F; do Amaral, José Pedro S; Dougherty, John Kelly; Stevens, M Henry H

    2017-01-01

    Abstract Environmental conditions may affect individual physiological processes that influence short-term performance and ultimately growth, survival and reproduction. As such, habitats selected by animals must provide suitable and adequate resources. Ectothermic species are highly dependent on climatic conditions and ambient temperatures that dictate body temperature regulation and in turn physiological processes. We investigated the thermoregulatory performance, habitat selection, and movements of an ectothermic vertebrate, the Eastern box turtle (Terrapene carolina carolina) to assess the importance of thermoregulatory physiology in habitat selection. We evaluated the relationship between habitat selection and thermoregulatory performance in Southwest Ohio over two active seasons from May until October. We found that T. carolina selected shaded habitats, including evergreen and deciduous forests, as well as herbaceous grasslands, conformed to the ambient temperatures throughout the active season, although these habitats had temperatures below those expected based on thermal optima of box turtles. Further, we found that movement was not correlated with internal body temperature. Our study shows that thermal conditions are not paramount in habitat selection of box turtles, but that cooler temperatures do not have an effect on the extent of their locomotion. PMID:29255608

  3. Habitat selection and movements of Piping Plover broods suggest a tradeoff between breeding stages

    USGS Publications Warehouse

    Wiltermuth, Mark T.; Anteau, Michael J.; Sherfy, Mark H.; Pearse, Aaron T.

    2015-01-01

    In precocial birds, adults select breeding areas using cues associated with habitat characteristics that are favorable for nesting success and chick survival, but there may be tradeoffs in habitat selection between these breeding stages. Here we describe habitat selection and intra-territory movements of 53 Piping Plover (Charadrius melodus) broods (320 observations) during the 2007–2008 breeding seasons on mainland- and island-shoreline habitats at Lake Sakakawea, North Dakota, USA. We used remotely sensed habitat characteristics to separately examine habitat selection and movements at two spatiotemporal scales to account for potential confounding effects of nest-site selection on brood-rearing habitat used. The scales used were (1) the entire brood-rearing period within available brood-rearing areas and (2) 2-day observation intervals within age-specific discrete habitat selection choice sets. Analyses at both scales indicated that broods selected areas which were non-vegetated, moderately level, and nearer to the shoreline. Rate of brood movement increased with age up to 5 days, then stabilized; broods that hatched >50 m away from the shoreline moved toward the shoreline. Brood movements were greater when they were in vegetated areas, when the brood-rearing area was of greater topographic complexity, and when broods aged 6–25 days were further away from the shoreline. Using inferences from our results and those of previously published work, we postulate how a potential tradeoff in habitat selection between nesting and brood-rearing can contribute to an ecological trap in a novel habitat. This work, in the context of published works, suggests that plover breeding habitat is a complex of both nesting and brood-rearing habitats and provides a basis for making remotely sensed abundance estimates of suitable breeding habitat for Piping Plovers.

  4. Discrete choice modeling of shovelnose sturgeon habitat selection in the Lower Missouri River

    USGS Publications Warehouse

    Bonnot, T.W.; Wildhaber, M.L.; Millspaugh, J.J.; DeLonay, A.J.; Jacobson, R.B.; Bryan, J.L.

    2011-01-01

    Substantive changes to physical habitat in the Lower Missouri River, resulting from intensive management, have been implicated in the decline of pallid (Scaphirhynchus albus) and shovelnose (S. platorynchus) sturgeon. To aid in habitat rehabilitation efforts, we evaluated habitat selection of gravid, female shovelnose sturgeon during the spawning season in two sections (lower and upper) of the Lower Missouri River in 2005 and in the upper section in 2007. We fit discrete choice models within an information theoretic framework to identify selection of means and variability in three components of physical habitat. Characterizing habitat within divisions around fish better explained selection than habitat values at the fish locations. In general, female shovelnose sturgeon were negatively associated with mean velocity between them and the bank and positively associated with variability in surrounding depths. For example, in the upper section in 2005, a 0.5 m s-1 decrease in velocity within 10 m in the bank direction increased the relative probability of selection 70%. In the upper section fish also selected sites with surrounding structure in depth (e.g., change in relief). Differences in models between sections and years, which are reinforced by validation rates, suggest that changes in habitat due to geomorphology, hydrology, and their interactions over time need to be addressed when evaluating habitat selection. Because of the importance of variability in surrounding depths, these results support an emphasis on restoring channel complexity as an objective of habitat restoration for shovelnose sturgeon in the Lower Missouri River.

  5. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem

    PubMed Central

    Muposhi, Victor K.; Gandiwa, Edson; Chemura, Abel; Bartels, Paul; Makuza, Stanley M.; Madiri, Tinaapi H.

    2016-01-01

    An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i) surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii) habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii) spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana) for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats. PMID:27680673

  6. Habitat selection by two beluga whale populations in the Chukchi and Beaufort seas

    PubMed Central

    Laidre, Kristin L.; Stern, Harry L.; Moore, Sue E.; Suydam, Robert S.; Richard, Pierre R.

    2017-01-01

    There has been extensive sea ice loss in the Chukchi and Beaufort seas where two beluga whale (Delphinapterus leucas) populations occur between July-November. Our goal was to develop population-specific beluga habitat selection models that quantify relative use of sea ice and bathymetric features related to oceanographic processes, which can provide context to the importance of changing sea ice conditions. We established habitat selection models that incorporated daily sea ice measures (sea ice concentration, proximity to ice edge and dense ice) and bathymetric features (slope, depth, proximity to the continental slope, Barrow Canyon, and shore) to establish quantitative estimates of habitat use for the Eastern Chukchi Sea (‘Chukchi’) and Eastern Beaufort Sea (‘Beaufort’) populations. We applied ‘used v. available’ resource selection functions to locations of 65 whales tagged from 1993–2012, revealing large variations in seasonal habitat selection that were distinct between sex and population groups. Chukchi whales of both sexes were predicted to use areas in close proximity to Barrow Canyon (typically <200 km) as well as the continental slope in summer, although deeper water and denser ice were stronger predictors for males than females. Habitat selection differed more between sexes for Beaufort belugas. Beaufort males selected higher ice concentrations (≥40%) than females (0–40%) in July-August. Proximity to shore (<200 km) strongly predicted summer habitat of Beaufort females, while distance to the ice edge was important for male habitat selection, especially during westward migration in September. Overall, our results indicate that sea ice variables were rarely the primary drivers of beluga summer-fall habitat selection. While diminished sea ice may indirectly affect belugas through changes in the ecosystem, associations with bathymetric features that affect prey availability seemed key to habitat selection during summer and fall. These

  7. Tests of a theory for diel activity and habitat selection

    Treesearch

    Steven F. Railsback; Bret C. Harvey; John W. Hayse; Kirk E. Lagory

    2005-01-01

    For many animals, selecting whether to forage during day or night is a critical fitness problem: at night, predation risks are lower but feeding is less efficient. Habitat selection is a closely related problem: the best location for nocturnal foraging could be too risky during daytime, and habitat that is safe and profitable in daytime may be unprofitable at night. We...

  8. Amphibian terrestrial habitat selection and movement patterns vary with annual life-history period

    USGS Publications Warehouse

    Groff, Luke A.; Calhoun, Aram J.K.; Loftin, Cynthia S.

    2017-01-01

    Identification of essential habitat is a fundamental component of amphibian conservation; however, species with complex life histories frequently move among habitats. To better understand dynamic habitat use, we evaluated Wood Frog (Lithobates sylvaticus (LeConte, 1825)) habitat selection and movement patterns during the spring migration and foraging periods and described the spatiotemporal variability of habitats used during all annual life-history periods. We radio-tracked 71 frogs in Maine during 2011–2013 and evaluated spring migration, foraging activity center (FAC), and within-FAC habitat selection. Telemetered frogs spent the greatest percentage of each field season in hibernacula (≥54.4%), followed by FACs (≥25.5%), migration habitat (≥16.9%), and breeding sites (≥4.5%). FACs ranged 49 – 1 335 m2 (568.0 ± 493.4 m2) and annual home ranges spanned 1 413 – 32 165 m2 (11 780.6 ± 12 506.1 m2). During spring migration, Wood Frogs exhibited different movement patterns (e.g., turn angles), selected different habitat features, and selected habitat features less consistently than while occupying FACs, indicating that the migration and foraging periods are ecologically distinct. Habitat-use studies that do not discriminate among annual life-history periods may obscure true ecological relationships and fail to identify essential habitat necessary for sustaining amphibian populations.

  9. Multi-scale habitat selection of the endangered Hawaiian Goose

    USGS Publications Warehouse

    Leopold, Christina R.; Hess, Steven C.

    2013-01-01

    After a severe population reduction during the mid-20th century, the endangered Hawaiian Goose (Branta sandvicensis), or Nēnē, has only recently re-established its seasonal movement patterns on Hawai‘i Island. Little is currently understood about its movements and habitat use during the nonbreeding season. The objectives of this research were to identify habitats preferred by two subpopulations of the Nēnē and how preferences shift seasonally at both meso-and fine scales. From 2009 to 2011, ten Nēnē ganders were outfitted with 40-to 45-g satellite transmitters with GPS capability. We used binary logistic regression to compare habitat use versus availability and an information-theoretic approach for model selection. Meso-scale habitat modeling revealed that Nēnē preferred exotic grass and human-modified landscapes during the breeding and molting seasons and native subalpine shrubland during the nonbreeding season. Fine-scale habitat modeling further indicated preference for exotic grass, bunch grass, and absence of trees. Proximity to water was important during molt, suggesting that the presence of water may provide escape from introduced mammalian predators while Nēnē are flightless. Finescale species-composition data added relatively little to understanding of Nēnē habitat preferences modeled at the meso scale, suggesting that the meso-scale is appropriate for management planning. Habitat selection during our study was consistent with historical records, although dissimilar from more recent studies of other subpopulations. Nēnē make pronounced seasonal movements between existing reserves and use distinct habitat types; understanding annual patterns has implications for the protection and restoration of important seasonal habitats.

  10. Habitat selection of Rocky Mountain elk in a nonforested environment

    USGS Publications Warehouse

    Sawyer, H.; Nielson, R.M.; Lindzey, F.G.; Keith, L.; Powell, J.H.; Abraham, A.A.

    2007-01-01

    Recent expansions by Rocky Mountain elk (Cervus elaphus) into nonforested habitats across the Intermountain West have required managers to reconsider the traditional paradigms of forage and cover as they relate to managing elk and their habitats. We examined seasonal habitat selection patterns of a hunted elk population in a nonforested high-desert region of southwestern Wyoming, USA. We used 35,246 global positioning system locations collected from 33 adult female elk to model probability of use as a function of 6 habitat variables: slope, aspect, elevation, habitat diversity, distance to shrub cover, and distance to road. We developed resource selection probability functions for individual elk, and then we averaged the coefficients to estimate population-level models for summer and winter periods. We used the population-level models to generate predictive maps by assigning pixels across the study area to 1 of 4 use categories (i.e., high, medium-high, medium-low, or low), based on quartiles of the predictions. Model coefficients and predictive maps indicated that elk selected for summer habitats characterized by higher elevations in areas of high vegetative diversity, close to shrub cover, northerly aspects, moderate slopes, and away from roads. Winter habitat selection patterns were similar, except elk shifted to areas with lower elevations and southerly aspects. We validated predictive maps by using 528 locations collected from an independent sample of radiomarked elk (n = 55) and calculating the proportion of locations that occurred in each of the 4 use categories. Together, the high- and medium-high use categories of the summer and winter predictive maps contained 92% and 74% of summer and winter elk locations, respectively. Our population-level models and associated predictive maps were successful in predicting winter and summer habitat use by elk in a nonforested environment. In the absence of forest cover, elk seemed to rely on a combination of shrubs

  11. Invariant polar bear habitat selection during a period of sea ice loss

    USGS Publications Warehouse

    Wilson, Ryan R.; Regehr, Eric V.; Rode, Karyn D.; St Martin, Michelle

    2016-01-01

    Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears.

  12. Invariant polar bear habitat selection during a period of sea ice loss.

    PubMed

    Wilson, Ryan R; Regehr, Eric V; Rode, Karyn D; St Martin, Michelle

    2016-08-17

    Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears. © 2016 The Author(s).

  13. Terrestrial habitat selection and strong density-dependent mortality in recently metamorphosed amphibians.

    PubMed

    Patrick, David A; Harper, Elizabeth B; Hunter, Malcolm L; Calhoun, Aram J K

    2008-09-01

    To predict the effects of terrestrial habitat change on amphibian populations, we need to know how amphibians respond to habitat heterogeneity, and whether habitat choice remains consistent throughout the life-history cycle. We conducted four experiments to evaluate how the spatial distribution of juvenile wood frogs, Rana sylvatica (including both overall abundance and localized density), was influenced by habitat choice and habitat structure, and how this relationship changed with spatial scale and behavioral phase. The four experiments included (1) habitat manipulation on replicated 10-ha landscapes surrounding breeding pools; (2) short-term experiments with individual frogs emigrating through a manipulated landscape of 1 m wide hexagonal patches; and habitat manipulations in (3) small (4-m2); and (4) large (100-m2) enclosures with multiple individuals to compare behavior both during and following emigration. The spatial distribution of juvenile wood frogs following emigration resulted from differences in the scale at which juvenile amphibians responded to habitat heterogeneity during active vs. settled behavioral phases. During emigration, juvenile wood frogs responded to coarse-scale variation in habitat (selection between 2.2-ha forest treatments) but not to fine-scale variation. After settling, however, animals showed habitat selection at much smaller scales (2-4 m2). This resulted in high densities of animals in small patches of suitable habitat where they experienced rapid mortality. No evidence of density-dependent habitat selection was seen, with juveniles typically choosing to remain at extremely high densities in high-quality habitat, rather than occupying low-quality habitat. These experiments demonstrate how prediction of the terrestrial distribution of juvenile amphibians requires understanding of the complex behavioral responses to habitat heterogeneity. Understanding these patterns is important, given that human alterations to amphibian habitats

  14. Dynamics of habitat selection in birds: adaptive response to nest predation depends on multiple factors.

    PubMed

    Devries, J H; Clark, R G; Armstrong, L M

    2018-05-01

    According to theory, habitat selection by organisms should reflect underlying habitat-specific fitness consequences and, in birds, reproductive success has a strong impact on population growth in many species. Understanding processes affecting habitat selection also is critically important for guiding conservation initiatives. Northern pintails (Anas acuta) are migratory, temperate-nesting birds that breed in greatest concentrations in the prairies of North America and their population remains below conservation goals. Habitat loss and changing land use practices may have decoupled formerly reliable fitness cues with respect to nest habitat choices. We used data from 62 waterfowl nesting study sites across prairie Canada (1997-2009) to examine nest survival, a primary fitness metric, at multiple scales, in combination with estimates of habitat selection (i.e., nests versus random points), to test for evidence of adaptive habitat choices. We used the same habitat covariates in both analyses. Pintail nest survival varied with nest initiation date, nest habitat, pintail breeding pair density, landscape composition and annual moisture. Selection of nesting habitat reflected patterns in nest survival in some cases, indicating adaptive selection, but strength of habitat selection varied seasonally and depended on population density and landscape composition. Adaptive selection was most evident late in the breeding season, at low breeding densities and in cropland-dominated landscapes. Strikingly, at high breeding density, habitat choice appears to become maladaptive relative to nest predation. At larger spatial scales, the relative availability of habitats with low versus high nest survival, and changing land use practices, may limit the reproductive potential of pintails.

  15. Selection of nest-site habitat by interior least terns in relation to sandbar construction

    USGS Publications Warehouse

    Sherfy, M.H.; Stucker, J.H.; Buhl, D.A.

    2012-01-01

    Federally endangered interior least terns (Sternula antillarum) nest on bare or sparsely vegetated sandbars on midcontinent river systems. Loss of nesting habitat has been implicated as a cause of population declines, and managing these habitats is a major initiative in population recovery. One such initiative involves construction of mid-channel sandbars on the Missouri River, where natural sandbar habitat has declined in quantity and quality since the late 1990s. We evaluated nest-site habitat selection by least terns on constructed and natural sandbars by comparing vegetation, substrate, and debris variables at nest sites (na =a 798) and random points (na =a 1,113) in bare or sparsely vegetated habitats. Our logistic regression models revealed that a broader suite of habitat features was important in nest-site selection on constructed than on natural sandbars. Odds ratios for habitat variables indicated that avoidance of habitat features was the dominant nest-site selection process on both sandbar types, with nesting terns being attracted to nest-site habitat features (gravel and debris) and avoiding vegetation only on constructed sandbars, and avoiding silt and leaf litter on both sandbar types. Despite the seemingly uniform nature of these habitats, our results suggest that a complex suite of habitat features influences nest-site choice by least terns. However, nest-site selection in this social, colonially nesting species may be influenced by other factors, including spatial arrangement of bare sand habitat, proximity to other least terns, and prior habitat occupancy by piping plovers (Charadrius melodus). We found that nest-site selection was sensitive to subtle variation in habitat features, suggesting that rigor in maintaining habitat condition will be necessary in managing sandbars for the benefit of least terns. Further, management strategies that reduce habitat features that are avoided by least terns may be the most beneficial to nesting least terns

  16. Selection of nest-site habitat by interior least terns in relation to sandbar construction

    USGS Publications Warehouse

    Sherfy, Mark H.; Stucker, Jennifer H.; Buhl, Deborah A.

    2012-01-01

    Federally endangered interior least terns (Sternula antillarum) nest on bare or sparsely vegetated sandbars on midcontinent river systems. Loss of nesting habitat has been implicated as a cause of population declines, and managing these habitats is a major initiative in population recovery. One such initiative involves construction of mid-channel sandbars on the Missouri River, where natural sandbar habitat has declined in quantity and quality since the late 1990s. We evaluated nest-site habitat selection by least terns on constructed and natural sandbars by comparing vegetation, substrate, and debris variables at nest sites (n = 798) and random points (n = 1,113) in bare or sparsely vegetated habitats. Our logistic regression models revealed that a broader suite of habitat features was important in nest-site selection on constructed than on natural sandbars. Odds ratios for habitat variables indicated that avoidance of habitat features was the dominant nest-site selection process on both sandbar types, with nesting terns being attracted to nest-site habitat features (gravel and debris) and avoiding vegetation only on constructed sandbars, and avoiding silt and leaf litter on both sandbar types. Despite the seemingly uniform nature of these habitats, our results suggest that a complex suite of habitat features influences nest-site choice by least terns. However, nest-site selection in this social, colonially nesting species may be influenced by other factors, including spatial arrangement of bare sand habitat, proximity to other least terns, and prior habitat occupancy by piping plovers (Charadrius melodus). We found that nest-site selection was sensitive to subtle variation in habitat features, suggesting that rigor in maintaining habitat condition will be necessary in managing sandbars for the benefit of least terns. Further, management strategies that reduce habitat features that are avoided by least terns may be the most beneficial to nesting least terns.

  17. Movement reveals scale dependence in habitat selection of a large ungulate.

    PubMed

    Northrup, Joseph M; Anderson, Charles R; Hooten, Mevin B; Wittemyer, George

    2016-12-01

    Ecological processes operate across temporal and spatial scales. Anthropogenic disturbances impact these processes, but examinations of scale dependence in impacts are infrequent. Such examinations can provide important insight to wildlife-human interactions and guide management efforts to reduce impacts. We assessed spatiotemporal scale dependence in habitat selection of mule deer (Odocoileus hemionus) in the Piceance Basin of Colorado, USA, an area of ongoing natural gas development. We employed a newly developed animal movement method to assess habitat selection across scales defined using animal-centric spatiotemporal definitions ranging from the local (defined from five hour movements) to the broad (defined from weekly movements). We extended our analysis to examine variation in scale dependence between night and day and assess functional responses in habitat selection patterns relative to the density of anthropogenic features. Mule deer displayed scale invariance in the direction of their response to energy development features, avoiding well pads and the areas closest to roads at all scales, though with increasing strength of avoidance at coarser scales. Deer displayed scale-dependent responses to most other habitat features, including land cover type and habitat edges. Selection differed between night and day at the finest scales, but homogenized as scale increased. Deer displayed functional responses to development, with deer inhabiting the least developed ranges more strongly avoiding development relative to those with more development in their ranges. Energy development was a primary driver of habitat selection patterns in mule deer, structuring their behaviors across all scales examined. Stronger avoidance at coarser scales suggests that deer behaviorally mediated their interaction with development, but only to a degree. At higher development densities than seen in this area, such mediation may not be possible and thus maintenance of sufficient habitat

  18. Movement reveals scale dependence in habitat selection of a large ungulate

    USGS Publications Warehouse

    Northrup, Joseph; Anderson, Charles R.; Hooten, Mevin B.; Wittemyer, George

    2016-01-01

    Ecological processes operate across temporal and spatial scales. Anthropogenic disturbances impact these processes, but examinations of scale dependence in impacts are infrequent. Such examinations can provide important insight to wildlife–human interactions and guide management efforts to reduce impacts. We assessed spatiotemporal scale dependence in habitat selection of mule deer (Odocoileus hemionus) in the Piceance Basin of Colorado, USA, an area of ongoing natural gas development. We employed a newly developed animal movement method to assess habitat selection across scales defined using animal-centric spatiotemporal definitions ranging from the local (defined from five hour movements) to the broad (defined from weekly movements). We extended our analysis to examine variation in scale dependence between night and day and assess functional responses in habitat selection patterns relative to the density of anthropogenic features. Mule deer displayed scale invariance in the direction of their response to energy development features, avoiding well pads and the areas closest to roads at all scales, though with increasing strength of avoidance at coarser scales. Deer displayed scale-dependent responses to most other habitat features, including land cover type and habitat edges. Selection differed between night and day at the finest scales, but homogenized as scale increased. Deer displayed functional responses to development, with deer inhabiting the least developed ranges more strongly avoiding development relative to those with more development in their ranges. Energy development was a primary driver of habitat selection patterns in mule deer, structuring their behaviors across all scales examined. Stronger avoidance at coarser scales suggests that deer behaviorally mediated their interaction with development, but only to a degree. At higher development densities than seen in this area, such mediation may not be possible and thus maintenance of sufficient

  19. Forest or the trees: At what scale do elephants make foraging decisions?

    NASA Astrophysics Data System (ADS)

    Shrader, Adrian M.; Bell, Caroline; Bertolli, Liandra; Ward, David

    2012-07-01

    For herbivores, food is distributed spatially in a hierarchical manner ranging from plant parts to regions. Ultimately, utilisation of food is dependent on the scale at which herbivores make foraging decisions. A key factor that influences these decisions is body size, because selection inversely relates to body size. As a result, large animals can be less selective than small herbivores. Savanna elephants (Loxodonta africana) are the largest terrestrial herbivore. Thus, they represent a potential extreme with respect to unselective feeding. However, several studies have indicated that elephants prefer specific habitats and certain woody plant species. Thus, it is unclear at which scale elephants focus their foraging decisions. To determine this, we recorded the seasonal selection of habitats and woody plant species by elephants in the Ithala Game Reserve, South Africa. We expected that during the wet season, when both food quality and availability were high, that elephants would select primarily for habitats. This, however, does not mean that they would utilise plant species within these habitats in proportion to availability, but rather would show a stronger selection for habitats compared to plants. In contrast, during the dry season when food quality and availability declined, we expected that elephants would shift and select for the remaining high quality woody species across all habitats. Consistent with our predictions, elephants selected for the larger spatial scale (i.e. habitats) during the wet season. However, elephants did not increase their selection of woody species during the dry season, but rather increased their selection of habitats relative to woody plant selection. Unlike a number of earlier studies, we found that that neither palatability (i.e. crude protein, digestibility, and energy) alone nor tannin concentrations had a significant effect for determining the elephants' selection of woody species. However, the palatability:tannin ratio was

  20. Spatial use and habitat selection of golden eagles in southwestern Idaho

    USGS Publications Warehouse

    Marzluff, J.M.; Knick, Steven T.; Vekasy, M.S.; Schueck, Linda S.; Zarriello, T.J.

    1997-01-01

    We measured spatial use and habitat selection of radio-tagged Golden Eagles (Aquila chrysaetos) at eight to nine territories each year from 1992 to 1994 in the Snake River Birds of Prey National Conservation Area. Use of space did not vary between years or sexes, but did vary among seasons (home ranges and travel distances were larger during the nonbreeding than during the breeding season) and among individuals. Home ranges were large, ranging from 190 to 8,330 ha during the breeding season and from 1,370 to 170,000 ha outside of the breeding season, but activity was concentrated in small core areas of 30 to 1,535 ha and 485 to 6,380 ha during the breeding and nonbreeding seasons, respectively. Eagles selected shrub habitats and avoided disturbed areas, grasslands, and agriculture. This resulted in selection for habitat likely to contain their principal prey, black-tailed jackrabbits (Lepus californicus). Individuals with home ranges in extensive shrubland (n = 3) did not select for shrubs in the placement of their core areas or foraging points, but individuals in highly fragmented or dispersed shrublands (n = 5) concentrated their activities and foraged preferentially in jackrabbit habitats (i.e. areas with abundant and large shrub patches). As home ranges expanded outside of the breeding season, individuals selected jackrabbit habitats within their range. Shrubland fragmentation should be minimized so that remaining shrub patches are large enough to support jackrabbits.

  1. Space Use and Habitat Selection by Resident and Transient Coyotes (Canis latrans)

    PubMed Central

    Hinton, Joseph W.; van Manen, Frank T.; Chamberlain, Michael J.

    2015-01-01

    Little information exists on coyote (Canis latrans) space use and habitat selection in the southeastern United States and most studies conducted in the Southeast have been carried out within small study areas (e.g., ≤1,000 km2). Therefore, studying the placement, size, and habitat composition of coyote home ranges over broad geographic areas could provide relevant insights regarding how coyote populations adjust to regionally varying ecological conditions. Despite an increasing number of studies of coyote ecology, few studies have assessed the role of transiency as a life-history strategy among coyotes. During 2009–2011, we used GPS radio-telemetry to study coyote space use and habitat selection on the Albemarle Peninsula of northeastern North Carolina. We quantified space use and 2nd- and 3rd-order habitat selection for resident and transient coyotes to describe space use patterns in a predominantly agricultural landscape. The upper limit of coyote home-range size was approximately 47 km2 and coyotes exhibiting shifting patterns of space use of areas >65 km2 were transients. Transients exhibited localized space use patterns for short durations prior to establishing home ranges, which we defined as “biding” areas. Resident and transient coyotes demonstrated similar habitat selection, notably selection of agricultural over forested habitats. However, transients exhibited stronger selection for roads than resident coyotes. Although transient coyotes are less likely to contribute reproductively to their population, transiency may be an important life history trait that facilitates metapopulation dynamics through dispersal and the eventual replacement of breeding residents lost to mortality. PMID:26148130

  2. Space use and habitat selection by resident and transient coyotes (Canis latrans)

    USGS Publications Warehouse

    Hinton, Joseph W; van Manen, Frank T.; Chamberlain, Michael J

    2015-01-01

    Little information exists on coyote (Canis latrans) space use and habitat selection in the southeastern United States and most studies conducted in the Southeast have been carried out within small study areas (e.g., ≤1,000 km2). Therefore, studying the placement, size, and habitat composition of coyote home ranges over broad geographic areas could provide relevant insights regarding how coyote populations adjust to regionally varying ecological conditions. Despite an increasing number of studies of coyote ecology, few studies have assessed the role of transiency as a life-history strategy among coyotes. During 2009–2011, we used GPS radio-telemetry to study coyote space use and habitat selection on the Albemarle Peninsula of northeastern North Carolina. We quantified space use and 2nd- and 3rd-order habitat selection for resident and transient coyotes to describe space use patterns in a predominantly agricultural landscape. The upper limit of coyote home-range size was approximately 47 km2 and coyotes exhibiting shifting patterns of space use of areas >65 km2 were transients. Transients exhibited localized space use patterns for short durations prior to establishing home ranges, which we defined as “biding” areas. Resident and transient coyotes demonstrated similar habitat selection, notably selection of agricultural over forested habitats. However, transients exhibited stronger selection for roads than resident coyotes. Although transient coyotes are less likely to contribute reproductively to their population, transiency may be an important life history trait that facilitates metapopulation dynamics through dispersal and the eventual replacement of breeding residents lost to mortality.

  3. Spawning habitat associations and selection by fishes in a flow-regulated prairie river

    USGS Publications Warehouse

    Brewer, S.K.; Papoulias, D.M.; Rabeni, C.F.

    2006-01-01

    We used histological features to identify the spawning chronologies of river-dwelling populations of slenderhead darter Percina phoxocephala, suckermouth minnow Phenacobius mirabilis, stonecat Noturus flavus, and red shiner Cyprinella lutrensis and to relate their reproductive status to microhabitat associations. We identified spawning and nonspawning differences in habitat associations resulting from I year of field data via logistic regression modeling and identified shifts in microhabitat selection via frequency-of-use and availability histograms. Each species demonstrated different habitat associations between spawning and nonspawning periods. The peak spawning period for slenderhead darters was April to May in high-velocity microhabitats containing cobble. Individuals were associated with similar microhabitats during the postspawn summer and began migrating to deeper habitats in the fall. Most suckermouth minnow spawned from late March through early May in shallow microhabitats. The probability of the presence of these fish in shallow habitats declined postspawn, as fish apparently shifted to deeper habitats. Stonecats conducted prespawn activities in nearshore microhabitats containing large substrates but probably moved to deeper habitats during summer to spawn. Microhabitats with shallow depths containing cobble were associated with the presence of spawning red shiners during the summer. Prespawn fish selected low-velocity microhabitats during the spring, whereas postspawn fish selected habitats similar to the spawning habitat but added a shallow depth component. Hydraulic variables had the most influence on microhabitat models for all of these species, emphasizing the importance of flow in habitat selection by river-dwelling fishes. Histological analyses allowed us to more precisely document the time periods when habitat use is critical to species success. Without evidence demonstrating the functional mechanisms behind habitat associations, protective flows

  4. Propagule Limitation, Disparate Habitat Quality, and Variation in Phenotypic Selection at a Local Species Range Boundary

    PubMed Central

    Moore, Kara A.; Stanton, Maureen L.

    2014-01-01

    Adaptation to novel conditions beyond current range boundaries requires the presence of suitable sites within dispersal range, but may be impeded when emigrants encounter poor habitat and sharply different selection pressures. We investigated fine-scale spatial heterogeneity in ecological dynamics and selection at a local population boundary of the annual plant Gilia tricolor. In two years, we planted G. tricolor seeds in core habitat, margin habitat at the edge of the local range, and exterior habitat in order to measure spatial and temporal variation in habitat quality, opportunity for selection, and selection on phenotypic traits. We found a striking decline in average habitat quality with distance from the population core, yet some migrant seeds were successful in suitable, unoccupied microsites at and beyond the range boundary. Total and direct selection on four out of five measured phenotypic traits varied across habitat zones, as well as between years. Moreover, the margin habitat often exerted unique selection pressures that were not intermediate between core and exterior habitats. This study reveals that a combination of ecological and evolutionary forces, including propagule limitation, variation in habitat quality and spatial heterogeneity in phenotypic selection may reduce opportunities for adaptive range expansion, even across a very local population boundary. PMID:24717472

  5. Multi-criteria Decision Analysis to Model Ixodes ricinus Habitat Suitability.

    PubMed

    Rousseau, Raphaël; McGrath, Guy; McMahon, Barry J; Vanwambeke, Sophie O

    2017-09-01

    Tick-borne diseases present a major threat to both human and livestock health throughout Europe. The risk of infection is directly related to the presence of its vector. Thereby it is important to know their distribution, which is strongly associated with environmental factors: the presence and availability of a suitable habitat, of a suitable climate and of hosts. The present study models the habitat suitability for Ixodes ricinus in Ireland, where data on tick distribution are scarce. Tick habitat suitability was estimated at a coarse scale (10 km) with a multi-criteria decision analysis (MCDA) method according to four different scenarios (depending on the variables used and on the weights granted to each of them). The western part of Ireland and the Wicklow mountains in the East were estimated to be the most suitable areas for I. ricinus in the island. There was a good level of agreement between results from the MCDA and recorded tick presence. The different scenarios did not affect the spatial outputs substantially. The current study suggests that tick habitat suitability can be mapped accurately at a coarse scale in a data-scarce context using knowledge-based methods. It can serve as a guideline for future countrywide sampling that would help to determine local risk of tick presence and refining knowledge on tick habitat suitability in Ireland.

  6. Selection indicates preference in diverse habitats: A Ground-Nesting bird (charadrius melodus) using reservoir shoreline

    USGS Publications Warehouse

    Anteau, M.J.; Sherfy, M.H.; Wiltermuth, M.T.

    2012-01-01

    Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK) has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers). We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m) during summers 2006-2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m 2) that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had <38% coverage of silt and <10% slope at the site, and <15% coverage of vegetation or litter and <31% slope within the 3-m radius. Gravel was selected for at nest sites (11% median), but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies.

  7. Selection indicates preference in diverse habitats: A ground-nesting bird (Charadrius melodus) using reservoir shoreline

    USGS Publications Warehouse

    Anteau, Michael J.; Sherfy, Mark H.; Wiltermuth, Mark T.

    2012-01-01

    Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK) has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers). We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m) during summers 2006–2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m2) that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had <38% coverage of silt and <10% slope at the site, and <15% coverage of vegetation or litter and <31% slope within the 3-m radius. Gravel was selected for at nest sites (11% median), but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies.

  8. Selection indicates preference in diverse habitats: a ground-nesting bird (Charadrius melodus) using reservoir shoreline.

    PubMed

    Anteau, Michael J; Sherfy, Mark H; Wiltermuth, Mark T

    2012-01-01

    Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK) has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers). We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m) during summers 2006-2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m(2)) that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had <38% coverage of silt and <10% slope at the site, and <15% coverage of vegetation or litter and <31% slope within the 3-m radius. Gravel was selected for at nest sites (11% median), but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies.

  9. Selection Indicates Preference in Diverse Habitats: A Ground-Nesting Bird (Charadrius melodus) Using Reservoir Shoreline

    PubMed Central

    Anteau, Michael J.; Sherfy, Mark H.; Wiltermuth, Mark T.

    2012-01-01

    Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK) has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers). We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m) during summers 2006–2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m2) that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had <38% coverage of silt and <10% slope at the site, and <15% coverage of vegetation or litter and <31% slope within the 3-m radius. Gravel was selected for at nest sites (11% median), but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies. PMID:22299037

  10. Influences of human and livestock density on winter habitat selection of Mongolian gazelle (Procapra gutturosa).

    PubMed

    Luo, Zhenhua; Liu, Bingwan; Liu, Songtao; Jiang, Zhigang; Halbrook, Richard S

    2014-01-01

    Human and livestock related disturbances of habitat selection by ungulates are topics of global concern, as they have profound impacts on ungulate survival, population density, fitness, and management; however, differences in ungulate habitat use under different human and livestock densities are not fully understood. Mongolian gazelle (Procapra gutturosa), an endemic ungulate species on the Asia-European steppe, faces varying intensities of human and livestock disturbances in the area around Dalai Lake, China. To investigate how habitat selection strategies vary as disturbance intensity changes, we randomly set 20 transects containing 1486 plots, on which we conducted repeated surveys of 21 ecological factors during the winters in the period of 2005-2008. We aimed to: 1) determine the critical factors underlying habitat selection of the gazelles; 2) determine the gazelles' habitat preferences in this area; 3) determine how habitat selection varies with disturbance intensity and explore the primary underlying mechanism. We used binary-logistic regressions and information theoretic approaches to build best-fit habitat selection models, and calculated resource selection functions. Sixty-six herds, 522 individuals, and 499 tracks were recorded. Our results indicate that snow depth and aboveground biomass are the main factors affecting habitat selection by Mongolian gazelle throughout the district in winter. Thin snow cover and abundant aboveground biomass are preferred. Avoiding disturbance was the primary factor accounting for habitat selection in low disturbance areas, although with increasing human or live-stock-related disturbance, gazelle maintained a reduced distance to the source of the disturbance. Presumably owing to that shift, movement costs were more important as disturbance increased. In addition, Mongolian gazelle selected habitats based on topographical features promoting greater visibility where disturbance was lower. We suggest several management

  11. Linking seasonal home range size with habitat selection and movement in a mountain ungulate.

    PubMed

    Viana, Duarte S; Granados, José Enrique; Fandos, Paulino; Pérez, Jesús M; Cano-Manuel, Francisco Javier; Burón, Daniel; Fandos, Guillermo; Aguado, María Ángeles Párraga; Figuerola, Jordi; Soriguer, Ramón C

    2018-01-01

    Space use by animals is determined by the interplay between movement and the environment, and is thus mediated by habitat selection, biotic interactions and intrinsic factors of moving individuals. These processes ultimately determine home range size, but their relative contributions and dynamic nature remain less explored. We investigated the role of habitat selection, movement unrelated to habitat selection and intrinsic factors related to sex in driving space use and home range size in Iberian ibex, Capra pyrenaica . We used GPS collars to track ibex across the year in two different geographical areas of Sierra Nevada, Spain, and measured habitat variables related to forage and roost availability. By using integrated step selection analysis (iSSA), we show that habitat selection was important to explain space use by ibex. As a consequence, movement was constrained by habitat selection, as observed displacement rate was shorter than expected under null selection. Selection-independent movement, selection strength and resource availability were important drivers of seasonal home range size. Both displacement rate and directional persistence had a positive relationship with home range size while accounting for habitat selection, suggesting that individual characteristics and state may also affect home range size. Ibex living at higher altitudes, where resource availability shows stronger altitudinal gradients across the year, had larger home ranges. Home range size was larger in spring and autumn, when ibex ascend and descend back, and smaller in summer and winter, when resources are more stable. Therefore, home range size decreased with resource availability. Finally, males had larger home ranges than females, which might be explained by differences in body size and reproductive behaviour. Movement, selection strength, resource availability and intrinsic factors related to sex determined home range size of Iberian ibex. Our results highlight the need to integrate

  12. Seasonal and diel habitat selection by bluegills in a shallow natural lake

    USGS Publications Warehouse

    Paukert, C.P.; Willis, D.W.

    2002-01-01

    Habitat use by bluegill Lepomis macrochirus may be dictated by the avoidance of predators and the availability of prey. Previous work suggests that bluegills large enough to avoid predators will select habitats based on foraging profitability. However, these studies focused on smaller fish (200 mm total length [TL]) bluegills in a shallow (mean depth = 1.2 m), 332-ha, natural lake (Pelican Lake, Nebraska) with both emergent and submergent vegetation distributed throughout. A total of 78 bluegills (200-273 mm TL) were implanted with radio transmitters and relocated daily for 6 d per month (April-September); up to 20 of the tagged fish were relocated every 2 h for a 24-h period once each month. Regardless of diel period, bluegills used open-water, emergent vegetation, submergent vegetation, and mixed emergent - submergent vegetation habitat types in similar proportions. During April, June, and July, male bluegills positively selected emergent vegetation, whereas female bluegills showed no vegetation selection preference during any month. Throughout the study period, bluegills never avoided open-water habitats, suggesting that larger individuals may continue to use open-water habitats in proportion to their availability. In addition, emergent vegetation appeared to be important, particularly for male bluegills. Although the mechanism for the positive selection of emergent vegetation by males was unclear, the protection or enhancement of such habitats may facilitate the preservation of quality bluegill populations in shallow lakes.

  13. Multiscale habitat selection by Ruffed Grouse at low population densities

    USGS Publications Warehouse

    Zimmerman, G.S.; Gutierrez, R.J.; Thogmartin, W.E.; Banerjee, S.

    2009-01-01

    Theory suggests habitats should be chosen according to their relative evolutionary benefits and costs. It has been hypothesized that aspen (Populus spp.) forests provide optimal habitat for Ruffed Grouse (Bonasa umbellus). We used the low phase of a grouse population's cycle to assess the prediction that grouse should occupy aspen and avoid other forest types at low population density because of the presumptive fitness benefits of aspen. On the basis of our observations, we predict how the Ruffed Grouse population will increase in different forest types during the next cycle. In conifer (Pinus spp., Abies balsamea, Picea spp.)-dominated and mixed aspen-conifer landscapes, grouse densities were highest where forest types were evenly distributed. Within these landscapes, male Ruffed Grouse selected young aspen stands that were large and round or square. Although Ruffed Grouse selected young aspen stands strongly, contrary to prediction, they also used other forest types even when young aspen stands remained unoccupied. The relative densities of Ruffed Grouse in aspen and conifer forests indicated that the aspen forest's carrying capacities for grouse was higher than the conifer forest's at least during the low and declining phases of the grouse's cycle. On the basis of our observations, we predict that Ruffed Grouse populations in aspen-dominated landscapes will have higher population densities and fluctuate more than will populations in conifer-dominated landscapes. We suggest that studies of avian habitat selection would benefit from knowledge about the relative densities among habitats at differing population sizes because this information could provide insight into the role of habitat in regulating populations and clarify inferences from studies about habitat quality for birds. ?? 2009 by The Cooper Ornithological Society. All rights reserved.

  14. Space use and habitat selection by resident and transient red wolves (Canis rufus)

    USGS Publications Warehouse

    Hinton, Joseph W.; Proctor, Christine; Kelly, Marcella J.; van Manen, Frank T.; Vaughan, Michael R.; Chamberlain, Michael J.

    2016-01-01

    Recovery of large carnivores remains a challenge because complex spatial dynamics that facilitate population persistence are poorly understood. In particular, recovery of the critically endangered red wolf (Canis rufus) has been challenging because of its vulnerability to extinction via human-caused mortality and hybridization with coyotes (Canis latrans). Therefore, understanding red wolf space use and habitat selection is important to assist recovery because key aspects of wolf ecology such as interspecific competition, foraging, and habitat selection are well-known to influence population dynamics and persistence. During 2009–2011, we used global positioning system (GPS) radio-telemetry to quantify space use and 3rd-order habitat selection for resident and transient red wolves on the Albemarle Peninsula of eastern North Carolina. The Albemarle Peninsula was a predominantly agricultural landscape in which red wolves maintained spatially stable home ranges that varied between 25 km2 and 190 km2. Conversely, transient red wolves did not maintain home ranges and traversed areas between 122 km2 and 681 km2. Space use by transient red wolves was not spatially stable and exhibited shifting patterns until residency was achieved by individual wolves. Habitat selection was similar between resident and transient red wolves in which agricultural habitats were selected over forested habitats. However, transients showed stronger selection for edges and roads than resident red wolves. Behaviors of transient wolves are rarely reported in studies of space use and habitat selection because of technological limitations to observed extensive space use and because they do not contribute reproductively to populations. Transients in our study comprised displaced red wolves and younger dispersers that competed for limited space and mating opportunities. Therefore, our results suggest that transiency is likely an important life-history strategy for red wolves that facilitates

  15. Space Use and Habitat Selection by Resident and Transient Red Wolves (Canis rufus).

    PubMed

    Hinton, Joseph W; Proctor, Christine; Kelly, Marcella J; van Manen, Frank T; Vaughan, Michael R; Chamberlain, Michael J

    2016-01-01

    Recovery of large carnivores remains a challenge because complex spatial dynamics that facilitate population persistence are poorly understood. In particular, recovery of the critically endangered red wolf (Canis rufus) has been challenging because of its vulnerability to extinction via human-caused mortality and hybridization with coyotes (Canis latrans). Therefore, understanding red wolf space use and habitat selection is important to assist recovery because key aspects of wolf ecology such as interspecific competition, foraging, and habitat selection are well-known to influence population dynamics and persistence. During 2009-2011, we used global positioning system (GPS) radio-telemetry to quantify space use and 3rd-order habitat selection for resident and transient red wolves on the Albemarle Peninsula of eastern North Carolina. The Albemarle Peninsula was a predominantly agricultural landscape in which red wolves maintained spatially stable home ranges that varied between 25 km2 and 190 km2. Conversely, transient red wolves did not maintain home ranges and traversed areas between 122 km2 and 681 km2. Space use by transient red wolves was not spatially stable and exhibited shifting patterns until residency was achieved by individual wolves. Habitat selection was similar between resident and transient red wolves in which agricultural habitats were selected over forested habitats. However, transients showed stronger selection for edges and roads than resident red wolves. Behaviors of transient wolves are rarely reported in studies of space use and habitat selection because of technological limitations to observed extensive space use and because they do not contribute reproductively to populations. Transients in our study comprised displaced red wolves and younger dispersers that competed for limited space and mating opportunities. Therefore, our results suggest that transiency is likely an important life-history strategy for red wolves that facilitates

  16. Space Use and Habitat Selection by Resident and Transient Red Wolves (Canis rufus)

    PubMed Central

    Hinton, Joseph W.; Proctor, Christine; Kelly, Marcella J.; van Manen, Frank T.; Vaughan, Michael R.; Chamberlain, Michael J.

    2016-01-01

    Recovery of large carnivores remains a challenge because complex spatial dynamics that facilitate population persistence are poorly understood. In particular, recovery of the critically endangered red wolf (Canis rufus) has been challenging because of its vulnerability to extinction via human-caused mortality and hybridization with coyotes (Canis latrans). Therefore, understanding red wolf space use and habitat selection is important to assist recovery because key aspects of wolf ecology such as interspecific competition, foraging, and habitat selection are well-known to influence population dynamics and persistence. During 2009–2011, we used global positioning system (GPS) radio-telemetry to quantify space use and 3rd-order habitat selection for resident and transient red wolves on the Albemarle Peninsula of eastern North Carolina. The Albemarle Peninsula was a predominantly agricultural landscape in which red wolves maintained spatially stable home ranges that varied between 25 km2 and 190 km2. Conversely, transient red wolves did not maintain home ranges and traversed areas between 122 km2 and 681 km2. Space use by transient red wolves was not spatially stable and exhibited shifting patterns until residency was achieved by individual wolves. Habitat selection was similar between resident and transient red wolves in which agricultural habitats were selected over forested habitats. However, transients showed stronger selection for edges and roads than resident red wolves. Behaviors of transient wolves are rarely reported in studies of space use and habitat selection because of technological limitations to observed extensive space use and because they do not contribute reproductively to populations. Transients in our study comprised displaced red wolves and younger dispersers that competed for limited space and mating opportunities. Therefore, our results suggest that transiency is likely an important life-history strategy for red wolves that facilitates

  17. Monitoring and mapping selected riparian habitat along the lower Snake River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downs, J. L; Tiller, B. L; Witter, M.

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture,more » and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.« less

  18. Habitat selection by female northern pintails wintering in the Grassland Ecological Area, California

    USGS Publications Warehouse

    Fleskes, Joseph P.; Gilmer, David S.; Jarvis, Robert L.

    2004-01-01

    To determine relative importance of habitats available in the Grassland Ecological Area (GEA) to wintering female northern pintails, Anas acuta, we studied habitat use relative to availability (i.e., habitat selection) in the GEA during September through March, 1991-94 for 196 Hatch-Year (HY) and 221 After-Hatch-Year (AHY) female pintails that were radio tagged during August-early October in the GEA (n = 239), other San Joaquin Valley areas (n = 132), or other Central Valley areas (n = 46). Habitat availability and use varied among seasons and years, but pintails always selected shallow and, except on hunting days, open habitats. Swamp timothy, Heleochloa schoenoides, marsh was the most available, used, and selected habitat. Watergrass, Echinochloa crusgalli, marsh in the GEA was used less than available at night in contrast to previous studies in other SJV areas. Preferred late-winter habitats were apparently lacking in the GEA, at least relative to in the Sacramento Valley and Delta where most pintails moved to in December each year. Impacts on pintails of the increasing practice of managing marshes for increased emergent vegetation to attract other species should be monitored. Shallow, open habitats that produce seeds and invertebrates available to pintails in late winter would help maintain pintail abundance in the GEA.

  19. Feedbacks between community assembly and habitat selection shape variation in local colonization

    USGS Publications Warehouse

    Kraus, J.M.; Vonesh, J.R.

    2010-01-01

    1. Non-consumptive effects of predators are increasingly recognized as important drivers of community assembly and structure. Specifically, habitat selection responses to top predators during colonization and oviposition can lead to large differences in aquatic community structure, composition and diversity. 2. These differences among communities due to predators may develop as communities assemble, potentially altering the relative quality of predator vs. predator-free habitats through time. If so, community assembly would be expected to modify the subsequent behavioural responses of colonists to habitats containing top predators. Here, we test this hypothesis by manipulating community assembly and the presence of fish in experimental ponds and measuring their independent and combined effects on patterns of colonization by insects and amphibians. 3. Assembly modified habitat selection of dytscid beetles and hylid frogs by decreasing or even reversing avoidance of pools containing blue-spotted sunfish (Enneacanthus gloriosus). However, not all habitat selection responses to fish depended on assembly history. Hydrophilid beetles and mosquitoes avoided fish while chironomids were attracted to fish pools, regardless of assembly history. 4. Our results show that community assembly causes taxa-dependent feedbacks that can modify avoidance of habitats containing a top predator. Thus, non-consumptive effects of a top predator on community structure change as communities assemble and effects of competitors and other predators combine with the direct effects of top predators to shape colonization. 5. This work reinforces the importance of habitat selection for community assembly in aquatic systems, while illustrating the range of factors that may influence colonization rates and resulting community structure. Directly manipulating communities both during colonization and post-colonization is critical for elucidating how sequential processes interact to shape communities.

  20. Habitat Selection of Nesting Smallmouth Bass Micropterus dolomieu in Two North Temperate Lakes

    Treesearch

    Michael A. Bozek; Clayton J. Edwards; Martin J. Jennings; Steven P. Newman

    2002-01-01

    Anthropogenic disturbances in nearshore littoral zones of lakes may affect spawning habitat and recruitment of smallmouth bass Micropterus dolomieu, yet habitat models that quantify habitat selection by smallmouth bass in lakes are not well developed nor are their limitations understood. In this study we quantified smallmouth bass spawning habitat in...

  1. Marine habitat selection by marbled murrelets (Brachyramphus marmoratus) during the breeding season

    Treesearch

    Teresa J. Lorenz; Martin G. Raphael; Thomas D. Bloxton; Christian Andrew Hagen

    2016-01-01

    The marbled murrelet (Brachyramphus marmoratus) is a declining seabird that is wellknown for nesting in coastal old-growth forests in the Pacific Northwest. Most studies of habitat selection have focused on modeling terrestrial nesting habitat even though marine habitat is believed to be a major contributor to population declines in some regions....

  2. Shorebird stopover habitat decisions in a changing landscape

    USGS Publications Warehouse

    Gillespie, Caitlyn R.; Fontaine, Joseph J.

    2017-01-01

    To examine how habitat use by sandpipers (Calidris spp.; Baird's sandpipers, dunlin, least sandpipers, pectoral sandpipers, semipalmated sandpipers, stilt sandpipers, and white-rumped sandpipers) varies across a broad suite of environmental conditions, we conducted surveys at wetlands throughout the spring migratory period in 2013 and 2014 in 2 important stopover regions: the Rainwater Basin (RWB) in Nebraska, USA, and the Prairie Pothole Region (PPR) in South Dakota, USA. Because providing adequate energetic resources for migratory birds is a high priority for wetland management, we also measured invertebrate abundance at managed wetlands in the RWB to determine how food abundance influences the occupancy and abundance of sandpipers on wetlands throughout the migratory period. To quantify habitat use, we surveyed wetlands every 7–10 days in both regions and visually estimated wetland attributes. Our results indicate that invertebrate abundance predicted occupancy, but not abundance, of sandpipers at wetlands in the RWB. The wetland vegetation characteristics that predict sandpiper occupancy are similar in both regions, but wetlands in the PPR support a higher abundance of sandpipers than wetlands in the RWB. Our results suggest that sandpipers make stopover decisions that balance local and regional wetland conditions. Managers should maintain the cues (i.e., mudflat) and ecological conditions beyond invertebrate abundance that predict sandpiper habitat use to successfully provide resources for sandpipers during migratory stopover if that is a goal of wetland management. © 2017 The Wildlife Society.

  3. Landscape-scale habitat selection by fishers translocated to the Olympic Peninsula of Washington

    USGS Publications Warehouse

    Lewis, Jeffrey C.; Jenkins, Kurt J.; Happe, Patricia J.; Manson, David J.; McCalmon, Marc

    2016-01-01

    The fisher was extirpated from much of the Pacific Northwestern United States during the mid- to late-1900s and is now proposed for federal listing as a threatened species in all or part of its west coast range. Following the translocation of 90 fishers from central British Columbia, Canada, to the Olympic Peninsula of Washington State from 2008 to 2010, we investigated the landscape-scale habitat selection of reintroduced fishers across a broad range of forest ages and disturbance histories, providing the first information on habitat relationships of newly reintroduced fishers in coastal coniferous forests in the Pacific Northwest. We developed 17 a priori models to evaluate several habitat-selection hypotheses based on premises of habitat models used to forecast habitat suitability for the reintroduced population. Further, we hypothesized that female fishers, because of their smaller body size than males, greater vulnerability to predation, and specific reproductive requirements, would be more selective than males for mid- to late-seral forest communities, where complex forest structural elements provide secure foraging, resting, and denning sites. We assessed 11 forest structure and landscape characteristics within the home range core-areas used by 19 females and 12 males and within randomly placed pseudo core areas that represented available habitats. We used case-controlled logistic regression to compare the characteristics of used and pseudo core areas and to assess selection by male and female fishers. Females were more selective of core area placement than males. Fifteen of 19 females (79%) and 5 of 12 males (42%) selected core areas within federal lands that encompassed primarily forests with an overstory of mid-sized or large trees. Male fishers exhibited only weak selection for core areas dominated by forests with an overstory of small trees, primarily on land managed for timber production or at high elevations. The amount of natural open area best

  4. Resampling method for applying density-dependent habitat selection theory to wildlife surveys.

    PubMed

    Tardy, Olivia; Massé, Ariane; Pelletier, Fanie; Fortin, Daniel

    2015-01-01

    Isodar theory can be used to evaluate fitness consequences of density-dependent habitat selection by animals. A typical habitat isodar is a regression curve plotting competitor densities in two adjacent habitats when individual fitness is equal. Despite the increasing use of habitat isodars, their application remains largely limited to areas composed of pairs of adjacent habitats that are defined a priori. We developed a resampling method that uses data from wildlife surveys to build isodars in heterogeneous landscapes without having to predefine habitat types. The method consists in randomly placing blocks over the survey area and dividing those blocks in two adjacent sub-blocks of the same size. Animal abundance is then estimated within the two sub-blocks. This process is done 100 times. Different functional forms of isodars can be investigated by relating animal abundance and differences in habitat features between sub-blocks. We applied this method to abundance data of raccoons and striped skunks, two of the main hosts of rabies virus in North America. Habitat selection by raccoons and striped skunks depended on both conspecific abundance and the difference in landscape composition and structure between sub-blocks. When conspecific abundance was low, raccoons and striped skunks favored areas with relatively high proportions of forests and anthropogenic features, respectively. Under high conspecific abundance, however, both species preferred areas with rather large corn-forest edge densities and corn field proportions. Based on random sampling techniques, we provide a robust method that is applicable to a broad range of species, including medium- to large-sized mammals with high mobility. The method is sufficiently flexible to incorporate multiple environmental covariates that can reflect key requirements of the focal species. We thus illustrate how isodar theory can be used with wildlife surveys to assess density-dependent habitat selection over large

  5. Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California: a decision-support tool for management

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Brussee, Brianne E.; Ricca, Mark A.; Gustafson, K. Benjamin; Overton, Cory T.; Sanchez-Chopitea, Erika; Kroger, Travis; Mauch, Kimberly; Niell, Lara; Howe, Kristy; Gardner, Scott; Espinosa, Shawn; Delehanty, David J.

    2014-01-01

    Greater sage-grouse (Centrocercus urophasianus, hereafter referred to as “sage-grouse”) populations are declining throughout the sagebrush (Artemisia spp.) ecosystem, including millions of acres of potential habitat across the West. Habitat maps derived from empirical data are needed given impending listing decisions that will affect both sage-grouse population dynamics and human land-use restrictions. This report presents the process for developing spatially explicit maps describing relative habitat suitability for sage-grouse in Nevada and northeastern California. Maps depicting habitat suitability indices (HSI) values were generated based on model-averaged resource selection functions informed by more than 31,000 independent telemetry locations from more than 1,500 radio-marked sage-grouse across 12 project areas in Nevada and northeastern California collected during a 15-year period (1998–2013). Modeled habitat covariates included land cover composition, water resources, habitat configuration, elevation, and topography, each at multiple spatial scales that were relevant to empirically observed sage-grouse movement patterns. We then present an example of how the HSI can be delineated into categories. Specifically, we demonstrate that the deviation from the mean can be used to classify habitat suitability into three categories of habitat quality (high, moderate, and low) and one non-habitat category. The classification resulted in an agreement of 93–97 percent for habitat versus non-habitat across a suite of independent validation datasets. Lastly, we provide an example of how space use models can be integrated with habitat models to help inform conservation planning. In this example, we combined probabilistic breeding density with a non-linear probability of occurrence relative to distance to nearest lek (traditional breeding ground) using count data to calculate a composite space use index (SUI). The SUI was then classified into two categories of use

  6. Considering Spatial Scale and Reproductive Consequences of Habitat Selection when Managing Grasslands for a Threatened Species

    PubMed Central

    Pearson, Scott F.; Knapp, Shannon M.

    2016-01-01

    Habitat selection that has fitness consequences has important implications for conservation activities. For example, habitat characteristics that influence nest success in birds can be manipulated to improve habitat quality with the goal of ultimately improving reproductive success. We examined habitat selection by the threatened streaked horned lark (Eremophila alpestris strigata) at both the breeding-site (territory) and nest-site scales. Larks were selective at both spatial scales but with contrasting selection. At the territory scale, male larks selected sparsely vegetated grasslands with relatively short vegetation. At the nest-site scale, female larks selected sites within territories with higher vegetation density and more perennial forbs. These nest-site scale choices had reproductive consequences, with greater nest success in areas with higher densities of perennial forbs. We experimentally manipulated lark habitat structure in an attempt to mimic the habitat conditions selected by larks by using late summer prescribed fires. After the burn, changes in vegetation structure were in the direction preferred by larks but habitat effects attenuated by the following year. Our results highlight the importance of evaluating habitat selection at spatial scales appropriate to the species of interest, especially when attempting to improve habitat quality for rare and declining species. They also highlight the importance of conducting restoration activities in a research context. For example, because the sparsely vegetated conditions created by fire attenuate, there may be value in examining more frequent burns or hotter fires as the next management and research action. We hope the design outlined in this study will serve as an integrated research and management example for conserving grassland birds generally. PMID:27322196

  7. Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae).

    PubMed

    Coker, Darren J; Hoey, Andrew S; Wilson, Shaun K; Depczynski, Martial; Graham, Nicholas A J; Hobbs, Jean-Paul A; Holmes, Thomas H; Pratchett, Morgan S

    2015-01-01

    Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.

  8. Habitat selection responses of parents to offspring predation risk: An experimental test

    USGS Publications Warehouse

    Fontaine, J.J.; Martin, T.E.

    2006-01-01

    The ability of nest predation to influence habitat settlement decisions in birds is widely debated, despite its importance in limiting fitness. Here, we experimentally manipulated nest predation risk across a landscape and asked the question, do migratory birds assess and respond to variation in nest predation risk when choosing breeding habitats? We examined habitat preference by quantifying the density and settlement date of eight species of migratory passerines breeding in areas with and without intact nest predator communities. We found consistently more individuals nesting in areas with reduced nest predation than in areas with intact predator assemblages, although predation risk had no influence on settlement or breeding phenology. Additionally, those individuals occupying safer nesting habitats exhibited increased singing activity. These findings support a causal relationship between habitat choice and nest predation risk and suggest the importance of nest predation risk in shaping avian community structure and breeding activity. ?? 2006 by The University of Chicago. All rights reserved.

  9. Habitat selection by breeding red-winged blackbirds

    USGS Publications Warehouse

    Albers, P.H.

    1978-01-01

    Habitat preferences of breeding Red-winged Blackbirds in an agricultural area were determined by comparing population density, landscape characteristics, and vegetational descriptions. Observations were made throughout the breeding season. Preferred breeding habitats of Red-wings, in order of preference, were wetlands, hayfields, old fields, and pastures. Males and females occupied old fields and wetlands first, then hayfields, and finally, pastures. Cutting of hayfields caused territorial abandonment by both sexes within 48 h. The apparent movement of displaced females from cut hayfields to uncut hayfields suggests that habitat fidelity of females is strong after the breeding effort has begun. Breeding Red-wings exhibited general preferences for trees, large amounts of habitat edge, erect old vegetation, and sturdy, tall, and dense vegetation. Vegetative forms and species, such as upland grasses, broad- and narrow-leafed monocots in wetlands, and forbs were important to the Red-wing at various times during the breeding season. Landscape and vegetational preferences of breeding adults were easier to observe early in the breeding season (March through May) than later. Vegetational growth and increases in the size of the breeding population probably make these preferences more difficult to detect. Territory size was poorly correlated with landscape and vegetational characteristics in uplands but strongly correlated with broad- and narrow-leafed mono cots and vegetative height in wetlands. Wetland territories were smaller than upland territories. Territories increased in size during the middle and late portions of the breedi g season. Habitat selection by the Red-winged Blackbird can best be studied by evaluating vegetative preferences throughout the breeding season.

  10. Selecting habitat to survive: the impact of road density on survival in a large carnivore.

    PubMed

    Basille, Mathieu; Van Moorter, Bram; Herfindal, Ivar; Martin, Jodie; Linnell, John D C; Odden, John; Andersen, Reidar; Gaillard, Jean-Michel

    2013-01-01

    Habitat selection studies generally assume that animals select habitat and food resources at multiple scales to maximise their fitness. However, animals sometimes prefer habitats of apparently low quality, especially when considering the costs associated with spatially heterogeneous human disturbance. We used spatial variation in human disturbance, and its consequences on lynx survival, a direct fitness component, to test the Hierarchical Habitat Selection hypothesis from a population of Eurasian lynx Lynx lynx in southern Norway. Data from 46 lynx monitored with telemetry indicated that a high proportion of forest strongly reduced the risk of mortality from legal hunting at the home range scale, while increasing road density strongly increased such risk at the finer scale within the home range. We found hierarchical effects of the impact of human disturbance, with a higher road density at a large scale reinforcing its negative impact at a fine scale. Conversely, we demonstrated that lynx shifted their habitat selection to avoid areas with the highest road densities within their home ranges, thus supporting a compensatory mechanism at fine scale enabling lynx to mitigate the impact of large-scale disturbance. Human impact, positively associated with high road accessibility, was thus a stronger driver of lynx space use at a finer scale, with home range characteristics nevertheless constraining habitat selection. Our study demonstrates the truly hierarchical nature of habitat selection, which aims at maximising fitness by selecting against limiting factors at multiple spatial scales, and indicates that scale-specific heterogeneity of the environment is driving individual spatial behaviour, by means of trade-offs across spatial scales.

  11. Use and interpretation of logistic regression in habitat-selection studies

    USGS Publications Warehouse

    Keating, Kim A.; Cherry, Steve

    2004-01-01

     Logistic regression is an important tool for wildlife habitat-selection studies, but the method frequently has been misapplied due to an inadequate understanding of the logistic model, its interpretation, and the influence of sampling design. To promote better use of this method, we review its application and interpretation under 3 sampling designs: random, case-control, and use-availability. Logistic regression is appropriate for habitat use-nonuse studies employing random sampling and can be used to directly model the conditional probability of use in such cases. Logistic regression also is appropriate for studies employing case-control sampling designs, but careful attention is required to interpret results correctly. Unless bias can be estimated or probability of use is small for all habitats, results of case-control studies should be interpreted as odds ratios, rather than probability of use or relative probability of use. When data are gathered under a use-availability design, logistic regression can be used to estimate approximate odds ratios if probability of use is small, at least on average. More generally, however, logistic regression is inappropriate for modeling habitat selection in use-availability studies. In particular, using logistic regression to fit the exponential model of Manly et al. (2002:100) does not guarantee maximum-likelihood estimates, valid probabilities, or valid likelihoods. We show that the resource selection function (RSF) commonly used for the exponential model is proportional to a logistic discriminant function. Thus, it may be used to rank habitats with respect to probability of use and to identify important habitat characteristics or their surrogates, but it is not guaranteed to be proportional to probability of use. Other problems associated with the exponential model also are discussed. We describe an alternative model based on Lancaster and Imbens (1996) that offers a method for estimating conditional probability of use in

  12. Assessing habitat selection in Spring by male American Woodcock in Maine with a geographic information system

    USGS Publications Warehouse

    Sprankle, K.E.; Sepik, G.F.; McAuley, D.G.; Longcore, J.R.; McAuley, Daniel G.; Bruggink, John G.; Sepik, Greg F.

    2000-01-01

    Geographic information system (GIS) technology was used to identify habitats available to and used by male American woodcock (Scolopax minor) equipped with radio transmitters--54 in 1987, 51 in 1988, 46 in 1989 at Moosehorn National Wildlife Refuge, Maine. Woodcock were monitored from time of capture (25 March-15 April) to 15 June each year. To determine habitat selection by male woodcock, the following habitat characteristics were measured: land cover, age and stocking density of the forest overstory, soil drainage and texture, aspect, and percent slope. Habitat selection was examined as affected by the covariates weather and age-class of woodcock, and among years for diurnal and crepuscular periods of the breeding period. Multivariate techniques that compare use and availability of habitats were not available, so a statistical model was developed to rate importance of multiple habitat characteristics selected by woodcock. The most critical period for woodcock in terms of survival was from arrival to: mid-April. Second-year and after-second-year woodcock did not select different (P > 0.05) habitat types, but they did select different types among years and within breeding intervals (P < 0.05). In years when weather was moderate, woodcock selected young, dense stands of speckled alder (Alnus rugosa) and hardwoods, interspersed with forest openings. Suitable habitat can be maintained by creating an uneven-aged forest managed in even-aged blocks composed of several hardwood species. Managers can now quantify suitable woodcock habitat in a GIS and plan large-scale forest-harvesting strategies using data on several habitat characteristics (e.g., land cover, stand age, stocking density, soil drainage and texture, and aspect).

  13. Selection of nesting habitat by sharp-tailed grouse in the Nebraska sandhills

    USGS Publications Warehouse

    Prose, Bart L.; Cade, Brian S.; Hein, Dale

    2002-01-01

    We evaluated nesting habitat selection (disproportionate use compared to availability) by plains sharp-tailed grouse (Tympanuchus phasianellus jamesi) on rangelands grazed by cattle (Bos taurus) relative to height, density, and heterogeneity of residual herbaceous vegetation remaining from previous growing seasons. Residual cover is critical for nesting sharp-tailed grouse and can be lacking on grazed rangelands. Aerial photography and a geographic information system were used to analyze residual cover height classes and several measures of residual cover heterogeneity in nest (n = 38) and random (n = 38) plots. Height classes corresponded to visual obstruction readings (VORs), the height to which total visual obstruction by vegetation occurs. Analyses were conducted for five spatial scales ranging from 1 to 16 ha to test for scale effects on nesting habitat selection. Sharp-tailed grouse selected nesting habitat with more area in tall (greater than or equal to 4 cm VOR) residual cover than at random sites at all scales, less area in short residual cover (less than 2 cm VOR) at the I-ha scale, and less area in short and medium (2 to 3.9 cm YOR) residual cover at the 2- through 16-ha scales. Selection of shrub habitat containing patches of shrubs was evident only at the 16-ha scale. Patches of tall residual cover were larger in nest plots than in random plots at the 8- and 16-ha scales, and patches of short cover were smaller in nest plots at the I-ha scale. Two scales of pattern defined by mean patch size were detected for overall residual cover, but did not relate to nesting habitat selection.

  14. Habitat selection by tundra swans on Northern Alaska breeding grounds

    USGS Publications Warehouse

    Earnst, Susan L.; Rothe, T.

    2004-01-01

    Habitat selection by the Tundra Swan (Cygnus columbianus columbianus) was evaluated on the Colville River Delta prior to oil field development (1982-1989). Tundra Swan territories comprised a lake, used for refuge and foraging, and terrestrial habitats and ponds near the lakea??s perimeter used for foraging and nesting. Tundra swan sightings from early and late summer aerial surveys were used to investigate habitat selection at the territory and within-territory scale. At the territory or lake scale, swan sightings/lake increased with lake size, and increased from discrete to tapped (i.e., connected to a river channel) to drained lakes within size categories. Overall, 49% of the variation in swan sightings/lake was explained by lake size and type, a size-x-type interaction term, and the proportion of lake perimeter comprised of Halophytic Ponds and Halophytic Wet Meadows. At the within-territory or within-lake scale, foraging swans significantly selected Halophytic Ponds, Halophytic Wet Meadows, and Fresh Ponds relative to Uplands; nesting swans significantly selected Halophytic Ponds and significantly avoided Fresh Wet Meadows relative to Uplands. Vegetation sampling indicated that sites used by Tundra Swans on river channels and tapped lakes were significantly more likely to have Sheathed Pondweed (Potamogeton vaginatus) than control sites. The three major components of Tundra Swan diet were Carex sedges, Sheathed Pondweed, and algae, together comprising 85% of identifiable plant fragments in feces.

  15. Habitat selection and productivity of least terns on the lower Platte River, Nebraska

    USGS Publications Warehouse

    Kirsch, Eileen M.

    1996-01-01

    Least terns (Sterna antillarum) were studied on the lower Platte River, Nebraska, where this endangered population nests on natural sandbar habitat and on sandpit sites created by gravel dredging adjacent to the river. Theoretically terns should select habitats according to habitat suitability. However, the introduction of sandpits and conversion of tallgrass prairies along the river banks to agriculture, residential, and wooded areas may have affected terns' abilities to distinguish suitable habitat or the suitability of nesting habitats in general. I examined habitat selection and productivity of least terns to determine if terns selected habitat according to suitability (as indicated by productivity), what factors affected habitat selection and productivity, and if estimated productivity could support this population. Available habitats of both types were characterized and quantified using aerial videography (1989-90), and habitat use was assessed from census data (1987-90). Productivity of adults and causes and correlates of egg and chick mortality were estimated (1987-90). Population trend was assessed with a deterministic model using my estimates of productivity and a range of survival estimates for Laridae reported in the literature. Terns tended to use river sites with large midstream sandbars and a wide channel, and large sandpit sites with large surface areas of water relative to unused sites on both habitats. Number of sites and area of sand available were estimated using discriminant function analysis of variables quantified from video scenes of both habitats. Terns apparently did not use all potentially available sandbar and sandpit sites because discriminant function factor scores for used and unused sites overlapped broadly for both habitats. Terns did not prefer 1 habitat over the other. Although proportions of available sites used were greater on sandpits than on the river, proportions of available sand used did not differ between habitats

  16. Diel habitat selection of largemouth bass following woody structure installation in Table Rock Lake, Missouri

    USGS Publications Warehouse

    Harris, J.M.; Paukert, Craig P.; Bush, S.C.; Allen, M.J.; Siepker, Michael

    2018-01-01

    Largemouth bass Micropterus salmoides (Lacepède) use of installed habitat structure was evaluated in a large Midwestern USA reservoir to determine whether or not these structures were used in similar proportion to natural habitats. Seventy largemouth bass (>380 mm total length) were surgically implanted with radio transmitters and a subset was relocated monthly during day and night for one year. The top habitat selection models (based on Akaike's information criterion) suggest largemouth bass select 2–4 m depths during night and 4–7 m during day, whereas littoral structure selection was similar across diel periods. Largemouth bass selected boat docks at twice the rate of other structures. Installed woody structure was selected at similar rates to naturally occurring complex woody structure, whereas both were selected at a higher rate than simple woody structure. The results suggest the addition of woody structure may concentrate largemouth bass and mitigate the loss of woody habitat in a large reservoir.

  17. Seasonal habitat use and selection by grizzly bears in Northern British Columbia

    USGS Publications Warehouse

    Milakovic, B.; Parker, K.L.; Gustine, D.D.; Lay, R.J.; Walker, A.B.D.; Gillingham, M.P.

    2012-01-01

    We defined patterns of habitat use and selection by female grizzly bears (Ursus arctos) in the Besa-Prophet watershed of northern British Columbia. We fitted 13 adult females with Geographic Positioning System (GPS) radio-collars and monitored them between 2001 and 2004. We examined patterns of habitat selection by grizzly bears relative to topographical attributes and 3 potential surrogates of food availability: land-cover class, vegetation biomass or quality (as measured by the Normalized Difference Vegetation Index), and selection value for prey species themselves (moose [Alces alces], elk [Cervus elaphus], woodland caribou [Rangifer tarandus], Stone's sheep [Ovis dalli stonei]). Although vegetation biomass and quality, and selection values for prey were important in seasonal selection by some individual bears, land-cover class, elevation, aspect, and vegetation diversity most influenced patterns of habitat selection across grizzly bears, which rely on availability of plant foods and encounters with ungulate prey. Grizzly bears as a group avoided conifer stands and areas of low vegetation diversity, and selected for burned land-cover classes and high vegetation diversity across seasons. They also selected mid elevations from what was available within seasonal ranges. Quantifying relative use of different attributes helped place selection patterns within the context of the landscape. Grizzly bears used higher elevations (1,595??31 m SE) in spring and lower elevations (1,436??27 m) in fall; the range of average elevations used among individuals was highest (500 m) during the summer. During all seasons, grizzly bears most frequented aspects with high solar gain. Use was distributed across 10 land-cover classes and depended on season. Management and conservation actions must maintain a diverse habitat matrix distributed across a large elevational gradient to ensure persistence of grizzly bears as levels of human access increase in the northern Rocky Mountains

  18. Temporal and Spatial Scales Matter: Circannual Habitat Selection by Bird Communities in Vineyards

    PubMed Central

    Arlettaz, Raphaël; Korner, Pius

    2017-01-01

    Vineyards are likely to be regionally important for wildlife, but we lack biodiversity studies in this agroecosystem which is undergoing a rapid management revolution. As vine cultivation is restricted to arid and warm climatic regions, biodiversity-friendly management would promote species typical of southern biomes. Vineyards are often intensively cultivated, mostly surrounded by few natural features and offering a fairly mineral appearance with little ground vegetation cover. Ground vegetation cover and composition may further strongly vary with respect to season, influencing patterns of habitat selection by ecological communities. We investigated season-specific bird-habitat associations to highlight the importance of semi-natural habitat features and vineyard ground vegetation cover throughout the year. Given that avian habitat selection varies according to taxa, guilds and spatial scale, we modelled bird-habitat associations in all months at two spatial scales using mixed effects regression models. At the landscape scale, birds were recorded along 10 1-km long transects in Southwestern Switzerland (February 2014 –January 2015). At the field scale, we compared the characteristics of visited and unvisited vineyard fields (hereafter called parcels). Bird abundance in vineyards tripled in winter compared to summer. Vineyards surrounded by a greater amount of hedges and small woods harboured higher bird abundance, species richness and diversity, especially during the winter season. Regarding ground vegetation, birds showed a season-specific habitat selection pattern, notably a marked preference for ground-vegetated parcels in winter and for intermediate vegetation cover in spring and summer. These season-specific preferences might be related to species-specific life histories: more insectivorous, ground-foraging species occur during the breeding season whereas granivores predominate in winter. These results highlight the importance of investigating habitat

  19. Reproductive habitat selection in alien and native populations of the genus Discoglossus

    NASA Astrophysics Data System (ADS)

    Escoriza, Daniel; Boix, Dani

    2014-08-01

    The existence of suitable breeding habitats is an important factor explaining the regional presence of an anuran species. This study examined patterns of habitat selection in populations of three species of the genus Discoglossus: Discoglossusgalganoi (south-western Iberian Peninsula), Discoglossusscovazzi (Morocco) and Discoglossuspictus (three different areas were included in the study: Sicily, Tunisia and north-eastern Iberian Peninsula). The populations of D. pictus on the Iberian Peninsula are allochthonous, and analysis of these patterns may provide insights into the processes that regulate the invasion phase. The hypotheses tested were: (i) congeneric species show the same patterns of habitat selection, and alien species have been established following these patterns; (ii) there are differences in species associations between assemblages structured deterministically and by chance, i.e. native versus invaded assemblages. The larval habitats of three species of this genus were characterized by measuring physical and chemical parameters of the water bodies. We examined the covariation between the presence of Discoglossus species and the species richness of sympatric anurans, and investigated a possible relationship between morphological similarity (as a proxy of functional group) and overlap in habitat use. The results showed that congeneric species are morphologically conservative and also select very similar types of aquatic habitat. The alien population and other sympatric species showed a high degree of overlap in habitat use, which was greater than that observed in the native assemblage with a similar functional richness. Species associations were not structured on the basis of morphological similarity in any of the assemblages. Among native populations, the presence of Discoglossus was either negatively correlated or not significantly correlated with species richness. Only the alien population showed a positive correlation between its presence and species

  20. Use and selection of brood-rearing habitat by Sage Grouse in south central Washington

    USGS Publications Warehouse

    Sveum, C.M.; Crawford, J.A.; Edge, W.D.

    1998-01-01

    Sage Grouse (Centrocercus urophasianus) brood-habitat use was examined during 1992 and 1993 at the Yakima Training Center in Yakima and Kittitas counties, Washington. During the 2 yr we followed 38 broods, of which 12 persisted to 1 August (x?? = approximately 1.5 chicks/brood). Food forb cover was greater at all brood locations than at random locations. Hens with broods in big sagebrush/bunchgrass habitat (Artemisia tridentata/Agropyron spicatum) selected for greater food forb cover, total forb cover, and lower shrub heights; broods in altered big sagebrush/bunchgrass habitats selected greater tall grass cover and vertical cover height; broods in grassland showed no preference for any measured vegetation characteristics. During the early rearing period (post-hatching-6 wk) each year, broods selected sagebrush/bunchgrass. Broods in 1993 made greater use of grasslands than in 1992 and selected grassland during the late brood-rearing period (7-12 wk). Broods selected for sagebrush/bunchgrass during midday, but 52% of brood locations in the afternoon were in grassland. Tall grass cover was greater at morning (0500-1000 h) and afternoon (1501-2000 h) brood locations than at midday (1001-1500 h) and random locations. Midday brood locations had greater shrub cover and height than morning and afternoon locations. Selection of habitat components was similar to the results of other studies, but habitat conditions coupled with a possible lack of 'alternate brood-rearing cover types resulted in low survival of chicks.

  1. Density-dependent habitat selection and performance by a large mobile reef fish.

    PubMed

    Lindberg, William J; Frazer, Thomas K; Portier, Kenneth M; Vose, Frederic; Loftin, James; Murie, Debra J; Mason, Doran M; Nagy, Brian; Hart, Mary K

    2006-04-01

    Many exploited reef fish are vulnerable to overfishing because they concentrate over hard-bottom patchy habitats. How mobile reef fish use patchy habitat, and the potential consequences on demographic parameters, must be known for spatially explicit population dynamics modeling, for discriminating essential fish habitat (EFH), and for effectively planning conservation measures (e.g., marine protected areas, stock enhancement, and artificial reefs). Gag, Mycteroperca microlepis, is an ecologically and economically important warm-temperate grouper in the southeastern United States, with behavioral and life history traits conducive to large-scale field experiments. The Suwannee Regional Reef System (SRRS) was built of standard habitat units (SHUs) in 1991-1993 to manipulate and control habitat patchiness and intrinsic habitat quality, and thereby test predictions from habitat selection theory. Colonization of the SRRS by gag over the first six years showed significant interactions of SHU size, spacing, and reef age; with trajectories modeled using a quadratic function for closely spaced SHUs (25 m) and a linear model for widely spaced SHUs (225 m), with larger SHUs (16 standardized cubes) accumulating significantly more gag faster than smaller 4-cube SHUs (mean = 72.5 gag/16-cube SHU at 225-m spacing by year 6, compared to 24.2 gag/4-cube SHU for same spacing and reef age). Residency times (mean = 9.8 mo), indicative of choice and measured by ultrasonic telemetry (1995-1998), showed significant interaction of SHU size and spacing consistent with colonization trajectories. Average relative weight (W(r)) and incremental growth were greater on smaller than larger SHUs (mean W(r) = 104.2 vs. 97.7; incremental growth differed by 15%), contrary to patterns of abundance and residency. Experimental manipulation of shelter on a subset of SRRS sites (2000-2001) confirmed our hypothesis that shelter limits local densities of gag, which, in turn, regulates their growth and

  2. Post-parturition habitat selection by elk calves and adult female elk in New Mexico

    USGS Publications Warehouse

    Pitman, James W.; Cain, James W.; Liley, Stewart; Gould, William R.; Quintana, Nichole T.; Ballard, Warren

    2014-01-01

    Neonatal survival and juvenile recruitment are crucial to maintaining viable elk (Cervus elaphus) populations. Neonate survival is known to be influenced by many factors, including bed-site selection. Although neonates select the actual bed-site location, they must do so within the larger calf-rearing area selected by the mother. As calves age, habitat selection should change to meet the changing needs of the growing calf. Our main objectives were to characterize habitat selection at 2 spatial scales and in areas with different predator assemblages in New Mexico. We evaluated bed-site selection by calves and calf-rearing area selection by adult females. We captured 108 elk calves by hand and fitted them with ear tag transmitters in two areas in New Mexico: the Valle Vidal and Blue Range Wolf Recovery Area. In both study areas, we found that concealing cover structure and distance to that cover influenced bed-site selection of young calves (i.e., <2 weeks of age). Older calves (i.e., 3–10 weeks of age) still selected areas in relation to distance to cover, but also preferred areas with higher visibility. At the larger spatial scale of calf-rearing habitat selection by the adult female, concealing cover (e.g., rocks, shrubs, and logs) and other variables important to the hiding calves were still in the most supported models, but selection was also influenced by forage availability and indices of forage quality. Studies that seek to obtain insight into microhabitat selection of ungulate neonates should consider selection by the neonate and selection by the adult female, changes in selection as neonates age, and potential selection differences in areas of differing predation risk. By considering these influences together and at multiple scales, studies can achieve a broader understanding of neonatal ungulate habitat requirements. 

  3. Spatial heterogeneity and scale-dependent habitat selection for two sympatric raptors in mixed-grass prairie.

    PubMed

    Atuo, Fidelis Akunke; O'Connell, Timothy John

    2017-08-01

    Sympatric predators are predicted to partition resources, especially under conditions of food limitation. Spatial heterogeneity that influences prey availability might play an important role in the scales at which potential competitors select habitat. We assessed potential mechanisms for coexistence by examining the role of heterogeneity in resource partitioning between sympatric raptors overwintering in the southern Great Plains. We conducted surveys for wintering Red-tailed hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyanea ) at two state wildlife management areas in Oklahoma, USA. We used information from repeated distance sampling to project use locations in a GIS. We applied resource selection functions to model habitat selection at three scales and analyzed for niche partitioning using the outlying mean index. Habitat selection of the two predators was mediated by spatial heterogeneity. The two predators demonstrated significant fine-scale discrimination in habitat selection in homogeneous landscapes, but were more sympatric in heterogeneous landscapes. Red-tailed hawk used a variety of cover types in heterogeneous landscapes but specialized on riparian forest in homogeneous landscapes. Northern Harrier specialized on upland grasslands in homogeneous landscapes but selected more cover types in heterogeneous landscapes. Our study supports the growing body of evidence that landscapes can affect animal behaviors. In the system we studied, larger patches of primary land cover types were associated with greater allopatry in habitat selection between two potentially competing predators. Heterogeneity within the scale of raptor home ranges was associated with greater sympatry in use and less specialization in land cover types selected.

  4. Consequences of habitat change and resource selection specialization for population limitation in cavity-nesting birds

    USGS Publications Warehouse

    Martin, Thomas E.

    2015-01-01

    Synthesis and applications. Management should target species that specialize in resource selection on a declining resource. Species with greater resource selection generalization can reduce population impacts of environmental change. Resource generalization can allow a species like the wren to take advantage of habitat refuges, such as those provided by the elk exclosures. Yet, resource generalization cannot offset the negative impacts of broad-scale declines in habitat quality on the landscape, as demonstrated by the general decline of wrens. Ultimately, aspen is an important habitat for biodiversity, and land management programmes that protect and aid recovery of aspen habitats may be critical.

  5. Summer habitat selection by Dall’s sheep in Wrangell-St. Elias National Park and Preserve, Alaska

    USGS Publications Warehouse

    Roffler, Gretchen H.; Adams, Layne G.; Hebblewhite, Mark

    2017-01-01

    Sexual segregation occurs frequently in sexually dimorphic species, and it may be influenced by differential habitat requirements between sexes or by social or evolutionary mechanisms that maintain separation of sexes regardless of habitat selection. Understanding the degree of sex-specific habitat specialization is important for management of wildlife populations and the design of monitoring and research programs. Using mid-summer aerial survey data for Dall’s sheep (Ovis dalli dalli) in southern Alaska during 1983–2011, we assessed differences in summer habitat selection by sex and reproductive status at the landscape scale in Wrangell-St. Elias National Park and Preserve (WRST). Males and females were highly segregated socially, as were females with and without young. Resource selection function (RSF) models containing rugged terrain, intermediate values of the normalized difference vegetation index (NDVI), and open landcover types best explained resource selection by each sex, female reproductive classes, and all sheep combined. For male and all female models, most coefficients were similar, suggesting little difference in summer habitat selection between sexes at the landscape scale. A combined RSF model therefore may be used to predict the relative probability of resource selection by Dall’s sheep in WRST regardless of sex or reproductive status.

  6. Space use and habitat selection of migrant and resident American Avocets in San Francisco Bay

    USGS Publications Warehouse

    Demers, Scott A.; Takekawa, John Y.; Ackerman, Joshua T.; Warnock, N.; Athearn, N.D.

    2010-01-01

    San Francisco Bay is a wintering area for shorebirds, including American Avocets (Recurvirostra americana). Recently, a new resident population of avocets has emerged, presumably because of the development of tidal marshes into salt-evaporation ponds. In habitat restoration now underway, as many as 90% of salt ponds will be restored to tidal marsh. However, it is unknown if wintering and resident avocets coexist and if their requirements for space and habitat differ, necessitating different management for their populations to be maintained during restoration. We captured and radio-marked wintering avocets at a salt pond and a tidal flat to determine their population status (migrant or resident) and examine their space use and habitat selection. Of the radio-marked avocets, 79% were migrants and 21% were residents. At the salt pond, residents' fidelity to their location of capture was higher, and residents moved less than did migrants from the same site. Conversely, on the tidal flat, fidelity of residents to their site of capture was lower, and residents' home ranges were larger than those of migrants from the same site. Habitat selection of migrants and residents differed little; however, capture site influenced habitat selection far more than the birds' status as migrants or residents. Our study suggests that individual avocets have high site fidelity while wintering in San Francisco Bay, although the avocet as a species is plastic in its space use and habitat selection. This plasticity may allow wintering migrant and resident avocets to adapt to habitat change in San Francisco Bay. ?? The Cooper Ornithological Society 2010.

  7. Habitat selection by Eld's deer following relocation to a patchy landscape.

    PubMed

    Pan, Duo; Song, Yan-Ling; Zeng, Zhi-Gao; Bravery, Benjamin D

    2014-01-01

    An emerging issue in wildlife conservation is the re-establishment of viable populations of endangered species in suitable habitats. Here, we studied habitat selection by a population of Hainan Eld's deer (Cervus eldi) relocated to a patchy landscape of farmland and forest. Hainan Eld's deer were pushed to the brink of extinction in the 1970s, but their population expanded rapidly from 26 to more than 1000 individuals by 2003 through effective reserve protection. As part of a wider relocation and population management strategy, 131 deer were removed from the reserve and reintroduced into a farmland-forest landscape in 2005. Habitat use under a context of human disturbance was surveyed by monitoring 19 radio-collared animals. The majority of deer locations (77%) were within 0.6-2 km of villages. Annual home ranges of these collared deer averaged 725 ha (SD 436), which was 55% of the size of the reserve from which they had originated. The annual home ranges contained 54% shrub-grassland, 26% forest and 15% farmland. The relocated deer population selected landscape comprising slash-and-burn agriculture and forest, and avoided both intensively farmed areas and areas containing only forest. Within the selected landscape, deer preferred swiddens and shrub-grasslands. Forests above 300 m in elevation were avoided, whereas forests below 300 m in elevation were overrepresented during the dry season and randomly used during the wet season. Our findings show that reintroduced deer can utilize disturbed habitats, and further demonstrate that subsistence agroforest ecosystems have the capacity to sustain endangered ungulates.

  8. Habitat selection is unaltered after severe insect infestation: Concerns for forest-dependent species

    Treesearch

    Claire A. Zugmeyer; John L. Koprowski

    2009-01-01

    Severe disturbance may alter or eliminate important habitat structure that helps preserve food caches of foodhoarding species. Recent recolonization of an insect-damaged forest by the endangered Mt. Graham red squirrel (Tamiasciurus hudsonicus grahamensis) provided an opportunity to examine habitat selection for midden (cache) sites following...

  9. Using dynamic Brownian bridge movement modelling to measure temporal patterns of habitat selection.

    PubMed

    Byrne, Michael E; Clint McCoy, J; Hinton, Joseph W; Chamberlain, Michael J; Collier, Bret A

    2014-09-01

    Accurately describing animal space use is vital to understanding how wildlife use habitat. Improvements in GPS technology continue to facilitate collection of telemetry data at high spatial and temporal resolutions. Application of the recently introduced dynamic Brownian bridge movement model (dBBMM) to such data is promising as the method explicitly incorporates the behavioural heterogeneity of a movement path into the estimated utilization distribution (UD). Utilization distributions defining space use are normally estimated for time-scales ranging from weeks to months, obscuring much of the fine-scale information available from high-volume GPS data sets. By accounting for movement heterogeneity, the dBBMM provides a rigorous, behaviourally based estimate of space use between each set of relocations. Focusing on UDs generated between individual sets of locations allows us to quantify fine-scale circadian variation in habitat use. We used the dBBMM to estimate UDs bounding individual time steps for three terrestrial species with different life histories to illustrate how the method can be used to identify fine-scale variations in habitat use. We also demonstrate how dBBMMs can be used to characterize circadian patterns of habitat selection and link fine-scale patterns of habitat use to behaviour. We observed circadian patterns of habitat use that varied seasonally for a white-tailed deer (Odocoileus virginianus) and coyote (Canis latrans). We found seasonal patterns in selection by the white-tailed deer and were able to link use of conifer forests and agricultural fields to behavioural state of the coyote. Additionally, we were able to quantify the date in which a Rio Grande wild turkey (Meleagris gallopavo intermedia) initiated laying as well as when during the day, she was most likely to visit the nest site to deposit eggs. The ability to quantify circadian patterns of habitat use may have important implications for research and management of wildlife

  10. Habitat selection of black-and-white snub-nosed monkeys (Rhinopithecus bieti) in Tibet: implications for species conservation.

    PubMed

    Xiang, Zuo-Fu; Huo, Sheng; Xiao, Wen

    2011-04-01

    As anthropogenic habitat changes are often considered a threat to natural ecosystems and wildlife, a sound understanding of the effects of habitat alteration on endangered species is crucial when designing management strategies or performing conservation activities. Black-and-white snub-nosed monkeys (Rhinopithecus bieti) are categorized as endangered on the IUCN Red List and are endemic to the trans-Himalayas in China. At present, there are only 15 groups and 2,500 individuals remaining in the wild, and they are facing intense habitat degradation with selective logging for house building and firewood. Habitat deterioration through wood extraction is occurring at Xiaochangdu, Tibet, where one stable group of R. bieti lives in a marginal habitat in the northernmost part of the species' distribution. To understand the species' response to selective logging in an extremely marginal habitat, data on habitat preference and diet composition of a group of R. bieti were collected at Xiaochangdu from 2003 to 2005. The monkeys used different habitats nonrandomly during the year. The selection index for secondary conifer forest (SC), where selective logging has occurred, was the highest of all habitat types (>1), suggesting that the groups strongly preferred SC. The monkeys fed more on buds/leaves, more on flowers/fruit/seeds, and less on lichen in SC than in primary conifer forest (PC). Dietary diversity was significantly higher in SC than in PC. These results indicate that over the short term, low-intensity disturbances may result in increased foliage diversity that enable groups of R. bieti to survive in this marginal habitat. © 2010 Wiley-Liss, Inc.

  11. Raccoon spatial requirements and multi-scale habitat selection within an intensively managed central Appalachian forest

    USGS Publications Warehouse

    Owen, Sheldon F.; Berl, Jacob L.; Edwards, John W.; Ford, W. Mark; Wood, Petra Bohall

    2015-01-01

    We studied a raccoon (Procyon lotor) population within a managed central Appalachian hardwood forest in West Virginia to investigate the effects of intensive forest management on raccoon spatial requirements and habitat selection. Raccoon home-range (95% utilization distribution) and core-area (50% utilization distribution) size differed between sexes with males maintaining larger (2×) home ranges and core areas than females. Home-range and core-area size did not differ between seasons for either sex. We used compositional analysis to quantify raccoon selection of six different habitat types at multiple spatial scales. Raccoons selected riparian corridors (riparian management zones [RMZ]) and intact forests (> 70 y old) at the core-area spatial scale. RMZs likely were used by raccoons because they provided abundant denning resources (i.e., large-diameter trees) as well as access to water. Habitat composition associated with raccoon foraging locations indicated selection for intact forests, riparian areas, and regenerating harvest (stands <10 y old). Although raccoons were able to utilize multiple habitat types for foraging resources, a selection of intact forest and RMZs at multiple spatial scales indicates the need of mature forest (with large-diameter trees) for this species in managed forests in the central Appalachians.

  12. Habitat selection by Forster's Terns (Sterna forsteri) at multiple spatial scales in an urbanized estuary: The importance of salt ponds

    USGS Publications Warehouse

    Bluso-Demers, Jill; Ackerman, Joshua T.; Takekawa, John Y.; Peterson, Sarah

    2016-01-01

    The highly urbanized San Francisco Bay Estuary, California, USA, is currently undergoing large-scale habitat restoration, and several thousand hectares of former salt evaporation ponds are being converted to tidal marsh. To identify potential effects of this habitat restoration on breeding waterbirds, habitat selection of radiotagged Forster's Terns (Sterna forsteri) was examined at multiple spatial scales during the pre-breeding and breeding seasons of 2005 and 2006. At each spatial scale, habitat selection ratios were calculated by season, year, and sex. Forster's Terns selected salt pond habitats at most spatial scales and demonstrated the importance of salt ponds for foraging and roosting. Salinity influenced the types of salt pond habitats that were selected. Specifically, Forster's Terns strongly selected lower salinity salt ponds (0.5–30 g/L) and generally avoided higher salinity salt ponds (≥31 g/L). Forster's Terns typically used tidal marsh and managed marsh habitats in proportion to their availability, avoided upland and tidal flat habitats, and strongly avoided open bay habitats. Salt ponds provide important habitat for breeding waterbirds, and restoration efforts to convert former salt ponds to tidal marsh may reduce the availability of preferred breeding and foraging areas.

  13. Modeling waterfowl habitat selection in the Central Valley of California to better understand the spatial relationship between commercial poultry and waterfowl

    USGS Publications Warehouse

    Matchett, Elliott L.; Casazza, Michael L.; Fleskes, Joseph; Kelman, T.; Cadena, M.; Pitesky, M.

    2017-01-01

    Wildlife researchers frequently study resource and habitat selection of wildlife to understand their potential habitat requirements and to conserve their populations. Understanding wildlife spatial-temporal distributions related to habitat have other applications such as to model interfaces between wildlife and domestic food animals in order to mitigate disease transmission to food animals. The highly pathogenic avian influenza (HPAI) virus represents a significant risk to the poultry industry. The Central Valley of California offers a unique geographical confluence of commercial poultry and wild waterfowl, which are thought to be a key reservoir of avian influenza (AI). Therefore, understanding spatio-temporal distributions of waterfowl could improve our understanding of potential risk of HPAI exposure from a commercial poultry perspective. Using existing radio-telemetry data on waterfowl (U.S. Geological Survey) in combination with habitat and vegetation data based on Geographic Information Systems (GIS), we are developing GIS-based statistical models that predict the probability of waterfowl presence (Habitat Suitability Mapping). Near-real-time application can be developed using recent habitat data derived from Landsat imagery (acquired by satellites and publically available through the U.S. Geological Survey) to predict temporally- and spatially-varying distributions of waterfowl in the Central Valley. These results could be used to provide decision support for the poultry industry in addressing potential risk of HPAI exposure related to waterfowl proximity.

  14. Group-size-mediated habitat selection and group fusion-fission dynamics of bison under predation risk.

    PubMed

    Fortin, Daniel; Fortin, Marie-Eve; Beyer, Hawthorne L; Duchesne, Thierry; Courant, Sabrina; Dancose, Karine

    2009-09-01

    For gregarious animals the cost-benefit trade-offs that drive habitat selection may vary dynamically with group size, which plays an important role in foraging and predator avoidance strategies. We examined how habitat selection by bison (Bison bison) varied as a function of group size and interpreted these patterns by testing whether habitat selection was more strongly driven by the competing demands of forage intake vs. predator avoidance behavior. We developed an analytical framework that integrated group size into resource selection functions (RSFs). These group-size-dependent RSFs were based on a matched case-control design and were estimated using conditional logistic regression (mixed and population-averaged models). Fitting RSF models to bison revealed that bison groups responded to multiple aspects of landscape heterogeneity and that selection varied seasonally and as a function of group size. For example, roads were selected in summer, but not in winter. Bison groups avoided areas of high snow water equivalent in winter. They selected areas composed of a large proportion of meadow area within a 700-m radius, and within those areas, bison selected meadows. Importantly, the strength of selection for meadows varied as a function of group size, with stronger selection being observed in larger groups. Hence the bison-habitat relationship depended in part on the dynamics of group formation and division. Group formation was most likely in meadows. In contrast, risk of group fission increased when bison moved into the forest and was higher during the time of day when movements are generally longer and more variable among individuals. We also found that stronger selection for meadows by large rather than small bison groups was caused by longer residence time in individual meadows by larger groups and that departure from meadows appears unlikely to result from a depression in food intake rate. These group-size-dependent patterns were consistent with the hypothesis

  15. Quantification of fish habitat in selected reaches of the Marmaton and Marais des Cygnes Rivers, Missouri

    USGS Publications Warehouse

    Heimann, David C.; Richards, Joseph M.; Brewer, Shannon K.; Norman, Richard D.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Conservation, undertook a study to quantify fish habitat by using relations between streamflow and the spatial and temporal distributions of fish habitat at five sites in the Marmaton and Marais des Cygnes Rivers in western Missouri. Twenty-six fish habitat categories were selected for nine species under varying seasonal (spring, summer, and fall), diel (summer day and night), and life-stage (spawning, juvenile, and adult) conditions. Physical habitat characteristics were determined for each category using depth, velocity, and channel substrate criteria. Continuous streamflow data were then combined with the habitat-streamflow relations to compile a habitat time series for each habitat category at each site. Fish habitat categories were assessed as to their vulnerability to habitat alteration based on critical life stages (spawning and juvenile rearing periods) and susceptibility to habitat limitations from dewatering or high flows. Species categories representing critical life stages with physical habitat limitations represent likely bottlenecks in fish populations. Categories with potential bottlenecks can serve as indicator categories and aid managers when determining the flows necessary for maintaining these habitats under altered flow regimes. The relation between the area of each habitat category and streamflow differed greatly between category, season, and stream reach. No single flow maximized selected habitat area for all categories or even for all species/category within a particular season at a site. However, some similarities were noted among habitat characteristics, including the streamflow range for which habitat availability is maximized and the range of streamflows for which a habitat category area is available at the Marmaton River sites. A monthly habitat time series was created for all 26 habitat categories at two Marmaton River sites. A daily habitat time series was

  16. Home range, den selection and habitat use of Carolina northern flying squirrels (Glaucomys sabrinus coloratus)

    USGS Publications Warehouse

    Diggins, Corinne A.; Silvis, Alexander; Kelly, Christine A.; Ford, W. Mark

    2017-01-01

    Context: Understanding habitat selection is important for determining conservation and management strategies for endangered species. The Carolina northern flying squirrel (CNFS; Glaucomys sabrinus coloratus) is an endangered subspecies found in the high-elevation montane forests of the southern Appalachians, USA. The primary use of nest boxes to monitor CNFS has provided biased information on habitat use for this subspecies, as nest boxes are typically placed in suitable denning habitat.Aims: We conducted a radio-telemetry study on CNFS to determine home range, den site selection and habitat use at multiple spatial scales.Methods: We radio-collared 21 CNFS in 2012 and 2014–15. We tracked squirrels to diurnal den sites and during night-time activity.Key results: The MCP (minimum convex polygon) home range at 95% for males was 5.2 ± 1.2 ha and for females was 4.0 ± 0.7. The BRB (biased random bridge) home range at 95% for males was 10.8 ± 3.8 ha and for females was 8.3 ± 2.1. Den site (n = 81) selection occurred more frequently in montane conifer dominate forests (81.4%) vs northern hardwood forests or conifer–northern hardwood forests (9.9% and 8.7%, respectively). We assessed habitat selection using Euclidean distance-based analysis at the 2nd order and 3rd order scale. We found that squirrels were non-randomly selecting for habitat at both 2nd and 3rd order scales.Conclusions: At both spatial scales, CNFS preferentially selected for montane conifer forests more than expected based on availability on the landscape. Squirrels selected neither for nor against northern hardwood forests, regardless of availability on the landscape. Additionally, CNFS denned in montane conifer forests more than other habitat types.Implications: Our results highlight the importance of montane conifer to CNFS in the southern Appalachians. Management and restoration activities that increase the quality, connectivity and extent of this naturally rare forest type may be

  17. A decision tool for selecting trench cap designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paige, G.B.; Stone, J.J.; Lane, L.J.

    1995-12-31

    A computer based prototype decision support system (PDSS) is being developed to assist the risk manager in selecting an appropriate trench cap design for waste disposal sites. The selection of the {open_quote}best{close_quote} design among feasible alternatives requires consideration of multiple and often conflicting objectives. The methodology used in the selection process consists of: selecting and parameterizing decision variables using data, simulation models, or expert opinion; selecting feasible trench cap design alternatives; ordering the decision variables and ranking the design alternatives. The decision model is based on multi-objective decision theory and uses a unique approach to order the decision variables andmore » rank the design alternatives. Trench cap designs are evaluated based on federal regulations, hydrologic performance, cover stability and cost. Four trench cap designs, which were monitored for a four year period at Hill Air Force Base in Utah, are used to demonstrate the application of the PDSS and evaluate the results of the decision model. The results of the PDSS, using both data and simulations, illustrate the relative advantages of each of the cap designs and which cap is the {open_quotes}best{close_quotes} alternative for a given set of criteria and a particular importance order of those decision criteria.« less

  18. Landscape effects on mallard habitat selection at multiple spatial scales during the non-breeding period

    USGS Publications Warehouse

    Beatty, William S.; Webb, Elisabeth B.; Kesler, Dylan C.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.

    2014-01-01

    Previous studies that evaluated effects of landscape-scale habitat heterogeneity on migratory waterbird distributions were spatially limited and temporally restricted to one major life-history phase. However, effects of landscape-scale habitat heterogeneity on long-distance migratory waterbirds can be studied across the annual cycle using new technologies, including global positioning system satellite transmitters. We used Bayesian discrete choice models to examine the influence of local habitats and landscape composition on habitat selection by a generalist dabbling duck, the mallard (Anas platyrhynchos), in the midcontinent of North America during the non-breeding period. Using a previously published empirical movement metric, we separated the non-breeding period into three seasons, including autumn migration, winter, and spring migration. We defined spatial scales based on movement patterns such that movements >0.25 and <30.00 km were classified as local scale and movements >30.00 km were classified as relocation scale. Habitat selection at the local scale was generally influenced by local and landscape-level variables across all seasons. Variables in top models at the local scale included proximities to cropland, emergent wetland, open water, and woody wetland. Similarly, variables associated with area of cropland, emergent wetland, open water, and woody wetland were also included at the local scale. At the relocation scale, mallards selected resource units based on more generalized variables, including proximity to wetlands and total wetland area. Our results emphasize the role of landscape composition in waterbird habitat selection and provide further support for local wetland landscapes to be considered functional units of waterbird conservation and management.

  19. Habitat manipulation influences northern bobwhite resource selection on a reclaimed surface mine

    USGS Publications Warehouse

    Brooke, Jarred M.; Peters, David C.; Unger, Ashley M.; Tanner, Evan P.; Harper, Craig A.; Keyser, Patrick D.; Clark, Joseph D.; Morgan, John J.

    2015-01-01

    More than 600,000 ha of mine land have been reclaimed in the eastern United States, providing large contiguous tracts of early successional vegetation that can be managed for northern bobwhite (Colinus virginianus). However, habitat quality on reclaimed mine land can be limited by extensive coverage of non-native invasive species, which are commonly planted during reclamation. We used discrete-choice analysis to investigate bobwhite resource selection throughout the year on Peabody Wildlife Management Area, a 3,330-ha reclaimed surface mine in western Kentucky. We used a treatment-control design to study resource selection at 2 spatial scales to identify important aspects of mine land vegetation and whether resource selection differed between areas with habitat management (i.e., burning, disking, herbicide; treatment) and unmanaged units (control). Our objectives were to estimate bobwhite resource selection on reclaimed mine land and to estimate the influence of habitat management practices on resource selection. We used locations from 283 individuals during the breeding season (1 Apr–30 Sep) and 136 coveys during the non-breeding season (1 Oct–Mar 31) from August 2009 to March 2014. Individuals were located closer to shrub cover than would be expected at random throughout the year. During the breeding season, individuals on treatment units used areas with smaller contagion index values (i.e., greater interspersion) compared with individuals on control units. During the non-breeding season, birds selected areas with greater shrub-open edge density compared with random. At the microhabitat scale, individuals selected areas with increased visual obstruction >1 m aboveground. During the breeding season, birds were closer to disked areas (linear and non-linear) than would be expected at random. Individuals selected non-linear disked areas during winter but did not select linear disked areas (firebreaks) because they were planted to winter wheat each fall and

  20. The effect of adult aggression on habitat selection by settlers of two coral-dwelling damselfishes.

    PubMed

    Ben-Tzvi, Ofer; Kiflawi, Moshe; Polak, Omer; Abelson, Avigdor

    2009-01-01

    Coral-reef fishes experience a major challenge when facing settlement in a multi-threat environment, within which, using settlement cues, they need to select a suitable site. Studies in laboratories and artificial setups have shown that the presence of conspecific adults often serves as a positive settlement cue, whose value is explained by the increased survival of juveniles in an already proven fit environment. However, settlement in already inhabited corals may expose the recruits to adult aggression. Daily observations and manipulation experiments were used in the present study, which was conducted in the natural reef. We revealed differential strategies of settlers, which do not necessarily join conspecific adults. Dascyllus aruanus prefer to settle near (not with) their aggressive adults, and to join them only after gaining in size; whereas Dascyllus marginatus settlers in densely populated reefs settle independently of their adult distribution. Our results present different solutions to the challenges faced by fish recruits while selecting their microhabitat, and emphasize the complexity of habitat selection by the naïve settlers. Although laboratory experiments are important to the understanding of fish habitat selection, further studies in natural habitats are essential in order to elucidate the actual patterns of settlement and habitat selection, which are crucial for the survival of coral-reef fish populations.

  1. Accounting for individual behavioural variation in studies of habitat selection.

    PubMed

    Wirsing, Aaron J; Heithaus, Michael R

    2014-03-01

    A caribou wearing an animal-borne video camera (a) and animal-borne video footage taken from systems deployed on mule deer (Odocoileus hemionus) in north-central Washington state, USA (b-d). When paired with tracking technology, animal-borne video can reveal detailed information about behaviour and environmental features at each location: (b) feeding, (c) vigilant in the open, (d) vigilant in cover, (e) resting in the open. Accordingly, animal-borne video systems should allow for analyses of habitat selection by individuals in particular behavioural states. In Focus: DeCesare, N.J., Hebblewhite, M., Bradley, M., Hervieux, D., Neufeld, L. & Musiani, M. (2014) Linking habitat selection and predation risk to spatial variation in survival. Journal of Animal Ecology, 83, 343-352. Resource selection is often assumed to confer enhanced fitness, but this assumption is rarely examined. In a study involving woodland caribou subject to grey wolf predation, DeCesare et al. (2014) show that while patterns of selection by caribou did correspond with a fitness proxy (survival probability), individuals did not avoid wolf predation risk to the extent that would minimize mortality. Here, we use the results of this paper as a springboard for discussing the choice of fitness proxies and the need to account for individual behavioural variation in studies of resource selection. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  2. An Alternative to Adaptation by Sexual Selection: Habitat Choice.

    PubMed

    Porter, Cody K; Akcali, Christopher K

    2018-06-09

    Adaptation in mating signals and preferences has generally been explained by sexual selection. We propose that adaptation in such mating traits might also arise via a non-mutually exclusive process wherein individuals preferentially disperse to habitats where they experience high mating performance. Here we explore the evolutionary implications of this process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Winter habitat selection of mule deer before and during development of a natural gas field

    USGS Publications Warehouse

    Sawyer, H.; Nielson, R.M.; Lindzey, F.; McDonald, L.L.

    2006-01-01

    Increased levels of natural gas exploration, development, and production across the Intermountain West have created a variety of concerns for mule deer (Odocoileus hemionus) populations, including direct habitat loss to road and well-pad construction and indirect habitat losses that may occur if deer use declines near roads or well pads. We examined winter habitat selection patterns of adult female mule deer before and during the first 3 years of development in a natural gas field in western Wyoming. We used global positioning system (GPS) locations collected from a sample of adult female mule deer to model relative frequency or probability of use as a function of habitat variables. Model coefficients and predictive maps suggested mule deer were less likely to occupy areas in close proximity to well pads than those farther away. Changes in habitat selection appeared to be immediate (i.e., year 1 of development), and no evidence of well-pad acclimation occurred through the course of the study; rather, mule deer selected areas farther from well pads as development progressed. Lower predicted probabilities of use within 2.7 to 3.7 km of well pads suggested indirect habitat losses may be substantially larger than direct habitat losses. Additionally, some areas classified as high probability of use by mule deer before gas field development changed to areas of low use following development, and others originally classified as low probability of use were used more frequently as the field developed. If areas with high probability of use before development were those preferred by the deer, observed shifts in their distribution as development progressed were toward less-preferred and presumably less-suitable habitats.

  4. Adaptive Strategy Selection in Decision Making.

    DTIC Science & Technology

    1986-07-31

    information processing capabilities of a decision maker, given any " reasonable " time limit for making the decision. If use of a more normative rule...DECISION MAKING JOHN W. PAYNE DTIC DUKE UNIVERSITY L.CT E AUG 13 JAMES R. BETTMAN DUKE. UNIVERSITY ERIC J. JOHNSON CARNEGIE-MELLON UNIVERSITY...REPORT & PERIOD COVERED ADAPTIVE STRATEGY SELECTION IN DECISION MAKING Research 6. PERFORMING ORO. REPORT NUMSER 7. AUTNORfe) e. CONTRACT ON GRANT

  5. Scale dependence in habitat selection: The case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain)

    Treesearch

    Maria C. Mateo Sanchez; Samuel A. Cushman; Santiago Saura

    2013-01-01

    Animals select habitat resources at multiple spatial scales. Thus, explicit attention to scale dependency in species-habitat relationships is critical to understand the habitat suitability patterns as perceived by organisms in complex landscapes. Identification of the scales at which particular environmental variables influence habitat selection may be as important as...

  6. Winter habitat selection patterns of Merriam's turkeys in the southern Black Hills, South Dakota

    Treesearch

    Chad P. Lehman; Mark A. Rumble; Lester D. Flake

    2007-01-01

    In northern areas of their expanded range, information on Merriam's turkeys (Meleagris gallopavo merriami) is lacking, specifically pertaining to wintering behavior and factors associated with winter habitat selection. Forest managers need detailed quantification of the effects of logging and other management practices on wintering habitats...

  7. N-mix for fish: estimating riverine salmonid habitat selection via N-mixture models

    USGS Publications Warehouse

    Som, Nicholas A.; Perry, Russell W.; Jones, Edward C.; De Juilio, Kyle; Petros, Paul; Pinnix, William D.; Rupert, Derek L.

    2018-01-01

    Models that formulate mathematical linkages between fish use and habitat characteristics are applied for many purposes. For riverine fish, these linkages are often cast as resource selection functions with variables including depth and velocity of water and distance to nearest cover. Ecologists are now recognizing the role that detection plays in observing organisms, and failure to account for imperfect detection can lead to spurious inference. Herein, we present a flexible N-mixture model to associate habitat characteristics with the abundance of riverine salmonids that simultaneously estimates detection probability. Our formulation has the added benefits of accounting for demographics variation and can generate probabilistic statements regarding intensity of habitat use. In addition to the conceptual benefits, model application to data from the Trinity River, California, yields interesting results. Detection was estimated to vary among surveyors, but there was little spatial or temporal variation. Additionally, a weaker effect of water depth on resource selection is estimated than that reported by previous studies not accounting for detection probability. N-mixture models show great promise for applications to riverine resource selection.

  8. Seasonal movements and multiscale habitat selection of Whooping Crane (Grus americana) in natural and agricultural wetlands

    USGS Publications Warehouse

    Pickens, Bradley A.; King, Sammy L.; Vasseur, Phillip L.; Zimorski, Sara E.; Selman, Will

    2017-01-01

    Eleven of 15 species of cranes (family: Gruidae) are considered vulnerable or endangered, and the increase of agriculture and aquaculture at the expense of natural wetlands and grasslands is a threat to Gruidae worldwide. A reintroduced population of Whooping Crane (Grus americana) was studied in coastal and agricultural wetlands of Louisiana and Texas, USA. The objectives were to compare Whooping Crane movements across seasons, quantify multiscale habitat selection, and identify seasonal shifts in selection. Whooping Cranes (n = 53) were tracked with satellite transmitters to estimate seasonal core-use areas (50% home range contours) via Brownian bridge movement models and assess habitat selection. Whooping Crane core-use areas (n = 283) ranged from 4.7 to 438.0 km2, and habitat selection changed seasonally as shallow water availability varied. Whooping Crane core-use areas were composed of more fresh marsh in spring/summer, but shifted towards rice and crawfish (Procambarus spp.) aquaculture in the fall/winter. Within core-use areas, aquaculture was most strongly selected, particularly in fall when fresh marsh became unsuitable. Overall, the shifting of Whooping Crane habitat selection over seasons is likely to require large, heterogeneous areas. Whooping Crane use of agricultural and natural wetlands may depend on spatio-temporal dynamics of water depth.

  9. Habitat Selection by Eld’s Deer following Relocation to a Patchy Landscape

    PubMed Central

    Pan, Duo; Song, Yan-Ling; Zeng, Zhi-Gao; Bravery, Benjamin D.

    2014-01-01

    An emerging issue in wildlife conservation is the re-establishment of viable populations of endangered species in suitable habitats. Here, we studied habitat selection by a population of Hainan Eld’s deer (Cervus eldi) relocated to a patchy landscape of farmland and forest. Hainan Eld’s deer were pushed to the brink of extinction in the 1970s, but their population expanded rapidly from 26 to more than 1000 individuals by 2003 through effective reserve protection. As part of a wider relocation and population management strategy, 131 deer were removed from the reserve and reintroduced into a farmland-forest landscape in 2005. Habitat use under a context of human disturbance was surveyed by monitoring 19 radio-collared animals. The majority of deer locations (77%) were within 0.6–2 km of villages. Annual home ranges of these collared deer averaged 725 ha (SD 436), which was 55% of the size of the reserve from which they had originated. The annual home ranges contained 54% shrub-grassland, 26% forest and 15% farmland. The relocated deer population selected landscape comprising slash-and-burn agriculture and forest, and avoided both intensively farmed areas and areas containing only forest. Within the selected landscape, deer preferred swiddens and shrub-grasslands. Forests above 300 m in elevation were avoided, whereas forests below 300 m in elevation were overrepresented during the dry season and randomly used during the wet season. Our findings show that reintroduced deer can utilize disturbed habitats, and further demonstrate that subsistence agroforest ecosystems have the capacity to sustain endangered ungulates. PMID:24614039

  10. Spatially explicit decision support for selecting translocation areas for Mojave desert tortoises

    USGS Publications Warehouse

    Heaton, Jill S.; Nussear, Kenneth E.; Esque, Todd C.; Inman, Richard D.; Davenport, Frank; Leuteritz, Thomas E.; Medica, Philip A.; Strout, Nathan W.; Burgess, Paul A.; Benvenuti, Lisa

    2008-01-01

    Spatially explicit decision support systems are assuming an increasing role in natural resource and conservation management. In order for these systems to be successful, however, they must address real-world management problems with input from both the scientific and management communities. The National Training Center at Fort Irwin, California, has expanded its training area, encroaching U.S. Fish and Wildlife Service critical habitat set aside for the Mojave desert tortoise (Gopherus agassizii), a federally threatened species. Of all the mitigation measures proposed to offset expansion, the most challenging to implement was the selection of areas most feasible for tortoise translocation. We developed an objective, open, scientifically defensible spatially explicit decision support system to evaluate translocation potential within the Western Mojave Recovery Unit for tortoise populations under imminent threat from military expansion. Using up to a total of 10 biological, anthropogenic, and/or logistical criteria, seven alternative translocation scenarios were developed. The final translocation model was a consensus model between the seven scenarios. Within the final model, six potential translocation areas were identified.

  11. 78 FR 68465 - NiSource, Inc.; Record of Decision, Habitat Conservation Plan, Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ...-FF03E00000] NiSource, Inc.; Record of Decision, Habitat Conservation Plan, Environmental Impact Statement... to the Endangered Species Act of 1973, as amended (ESA). The ITP authorizes NiSource, Inc., to take... public of the availability of the ROD associated with an ITP application received from NiSource, Inc...

  12. EEG feature selection method based on decision tree.

    PubMed

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  13. To kill, stay or flee: the effects of lions and landscape factors on habitat and kill site selection of cheetahs in South Africa.

    PubMed

    Rostro-García, Susana; Kamler, Jan F; Hunter, Luke T B

    2015-01-01

    Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges) and 4th order (selection of kill sites within the habitats used) of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species' habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa.

  14. To Kill, Stay or Flee: The Effects of Lions and Landscape Factors on Habitat and Kill Site Selection of Cheetahs in South Africa

    PubMed Central

    Rostro-García, Susana; Kamler, Jan F.; Hunter, Luke T. B.

    2015-01-01

    Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges) and 4th order (selection of kill sites within the habitats used) of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species’ habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa. PMID:25693067

  15. Resource Selection by the California Condor (Gymnogyps californianus) Relative to Terrestrial-Based Habitats and Meteorological Conditions

    PubMed Central

    Rivers, James W.; Johnson, J. Matthew; Haig, Susan M.; Schwarz, Carl J.; Glendening, John W.; Burnett, L. Joseph; George, Daniel; Grantham, Jesse

    2014-01-01

    Condors and vultures are distinct from most other terrestrial birds because they use extensive soaring flight for their daily movements. Therefore, assessing resource selection by these avian scavengers requires quantifying the availability of terrestrial-based habitats, as well as meteorological variables that influence atmospheric conditions necessary for soaring. In this study, we undertook the first quantitative assessment of habitat- and meteorological-based resource selection in the endangered California condor (Gymnogyps californianus) within its California range and across the annual cycle. We found that condor use of terrestrial areas did not change markedly within the annual cycle, and that condor use was greatest for habitats where food resources and potential predators could be detected and where terrain was amenable for taking off from the ground in flight (e.g., sparse habitats, coastal areas). Condors originating from different release sites differed in their use of habitat, but this was likely due in part to variation in habitats surrounding release sites. Meteorological conditions were linked to condor use of ecological subregions, with thermal height, thermal velocity, and wind speed having both positive (selection) and negative (avoidance) effects on condor use in different areas. We found little evidence of systematic effects between individual characteristics (i.e., sex, age, breeding status) or components of the species management program (i.e., release site, rearing method) relative to meteorological conditions. Our findings indicate that habitat type and meteorological conditions can interact in complex ways to influence condor resource selection across landscapes, which is noteworthy given the extent of anthropogenic stressors that may impact condor populations (e.g., lead poisoning, wind energy development). Additional studies will be valuable to assess small-scale condor movements in light of these stressors to help minimize their risk to

  16. Resource selection by the California condor (Gymnogyps californianus) relative to terrestrial-based habitats and meteorological conditions

    USGS Publications Warehouse

    Johnson, J. Matthew; Haig, Susan M.; Schwarz, Carl J.; Glendening, John W.; Burnett, L. Joseph; George, Daniel; Grantham, Jesse

    2014-01-01

    Condors and vultures are distinct from most other terrestrial birds because they use extensive soaring flight for their daily movements. Therefore, assessing resource selection by these avian scavengers requires quantifying the availability of terrestrial-based habitats, as well as meteorological variables that influence atmospheric conditions necessary for soaring. In this study, we undertook the first quantitative assessment of habitat- and meteorological-based resource selection in the endangered California condor (Gymnogyps californianus) within its California range and across the annual cycle. We found that condor use of terrestrial areas did not change markedly within the annual cycle, and that condor use was greatest for habitats where food resources and potential predators could be detected and where terrain was amenable for taking off from the ground in flight (e.g., sparse habitats, coastal areas). Condors originating from different release sites differed in their use of habitat, but this was likely due in part to variation in habitats surrounding release sites. Meteorological conditions were linked to condor use of ecological subregions, with thermal height, thermal velocity, and wind speed having both positive (selection) and negative (avoidance) effects on condor use in different areas. We found little evidence of systematic effects between individual characteristics (i.e., sex, age, breeding status) or components of the species management program (i.e., release site, rearing method) relative to meteorological conditions. Our findings indicate that habitat type and meteorological conditions can interact in complex ways to influence condor resource selection across landscapes, which is noteworthy given the extent of anthropogenic stressors that may impact condor populations (e.g., lead poisoning, wind energy development). Additional studies will be valuable to assess small-scale condor movements in light of these stressors to help minimize their risk to

  17. Habitat modeling for biodiversity conservation.

    Treesearch

    Bruce G. Marcot

    2006-01-01

    Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...

  18. Postfledging Forster's Tern movements, habitat selection, and colony attendance in San Francisco Bay

    USGS Publications Warehouse

    Ackerman, Joshua T.; Bluso-Demers, Jill D.; Takekawa, John Y.

    2009-01-01

    Relatively little is known about birds during the postfledging period when flighted chicks have left the nest and must learn to forage independently. We examined postfledging movements, habitat selection, and colony attendance of Forster's Terns (Sterna forsteri) radio-marked just before they fledged in San Francisco Bay, California. The proportion of the day spent at their natal colony declined as juveniles aged, from 65% at the time of fledging to <5% within two weeks of fledging. Accordingly, the distance postfledging terns were located from their colony increased as they aged, from <500 m within the first week of fledging to >5000 m by their fifth week. Time of day also influenced colony attendance, with older terns spending more time at the colony during nighttime hours (20:00 to 05:00) than during the day (06:00 to 19:00), when they were presumably foraging. Home ranges and core-use areas averaged 12.14 km2 and 2.23 km2, respectively. At each of four spatial scales of analysis, postfledging terns selected salt pond habitats strongly. No other habitat types were selected at any scale, but terns consistently avoided tidal flats and uplands. Terns also avoided open bay habitats at the two largest spatial scales, tidal marsh habitats at the two smallest scales, and sloughs and managed marshes at several scales. Within salt ponds, terns were located closer to salt-pond levees (58 m) than was expected (107 m). Our results indicate that tern chicks disperse from their natal colony within a few weeks of fledging, with older chicks using their natal colony primarily for roosting during the night, and that postfledging terns are highly dependent on salt ponds. ?? 2009 by The Cooper Ornithological Society. All rights reserved.

  19. A novel approach to assessing environmental disturbance based on habitat selection by zebra fish as a model organism.

    PubMed

    Araújo, Cristiano V M; Griffith, Daniel M; Vera-Vera, Victoria; Jentzsch, Paul Vargas; Cervera, Laura; Nieto-Ariza, Beatriz; Salvatierra, David; Erazo, Santiago; Jaramillo, Rusbel; Ramos, Luis A; Moreira-Santos, Matilde; Ribeiro, Rui

    2018-04-01

    Aquatic ecotoxicity assays used to assess ecological risk assume that organisms living in a contaminated habitat are forcedly exposed to the contamination. This assumption neglects the ability of organisms to detect and avoid contamination by moving towards less disturbed habitats, as long as connectivity exists. In fluvial systems, many environmental parameters vary spatially and thus condition organisms' habitat selection. We assessed the preference of zebra fish (Danio rerio) when exposed to water samples from two western Ecuadorian rivers with apparently distinct disturbance levels: Pescadillo River (highly disturbed) and Oro River (moderately disturbed). Using a non-forced exposure system in which water samples from each river were arranged according to their spatial sequence in the field and connected to allow individuals to move freely among samples, we assayed habitat selection by D. rerio to assess environmental disturbance in the two rivers. Fish exposed to Pescadillo River samples preferred downstream samples near the confluence zone with the Oro River. Fish exposed to Oro River samples preferred upstream waters. When exposed to samples from both rivers simultaneously, fish exhibited the same pattern of habitat selection by preferring the Oro River samples. Given that the rivers are connected, preference for the Oro River enabled us to predict a depression in fish populations in the Pescadillo River. Although these findings indicate higher disturbance levels in the Pescadillo River, none of the physical-chemical variables measured was significantly correlated with the preference pattern towards the Oro River. Non-linear spatial patterns of habitat preference suggest that other environmental parameters like urban or agricultural contaminants play an important role in the model organism's habitat selection in these rivers. The non-forced exposure system represents a habitat selection-based approach that can serve as a valuable tool to unravel the factors

  20. Specializing on vulnerable habitat: Acropora selectivity among damselfish recruits and the risk of bleaching-induced habitat loss

    NASA Astrophysics Data System (ADS)

    Bonin, M. C.

    2012-03-01

    Coral reef habitats are increasingly being degraded and destroyed by a range of disturbances, most notably climate-induced coral bleaching. Habitat specialists, particularly those associated with susceptible coral species, are clearly among the most vulnerable to population decline or extinction. However, the degree of specialization on coral microhabitats is still unclear for one of the most ubiquitous, abundant and well studied of coral reef fish families—the damselfishes (Pomacentridae). Using high taxonomic resolution surveys of microhabitat use and availability, this study provides the first species-level description of patterns of Acropora selectivity among recruits of 10 damselfish species in order to determine their vulnerability to habitat degradation. In addition, surveys of the bleaching susceptibility of 16 branching coral species revealed which preferred recruitment microhabitats are at highest risk of decline as a result of chronic coral bleaching. Four species (i.e., Chrysiptera parasema, Pomacentrus moluccensis, Dascyllus melanurus and Chromis retrofasciata) were identified as highly vulnerable because they used only branching hard corals as recruitment habitat and primarily associated with only 2-4 coral species. The bleaching surveys revealed that five species of Acropora were highly susceptible to bleaching, with more than 50% of colonies either severely bleached or already dead. These highly susceptible corals included two of the preferred microhabitats of the specialist C. parasema and represented a significant proportion of its total recruitment microhabitat. In contrast, highly susceptible corals were rarely used by another specialist, P. moluccensis, suggesting that this species faces a lower risk of bleaching-induced habitat loss compared to C. parasema. As degradation to coral reef habitats continues, specialists will increasingly be forced to use alternative recruitment microhabitats, and this is likely to reduce population

  1. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape.

    PubMed

    Takahata, Chihiro; Nielsen, Scott Eric; Takii, Akiko; Izumiyama, Shigeyuki

    2014-01-01

    When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus) are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF). Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.

  2. Habitat Selection of a Large Carnivore along Human-Wildlife Boundaries in a Highly Modified Landscape

    PubMed Central

    Takahata, Chihiro; Nielsen, Scott Eric; Takii, Akiko; Izumiyama, Shigeyuki

    2014-01-01

    When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus) are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF). Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores. PMID:24465947

  3. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris) population in central India.

    PubMed

    Sarkar, Mriganka Shekhar; Krishnamurthy, Ramesh; Johnson, Jeyaraj A; Sen, Subharanjan; Saha, Goutam Kumar

    2017-01-01

    Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals' ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger ( Panthera tigris ), which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly's selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D 2 method and the Boyce index. There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory and settled periods. Based on threshold limits

  4. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    Treesearch

    Gretchen H. Roffler; Michael K. Schwartz; Kristine Pilgrim; Sandra L. Talbot; George K. Sage; Layne G. Adams; Gordon Luikart

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is...

  5. Habitat selection models for Pacific sand lance (Ammodytes hexapterus) in Prince William Sound, Alaska

    USGS Publications Warehouse

    Ostrand, William D.; Gotthardt, Tracey A.; Howlin, Shay; Robards, Martin D.

    2005-01-01

    We modeled habitat selection by Pacific sand lance (Ammodytes hexapterus) by examining their distribution in relation to water depth, distance to shore, bottom slope, bottom type, distance from sand bottom, and shoreline type. Through both logistic regression and classification tree models, we compared the characteristics of 29 known sand lance locations to 58 randomly selected sites. The best models indicated a strong selection of shallow water by sand lance, with weaker association between sand lance distribution and beach shorelines, sand bottoms, distance to shore, bottom slope, and distance to the nearest sand bottom. We applied an information-theoretic approach to the interpretation of the logistic regression analysis and determined importance values of 0.99, 0.54, 0.52, 0.44, 0.39, and 0.25 for depth, beach shorelines, sand bottom, distance to shore, gradual bottom slope, and distance to the nearest sand bottom, respectively. The classification tree model indicated that sand lance selected shallow-water habitats and remained near sand bottoms when located in habitats with depths between 40 and 60 m. All sand lance locations were at depths <60 m and 93% occurred at depths <40 m. Probable reasons for the modeled relationships between the distribution of sand lance and the independent variables are discussed.

  6. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    USGS Publications Warehouse

    Roffler, Gretchen H.; Schwartz, Michael K.; Pilgrim, Kristy L.; Talbot, Sandra L.; Sage, Kevin; Adams, Layne G.; Luikart, Gordon

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is important to consider explicit assumptions and spatial scales of measurement. We calculated pairwise genetic distance among 301 Dall's sheep (Ovis dalli dalli) in southcentral Alaska using an intensive noninvasive sampling effort and 15 microsatellite loci. We used multiple regression of distance matrices to assess the correlation of pairwise genetic distance and landscape resistance derived from an RSF, and combinations of landscape features hypothesized to influence dispersal. Dall's sheep gene flow was positively correlated with steep slopes, moderate peak normalized difference vegetation indices (NDVI), and open land cover. Whereas RSF covariates were significant in predicting genetic distance, the RSF model itself was not significantly correlated with Dall's sheep gene flow, suggesting that certain habitat features important during summer (rugged terrain, mid-range elevation) were not influential to effective dispersal. This work underscores that consideration of both habitat selection and landscape genetics models may be useful in developing management strategies to both meet the immediate survival of a species and allow for long-term genetic connectivity.

  7. Adaptive and selective seed abortion reveals complex conditional decision making in plants.

    PubMed

    Meyer, Katrin M; Soldaat, Leo L; Auge, Harald; Thulke, Hans-Hermann

    2014-03-01

    Behavior is traditionally attributed to animals only. Recently, evidence for plant behavior is accumulating, mostly from plant physiological studies. Here, we provide ecological evidence for complex plant behavior in the form of seed abortion decisions conditional on internal and external cues. We analyzed seed abortion patterns of barberry plants exposed to seed parasitism and different environmental conditions. Without abortion, parasite infestation of seeds can lead to loss of all seeds in a fruit. We statistically tested a series of null models with Monte Carlo simulations to establish selectivity and adaptiveness of the observed seed abortion patterns. Seed abortion was more frequent in parasitized fruits and fruits from dry habitats. Surprisingly, seed abortion occurred with significantly greater probability if there was a second intact seed in the fruit. This strategy provides a fitness benefit if abortion can prevent a sibling seed from coinfestation and if nonabortion of an infested but surviving single seed saves resources invested in the fruit coat. Ecological evidence for complex decision making in plants thus includes a structural memory (the second seed), simple reasoning (integration of inner and outer conditions), conditional behavior (abortion), and anticipation of future risks (seed predation).

  8. Habitat selection by Eurasian lynx (Lynx lynx) is primarily driven by avoidance of human activity during day and prey availability during night.

    PubMed

    Filla, Marc; Premier, Joseph; Magg, Nora; Dupke, Claudia; Khorozyan, Igor; Waltert, Matthias; Bufka, Luděk; Heurich, Marco

    2017-08-01

    The greatest threat to the protected Eurasian lynx ( Lynx lynx ) in Central Europe is human-induced mortality. As the availability of lynx prey often peaks in human-modified areas, lynx have to balance successful prey hunting with the risk of encounters with humans. We hypothesized that lynx minimize this risk by adjusting habitat choices to the phases of the day and over seasons. We predicted that (1) due to avoidance of human-dominated areas during daytime, lynx range use is higher at nighttime, that (2) prey availability drives lynx habitat selection at night, whereas high cover, terrain inaccessibility, and distance to human infrastructure drive habitat selection during the day, and that (3) habitat selection also differs between seasons, with altitude being a dominant factor in winter. To test these hypotheses, we analyzed telemetry data (GPS, VHF) of 10 lynx in the Bohemian Forest Ecosystem (Germany, Czech Republic) between 2005 and 2013 using generalized additive mixed models and considering various predictor variables. Night ranges exceeded day ranges by more than 10%. At night, lynx selected open habitats, such as meadows, which are associated with high ungulate abundance. By contrast, during the day, lynx selected habitats offering dense understorey cover and rugged terrain away from human infrastructure. In summer, land-cover type greatly shaped lynx habitats, whereas in winter, lynx selected lower altitudes. We concluded that open habitats need to be considered for more realistic habitat models and contribute to future management and conservation (habitat suitability, carrying capacity) of Eurasian lynx in Central Europe.

  9. 48 CFR 873.116 - Source selection decision.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Source selection decision. (a) An integrated comparative assessment of proposals should be performed... source selection team, or advisory boards or panels, may conduct comparative analysis(es) of proposals...

  10. 48 CFR 873.116 - Source selection decision.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Source selection decision. (a) An integrated comparative assessment of proposals should be performed... source selection team, or advisory boards or panels, may conduct comparative analysis(es) of proposals...

  11. 48 CFR 873.116 - Source selection decision.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Source selection decision. (a) An integrated comparative assessment of proposals should be performed... source selection team, or advisory boards or panels, may conduct comparative analysis(es) of proposals...

  12. 48 CFR 873.116 - Source selection decision.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Source selection decision. (a) An integrated comparative assessment of proposals should be performed... source selection team, or advisory boards or panels, may conduct comparative analysis(es) of proposals...

  13. 48 CFR 873.116 - Source selection decision.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Source selection decision. (a) An integrated comparative assessment of proposals should be performed... source selection team, or advisory boards or panels, may conduct comparative analysis(es) of proposals...

  14. Habitat Selection Response of Small Pelagic Fish in Different Environments. Two Examples from the Oligotrophic Mediterranean Sea

    PubMed Central

    Bonanno, Angelo; Giannoulaki, Marianna; Barra, Marco; Basilone, Gualtiero; Machias, Athanassios; Genovese, Simona; Goncharov, Sergey; Popov, Sergey; Rumolo, Paola; Di Bitetto, Massimiliano; Aronica, Salvatore; Patti, Bernardo; Fontana, Ignazio; Giacalone, Giovanni; Ferreri, Rosalia; Buscaino, Giuseppa; Somarakis, Stylianos; Pyrounaki, Maria-Myrto; Tsoukali, Stavroula; Mazzola, Salvatore

    2014-01-01

    A number of scientific papers in the last few years singled out the influence of environmental conditions on the spatial distribution of fish species, highlighting the need for the fisheries scientific community to investigate, besides biomass estimates, also the habitat selection of commercially important fish species. The Mediterranean Sea, although generally oligotrophic, is characterized by high habitat variability and represents an ideal study area to investigate the adaptive behavior of small pelagics under different environmental conditions. In this study the habitat selection of European anchovy Engraulis encrasicolus and European sardine Sardina pilchardus is analyzed in two areas of the Mediterranean Sea that largely differentiate in terms of environmental regimes: the Strait of Sicily and the North Aegean Sea. A number of environmental parameters were used to investigate factors influencing anchovy and sardine habitat selection. Acoustic surveys data, collected during the summer period 2002–2010, were used for this purpose. The quotient analysis was used to identify the association between high density values and environmental variables; it was applied to the entire dataset in each area in order to identify similarities or differences in the “mean” spatial behavioral pattern for each species. Principal component analysis was applied to selected environmental variables in order to identify those environmental regimes which drive each of the two ecosystems. The analysis revealed the effect of food availability along with bottom depth selection on the spatial distribution of both species. Furthermore PCA results highlighted that observed selectivity for shallower waters is mainly associated to specific environmental processes that locally increase productivity. The common trends in habitat selection of the two species, as observed in the two regions although they present marked differences in hydrodynamics, seem to be driven by the oligotrophic

  15. Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia.

    PubMed

    Price, Nichole

    2010-07-01

    Habitat selection can determine the distribution and performance of individuals if the precision with which sites are chosen corresponds with exposure to risks or resources. Contrastingly, facilitation can allow persistence of individuals arriving by chance and potentially maladapted to local abiotic conditions. For marine organisms, selection of a permanent attachment site at the end of their larval stage or the presence of a facilitator can be a critical determinant of recruitment success. In coral reef ecosystems, it is well known that settling planula larvae of reef-building corals use coarse environmental cues (i.e., light) for habitat selection. Although laboratory studies suggest that larvae can also use precise biotic cues produced by crustose coralline algae (CCA) to select attachment sites, the ecological consequences of biotic cues for corals are poorly understood in situ. In a field experiment exploring the relative importance of biotic cues and variability in habitat quality to recruitment of hard corals, pocilloporid and acroporid corals recruited more frequently to one species of CCA, Titanoderma prototypum, and significantly less so to other species of CCA; these results are consistent with laboratory assays from other studies. The provision of the biotic cue accurately predicted coral recruitment rates across habitats of varying quality. At the scale of CCA, corals attached to the "preferred" CCA experienced increased survivorship while recruits attached elsewhere had lower colony growth and survivorship. For reef-building corals, the behavioral selection of habitat using chemical cues both reduces the risk of incidental mortality and indicates the presence of a facilitator.

  16. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris) population in central India

    PubMed Central

    Sarkar, Mriganka Shekhar; Johnson, Jeyaraj A.; Sen, Subharanjan

    2017-01-01

    Background Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals’ ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger (Panthera tigris), which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. Methods We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly’s selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D2 method and the Boyce index. Results There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory and settled periods

  17. Managing harvest and habitat as integrated components

    USGS Publications Warehouse

    Osnas, Erik; Runge, Michael C.; Mattsson, Brady J.; Austin, Jane E.; Boomer, G. S.; Clark, R. G.; Devers, P.; Eadie, J. M.; Lonsdorf, E. V.; Tavernia, Brian G.

    2014-01-01

    In 2007, several important initiatives in the North American waterfowl management community called for an integrated approach to habitat and harvest management. The essence of the call for integration is that harvest and habitat management affect the same resources, yet exist as separate endeavours with very different regulatory contexts. A common modelling framework could help these management streams to better understand their mutual effects. Particularly, how does successful habitat management increase harvest potential? Also, how do regional habitat programmes and large-scale harvest strategies affect continental population sizes (a metric used to express habitat goals)? In the ensuing five years, several projects took on different aspects of these challenges. While all of these projects are still on-going, and are not yet sufficiently developed to produce guidance for management decisions, they have been influential in expanding the dialogue and producing some important emerging lessons. The first lesson has been that one of the more difficult aspects of integration is not the integration across decision contexts, but the integration across spatial and temporal scales. Habitat management occurs at local and regional scales. Harvest management decisions are made at a continental scale. How do these actions, taken at different scales, combine to influence waterfowl population dynamics at all scales? The second lesson has been that consideration of the interface of habitat and harvest management can generate important insights into the objectives underlying the decision context. Often the objectives are very complex and trade-off against one another. The third lesson follows from the second – if an understanding of the fundamental objectives is paramount, there is no escaping the need for a better understanding of human dimensions, specifically the desires of hunters and nonhunters and the role they play in conservation. In the end, the compelling question is

  18. Characterization of habitat preferences for selected wildlife species in encinal savannas of the Southwest [Poster

    Treesearch

    Wendy D. Jones; Carlton M. Jones; Peter F. Ffolliott; Gerald J. Gottfried

    2005-01-01

    The encinal savannas of the sub-mogollon southwestern United States are important for livestock grazing and wildlife habitat. Little data have been collected on the ecology of these Sierra Madrean types of woodland land areas, which makes management difficult. Obtaining information such as habitat preferences for selected wildlife species and livestock can be an...

  19. Effects of tide cycles on habitat selection and habitat partitioning by migrating shorebirds

    USGS Publications Warehouse

    Burger, J.; Howe, M.A.; Hahn, D.C.; Chase, J.

    1977-01-01

    We studied assemblages of feeding shorebirds in three intertidal habitats on the coast of New Jersey during August to document how species segregate spatially both among and within habitats and to determine the effects of tidal cycles on these patterns. The habitats were a sandy beach facing the ocean proper (outer beach), a sandy beach on the mainland side of a barrier island (inner beach), and a small mudflat adjacent to a Spartina alterniflora salt marsh. We were able to identify several microhabitats on the outer beach and mudflat. Most species fed in more than one habitat, but only two, Charadrius semipalmatus and Calidris canutus, used all three habitats regularly. Within habitats, most species exhibited strong preferences for the wettest areas, but we found differences among species in degrees of preference. The least amount of partitioning occurred on the inner beach, where birds crowded into a small zone near the water's edge and had frequent agonistic encounters suggesting intense competition. Shorebird feeding activity was partly a function of tide time: each habitat had a characteristic temporal pattern of use by shorebirds related to tide time rather than diel time; within habitats, we found species-characteristic feeding activity rhythms that were also a function of tide time. Feeding by most species peaked during the first 2 hours after low tide on the outer beach and mudflat. The results are discussed in terms of feeding strategies and interspecific competition.

  20. Sexual differences in the post-breeding movements and habitats selected by Western toads (Bufo boreas) in southeastern Idaho

    USGS Publications Warehouse

    Bartelt, Paul E.; Peterson, Charles R.; Klaver, Robert W.

    2004-01-01

    We used radio-telemetry to study the movements and habitat use of Western toads (Bufo boreas) in the Targhee National Forest in southeastern Idaho. Eighteen toads (10 male and 8 female) that bred in a seasonally flooded pond, were fitted with radio-transmitters, tracked, and their movements mapped and analyzed with global positioning and geographic information systems. We also analyzed their patterns of habitat selection at micro- and macro-scales by comparing sites used by toads with randomly selected sites. After breeding, two male and six female toads left the breeding pond and used terrestrial habitats extensively. Male and female toads showed different patterns of movement and habitat use, although all toads seemed to behave in ways that reduced loss of body water (e.g., such as traveling on nights of high humidity). Male toads traveled shorter distances from the pond than females (581 ± 98 m and 1105 ± 272 m, respectively). Female toads used terrestrial habitats extensively and were selective of cover types (e.g., shrub) that provided greater protection from dehydration. Female toads also preferred certain habitat edges and open forests over forests with closed canopies or clearcuts. Information from this study can assist land managers in establishing protective buffers and managing forests for the protection of toad populations.

  1. Quantity, structure, and habitat selection of natural spawning reefs by walleyes in a north temperate lake: A multiscale analysis

    USGS Publications Warehouse

    Raabe, Joshua K.; Bozek, Michael A.

    2012-01-01

    Spawning habitat, the cornerstone of self-sustaining, naturally reproducing walleyeSander vitreus populations, has received limited quantitative research. Our goal was to quantitatively describe the structure and quantity of natural walleye spawning habitat and evaluate potential selection of habitat in Big Crooked Lake, Wisconsin. In 2004 and 2005, we located and delineated walleye egg deposition polygons through visual snorkel and scuba surveys. We also delineated recently deposited, adhesive egg patches daily along one spawning reef in 2005. To determine habitat selection, we quantified and compared spawning and lakewide available habitat at different scales. In both years, walleyes used similar spawning habitat, including three geomorphic types: linear shorelines, a point bar, and an island. Walleyes used only 14% of the entire lake shoreline and 39% of the shoreline comprised of gravel (6.4–76.0 mm), cobble (76.1–149.9 mm), or coarser substrates for spawning in 2005, indicating selection of specific spawning habitat. Lakewide, walleyes spawned close to shore (outer egg deposition polygon boundary mean distance = 2.7 m), in shallow water (outer egg deposition polygon boundary mean depth = 0.3 m), and over gravel substrate (percent coverage mean = 64.3) having low embeddedness (mean = 1.30). Our best nearshore (0–13-m) resource selection function predicted an increase in the relative probability of egg deposition with the increasing abundance of gravel, cobble, and rubble (150.0–303.9-mm) substrates and a decrease with increasing distance from shore and water depth (89.9% overall correct classification). Adhesive egg patches confirmed that walleyes actively chose nearshore, shallow-water, and coarse-substrate spawning habitat. The quantitative habitat information and predictive models will assist biologists in developing walleye spawning reef protection strategies and potentially aid in designing and evaluating artificial spawning reefs.

  2. Habitat selection of a declining white-tailed deer herd in the central Black Hills, South Dakota and Wyoming

    NASA Astrophysics Data System (ADS)

    Deperno, Christopher Shannon

    Habitat selection, survival rates, the Black Hills National Forest Habitat Capability Model (HABCAP), and the USDA Forest Service Geographic Information System (GIS) data base were evaluated for a declining white-tailed deer (Odocoileus virginianus dacotensis) herd in the central Black Hills of South Dakota and Wyoming. From July 1993 through July 1996, 73 adult and yearling female and 12 adult and yearling male white-tailed deer were radiocollared and visually monitored. Habitat information was collected at 4,662 white-tailed deer locations and 1,087 random locations. Natural mortality (71%) was the primary cause of female mortality, followed by harvest (22.5%) and accidental causes (6.5%). More females died in spring (53.2%) than in fall (22.6%), winter (14.5%), or summer (9.7%). Male mortality resulted from hunting in fall (66.7%) and natural causes in spring (33.3%). Survival rates for all deer by year were 62.1% in 1993, 51.1% in 1994, 56.4% in 1995, and 53.9% in 1996 and were similar (P = 0.691) across years. During winter, white-tailed deer selected ponderosa pine- (Pinus ponderosa ) deciduous and burned pine cover types. Overstory-understory habitats selected included pine/grass-forb, pine/bearberry (Arctostaphylos uva-ursi), pine/snowberry (Symphoricarpos albus), burned pine/grass-forb, and pine/shrub habitats. Structural stages selected included sapling-pole pine stands with >70% canopy cover, burned pine sapling-pole and saw-timber stands with <40% canopy cover. Bedding locations were represented by saw-timber pine structural stages with >40% canopy cover and all sapling-pole pine structural stages; sapling-pole stands with >70% canopy cover received the greatest use. White-tailed deer primarily fed in pine saw-timber structural stage with less than 40% canopy cover. Overall, selected habitats contained lower amounts of grass/forb, shrubs, and litter than random locations. Male and female deer generally bedded in areas that were characterized by greater

  3. Waterfowl habitat use and selection during the remigial moult period in the northern hemisphere

    USGS Publications Warehouse

    Fox, Anthony D.; Flint, Paul L.; Hohman, William L.; Savard, Jean-Pierre L.

    2014-01-01

    This paper reviews factors affecting site selection amongst waterfowl (Anatidae) during the flightless remigial moult, emphasising the roles of predation and food supply (especially protein and energy). The current literature suggests survival during flightless moult is at least as high as at other times of the annual cycle, but documented cases of predation of flightless waterfowl under particular conditions lead us to infer that habitat selection is generally highly effective in mitigating or avoiding predation. High energetic costs of feather replacement and specific amino-acid requirements for their construction imply adoption of special energetic and nutritional strategies at a time when flightlessness limits movements. Some waterfowl meet their energy needs from endogenous stores accumulated prior to remigial moult, others rely on exogenous supply, but this varies with species, age, reproductive status and site. Limited evidence suggests feather proteins are derived from endogenous and exogenous sources which may affect site selection. Remigial moult does not occur independently of other annual cycle events and is affected by reproductive investment and success. Hence, moult strategies are affected by age, sex and reproductive history, and may be influenced by the need to attain a certain internal state for the next stage in the annual cycle (e.g. autumn migration). We know little about habitat selection during moult and urge more research of this poorly known part of the annual cycle, with particular emphasis on identifying key concentrations and habitats for specific flyway populations and the effects of disturbance upon these. This knowledge will better inform conservation actions and management actions concerning waterfowl during moult and the habitats that they exploit.

  4. Selecting decision strategies: the differential role of affect.

    PubMed

    Scheibehenne, Benjamin; von Helversen, Bettina

    2015-01-01

    Many theories on cognition assume that people adapt their decision strategies depending on the situation they face. To test if and how affect guides the selection of decision strategies, we conducted an online study (N = 166), where different mood states were induced through video clips. Results indicate that mood influenced the use of decision strategies. Negative mood, in particular anger, facilitated the use of non-compensatory strategies, whereas positive mood promoted compensatory decision rules. These results are in line with the idea that positive mood broadens the focus of attention and thus increases the use of compensatory decision strategies that take many pieces of information into account, whereas negative mood narrows the focus of attention and thus fosters non-compensatory strategies that rely on a selective use of information. The results further indicate that gaining a deeper theoretical understanding of the cognitive mechanisms that govern decision processes requires taking emotions into account.

  5. Not accounting for interindividual variability can mask habitat selection patterns: a case study on black bears.

    PubMed

    Lesmerises, Rémi; St-Laurent, Martin-Hugues

    2017-11-01

    Habitat selection studies conducted at the population scale commonly aim to describe general patterns that could improve our understanding of the limiting factors in species-habitat relationships. Researchers often consider interindividual variation in selection patterns to control for its effects and avoid pseudoreplication by using mixed-effect models that include individuals as random factors. Here, we highlight common pitfalls and possible misinterpretations of this strategy by describing habitat selection of 21 black bears Ursus americanus. We used Bayesian mixed-effect models and compared results obtained when using random intercept (i.e., population level) versus calculating individual coefficients for each independent variable (i.e., individual level). We then related interindividual variability to individual characteristics (i.e., age, sex, reproductive status, body condition) in a multivariate analysis. The assumption of comparable behavior among individuals was verified only in 40% of the cases in our seasonal best models. Indeed, we found strong and opposite responses among sampled bears and individual coefficients were linked to individual characteristics. For some covariates, contrasted responses canceled each other out at the population level. In other cases, interindividual variability was concealed by the composition of our sample, with the majority of the bears (e.g., old individuals and bears in good physical condition) driving the population response (e.g., selection of young forest cuts). Our results stress the need to consider interindividual variability to avoid misinterpretation and uninformative results, especially for a flexible and opportunistic species. This study helps to identify some ecological drivers of interindividual variability in bear habitat selection patterns.

  6. One- and two-objective approaches to an area-constrained habitat reserve site selection problem

    Treesearch

    Stephanie Snyder; Charles ReVelle; Robert Haight

    2004-01-01

    We compare several ways to model a habitat reserve site selection problem in which an upper bound on the total area of the selected sites is included. The models are cast as optimization coverage models drawn from the location science literature. Classic covering problems typically include a constraint on the number of sites that can be selected. If potential reserve...

  7. Staying cool in a changing landscape: the influence of maximum daily ambient temperature on grizzly bear habitat selection.

    PubMed

    Pigeon, Karine E; Cardinal, Etienne; Stenhouse, Gordon B; Côté, Steeve D

    2016-08-01

    To fulfill their needs, animals are constantly making trade-offs among limiting factors. Although there is growing evidence about the impact of ambient temperature on habitat selection in mammals, the role of environmental conditions and thermoregulation on apex predators is poorly understood. Our objective was to investigate the influence of ambient temperature on habitat selection patterns of grizzly bears in the managed landscape of Alberta, Canada. Grizzly bear habitat selection followed a daily and seasonal pattern that was influenced by ambient temperature, with adult males showing stronger responses than females to warm temperatures. Cutblocks aged 0-20 years provided an abundance of forage but were on average 6 °C warmer than mature conifer stands and 21- to 40-year-old cutblocks. When ambient temperatures increased, the relative change (odds ratio) in the probability of selection for 0- to 20-year-old cutblocks decreased during the hottest part of the day and increased during cooler periods, especially for males. Concurrently, the probability of selection for 21- to 40-year-old cutblocks increased on warmer days. Following plant phenology, the odds of selecting 0- to 20-year-old cutblocks also increased from early to late summer while the odds of selecting 21- to 40-year-old cutblocks decreased. Our results demonstrate that ambient temperatures, and therefore thermal requirements, play a significant role in habitat selection patterns and behaviour of grizzly bears. In a changing climate, large mammals may increasingly need to adjust spatial and temporal selection patterns in response to thermal constraints.

  8. Incorporating in situ habitat patchiness in site selection models reveals that site fidelity is not always a consequence of animal choice.

    PubMed

    Martinez, Aline S; Queiroz, Eduardo V; Bryson, Mitch; Byrne, Maria; Coleman, Ross A

    2017-07-01

    Understanding site fidelity is important in animal ecology, but evidence is lacking that this behaviour is due to an animal choosing a specific location. To discern site selection behaviour, it is necessary to consider the spatial distribution of habitats that animals can occupy within a landscape. Tracking animals and defining clear habitat boundaries, however, is often difficult. We use in situ habitat distribution data and animal movement simulations to investigate behavioural choice in site fidelity patterns. We resolved the difficulty of gathering data by working with intertidal rock pool systems, which are of manageable size and where boundaries are easy to define. Movements of the intertidal starfish Parvulastra exigua were quantified to test the hypotheses that (1) this species displays fidelity to a particular rock pool and that (2) rock pool fidelity is due to site selection behaviour. Observed patterns of individuals (n = 10 starfish) returning to a previously occupied rock pool (n = 5 pools per location) were tested against an expected null distribution generated through simulations of random movements within their natural patchy environment. Starfish exhibited site selection behaviour at only one location even though site fidelity was high (av. 7·4 starfish out of 10 found in test pools) in two of the three locations. The random chance of a starfish returning to a pool increased 67% for each metre further a rock pool was from the original pool, and 120% for each square metre increase in surface area of an original pool. The decision of returning to an original rock pool was influenced by food availability. When microalgal cover was >60%, there was a c. 50% chance of animals staying faithful to that pool. Our results show the importance to consider spatial distribution of habitats in understanding patterns of animal movement associated with animal choices and site fidelity. Returning to a particular place does not necessarily mean that an animal

  9. Coarse- and fine-scale patterns of distribution and habitat selection places an Amazonian floodplain curassow in double jeopardy.

    PubMed

    Leite, Gabriel A; Farias, Izeni P; Gonçalves, André L S; Hawes, Joseph E; Peres, Carlos A

    2018-01-01

    Patterns of habitat selection are influenced by local productivity, resource availability, and predation risk. Species have taken millions of years to hone the macro- and micro-habitats they occupy, but these may now overlap with contemporary human threats within natural species ranges. Wattled Curassow ( Crax globulosa ), an endemic galliform species of the western Amazon, is threatened by both hunting and habitat loss, and is restricted to white-water floodplain forests of major Amazonian rivers. In this study conducted along the Juruá River, Amazonas, Brazil, we quantified the ranging ecology and fine-scale patterns of habitat selection of the species. We estimated the home range size of C. globulosa using conventional VHF telemetry. To estimate patterns of habitat selection, we used geo-locations of day ranges to examine the extent and intensity of use across the floodplain, which were then compared to a high-resolution flood map of the study area. We captured two females and one male, which we monitored for 13 months between September 2014 and September 2015. Average home range size was 283 ha, based on the 95% aLoCoH estimator. Wattled Curassows selected areas of prolonged flood pulses (six to eight months/year) and had a consistent tendency to be near open water, usually in close proximity to river banks and lakes, especially during the dry season. Amazonian floodplains are densely settled, and the small portions of floodplain habitat used by Wattled Curassows are both the most accessible to hunters and most vulnerable to deforestation. As a result, the geographic and ecological distribution of Wattled Curassows places them at much higher extinction risk at multiple spatial scales, highlighting the need to consider habitat preferences within their conservation strategy.

  10. The Influence of Mitigation on Sage-Grouse Habitat Selection within an Energy Development Field

    PubMed Central

    Fedy, Bradley C.; Kirol, Christopher P.; Sutphin, Andrew L.; Maechtle, Thomas L.

    2015-01-01

    Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may

  11. The influence of mitigation on sage-grouse habitat selection within an energy development field.

    PubMed

    Fedy, Bradley C; Kirol, Christopher P; Sutphin, Andrew L; Maechtle, Thomas L

    2015-01-01

    Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may

  12. Duckling survival, fecundity, and habitat selection of mottled duck broods on the upper Texas Gulf Coast

    USGS Publications Warehouse

    Rigby, Elizabeth A.; Haukos, David A.

    2015-01-01

    Mottled ducks (Anas fulvigula) on the western Gulf Coast have exhibited a steep population decline since the mid 1990s. Low rates of breeding incidence and nest success have been implicated in this decline, but duckling survival and the habitat needs of broods have not been previously investigated in this region. We fitted mottled duck ducklings and adult females with radio transmitters and tracked broods to estimate duckling survival and brood habitat selection on the upper Texas Gulf Coast. Duckling survival to 30 days was high (range among models 0.354–0.567) compared to other dabbling duck species. Estimated fecundity was low, (range among models 0.398–0.634) however, indicating that overall reproductive output is low. Within coastal marsh, broods selected home ranges with more water cover and less upland and fresh marsh landcover than was available in the study area. Within coastal marsh home ranges, broods selected for water cover relative to other landcover types, and there was some evidence that broods avoided unvegetated landcover. Although high quality brood habitat is undeniably important, management efforts to increase mottled duck population growth on the western Gulf Coast may best be spent on increasing nesting habitat quality to increase nest success and breeding incidence.

  13. Habitat selection and management of the Hawaiian crow

    USGS Publications Warehouse

    Giffen, J.G.; Scott, J.M.; Mountainspring, S.

    1987-01-01

    The abundance and range of the Hawaiian crow, or alala, (Corvus hawaiiensis) have decreased drastically since the 1890's. Fewer than 10 breeding pairs remained in the wild in 1985. A sample of 82 nests during 1970-82 were used to determine habitat associations. Two hundred firty-nine alala observations were used to estimate densities occurring in different vegetation types in 1978. Compared to available habitat, more nests and higher bird densities during the breeding season occurred in areas where: (1) canopy cover was > 60%; (2) koa (Acacia koa) and ohia (Metrosideros polymorpha) were dominant species in the crown layer; (3) native plants constituted > 75% of the understory cover; and (4) the elevation was 1,100-1,500 m. Compared to breeding habitat, nonbreeding habitat tended to lie at lower elevations and in wetter forests having the crown layer dominated by ohia but lacking koa. Habitat loss is a major factor underlying the decline of this species although predation on fledgings, avian disease, and shooting also have reduced the population. Remaining key habitat areas have little or no legal protection through zoning and land ownership. Preserves should be established to encompass the location of existing pairs and to assure the provision of optimum breeding habitat and suitable nonbreeding habitat.

  14. Glacial Refugia and Future Habitat Coverage of Selected Dactylorhiza Representatives (Orchidaceae)

    PubMed Central

    2015-01-01

    The intensively discussed taxonomic complexity of the Dactylorhiza genus is probably correlated with its migration history during glaciations and interglacial periods. Previous studies on past processes affecting the current distribution of Dactylorhiza species as well as the history of the polyploid complex formation were based only on molecular data. In the present study the ecological niche modeling (ENM) technique was applied in order to describe the distribution of potential refugia for the selected Dactylorhiza representatives during the Last Glacial Maximum. Additionally, future changes in their potential habitat coverage were measured with regard to three various climatic change scenarios. The maximum entropy method was used to create models of suitable niche distribution. A database of Dactylorhiza localities was prepared on the grounds of information collected from literature and data gathered during field works. Our research indicated that the habitats of majority of the studied taxa will decrease by 2080, except for D. incarnata var. incarnata, for which suitable habitats will increase almost two-fold in the global scale. Moreover, the potential habitats of some taxa are located outside their currently known geographical ranges, e.g. the Aleutian Islands, the western slopes of the Rocky Mountains, Newfoundland, southern Greenland and Iceland. ENM analysis did not confirm that the Balkans, central Europe or central Russia served as the most important refugia for individual representatives of the Dactylorhiza incarnata/maculata complex. Our study rather indicated that the Black Sea coast, southern Apennines and Corsica were the main areas characterized by habitats suitable for most of the taxa. PMID:26599630

  15. Evaluation of methods for identifying spawning sites and habitat selection for alosines

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, Joseph E.

    2010-01-01

    Characterization of riverine spawning habitat is important for the management and restoration of anadromous alosines. We examined the relative effectiveness of oblique plankton tows and spawning pads for collecting the eggs of American shad Alosa sapidissima, hickory shad A. mediocris, and “river herring” (a collective term for alewife A. pseudoharengus and blueback herring A. aestivalis) in the Roanoke River, North Carolina. Relatively nonadhesive American shad eggs were only collected by plankton tows, whereas semiadhesive hickory shad and river herring eggs were collected by both methods. Compared with spawning pads, oblique plankton tows had higher probabilities of collecting eggs and led to the identification of longer spawning periods. In assumed spawning areas, twice-weekly plankton sampling for 15 min throughout the spawning season had a 95% or greater probability of collecting at least one egg for all alosines; however, the probabilities were lower in areas with more limited spawning. Comparisons of plankton tows, spawning pads, and two other methods of identifying spawning habitat (direct observation of spawning and examination of female histology) suggested differences in effectiveness and efficiency. Riverwide information on spawning sites and timing for all alosines is most efficiently obtained by plankton sampling. Spawning pads and direct observations of spawning are the best ways to determine microhabitat selectivity for appropriate species, especially when spawning sites have previously been identified. Histological examination can help determine primary spawning sites but is most useful when information on reproductive biology and spawning periodicity is also desired. The target species, riverine habitat conditions, and research goals should be considered when selecting methods with which to evaluate alosine spawning habitat.

  16. Selective impairment of decision making under ambiguity in alexithymia.

    PubMed

    Zhang, Lei; Wang, Xue; Zhu, Yu; Li, Hongchen; Zhu, Chunyan; Yu, Fengqiong; Wang, Kai

    2017-11-28

    Alexithymia is characterised by difficulties identifying and describing emotions. Few studies have investigated how alexithymia influences decision-making under different conditions (ambiguity and risk). This study aimed to examine whether alexithymia contributes to impairment in decision-making. This study included 42 participants with high scores in the Chinese version of Toronto Alexithymia Scale (alexithymia group), and 44 matched subjects with low scores (control group). Decision-making was measured using the Iowa Gambling Task (IGT) and the Game of Dice Task (GDT). The main findings of this study revealed selective deficits in IGT performance for the alexithymia group, while GDT performance was unimpaired when compared with the control group. In IGT, total netscores were lower for the alexithymia group compared to the control group, particularly with regard to block 5. Moreover, the alexithymia individuals selected significantly more adverse cards than the controls, indicating significant decision-making impairments. Alexithymia selectively influences decision-making under ambiguity.

  17. Habitat selection by Mexican Spotted Owls in Northern Arizona

    Treesearch

    Joseph L. Ganey; Russell P. Balda

    1994-01-01

    We compared use of seven habitat types to availability of those types within the home ranges of eight radio-tagged Mexican Spotted Owls (Strix occidentalis lucida). When all habitat types were considered simultaneously, habitat use differed from habitat availability for each owl. Patterns of habitat use varied among individuals and with respect to...

  18. Hibernal habitat selection by Wood Frogs (Lithobates sylvaticus) in a northern New England montane landscape

    USGS Publications Warehouse

    Groff, Luke A.; Calhoun, Aram J.K.; Loftin, Cynthia S.

    2016-01-01

    Poikilothermic species, such as amphibians, endure harsh winter conditions via freeze-tolerance or freeze-avoidance strategies. Freeze-tolerance requires a suite of complex, physiological mechanisms (e.g., cryoprotectant synthesis); however, behavioral strategies (e.g., hibernal habitat selection) may be used to regulate hibernaculum temperatures and promote overwintering survival. We investigated the hibernal ecology of the freeze-tolerant Wood Frog (Lithobates sylvaticus) in north-central Maine. Our objectives were to characterize the species hibernaculum microclimate (temperature, relative humidity), evaluate hibernal habitat selection, and describe the spatial arrangement of breeding, post-breeding, and hibernal habitats. We monitored 15 frogs during two winters (2011/12: N = 10; 2012/13: N = 5), measured hibernal habitat features at micro (2 m) and macro (10 m) spatial scales, and recorded microclimate hourly in three strata (hibernaculum, leaf litter, ambient air). We compared these data to that of 57 random locations with logistic regression models, Akaike Information Criterion, and Kolmogorov–Smirnov tests. Hibernaculum microclimate was significantly different and less variable than leaf litter, ambient air, and random location microclimate. Model averaging indicated that canopy cover (−), leaf litter depth (+), and number of logs and stumps (+; microhabitat only) were important predictors of Wood Frog hibernal habitat. These habitat features likely act to insulate hibernating frogs from extreme and variable air temperatures. For example, decreased canopy cover facilitates increased snowpack depth and earlier snowpack accumulation and melt. Altered winter temperature and precipitation patterns attributable to climate change may reduce snowpack insulation, facilitate greater temperature variation in the underlying hibernacula, and potentially compromise Wood Frog winter survival.

  19. Barred owl space use and habitat selection in the eastern Cascades, Washington

    Treesearch

    Peter J. Singleton; John F. Lehnkuhl; William L. Gaines; Scott A. Graham

    2010-01-01

    Competition with barred owls (Strix varia varia) is an important factor contributing to the continued decline of threatened northern spotted owl (Strix occidentalis caurina) populations in the Pacific Northwest, USA, but basic information on habitat selection and space use patterns of barred owls is lacking for much of the...

  20. Multiscale habitat selection of wetland birds in the northern Gulf Coast

    USGS Publications Warehouse

    Pickens, Bradley A.; King, Sammy L.

    2014-01-01

    The spatial scale of habitat selection has become a prominent concept in ecology, but has received less attention in coastal ecology. In coastal marshes, broad-scale marsh types are defined by vegetation composition over thousands of hectares, water-level management is applied over hundreds of hectares, and fine-scale habitat is depicted by tens of meters. Individually, these scales are known to affect wetland fauna, but studies have not examined all three spatial scales simultaneously. We investigated wetland bird habitat selection at the three scales and compared single- and multiscale models. From 2009 to 2011, we surveyed marsh birds (i.e., Rallidae, bitterns, grebes), shorebirds, and wading birds in fresh and intermediate (oligohaline) coastal marsh in Louisiana and Texas, USA. Within each year, six repeated surveys of wintering, resident, and migratory breeding birds were conducted at > 100 points (n = 304). The results revealed fine-scale factors, primarily water depth, were consistently better predictors than marsh type or management. However, 10 of 11 species had improved models with the three scales combined. Birds with a linear association with water depth were, correspondingly, most abundant with deeper fresh marsh and permanently impounded water. Conversely, intermediate marsh had a greater abundance of shallow water species, such as king rail Rallus elegans, least bittern Ixobrychus exilis, and sora Porzana carolina. These birds had quadratic relationships with water depth or no relationship. Overall, coastal birds were influenced by multiple scales corresponding with hydrological characteristics. The effects suggest the timing of drawdowns and interannual variability in spring water levels can greatly affect wetland bird abundance.

  1. Patient's decision making in selecting a hospital for elective orthopaedic surgery.

    PubMed

    Moser, Albine; Korstjens, Irene; van der Weijden, Trudy; Tange, Huibert

    2010-12-01

    The admission to a hospital for elective surgery, like arthroplasty, can be planned ahead. The elective nature of arthroplasty and the increasing stimulus of the public to critically select a hospital raise the issue of how patients actually take such decisions. The aim of this paper is to describe the decision-making process of selecting a hospital as experienced by people who underwent elective joint arthroplasty and to understand what factors influenced the decision-making process. Qualitative descriptive study with 18 participants who had a hip or knee replacement within the last 5 years. Data were gathered from eight individual interviews and four focus group interviews and analysed by content analysis. Three categories that influenced the selection of a hospital were revealed: information sources, criteria in decision making and decision-making styles within the GP- patient relationship. Various contextual aspects influenced the decision-making process. Most participants gave higher priority to the selection of a medical specialist than to the selection of a hospital. Selecting a hospital for arthroplasty is extremely complex. The decision-making process is a highly individualized process because patients have to consider and assimilate a diversity of aspects, which are relevant to their specific situation. Our findings support the model of shared decision making, which indicates that general practitioners should be attuned to the distinct needs of each patient at various moments during the decision making, taking into account personal, medical and contextual factors. © 2010 Blackwell Publishing Ltd.

  2. Habitat Selection and Reproductive Success of Lewis's Woodpecker (Melanerpes lewis) at Its Northern Limit

    PubMed Central

    Zhu, Xiang; Srivastava, Diane S.; Martin, Kathy

    2012-01-01

    Lewis's Woodpecker (Melanerpes lewis) has experienced population declines in both Canada and the United States and in 2010 was assigned a national listing of threatened in Canada. We conducted a two-year study (2004–2005) of this species at its northern range limit, the South Okanagan Valley in British Columbia, Canada. Our main objective was to determine whether the habitat features that influenced nest-site selection also predicted nest success, or whether other factors (e.g. cavity dimensions, clutch initiation date or time of season) were more important. Nest tree decay class, density of suitable cavities and total basal area of large trees were the best predictors of nest-site selection, but these factors were unrelated to nesting success. Estimates of demographic parameters (mean ± SE) included daily nest survival rate (0.988±0.003, years combined), nest success (0.52±0.08), clutch size (5.00±0.14 eggs), female fledglings per successful nest (1.31±0.11), and annual productivity (0.68±0.12 female fledglings per nest per year). Although higher nest survival was associated with both early and late initiated clutches, early-initiated clutches allowed birds to gain the highest annual productivity as early clutches were larger. Nests in deep cavities with small entrances experienced lower predation risk especially during the peak period of nest predation. We concluded that nest-site selection can be predicted by a number of easily measured habitat variables, whereas nest success depended on complicated ecological interactions among nest predators, breeding behaviors, and cavity features. Thus, habitat-based conservation strategies should also consider ecological factors that may not be well predicted by habitat. PMID:23028525

  3. HABITAT MODELING APPROACHES FOR RESTORATION SITE SELECTION

    EPA Science Inventory

    Numerous modeling approaches have been used to develop predictive models of species-environment and species-habitat relationships. These models have been used in conservation biology and habitat or species management, but their application to restoration efforts has been minimal...

  4. Tradeoffs between homing and habitat quality for spawning site selection by hatchery-origin Chinook salmon

    USGS Publications Warehouse

    Cram, Jeremy M.; Torgersen, Christian E.; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.

    2013-01-01

    Spawning site selection by female salmon is based on complex and poorly understood tradeoffs between the homing instinct and the availability of appropriate habitat for successful reproduction. Previous studies have shown that hatchery-origin Chinook salmon (Oncorhynchus tshawytscha) released from different acclimation sites return with varying degrees of fidelity to these areas. To investigate the possibility that homing fidelity is associated with aquatic habitat conditions, we quantified physical habitat throughout 165 km in the upper Yakima River basin (Washington, USA) and mapped redd and carcass locations from 2004 to 2008. Principal components analysis identified differences in substrate, cover, stream width, and gradient among reaches surrounding acclimation sites, and canonical correspondence analysis revealed that these differences in habitat characteristics were associated with spatial patterns of spawning (p < 0.01). These analyses indicated that female salmon may forego spawning near their acclimation area if the surrounding habitat is unsuitable. Evaluating the spatial context of acclimation areas in relation to surrounding habitat may provide essential information for effectively managing supplementation programs and prioritizing restoration actions.

  5. CROSS-SCALE CORRELATIONS AND THE DESIGN AND ANALYSIS OF AVIAN HABITAT SELECTION STUDIES

    EPA Science Inventory

    It has long been suggested that birds select habitat hierarchically, progressing from coarser to finer spatial scales. This hypothesis, in conjunction with the realization that many organisms likely respond to environmental patterns at multiple spatial scales, has led to a large ...

  6. Interfacing models of wildlife habitat and human development to predict the future distribution of puma habitat

    USGS Publications Warehouse

    Burdett, Christopher L.; Crooks, Kevin R.; Theobald, David M.; Wilson, Kenneth R.; Boydston, Erin E.; Lyren, Lisa A.; Fisher, Robert N.; Vickers, T. Winston; Morrison, Scott A.; Boyce, Walter M.

    2010-01-01

    The impact of human land uses on ecological systems typically differ relative to how extensively natural conditions are modified. Exurban development is intermediate-intensity residential development that often occurs in natural landscapes. Most species-habitat models do not evaluate the effects of such intermediate levels of human development and even fewer predict how future development patterns might affect the amount and configuration of habitat. We addressed these deficiencies by interfacing a habitat model with a spatially-explicit housing-density model to study the effect of human land uses on the habitat of pumas (Puma concolor) in southern California. We studied the response of pumas to natural and anthropogenic features within their home ranges and how mortality risk varied across a gradient of human development. We also used our housing-density model to estimate past and future housing densities and model the distribution of puma habitat in 1970, 2000, and 2030. The natural landscape for pumas in our study area consisted of riparian areas, oak woodlands, and open, conifer forests embedded in a chaparral matrix. Pumas rarely incorporated suburban or urban development into their home ranges, which is consistent with the hypothesis that the behavioral decisions of individuals can be collectively manifested as population-limiting factors at broader spatial scales. Pumas incorporated rural and exurban development into their home ranges, apparently perceiving these areas as modified, rather than non-habitat. Overall, pumas used exurban areas less than expected and showed a neutral response to rural areas. However, individual pumas that selected for or showed a neutral response to exurban areas had a higher risk of mortality than pumas that selected against exurban habitat. Exurban areas are likely hotspots for puma-human conflict in southern California. Approximately 10% of our study area will transform from exurban, rural, or undeveloped areas to suburban or

  7. 48 CFR 2415.308 - Source selection decision.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Source selection decision. 2415.308 Section 2415.308 Federal Acquisition Regulations System DEPARTMENT OF HOUSING AND URBAN... document its selection recommendation(s) in a final written report. The final report shall include...

  8. Habitat selection of two gobies (Microgobius gulosus, Gobiosoma robustum): influence of structural complexity, competitive interactions and presence of a predator

    USGS Publications Warehouse

    Schofield, P.J.

    2003-01-01

    Herein I compare the relative importance of preference for structurally complex habitat against avoidance of competitors and predators in two benthic fishes common in the Gulf of Mexico. The code goby Gobiosoma robustum Ginsburg and clown goby Microgobius gulosus (Girard) are common, ecologically similar fishes found throughout the Gulf of Mexico and in the southeastern Atlantic Ocean. In Florida Bay, these fishes exhibit habitat partitioning: G. robustum is most abundant in seagrass-dominated areas while M. gulosus is most abundant in sparsely vegetated habitats. In a small-scale field survey, I documented the microhabitat use of these species where their distributions overlap. In a series of laboratory experiments, I presented each species with structured (artificial seagrass) versus nonstructured (bare sand) habitats and measured their frequency of choosing either habitat type. I then examined the use of structured versus nonstructured habitats when the two species were placed together in a mixed group. Finally, I placed a predator (Opsanus beta) in the experimental aquaria to determine how its presence influenced habitat selection. In the field, G. robustum was more abundant in seagrass and M. gulosus was more abundant in bare mud. In the laboratory, both species selected grass over sand in allopatry. However, in sympatry, M. gulosus occupied sand more often when paired with G. robustum than when alone. G. robustum appears to directly influence the habitat choice of M. gulosus: It seems that M. gulosus is pushed out of the structured habitat that is the preferred habitat of G. robustum. Thus, competition appears to modify the habitat selection of these species when they occur in sympatry. Additionally, the presence of the toadfish was a sufficient stimulus to provoke both M. gulosus and G. robustum to increase their selection for sand (compared to single-species treatments). Distribution patterns of M. gulosus and G. robustum

  9. Contrasting habitat selection amongst cephalopods in the Mediterranean Sea: When the environment makes the difference.

    PubMed

    Lauria, V; Garofalo, G; Gristina, M; Fiorentino, F

    2016-08-01

    Conservation of fish habitat requires a deeper knowledge of how species distribution patterns are related to environmental factors. Habitat suitability modelling is an essential tool to quantify species' realised niches and understand species-environment relationships. Cephalopods are important players in the marine food web and a significant resource for fisheries; they are also very sensitive to environmental changes. Here a time series of fishery-independent data (1998-2011) was used to construct habitat suitability models and investigate the influence of environmental variables on four commercial cephalopods: Todaropsis eblanae, Illex coindetii, Eledone moschata and Eledone cirrhosa, in the central Mediterranean Sea. The main environmental predictors of cephalopod habitat suitability were depth, seafloor morphology, chlorophyll-a concentration, sea surface temperature and surface salinity. Predictive maps highlighted contrasting habitat selection amongst species. This study identifies areas where the important commercial species of cephalopods are concentrated and provides significant information for a future spatial based approach to fisheries management in the Mediterranean Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Habitat selection of Merriam's turkey (Meleagris gallopavo Merriami) hens with poults in the Black Hills, South Dakota

    Treesearch

    Mark A. Rumble; Stanley H. Anderson

    1993-01-01

    We studied habitat selection patterns of Merriam's Turkey (Meleagris gallopavo merriami) hens with poults in a ponderosa pine (Pinus ponderosa) ecosystem. Thirty-six radio-marked hens produced 19 broods, and we obtained 230 locations of hens with poults. We described vegetation of habitats using criteria from the Rocky...

  11. Habitat selection and seasonal movements of young bearded seals (Erignathus barbatus) in the Bering Sea

    PubMed Central

    2018-01-01

    The first year of life is typically the most critical to a pinniped’s survival, especially for Arctic phocids which are weaned at only a few weeks of age and left to locate and capture prey on their own. Their seasonal movements and habitat selection are therefore important factors in their survival. During a cooperative effort between scientists and subsistence hunters in October 2004, 2005, and 2006, 13 female and 13 male young (i.e., age <2) bearded seals (Erignathus barbatus) were tagged with satellite-linked dive recorders (SDRs) in Kotzebue Sound, Alaska. Shortly after being released, most seals moved south with the advancing sea-ice through the Bering Strait and into the Bering Sea where they spent the winter and early spring. The SDRs of 17 (8 female and 9 male) seals provided frequent high-quality positions in the Bering Sea; their data were used in our analysis. To investigate habitat selection, we simulated 20 tracks per seal by randomly selecting from the pooled distributions of the absolute bearings and swim speeds of the tagged seals. For each point in the observed and simulated tracks, we obtained the depth, sea-ice concentration, and the distances to sea-ice, open water, the shelf break and coastline. Using logistic regression with a stepwise model selection procedure, we compared the simulated tracks to those of the tagged seals and obtained a model for describing habitat selection. The regression coefficients indicated that the bearded seals in our study selected locations near the ice edge. In contrast, aerial surveys of the bearded seal population, predominantly composed of adults, indicated higher abundances in areas farther north and in heavier pack ice. We hypothesize that this discrepancy is the result of behavioral differences related to age. Ice concentration was also shown to be a statistically significant variable in our model. All else being equal, areas of higher ice concentration are selected for up to about 80%. The effects of sex

  12. Dynamic Selective Exposure during Decision-Making.

    PubMed

    Phillips, James G; Hoon, Teressa; Landon, Jason

    2016-01-01

    To understand dynamic changes in the likelihood that people would access and selectively expose themselves to information online, the present study examined the checking of account balances during simulated gambling. Sixteen participants played 120 hands of computer Blackjack for points, at higher or lower levels of risk (different point multipliers), and after each win or loss the computer recorded if participants checked their account balances. There were individual differences in checking rates. Participants who were more likely to check balances exhibited a selectivity of exposure to decision consonant information after a win at low risk. Although it was expected that people would seek to maintain positive mood, data were better explained in terms of Cognitive Dissonance. The effects of Cognitive Dissonance are liable to extend beyond single static decisions into dynamic online environments.

  13. Linking dynamic habitat selection with wading bird foraging distributions across resource gradients

    USGS Publications Warehouse

    Beerens, James M.; Noonberg, Erik G.; Gawlik, Dale E.

    2015-01-01

    Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species' ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches.

  14. Learning to choose: Cognitive aging and strategy selection learning in decision making.

    PubMed

    Mata, Rui; von Helversen, Bettina; Rieskamp, Jörg

    2010-06-01

    Decision makers often have to learn from experience. In these situations, people must use the available feedback to select the appropriate decision strategy. How does the ability to select decision strategies on the basis of experience change with age? We examined younger and older adults' strategy selection learning in a probabilistic inference task using a computational model of strategy selection learning. Older adults showed poorer decision performance compared with younger adults. In particular, older adults performed poorly in an environment favoring the use of a more cognitively demanding strategy. The results suggest that the impact of cognitive aging on strategy selection learning depends on the structure of the decision environment. (c) 2010 APA, all rights reserved

  15. Habitat selection and spawning success of walleye in a tributary to Owasco Lake, New York

    USGS Publications Warehouse

    Chalupnicki, Marc A.; Johnson, James H.; McKenna, James E.; Dittman, Dawn E.

    2010-01-01

    Walleyes Sander vitreus are stocked into Owasco Lake, New York, to provide a sport fishery, but the population must be sustained by annual hatchery supplementation despite the presence of appropriate habitat. Therefore, we evaluated walleye spawning success in Dutch Hollow Brook, a tributary of Owasco Lake, to determine whether early survival limited recruitment. Spawning success during spring 2006 and 2007 was evaluated by estimating egg densities from samples collected in the lower 725 m of the stream. Environmental variables were also recorded to characterize the selected spawning habitat. Drift nets were set downstream of the spawning section to assess egg survival and larval drift. We estimated that 162,596 larvae hatched in 2006. For 2007, we estimated that 360,026 eggs were deposited, with a hatch of 127,500 larvae and hatching success of 35.4%. Egg density was significantly correlated to percent cover, substrate type, and depth : velocity ratio. Two sections had significantly higher egg deposition than other areas. Adult spawning walleyes selected shallow, slow habitats with some cover and gravel substrate in the accessible reaches of Dutch Hollow Brook. Our results show that walleyes found suitable spawning habitat in Dutch Hollow Brook and that egg and larval development does not appear to limit natural reproduction.

  16. Multiscale habitat use and selection in cooperatively breeding Micronesian kingfishers

    USGS Publications Warehouse

    Kesler, D.C.; Haig, S.M.

    2007-01-01

    Information about the interaction between behavior and landscape resources is key to directing conservation management for endangered species. We studied multi-scale occurrence, habitat use, and selection in a cooperatively breeding population of Micronesian kingfishers (Todiramphus cinnamominus) on the island of Pohnpei, Federated States of Micronesia. At the landscape level, point-transect surveys resulted in kingfisher detection frequencies that were higher than those reported in 1994, although they remained 15-40% lower than 1983 indices. Integration of spatially explicit vegetation information with survey results indicated that kingfisher detections were positively associated with the amount of wet forest and grass-urban vegetative cover, and they were negatively associated with agricultural forest, secondary vegetation, and upland forest cover types. We used radiotelemetry and remote sensing to evaluate habitat use by individual kingfishers at the home-range scale. A comparison of habitats in Micronesian kingfisher home ranges with those in randomly placed polygons illustrated that birds used more forested areas than were randomly available in the immediate surrounding area. Further, members of cooperatively breeding groups included more forest in their home ranges than birds in pair-breeding territories, and forested portions of study areas appeared to be saturated with territories. Together, these results suggested that forest habitats were limited for Micronesian kingfishers. Thus, protecting and managing forests is important for the restoration of Micronesian kingfishers to the island of Guam (United States Territory), where they are currently extirpated, as well as to maintaining kingfisher populations on the islands of Pohnpei and Palau. Results further indicated that limited forest resources may restrict dispersal opportunities and, therefore, play a role in delayed dispersal and cooperative behaviors in Micronesian kingfishers.

  17. The influence of food abundance, food dispersion and habitat structure on territory selection and size of an Afrotropical terrestrial insectivore

    USGS Publications Warehouse

    Stanley, Thomas R.; Newmark, William D.

    2015-01-01

    Most tropical insectivorous birds, unlike their temperate counterparts, hold and defend a feeding and breeding territory year-around. However, our understanding of ecological factors influencing territory selection and size in tropical insectivores is limited. Here we examine three prominent hypotheses relating food abundance, food dispersion (spatial arrangement of food items), and habitat structure to territoriality in the Usambara Thrush Turdus roehli. We first compared leaf-litter macro-invertebrate abundance and dispersion, and habitat structure between territories and random sites. We then examined the relation between these same ecological factors and territory size. Invertebrate abundance and dispersion were sparsely and evenly distributed across our study system and did not vary between territories and random sites. In contrast, habitat structure did vary between territories and random sites indicating the Usambara Thrush selects territories with open understorey and closed overstorey habitat. Invertebrate abundance and dispersion within territories of the Usambara Thrush were not associated with habitat structure. We believe the most likely explanation for the Usambara Thrush’s preference for open understorey and closed overstorey habitat relates to foraging behavior. Using information-theoretic model selection we found that invertebrate abundance was the highest-ranked predictor of territory size and was inversely related, consistent with food value theory of territoriality.

  18. Application of Bayesian methods to habitat selection modeling of the northern spotted owl in California: new statistical methods for wildlife research

    Treesearch

    Howard B. Stauffer; Cynthia J. Zabel; Jeffrey R. Dunk

    2005-01-01

    We compared a set of competing logistic regression habitat selection models for Northern Spotted Owls (Strix occidentalis caurina) in California. The habitat selection models were estimated, compared, evaluated, and tested using multiple sample datasets collected on federal forestlands in northern California. We used Bayesian methods in interpreting...

  19. Chapter 5. Using Habitat Models for Habitat Mapping and Monitoring

    Treesearch

    Samuel A. Cushman; Timothy J. Mersmann; Gretchen G. Moisen; Kevin S. McKelvey; Christina D. Vojta

    2013-01-01

    This chapter provides guidance for applying existing habitat models to map and monitor wildlife habitat. Chapter 2 addresses the use of conceptual models to create a solid foundation for selecting habitat attributes to monitor and to translate these attributes into quantifiable and reportable monitoring measures. Most wildlife species, however, require a complex suite...

  20. Long-term habitat selection and chronic root herbivory: explaining the relationship between periodical cicada density and tree growth.

    PubMed

    Yang, Louie H; Karban, Richard

    2009-01-01

    Periodical cicadas (Magicicada spp.) are insect herbivores that feed on host tree roots, but their distribution among hosts is determined largely by the oviposition of female cicadas in the previous generation. A pattern of decreasing tree growth rates with increasing cicada densities is predicted when considering the costs of chronic root herbivory, but the opposite pattern is expected when considering adaptive habitat selection. Here, we report observations indicating that the relationship between periodical cicada densities and host tree growth rates is hump shaped. We suggest that both herbivory and habitat selection are likely to be key processes explaining this pattern, resulting in regions of positive and negative correlation. These results suggest that the effects of cicada herbivory are most apparent at relatively high cicada densities, while habitat selection tends to distribute cicada herbivory on host trees that are able to compensate for cicada root herbivory up to threshold cicada densities.

  1. Concurrent assessment of fish and habitat in warmwater streams in Wyoming

    USGS Publications Warehouse

    Quist, M.C.; Hubert, W.A.; Rahel, F.J.

    2006-01-01

    Fisheries research and management in North America have focused largely on sport fishes, but native non-game fishes have attracted increased attention due to their declines. The Warmwater Stream Assessment (WSA) was developed to evaluate simultaneously both fish and habitat in Wyoming streams by a process that includes three major components: (1) stream-reach selection and accumulation of existing information, (2) fish and habitat sampling and (3) summarisation and evaluation of fish and habitat information. Fish are sampled by electric fishing or seining and habitat is measured at reach and channel-unit (i.e. pool, run, riffle, side channel, or backwater) scales. Fish and habitat data are subsequently summarised using a data-matrix approach. Hierarchical decision trees are used to assess critical habitat requirements for each fish species expected or found in the reach. Combined measurements of available habitat and the ecology of individual species contribute to the evaluation of the observed fish assemblage. The WSA incorporates knowledge of the fish assemblage and habitat features to enable inferences of factors likely influencing both the fish assemblage and their habitat. The WSA was developed for warmwater streams in Wyoming, but its philosophy, process and conceptual basis may be applied to environmental assessments in other geographical areas. ?? 2006 Blackwell Publishing Ltd.

  2. Linking Dynamic Habitat Selection with Wading Bird Foraging Distributions across Resource Gradients

    PubMed Central

    Beerens, James M.; Noonburg, Erik G.; Gawlik, Dale E.

    2015-01-01

    Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species’ ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches. PMID:26107386

  3. Dynamic habitat selection by two wading bird species with divergent foraging strategies in a seasonally fluctuating wetland

    USGS Publications Warehouse

    Beerens, James M.; Gawlik, Dale E.; Herring, Garth; Cook, Mark I.

    2011-01-01

    Seasonal and annual variation in food availability during the breeding season plays an influential role in the population dynamics of many avian species. In highly dynamic ecosystems like wetlands, finding and exploiting food resources requires a flexible behavioral response that may produce different population trends that vary with a species' foraging strategy. We quantified dynamic foraging-habitat selection by breeding and radiotagged White Ibises (Eudocimus albus) and Great Egrets (Ardea alba) in the Florida Everglades, where fluctuation in food resources is pronounced because of seasonal drying and flooding. The White Ibis is a tactile “searcher” species in population decline that specializes on highly concentrated prey, whereas the Great Egret, in a growing population, is a visual “exploiter” species that requires lower prey concentrations. In a year with high food availability, resource-selection functions for both species included variables that changed over multiannual time scales and were associated with increased prey production. In a year with low food availability, resource-selection functions included short-term variables that concentrated prey (e.g., water recession rates and reversals in drying pattern), which suggests an adaptive response to poor foraging conditions. In both years, the White Ibis was more restricted in its use of habitats than the Great Egret. Real-time species—habitat suitability models were developed to monitor and assess the daily availability and quality of spatially explicit habitat resources for both species. The models, evaluated through hindcasting using independent observations, demonstrated that habitat use of the more specialized White Ibis was more accurately predicted than that of the more generalist Great Egret.

  4. Home range, habitat selection, and movements of California Black Rails at tidal marshes at San Francisco Bay, California

    USGS Publications Warehouse

    Tsao, Danika C.; Takekawa, John Y.; Woo, Isa; Yee, Julie L.; Evens, Jules G.

    2009-01-01

    Little is known about the movements and habitat selection of California Black Rails (Laterallus jamaicensis coturniculus) in coastal California. We captured 130 Black Rails, of which we radio-marked 48, in tidal marshes in San Francisco Bay during 2005 and 2006. Our objective was to examine their home ranges, movements, and habitat selection to improve the species' conservation. The mean fixed-kernel home range was 0.59 ha, the mean core area was 0.14 ha. Home ranges and core areas did not differ by year or site. Males had significantly larger home ranges and core areas than did females. All sites combined, Black Rails used areas with ≥94% total vegetative cover, with perennial pickleweed (Sarcocornia pacifica) the dominant plant. The rails' habitat selection varied by year and site but not by sex. A multivariate analysis of variance indicated that Black Rails selected areas with pickleweed taller and denser than average, greater cover and height of alkali bulrush (Bolboschoenus maritimus) and common saltgrass (Distichlis spicata), more stems between 20 and 30 cm above the ground, maximum vegetation height, and shorter distance to refugia. On average, Black Rails moved 27.6 ±1.8 (SE) m daily and 38.4 ± 5.5 m during extreme high tides. Understanding the California Black Rail's movements, home range, and habitat use is critical for management to benefit the species.

  5. Adaptation to reef habitats through selection on the coral animal and its associated microbiome.

    PubMed

    van Oppen, Madeleine J H; Bongaerts, Pim; Frade, Pedro; Peplow, Lesa M; Boyd, Sarah E; Nim, Hieu T; Bay, Line K

    2018-06-13

    Spatially adjacent habitats on coral reefs can represent highly distinct environments, often harbouring different coral communities. Yet, certain coral species thrive across divergent environments. It is unknown whether the forces of selection are sufficiently strong to overcome the counteracting effects of the typically high gene flow over short distances, and for local adaptation to occur. We screened the coral genome (using restriction-site-associated sequencing [RAD-seq]), and characterized both the dinoflagellate photosymbiont and tissue-associated prokaryote microbiomes (using metabarcoding) of a reef flat and slope population of the reef-building coral, Pocillopora damicornis, at two locations on Heron Island in the southern Great Barrier Reef. Reef flat and slope populations were separated by <100 m horizontally and ~5 m vertically and the two study locations were separated by ~1 km. For the coral host, genetic divergence between habitats was much greater than between locations, suggesting limited gene flow between the flat and slope populations. Consistent with environmental selection, outlier loci primarily belonged to the conserved, minimal cellular stress response, likely reflecting adaptation to the different temperature and irradiance regimes on the reef flat and slope. Similarly, the prokaryote community differed across both habitat and, to a lesser extent, location, whereas the dinoflagellate photosymbionts differed by habitat but not location. The observed intra-specific diversity associated with divergent habitats supports that environmental adaptation involves multiple members of the coral holobiont. Adaptive alleles or microbial associations present in coral populations from the environmentally-variable reef flat may provide a source of adaptive variation for assisted evolution approaches, through assisted gene flow, artificial cross-breeding or probiotic inoculations, with the aim to increase climate resilience in the slope populations. This

  6. Home range dynamics, habitat selection, and survival of Greater Roadrunners

    USGS Publications Warehouse

    Kelley, S.W.; Ransom, D.; Butcher, J.A.; Schulz, G.G.; Surber, B.W.; Pinchak, W.E.; Santamaria, C.A.; Hurtado, L.A.

    2011-01-01

    Greater Roadrunners (Geococcyx californianus) are common, poorly studied birds of arid and semi-arid ecosystems in the southwestern United States. Conservation of this avian predator requires a detailed understanding of their movements and spatial requirements that is currently lacking. From 2006 to 2009, we quantified home-range and core area sizes and overlap, habitat selection, and survival of roadrunners (N= 14 males and 20 females) in north-central Texas using radio-telemetry and fixed kernel estimators. Median home-range and core-area sizes were 90.4 ha and 19.2 ha for males and 80.1 ha and 16.7 ha for females, respectively. The size of home range and core areas did not differ significantly by either sex or season. Our home range estimates were twice as large (x??= 108.9 ha) as earlier published estimates based on visual observations (x??= 28-50 ha). Mean percent overlap was 38.4% for home ranges and 13.7% for core areas. Male roadrunners preferred mesquite woodland and mesquite savanna cover types, and avoided the grass-forb cover type. Female roadrunners preferred mesquite savanna and riparian woodland cover types, and avoided grass-forb habitat. Kaplan-Meier annual survival probabilities for females (0.452 ?? 0.118[SE]) were twice that estimated for males (0.210 ?? 0.108), but this difference was not significant. Mortality rates of male roadrunners were higher than those of females during the spring when males call from elevated perches, court females, and chase competing males. Current land use practices that target woody-shrub removal to enhance livestock forage production could be detrimental to roadrunner populations by reducing availability of mesquite woodland and mesquite savanna habitat required for nesting and roosting and increasing the amount of grass-forb habitat that roadrunners avoid. ??2011 The Authors. Journal of Field Ornithology ??2011 Association of Field Ornithologists.

  7. Translating statistical species-habitat models to interactive decision support tools

    USGS Publications Warehouse

    Wszola, Lyndsie S.; Simonsen, Victoria L.; Stuber, Erica F.; Gillespie, Caitlyn R.; Messinger, Lindsey N.; Decker, Karie L.; Lusk, Jeffrey J.; Jorgensen, Christopher F.; Bishop, Andrew A.; Fontaine, Joseph J.

    2017-01-01

    Understanding species-habitat relationships is vital to successful conservation, but the tools used to communicate species-habitat relationships are often poorly suited to the information needs of conservation practitioners. Here we present a novel method for translating a statistical species-habitat model, a regression analysis relating ring-necked pheasant abundance to landcover, into an interactive online tool. The Pheasant Habitat Simulator combines the analytical power of the R programming environment with the user-friendly Shiny web interface to create an online platform in which wildlife professionals can explore the effects of variation in local landcover on relative pheasant habitat suitability within spatial scales relevant to individual wildlife managers. Our tool allows users to virtually manipulate the landcover composition of a simulated space to explore how changes in landcover may affect pheasant relative habitat suitability, and guides users through the economic tradeoffs of landscape changes. We offer suggestions for development of similar interactive applications and demonstrate their potential as innovative science delivery tools for diverse professional and public audiences.

  8. Translating statistical species-habitat models to interactive decision support tools.

    PubMed

    Wszola, Lyndsie S; Simonsen, Victoria L; Stuber, Erica F; Gillespie, Caitlyn R; Messinger, Lindsey N; Decker, Karie L; Lusk, Jeffrey J; Jorgensen, Christopher F; Bishop, Andrew A; Fontaine, Joseph J

    2017-01-01

    Understanding species-habitat relationships is vital to successful conservation, but the tools used to communicate species-habitat relationships are often poorly suited to the information needs of conservation practitioners. Here we present a novel method for translating a statistical species-habitat model, a regression analysis relating ring-necked pheasant abundance to landcover, into an interactive online tool. The Pheasant Habitat Simulator combines the analytical power of the R programming environment with the user-friendly Shiny web interface to create an online platform in which wildlife professionals can explore the effects of variation in local landcover on relative pheasant habitat suitability within spatial scales relevant to individual wildlife managers. Our tool allows users to virtually manipulate the landcover composition of a simulated space to explore how changes in landcover may affect pheasant relative habitat suitability, and guides users through the economic tradeoffs of landscape changes. We offer suggestions for development of similar interactive applications and demonstrate their potential as innovative science delivery tools for diverse professional and public audiences.

  9. Translating statistical species-habitat models to interactive decision support tools

    PubMed Central

    Simonsen, Victoria L.; Stuber, Erica F.; Gillespie, Caitlyn R.; Messinger, Lindsey N.; Decker, Karie L.; Lusk, Jeffrey J.; Jorgensen, Christopher F.; Bishop, Andrew A.; Fontaine, Joseph J.

    2017-01-01

    Understanding species-habitat relationships is vital to successful conservation, but the tools used to communicate species-habitat relationships are often poorly suited to the information needs of conservation practitioners. Here we present a novel method for translating a statistical species-habitat model, a regression analysis relating ring-necked pheasant abundance to landcover, into an interactive online tool. The Pheasant Habitat Simulator combines the analytical power of the R programming environment with the user-friendly Shiny web interface to create an online platform in which wildlife professionals can explore the effects of variation in local landcover on relative pheasant habitat suitability within spatial scales relevant to individual wildlife managers. Our tool allows users to virtually manipulate the landcover composition of a simulated space to explore how changes in landcover may affect pheasant relative habitat suitability, and guides users through the economic tradeoffs of landscape changes. We offer suggestions for development of similar interactive applications and demonstrate their potential as innovative science delivery tools for diverse professional and public audiences. PMID:29236707

  10. Movements, Home-Range Size and Habitat Selection of Mallards during Autumn Migration

    PubMed Central

    Bengtsson, Daniel; Avril, Alexis; Gunnarsson, Gunnar; Elmberg, Johan; Söderquist, Pär; Norevik, Gabriel; Tolf, Conny; Safi, Kamran; Fiedler, Wolfgang; Wikelski, Martin; Olsen, Björn; Waldenström, Jonas

    2014-01-01

    The mallard (Anas platyrhynchos) is a focal species in game management, epidemiology and ornithology, but comparably little research has focused on the ecology of the migration seasons. We studied habitat use, time-budgets, home-range sizes, habitat selection, and movements based on spatial data collected with GPS devices attached to wild mallards trapped at an autumn stopover site in the Northwest European flyway. Sixteen individuals (13 males, 3 females) were followed for 15–38 days in October to December 2010. Forty-nine percent (SD = 8.4%) of the ducks' total time, and 85% of the day-time (SD = 28.3%), was spent at sheltered reefs and bays on the coast. Two ducks used ponds, rather than coast, as day-roosts instead. Mallards spent most of the night (76% of total time, SD = 15.8%) on wetlands, mainly on alvar steppe, or in various flooded areas (e.g. coastal meadows). Crop fields with maize were also selectively utilized. Movements between roosting and foraging areas mainly took place at dawn and dusk, and the home-ranges observed in our study are among the largest ever documented for mallards (mean  = 6,859 ha; SD = 5,872 ha). This study provides insights into relatively unknown aspects of mallard ecology. The fact that autumn-staging migratory mallards have a well-developed diel activity pattern tightly linked to the use of specific habitats has implications for wetland management, hunting and conservation, as well as for the epidemiology of diseases shared between wildlife and domestic animals. PMID:24971887

  11. Multiscale habitat selection by burrowing owls in black-tailed prairie dog colonies

    USGS Publications Warehouse

    Lantz, S.J.; Conway, C.J.; Anderson, S.H.

    2007-01-01

    Some populations of western burrowing owls (Athene cunicularia hypugaea) have declined in recent decades. To design and implement effective recovery efforts, we need a better understanding of how distribution and demographic traits are influenced by habitat quality. To this end, we measured spatial patterns of burrowing owl breeding habitat selection within black-tailed prairie dog (Cynomys ludovicianus) colonies in northeastern Wyoming, USA. We compared burrow-, site-, colony-, and landscape-scale habitat parameters between burrowing owl nest burrows (n = 105) and unoccupied burrows (n = 85). We sampled 4 types of prairie dog colonies: 1) owl-occupied, active with prairie dogs (n = 16); 2) owl-occupied, inactive (n = 13); 3) owl-unoccupied, active (n = 14); and 4) owl-unoccupied, inactive (n = 14). We used an information-theoretic approach to examine a set of candidate models of burrowing owl nest-site selection. The model with the most support included variables at all 4 spatial scales, and results were consistent among the 4 types of prairie dog colonies. Nest burrows had longer tunnels, more available burrows within 30 m, and less shrub cover within 30 m, more prairie dog activity within 100 m, and were closer to water than unoccupied burrows. The model correctly classified 76% of cases, all model coefficients were stable, and the model had high predictive ability. Based on our results, we recommend actions to ensure persistence of the remaining prairie dog colonies as an important management strategy for burrowing owl conservation in the Great Plains of North America.

  12. Phenology and Cover of Plant Growth Forms Predict Herbivore Habitat Selection in a High Latitude Ecosystem

    PubMed Central

    Fauchald, Per; Langeland, Knut; Ims, Rolf A.; Yoccoz, Nigel G.; Bråthen, Kari Anne

    2014-01-01

    The spatial and temporal distribution of forage quality is among the most central factors affecting herbivore habitat selection. Yet, for high latitude areas, forage quantity has been found to be more important than quality. Studies on large ungulate foraging patterns are faced with methodological challenges in both assessing animal movements at the scale of forage distribution, and in assessing forage quality with relevant metrics. Here we use first-passage time analyses to assess how reindeer movements relate to forage quality and quantity measured as the phenology and cover of growth forms along reindeer tracks. The study was conducted in a high latitude ecosystem dominated by low-palatable growth forms. We found that the scale of reindeer movement was season dependent, with more extensive area use as the summer season advanced. Small-scale movement in the early season was related to selection for younger stages of phenology and for higher abundances of generally phenologically advanced palatable growth forms (grasses and deciduous shrubs). Also there was a clear selection for later phenological stages of the most dominant, yet generally phenologically slow and low-palatable growth form (evergreen shrubs). As the summer season advanced only quantity was important, with selection for higher quantities of one palatable growth form and avoidance of a low palatable growth form. We conclude that both forage quality and quantity are significant predictors to habitat selection by a large herbivore at high latitude. The early season selectivity reflected that among dominating low palatability growth forms there were palatable phenological stages and palatable growth forms available, causing herbivores to be selective in their habitat use. The diminishing selectivity and the increasing scale of movement as the season developed suggest a response by reindeer to homogenized forage availability of low quality. PMID:24972188

  13. Phenology and cover of plant growth forms predict herbivore habitat selection in a high latitude ecosystem.

    PubMed

    Iversen, Marianne; Fauchald, Per; Langeland, Knut; Ims, Rolf A; Yoccoz, Nigel G; Bråthen, Kari Anne

    2014-01-01

    The spatial and temporal distribution of forage quality is among the most central factors affecting herbivore habitat selection. Yet, for high latitude areas, forage quantity has been found to be more important than quality. Studies on large ungulate foraging patterns are faced with methodological challenges in both assessing animal movements at the scale of forage distribution, and in assessing forage quality with relevant metrics. Here we use first-passage time analyses to assess how reindeer movements relate to forage quality and quantity measured as the phenology and cover of growth forms along reindeer tracks. The study was conducted in a high latitude ecosystem dominated by low-palatable growth forms. We found that the scale of reindeer movement was season dependent, with more extensive area use as the summer season advanced. Small-scale movement in the early season was related to selection for younger stages of phenology and for higher abundances of generally phenologically advanced palatable growth forms (grasses and deciduous shrubs). Also there was a clear selection for later phenological stages of the most dominant, yet generally phenologically slow and low-palatable growth form (evergreen shrubs). As the summer season advanced only quantity was important, with selection for higher quantities of one palatable growth form and avoidance of a low palatable growth form. We conclude that both forage quality and quantity are significant predictors to habitat selection by a large herbivore at high latitude. The early season selectivity reflected that among dominating low palatability growth forms there were palatable phenological stages and palatable growth forms available, causing herbivores to be selective in their habitat use. The diminishing selectivity and the increasing scale of movement as the season developed suggest a response by reindeer to homogenized forage availability of low quality.

  14. The role of density-dependent and -independent processes in spawning habitat selection by salmon in an Arctic riverscape.

    PubMed

    Huntsman, Brock M; Falke, Jeffrey A; Savereide, James W; Bennett, Katrina E

    2017-01-01

    Density-dependent (DD) and density-independent (DI) habitat selection is strongly linked to a species' evolutionary history. Determining the relative importance of each is necessary because declining populations are not always the result of altered DI mechanisms but can often be the result of DD via a reduced carrying capacity. We developed spatially and temporally explicit models throughout the Chena River, Alaska to predict important DI mechanisms that influence Chinook salmon spawning success. We used resource-selection functions to predict suitable spawning habitat based on geomorphic characteristics, a semi-distributed water-and-energy balance hydrologic model to generate stream flow metrics, and modeled stream temperature as a function of climatic variables. Spawner counts were predicted throughout the core and periphery spawning sections of the Chena River from escapement estimates (DD) and DI variables. Additionally, we used isodar analysis to identify whether spawners actively defend spawning habitat or follow an ideal free distribution along the riverscape. Aerial counts were best explained by escapement and reference to the core or periphery, while no models with DI variables were supported in the candidate set. Furthermore, isodar plots indicated habitat selection was best explained by ideal free distributions, although there was strong evidence for active defense of core spawning habitat. Our results are surprising, given salmon commonly defend spawning resources, and are likely due to competition occurring at finer spatial scales than addressed in this study.

  15. Use of Multiple Regression and Use-Availability Analyses in Determining Habitat Selection by Gray Squirrels (Sciurus Carolinensis)

    Treesearch

    John W. Edwards; Susan C. Loeb; David C. Guynn

    1994-01-01

    Multiple regression and use-availability analyses are two methods for examining habitat selection. Use-availability analysis is commonly used to evaluate macrohabitat selection whereas multiple regression analysis can be used to determine microhabitat selection. We compared these techniques using behavioral observations (n = 5534) and telemetry locations (n = 2089) of...

  16. Rejection or selection: influence of framing in investment decisions.

    PubMed

    Cheng, Pi-Yueh; Chiou, Wen-Bin

    2010-02-01

    According to prospect theory, reflection effects result in preferences for risk-averse choices in gain situations and risk-seeking choices in loss situations. However, relevant literature in regard to decision making has suggested that positive information receives more weight in a selection task, whereas negative information receives more weight in a rejection task. The present study examined whether the nature of a decision task (selection vs rejection) would moderate the reflection effects. Undergraduates (47 men, 49 women; M age = 20.5 yr., SD = 1.1), selected according to specific screening criteria, participated in an experimental study. Typical reflection effects were observed in both selection and rejection task conditions. More importantly, negative information (i.e., the information about probable loss in risky choice of gain situations and the information about certain loss in cautious choice of loss situations) provided in the context of a rejection task received more weight and resulted in more frequent endorsements of the cautious choice in gain situations and of the risky choice in loss situations. Hence, the findings suggest that a decision context characterized by rejection may expand the reflection effects and thereby provide important information about situations in which investment decisions occur in a context characterized by rejection.

  17. Comparing Selections of Environmental Variables for Ecological Studies: A Focus on Terrain Attributes.

    PubMed

    Lecours, Vincent; Brown, Craig J; Devillers, Rodolphe; Lucieer, Vanessa L; Edinger, Evan N

    2016-01-01

    Selecting appropriate environmental variables is a key step in ecology. Terrain attributes (e.g. slope, rugosity) are routinely used as abiotic surrogates of species distribution and to produce habitat maps that can be used in decision-making for conservation or management. Selecting appropriate terrain attributes for ecological studies may be a challenging process that can lead users to select a subjective, potentially sub-optimal combination of attributes for their applications. The objective of this paper is to assess the impacts of subjectively selecting terrain attributes for ecological applications by comparing the performance of different combinations of terrain attributes in the production of habitat maps and species distribution models. Seven different selections of terrain attributes, alone or in combination with other environmental variables, were used to map benthic habitats of German Bank (off Nova Scotia, Canada). 29 maps of potential habitats based on unsupervised classifications of biophysical characteristics of German Bank were produced, and 29 species distribution models of sea scallops were generated using MaxEnt. The performances of the 58 maps were quantified and compared to evaluate the effectiveness of the various combinations of environmental variables. One of the combinations of terrain attributes-recommended in a related study and that includes a measure of relative position, slope, two measures of orientation, topographic mean and a measure of rugosity-yielded better results than the other selections for both methodologies, confirming that they together best describe terrain properties. Important differences in performance (up to 47% in accuracy measurement) and spatial outputs (up to 58% in spatial distribution of habitats) highlighted the importance of carefully selecting variables for ecological applications. This paper demonstrates that making a subjective choice of variables may reduce map accuracy and produce maps that do not

  18. Experimental evaluation of imprinting and the role innate preference plays in habitat selection in a coral reef fish.

    PubMed

    Dixson, Danielle L; Jones, Geoffrey P; Munday, Philip L; Planes, Serge; Pratchett, Morgan S; Thorrold, Simon R

    2014-01-01

    When facing decisions about where to live, juveniles have a strong tendency to choose habitats similar to where their parents successfully bred. Developing larval fishes can imprint on the chemical cues from their natal habitat. However, to demonstrate that imprinting is ecologically important, it must be shown that settlers respond and distinguish among different imprinted cues, and use imprinting for decisions in natural environments. In addition, the potential role innate preferences play compared to imprinted choices also needs to be examined. As environmental variability increases due to anthropogenic causes these two recognition mechanisms, innate and imprinting, could provide conflicting information. Here we used laboratory rearing and chemical choice experiments to test imprinting in larval anemonefish (Amphiprion percula). Individuals exposed to a variety of benthic habitat or novel olfactory cues as larvae either developed a preference for (spent >50% of their time in the cue) or increased their attraction to (increased preference but did not spend >50% of their time in the cue) the cue when re-exposed as settlers. Results indicate not only the capacity for imprinting but also the ability to adjust innate preferences after early exposure to a chemical cue. To test ecological relevance in the natural system, recruits were collected from anemones and related to their parents, using genetic parentage analysis, providing information on the natal anemone species and the species chosen at settlement. Results demonstrated that recruits did not preferentially return to their natal species, conflicting with laboratory results indicating the importance imprinting might have in habitat recognition.

  19. Discovery of a new Kittlitz's murrelet nest: Clues to habitat selection and nest-site fidelity

    USGS Publications Warehouse

    Piatt, John F.; Naslund, Nancy L.; van Pelt, Thomas I.

    1999-01-01

    On 13 June 1993, a new Kittlitz's murrelet (Brachyramphus brevirostris) nest was discovered near Red Mountain on the Kenai Peninsula, Alaska. The nest was on a 22° slope at about 900 m elevation with a northeast aspect, and contained a 60.2 × 40.6 mm egg that weighed 49.0 g. Downy feathers and weathered fecal material found at the nest indicated re-use from a previous year, suggesting possible nest site fidelity. The nest was located in an area scoured by winds and free of snow during early spring, suggesting that this may be an important mesoscale factor influencing selection of nesting habitat. Proximity to suitable foraging habitat, particularly sheltered bays and glacial river outflows, may affect breeding habitat choice over larger spatial scales.

  20. The structure of western warbler assemblages: Analysis of foraging behavior and habitat selection in Oregon

    USGS Publications Warehouse

    Morrison, Michael L.

    1981-01-01

    This study examines the foraging behavior and habitat selection of a MacGillivray's (Oporornis tolmiei)-Orange-crowned (Vermivora celata)-Wilson's (Wilsonia pusilla) warbler assemblage that occurred on early-growth clearcuts in western Oregon during breeding. Sites were divided into two groups based on the presence or absence of deciduous trees. Density estimates for each species were nearly identical between site classes except for Wilson's, whose density declined on nondeciduous tree sites. Analysis of vegetation parameters within the territories of the species identified deciduous tree cover as the variable of primary importance in the separation of warblers on each site, so that the assemblage could be arranged on a continuum of increasing deciduous tree cover. MacGillivray's and Wilson's extensively used shrub cover and deciduous tree cover, respectively; Orange-crowns were associated with both vegetation types. When the deciduous tree cover was reduced, Orange-crowns concentrated foraging activities in shrub cover and maintained nondisturbance densities. Indices of foraging-height diversity showed a marked decrease after the removal of deciduous trees. All species except MacGillivray's foraged lower in the vegatative substrate on the nondeciduous tree sites; MacGillivray's concentrated foraging activities in the low shrub cover on both sites. Indices of foraging overlap revealed a general pattern of decreased segregation by habitat after removal of deciduous trees. I suggest that the basic patterns of foraging behavior and habitat selection evidenced today in western North America were initially developed by ancestral warblers before their invasion of the west. Species successfully colonizing western habitats were probably preadapted to the conditions they encountered, with new habitats occupied without obvious evolutionary modifications.

  1. Improved Frame Mode Selection for AMR-WB+ Based on Decision Tree

    NASA Astrophysics Data System (ADS)

    Kim, Jong Kyu; Kim, Nam Soo

    In this letter, we propose a coding mode selection method for the AMR-WB+ audio coder based on a decision tree. In order to reduce computation while maintaining good performance, decision tree classifier is adopted with the closed loop mode selection results as the target classification labels. The size of the decision tree is controlled by pruning, so the proposed method does not increase the memory requirement significantly. Through an evaluation test on a database covering both speech and music materials, the proposed method is found to achieve a much better mode selection accuracy compared with the open loop mode selection module in the AMR-WB+.

  2. Identifying regions vulnerable to habitat degradation under future irrigation scenarios

    NASA Astrophysics Data System (ADS)

    Terrado, Marta; Sabater, Sergi; Acuña, Vicenç

    2016-11-01

    The loss and degradation of natural habitats is a primary cause of biodiversity decline. The increasing impacts of climate and land use change affect water availability, ultimately decreasing agricultural production. Areas devoted to irrigation have been increased to compensate this reduction, causing habitat and biodiversity losses, especially in regions undergoing severe water stress. These effects might intensify under global change, probably contributing to a decrease in habitat quality. We selected four European river basins across a gradient of water scarcity and irrigation agriculture. The habitat quality in the basins was assessed as a function of habitat suitability and threats under current and future global change scenarios of irrigation. Results revealed that the most threatened regions under future scenarios of global change were among those suffering of water scarcity and with bigger areas devoted to irrigation. Loss of habitat quality reached 10% in terrestrial and 25% in aquatic ecosystems under climate change scenarios involving drier conditions. The aquatic habitats were the most degraded in all scenarios, since they were affected by threats from both the terrestrial and the aquatic parts of the basin. By identifying in advance the regions most vulnerable to habitat and biodiversity loss, our approach can assist decision makers in deciding the conservation actions to be prioritized for mitigation and adaptation to the effects of climate change, particularly front the development of irrigation plans.

  3. Decision-making in irrigation networks: Selecting appropriate canal structures using multi-attribute decision analysis.

    PubMed

    Hosseinzade, Zeinab; Pagsuyoin, Sheree A; Ponnambalam, Kumaraswamy; Monem, Mohammad J

    2017-12-01

    The stiff competition for water between agriculture and non-agricultural production sectors makes it necessary to have effective management of irrigation networks in farms. However, the process of selecting flow control structures in irrigation networks is highly complex and involves different levels of decision makers. In this paper, we apply multi-attribute decision making (MADM) methodology to develop a decision analysis (DA) framework for evaluating, ranking and selecting check and intake structures for irrigation canals. The DA framework consists of identifying relevant attributes for canal structures, developing a robust scoring system for alternatives, identifying a procedure for data quality control, and identifying a MADM model for the decision analysis. An application is illustrated through an analysis for automation purposes of the Qazvin irrigation network, one of the oldest and most complex irrigation networks in Iran. A survey questionnaire designed based on the decision framework was distributed to experts, managers, and operators of the Qazvin network and to experts from the Ministry of Power in Iran. Five check structures and four intake structures were evaluated. A decision matrix was generated from the average scores collected from the survey, and was subsequently solved using TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method. To identify the most critical structure attributes for the selection process, optimal attribute weights were calculated using Entropy method. For check structures, results show that the duckbill weir is the preferred structure while the pivot weir is the least preferred. Use of the duckbill weir can potentially address the problem with existing Amil gates where manual intervention is required to regulate water levels during periods of flow extremes. For intake structures, the Neyrpic® gate and constant head orifice are the most and least preferred alternatives, respectively. Some advantages

  4. Effects of spatial habitat heterogeneity on habitat selection and annual fecundity for a migratory forest songbird

    USGS Publications Warehouse

    Cornell, K.L.; Donovan, T.M.

    2010-01-01

    Understanding how spatial habitat patterns influence abundance and dynamics of animal populations is a primary goal in landscape ecology. We used an information-theoretic approach to investigate the association between habitat patterns at multiple spatial scales and demographic patterns for black-throated blue warblers (Dendroica caerulescens) at 20 study sites in west-central Vermont, USA from 2002 to 2005. Sites were characterized by: (1) territory-scale shrub density, (2) patch-scale shrub density occurring within 25 ha of territories, and (3) landscape-scale habitat patterns occurring within 5 km radius extents of territories. We considered multiple population parameters including abundance, age ratios, and annual fecundity. Territory-scale shrub density was most important for determining abundance and age ratios, but landscape-scale habitat structure strongly influenced reproductive output. Sites with higher territory-scale shrub density had higher abundance, and were more likely to be occupied by older, more experienced individuals compared to sites with lower shrub density. However, annual fecundity was higher on sites located in contiguously forested landscapes where shrub density was lower than the fragmented sites. Further, effects of habitat pattern at one spatial scale depended on habitat conditions at different scales. For example, abundance increased with increasing territory-scale shrub density, but this effect was much stronger in fragmented landscapes than in contiguously forested landscapes. These results suggest that habitat pattern at different spatial scales affect demographic parameters in different ways, and that effects of habitat patterns at one spatial scale depends on habitat conditions at other scales. ?? Springer Science+Business Media B.V. 2009.

  5. Diet selectivity in a terrestrial forest invertebrate, the Auckland tree wētā, across three habitat zones.

    PubMed

    Brown, Matthew B G J; Gemmill, Chrissen E C; Miller, Steven; Wehi, Priscilla M

    2018-03-01

    Insects are important but overlooked components of forest ecosystems in New Zealand. For many insect species, information on foraging patterns and trophic relationships is lacking. We examined diet composition and selectivity in a large-bodied insect, the Auckland tree wētā Hemideina thoracica , in three habitat zones in a lowland New Zealand forest. We asked whether H. thoracica selectively forage from available plant food sources, and whether these choices were lipid-rich compared to nonpreferred available plants. We also identified the proportion of invertebrates in their frass as a proxy for omnivory. From reconnaissance plot sampling, together with fecal fragment analysis, we report that more than 93% of individual tree wētā had eaten invertebrates before capture. Additionally, wētā in the highest elevation hillslope habitat zone consumed significantly fewer species of plants on average than wētā on the low-elevation terrace habitat. Upper hillslope wētā also had the highest average number of invertebrate fragments in their frass, significantly more than wētā in the low-elevation terrace habitat zone. Wētā showed high variability in the consumption of fruit and seeds across all habitat zones. Generally, we did not observe diet differences between the sexes (although it appears that male wētā in the mid-hillslope habitat ate fruits and seeds more voraciously than females), suggesting that the sexes have similar niche breadths and display similar degrees of omnivorous behavior. Extraction of leaf lipids demonstrated a range of lipid content values in available plants, and Ivlev's Electivity Index indicated that plant species which demonstrated high electivity tended to have higher concentrations of lipids in their leaves. Our findings indicate that H. thoracica forage omnivorously and selectively, and hence play multiple roles in native ecosystems and food webs.

  6. Habitat Selection by African Buffalo (Syncerus caffer) in Response to Landscape-Level Fluctuations in Water Availability on Two Temporal Scales

    PubMed Central

    Bennitt, Emily; Bonyongo, Mpaphi Casper; Harris, Stephen

    2014-01-01

    Seasonal fluctuations in water availability cause predictable changes in the profitability of habitats in tropical ecosystems, and animals evolve adaptive behavioural and spatial responses to these fluctuations. However, stochastic changes in the distribution and abundance of surface water between years can alter resource availability at a landscape scale, causing shifts in animal behaviour. In the Okavango Delta, Botswana, a flood-pulsed ecosystem, the volume of water entering the system doubled between 2008 and 2009, creating a sudden change in the landscape. We used African buffalo (Syncerus caffer) to test the hypotheses that seasonal habitat selection would be related to water availability, that increased floodwater levels would decrease forage abundance and affect habitat selection, and that this would decrease buffalo resting time, reduce reproductive success and decrease body condition. Buffalo selected contrasting seasonal habitats, using habitats far from permanent water during the rainy season and seasonally-flooded habitats close to permanent water during the early and late flood seasons. The 2009 water increase reduced forage availability in seasonally-flooded habitats, removing a resource buffer used by the buffalo during the late flood season, when resources were most limited. In response, buffalo used drier habitats in 2009, although there was no significant change in the time spent moving or resting, or daily distance moved. While their reproductive success decreased in 2009, body condition increased. A protracted period of high water levels could prove detrimental to herbivores, especially to smaller-bodied species that require high quality forage. Stochastic annual fluctuations in water levels, predicted to increase as a result of anthropogenically-induced climate change, are likely to have substantial impacts on the functioning of water-driven tropical ecosystems, affecting environmental conditions within protected areas. Buffer zones around

  7. Habitat selection by African buffalo (Syncerus caffer) in response to landscape-level fluctuations in water availability on two temporal scales.

    PubMed

    Bennitt, Emily; Bonyongo, Mpaphi Casper; Harris, Stephen

    2014-01-01

    Seasonal fluctuations in water availability cause predictable changes in the profitability of habitats in tropical ecosystems, and animals evolve adaptive behavioural and spatial responses to these fluctuations. However, stochastic changes in the distribution and abundance of surface water between years can alter resource availability at a landscape scale, causing shifts in animal behaviour. In the Okavango Delta, Botswana, a flood-pulsed ecosystem, the volume of water entering the system doubled between 2008 and 2009, creating a sudden change in the landscape. We used African buffalo (Syncerus caffer) to test the hypotheses that seasonal habitat selection would be related to water availability, that increased floodwater levels would decrease forage abundance and affect habitat selection, and that this would decrease buffalo resting time, reduce reproductive success and decrease body condition. Buffalo selected contrasting seasonal habitats, using habitats far from permanent water during the rainy season and seasonally-flooded habitats close to permanent water during the early and late flood seasons. The 2009 water increase reduced forage availability in seasonally-flooded habitats, removing a resource buffer used by the buffalo during the late flood season, when resources were most limited. In response, buffalo used drier habitats in 2009, although there was no significant change in the time spent moving or resting, or daily distance moved. While their reproductive success decreased in 2009, body condition increased. A protracted period of high water levels could prove detrimental to herbivores, especially to smaller-bodied species that require high quality forage. Stochastic annual fluctuations in water levels, predicted to increase as a result of anthropogenically-induced climate change, are likely to have substantial impacts on the functioning of water-driven tropical ecosystems, affecting environmental conditions within protected areas. Buffer zones around

  8. Selection and preference of benthic habitat by small and large ammocoetes of the least brook lamprey (Lampetra aepyptera)

    USGS Publications Warehouse

    Smith, D.M.; Welsh, S.A.; Turk, P.J.

    2011-01-01

    In this laboratory study, we quantified substrate selection by small (<50 mm) and large (100-150 mm) ammocoetes of the least brook lamprey (Lampetra aepyptera). In aquaria, ammocoetes were given a choice to burrow into six equally-available substrate types: small gravel (2.360-4.750 mm), coarse sand (0.500-1.400 mm), fine sand (0.125-0.500 mm), organic substrate (approximately 70% decomposing leaves/stems and organic sediment particles, and 30% silt and fine sand), an even mixture of silt, clay, and fine sand, and silt/clay (<0.063 mm). Fine sand was selected with a significantly higher probability than any other substrate. Fine sand habitat is limited in many streams, in part owing to geology, but also as a result of channelization and excessive silt/clay sedimentation, which is a conservation concern. Our results indicate that ammocoetes of least brook lampreys are habitat specialists that prefer fine sand habitat. Hence, availability of fine sand habitat may limit distributions and population sizes. ?? 2011 Springer Science+Business Media B.V.

  9. Golden trout habitat selection and movement patterns in degraded and recovering sites within the Golden Trout Wilderness, California

    Treesearch

    K.R. Matthews

    1996-01-01

    Abstract.—I used radio transmitters to determine habitat selection and movement patterns of California golden trout Oncorhynchus mykiss aguabonita in two areas defined by their different levels of habitat recovery in the Golden Trout Wilderness, California. Study areas were differentiated by the amount of streamside vegetation (low or high coverage of beaked sedge...

  10. Habitat selection by a focal predator (Canis lupus) in a multiprey ecosystem of the northern Rockies

    USGS Publications Warehouse

    Milakovic, B.; Parker, K.L.; Gustine, D.D.; Lay, R.J.; Walker, A.B.D.; Gillingham, M.P.

    2011-01-01

    Large predators respond to land cover and physiography that maximize the likelihood of encountering prey. Using locations from global positioning system-collared wolves (Canis lupus), we examined whether land cover, vegetation productivity or change, or habitat-selection value for ungulate prey species themselves most influenced patterns of selection by wolves in a large, intact multiprey system of northern British Columbia. Selection models based on land cover, in combination with topographical features, consistently outperformed models based on indexes of vegetation quantity and quality (using normalized difference vegetation index) or on selection value to prey species (moose [Alces americanus], elk [Cervus elaphus], woodland caribou [Rangifer tarandus], and Stone's sheep [Ovis dalli stonei]). Wolves generally selected for shrub communities and high diversity of cover across seasons and avoided conifer stands and non-vegetated areas and west aspects year-round. Seasonal selection strategies were not always reflected in use patterns, which showed highest frequency of use in riparian, shrub, and conifer classes. Patterns of use and selection for individual wolf packs did not always conform to global models, and appeared related to the distribution of land cover and terrain within respective home ranges. Our findings corroborate the biological linkages between wolves and their habitat related to ease of movement and potential prey associations. ?? American 2011 Society of Mammalogists.

  11. Effects of habitat quality and ambient hyporheic flows on salmon spawning site selection

    Treesearch

    Rohan Benjankar; Daniele Tonina; Alessandra Marzadri; Jim McKean; Daniel J. Isaak

    2016-01-01

    Understanding the role of stream hydrologic and morphologic variables on the selection of spawning sites by salmonid fishes at high resolution across broad scales is needed for effective habitat restoration and protection. Here we used remotely sensed meter-scale channel bathymetry for a 13.5 km reach of Chinook salmon spawning stream in central Idaho to...

  12. Foraging-habitat selection of Black-backed Woodpeckers in forest burns of southwestern Idaho

    Treesearch

    Jonathan G. Dudley; Victoria A. Saab; Jeffrey P. Hollenbeck

    2012-01-01

    We examined foraging-habitat selection of Black-backed Woodpeckers (Picoides arcticus) in burned forests of southwestern Idaho during 2000 and 2002 (6 and 8 years following wildfire). This woodpecker responds positively to large-scale fire disturbances and may be at risk from logging and post-fire management. With 100 radio-locations of four adult males, we used...

  13. Patterns of Endemism and Habitat Selection in Coalbed Microbial Communities

    PubMed Central

    Lawson, Christopher E.; Strachan, Cameron R.; Williams, Dominique D.; Koziel, Susan; Hallam, Steven J.

    2015-01-01

    Microbially produced methane, a versatile, cleaner-burning alternative energy resource to fossil fuels, is sourced from a variety of natural and engineered ecosystems, including marine sediments, anaerobic digesters, shales, and coalbeds. There is a prevailing interest in developing environmental biotechnologies to enhance methane production. Here, we use small-subunit rRNA gene sequencing and metagenomics to better describe the interplay between coalbed methane (CBM) well conditions and microbial communities in the Alberta Basin. Our results show that CBM microbial community structures display patterns of endemism and habitat selection across the Alberta Basin, consistent with observations from other geographical locations. While some phylum-level taxonomic patterns were observed, relative abundances of specific taxonomic groups were localized to discrete wells, likely shaped by local environmental conditions, such as coal rank and depth-dependent physicochemical conditions. To better resolve functional potential within the CBM milieu, a metagenome from a deep volatile-bituminous coal sample was generated. This sample was dominated by Rhodobacteraceae genotypes, resolving a near-complete population genome bin related to Celeribacter sp. that encoded metabolic pathways for the degradation of a wide range of aromatic compounds and the production of methanogenic substrates via acidogenic fermentation. Genomic comparisons between the Celeribacter sp. population genome and related organisms isolated from different environments reflected habitat-specific selection pressures that included nitrogen availability and the ability to utilize diverse carbon substrates. Taken together, our observations reveal that both endemism and metabolic specialization should be considered in the development of biostimulation strategies for nonproductive wells or for those with declining productivity. PMID:26341214

  14. The Selection of Test Items for Decision Making with a Computer Adaptive Test.

    ERIC Educational Resources Information Center

    Spray, Judith A.; Reckase, Mark D.

    The issue of test-item selection in support of decision making in adaptive testing is considered. The number of items needed to make a decision is compared for two approaches: selecting items from an item pool that are most informative at the decision point or selecting items that are most informative at the examinee's ability level. The first…

  15. The role of density-dependent and –independent processes in spawning habitat selection by salmon in an Arctic riverscape

    DOE PAGES

    Huntsman, Brock M.; Falke, Jeffrey A.; Savereide, James W.; ...

    2017-05-22

    Density-dependent (DD) and density-independent (DI) habitat selection is strongly linked to a species’ evolutionary history. Determining the relative importance of each is necessary because declining populations are not always the result of altered DI mechanisms but can often be the result of DD via a reduced carrying capacity. Here, we developed spatially and temporally explicit models throughout the Chena River, Alaska to predict important DI mechanisms that influence Chinook salmon spawning success. We used resource-selection functions to predict suitable spawning habitat based on geomorphic characteristics, a semi-distributed water-and-energy balance hydrologic model to generate stream flow metrics, and modeled stream temperaturemore » as a function of climatic variables. Spawner counts were predicted throughout the core and periphery spawning sections of the Chena River from escapement estimates (DD) and DI variables. In addition, we used isodar analysis to identify whether spawners actively defend spawning habitat or follow an ideal free distribution along the riverscape. Aerial counts were best explained by escapement and reference to the core or periphery, while no models with DI variables were supported in the candidate set. Moreover, isodar plots indicated habitat selection was best explained by ideal free distributions, although there was strong evidence for active defense of core spawning habitat. These results are surprising, given salmon commonly defend spawning resources, and are likely due to competition occurring at finer spatial scales than addressed in this study.« less

  16. The role of density-dependent and –independent processes in spawning habitat selection by salmon in an Arctic riverscape

    USGS Publications Warehouse

    Huntsman, Brock M.; Falke, Jeffrey A.; Savereide, James W.; Bennett, Katrina E.

    2017-01-01

    Density-dependent (DD) and density-independent (DI) habitat selection is strongly linked to a species’ evolutionary history. Determining the relative importance of each is necessary because declining populations are not always the result of altered DI mechanisms but can often be the result of DD via a reduced carrying capacity. We developed spatially and temporally explicit models throughout the Chena River, Alaska to predict important DI mechanisms that influence Chinook salmon spawning success. We used resource-selection functions to predict suitable spawning habitat based on geomorphic characteristics, a semi-distributed water-and-energy balance hydrologic model to generate stream flow metrics, and modeled stream temperature as a function of climatic variables. Spawner counts were predicted throughout the core and periphery spawning sections of the Chena River from escapement estimates (DD) and DI variables. Additionally, we used isodar analysis to identify whether spawners actively defend spawning habitat or follow an ideal free distribution along the riverscape. Aerial counts were best explained by escapement and reference to the core or periphery, while no models with DI variables were supported in the candidate set. Furthermore, isodar plots indicated habitat selection was best explained by ideal free distributions, although there was strong evidence for active defense of core spawning habitat. Our results are surprising, given salmon commonly defend spawning resources, and are likely due to competition occurring at finer spatial scales than addressed in this study.

  17. Bed site selection by neonate deer in grassland habitats on the northern Great Plains

    USGS Publications Warehouse

    Grovenburg, T.W.; Jacques, C.N.; Klaver, R.W.; Jenks, J.A.

    2010-01-01

    Bed site selection is an important behavioral trait influencing neonate survival. Vegetation characteristics of bed sites influence thermal protection of neonates and concealment from predators. Although previous studies describe bed site selection of neonatal white-tailed deer (Odocoileus virginianus) in regions of forested cover, none determined microhabitat effects on neonate bed site selection in the Northern Great Plains, an area of limited forest cover. During summers 2007–2009, we investigated bed site selection (n  =  152) by 81 radiocollared neonate white-tailed deer in north-central South Dakota, USA. We documented 80 (52.6%) bed sites in tallgrass–Conservation Reserve Program lands, 35 (23.0%) bed sites in forested cover, and 37 (24.3%) in other habitats (e.g., pasture, alfalfa, wheat). Bed site selection varied with age and sex of neonate. Tree canopy cover (P < 0.001) and tree basal area (P < 0.001) decreased with age of neonates, with no bed sites observed in forested cover after 18 days of age. Male neonates selected sites with less grass cover (P < 0.001), vertical height of understory vegetation (P < 0.001), and density of understory vegetation (P < 0.001) but greater bare ground (P  =  0.047), litter (P  =  0.028), and wheat (P  =  0.044) than did females. Odds of bed site selection increased 3.5% (odds ratio  =  1.035, 95% CI  =  1.008–1.062) for every 1-cm increase in vertical height of understory vegetation. Management for habitat throughout the grasslands of South Dakota that maximizes vertical height of understory vegetation would enhance cover characteristics selected by neonates.

  18. Baseline Channel Geometry and Aquatic Habitat Data for Selected Streams in the Matanuska-Susitna Valley, Alaska

    USGS Publications Warehouse

    Curran, Janet H.; Rice, William J.

    2009-01-01

    Small streams in the rapidly developing Matanuska-Susitna Valley in south-central Alaska are known to support anadromous and resident fish but little is known about their hydrologic and riparian conditions, or their sensitivity to the rapid development of the area or climate variability. To help address this need, channel geometry and aquatic habitat data were collected in 2005 as a baseline of stream conditions for selected streams. Three streams were selected as representative of various stream types, and one drainage network, the Big Lake drainage basin, was selected for a systematic assessment. Streams in the Big Lake basin were drawn in a Geographic Information System (GIS), and 55 reaches along 16 miles of Meadow Creek and its primary tributary Little Meadow Creek were identified from orthoimagery and field observations on the basis of distinctive physical and habitat parameters, most commonly gradient, substrate, and vegetation. Data-collection methods for sites at the three representative reaches and the 55 systematically studied reaches consisted of a field survey of channel and flood-plain geometry and collection of 14 habitat attributes using published protocols or slight modifications. Width/depth and entrenchment ratios along the Meadow-Little Meadow Creek corridor were large and highly variable upstream of Parks Highway and lower and more consistent downstream of Parks Highway. Channel width was strongly correlated with distance, increasing downstream in a log-linear relation. Runs formed the most common habitat type, and instream vegetation dominated the habitat cover types, which collectively covered 53 percent of the channel. Gravel suitable for spawning covered isolated areas along Meadow Creek and about 29 percent of Little Meadow Creek. Broad wetlands were common along both streams. For a comprehensive assessment of small streams in the Mat-Su Valley, critical additional data needs include hydrologic, geologic and geomorphic, and biologic data

  19. A meta-analysis of lesser prairie-chicken nesting and brood-rearing habitats: implications for habitat management

    USGS Publications Warehouse

    Hagen, Christian A.; Grisham, Blake A.; Boal, Clint W.; Haukos, David A.

    2013-01-01

    The distribution and range of lesser prairie-chicken (Tympanuchus pallidicinctus) has been reduced by >90% since European settlement of the Great Plains of North America. Currently, lesser prairie-chickens occupy 3 general vegetation communities: sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii), and mixed-grass prairies juxtaposed with Conservation Reserve Program grasslands. As a candidate for protection under the Endangered Species Act, there is a need for a synthesis that characterizes habitat structure rangewide. Thus, we conducted a meta-analysis of vegetation characteristics at nest sites and brood habitats to determine whether there was an overall effect (Hedges' d) of habitat selection and to estimate average (95% CI) habitat characteristics at use sites. We estimated effect sizes (di) from the difference between use (nests and brood sites) and random sampling sites for each study (n = 14), and derived an overall effect size (d++). There was a general effect for habitat selection as evidenced by low levels of variation in effect sizes across studies and regions. There was a small to medium effect (d++) = 0.20-0.82) of selection for greater vertical structure (visual obstruction) by nesting females in both vegetation communities, and selection against bare ground (d++ = 0.20-0.58). Females with broods exhibited less selectivity for habitat components except for vertical structure. The variation of d++ was greater during nesting than brooding periods, signifying a seasonal shift in habitat use, and perhaps a greater range of tolerance for brood-rearing habitat. The overall estimates of vegetation cover were consistent with those provided in management guidelines for the species.

  20. Evaluation of biochemical and haematological parameters and prevalence of selected pathogens in feral cats from urban and rural habitats in South Korea.

    PubMed

    Hwang, Jusun; Gottdenker, Nicole; Min, Mi-Sook; Lee, Hang; Chun, Myung-Sun

    2016-06-01

    In this study, we evaluated the potential association between the habitat types of feral cats and the prevalence of selected infectious pathogens and health status based on a set of blood parameters. We live-trapped 72 feral cats from two different habitat types: an urban area (n = 48) and a rural agricultural area (n = 24). We compared blood values and the prevalence of feline immunodeficiency virus (FIV), feline leukaemia virus (FeLV) and haemotropic Mycoplasma infection in feral cats from the two contrasting habitats. Significant differences were observed in several blood values (haematocrit, red blood cells, blood urea nitrogen, creatinine) depending on the habitat type and/or sex of the cat. Two individuals from the urban area were seropositive for FIV (3.0%), and eight (12.1%) were positive for FeLV infection (five from an urban habitat and three from a rural habitat). Haemoplasma infection was more common. Based on molecular analysis, 38 cats (54.3%) were positive for haemoplasma, with a significantly higher infection rate in cats from rural habitats (70.8%) compared with urban cats (47.8%). Our study recorded haematological and serum biochemical values, and prevalence of selected pathogens in feral cat populations from two different habitat types. A subset of important laboratory parameters from rural cats showed values under or above the corresponding reference intervals for healthy domestic cats, suggesting potential differences in the health status of feral cats depending on the habitat type. Our findings provide information about the association between 1) blood values (haematological and serum biochemistry parameters) and 2) prevalence of selected pathogen infections and different habitat types; this may be important for veterinarians who work with feral and/or stray cats and for overall cat welfare management. © ISFM and AAFP 2015.

  1. Predicting Species Distributions Using Record Centre Data: Multi-Scale Modelling of Habitat Suitability for Bat Roosts.

    PubMed

    Bellamy, Chloe; Altringham, John

    2015-01-01

    Conservation increasingly operates at the landscape scale. For this to be effective, we need landscape scale information on species distributions and the environmental factors that underpin them. Species records are becoming increasingly available via data centres and online portals, but they are often patchy and biased. We demonstrate how such data can yield useful habitat suitability models, using bat roost records as an example. We analysed the effects of environmental variables at eight spatial scales (500 m - 6 km) on roost selection by eight bat species (Pipistrellus pipistrellus, P. pygmaeus, Nyctalus noctula, Myotis mystacinus, M. brandtii, M. nattereri, M. daubentonii, and Plecotus auritus) using the presence-only modelling software MaxEnt. Modelling was carried out on a selection of 418 data centre roost records from the Lake District National Park, UK. Target group pseudoabsences were selected to reduce the impact of sampling bias. Multi-scale models, combining variables measured at their best performing spatial scales, were used to predict roosting habitat suitability, yielding models with useful predictive abilities. Small areas of deciduous woodland consistently increased roosting habitat suitability, but other habitat associations varied between species and scales. Pipistrellus were positively related to built environments at small scales, and depended on large-scale woodland availability. The other, more specialist, species were highly sensitive to human-altered landscapes, avoiding even small rural towns. The strength of many relationships at large scales suggests that bats are sensitive to habitat modifications far from the roost itself. The fine resolution, large extent maps will aid targeted decision-making by conservationists and planners. We have made available an ArcGIS toolbox that automates the production of multi-scale variables, to facilitate the application of our methods to other taxa and locations. Habitat suitability modelling has the

  2. Influence of monsoon-related riparian phenology on yellow-billed cuckoo habitat selection in Arizona

    USGS Publications Warehouse

    Wallace, Cynthia S.A.; Villarreal, Miguel; van Riper, Charles

    2013-01-01

    Aim: The western yellow-billed cuckoo (Coccyzus americanus occidentalis), a Neotropical migrant bird, is facing steep population declines in its western breeding grounds owing primarily to loss of native habitat. The favoured esting habitat for the cuckoo in the south-western United States is low-elevation riparian forests and woodlands. Our aim was to explore relationships between vegetation phenology patterns captured by satellite phenometrics and the distribution of the yellow-billed cuckoo, and to use this information to map cuckoo habitat. Location: Arizona, USA. Methods: Land surface phenometrics were derived from satellite Advanced Very High-Resolution Radiometer (AVHRR), bi-weekly time-composite, ormalized difference vegetation index (NDVI) data for 1998 and 1999 at a resolution of 1 km. Fourier harmonics were used to analyse the waveform of the annual NDVI profile in each pixel. To create the models, we coupled 1998 satellite phenometrics with 1998 field survey data of cuckoo presence or absence and with point data that sampled riparian and cottonwood–willow vegetation types. Our models were verified and refined using field and satellite data collected in 1999. Results: The models reveal that cuckoos prefer areas that experience peak greenness 29 days later, are 36% more dynamic and slightly (< 1%) more productive than their average cottonwood–willow habitat. The results support a scenario in which cuckoos migrate northwards, following the greening of riparian corridors and surrounding landscapes in response to monsoon precipitation, but then select a nesting site based on optimizing the near-term foraging potential of the neighbourhood. Main conclusions: The identification of preferred phenotypes within recognized habitat can be used to refine future habitat models, inform habitat response to climate change, and suggest adaptation strategies. For example, models of phenotype preferences can guide management actions by identifying and prioritizing for

  3. Management Data for Selection Decisions in Building Library Collections.

    ERIC Educational Resources Information Center

    Hamaker, Charles A.

    1992-01-01

    Discusses the use of library management data, particularly circulation data, in making selection decisions for library collection development based on experiences at Louisiana State University. Development of a collection based on actual use rather than perceived research needs is considered, and the decision-making process for serials…

  4. TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees.

    PubMed

    Muhlbacher, Thomas; Linhardt, Lorenz; Moller, Torsten; Piringer, Harald

    2018-01-01

    Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees. However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model. This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.

  5. Our Selections and Decisions: Inherent Features of the Nervous System?

    NASA Astrophysics Data System (ADS)

    Rösler, Frank

    The chapter summarizes findings on the neuronal bases of decisionmaking. Taking the phenomenon of selection it will be explained that systems built only from excitatory and inhibitory neuron (populations) have the emergent property of selecting between different alternatives. These considerations suggest that there exists a hierarchical architecture with central selection switches. However, in such a system, functions of selection and decision-making are not localized, but rather emerge from an interaction of several participating networks. These are, on the one hand, networks that process specific input and output representations and, on the other hand, networks that regulate the relative activation/inhibition of the specific input and output networks. These ideas are supported by recent empirical evidence. Moreover, other studies show that rather complex psychological variables, like subjective probability estimates, expected gains and losses, prediction errors, etc., do have biological correlates, i.e., they can be localized in time and space as activation states of neural networks and single cells. These findings suggest that selections and decisions are consequences of an architecture which, seen from a biological perspective, is fully deterministic. However, a transposition of such nomothetic functional principles into the idiographic domain, i.e., using them as elements for comprehensive 'mechanistic' explanations of individual decisions, seems not to be possible because of principle limitations. Therefore, individual decisions will remain predictable by means of probabilistic models alone.

  6. Boat noise prevents soundscape-based habitat selection by coral planulae.

    PubMed

    Lecchini, David; Bertucci, Frédéric; Gache, Camille; Khalife, Adam; Besson, Marc; Roux, Natacha; Berthe, Cecile; Singh, Shubha; Parmentier, Eric; Nugues, Maggy M; Brooker, Rohan M; Dixson, Danielle L; Hédouin, Laetitia

    2018-06-18

    Understanding the relationship between coral reef condition and recruitment potential is vital for the development of effective management strategies that maintain coral cover and biodiversity. Coral larvae (planulae) have been shown to use certain sensory cues to orient towards settlement habitats (e.g. the odour of live crustose coralline algae - CCA). However, the influence of auditory cues on coral recruitment, and any effect of anthropogenic noise on this process, remain largely unknown. Here, we determined the effect of protected reef (MPA), exploited reef (non-MPA) soundscapes, and a source of anthropogenic noise (boat) on the habitat preference for live CCA over dead CCA in the planula of two common Indo-Pacific coral species (Pocillopora damicornis and Acropora cytherea). Soundscapes from protected reefs significantly increased the phonotaxis of planulae of both species towards live CCA, especially when compared to boat noise. Boat noise playback prevented this preferential selection of live CCA as a settlement substrate. These results suggest that sources of anthropogenic noise such as motor boat can disrupt the settlement behaviours of coral planulae. Acoustic cues should be accounted for when developing management strategies aimed at maximizing larval recruitment to coral reefs.

  7. Nest-site selection and reproductive success of greater sage-grouse in a fire-affected habitat of northwestern Nevada

    USGS Publications Warehouse

    Lockyer, Zachary B.; Coates, Peter S.; Casazza, Michael L.; Espinosa, Shawn; Delehanty, David J.

    2015-01-01

    Identifying links between micro-habitat selection and wildlife reproduction is imperative to population persistence and recovery. This information is particularly important for landscape species such as greater sage-grouse (Centrocercus urophasianus; sage-grouse). Although this species has been widely studied, because environmental factors can affect sage-grouse populations, local and regional studies are crucial for developing viable conservation strategies. We studied the habitat-use patterns of 71 radio-marked sage-grouse inhabiting an area affected by wildfire in the Virginia Mountains of northwestern Nevada during 2009–2011 to determine the effect of micro-habitat attributes on reproductive success. We measured standard vegetation parameters at nest and random sites using a multi-scale approach (range = 0.01–15,527 ha). We used an information-theoretic modeling approach to identify environmental factors influencing nest-site selection and survival, and determine whether nest survival was a function of resource selection. Sage-grouse selected micro-sites with greater shrub canopy cover and less cheatgrass (Bromus tectorum) cover than random sites. Total shrub canopy, including sagebrush (Artemisia spp.) and other shrub species, at small spatial scales (0.8 ha and 3.1 ha) was the single contributing selection factor to higher nest survival. These results indicate that reducing the risk of wildfire to maintain important sagebrush habitats could be emphasized in sage-grouse conservation strategies in Nevada. Managers may seek to mitigate the influx of annual grass invasion by preserving large intact sagebrush-dominated stands with a mixture of other shrub species. For this area of Nevada, the results suggest that ≥40% total shrub canopy cover in sage-grouse nesting areas could yield improved reproductive success. 

  8. Predicting and mapping potential Whooping Crane stopover habitat to guide site selection for wind energy projects.

    PubMed

    Belaire, J Amy; Kreakie, Betty J; Keitt, Timothy; Minor, Emily

    2014-04-01

    Migratory stopover habitats are often not part of planning for conservation or new development projects. We identified potential stopover habitats within an avian migratory flyway and demonstrated how this information can guide the site-selection process for new development. We used the random forests modeling approach to map the distribution of predicted stopover habitat for the Whooping Crane (Grus americana), an endangered species whose migratory flyway overlaps with an area where wind energy development is expected to become increasingly important. We then used this information to identify areas for potential wind power development in a U.S. state within the flyway (Nebraska) that minimize conflicts between Whooping Crane stopover habitat and the development of clean, renewable energy sources. Up to 54% of our study area was predicted to be unsuitable as Whooping Crane stopover habitat and could be considered relatively low risk for conflicts between Whooping Cranes and wind energy development. We suggest that this type of analysis be incorporated into the habitat conservation planning process in areas where incidental take permits are being considered for Whooping Cranes or other species of concern. Field surveys should always be conducted prior to construction to verify model predictions and understand baseline conditions. © 2013 Society for Conservation Biology.

  9. A Bayesian spawning habitat suitability model for American shad in southeastern United States rivers

    USGS Publications Warehouse

    Hightower, Joseph E.; Harris, Julianne E.; Raabe, Joshua K.; Brownell, Prescott; Drew, C. Ashton

    2012-01-01

    Habitat suitability index models for American shad Alosa sapidissima were developed by Stier and Crance in 1985. These models, which were based on a combination of published information and expert opinion, are often used to make decisions about hydropower dam operations and fish passage. The purpose of this study was to develop updated habitat suitability index models for spawning American shad in the southeastern United States, building on the many field and laboratory studies completed since 1985. We surveyed biologists who had knowledge about American shad spawning grounds, assembled a panel of experts to discuss important habitat variables, and used raw data from published and unpublished studies to develop new habitat suitability curves. The updated curves are based on resource selection functions, which can model habitat selectivity based on use and availability of particular habitats. Using field data collected in eight rivers from Virginia to Florida (Mattaponi, Pamunkey, Roanoke, Tar, Neuse, Cape Fear, Pee Dee, St. Johns), we obtained new curves for temperature, current velocity, and depth that were generally similar to the original models. Our new suitability function for substrate was also similar to the original pattern, except that sand (optimal in the original model) has a very low estimated suitability. The Bayesian approach that we used to develop habitat suitability curves provides an objective framework for updating the model as new studies are completed and for testing the model's applicability in other parts of the species' range.

  10. Spatial variation in density and size structure indicate habitat selection throughout life stages of two Southwestern Atlantic snappers.

    PubMed

    Aschenbrenner, Alexandre; Hackradt, Carlos Werner; Ferreira, Beatrice Padovani

    2016-02-01

    The early life history of Lutjanus alexandrei and Lutjanus jocu in Southwestern Atlantic is still largely unknown. Habitat use of different life stages (i.e. size categories and densities) of the Brazilian snapper (L. alexandrei) and dog snapper (L. jocu) was examined in a tropical portion of NE coast of Brazil. Visual surveys were conducted in different shallow habitats (mangroves and reefs). Both snapper species showed higher densities in early life stages in mangrove habitat, with a clear increase in fish size from mangrove to adjacent reefs. Post-settler individuals were exclusively found in mangroves for both species. Juveniles of L. alexandrei were also registered only in mangroves, while sub-adult individuals were associated with both mangrove and reef habitats. Mature individuals of L. alexandrei were only observed in reef habitats. Juvenile and sub-adult individuals of the dog snapper were both associated with mangrove and reef habitats, with high densities registered in mangroves. Mature individuals of L. jocu were not registered in the study area. This pattern suggests preference for mangrove habitat in early life stages for both species. Ontogenetic movement between habitats was also recorded. This pattern denotes habitat selection across different life cycle of both species. Such information highlights the importance of directing management and conservation efforts to these habitats to secure the continuity of contribution to adult populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Development of a decision aid to inform patients' and families' renal replacement therapy selection decisions.

    PubMed

    Ameling, Jessica M; Auguste, Priscilla; Ephraim, Patti L; Lewis-Boyer, LaPricia; DePasquale, Nicole; Greer, Raquel C; Crews, Deidra C; Powe, Neil R; Rabb, Hamid; Boulware, L Ebony

    2012-12-01

    Few educational resources have been developed to inform patients' renal replacement therapy (RRT) selection decisions. Patients progressing toward end stage renal disease (ESRD) must decide among multiple treatment options with varying characteristics. Complex information about treatments must be adequately conveyed to patients with different educational backgrounds and informational needs. Decisions about treatment options also require family input, as families often participate in patients' treatment and support patients' decisions. We describe the development, design, and preliminary evaluation of an informational, evidence-based, and patient-and family-centered decision aid for patients with ESRD and varying levels of health literacy, health numeracy, and cognitive function. We designed a decision aid comprising a complementary video and informational handbook. We based our development process on data previously obtained from qualitative focus groups and systematic literature reviews. We simultaneously developed the video and handbook in "stages." For the video, stages included (1) directed interviews with culturally appropriate patients and families and preliminary script development, (2) video production, and (3) screening the video with patients and their families. For the handbook, stages comprised (1) preliminary content design, (2) a mixed-methods pilot study among diverse patients to assess comprehension of handbook material, and (3) screening the handbook with patients and their families. The video and handbook both addressed potential benefits and trade-offs of treatment selections. The 50-minute video consisted of demographically diverse patients and their families describing their positive and negative experiences with selecting a treatment option. The video also incorporated health professionals' testimonials regarding various considerations that might influence patients' and families' treatment selections. The handbook was comprised of written

  12. Development of a decision aid to inform patients’ and families’ renal replacement therapy selection decisions

    PubMed Central

    2012-01-01

    Background Few educational resources have been developed to inform patients’ renal replacement therapy (RRT) selection decisions. Patients progressing toward end stage renal disease (ESRD) must decide among multiple treatment options with varying characteristics. Complex information about treatments must be adequately conveyed to patients with different educational backgrounds and informational needs. Decisions about treatment options also require family input, as families often participate in patients’ treatment and support patients’ decisions. We describe the development, design, and preliminary evaluation of an informational, evidence-based, and patient-and family-centered decision aid for patients with ESRD and varying levels of health literacy, health numeracy, and cognitive function. Methods We designed a decision aid comprising a complementary video and informational handbook. We based our development process on data previously obtained from qualitative focus groups and systematic literature reviews. We simultaneously developed the video and handbook in “stages.” For the video, stages included (1) directed interviews with culturally appropriate patients and families and preliminary script development, (2) video production, and (3) screening the video with patients and their families. For the handbook, stages comprised (1) preliminary content design, (2) a mixed-methods pilot study among diverse patients to assess comprehension of handbook material, and (3) screening the handbook with patients and their families. Results The video and handbook both addressed potential benefits and trade-offs of treatment selections. The 50-minute video consisted of demographically diverse patients and their families describing their positive and negative experiences with selecting a treatment option. The video also incorporated health professionals’ testimonials regarding various considerations that might influence patients’ and families’ treatment selections

  13. MWSA's physical habitat approach - combining knowledge of habitat requirements with mechanisms of geomorphic and anthropogenic influence on stream channel form

    EPA Science Inventory

    Effective environmental policy decisions benefit from stream habitat information that is accurate, precise, and relevant. The recent National Wadeable Streams Assessment (NWSA) carried out by the U.S. EPA required physical habitat information sufficiently comprehensive to facilit...

  14. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon: The Importance of Geomorphic Features in Large Rivers

    PubMed

    Geist; Dauble

    1998-09-01

    / Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. We present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of our conceptual model. We suggest that traditional habitat models and our conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.KEY WORDS: Hyporheic zone; Geomorphology; Spawning habitat; Large rivers; Fall chinook salmon; Habitat management

  15. Seasonal distribution, aggregation, and habitat selection of common carp in Clear Lake, Iowa

    USGS Publications Warehouse

    Penne, C.R.; Pierce, C.L.

    2008-01-01

    The common carp Cyprinus carpio is widely distributed and frequently considered a nuisance species outside its native range. Common carp are abundant in Clear Lake, Iowa, where their presence is both a symptom of degradation and an impediment to improving water quality and the sport fishery. We used radiotelemetry to quantify seasonal distribution, aggregation, and habitat selection of adult and subadult common carp in Clear Lake during 2005-2006 in an effort to guide future control strategies. Over a 22-month period, we recorded 1,951 locations of 54 adults and 60 subadults implanted with radio transmitters. Adults demonstrated a clear tendency to aggregate in an offshore area during the late fall and winter and in shallow, vegetated areas before and during spring spawning. Late-fall and winter aggregations were estimated to include a larger percentage of the tracked adults than spring aggregations. Subadults aggregated in shallow, vegetated areas during the spring and early summer. Our study, when considered in combination with previous research, suggests repeatable patterns of distribution, aggregation, and habitat selection that should facilitate common carp reduction programs in Clear Lake and similar systems. ?? Copyright by the American Fisheries Society 2008.

  16. Selective decision-making deficits in at-risk gamblers

    PubMed Central

    Grant, Jon Edgar; Chamberlain, Samuel Robin; Schreiber, Liana Renne Nelson; Odlaug, Brian Lawrence; Kim, Suck Won

    2011-01-01

    Despite reasonable knowledge of pathological gambling (PG), little is known of its cognitive antecedents. We evaluated decision-making and impulsivity characteristics in people at risk of developing PG using neuropsychological tests. Non-treatment seeking volunteers (18-29 years) who gamble ≥5 times/year were recruited from the general community, and split into two groups: those “at risk” of developing PG (n=74) and those social, non-problem gamblers (n=112). Participants undertook the Cambridge Gamble and Stop-signal tasks and were assessed with the Mini-International Neuropsychiatric Interview and the Yale Brown Obsessive Compulsive Scale Modified for Pathological Gambling. On the Cambridge Gamble task, the at- risk subjects gambled more points overall, were more likely to go bankrupt, and made more irrational decisions under situations of relative risk ambiguity. On the Stop-signal task, at- risk gamblers did not differ from the social, non-problem gamblers in terms of motor impulse control (stop-signal reaction times). Findings suggest that selective cognitive dysfunction may already be present in terms of decision-making in at-risk gamblers, even before psychopathology arises. These findings implicate selective decision-making deficits and dysfunction of orbitofronto-limbic circuitry in the chain of pathogenesis between social, non-problematic and pathological gambling. PMID:21715016

  17. Is the microplastic selective according to the habitat? Records in amphioxus sands, Mäerl bed habitats and Cymodocea nodosa habitats.

    PubMed

    Renzi, Monia; Blašković, Andrea; Fastelli, Paolo; Marcelli, Massimiliano; Guerranti, Cristiana; Cannas, Susanna; Barone, Lorenzo; Massara, Francesca

    2018-05-01

    This study estimated for the first time the total loads of plastic litter (macro- meso- and micro-plastics) in sediments of different habitat types from the Northern Adriatic Sea. Samples were collected in March 2016. The sampling sites were settled in shoreline, on the C. nodosa bottoms, Amphioxus sands, and Mäerl bed habitats. Microplastics items were present in all sampling site and ranging within 137-703 items/kg d.w. from Mäerl bed habitat to the shoreline. In C. nodosa bottoms 170 items/kg d.w. were found, while in Amphioxus sands were recorded on average 194 items/kg d.w. Due to the absence of statistical associations among litter levels and abundance of B. lanceolatum in the study area, this research present the needs to develop a new method and more research to for the evaluation of how much the interrelation between sensible habitats and microplastic exist. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Physical habitat in the national wadeable streams assessment

    EPA Science Inventory

    Effective environmental policy decisions require stream habitat information that is accurate, precise, and relevant. The recent National Wadeable Streams Assessment (NWSA) carried out by the U.S. EPA required physical habitat information sufficiently comprehensive to facilitate i...

  19. Incubation success and habitat selection of shore-spawning kokanee Onchorhynchus nerka: effects of water level regulation and habitat characteristics.

    USGS Publications Warehouse

    Whitlock, Steven L.; Quist, Michael C.; Dux, Andrew M.

    2014-01-01

    Changes to water-level regimes have been known to restructure fish assemblages and interfere with the population dynamics of both littoral and pelagic species. The effect of altered water-level regimes on shore-spawning kokanee Oncorhynchus nerka incubation success was evaluated using a comprehensive in situ study in Lake Pend Oreille, ID, USA. Survival was not related to substrate size composition or depth, indicating that shore-spawning kokanee do not currently receive a substrate-mediated survival benefit from higher winter water levels. Substrate composition also did not differ among isobaths in the nearshore area. On average, the odds of an egg surviving to the preemergent stage were more than three times greater for sites in downwelling areas than those lacking downwelling. This study revealed that shoreline spawning habitat is not as limited as previously thought. Downwelling areas appear to contribute substantially to shore-spawning kokanee recruitment. This research illustrates the value of rigorous in situ studies both for testing potential mechanisms underlying population trends and providing insight into spawning habitat selection.

  20. Habitat use of bonobos (Pan paniscus) at Wamba: Selection of vegetation types for ranging, feeding, and night-sleeping.

    PubMed

    Terada, Saeko; Nackoney, Janet; Sakamaki, Tetsuya; Mulavwa, Mbangi Norbert; Yumoto, Takakazu; Furuichi, Takeshi

    2015-06-01

    Understanding the habitat requirements of great apes is essential for effective conservation strategies. We examined annual habitat use of a bonobo group in the Wamba field site within the Luo Scientific Reserve, Democratic Republic of the Congo. Using satellite imagery, we categorized the group's ranging area into three forest types: (1) primary and old secondary forest (P/OS), (2) young secondary forest and agriculture (YS/Ag), and (3) swamp forest (Sw). We tracked the group for 1 year (2007-2008) and compared usage of the three forest types for ranging, feeding, and night-sleeping. We also recorded what the bonobos ate and monitored monthly fruit availability in each forest type. The group ranged and fed more often in P/OS and less often in YS/Ag and Sw than expected based on habitat availability. Also, the group slept mostly in P/OS (94% of nights monitored), but also in YS/Ag (1%), and Sw (5%). Fruit availability in P/OS had no significant effect on habitat selection, but the group fed in YS/Ag most often during the two months when fruits in P/OS were least abundant. In June, when fruit of Uapaca spp. (selectively eaten by bonobos) was generally abundant in Sw, the group mostly ranged and slept there. The bonobos fed most often on herbaceous plants in all three forest types. In Sw, the bonobos frequently ate mushrooms. Our results show that semi-open forest with abundant herbaceous plants such as YS/Ag could be an important feeding habitat and may provide fallback food for bonobos when fruits are scarce. Furthermore, Sw can serve seasonally as a main habitat to complement P/OS if adequate food resources and tree nesting opportunities are available. We conclude that bonobos use diverse habitats depending on their needs and we highlight the importance of minor-use habitats for sustaining populations of target species in conservation planning. © 2015 Wiley Periodicals, Inc.

  1. Habitat Suitability Index Models: Pronghorn

    USGS Publications Warehouse

    Allen, Arthur W.; Cook, John G.; Armbruster, Michael J.

    1984-01-01

    This is one of a series of publications that provide information on the habitat requirements of selected fish and wildlife species. Literature describing the relationship between habitat variables related to life requisites and habitat suitability for the pronghorn (Antilocapra americana) are synthesized. These data are subsequently used to develop Habitat Suitability Index (HSI) models. The HSI models are designed to provide information that can be used in impact assessment and habitat management.

  2. System for selecting relevant information for decision support.

    PubMed

    Kalina, Jan; Seidl, Libor; Zvára, Karel; Grünfeldová, Hana; Slovák, Dalibor; Zvárová, Jana

    2013-01-01

    We implemented a prototype of a decision support system called SIR which has a form of a web-based classification service for diagnostic decision support. The system has the ability to select the most relevant variables and to learn a classification rule, which is guaranteed to be suitable also for high-dimensional measurements. The classification system can be useful for clinicians in primary care to support their decision-making tasks with relevant information extracted from any available clinical study. The implemented prototype was tested on a sample of patients in a cardiological study and performs an information extraction from a high-dimensional set containing both clinical and gene expression data.

  3. Habitat selection of woodchat shrikes Lanius senator during spring stopover is related to foraging strategy

    PubMed Central

    Barboutis, Christos; Kassara, Christina; Giokas, Sinos

    2017-01-01

    Abstract Every spring a huge number of passerines cross the Sahara Desert and the Mediterranean Sea on their way to their breeding grounds. Stopover sites after such extended barriers where birds can rest, refuel, and find shelter from adverse weather, are of crucial importance for the outcome of their migration. Stopover habitat selection used by migrating birds depends on landscape context, habitat patch characteristics, as well as on the particular energetic conditions and needs of individual birds, but it is still poorly investigated. We focused on a long-distance migrating passerine, the woodchat shrike, in order to investigate for the first time the species’ habitat selection at a spring stopover site (island of Antikythira, Greece) after the crossing of the Sahara Desert and Mediterranean Sea. We implemented radio-tracking, color-ringing, and visual behavioral observations to collect data on microhabitat use. Generalized Linear Mixed Models were developed to identify the species’ most preferred microhabitat during its stopover on this low human disturbed island. We found that high maquis vegetation surrounded by low vegetation was chosen as perches for hunting. Moreover, high maquis vegetation appeared to facilitate hunting attempts toward the ground, the most frequently observed foraging strategy. Finally, we discuss our findings in the context of conservation practices for the woodchat shrike and their stopover sites on Mediterranean islands. PMID:29491971

  4. Habitat selection by breeding waterbirds at ponds with size-structured fish populations

    NASA Astrophysics Data System (ADS)

    Kloskowski, Janusz; Nieoczym, Marek; Polak, Marcin; Pitucha, Piotr

    2010-07-01

    Fish may significantly affect habitat use by birds, either as their prey or as competitors. Fish communities are often distinctly size-structured, but the consequences for waterbird assemblages remain poorly understood. We examined the effects of size structure of common carp ( Cyprinus carpio) cohorts together with other biotic and abiotic pond characteristics on the distribution of breeding waterbirds in a seminatural system of monocultured ponds, where three fish age classes were separately stocked. Fish age corresponded to a distinct fish size gradient. Fish age and total biomass, macroinvertebrate and amphibian abundance, and emergent vegetation best explained the differences in bird density between ponds. Abundance of animal prey other than fish (aquatic macroinvertebrates and larval amphibians) decreased with increasing carp age in the ponds. Densities of ducks and smaller grebes were strongly negatively associated with fish age/size gradient. The largest of the grebes, the piscivorous great crested grebe ( Podiceps cristatus), was the only species that preferred ponds with medium-sized fish and was positively associated with total fish biomass. Habitat selection by bitterns and most rallids was instead strongly influenced by the relative amount of emergent vegetation cover in the ponds. Our results show that fish size structure may be an important cue for breeding habitat choice and a factor affording an opportunity for niche diversification in avian communities.

  5. Livestock grazing, wildlife habitat, and rangeland values

    Treesearch

    Paul R. Krausman; David E. Naugle; Michael R. Frisina; Rick Northrup; Vernon C. Bleich; William M. Block; Mark C. Wallace; Jeffrey D. Wright

    2009-01-01

    Livestock managers make and implement grazing management decisions to achieve a variety of objectives including livestock production, sustainable grazing, and wildlife habitat enhancement. Assessed values of grazing lands and ranches are often based on aesthetics and wildlife habitat or recreational values, which can exceed agricultural values, thus providing...

  6. Salinity Is an Agent of Divergent Selection Driving Local Adaptation of Arabidopsis to Coastal Habitats1[OPEN

    PubMed Central

    Teres, Joana; Bomblies, Kirsten; Douglas, Alex; Salt, David E.

    2015-01-01

    Understanding the molecular mechanism of adaptive evolution in plants provides insights into the selective forces driving adaptation and the genetic basis of adaptive traits with agricultural value. The genomic resources available for Arabidopsis (Arabidopsis thaliana) make it well suited to the rapid molecular dissection of adaptive processes. Although numerous potentially adaptive loci have been identified in Arabidopsis, the consequences of divergent selection and migration (both important aspects of the process of local adaptation) for Arabidopsis are not well understood. Here, we use a multiyear field-based reciprocal transplant experiment to detect local populations of Arabidopsis composed of multiple small stands of plants (demes) that are locally adapted to the coast and adjacent inland habitats in northeastern Spain. We identify fitness tradeoffs between plants from these different habitats when grown together in inland and coastal common gardens and also, under controlled conditions in soil excavated from coastal and inland sites. Plants from the coastal habitat also outperform those from inland when grown under high salinity, indicating local adaptation to soil salinity. Sodium can be toxic to plants, and we find its concentration to be elevated in soil and plants sampled at the coast. We conclude that the local adaptation that we observe between adjacent coastal and inland populations is caused by ongoing divergent selection driven by the differential salinity between coastal and inland soils. PMID:26034264

  7. Optimizing habitat protection using demographic models of population viability.

    Treesearch

    Robert G. Haight; Brian Cypher; Patrick A. Kelly; Scott Phillips; Hugh P. Possingham; Katherine Ralls; Anthony M. Starfield; P.J. White; Daniel Williams

    2002-01-01

    Expanding habitat protection is a common tactic for species conservation. When unprotected habitat is privately owned, decisions must be made about which areas to protect by land purchase or conservation easement. To address this problem, we developed an optimization framework for choosing the habitat protection strategy that minimizes the risk of population extinction...

  8. Neural Underpinnings of Decision Strategy Selection: A Review and a Theoretical Model

    PubMed Central

    Wichary, Szymon; Smolen, Tomasz

    2016-01-01

    In multi-attribute choice, decision makers use decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g., affect, stress) on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models of this process. We also present the Bottom-Up Model of Strategy Selection (BUMSS). The model assumes that the use of the rational Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: (1) cue weight computation, (2) gain modulation, and (3) weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neural signals. PMID:27877103

  9. Neural Underpinnings of Decision Strategy Selection: A Review and a Theoretical Model.

    PubMed

    Wichary, Szymon; Smolen, Tomasz

    2016-01-01

    In multi-attribute choice, decision makers use decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g., affect, stress) on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models of this process. We also present the Bottom-Up Model of Strategy Selection (BUMSS). The model assumes that the use of the rational Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: (1) cue weight computation, (2) gain modulation, and (3) weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neural signals.

  10. Large herbivores in novel ecosystems - Habitat selection by red deer (Cervus elaphus) in a former brown-coal mining area

    PubMed Central

    Bøcher, Peder Klith; Root-Bernstein, Meredith; Svenning, Jens-Christian

    2017-01-01

    After centuries of range contraction, many megafauna species are recolonizing parts of Europe. One example is the red deer (Cervus elaphus), which was able to expand its range and is now found in half the areas it inhabited in the beginning of the 19th century. Herbivores are important ecosystem engineers, influencing e.g. vegetation. Knowledge on their habitat selection and their influence on ecosystems might be crucial for future landscape management, especially for hybrid and novel ecosystems emerging in post-industrial landscapes. In this study, red deer habitat selection was studied in a former brown-coal mining area in Denmark. Here, natural settings were severely changed during the mining activity and its current landscape is in large parts managed by hunters as suitable deer habitat. We assessed red deer habitat preferences through feces presence and camera traps combined with land cover data from vegetation sampling, remote sensing and official geographic data. Red deer occurrence was negatively associated with human disturbance and positively associated with forage availability, tree cover and mean terrain height. Apparently, red deer are capable of recolonizing former industrial landscapes quite well if key conditions such as forage abundance and cover are appropriate. In the absence of carnivores, human disturbance, such as a hunting regime is a main reason why deer avoid certain areas. The resulting spatial heterogeneity red deer showed in their habitat use of the study area might be a tool to preserve mosaic landscapes of forest and open habitats and thus promote biodiversity in abandoned post-industrial landscapes. PMID:28505192

  11. Large herbivores in novel ecosystems - Habitat selection by red deer (Cervus elaphus) in a former brown-coal mining area.

    PubMed

    Müller, Anke; Dahm, Maria; Bøcher, Peder Klith; Root-Bernstein, Meredith; Svenning, Jens-Christian

    2017-01-01

    After centuries of range contraction, many megafauna species are recolonizing parts of Europe. One example is the red deer (Cervus elaphus), which was able to expand its range and is now found in half the areas it inhabited in the beginning of the 19th century. Herbivores are important ecosystem engineers, influencing e.g. vegetation. Knowledge on their habitat selection and their influence on ecosystems might be crucial for future landscape management, especially for hybrid and novel ecosystems emerging in post-industrial landscapes. In this study, red deer habitat selection was studied in a former brown-coal mining area in Denmark. Here, natural settings were severely changed during the mining activity and its current landscape is in large parts managed by hunters as suitable deer habitat. We assessed red deer habitat preferences through feces presence and camera traps combined with land cover data from vegetation sampling, remote sensing and official geographic data. Red deer occurrence was negatively associated with human disturbance and positively associated with forage availability, tree cover and mean terrain height. Apparently, red deer are capable of recolonizing former industrial landscapes quite well if key conditions such as forage abundance and cover are appropriate. In the absence of carnivores, human disturbance, such as a hunting regime is a main reason why deer avoid certain areas. The resulting spatial heterogeneity red deer showed in their habitat use of the study area might be a tool to preserve mosaic landscapes of forest and open habitats and thus promote biodiversity in abandoned post-industrial landscapes.

  12. A Decision Support System for Evaluating and Selecting Information Systems Projects

    NASA Astrophysics Data System (ADS)

    Deng, Hepu; Wibowo, Santoso

    2009-01-01

    This chapter presents a decision support system (DSS) for effectively solving the information systems (IS) project selection problem. The proposed DSS recognizes the multidimensional nature of the IS project selection problem, the availability of multicriteria analysis (MA) methods, and the preferences of the decision-maker (DM) on the use of specific MA methods in a given situation. A knowledge base consisting of IF-THEN production rules is developed for assisting the DM with a systematic adoption of the most appropriate method with the efficient use of the powerful reasoning and explanation capabilities of intelligent DSS. The idea of letting the problem to be solved determines the method to be used is incorporated into the proposed DSS. As a result, effective decisions can be made for solving the IS project selection problem. An example is presented to demonstrate the applicability of the proposed DSS for solving the problem of selecting IS projects in real world situations.

  13. SADA: Ecological Risk Based Decision Support System for Selective Remediation

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is freeware that implements terrestrial ecological risk assessment and yields a selective remediation design using its integral geographical information system, based on ecological and risk assessment inputs. Selective remediation ...

  14. Investigating habitat value to inform contaminant remediation options: approach

    Treesearch

    Rebecca A. Efroymson; Mark J. Peterson; Christopher J. Welsh; Daniel L. Druckenbrod; Michael G. Ryon; John G. Smith; William W. Hargrove; Neil R. Giffen; W. Kelly Roy; Harry D. Quarles

    2008-01-01

    Habitat valuation methods are most often developed and used to prioritize candidate lands for conservation. In this study the intent of habitat valuation was to inform the decision-making process for remediation of chemical contaminants on specific lands or surface water bodies. Methods were developed to summarize dimensions of habitat value for six representative...

  15. A Markov decision process for managing habitat for Florida scrub-jays

    USGS Publications Warehouse

    Johnson, Fred A.; Breininger, David R.; Duncan, Brean W.; Nichols, James D.; Runge, Michael C.; Williams, B. Ken

    2011-01-01

    . Generally, our analysis demonstrated the difficulty of managing for a species that requires midsuccessional habitat, and suggests that innovative management tools may be needed to help ensure the persistence of scrub-jays at Merritt Island National Wildlife Refuge. The development of a tailored monitoring program as a component of adaptive management could help reduce uncertainty about controlled and uncontrolled variation in transition probabilities of scrub-height and thus lead to improved decision making.

  16. Weather, habitat composition, and female behavior interact to modify offspring survival in Greater Sage-Grouse.

    PubMed

    Gibson, Daniel; Blomberg, Erik J; Atamian, Michael T; Sedinger, James S

    2017-01-01

    Weather is a source of environmental variation that can affect population vital rates. However, the influence of weather on individual fitness is spatially heterogeneous and can be driven by other environmental factors, such as habitat composition. Therefore, individuals can experience reduced fitness (e.g., decreased reproductive success) during poor environmental conditions through poor decisions regarding habitat selection. This requires, however, that habitat selection is adaptive and that the organism can correctly interpret the environmental cues to modify habitat use. Greater Sage-Grouse (Centrocercus urophasianus) are an obligate of the sagebrush ecosystems of western North America, relying on sagebrush for food and cover. Greater Sage-Grouse chicks, however, require foods with high nutrient content (i.e., forbs and insects), the abundance of which is both temporally and spatially dynamic and related primarily to water availability. Our goal was to assess whether nest site selection and movements of broods by females reduced the negative effect of drought on offspring survival. As predicted, chick survival was negatively influenced by drought severity. We found that sage-grouse females generally preferred to nest and raise their young in locations where their chicks would experience higher survival. We also found that use of habitats positively associated with chick survival were also positively associated with drought severity, which suggests that females reduced drought impacts on their dependent young by selecting more favorable environments during drought years. Although our findings suggest that female nest site selection and brood movement rates can reduce the negative effects of drought on early offspring survival, the influence of severe drought conditions was not completely mitigated by female behavior, and that drought conditions should be considered a threat to Greater Sage-Grouse population persistence. © 2016 by the Ecological Society of

  17. Habitat stability, predation risk and 'memory syndromes'.

    PubMed

    Dalesman, S; Rendle, A; Dall, S R X

    2015-05-27

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits ('memory syndrome') related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population.

  18. Habitat characteristic of two selected locations for sea cucumber ranching purposes

    NASA Astrophysics Data System (ADS)

    Hartati, Retno; Trianto, Agus; Widianingsih

    2017-02-01

    Sea cucumbers face heavily overfished because of their high prices and very strong market demand. One effort suggested to overcome this problem is sea ranching. The objectives of present works were to determine biological, physical, and chemical characteristics of prospective location for sea ranching of sea cucumber Holothuria atra. Two location at Jepara Waters (Teluk Awur and Bandengan WateRs of Jepara Regency) were selected. The determination of chemical (salinity, temperature, dissolved oxygen of water, phosphate, nitrate, nitrite and ammonium of water and sediment, organic matters of sediment), physical (transparancy, sedimen grains size, water current direction and its velocity), biologycal characteristic (coverage of seagrass and its macroalgae associated, phytoplankton as well as chlorophyl-a and phaeopytin of water and sediment) ware determined. The result of present work showed that some characteristic were matched with requirement as sea ranching location of sea cucumber because the density of sea cucumber in the sea is a function of habitat features. For sediment feeding holothurians of the family Aspidochirotida, the biologycal characteristic act as very important considerations by providing sea cucumber food. High cholophyl-a and phaeopytin in sediment also represent a prosperous habitat for sea cucumber ranching.

  19. Roost selection by rafinesque's big-eared bats ( Corynorhinus rafinesquii ) in a pristine habitat at three spatial scales

    Treesearch

    Jessica S. Lucas; Susan C. Loeb; Patrick G. R. Jodice

    2015-01-01

    Although several studies have described roost use by Rafinesque’s big-eared bats (Corynorhinus rafinesquii), few studies have examined roost selection. We examined roost use and selection by Rafinesque’s big-eared bat at the tree, stand, and landscape scales during the maternity season in pristine old-growth habitat in the Coastal Plain of South...

  20. Meta-analyses of habitat selection by fishers at resting sites in the Pacific coastal region

    Treesearch

    Keith B. Aubry; Catherine M. Raley; Steven W. Buskirk; William J. Zielinski; Michael K. Schwartz; Richard T. Golightly; Kathryn L. Purcell; Richard D. Weir; J. Scott Yaeger

    2013-01-01

    The fisher (Pekania pennanti) is a species of conservation concern throughout the Pacific coastal region in North America. A number of radiotelemetry studies of habitat selection by fishers at resting sites have been conducted in this region, but the applicability of observed patterns beyond the boundaries of each study area is unknown. Broadly...

  1. An Approach for Web Service Selection Based on Confidence Level of Decision Maker

    PubMed Central

    Khezrian, Mojtaba; Jahan, Ali; Wan Kadir, Wan Mohd Nasir; Ibrahim, Suhaimi

    2014-01-01

    Web services today are among the most widely used groups for Service Oriented Architecture (SOA). Service selection is one of the most significant current discussions in SOA, which evaluates discovered services and chooses the best candidate from them. Although a majority of service selection techniques apply Quality of Service (QoS), the behaviour of QoS-based service selection leads to service selection problems in Multi-Criteria Decision Making (MCDM). In the existing works, the confidence level of decision makers is neglected and does not consider their expertise in assessing Web services. In this paper, we employ the VIKOR (VIšekriterijumskoKOmpromisnoRangiranje) method, which is absent in the literature for service selection, but is well-known in other research. We propose a QoS-based approach that deals with service selection by applying VIKOR with improvement of features. This research determines the weights of criteria based on user preference and accounts for the confidence level of decision makers. The proposed approach is illustrated by an example in order to demonstrate and validate the model. The results of this research may facilitate service consumers to attain a more efficient decision when selecting the appropriate service. PMID:24897426

  2. Selection based on the size of the black tie of the great tit may be reversed in urban habitats.

    PubMed

    Senar, Juan Carlos; Conroy, Michael J; Quesada, Javier; Mateos-Gonzalez, Fernando

    2014-07-01

    A standard approach to model how selection shapes phenotypic traits is the analysis of capture-recapture data relating trait variation to survival. Divergent selection, however, has never been analyzed by the capture-recapture approach. Most reported examples of differences between urban and nonurban animals reflect behavioral plasticity rather than divergent selection. The aim of this paper was to use a capture-recapture approach to test the hypothesis that divergent selection can also drive local adaptation in urban habitats. We focused on the size of the black breast stripe (i.e., tie width) of the great tit (Parus major), a sexual ornament used in mate choice. Urban great tits display smaller tie sizes than forest birds. Because tie size is mostly genetically determined, it could potentially respond to selection. We analyzed capture/recapture data of male great tits in Barcelona city (N = 171) and in a nearby (7 km) forest (N = 324) from 1992 to 2008 using MARK. When modelling recapture rate, we found it to be strongly influenced by tie width, so that both for urban and forest habitats, birds with smaller ties were more trap-shy and more cautious than their larger tied counterparts. When modelling survival, we found that survival prospects in forest great tits increased the larger their tie width (i.e., directional positive selection), but the reverse was found for urban birds, with individuals displaying smaller ties showing higher survival (i.e., directional negative selection). As melanin-based tie size seems to be related to personality, and both are heritable, results may be explained by cautious personalities being favored in urban environments. More importantly, our results show that divergent selection can be an important mechanism in local adaptation to urban habitats and that capture-recapture is a powerful tool to test it.

  3. Feeding habitat quality and behavioral trade-offs in chimpanzees: a case for species distribution models.

    PubMed

    Foerster, Steffen; Zhong, Ying; Pintea, Lilian; Murray, Carson M; Wilson, Michael L; Mjungu, Deus C; Pusey, Anne E

    2016-01-01

    The distribution and abundance of food resources are among the most important factors that influence animal behavioral strategies. Yet, spatial variation in feeding habitat quality is often difficult to assess with traditional methods that rely on extrapolation from plot survey data or remote sensing. Here, we show that maximum entropy species distribution modeling can be used to successfully predict small-scale variation in the distribution of 24 important plant food species for chimpanzees at Gombe National Park, Tanzania. We combined model predictions with behavioral observations to quantify feeding habitat quality as the cumulative dietary proportion of the species predicted to occur in a given location. This measure exhibited considerable spatial heterogeneity with elevation and latitude, both within and across main habitat types. We used model results to assess individual variation in habitat selection among adult chimpanzees during a 10-year period, testing predictions about trade-offs between foraging and reproductive effort. We found that nonswollen females selected the highest-quality habitats compared with swollen females or males, in line with predictions based on their energetic needs. Swollen females appeared to compromise feeding in favor of mating opportunities, suggesting that females rather than males change their ranging patterns in search of mates. Males generally occupied feeding habitats of lower quality, which may exacerbate energetic challenges of aggression and territory defense. Finally, we documented an increase in feeding habitat quality with community residence time in both sexes during the dry season, suggesting an influence of familiarity on foraging decisions in a highly heterogeneous landscape.

  4. Integrating optical satellite data and airborne laser scanning in habitat classification for wildlife management

    NASA Astrophysics Data System (ADS)

    Nijland, W.; Coops, N. C.; Nielsen, S. E.; Stenhouse, G.

    2015-06-01

    Wildlife habitat selection is determined by a wide range of factors including food availability, shelter, security and landscape heterogeneity all of which are closely related to the more readily mapped landcover types and disturbance regimes. Regional wildlife habitat studies often used moderate resolution multispectral satellite imagery for wall to wall mapping, because it offers a favourable mix of availability, cost and resolution. However, certain habitat characteristics such as canopy structure and topographic factors are not well discriminated with these passive, optical datasets. Airborne laser scanning (ALS) provides highly accurate three dimensional data on canopy structure and the underlying terrain, thereby offers significant enhancements to wildlife habitat mapping. In this paper, we introduce an approach to integrate ALS data and multispectral images to develop a new heuristic wildlife habitat classifier for western Alberta. Our method combines ALS direct measures of canopy height, and cover with optical estimates of species (conifer vs. deciduous) composition into a decision tree classifier for habitat - or landcover types. We believe this new approach is highly versatile and transferable, because class rules can be easily adapted for other species or functional groups. We discuss the implications of increased ALS availability for habitat mapping and wildlife management and provide recommendations for integrating multispectral and ALS data into wildlife management.

  5. Assessing Greater Sage-Grouse Selection of Brood-Rearing Habitat Using Remotely-Sensed Imagery: Can Readily Available High-Resolution Imagery Be Used to Identify Brood-Rearing Habitat Across a Broad Landscape?

    PubMed

    Westover, Matthew; Baxter, Jared; Baxter, Rick; Day, Casey; Jensen, Ryan; Petersen, Steve; Larsen, Randy

    2016-01-01

    Greater sage-grouse populations have decreased steadily since European settlement in western North America. Reduced availability of brood-rearing habitat has been identified as a limiting factor for many populations. We used radio-telemetry to acquire locations of sage-grouse broods from 1998 to 2012 in Strawberry Valley, Utah. Using these locations and remotely-sensed NAIP (National Agricultural Imagery Program) imagery, we 1) determined which characteristics of brood-rearing habitat could be used in widely available, high resolution imagery 2) assessed the spatial extent at which sage-grouse selected brood-rearing habitat, and 3) created a predictive habitat model to identify areas of preferred brood-rearing habitat. We used AIC model selection to evaluate support for a list of variables derived from remotely-sensed imagery. We examined the relationship of these explanatory variables at three spatial extents (45, 200, and 795 meter radii). Our top model included 10 variables (percent shrub, percent grass, percent tree, percent paved road, percent riparian, meters of sage/tree edge, meters of riparian/tree edge, distance to tree, distance to transmission lines, and distance to permanent structures). Variables from each spatial extent were represented in our top model with the majority being associated with the larger (795 meter) spatial extent. When applied to our study area, our top model predicted 75% of naïve brood locations suggesting reasonable success using this method and widely available NAIP imagery. We encourage application of our methodology to other sage-grouse populations and species of conservation concern.

  6. Risk-Informed Decision Making: Application to Technology Development Alternative Selection

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Maggio, Gaspare; Everett, Christopher

    2010-01-01

    NASA NPR 8000.4A, Agency Risk Management Procedural Requirements, defines risk management in terms of two complementary processes: Risk-informed Decision Making (RIDM) and Continuous Risk Management (CRM). The RIDM process is used to inform decision making by emphasizing proper use of risk analysis to make decisions that impact all mission execution domains (e.g., safety, technical, cost, and schedule) for program/projects and mission support organizations. The RIDM process supports the selection of an alternative prior to program commitment. The CRM process is used to manage risk associated with the implementation of the selected alternative. The two processes work together to foster proactive risk management at NASA. The Office of Safety and Mission Assurance at NASA Headquarters has developed a technical handbook to provide guidance for implementing the RIDM process in the context of NASA risk management and systems engineering. This paper summarizes the key concepts and procedures of the RIDM process as presented in the handbook, and also illustrates how the RIDM process can be applied to the selection of technology investments as NASA's new technology development programs are initiated.

  7. Elk habitat selection in Great Smoky Mountains National Park

    Treesearch

    Elizabeth Hillard; Laura E. DeWald

    2014-01-01

    Great Smoky Mountains National Park (GSMNP) in North Carolina and Tennessee now has an established elk (Cervus elaphus) population 10 years after reintroduction. Although elk typically elect more open habitat, elk in GSMNP are showing they are capable of doing well in predominantly forested habitats. Evaluating how the established herd of elk is...

  8. Selecting a Conservation Surrogate Species for Small Fragmented Habitats Using Ecological Niche Modelling

    PubMed Central

    Nekaris, K. Anne-Isola; Arnell, Andrew P.; Svensson, Magdalena S.

    2015-01-01

    Simple Summary Large “charismatic” animals (with widespread popular appeal) are often used as flagship species to raise awareness for conservation. Deforestation and forest fragmentation are among the main threats to biodiversity, and in many places such species are disappearing. In this paper we aim to find a suitable species among the less charismatic animal species left in the fragmented forests of South-western Sri Lanka. We selected ten candidates, using a questionnaire survey along with computer modelling of their distributions. The red slender loris and the fishing cat came out as finalists as they were both appealing to local people, and fulfilled selected ecological criteria. Abstract Flagship species are traditionally large, charismatic animals used to rally conservation efforts. Accepted flagship definitions suggest they need only fulfil a strategic role, unlike umbrella species that are used to shelter cohabitant taxa. The criteria used to select both flagship and umbrella species may not stand up in the face of dramatic forest loss, where remaining fragments may only contain species that do not suit either set of criteria. The Cinderella species concept covers aesthetically pleasing and overlooked species that fulfil the criteria of flagships or umbrellas. Such species are also more likely to occur in fragmented habitats. We tested Cinderella criteria on mammals in the fragmented forests of the Sri Lankan Wet Zone. We selected taxa that fulfilled both strategic and ecological roles. We created a shortlist of ten species, and from a survey of local perceptions highlighted two finalists. We tested these for umbrella characteristics against the original shortlist, utilizing Maximum Entropy (MaxEnt) modelling, and analysed distribution overlap using ArcGIS. The criteria highlighted Loris tardigradus tardigradus and Prionailurus viverrinus as finalists, with the former having highest flagship potential. We suggest Cinderella species can be effective

  9. Spatially explicit modeling of annual and seasonal habitat for greater sage-grouse (Centrocercus urophasianus) in Nevada and Northeastern California—An updated decision-support tool for management

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Brussee, Brianne E.; Ricca, Mark A.; Gustafson, K. Benjamin; Sanchez-Chopitea, Erika; Mauch, Kimberly; Niell, Lara; Gardner, Scott; Espinosa, Shawn; Delehanty, David J.

    2016-05-20

    Successful adaptive management hinges largely upon integrating new and improved sources of information as they become available. As a timely example of this tenet, we updated a management decision support tool that was previously developed for greater sage-grouse (Centrocercus urophasianus, hereinafter referred to as “sage-grouse”) populations in Nevada and California. Specifically, recently developed spatially explicit habitat maps derived from empirical data played a key role in the conservation of this species facing listing under the Endangered Species Act. This report provides an updated process for mapping relative habitat suitability and management categories for sage-grouse in Nevada and northeastern California (Coates and others, 2014, 2016). These updates include: (1) adding radio and GPS telemetry locations from sage-grouse monitored at multiple sites during 2014 to the original location dataset beginning in 1998; (2) integrating output from high resolution maps (1–2 m2) of sagebrush and pinyon-juniper cover as covariates in resource selection models; (3) modifying the spatial extent of the analyses to match newly available vegetation layers; (4) explicit modeling of relative habitat suitability during three seasons (spring, summer, winter) that corresponded to critical life history periods for sage-grouse (breeding, brood-rearing, over-wintering); (5) accounting for differences in habitat availability between more mesic sagebrush steppe communities in the northern part of the study area and drier Great Basin sagebrush in more southerly regions by categorizing continuous region-wide surfaces of habitat suitability index (HSI) with independent locations falling within two hydrological zones; (6) integrating the three seasonal maps into a composite map of annual relative habitat suitability; (7) deriving updated land management categories based on previously determined cut-points for intersections of habitat suitability and an updated index of sage

  10. Pre‐moult patterns of habitat use and moult site selection by Brent Geese Branta bernicla nigricans: Individuals prospect for moult sites

    USGS Publications Warehouse

    Lewis, Tyler; Flint, Paul L.; Schmutz, Joel A.; Derksen, Dirk V.

    2010-01-01

    In environments where habitat quality varies, the mechanism by which individuals assess and select habitats has significant consequences on their spatial distribution and ability to respond to environmental change. Each year, thousands of Black Brent Geese Branta bernicla nigricans migrate to the Teshekpuk Lake Special Area (TLSA), Alaska, to undergo a flightless wing‐moult. Over the last three decades, moulting Brent Geese have changed their distribution within the TLSA, redistributing from inland, freshwater wetlands towards coastal, brackish wetlands. To understand better the mechanism by which Brent Geese select a moult site, as well as reasons behind the long‐term shift of moulting distributions, we examined movements and habitat use of birds marked with GPS‐transmitters during the pre‐moult period. Brent Geese did not generally migrate directly to their moulting site during the pre‐moult period, defined as the time from arrival at the moulting grounds to the onset of flightlessness. Rather, individuals used an average of 3.7 ± 0.6 (se) wetland complexes and travelled a minimum of 95.14 ± 15.84 km during the pre‐moult period. Moreover, 69% of Brent Geese visited their final moult site only to leave and visit other sites before returning for the flightless moult. Brent Geese spent significant time in both inland freshwater and coastal estuarine habitats during the pre‐moult, irrespective of the habitat in which they ultimately moulted. Whereas previous research suggested that Brent Geese choose moult sites based largely upon the experience of previous years, our observations suggest a mechanism of moult site selection whereby Brent Geese ‘prospect’ for moult sites, visiting multiple potential moult sites across varied habitat types, presumably gathering information from each site and correspondingly using this information to choose an appropriate moult site. By allowing individuals to adjust their distributions in response to habitat

  11. Habitat selection by the American marten in northeastern Oregon.

    Treesearch

    Evelyn L. Bull; Thad W. Heater; Jay F. Shepherd

    2005-01-01

    Habitat used by 20 adult radio-collared American martens was investigated in northeastern Oregon between 1993 and 1997 to provide land managers with information on habitat management for this species. Martens showed a strong preference for old structure, unlogged stands in subalpine fir and spruce forests with canopy closures 2508, a high density of dead trees and logs...

  12. Conspecific reproductive success and breeding habitat selection: Implications for the study of coloniality

    USGS Publications Warehouse

    Danchin, E.; Boulinier, T.; Massot, M.

    1998-01-01

    Habitat selection is a crucial process in the life cycle of animals because it can affect most components of fitness. It has been proposed that some animals cue on the reproductive success of conspecifics to select breeding habitats. We tested this hypothesis with demographic and behavioral data from a 17-yr study of the Black-legged Kittiwake (Rissa tridactyla), a cliff-nesting seabird. As the hypothesis assumes, the Black-legged Kittiwake nesting environment was patchy, and the relative quality of the different patches (i.e., breeding cliffs) varied in time. The average reproductive success of the breeders of a given cliff was predictable from one year to the next, but this predictability faded after several years. The dynamic nature of cliff quality in the long term is partly explained by the autocorrelation of the prevalence of an ectoparasite that influences reproductive success. As predicted by the performance-based conspecific attraction hypothesis, the reproductive success of current breeders on a given cliff was predictive of the reproductive success of new recruits on the cliff in the following year. Breeders tended to recruit to the previous year's most productive cliffs and to emigrate from the least productive ones. Consequently, the dynamics of breeder numbers on the cliffs were explained by local reproductive success on a year-to-year basis. Because, on average, young Black-legged Kittiwakes first breed when 4 yr old, such a relationship probably results from individual choices based on the assessment of previous-year local quality. When breeders changed breeding cliffs between years, they selected cliffs of per capita higher reproductive success. Furthermore, after accounting for the potential effects of age and sex as well as between-year variations, the effect of individual breeding performance on breeding dispersal was strongly influenced by the average reproductive success of other breeders on the same cliff. Individual breeding performance did

  13. Effects of weather on habitat selection and behavior of mallards wintering in Nebraska

    USGS Publications Warehouse

    Jorde, Dennis G.; Krapu, G.L.; Crawford, R.D.; Hay, M.A.

    1984-01-01

    Sex and age ratios, habitat selection, spatial characteristics, and time budgets of Mallards (Anas platyrhynchos) wintering on the Platte River in south central Nebraska were studied from mid-December to early April 1978-1980. The proportion of females and subadults in the population increased substantially from a cold to a mild winter. Radio-tagged Mallards shifted from riverine to canal roost sites during the coldest periods of the winter, seemingly because of more favorable microclimatic conditions there. Subadults ranged over larger areas during winter than did adults. Activity patterns varied with weather conditions, time of day, and habitat type. During cold periods, energetically costly activities such as aggression and courtship decreased at roost sites and the intensity of foraging activities in fields increased. Mallards were more active at riverine than canal sites during both years. High energy requirements and intense competition for scarce food appear to be primary factors limiting the northernmost distribution of Mallards in winter and causing their skewed sex and age ratios.

  14. Determining fine-scale migratory connectivity and habitat selection for a migratory songbird by using new GPS technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser, Kevin C.; Shave, A.; Savage, A.

    Migratory aerial insectivores are among the fastest declining avian group, but our understanding of these trends has been limited by poor knowledge of migratory connectivity and the identification of critical habitat across the vast distances they travel annually. Using new, archival GPS loggers, we tracked individual purple martins ( Progne subis) from breeding colonies across North America to determine precise (<10m) locations of migratory and overwintering roost locations in South America and to test hypotheses for fine-scale migratory connectivity and habitat use. We discovered weak migratory connectivity at the roost scale, and extensive, fine-scale mixing of birds in the Amazonmore » from distant (>2000 km) breeding sites, with some individuals sharing the same roosting trees. Despite vast tracts of contiguous forest in this region, birds occupied a much more limited habitat, with most (56%) roosts occurring on small habitat islands that were strongly associated with water. Only 17% of these roosts were in current protected areas. As a result, these data reflect a critical advance in our ability to remotely determine precise migratory connectivity and habitat selection across vast spatial scales, enhancing our understanding of population dynamics and enabling more effective conservation of species at risk.« less

  15. Determining fine-scale migratory connectivity and habitat selection for a migratory songbird by using new GPS technology

    DOE PAGES

    Fraser, Kevin C.; Shave, A.; Savage, A.; ...

    2016-07-27

    Migratory aerial insectivores are among the fastest declining avian group, but our understanding of these trends has been limited by poor knowledge of migratory connectivity and the identification of critical habitat across the vast distances they travel annually. Using new, archival GPS loggers, we tracked individual purple martins ( Progne subis) from breeding colonies across North America to determine precise (<10m) locations of migratory and overwintering roost locations in South America and to test hypotheses for fine-scale migratory connectivity and habitat use. We discovered weak migratory connectivity at the roost scale, and extensive, fine-scale mixing of birds in the Amazonmore » from distant (>2000 km) breeding sites, with some individuals sharing the same roosting trees. Despite vast tracts of contiguous forest in this region, birds occupied a much more limited habitat, with most (56%) roosts occurring on small habitat islands that were strongly associated with water. Only 17% of these roosts were in current protected areas. As a result, these data reflect a critical advance in our ability to remotely determine precise migratory connectivity and habitat selection across vast spatial scales, enhancing our understanding of population dynamics and enabling more effective conservation of species at risk.« less

  16. Golden eagle (Aquila chrysaetos) habitat selection as a function of land use and terrain, San Diego County, California

    USGS Publications Warehouse

    Tracey, Jeff A.; Madden, Melanie C.; Bloom, Peter H.; Katzner, Todd E.; Fisher, Robert N.

    2018-04-16

    Beginning in 2014, the U.S. Geological Survey, in collaboration with Bloom Biological, Inc., began telemetry research on golden eagles (Aquila chrysaetos) captured in the San Diego, Orange, and western Riverside Counties of southern California. This work was supported by the San Diego Association of Governments, California Department of Fish and Wildlife, the U.S. Fish and Wildlife Service, the Bureau of Land Management, and the U.S. Geological Survey. Since 2014, we have tracked more than 40 eagles, although this report focuses only on San Diego County eagles.An important objective of this research is to develop habitat selection models for golden eagles. Here we provide predictions of population-level habitat selection for golden eagles in San Diego County based on environmental covariates related to land use and terrain.

  17. Coral reef habitat response to climate change scenarios.

    PubMed

    Freeman, Lauren A; Kleypas, Joan A; Miller, Arthur J

    2013-01-01

    Coral reef ecosystems are threatened by both climate change and direct anthropogenic stress. Climate change will alter the physico-chemical environment that reefs currently occupy, leaving only limited regions that are conducive to reef habitation. Identifying these regions early may aid conservation efforts and inform decisions to transplant particular coral species or groups. Here a species distribution model (Maxent) is used to describe habitat suitable for coral reef growth. Two climate change scenarios (RCP4.5, RCP8.5) from the National Center for Atmospheric Research's Community Earth System Model were used with Maxent to determine environmental suitability for corals (order Scleractinia). Environmental input variables best at representing the limits of suitable reef growth regions were isolated using a principal component analysis. Climate-driven changes in suitable habitat depend strongly on the unique region of reefs used to train Maxent. Increased global habitat loss was predicted in both climate projections through the 21(st) century. A maximum habitat loss of 43% by 2100 was predicted in RCP4.5 and 82% in RCP8.5. When the model is trained solely with environmental data from the Caribbean/Atlantic, 83% of global habitat was lost by 2100 for RCP4.5 and 88% was lost for RCP8.5. Similarly, global runs trained only with Pacific Ocean reefs estimated that 60% of suitable habitat would be lost by 2100 in RCP4.5 and 90% in RCP8.5. When Maxent was trained solely with Indian Ocean reefs, suitable habitat worldwide increased by 38% in RCP4.5 by 2100 and 28% in RCP8.5 by 2050. Global habitat loss by 2100 was just 10% for RCP8.5. This projection suggests that shallow tropical sites in the Indian Ocean basin experience conditions today that are most similar to future projections of worldwide conditions. Indian Ocean reefs may thus be ideal candidate regions from which to select the best strands of coral for potential re-seeding efforts.

  18. Multi-scale Mexican spotted owl (Strix occidentalis lucida) nest/roost habitat selection in Arizona and a comparison with single-scale modeling results

    Treesearch

    Brad C. Timm; Kevin McGarigal; Samuel A. Cushman; Joseph L. Ganey

    2016-01-01

    Efficacy of future habitat selection studies will benefit by taking a multi-scale approach. In addition to potentially providing increased explanatory power and predictive capacity, multi-scale habitat models enhance our understanding of the scales at which species respond to their environment, which is critical knowledge required to implement effective...

  19. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments.

    PubMed

    Rocha, Lidianne L; Colares, Geórgia B; Nogueira, Vanessa L R; Paes, Fernanda A; Melo, Vânia M M

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole.

  20. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    PubMed Central

    Rocha, Lidianne L.; Colares, Geórgia B.; Nogueira, Vanessa L. R.; Paes, Fernanda A.; Melo, Vânia M. M.

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole. PMID:26989418

  1. Whole-Genome Positive Selection and Habitat-Driven Evolution in a Shallow and a Deep-Sea Urchin

    PubMed Central

    Oliver, Thomas A.; Garfield, David A.; Manier, Mollie K.; Haygood, Ralph; Wray, Gregory A.; Palumbi, Stephen R.

    2010-01-01

    Comparisons of genomic sequence between divergent species can provide insight into the action of natural selection across many distinct classes of proteins. Here, we examine the extent of positive selection as a function of tissue-specific and stage-specific gene expression in two closely-related sea urchins, the shallow-water Strongylocentrotus purpuratus and the deep-sea Allocentrotus fragilis, which have diverged greatly in their adult but not larval habitats. Genes that are expressed specifically in adult somatic tissue have significantly higher dN/dS ratios than the genome-wide average, whereas those in larvae are indistinguishable from the genome-wide average. Testis-specific genes have the highest dN/dS values, whereas ovary-specific have the lowest. Branch-site models involving the outgroup S. franciscanus indicate greater selection (ωFG) along the A. fragilis branch than along the S. purpuratus branch. The A. fragilis branch also shows a higher proportion of genes under positive selection, including those involved in skeletal development, endocytosis, and sulfur metabolism. Both lineages are approximately equal in enrichment for positive selection of genes involved in immunity, development, and cell–cell communication. The branch-site models further suggest that adult-specific genes have experienced greater positive selection than those expressed in larvae and that ovary-specific genes are more conserved (i.e., experienced greater negative selection) than those expressed specifically in adult somatic tissues and testis. Our results chart the patterns of protein change that have occurred after habitat divergence in these two species and show that the developmental or functional context in which a gene acts can play an important role in how divergent species adapt to new environments. PMID:20935062

  2. A FRAMEWORK FOR THE ASSESSMENT OF WILDLIFE HABITAT VALUE OF NEW ENGLAND SALT MARSHES

    EPA Science Inventory

    Resource managers are frequently asked to make decisions that affect the protection and restoration of wetland habitats. The desire is often to base at least some part of this decision process on an assessment of wildlife habitat value, an acknowledged and important wetland func...

  3. The role of habitat-selection in restricting invasive blue mussel advancement to protect native populations in San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Mittal, N.; Saarman, N. P.; Pogson, G.

    2013-12-01

    Introduced species contribute to decline of biodiversity and ecosystem services. Introduced species threaten native species by increasing competition for space and resources, changing their habitat, and disrupting species interactions. Protecting native species is crucial to preserving ecosystem services (i.e. medicinal, agricultural, ecological, and cultural benefits) for future generations. In marine communities, the number of invasive species is dramatically increasing every year, further magnifying the negative impact on native species. This research determines if habitat-specific selection can protect native species from their invasive relatives, and could allow targeted habitat restoration for native species to maintain high levels of biodiversity. Blue mussels provide an ideal system for studying the impact of an invasive species (Mytilus galloprovincialis) on native mussels (M. trossulus), because M. galloprovincialis is marked as one of the world's 100 worst invasive species. Hybridization between M. galloprovincialis and M. trossulus occurs wherever their distributions overlap (i.e. Japan, Puget Sound, and central California). In central California, hybrids form in a broad variety of habitats ever since M. galloprovincialis was introduced about 100 years ago. The current level of threat posed to native mussels in central California is unknown. When population growth rate of an invasive species is higher than the native within a hybrid zone, the invader's genes become more prominent in the hybrids than the native species' genes. This uneven mix of genes and decrease of pure native mussels threatens to drive M. trossulus to extinction. Therefore, it is important to research which environment fosters highest success of pure native species. We conducted a field experiment in San Francisco Bay where mussels were reared in different habitats. We then collected samples and extracted DNA from each treatment, and genotyped them by a next-generation sequencing

  4. Conservation of northern bobwhite on private lands in Georgia, USA under uncertainty about landscape-level habitat effects

    USGS Publications Warehouse

    Howell, J.E.; Moore, C.T.; Conroy, M.J.; Hamrick, R.G.; Cooper, R.J.; Thackston, R.E.; Carroll, J.P.

    2009-01-01

    Large-scale habitat enhancement programs for birds are becoming more widespread, however, most lack monitoring to resolve uncertainties and enhance program impact over time. Georgia?s Bobwhite Quail Initiative (BQI) is a competitive, proposal-based system that provides incentives to landowners to establish habitat for northern bobwhites (Colinus virginianus). Using data from monitoring conducted in the program?s first years (1999?2001), we developed alternative hierarchical models to predict bobwhite abundance in response to program habitat modifications on local and regional scales. Effects of habitat and habitat management on bobwhite population response varied among geographical scales, but high measurement variability rendered the specific nature of these scaled effects equivocal. Under some models, BQI had positive impact at both local farm scales (1, 9 km2), particularly when practice acres were clustered, whereas other credible models indicated that bird response did not depend on spatial arrangement of practices. Thus, uncertainty about landscape-level effects of management presents a challenge to program managers who must decide which proposals to accept. We demonstrate that optimal selection decisions can be made despite this uncertainty and that uncertainty can be reduced over time, with consequent improvement in management efficacy. However, such an adaptive approach to BQI program implementation would require the reestablishment of monitoring of bobwhite abundance, an effort for which funding was discontinued in 2002. For landscape-level conservation programs generally, our approach demonstrates the value in assessing multiple scales of impact of habitat modification programs, and it reveals the utility of addressing management uncertainty through multiple decision models and system monitoring.

  5. Habitat diversity in the Northeastern Gulf of Mexico: Selected video clips from the Gulfstream Natural Gas Pipeline digital archive

    USGS Publications Warehouse

    Raabe, Ellen A.; D'Anjou, Robert; Pope, Domonique K.; Robbins, Lisa L.

    2011-01-01

    This project combines underwater video with maps and descriptions to illustrate diverse seafloor habitats from Tampa Bay, Florida, to Mobile Bay, Alabama. A swath of seafloor was surveyed with underwater video to 100 meters (m) water depth in 1999 and 2000 as part of the Gulfstream Natural Gas System Survey. The U.S. Geological Survey (USGS) in St. Petersburg, Florida, in cooperation with Eckerd College and the Florida Department of Environmental Protection (FDEP), produced an archive of analog-to-digital underwater movies. Representative clips of seafloor habitats were selected from hundreds of hours of underwater footage. The locations of video clips were mapped to show the distribution of habitat and habitat transitions. The numerous benthic habitats in the northeastern Gulf of Mexico play a vital role in the region's economy, providing essential resources for tourism, natural gas, recreational water sports (fishing, boating, scuba diving), materials, fresh food, energy, a source of sand for beach renourishment, and more. These submerged natural resources are important to the economy but are often invisible to the general public. This product provides a glimpse of the seafloor with sample underwater video, maps, and habitat descriptions. It was developed to depict the range and location of seafloor habitats in the region but is limited by depth and by the survey track. It should not be viewed as comprehensive, but rather as a point of departure for inquiries and appreciation of marine resources and seafloor habitats. Further information is provided in the Resources section.

  6. Thermoregulation and habitat selection in wood turtles Glyptemys insculpta: chasing the sun slowly.

    PubMed

    Dubois, Y; Blouin-Demers, G; Shipley, B; Thomas, D

    2009-09-01

    1. It is widely accepted that reptiles are able to regulate behaviourally their body temperature (T(b)), but this generalization is primarily based on studies of lizards and snakes in the temperate zone. Because the precision of T(b) regulation may vary considerably between taxa and over geographical ranges, studies of semi-terrestrial turtles in climatic extremes are relevant to the understanding of reptilian thermoregulation. 2. We studied thermoregulation in 21 free-ranging wood turtles (Glyptemys insculpta) at the northern limit of their range in Québec, using miniature data loggers to measure their internal T(b) and external temperature (T(ext)) continuously. We simultaneously recorded the available operative environmental temperature (T(e)) using 23 physical models randomly moved within each habitat type, and we located turtles using radiotelemetry. 3. The habitat used by wood turtles was thermally constraining and the target temperature (T(set)) was only achievable by basking during a short 5-h time window on sunny days. Wood turtles did show thermoregulatory abilities, as determined by the difference between turtle T(b) distribution and the null distribution of T(e) that resulted in T(b) closer to T(set). Although most individuals regulated their T(b) between 09.00 h and 16.00 h on sunny days, regulation was imprecise, as indicated by an index of thermoregulation precision (| T(b) - T(set) |). 4. The comparison of habitat use to availability indicated selection of open habitats. The hourly mean shuttling index (| T(ext) - T(b) |) suggested that turtles used sun/shade shuttling from 09.00 to 16.00 h to elevate their T(b) above mean T(e). 5. Based on laboratory respirometry data, turtles increased their metabolic rate by 20-26% over thermoconformity, and thus likely increased their energy gain which is assumed to be constrained by processing rate at climatic extremes.

  7. Elk habitat suitability map for North Carolina

    USGS Publications Warehouse

    Williams, Steven G.; Cobb, David T.; Collazo, Jaime A.

    2015-01-01

    Although eastern elk (Cervus elaphus canadensis) were extirpated from the eastern United States in the 19th century, they were successfully reintroduced in the North Carolina portion of the Great Smoky Mountains National Park in the early 2000s. The North Carolina Wildlife Resources Commission (NCWRC) is evaluating the prospect of reintroducing the species in other locations in the state to augment recreational opportunities. As a first step in the process, we created a state-wide elk habitat suitability map. We used medium-scale data sets and a two-component approach to iden- tify areas of high biological value for elk and exclude from consideration areas where elk-human conflicts were more likely. Habitats in the state were categorized as 66% unsuitable, 16.7% low, 17% medium, and <1% high suitability for elk. The coastal plain and Piedmont contained the most suitable habitat, but prospective reintroduction sites were largely excluded from consideration due to extensive agricultural activities and pervasiveness of secondary roads. We ranked 31 areas (≥ 500 km2) based on their suitability for reintroduction. The central region of the state contained the top five ranked areas. The Blue Ridge Mountains, where the extant population of elk occurs, was ranked 21st. Our work provides a benchmark for decision makers to evaluate potential consequences and trade-offs associated with the selection of prospective elk reintroduction sites.

  8. A Fuzzy-Based Decision Support Model for Selecting the Best Dialyser Flux in Haemodialysis.

    PubMed

    Oztürk, Necla; Tozan, Hakan

    2015-01-01

    Decision making is an important procedure for every organization. The procedure is particularly challenging for complicated multi-criteria problems. Selection of dialyser flux is one of the decisions routinely made for haemodialysis treatment provided for chronic kidney failure patients. This study provides a decision support model for selecting the best dialyser flux between high-flux and low-flux dialyser alternatives. The preferences of decision makers were collected via a questionnaire. A total of 45 questionnaires filled by dialysis physicians and nephrologists were assessed. A hybrid fuzzy-based decision support software that enables the use of Analytic Hierarchy Process (AHP), Fuzzy Analytic Hierarchy Process (FAHP), Analytic Network Process (ANP), and Fuzzy Analytic Network Process (FANP) was used to evaluate the flux selection model. In conclusion, the results showed that a high-flux dialyser is the best. option for haemodialysis treatment.

  9. A spatially explicit decision support model for restoration of forest bird habitat

    USGS Publications Warehouse

    Twedt, D.J.; Uihlein, W.B.; Elliott, A.B.

    2006-01-01

    The historical area of bottomland hardwood forest in the Mississippi Alluvial Valley has been reduced by >75%. Agricultural production was the primary motivator for deforestation; hence, clearing deliberately targeted higher and drier sites. Remaining forests are highly fragmented and hydrologically altered, with larger forest fragments subject to greater inundation, which has negatively affected many forest bird populations. We developed a spatially explicit decision support model, based on a Partners in Flight plan for forest bird conservation, that prioritizes forest restoration to reduce forest fragmentation and increase the area of forest core (interior forest >1 km from 'hostile' edge). Our primary objective was to increase the number of forest patches that harbor >2000 ha of forest core, but we also sought to increase the number and area of forest cores >5000 ha. Concurrently, we targeted restoration within local (320 km2) landscapes to achieve >60% forest cover. Finally, we emphasized restoration of higher-elevation bottomland hardwood forests in areas where restoration would not increase forest fragmentation. Reforestation of 10% of restorable land in the Mississippi Alluvial Valley (approximately 880,000 ha) targeted at priorities established by this decision support model resulted in approximately 824,000 ha of new forest core. This is more than 32 times the amount of core forest added through reforestation of randomly located fields (approximately 25,000 ha). The total area of forest core (1.6 million ha) that resulted from targeted restoration exceeded habitat objectives identified in the Partners in Flight Bird Conservation Plan and approached the area of forest core present in the 1950s.

  10. Spatial Niche Segregation of Sympatric Stone Marten and Pine Marten--Avoidance of Competition or Selection of Optimal Habitat?

    PubMed

    Wereszczuk, Anna; Zalewski, Andrzej

    2015-01-01

    Coexistence of ecologically similar species relies on differences in one or more dimensions of their ecological niches, such as space, time and resources in diel and/or seasonal scales. However, niche differentiation may result from other mechanisms such as avoidance of high predation pressure, different adaptations or requirements of ecologically similar species. Stone marten (Martes foina) and pine marten (Martes martes) occur sympatrically over a large area in Central Europe and utilize similar habitats and food, therefore it is expected that their coexistence requires differentiation in at least one of their niche dimensions or the mechanisms through which these dimensions are used. To test this hypothesis, we used differences in the species activity patterns and habitat selection, estimated with a resource selection function (RSF), to predict the relative probability of occurrence of the two species within a large forest complex in the northern geographic range of the stone marten. Stone martens were significantly heavier, have a longer body and a better body condition than pine martens. We found weak evidence for temporal niche segregation between the species. Stone and pine martens were both primarily nocturnal, but pine martens were active more frequently during the day and significantly reduced the duration of activity during autumn-winter. Stone and pine martens utilized different habitats and almost completely separated their habitat niches. Stone marten strongly preferred developed areas and avoided meadows and coniferous or deciduous forests. Pine marten preferred deciduous forest and small patches covered by trees, and avoided developed areas and meadows. We conclude that complete habitat segregation of the two marten species facilitates sympatric coexistence in this area. However, spatial niche segregation between these species was more likely due to differences in adaptation to cold climate, avoidance of high predator pressure and/or food

  11. Horseshoe bats make adaptive prey-selection decisions, informed by echo cues

    PubMed Central

    Koselj, Klemen; Schnitzler, Hans-Ulrich; Siemers, Björn M.

    2011-01-01

    Foragers base their prey-selection decisions on the information acquired by the sensory systems. In bats that use echolocation to find prey in darkness, it is not clear whether the specialized diet, as sometimes found by faecal analysis, is a result of active decision-making or rather of biased sensory information. Here, we tested whether greater horseshoe bats decide economically when to attack a particular prey item and when not. This species is known to recognize different insects based on their wing-beat pattern imprinted in the echoes. We built a simulation of the natural foraging process in the laboratory, where the bats scanned for prey from a perch and, upon reaching the decision to attack, intercepted the prey in flight. To fully control echo information available to the bats and assure its unambiguity, we implemented computer-controlled propellers that produced echoes resembling those from natural insects of differing profitability. The bats monitored prey arrivals to sample the supply of prey categories in the environment and to inform foraging decisions. The bats adjusted selectivity for the more profitable prey to its inter-arrival intervals as predicted by foraging theory (an economic strategy known to benefit fitness). Moreover, unlike in previously studied vertebrates, foraging performance of horseshoe bats was not limited by costly rejections of the profitable prey. This calls for further research into the evolutionary selection pressures that sharpened the species's decision-making capacity. PMID:21367788

  12. Does the Use of a Decision Aid Improve Decision Making in Prosthetic Heart Valve Selection? A Multicenter Randomized Trial.

    PubMed

    Korteland, Nelleke M; Ahmed, Yunus; Koolbergen, David R; Brouwer, Marjan; de Heer, Frederiek; Kluin, Jolanda; Bruggemans, Eline F; Klautz, Robert J M; Stiggelbout, Anne M; Bucx, Jeroen J J; Roos-Hesselink, Jolien W; Polak, Peter; Markou, Thanasie; van den Broek, Inge; Ligthart, Rene; Bogers, Ad J J C; Takkenberg, Johanna J M

    2017-02-01

    A Dutch online patient decision aid to support prosthetic heart valve selection was recently developed. A multicenter randomized controlled trial was conducted to assess whether use of the patient decision aid results in optimization of shared decision making in prosthetic heart valve selection. In a 5-center randomized controlled trial, patients were allocated to receive either standard preoperative care (control group) or additional access to the patient decision aid (intervention group). Legally capable adult patients accepted for elective isolated or combined aortic and mitral valve replacement were included. Primary outcome was preoperative decisional conflict (Decisional Conflict Scale); secondary outcomes included patient knowledge, involvement in valve selection, anxiety and depression, (valve-specific) quality of life, and regret. Out of 306 eligible patients, 155 were randomized (78 control and 77 intervention). Preoperative decisional conflict did not differ between the groups (34% versus 33%; P =0.834). Intervention patients felt better informed (median Decisional Conflict Scale informed subscore: 8 versus 17; P =0.046) and had a better knowledge of prosthetic valves (85% versus 68%; P =0.004). Intervention patients experienced less anxiety and depression (median Hospital Anxiety and Depression Scale score: 6 versus 9; P =0.015) and better mental well-being (mean Short Form Health Survey score: 54 versus 50; P =0.032). Three months postoperatively, valve-specific quality of life and regret did not differ between the groups. A patient decision aid to support shared decision making in prosthetic heart valve selection does not lower decisional conflict. It does result in more knowledgeable, better informed, and less anxious and depressed patients, with a better mental well-being. http://www.trialregister.nl. Unique identifier: NTR4350. © 2017 American Heart Association, Inc.

  13. Habitat suitability index models: Black crappie

    USGS Publications Warehouse

    Edwards, Elizabeth A.; Krieger, Douglas A.; Bacteller, Mary; Maughan, O. Eugene

    1982-01-01

    Characteristics and habitat requirements of the black crappie (Pomoxis nigromaculatus) are described in a review of Habitat Suitability Index models. This is one in a series of publications to provide information on the habitat requirements of selected fish and wildlife species. Numerous literature sources have been consulted in an effort to consolidate scientific data on species-habitat relationships. These data have subsequently been synthesized into explicit Habitat Suitability Index (HSI) models. The models are based on suitability indices indicating habitat preferences. Indices have been formulated for variables found to affect the life cycle and survival of each species. Habitat Suitability Index (HSI) models are designed to provide information for use in impact assessment and habitat management activities. The HSI technique is a corollary to the U.S. Fish and Wildlife Service's Habitat Evaluation Procedures.

  14. Scale-dependent mechanisms of habitat selection for a migratory passerine: an experimental approach

    USGS Publications Warehouse

    Donovan, Therese M.; Cornell, Kerri L.

    2010-01-01

    Habitat selection theory predicts that individuals choose breeding habitats that maximize fitness returns on the basis of indirect environmental cues at multiple spatial scales. We performed a 3-year field experiment to evaluate five alternative hypotheses regarding whether individuals choose breeding territories in heterogeneous landscapes on the basis of (1) shrub cover within a site, (2) forest land-cover pattern surrounding a site, (3) conspecific song cues during prebreeding settlement periods, (4) a combination of these factors, and (5) interactions among these factors. We tested hypotheses with playbacks of conspecific song across a gradient of landscape pattern and shrub density and evaluated changes in territory occupancy patterns in a forest-nesting passerine, the Black-throated Blue Warbler (Dendroica caerulescens). Our results support the hypothesis that vegetation structure plays a primary role during presettlement periods in determining occupancy patterns in this species. Further, both occupancy rates and territory turnover were affected by an interaction between local shrub density and amount of forest in the surrounding landscape, but not by interactions between habitat cues and social cues. Although previous studies of this species in unfragmented landscapes found that social postbreeding song cues played a key role in determining territory settlement, our prebreeding playbacks were not associated with territory occupancy or turnover. Our results suggest that in heterogeneous landscapes during spring settlement, vegetation structure may be a more reliable signal of reproductive performance than the physical location of other individuals.

  15. Multi-Criteria Decision Making For Determining A Simple Model of Supplier Selection

    NASA Astrophysics Data System (ADS)

    Harwati

    2017-06-01

    Supplier selection is a decision with many criteria. Supplier selection model usually involves more than five main criteria and more than 10 sub-criteria. In fact many model includes more than 20 criteria. Too many criteria involved in supplier selection models sometimes make it difficult to apply in many companies. This research focuses on designing supplier selection that easy and simple to be applied in the company. Analytical Hierarchy Process (AHP) is used to weighting criteria. The analysis results there are four criteria that are easy and simple can be used to select suppliers: Price (weight 0.4) shipment (weight 0.3), quality (weight 0.2) and services (weight 0.1). A real case simulation shows that simple model provides the same decision with a more complex model.

  16. Habitat use and preferences of breeding female wood ducks

    USGS Publications Warehouse

    Hartke, Kevin M.; Hepp, G.R.

    2004-01-01

    Female wood ducks (Aix sponsa) feed primarily on plant foods in the prelaying period and switch to a diet of mostly invertebrates during egg production. If nutrient acquisition is habitat-specific, then selection and use of habitats may differ between these reproductive stages. A better understanding of these processes is needed to assist future habitat conservation and management efforts. In January-May 1999 and 2000, we monitored movements and habitat use of radiomarked females (n = 47) during the prelaying and egg-production periods of first nests. Home-range size averaged 367 ha and did not vary with reproductive period, year, or female age. Habitat use did not differ between periods of prelaying and egg production; consequently, data were combined. Habitat use varied between years, female age, and periods of nest initiation (i.e., early vs. late). Use of beaver ponds (BP), temporary wetlands (TW), managed impoundments (MI), and lake habitats (LK) declined in 2000 compared to 1999, possibly due to reduced precipitation. Nest initiation date was independent of female age. Adult females used BP more than yearlings, and early-nesting females used BP and MI more than late-nesting females. Females selected habitats nonrandomly when habitat composition of the study area was compared to that of home ranges (second-order selection). Lake-influenced wetlands (LI) and MI were ranked highest in preference. Home-range size was inversely related to percentage of the home range comprised of MI and LI, supporting the idea that MI and LI were high-quality habitats. However, we found no relationship between nest initiation date (an important index to reproductive performance) and the combined area of MI and LI in home ranges. Habitai selection did not differ from random when habitat composition of home ranges was compared to that of radio locations (third-order selection). Although MI and LI were preferred, high-quality habitats, our results suggest that breeding female wood

  17. Sound settlement: noise surpasses land cover in explaining breeding habitat selection of secondary cavity-nesting birds.

    PubMed

    Kleist, Nathan J; Guralnick, Robert P; Cruz, Alexander; Francis, Clinton D

    2017-01-01

    Birds breeding in heterogeneous landscapes select nest sites by cueing in on a variety of factors from landscape features and social information to the presence of natural enemies. We focus on determining the relative impact of anthropogenic noise on nest site occupancy, compared to amount of forest cover, which is known to strongly influence the selection process. We examine chronic, industrial noise from natural gas wells directly measured at the nest box as well as site-averaged noise, using a well-established field experimental system in northwestern New Mexico. We hypothesized that high levels of noise, both at the nest site and in the environment, would decrease nest box occupancy. We set up nest boxes using a geospatially paired control and experimental site design and analyzed four years of occupancy data from four secondary cavity-nesting birds common to the Colorado Plateau. We found different effects of noise and landscape features depending on species, with strong effects of noise observed in breeding habitat selection of Myiarchus cinerascens, the Ash-throated Flycatcher, and Sialia currucoides, the Mountain Bluebird. In contrast, the amount of forest cover less frequently explained habitat selection for those species or had a smaller standardized effect than the acoustic environment. Although forest cover characterization and management is commonly employed by natural resource managers, our results show that characterizing and managing the acoustic environment should be an important tool in protected area management. © 2016 by the Ecological Society of America.

  18. Predicting species distributions for conservation decisions

    PubMed Central

    Guisan, Antoine; Tingley, Reid; Baumgartner, John B; Naujokaitis-Lewis, Ilona; Sutcliffe, Patricia R; Tulloch, Ayesha I T; Regan, Tracey J; Brotons, Lluis; McDonald-Madden, Eve; Mantyka-Pringle, Chrystal; Martin, Tara G; Rhodes, Jonathan R; Maggini, Ramona; Setterfield, Samantha A; Elith, Jane; Schwartz, Mark W; Wintle, Brendan A; Broennimann, Olivier; Austin, Mike; Ferrier, Simon; Kearney, Michael R; Possingham, Hugh P; Buckley, Yvonne M

    2013-01-01

    Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on-ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats, reserve selection and translocation of endangered species, we propose that SDMs may be tailored to suit a range of decision-making contexts when used within a structured and transparent decision-making process. To construct appropriate SDMs to more effectively guide conservation actions, modellers need to better understand the decision process, and decision makers need to provide feedback to modellers regarding the actual use of SDMs to support conservation decisions. This could be facilitated by individuals or institutions playing the role of ‘translators’ between modellers and decision makers. We encourage species distribution modellers to get involved in real decision-making processes that will benefit from their technical input; this strategy has the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes. PMID:24134332

  19. Scale dependency of American marten (Martes americana) habitat relations [Chapter 12

    Treesearch

    Andrew J. Shirk; Tzeidle N. Wasserman; Samuel A. Cushman; Martin G. Raphael

    2012-01-01

    Animals select habitat resources at multiple spatial scales; therefore, explicit attention to scale-dependency when modeling habitat relations is critical to understanding how organisms select habitat in complex landscapes. Models that evaluate habitat variables calculated at a single spatial scale (e.g., patch, home range) fail to account for the effects of...

  20. Strategy selection in cue-based decision making.

    PubMed

    Bryant, David J

    2014-06-01

    People can make use of a range of heuristic and rational, compensatory strategies to perform a multiple-cue judgment task. It has been proposed that people are sensitive to the amount of cognitive effort required to employ decision strategies. Experiment 1 employed a dual-task methodology to investigate whether participants' preference for heuristic versus compensatory decision strategies can be altered by increasing the cognitive demands of the task. As indicated by participants' decision times, a secondary task interfered more with the performance of a heuristic than compensatory decision strategy but did not affect the proportions of participants using either type of strategy. A stimulus set effect suggested that the conjunction of cue salience and cue validity might play a determining role in strategy selection. The results of Experiment 2 indicated that when a perceptually salient cue was also the most valid, the majority of participants preferred a single-cue heuristic strategy. Overall, the results contradict the view that heuristics are more likely to be adopted when a task is made more cognitively demanding. It is argued that people employ 2 learning processes during training, one an associative learning process in which cue-outcome associations are developed by sampling multiple cues, and another that involves the sequential examination of single cues to serve as a basis for a single-cue heuristic.

  1. Resting habitat selection by fishers in California

    Treesearch

    William J. Zielinski; Richard L. Truex; Gregory A. Schmidt; Fredrick V. Schlexer; Kristin N. Schmidt; Reginald H. Barrett

    2004-01-01

    We studied the resting habitat ecology of fishers (Martes pennanti) in 2 disjunct populations in California, USA: the northwestern coastal mountains (hereafter, Coastal) and the southern Sierra Nevada (hereafter, Sierra). We described resting structures and compared features surrounding resting structures (the resting site) with those at randomly...

  2. Selecting a provider: what factors influence patients' decision making?

    PubMed

    Abraham, Jean; Sick, Brian; Anderson, Joseph; Berg, Andrea; Dehmer, Chad; Tufano, Amanda

    2011-01-01

    Each year consumers make a variety of decisions relating to their healthcare. Some experts argue that stronger consumer engagement in decisions about where to obtain medical care is an important mechanism for improving efficiency in healthcare delivery and financing. Consumers' ability and motivation to become more active decision makers are affected by several factors, including financial incentives and access to information. This study investigates the set of factors that consumers consider when selecting a provider, including attributes of the provider and the care experience and the reputation of the provider. Additionally, the study evaluates consumers awareness and use of formal sources of provider selection information. Our results from analyzing data from a survey of 467 patients at four clinics in Minnesota suggest that the factors considered of greatest importance include reputation of the physician and reputation of the healthcare organization. Contractual and logistical factors also play a role, with respondents highlighting the importance of seeing a provider affiliated with their health plan and appointment availability. Few respondents indicated that advertisements or formal sources of quality information affected their decision making. The key implication for provider organizations is to carefully manage referral sources to ensure that they consistently meet the needs of referrers. Excellent service to existing patients and to the network of referring physicians yields patient and referrer satisfaction that is critical to attracting new patients. Finally, organizations more generally may want to explore the capabilities of new media and social networking sites for building reputation.

  3. Decision support systems in water and wastewater treatment process selection and design: a review.

    PubMed

    Hamouda, M A; Anderson, W B; Huck, P M

    2009-01-01

    The continuously changing drivers of the water treatment industry, embodied by rigorous environmental and health regulations and the challenge of emerging contaminants, necessitates the development of decision support systems for the selection of appropriate treatment trains. This paper explores a systematic approach to developing decision support systems, which includes the analysis of the treatment problem(s), knowledge acquisition and representation, and the identification and evaluation of criteria controlling the selection of optimal treatment systems. The objective of this article is to review approaches and methods used in decision support systems developed to aid in the selection, sequencing of unit processes and design of drinking water, domestic wastewater, and industrial wastewater treatment systems. Not surprisingly, technical considerations were found to dominate the logic of the developed systems. Most of the existing decision-support tools employ heuristic knowledge. It has been determined that there is a need to develop integrated decision support systems that are generic, usable and consider a system analysis approach.

  4. Describing Willow Flycatcher habitats: scale perspectives and gender differences

    USGS Publications Warehouse

    Sedgwick, James A.; Knopf, Fritz L.

    1992-01-01

    We compared habitat characteristics of nest sites (female-selected sites) and song perch sites (male-selected sites) with those of sites unused by Willow Flycatchers (Empidonax traillii) at three different scales of vegetation measurement: (1) microplot (central willow [Salix spp.] bush and four adjacent bushes); (2) mesoplot (0.07 ha); and, (3) macroplot (flycatcher territory size). Willow Flycatchers exhibited vegetation preferences at all three scales. Nest sites were distinguished by high willow density and low variability in willow patch size and bush height. Song perch sites were characterized by large central shrubs, low central shrub vigor, and high variability in shrub size. Unused sites were characterized by greater distances between willows and willow patches, less willow coverage, and a smaller riparian zone width than either nest or song perch sites. At all scales, nest sites were situated farther from unused sites in multivariate habitat space than were song perch sites, suggesting (1) a correspondence among scales in their ability to describe Willow Flycatcher habitat, and (2) females are more discriminating in habitat selection than males. Microhabitat differences between male-selected (song perch) and female-selected (nest) sites were evident at the two smaller scales; at the finest scale, the segregation in habitat space between male-selected and female-selected sites was greater than that between male-selected and unused sites. Differences between song perch and nest sites were not apparent at the scale of flycatcher territory size, possibly due to inclusion of (1) both nest and song perch sites, (2) defended, but unused habitat, and/or (3) habitat outside of the territory, in larger scale analyses. The differences between nest and song perch sites at the finer scales reflect their different functions (e.g., nest concealment and microclimatic requirements vs. advertising and territorial defense, respectively), and suggest that the exclusive use

  5. Run for your life, but bite for your rights? How interactions between natural and sexual selection shape functional morphology across habitats

    NASA Astrophysics Data System (ADS)

    Gomes, Verónica; Carretero, Miguel A.; Kaliontzopoulou, Antigoni

    2018-02-01

    A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.

  6. Run for your life, but bite for your rights? How interactions between natural and sexual selection shape functional morphology across habitats.

    PubMed

    Gomes, Verónica; Carretero, Miguel A; Kaliontzopoulou, Antigoni

    2018-01-02

    A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.

  7. Using stochastic gradient boosting to infer stopover habitat selection and distribution of Hooded Cranes Grus monacha during spring migration in Lindian, Northeast China.

    PubMed

    Cai, Tianlong; Huettmann, Falk; Guo, Yumin

    2014-01-01

    The Hooded Crane (Grus monacha) is a globally vulnerable species, and habitat loss is the primary cause of its decline. To date, little is known regarding the specific habitat needs, and stopover habitat selection in particular, of the Hooded Crane. In this study we used stochastic gradient boosting (TreeNet) to develop three specific habitat selection models for roosting, daytime resting, and feeding site selection. In addition, we used a geographic information system (GIS) combined with TreeNet to develop a species distribution model. We also generated a digital map of the relative occurrence index (ROI) of this species at daytime resting sites in the study area. Our study indicated that the water depth, distance to village, coverage of deciduous leaves, open water area, and density of plants were the major predictors of roosting site selection. For daytime resting site selection, the distance to wetland, distance to farmland, and distance to road were the primary predictors. For feeding site selection, the distance to road, quantity of food, plant coverage, distance to village, plant density, distance to wetland, and distance to river were contributing factors, and the distance to road and quantity of food were the most important predictors. The predictive map showed that there were two consistent multi-year daytime resting sites in our study area. Our field work in 2013 using systematic ground-truthing confirmed that this prediction was accurate. Based on this study, we suggest that Lindian plays an important role for migratory birds and that cultivation practices should be adjusted locally. Furthermore, public education programs to promote the concept of the harmonious coexistence of humans and cranes can help successfully protect this species in the long term and eventually lead to its delisting by the IUCN.

  8. Using Stochastic Gradient Boosting to Infer Stopover Habitat Selection and Distribution of Hooded Cranes Grus monacha during Spring Migration in Lindian, Northeast China

    PubMed Central

    Cai, Tianlong; Huettmann, Falk; Guo, Yumin

    2014-01-01

    The Hooded Crane (Grus monacha) is a globally vulnerable species, and habitat loss is the primary cause of its decline. To date, little is known regarding the specific habitat needs, and stopover habitat selection in particular, of the Hooded Crane. In this study we used stochastic gradient boosting (TreeNet) to develop three specific habitat selection models for roosting, daytime resting, and feeding site selection. In addition, we used a geographic information system (GIS) combined with TreeNet to develop a species distribution model. We also generated a digital map of the relative occurrence index (ROI) of this species at daytime resting sites in the study area. Our study indicated that the water depth, distance to village, coverage of deciduous leaves, open water area, and density of plants were the major predictors of roosting site selection. For daytime resting site selection, the distance to wetland, distance to farmland, and distance to road were the primary predictors. For feeding site selection, the distance to road, quantity of food, plant coverage, distance to village, plant density, distance to wetland, and distance to river were contributing factors, and the distance to road and quantity of food were the most important predictors. The predictive map showed that there were two consistent multi-year daytime resting sites in our study area. Our field work in 2013 using systematic ground-truthing confirmed that this prediction was accurate. Based on this study, we suggest that Lindian plays an important role for migratory birds and that cultivation practices should be adjusted locally. Furthermore, public education programs to promote the concept of the harmonious coexistence of humans and cranes can help successfully protect this species in the long term and eventually lead to its delisting by the IUCN. PMID:24587118

  9. Reproductive constraints influence habitat accessibility, segregation, and preference of sympatric albatross species.

    PubMed

    Kappes, Michelle A; Shaffer, Scott A; Tremblay, Yann; Foley, David G; Palacios, Daniel M; Bograd, Steven J; Costa, Daniel P

    2015-01-01

    The spatiotemporal distribution of animals is dependent on a suite of factors, including the distribution of resources, interactions within and between species, physiological limitations, and requirements for reproduction, dispersal, or migration. During breeding, reproductive constraints play a major role in the distribution and behavior of central place foragers, such as pelagic seabirds. We examined the foraging behavior and marine habitat selection of Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses throughout their eight month breeding cycle at Tern Island, Northwest Hawaiian Islands to evaluate how variable constraints of breeding influenced habitat availability and foraging decisions. We used satellite tracking and light-based geolocation to determine foraging locations of individuals, and applied a biologically realistic null usage model to generate control locations and model habitat preference under a case-control design. Remotely sensed oceanographic data were used to characterize albatross habitats in the North Pacific. Individuals of both species ranged significantly farther and for longer durations during incubation and chick-rearing compared to the brooding period. Interspecific segregation of core foraging areas was observed during incubation and chick-rearing, but not during brooding. At-sea activity patterns were most similar between species during brooding; neither species altered foraging effort to compensate for presumed low prey availability and high energy demands during this stage. Habitat selection during long-ranging movements was most strongly associated with sea surface temperature for both species, with a preference for cooler ocean temperatures compared to overall availability. During brooding, lower explanatory power of habitat models was likely related to the narrow range of ocean temperatures available for selection. Laysan and black-footed albatrosses differ from other albatross species in that they breed

  10. Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat.

    PubMed

    Bertin, Angeline; Gouin, Nicolas; Baumel, Alex; Gianoli, Ernesto; Serratosa, Juan; Osorio, Rodomiro; Manel, Stephanie

    2017-01-01

    Positive species-genetic diversity correlations (SGDCs) are often thought to result from the parallel influence of neutral processes on genetic and species diversity. Yet, confounding effects of non-neutral mechanisms have not been explored. Here, we investigate the impact of non-neutral genetic diversity on SGDCs in high Andean wetlands. We compare correlations between plant species diversity and genetic diversity (GD) calculated with and without loci potentially under selection (outlier loci). The study system includes 2188 specimens from five species (three common aquatic macroinvertebrate and two dominant plant species) that were genotyped for 396 amplified fragment length polymorphism loci. We also appraise the importance of neutral processes on SGDCs by investigating the influence of habitat fragmentation features. Significant positive SGDCs were detected for all five species (mean SGDC = 0.52 ± 0.05). While only a few outlier loci were detected in each species, they resulted in significant decreases in GD and in SGDCs. This supports the hypothesis that neutral processes drive species-genetic diversity relationships in high Andean wetlands. Unexpectedly, the effects on genetic diversity GD of the habitat fragmentation characteristics in this study increased with the presence of outlier loci in two species. Overall, our results reveal pitfalls in using habitat features to infer processes driving SGDCs and show that a few loci potentially under selection are enough to cause a significant downward bias in SGDC. Investigating confounding effects of outlier loci thus represents a useful approach to evidence the contribution of neutral processes on species-genetic diversity relationships. © 2016 John Wiley & Sons Ltd.

  11. Reported Influences on Restaurant-Type Food Selection Decision Making in a Grocery Store Chain.

    PubMed

    Bachman, Jessica Lynne; Arigo, Danielle

    2018-06-01

    To examine food decision-making priorities for restaurant-type foods at grocery stores and determine whether adding calorie information, as required by federal menu labeling laws, affected decision-making priorities. Natural experiment: intervention and control groups with baseline and follow-up. Regional grocery store chain with 9 locations. Participants (n = 393; mean age, 54.8 ± 15.1 years) were primarily women (71%) and Caucasian (95%). Data were collected before and after calorie information was added to restaurant-type foods at 4 intervention locations. Primary influencers of food selection decision making for restaurant-type foods and frequency of use of nutrition information. Quantitative analysis examined the top 3 influencers of food selections and chi-square goodness of fit test determined whether the calorie labeling intervention changed food decision-making priorities. Qualitative data were used to describe responses. Taste, cost, and convenience were the most frequently reported influencers of restaurant-type food selections; 20% of participants rated calories as influential. Calorie labeling did not affect food selection decision making; 16% of participants in intervention stores noticed calorie labels. Qualitative explanations confirmed these findings. Menu labeling laws increase access to calorie information; however, use of this information is limited. Additional interventions are needed to encourage healthier restaurant-type food selections in grocery stores. Copyright © 2018 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  12. Ecosystem Services Linking People to Coastal Habitats ...

    EPA Pesticide Factsheets

    Background/Question/Methods: There is a growing need to incorporate and prioritize ecosystem services/condition information into land-use decision making. While there are a number of place-based studies looking at how land-use decisions affect the availability and delivery of coastal services, many of these methods require data, funding and/or expertise that may be inaccessible to many coastal communities. Using existing classification standards for beneficiaries and coastal habitats, (i.e., Final Ecosystem Goods and Services Classification System (FEGS-CS) and Coastal and Marine Ecological Classification Standard (CMECS)), a comprehensive literature review was coupled with a “weight of evidence” approach to evaluate linkages between beneficiaries and coastal habitat features most relevant to community needs. An initial search of peer-reviewed journal articles was conducted using JSTOR and ScienceDirect repositories identifying sources that provide evidence for coastal beneficiary:habitat linkages. Potential sources were further refined based on a double-blind review of titles, abstracts, and full-texts, when needed. Articles in the final list were then scored based on habitat/beneficiary specificity and data quality (e.g., indirect evidence from literature reviews was scored lower than direct evidence from case studies with valuation results). Scores were then incorporated into a weight of evidence framework summarizing the support for each benefici

  13. Temporary site selection and decision-making methods: a case study of Tehran, Iran.

    PubMed

    Omidvar, Babak; Baradaran-Shoraka, Mohammad; Nojavan, Mehdi

    2013-07-01

    Decisions on selecting an appropriate site for temporary shelter used to be taken in a limited amount of time after a disaster. The need for a systematic method in this area inspired the MADM (multi-attribute decision making) for complex disaster management decisions. This research proposes a model for appropriate and systematic site selection for temporary shelters, before an earthquake, using a geographical information system and MADM based on an earthquake damage assessment. After the effective criteria for site selection of temporary shelters are determined, the geographical layers of these criteria are prepared for Municipal District No.1 of Greater Tehran, the capital of Iran. Given these attributes and the required shelter area (415-610 hectares), 14 zones are proposed initially. Various MADM methods are used for the final selection. The mean of the aggregated ranking results are determined, and 10 of the 14 initial zones are ranked. © 2013 The Author(s). Journal compilation © Overseas Development Institute, 2013.

  14. Steps to consider for effective decision making when selecting and prioritizing eHealth services.

    PubMed

    Vimarlund, Vivian; Davoody, Nadia; Koch, Sabine

    2013-01-01

    Making the best choice for an organization when selecting IT applications or eHealth services is not always easy as there are a lot of parameters to take into account. The aim of this paper is to explore some steps to support effective decision making when selecting and prioritizing eHealth services prior to implementation and/or procurement. The steps presented in this paper were identified by interviewing nine key stakeholders at Stockholm County Council. They are supposed to work as a guide for decision making and aim to identify objectives and expected effects, technical, organizational, and economic requirements, and opportunities important to consider before decisions are taken. The steps and their respective issues and variables are concretized in a number of templates to be filled in by decision makers when selecting and prioritizing eHealth services.

  15. Does Wyoming's Core Area Policy Protect Winter Habitats for Greater Sage-Grouse?

    PubMed

    Smith, Kurt T; Beck, Jeffrey L; Pratt, Aaron C

    2016-10-01

    Conservation reserves established to protect important habitat for wildlife species are used world-wide as a wildlife conservation measure. Effective reserves must adequately protect year-round habitats to maintain wildlife populations. Wyoming's Sage-Grouse Core Area policy was established to protect breeding habitats for greater sage-grouse (Centrocercus urophasianus). Protecting only one important seasonal habitat could result in loss or degradation of other important habitats and potential declines in local populations. The purpose of our study was to identify the timing of winter habitat use, the extent which individuals breeding in Core Areas used winter habitats, and develop resource selection functions to assess effectiveness of Core Areas in conserving sage-grouse winter habitats in portions of 5 Core Areas in central and north-central Wyoming during winters 2011-2015. We found that use of winter habitats occured over a longer period than current Core Area winter timing stipulations and a substantial amount of winter habitat outside of Core Areas was used by individuals that bred in Core Areas, particularly in smaller Core Areas. Resource selection functions for each study area indicated that sage-grouse were selecting habitats in response to landscapes dominated by big sagebrush and flatter topography similar to other research on sage-grouse winter habitat selection. The substantial portion of sage-grouse locations and predicted probability of selection during winter outside small Core Areas illustrate that winter requirements for sage-grouse are not adequately met by existing Core Areas. Consequently, further considerations for identifying and managing important winter sage-grouse habitats under Wyoming's Core Area Policy are warranted.

  16. Effects of organizational citizenship behaviors on selection decisions in employment interviews.

    PubMed

    Podsakoff, Nathan P; Whiting, Steven W; Podsakoff, Philip M; Mishra, Paresh

    2011-03-01

    This article reports on an experiment examining the effects of job candidates' propensity to exhibit organizational citizenship behaviors (OCBs) on selection decisions made in the context of a job interview. We developed videos that manipulated candidate responses to interview questions tapping task performance and citizenship behavior content in 2 administrative positions. Results obtained from 480 undergraduates provided support for our hypotheses that job candidates who exhibited higher levels of helping, voice, and loyalty behaviors were generally rated as more competent, received higher overall evaluations, and received higher salary recommendations than job candidates who exhibited lower levels of these behaviors. These effects held even after taking into account candidate responses regarding task performance. We also found that candidate responses to OCB-related questions tended to have a greater effect on selection decisions for the higher level position (supervisor of administrative personnel) than for the lower level one (administrative assistant). Finally, content analyses of open-ended responses indicated that participants' selection decisions were particularly sensitive to candidates who exhibited low levels of voice and helping behaviors. Implications and future research are discussed. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  17. Decision support tool for used oil regeneration technologies assessment and selection.

    PubMed

    Khelifi, Olfa; Dalla Giovanna, Fabio; Vranes, Sanja; Lodolo, Andrea; Miertus, Stanislav

    2006-09-01

    Regeneration is the most efficient way of managing used oil. It saves money by preventing costly cleanups and liabilities that are associated with mismanagement of used oil, it helps to protect the environment and it produces a technically renewable resource by enabling an indefinite recycling potential. There are a variety of processes and licensors currently offering ways to deal with used oils. Selecting a regeneration technology for used oil involves "cross-matching" key criteria. Therefore, the first prototype of spent oil regeneration (SPORE), a decision support tool, has been developed to help decision-makers to assess the available technologies and select the preferred used oil regeneration options. The analysis is based on technical, economical and environmental criteria. These criteria are ranked to determine their relative importance for a particular used oil regeneration project. The multi-criteria decision analysis (MCDA) is the core of the SPORE using the PROMETHEE II algorithm.

  18. DisTeam: A decision support tool for surgical team selection

    PubMed Central

    Ebadi, Ashkan; Tighe, Patrick J.; Zhang, Lei; Rashidi, Parisa

    2018-01-01

    Objective Surgical service providers play a crucial role in the healthcare system. Amongst all the influencing factors, surgical team selection might affect the patients’ outcome significantly. The performance of a surgical team not only can depend on the individual members, but it can also depend on the synergy among team members, and could possibly influence patient outcome such as surgical complications. In this paper, we propose a tool for facilitating decision making in surgical team selection based on considering history of the surgical team, as well as the specific characteristics of each patient. Methods DisTeam (a decision support tool for surgical team selection) is a metaheuristic framework for objective evaluation of surgical teams and finding the optimal team for a given patient, in terms of number of complications. It identifies a ranked list of surgical teams personalized for each patient, based on prior performance of the surgical teams. DisTeam takes into account the surgical complications associated with teams and their members, their teamwork history, as well as patient’s specific characteristics such as age, body mass index (BMI) and Charlson comorbidity index score. Results We tested DisTeam using intra-operative data from 6065 unique orthopedic surgery cases. Our results suggest high effectiveness of the proposed system in a health-care setting. The proposed framework converges quickly to the optimal solution and provides two sets of answers: a) The best surgical team over all the generations, and b) The best population which consists of different teams that can be used as an alternative solution. This increases the flexibility of the system as a complementary decision support tool. Conclusion DisTeam is a decision support tool for assisting in surgical team selection. It can facilitate the job of scheduling personnel in the hospital which involves an overwhelming number of factors pertaining to patients, individual team members, and team

  19. DisTeam: A decision support tool for surgical team selection.

    PubMed

    Ebadi, Ashkan; Tighe, Patrick J; Zhang, Lei; Rashidi, Parisa

    2017-02-01

    Surgical service providers play a crucial role in the healthcare system. Amongst all the influencing factors, surgical team selection might affect the patients' outcome significantly. The performance of a surgical team not only can depend on the individual members, but it can also depend on the synergy among team members, and could possibly influence patient outcome such as surgical complications. In this paper, we propose a tool for facilitating decision making in surgical team selection based on considering history of the surgical team, as well as the specific characteristics of each patient. DisTeam (a decision support tool for surgical team selection) is a metaheuristic framework for objective evaluation of surgical teams and finding the optimal team for a given patient, in terms of number of complications. It identifies a ranked list of surgical teams personalized for each patient, based on prior performance of the surgical teams. DisTeam takes into account the surgical complications associated with teams and their members, their teamwork history, as well as patient's specific characteristics such as age, body mass index (BMI) and Charlson comorbidity index score. We tested DisTeam using intra-operative data from 6065 unique orthopedic surgery cases. Our results suggest high effectiveness of the proposed system in a health-care setting. The proposed framework converges quickly to the optimal solution and provides two sets of answers: a) The best surgical team over all the generations, and b) The best population which consists of different teams that can be used as an alternative solution. This increases the flexibility of the system as a complementary decision support tool. DisTeam is a decision support tool for assisting in surgical team selection. It can facilitate the job of scheduling personnel in the hospital which involves an overwhelming number of factors pertaining to patients, individual team members, and team dynamics and can be used to compose

  20. Chapter 6. Landscape Analysis for Habitat Monitoring

    Treesearch

    Samuel A. Cushman; Kevin McGarigal; Kevin S. McKelvey; Christina D. Vojta; Claudia M. Regan

    2013-01-01

    The primary objective of this chapter is to describe standardized methods for measur¬ing and monitoring attributes of landscape pattern in support of habitat monitoring. This chapter describes the process of monitoring categorical landscape maps in which either selected habitat attributes or different classes of habitat quality are represented as different patch types...

  1. Fuzzy decision-making framework for treatment selection based on the combined QUALIFLEX-TODIM method

    NASA Astrophysics Data System (ADS)

    Ji, Pu; Zhang, Hong-yu; Wang, Jian-qiang

    2017-10-01

    Treatment selection is a multi-criteria decision-making problem of significant concern in the medical field. In this study, a fuzzy decision-making framework is established for treatment selection. The framework mitigates information loss by introducing single-valued trapezoidal neutrosophic numbers to denote evaluation information. Treatment selection has multiple criteria that remarkably exceed the alternatives. In consideration of this characteristic, the framework utilises the idea of the qualitative flexible multiple criteria method. Furthermore, it considers the risk-averse behaviour of a decision maker by employing a concordance index based on TODIM (an acronym in Portuguese of interactive and multi-criteria decision-making) method. A sensitivity analysis is performed to illustrate the robustness of the framework. Finally, a comparative analysis is conducted to compare the framework with several extant methods. Results indicate the advantages of the framework and its better performance compared with the extant methods.

  2. Evaluation and selection of decision-making methods to assess landfill mining projects.

    PubMed

    Hermann, Robert; Baumgartner, Rupert J; Vorbach, Stefan; Ragossnig, Arne; Pomberger, Roland

    2015-09-01

    For the first time in Austria, fundamental technological and economic studies on recovering secondary raw materials from large landfills have been carried out, based on the 'LAMIS - Landfill Mining Austria' pilot project. A main focus of the research - and the subject of this article - was to develop an assessment or decision-making procedure that allows landfill owners to thoroughly examine the feasibility of a landfill mining project in advance. Currently there are no standard procedures that would sufficiently cover all the multiple-criteria requirements. The basic structure of the multiple attribute decision making process was used to narrow down on selection, conceptual design and assessment of suitable procedures. Along with a breakdown into preliminary and main assessment, the entire foundation required was created, such as definitions of requirements to an assessment method, selection and accurate description of the various assessment criteria and classification of the target system for the present 'landfill mining' vs. 'retaining the landfill in after-care' decision-making problem. Based on these studies, cost-utility analysis and the analytical-hierarchy process were selected from the range of multiple attribute decision-making procedures and examined in detail. Overall, both methods have their pros and cons with regard to their use for assessing landfill mining projects. Merging these methods or connecting them with single-criteria decision-making methods (like the net present value method) may turn out to be reasonable and constitute an appropriate assessment method. © The Author(s) 2015.

  3. Seasonal meso- and microhabitat selection by the northern snakehead (Channa argus) in the Potomac river system

    USGS Publications Warehouse

    Lapointe, N.W.R.; Thorson, J.T.; Angermeier, P.L.

    2010-01-01

     The northern snakehead (Channa argus) is a large piscivorous fish that is invasive in eastern Europe and has recently been introduced in North America. We examined the seasonal habitat selection at meso- and microhabitat scales using radio-telemetry to increase understanding of the ecology of this species, which will help to inform management decisions. After the spawning season (postspawn season, September–November), northern snakeheads preferred offshore Eurasian water-milfoil (Myriophyllum spicatum) beds with shallow water (∼115 cm) and soft substrate. In the winter (November–April), these fish moved to deeper water (∼135 cm) with warmer temperatures, but habitat selection was weak at both scales. Northern snakeheads returned to shallower water (∼95 cm) in the prespawn season (April–June) and used milfoil and other cover. Habitat selection was the strongest at both meso- and microhabitat scales during the spawning season (June–September), when fish preferred macrophytes and cover in shallow water (∼88 cm). Our results help to identify habitats at the risk of invasion by northern snakeheads. We suggest that control efforts and future research focus on shallow waters, and take into consideration the seasonal habitat preferences.

  4. Seasonal meso- and microhabitat selection by the northern snakehead (Channa argus) in the Potomac river system

    USGS Publications Warehouse

    Lapointe, N.W.R.; Thorson, J.T.; Angermeier, P.L.

    2010-01-01

    The northern snakehead (Channa argus) is a large piscivorous fish that is invasive in eastern Europe and has recently been introduced in North America. We examined the seasonal habitat selection at meso- and microhabitat scales using radio-telemetry to increase understanding of the ecology of this species, which will help to inform management decisions. After the spawning season (postspawn season, September-November), northern snakeheads preferred offshore Eurasian water-milfoil (Myriophyllum spicatum) beds with shallow water (115 cm) and soft substrate. In the winter (November-April), these fish moved to deeper water (135 cm) with warmer temperatures, but habitat selection was weak at both scales. Northern snakeheads returned to shallower water (95 cm) in the prespawn season (April-June) and used milfoil and other cover. Habitat selection was the strongest at both meso- and microhabitat scales during the spawning season (June-September), when fish preferred macrophytes and cover in shallow water (88 cm). Our results help to identify habitats at the risk of invasion by northern snakeheads. We suggest that control efforts and future research focus on shallow waters, and take into consideration the seasonal habitat preferences. ?? 2010 John Wiley & Sons A/S.

  5. The decision-making experience of mothers selecting waterbirth.

    PubMed

    Wu, Chia-Jung; Chung, Ue-Lin

    2003-12-01

    Waterbirth has been a way of birth for 20 to 30 years abroad, while in Taiwan, only in the past three years have some women chosen water birth. This study aims to explore the decision-making experience of mothers selecting waterbirth. A phenomenological approach was employed in this study. Nine mothers who had given birth in water successfully in the midwife clinic in the past year were chosen and one-by-one, face-to-face interviews were conducted. The research tools included a basic information questionnaire, a semi-structured and open-ended interview guide, and an audio recorder to record the entire interviews. The content of the interviews was faithfully transcribed and analyzed with Giorgi's phenomenological method and Lincoln and Guba's qualitative credibility. Four main concepts concluded from the experience context of the studied women were: (1) Dissatisfaction with existing obstetric practices; (2) Demonstration of autonomy; (3) Consideration of relatives' attitude; and (4) Employing strategies to achieve goals. The result of this study can help nursing staff and the public to understand the decision-making experience of mothers selecting waterbirth, and help the contemplation of health care providers with respect to furnishing a more humanized birth environment in hospitals.

  6. Opportunistically collected data reveal habitat selection by migrating Whooping Cranes in the U.S. Northern Plains

    USGS Publications Warehouse

    Niemuth, Neil D.; Ryba, Adam J.; Pearse, Aaron T.; Kvas, Susan M.; Brandt, David; Wangler, Brian; Austin, Jane; Carlisle, Martha J.

    2018-01-01

    The Whooping Crane (Grus americana) is a federally endangered species in the United States and Canada that relies on wetland, grassland, and cropland habitat during its long migration between wintering grounds in coastal Texas, USA, and breeding sites in Alberta and Northwest Territories, Canada. We combined opportunistic Whooping Crane sightings with landscape data to identify correlates of Whooping Crane occurrence along the migration corridor in North Dakota and South Dakota, USA. Whooping Cranes selected landscapes characterized by diverse wetland communities and upland foraging opportunities. Model performance substantially improved when variables related to detection were included, emphasizing the importance of accounting for biases associated with detection and reporting of birds in opportunistic datasets. We created a predictive map showing relative probability of occurrence across the study region by applying our model to GIS data layers; validation using independent, unbiased locations from birds equipped with platform transmitting terminals indicated that our final model adequately predicted habitat use by migrant Whooping Cranes. The probability map demonstrated that existing conservation efforts have protected much top-tier Whooping Crane habitat, especially in the portions of North Dakota and South Dakota that lie east of the Missouri River. Our results can support species recovery by informing prioritization for acquisition and restoration of landscapes that provide safe roosting and foraging habitats. Our results can also guide the siting of structures such as wind towers and electrical transmission and distribution lines, which pose a strike and mortality risk to migrating Whooping Cranes.

  7. 23 CFR 636.512 - What is the basis for the source selection decision?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Discussions, Proposal Revisions and Source Selection... decision on a comparative assessment of proposals against all selection criteria in the solicitation. While...

  8. 23 CFR 636.512 - What is the basis for the source selection decision?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Discussions, Proposal Revisions and Source Selection... decision on a comparative assessment of proposals against all selection criteria in the solicitation. While...

  9. 23 CFR 636.512 - What is the basis for the source selection decision?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Discussions, Proposal Revisions and Source Selection... decision on a comparative assessment of proposals against all selection criteria in the solicitation. While...

  10. 23 CFR 636.512 - What is the basis for the source selection decision?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Discussions, Proposal Revisions and Source Selection... decision on a comparative assessment of proposals against all selection criteria in the solicitation. While...

  11. 23 CFR 636.512 - What is the basis for the source selection decision?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Discussions, Proposal Revisions and Source Selection... decision on a comparative assessment of proposals against all selection criteria in the solicitation. While...

  12. Cloud Service Selection Using Multicriteria Decision Analysis

    PubMed Central

    Anuar, Nor Badrul; Shiraz, Muhammad; Haque, Israat Tanzeena

    2014-01-01

    Cloud computing (CC) has recently been receiving tremendous attention from the IT industry and academic researchers. CC leverages its unique services to cloud customers in a pay-as-you-go, anytime, anywhere manner. Cloud services provide dynamically scalable services through the Internet on demand. Therefore, service provisioning plays a key role in CC. The cloud customer must be able to select appropriate services according to his or her needs. Several approaches have been proposed to solve the service selection problem, including multicriteria decision analysis (MCDA). MCDA enables the user to choose from among a number of available choices. In this paper, we analyze the application of MCDA to service selection in CC. We identify and synthesize several MCDA techniques and provide a comprehensive analysis of this technology for general readers. In addition, we present a taxonomy derived from a survey of the current literature. Finally, we highlight several state-of-the-art practical aspects of MCDA implementation in cloud computing service selection. The contributions of this study are four-fold: (a) focusing on the state-of-the-art MCDA techniques, (b) highlighting the comparative analysis and suitability of several MCDA methods, (c) presenting a taxonomy through extensive literature review, and (d) analyzing and summarizing the cloud computing service selections in different scenarios. PMID:24696645

  13. Cloud service selection using multicriteria decision analysis.

    PubMed

    Whaiduzzaman, Md; Gani, Abdullah; Anuar, Nor Badrul; Shiraz, Muhammad; Haque, Mohammad Nazmul; Haque, Israat Tanzeena

    2014-01-01

    Cloud computing (CC) has recently been receiving tremendous attention from the IT industry and academic researchers. CC leverages its unique services to cloud customers in a pay-as-you-go, anytime, anywhere manner. Cloud services provide dynamically scalable services through the Internet on demand. Therefore, service provisioning plays a key role in CC. The cloud customer must be able to select appropriate services according to his or her needs. Several approaches have been proposed to solve the service selection problem, including multicriteria decision analysis (MCDA). MCDA enables the user to choose from among a number of available choices. In this paper, we analyze the application of MCDA to service selection in CC. We identify and synthesize several MCDA techniques and provide a comprehensive analysis of this technology for general readers. In addition, we present a taxonomy derived from a survey of the current literature. Finally, we highlight several state-of-the-art practical aspects of MCDA implementation in cloud computing service selection. The contributions of this study are four-fold: (a) focusing on the state-of-the-art MCDA techniques, (b) highlighting the comparative analysis and suitability of several MCDA methods, (c) presenting a taxonomy through extensive literature review, and (d) analyzing and summarizing the cloud computing service selections in different scenarios.

  14. Winter habitat associations of eastern spotted skunks in Virginia

    USGS Publications Warehouse

    Thorne, Emily D.; Waggy, Charles; Jachowski, David S.; Kelly, Marcella J.; Ford, W. Mark

    2017-01-01

    Eastern spotted skunk (Spilogale putorius) populations have declined throughout much of their range in the eastern United States over recent decades. Declines have been attributed to habitat loss or change, increased competition with sympatric mesocarnivore species, or disease. To better understand the extant distribution of spotted skunks in the Appalachian Mountains of western Virginia, USA, we used a detection-non-detection sampling approach using baited camera traps to evaluate the influence of landscape-level environmental covariates on spotted skunk detection probability and site occupancy. We conducted camera trap surveys at 91 sites from January to May in 2014 and 2015. Spotted skunk occupancy was associated with young-aged forest stands at lower elevations and more mature forest stands at higher elevations. Both land cover types in this region can be characterized as having complex forest structure, providing cover that varies with stand age, species composition, elevation, and management regime. Our results provide insight into factors that influence spotted skunk spatial distribution and habitat selection, information that can be used to generate conservation assessments and inform management decisions.

  15. Habitat Selection and Behaviour of a Reintroduced Passerine: Linking Experimental Restoration, Behaviour and Habitat Ecology

    PubMed Central

    Bennett, Victoria A.; Doerr, Veronica A. J.; Doerr, Erik D.; Manning, Adrian D.; Lindenmayer, David B.; Yoon, Hwan-Jin

    2013-01-01

    Habitat restoration can play an important role in recovering functioning ecosystems and improving biodiversity. Restoration may be particularly important in improving habitat prior to species reintroductions. We reintroduced seven brown treecreeper (Climacteris picumnus) social groups into two nature reserves in the Australian Capital Territory in south-eastern Australia. This study provided a unique opportunity to understand the interactions between restoration ecology, behavioural ecology and habitat ecology. We examined how experimental restoration treatments (addition of coarse woody debris, variations in ground vegetation cover and nest box installation) influenced the behaviour and microhabitat use of radio-tracked individuals to evaluate the success of restoration treatments. The addition of coarse woody debris benefited the brown treecreeper through increasing the probability of foraging on a log or on the ground. This demonstrated the value of using behaviour as a bio-indicator for restoration success. Based on previous research, we predicted that variations in levels of ground vegetation cover would influence behaviour and substrate use, particularly that brown treecreepers would choose sites with sparse ground cover because this allows better access to food and better vigilance for predators. However, there was little effect of this treatment, which was likely influenced by the limited overall use of the ground layer. There was also little effect of nest boxes on behaviour or substrate use. These results somewhat confound our understanding of the species based on research from extant populations. Our results also have a significant impact regarding using existing knowledge on a species to inform how it will respond to reintroduction and habitat restoration. This study also places great emphasis on the value of applying an experimental framework to ecological restoration, particularly when reintroductions produce unexpected outcomes. PMID:23349923

  16. Decision-making after continuous wins or losses in a randomized guessing task: implications for how the prior selection results affect subsequent decision-making

    PubMed Central

    2014-01-01

    Background Human decision-making is often affected by prior selections and their outcomes, even in situations where decisions are independent and outcomes are unpredictable. Methods In this study, we created a task that simulated real-life non-strategic gambling to examine the effect of prior outcomes on subsequent decisions in a group of male college students. Results Behavioral performance showed that participants needed more time to react after continuous losses (LOSS) than continuous wins (WIN) and discontinuous outcomes (CONTROL). In addition, participants were more likely to repeat their selections in both WIN and LOSS conditions. Functional MRI data revealed that decisions in WINs were associated with increased activation in the mesolimbic pathway, but decreased activation in the inferior frontal gyrus relative to LOSS. Increased prefrontal cortical activation was observed during LOSS relative to WIN and CONTROL conditions. Conclusion Taken together, the behavioral and neuroimaging findings suggest that participants tended to repeat previous selections during LOSS trials, a pattern resembling the gambler’s fallacy. However, during WIN trials, participants tended to follow their previous lucky decisions, like the ‘hot hand’ fallacy. PMID:24708897

  17. Decision-making after continuous wins or losses in a randomized guessing task: implications for how the prior selection results affect subsequent decision-making.

    PubMed

    Dong, Guangheng; Lin, Xiao; Zhou, Hongli; Du, Xiaoxia

    2014-04-03

    Human decision-making is often affected by prior selections and their outcomes, even in situations where decisions are independent and outcomes are unpredictable. In this study, we created a task that simulated real-life non-strategic gambling to examine the effect of prior outcomes on subsequent decisions in a group of male college students. Behavioral performance showed that participants needed more time to react after continuous losses (LOSS) than continuous wins (WIN) and discontinuous outcomes (CONTROL). In addition, participants were more likely to repeat their selections in both WIN and LOSS conditions. Functional MRI data revealed that decisions in WINs were associated with increased activation in the mesolimbic pathway, but decreased activation in the inferior frontal gyrus relative to LOSS. Increased prefrontal cortical activation was observed during LOSS relative to WIN and CONTROL conditions. Taken together, the behavioral and neuroimaging findings suggest that participants tended to repeat previous selections during LOSS trials, a pattern resembling the gambler's fallacy. However, during WIN trials, participants tended to follow their previous lucky decisions, like the 'hot hand' fallacy.

  18. Competition and habitat quality influence age and sex distribution in wintering Rusty Blackbirds

    Treesearch

    Claudia Mettke-Hofmann; Paul B. Hamel; Gerhard Hofmann; Theodore J. Zenzal Jr.; Anne Pellegrini; Jennifer Malpass; Megan Garfinkel; Nathan Schiff; Russell Greenberg

    2015-01-01

    Bird habitat quality is often inferred from species abundance measures during the breeding and non-breeding season and used for conservation management decisions. However, during the non-breeding season age and sex classes often occupy different habitats which suggest a need for more habitat-specific data. Rusty Blackbird (Euphagus carolinus) is a...

  19. Evaluation of a habitat capability model for nongame birds in the Black Hills, South Dakota

    Treesearch

    Todd R. Mills; Mark A. Rumble; Lester D. Flake

    1996-01-01

    Habitat models, used to predict consequences of land management decisions on wildlife, can have considerable economic effect on management decisions. The Black Hills National Forest uses such a habitat capability model (HABCAP), but its accuracy is largely unknown. We tested this model’s predictive accuracy for nongame birds in 13 vegetative structural stages of...

  20. Recruiter Perceptions of Information that Employment References Should Provide to Assist in Making Selection Decisions

    ERIC Educational Resources Information Center

    Evuleocha, Stevina U.; Ugbah, Steve D.; Law, Sweety

    2009-01-01

    Authors investigated perceptions of campus recruiters (N = 168) in the San Francisco Bay Area regarding the importance of 15 types of information they solicit from job applicants' references in making selection decisions. Results suggest campus recruiters should consider 10 types of information to assist them in making selection decisions. Results…

  1. Habitat classification modeling with incomplete data: Pushing the habitat envelope

    USGS Publications Warehouse

    Zarnetske, P.L.; Edwards, T.C.; Moisen, Gretchen G.

    2007-01-01

    Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can be used. Traditional techniques generate pseudoabsence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, thresholdindependent receiver operating characteristic (ROC) plots, adjusted deviance (Dadj2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant, suggesting

  2. Evaluation and selection of 3PL provider using fuzzy AHP and grey TOPSIS in group decision making

    NASA Astrophysics Data System (ADS)

    Garside, Annisa Kesy; Saputro, Thomy Eko

    2017-11-01

    Selection of a 3PL provider is a problem of multi criteria decision making, where the decision maker has to select several 3PL provider alternatives based on several evaluation criteria. A decision maker will have difficulty to express judgments in exact numerical values due to the fact that information is often incomplete and the decision environment is uncertain. This paper presents an integrated fuzzy AHP and Grey TOPSIS for the evaluation and selection of 3PL provider method. Fuzzy AHP is used to determine the importance weight of evaluation criteria. For final selection, grey TOPSIS is used to evaluate the alternatives and obtain the overall performance which is measured as closeness coefficient. This method is applied to solve the selection of 3PL provider at PT. X. Five criterias and twelve sub-criterias were determined and then the best alternative among four 3PL providers was selected by proposed method.

  3. SSAIS: A Program to Assess Adverse Impact in Multistage Selection Decisions

    ERIC Educational Resources Information Center

    De Corte, Wilfried

    2004-01-01

    The article describes a Windows program to estimate the expected value and sampling distribution function of the adverse impact ratio for general multistage selections. The results of the program can also be used to predict the risk that a future selection decision will result in an outcome that reflects the presence of adverse impact. The method…

  4. Habitat acquisition strategies for grassland birds in an urbanizing landscape

    Treesearch

    Stephanie A. Snyder; James R. Miller; Adam M. Skibbe; Robert G. Haight

    2007-01-01

    Habitat protection for grassland birds is an important component of open space land acquisition in suburban Chicago. We use optimization decision models to develop recommendations for land protection and analyze tradeoffs between alternative goals. One goal is to acquire (and restore if necessary) as much grassland habitat as possible for a given budget. Because a...

  5. Defining environmental flows requirements at regional scale by using meso-scale habitat models and catchments classification

    NASA Astrophysics Data System (ADS)

    Vezza, Paolo; Comoglio, Claudio; Rosso, Maurizio

    2010-05-01

    The alterations of the natural flow regime and in-stream channel modification due to abstraction from watercourses act on biota through an hydraulic template, which is mediated by channel morphology. Modeling channel hydro-morphology is needed in order to evaluate how much habitat is available for selected fauna under specific environmental conditions, and consequently to assist decision makers in planning options for regulated river management. Meso-scale habitat modeling methods (e.g., MesoHABSIM) offer advantages over the traditional physical habitat evaluation, involving a larger range of habitat variables, allowing longer length of surveyed rivers and enabling understanding of fish behavior at larger spatial scale. In this study we defined a bottom-up method for the ecological discharge evaluation at regional scale, focusing on catchments smaller than 50 km2, most of them located within mountainous areas of Apennines and Alps mountain range in Piedmont (NW Italy). Within the regional study domain we identified 30 representative catchments not affected by water abstractions in order to build up the habitat-flow relationship, to be used as reference when evaluating regulated watercourses or new projects. For each stream we chose a representative reach and obtained fish data by sampling every single functional habitat (i.e. meso-habitat) within the site, keeping separated each area by using nets. The target species were brown trout (Salmo trutta), marble trout (Salmo trutta marmoratus), bullhead (Cottus gobius), chub (Leuciscus cephalus), barbel (Barbus barbus), vairone (Leuciscus souffia) and other rheophilic Cyprinids. The fish habitat suitability criteria was obtained from the observation of habitat use by a selected organism described with a multivariate relationship between habitat characteristics and fish presence. Habitat type, mean slope, cover, biotic choriotop and substrate, stream depth and velocity, water pH, temperature and percentage of dissolved

  6. Applicant Appearance and Selection Decision Making: Revitalizing Employment Interview Education.

    ERIC Educational Resources Information Center

    Ilkka, Richard J.

    1995-01-01

    Presents five instructional propositions based on employment interview research on the relationship between applicant appearance and interviewer selection decisions. Argues that educators should examine the process of appearance attribution, explore appearance and position expectations, invite dialog of alleged effects, and assess related…

  7. Meta-replication reveals nonstationarity in multi-scale habitat selection of Mexican Spotted Owl

    Treesearch

    Ho Yi Wan; Kevin McGarigal; Joseph L. Ganey; Valentin Lauret; Brad C. Timm; Samuel A. Cushman

    2017-01-01

    Anthropogenic environmental changes are leading to habitat loss and degradation, driving many species to extinction. In this context, habitat models become increasingly important for effective species management and conservation. However, most habitat studies lack replicated study areas and do not properly address the role of nonstationarity and spatial scales in...

  8. Analyze the Impact of Habitat Patches on Wildlife Road-Kill

    NASA Astrophysics Data System (ADS)

    Seok, S.; Lee, J.

    2015-10-01

    The ecosystem fragmentation due to transportation infrastructure causes a road-kill phenomenon. When making policies for mitigating road-kill it is important to select target-species in order to enhance its efficiency. However, many wildlife crossing structures have been questioned regarding their effectiveness due to lack of considerations such as target-species selection, site selection, management, etc. The purpose of this study is to analyse the impact of habitat patches on wildlife road-kill and to suggest that spatial location of habitat patches should be considered as one of the important factors when making policies for mitigating road-kill. Habitat patches were presumed from habitat variables and a suitability index on target-species that was chosen by literature review. The road-kill hotspot was calculated using Getis-Ord Gi*. After that, we performed a correlation analysis between Gi Z-score and the distance from habitat patches to the roads. As a result, there is a low negative correlation between two variables and it increases the Gi Z-score if the habitat patches and the roads become closer.

  9. Evolutionary consequences of habitat loss for Pacific anadromous salmonids

    PubMed Central

    McClure, Michelle M; Carlson, Stephanie M; Beechie, Timothy J; Pess, George R; Jorgensen, Jeffrey C; Sogard, Susan M; Sultan, Sonia E; Holzer, Damon M; Travis, Joseph; Sanderson, Beth L; Power, Mary E; Carmichael, Richard W

    2008-01-01

    Large portions of anadromous salmonid habitat in the western United States has been lost because of dams and other blockages. This loss has the potential to affect salmonid evolution through natural selection if the loss is biased, affecting certain types of habitat differentially, and if phenotypic traits correlated with those habitat types are heritable. Habitat loss can also affect salmonid evolution indirectly, by reducing genetic variation and changing its distribution within and among populations. In this paper, we compare the characteristics of lost habitats with currently accessible habitats and review the heritability of traits which show correlations with habitat/environmental gradients. We find that although there is some regional variation, inaccessible habitats tend to be higher in elevation, wetter and both warmer in the summer and colder in the winter than habitats currently available to anadromous salmonids. We present several case studies that demonstrate either a change in phenotypic or life history expression or an apparent reduction in genetic variation associated with habitat blockages. These results suggest that loss of habitat will alter evolutionary trajectories in salmonid populations and Evolutionarily Significant Units. Changes in both selective regime and standing genetic diversity might affect the ability of these taxa to respond to subsequent environmental perturbations. Both natural and anthropogenic and should be considered seriously in developing management and conservation strategies. PMID:25567633

  10. Selective attention increases choice certainty in human decision making.

    PubMed

    Zizlsperger, Leopold; Sauvigny, Thomas; Haarmeier, Thomas

    2012-01-01

    Choice certainty is a probabilistic estimate of past performance and expected outcome. In perceptual decisions the degree of confidence correlates closely with choice accuracy and reaction times, suggesting an intimate relationship to objective performance. Here we show that spatial and feature-based attention increase human subjects' certainty more than accuracy in visual motion discrimination tasks. Our findings demonstrate for the first time a dissociation of choice accuracy and certainty with a significantly stronger influence of voluntary top-down attention on subjective performance measures than on objective performance. These results reveal a so far unknown mechanism of the selection process implemented by attention and suggest a unique biological valence of choice certainty beyond a faithful reflection of the decision process.

  11. Putting density back into the habitat-quality equation: case study of an open-nesting forest bird.

    PubMed

    Pérot, Aurore; Villard, Marc-André

    2009-12-01

    Ecological traps and other cases of apparently maladaptive habitat selection cast doubt on the relevance of density as an indicator of habitat quality. Nevertheless, the prevalence of these phenomena remains poorly known, and density may still reflect habitat quality in most systems. We examined the relationship between density and two other parameters of habitat quality in an open-nesting passerine species: the Ovenbird (Seiurus aurocapilla). We hypothesized that the average individual bird makes a good decision when selecting its breeding territory and that territory spacing reflects site productivity or predation risk. Therefore, we predicted that density would be positively correlated with productivity (number of young fledged per unit area). Because individual performance is sensitive to events partly determined by chance, such as nest predation, we further predicted density would be weakly correlated or uncorrelated with the proportion of territories fledging young. We collected data in 23 study sites (25 ha each), 16 of which were located in untreated mature northern hardwood forest and seven in stands partially harvested (treated) 1-7 years prior to the survey. Density explained most of the variability in productivity (R(2)= 0.73), and there was no apparent decoupling between density and productivity in treated plots. In contrast, there was no significant relationship between density and the proportion of territories fledging >or=1 young over the entire breeding season. These results suggest that density reflects habitat quality at the plot scale in this study system. To our knowledge this is one of the few studies testing the value of territory density as an indicator of habitat quality in an open-nesting bird species on the basis of a relatively large number of sizeable study plots.

  12. Hunting influences the diel patterns in habitat selection by northern pintails Anas acuta

    USGS Publications Warehouse

    Casazza, Michael L.; Coates, Peter S.; Miller, Michael R.; Overton, Cory T.; Yparraguirre, Daniel R.

    2012-01-01

    Northern pintail Anas acuta (hereafter pintail) populations wintering within Suisun Marsh, a large estuarine managed wetland near San Francisco Bay, California,USA, have declined markedly over the last four decades. The reasons for this decline are unclear. Information on how hunting and other factors influence the selection of vegetation types and sanctuaries would be beneficial to manage pintail populations in SuisunMarsh. During 1991-1993, we radio-marked and relocated female pintails (individuals: N = 203, relocations: N = 7,688) within Suisun Marsh to investigate habitat selection during the non-breeding months (winter). We calculated selection ratios for different vegetation types and for sanctuaries, and examined differences in those ratios between hunting season (i.e. hunting and non-hunting), age (hatchyear and after-hatch-year), and time of day (daylight or night hours). We found that diel patterns in selection were influenced by hunting disturbance. For example, prior to the hunting season and during daylight hours, pintails selected areas dominated by brass buttons Cotula coronopifolia, a potentially important food source, usually outside of sanctuary boundaries. However, during the hunting season, pintails did not select brass buttons during daylight hours, but instead highly selected permanent pools, mostly within sanctuaries. Also, during the hunting season, pintails showed strong selection for brass buttons at night. Sanctuaries provided more area of permanent water pools than within hunting areas and appeared to function as important refugia during daylight hours of the hunting season. Wildlife managers should encourage large protected permanent pools adjacent to hunted wetlands to increase pintail numbers within wetland environments and responsibly benefit hunting opportunities while improving pintail conservation.

  13. A Visual Decision Aid for Gear Materials Selection

    NASA Astrophysics Data System (ADS)

    Maity, S. R.; Chakraborty, S.

    2013-10-01

    Materials play an important role during the entire design process and the designers need to identify materials with specific functionalities in order to find out feasible design concepts. While selecting materials for engineering designs from an ever-increasing array of alternatives, with each having its own characteristics, applications, advantages and limitations, a clear understanding of the functional requirements for each individual component is required and various important criteria need to be considered. Although various approaches have already been adopted by the past researchers to solve the material selection problems, they all require profound knowledge in mathematics from the part of the designers for their implementation. This paper proposes the application of an integrated preference ranking organization method for enrichment evaluation and geometrical analysis for interactive aid method as a visual decision aid for material selection. Two real time gear material selection problems are solved which prove the potentiality and usefulness of this combined approach. It is observed that Nitralloy 135M and Nylon glass fiber reinforced 6/6 are respectively the choicest metallic and non-metallic gear materials.

  14. Structural habitat predicts functional dispersal habitat of a large carnivore: how leopards change spots.

    PubMed

    Fattebert, Julien; Robinson, Hugh S; Balme, Guy; Slotow, Rob; Hunter, Luke

    2015-10-01

    Natal dispersal promotes inter-population linkage, and is key to spatial distribution of populations. Degradation of suitable landscape structures beyond the specific threshold of an individual's ability to disperse can therefore lead to disruption of functional landscape connectivity and impact metapopulation function. Because it ignores behavioral responses of individuals, structural connectivity is easier to assess than functional connectivity and is often used as a surrogate for landscape connectivity modeling. However using structural resource selection models as surrogate for modeling functional connectivity through dispersal could be erroneous. We tested how well a second-order resource selection function (RSF) models (structural connectivity), based on GPS telemetry data from resident adult leopard (Panthera pardus L.), could predict subadult habitat use during dispersal (functional connectivity). We created eight non-exclusive subsets of the subadult data based on differing definitions of dispersal to assess the predictive ability of our adult-based RSF model extrapolated over a broader landscape. Dispersing leopards used habitats in accordance with adult selection patterns, regardless of the definition of dispersal considered. We demonstrate that, for a wide-ranging apex carnivore, functional connectivity through natal dispersal corresponds to structural connectivity as modeled by a second-order RSF. Mapping of the adult-based habitat classes provides direct visualization of the potential linkages between populations, without the need to model paths between a priori starting and destination points. The use of such landscape scale RSFs may provide insight into predicting suitable dispersal habitat peninsulas in human-dominated landscapes where mitigation of human-wildlife conflict should be focused. We recommend the use of second-order RSFs for landscape conservation planning and propose a similar approach to the conservation of other wide-ranging large

  15. Investigating habitat value to inform contaminant remediation options: case study

    Treesearch

    Rebecca A. Efroymson; Mark J. Peterson; Neil R. Giffen; Michael G. Ryon; John G. Smith; William W. Hargrove; W. Kelly Roy; Christopher J. Welsh; Daniel L. Druckenbrod; Harry D. Quarles

    2008-01-01

    Habitat valuation methods were implemented to support remedial decisions for aquatic and terrestrial contaminated sites at the East Tennessee Technology Park (ETTP) on the US Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, TN, USA. The habitat valuation was undertaken for six contaminated sites: Contractor’s Spoil Area, K-901-N Disposal Area, K-770...

  16. A two-phased fuzzy decision making procedure for IT supplier selection

    NASA Astrophysics Data System (ADS)

    Shohaimay, Fairuz; Ramli, Nazirah; Mohamed, Siti Rosiah; Mohd, Ainun Hafizah

    2013-09-01

    In many studies on fuzzy decision making, linguistic terms are usually represented by corresponding fixed triangular or trapezoidal fuzzy numbers. However, the fixed fuzzy numbers used in decision making process may not explain the actual respondents' opinions. Hence, a two-phased fuzzy decision making procedure is proposed. First, triangular fuzzy numbers were built based on respondents' opinions on the appropriate range (0-100) for each seven-scale linguistic terms. Then, the fuzzy numbers were integrated into fuzzy decision making model. The applicability of the proposed method is demonstrated in a case study of supplier selection in Information Technology (IT) department. The results produced via the developed fuzzy numbers were consistent with the results obtained using fixed fuzzy numbers. However, with different set of fuzzy numbers based on respondents, there is a difference in the ranking of suppliers based on criterion X1 (background of supplier). Hopefully the proposed model which incorporates fuzzy numbers based on respondents will provide a more significant meaning towards future decision making.

  17. [Effects of habitat fragmentation on nesting site selection of red-crowned crane].

    PubMed

    Wan, Dongmei; Gao, Wei; Wang, Qiuyu; Wang, Haitao; Liu, Mingyu

    2002-05-01

    During April and May of 1985, 1995 and 1998, red-crowned crane's nesting and variation of breeding population quantities in Shuangtaihekou National Natural Reserve in Liaoning, and also the habitat fragmentation there were investigated. Associated with previous data of the reserve, red-crowned crane's nesting habitat had been seriously fragmentated into 91 patches from one integrated reed wetland. The area of the smallest patch was 0.37 km2, and the minimum distance of two nests was 304 m. Compared with records of previous data, the minimum area of nesting habitat reduced by 0.72 km2. However, the breeding population quantities of red-crowned crane had maintained at about 30 pairs for a long period. The red-crowned crane adapted to the changed environment by the ecological adaptation strategy of reducing area of nesting habitat.

  18. Comparative habitat ecology of Texas and masked bobwhites

    USGS Publications Warehouse

    Guthery, F.S.; King, N.M.; Nolte, K.R.; Kuvlesky, W.P.; DeStefano, S.; Gall, S.A.; Silvy, N.J.

    2000-01-01

    The habitat ecology of masked bobwhites (Colinus virginianus ridgwayi) is poorly understood, which hampers recovery efforts for this endangered bird. During 1994-96, we analyzed the habitat ecology of masked bobwhites in Sonora, Mexico, and Arizona, and compared these findings with the habitat ecology of Texas bobwhites (C. v. texanus) in southern Texas. Mean values for the quantity of low screening cover (<50 cm aboveground), operative temperature (??C), and exposure to aerial predators were relatively constant across regions (CV <14.2%), indicating these variables are important in adaptive habitat-use decisions by bobwhites. Bobwhites exhibited preference in all regions for higher canopy coverage of woody vegetation, lower exposure to aerial predators, and lower operative temperatures in comparison with randomly available conditions. The major habitat deficiencies for masked bobwhites were lack of woody and herbaceous cover, which led to high exposure to aerial predators in Sonora and Arizona. High operative temperatures at quail level were associated with the loss of ???24% of potential habitat space-time in Texas, Sonora, and Arizona. Management to improve habitat for masked bobwhites includes any practice that increases canopy coverage of woody vegetation, and height and coverage of herbaceous vegetation.

  19. Nesting habitat of Mexican spotted owls in the Sacramento Mountains

    Treesearch

    Joseph L. Ganey; Darrell L. Apprill; Todd A. Rawlinson; Sean C. Kyle; Ryan S. Jonnes; James P. Ward

    2013-01-01

    Understanding the habitat relationships of rare species is critical to conserving populations and habitats of those species. Nesting habitat is suspected to limit distribution of the threatened Mexican spotted owl (Strix occidentalis lucida), and may vary among geographic regions. We studied selection of nesting habitat by Mexican spotted owls within their home ranges...

  20. Two-dimensional habitat modeling in the Yellowstone/Upper Missouri River system

    USGS Publications Warehouse

    Waddle, T. J.; Bovee, K.D.; Bowen, Z.H.

    1997-01-01

    This study is being conducted to provide the aquatic biology component of a decision support system being developed by the U.S. Bureau of Reclamation. In an attempt to capture the habitat needs of Great Plains fish communities we are looking beyond previous habitat modeling methods. Traditional habitat modeling approaches have relied on one-dimensional hydraulic models and lumped compositional habitat metrics to describe aquatic habitat. A broader range of habitat descriptors is available when both composition and configuration of habitats is considered. Habitat metrics that consider both composition and configuration can be adapted from terrestrial biology. These metrics are most conveniently accessed with spatially explicit descriptors of the physical variables driving habitat composition. Two-dimensional hydrodynamic models have advanced to the point that they may provide the spatially explicit description of physical parameters needed to address this problem. This paper reports progress to date on applying two-dimensional hydraulic and habitat models on the Yellowstone and Missouri Rivers and uses examples from the Yellowstone River to illustrate the configurational metrics as a new tool for assessing riverine habitats.

  1. Predator diversity reduces habitat colonization by mosquitoes and midges.

    PubMed

    Staats, Ethan G; Agosta, Salvatore J; Vonesh, James R

    2016-12-01

    Changes in predator diversity via extinction and invasion are increasingly widespread and can have important ecological and socio-economic consequences. Anticipating and managing these consequences requires understanding how predators shape ecological communities. Previous predator biodiversity research has focused on post-colonization processes. However, predators can also shape communities by altering patterns of prey habitat selection during colonization. The sensitivity of this non-consumptive top down mechanism to changes in predator diversity is largely unexamined. To address this gap, we examined patterns of dipteran oviposition habitat selection in experimental aquatic habitats in response to varied predator species richness while holding predator abundance constant. Caged predators were used in order to disentangle behavioural oviposition responses to predator cues from potential post-oviposition consumption of eggs and larvae. We hypothesized that because increases in predator richness often result in greater prey mortality than would be predicted from independent effects of predators, prey should avoid predator-rich habitats during colonization. Consistent with this hypothesis, predator-rich habitats received 48% fewer dipteran eggs than predicted, including 60% fewer mosquito eggs and 38% fewer midge eggs. Our findings highlight the potentially important links between predator biodiversity, prey habitat selection and the ecosystem service of pest regulation. © 2016 The Author(s).

  2. Making the Optimal Decision in Selecting Protective Clothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, J. Mark

    2008-01-15

    Protective Clothing plays a major role in the decommissioning and operation of nuclear facilities. Literally thousands of dress-outs occur over the life of a decommissioning project and during outages at operational plants. In order to make the optimal decision on which type of protective clothing is best suited for the decommissioning or maintenance and repair work on radioactive systems, a number of interrelating factors must be considered. This article discusses these factors as well as surveys of plants regarding their level of usage of single use protective clothing and should help individuals making decisions about protective clothing as it appliesmore » to their application. Individuals considering using SUPC should not jump to conclusions. The survey conducted clearly indicates that plants have different drivers. An evaluation should be performed to understand the facility's true drivers for selecting clothing. It is recommended that an interdisciplinary team be formed including representatives from budgets and cost, safety, radwaste, health physics, and key user groups to perform the analysis. The right questions need to be asked and answered by the company providing the clothing to formulate a proper perspective and conclusion. The conclusions and recommendations need to be shared with senior management so that the drivers, expected results, and associated costs are understood and endorsed. In the end, the individual making the recommendation should ask himself/herself: 'Is my decision emotional, or logical and economical?' 'Have I reached the optimal decision for my plant?'.« less

  3. Mother doesn't always know best: Maternal wormlion choice of oviposition habitat does not match larval habitat choice.

    PubMed

    Adar, Shay; Dor, Roi

    2018-02-01

    Habitat choice is an important decision that influences animals' fitness. Insect larvae are less mobile than the adults. Consequently, the contribution of the maternal choice of habitat to the survival and development of the offspring is considered to be crucial. According to the "preference-performance hypothesis", ovipositing females are expected to choose habitats that will maximize the performance of their offspring. We tested this hypothesis in wormlions (Diptera: Vermileonidae), which are small sand-dwelling insects that dig pit-traps in sandy patches and ambush small arthropods. Larvae prefer relatively deep and obstacle-free sand, and here we tested the habitat preference of the ovipositing female. In contrast to our expectation, ovipositing females showed no clear preference for either a deep sand or obstacle-free habitat, in contrast to the larval choice. This suboptimal female choice led to smaller pits being constructed later by the larvae, which may reduce prey capture success of the larvae. We offer several explanations for this apparently suboptimal female behavior, related either to maximizing maternal rather than offspring fitness, or to constraints on the female's behavior. Female's ovipositing habitat choice may have weaker negative consequences than expected for the offspring, as larvae can partially correct suboptimal maternal choice. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Habitat risk assessment for regional ocean planning in the U.S. Northeast and Mid-Atlantic.

    PubMed

    Wyatt, Katherine H; Griffin, Robert; Guerry, Anne D; Ruckelshaus, Mary; Fogarty, Michael; Arkema, Katie K

    2017-01-01

    Coastal habitats provide important benefits to people, including habitat for species targeted by fisheries and opportunities for tourism and recreation. Yet, such human activities also can imperil these habitats and undermine the ecosystem services they provide to people. Cumulative risk assessment provides an analytical framework for synthesizing the influence of multiple stressors across habitats and decision-support for balancing human uses and ecosystem health. To explore cumulative risk to habitats in the U.S. Northeast and Mid-Atlantic Ocean Planning regions, we apply the open-source InVEST Habitat Risk Assessment model to 13 habitats and 31 stressors in an exposure-consequence framework. In doing so, we advance the science priorities of EBM and both regional planning bodies by synthesizing the wealth of available data to improve our understanding of human uses and how they affect marine resources. We find that risk to ecosystems is greatest first, along the coast, where a large number of stressors occur in close proximity and secondly, along the continental shelf, where fewer, higher consequence activities occur. Habitats at greatest risk include soft and hard-bottom nearshore areas, tidal flats, soft-bottom shelf habitat, and rocky intertidal zones-with the degree of risk varying spatially. Across all habitats, our results indicate that rising sea surface temperatures, commercial fishing, and shipping consistently and disproportionally contribute to risk. Further, our findings suggest that management in the nearshore will require simultaneously addressing the temporal and spatial overlap as well as intensity of multiple human activities and that management in the offshore requires more targeted efforts to reduce exposure from specific threats. We offer a transparent, generalizable approach to evaluating cumulative risk to multiple habitats and illustrate the spatially heterogeneous nature of impacts along the eastern Atlantic coast and the importance of

  5. Habitat risk assessment for regional ocean planning in the U.S. Northeast and Mid-Atlantic

    PubMed Central

    Guerry, Anne D.; Ruckelshaus, Mary; Fogarty, Michael; Arkema, Katie K.

    2017-01-01

    Coastal habitats provide important benefits to people, including habitat for species targeted by fisheries and opportunities for tourism and recreation. Yet, such human activities also can imperil these habitats and undermine the ecosystem services they provide to people. Cumulative risk assessment provides an analytical framework for synthesizing the influence of multiple stressors across habitats and decision-support for balancing human uses and ecosystem health. To explore cumulative risk to habitats in the U.S. Northeast and Mid-Atlantic Ocean Planning regions, we apply the open-source InVEST Habitat Risk Assessment model to 13 habitats and 31 stressors in an exposure-consequence framework. In doing so, we advance the science priorities of EBM and both regional planning bodies by synthesizing the wealth of available data to improve our understanding of human uses and how they affect marine resources. We find that risk to ecosystems is greatest first, along the coast, where a large number of stressors occur in close proximity and secondly, along the continental shelf, where fewer, higher consequence activities occur. Habitats at greatest risk include soft and hard-bottom nearshore areas, tidal flats, soft-bottom shelf habitat, and rocky intertidal zones—with the degree of risk varying spatially. Across all habitats, our results indicate that rising sea surface temperatures, commercial fishing, and shipping consistently and disproportionally contribute to risk. Further, our findings suggest that management in the nearshore will require simultaneously addressing the temporal and spatial overlap as well as intensity of multiple human activities and that management in the offshore requires more targeted efforts to reduce exposure from specific threats. We offer a transparent, generalizable approach to evaluating cumulative risk to multiple habitats and illustrate the spatially heterogeneous nature of impacts along the eastern Atlantic coast and the importance of

  6. Natal habitat imprinting counteracts the diversifying effects of phenotype-dependent dispersal in a spatially structured population.

    PubMed

    Camacho, Carlos; Canal, David; Potti, Jaime

    2016-08-08

    Habitat selection may have profound evolutionary consequences, but they strongly depend on the underlying preference mechanism, including genetically-determined, natal habitat and phenotype-dependent preferences. It is known that different mechanisms may operate at the same time, yet their relative contribution to population differentiation remains largely unexplored empirically mainly because of the difficulty of finding suitable study systems. Here, we investigate the role of early experience and genetic background in determining the outcome of settlement by pied flycatchers (Ficedula hypoleuca) breeding in two habitat patches between which dispersal and subsequent reproductive performance is influenced by phenotype (body size). For this, we conducted a cross-fostering experiment in a two-patch system: an oakwood and a conifer plantation separated by only 1 km. Experimental birds mostly returned to breed in the forest patch where they were raised, whether it was that of their genetic or their foster parents, indicating that decisions on where to settle are determined by individuals' experience in their natal site, rather than by their genetic background. Nevertheless, nearly a third (27.6 %) moved away from the rearing habitat and, as previously observed in unmanipulated individuals, dispersal between habitats was phenotype-dependent. Pied flycatchers breeding in the oak and the pine forests are differentiated by body size, and analyses of genetic variation at microsatellite loci now provide evidence of subtle genetic differentiation between the two populations. This suggests that phenotype-dependent dispersal may contribute to population structure despite the short distance and widespread exchange of birds between the study plots. Taken together, the current and previous findings that pied flycatchers do not always settle in the habitat to which they are best suited suggest that their strong tendency to return to the natal patch regardless of their body size

  7. Development of habitat suitability indices for the Candy Darter, with cross-scale validation across representative populations

    USGS Publications Warehouse

    Dunn, Corey G.; Angermeier, Paul

    2016-01-01

    Understanding relationships between habitat associations for individuals and habitat factors that limit populations is a primary challenge for managers of stream fishes. Although habitat use by individuals can provide insight into the adaptive significance of selected microhabitats, not all habitat parameters will be significant at the population level, particularly when distributional patterns partially result from habitat degradation. We used underwater observation to quantify microhabitat selection by an imperiled stream fish, the Candy Darter Etheostoma osburni, in two streams with robust populations. We developed multiple-variable and multiple-life-stage habitat suitability indices (HSIs) from microhabitat selection patterns and used them to assess the suitability of available habitat in streams where Candy Darter populations were extirpated, localized, or robust. Next, we used a comparative framework to examine relationships among (1) habitat availability across streams, (2) projected habitat suitability of each stream, and (3) a rank for the likely long-term viability (robustness) of the population inhabiting each stream. Habitat selection was characterized by ontogenetic shifts from the low-velocity, slightly embedded areas used by age-0 Candy Darters to the swift, shallow areas with little fine sediment and complex substrate, which were used by adults. Overall, HSIs were strongly correlated with population rank. However, we observed weak or inverse relationships between predicted individual habitat suitability and population robustness for multiple life stages and variables. The results demonstrated that microhabitat selection by individuals does not always reflect population robustness, particularly when based on a single life stage or season, which highlights the risk of generalizing habitat selection that is observed during nonstressful periods or for noncritical resources. These findings suggest that stream fish managers may need to be cautious when

  8. Decision Making on Regional Landfill Site Selection in Hormozgan Province Using Smce

    NASA Astrophysics Data System (ADS)

    Majedi, A. S.; Kamali, B. M.; Maghsoudi, R.

    2015-12-01

    Landfill site selection and suitable conditions to bury hazardous wastes are among the most critical issues in modern societies. Taking several factors and limitations into account along with true decision making requires application of different decision techniques. To this end, current paper aims to make decisions about regional landfill site selection in Hormozgan province and utilizes SMCE technique combined with qualitative and quantitative criteria to select the final alternatives. To this respect, we first will describe the existing environmental situation in our study area and set the goals of our study in the framework of SMCE and will analyze the effective factors in regional landfill site selection. Then, methodological procedure of research was conducted using Delphi approach and questionnaires (in order to determine research validity, Chronbach Alpha (0.94) method was used). Spatial multi-criteria analysis model was designed in the form of criteria tree in SMCE using IL WIS software. Prioritization of respective spatial alternatives included: Bandar Abbas city with total 4 spatial alternatives (one zone with 1st priority, one zone with 3rd priority and two zones with 4thpriority) was considered the first priority, Bastak city with total 3 spatial alternatives (one zone with 2nd priority, one zone with 3rdpriorit and one zone with 4th priority) was the second priority and Bandar Abbas, Minab, Jask and Haji Abad cities were considered as the third priority.

  9. Habitat selection in a rocky landscape: experimentally decoupling the influence of retreat site attributes from that of landscape features.

    PubMed

    Croak, Benjamin M; Pike, David A; Webb, Jonathan K; Shine, Richard

    2012-01-01

    Organisms selecting retreat sites may evaluate not only the quality of the specific shelter, but also the proximity of that site to resources in the surrounding area. Distinguishing between habitat selection at these two spatial scales is complicated by co-variation among microhabitat factors (i.e., the attributes of individual retreat sites often correlate with their proximity to landscape features). Disentangling this co-variation may facilitate the restoration or conservation of threatened systems. To experimentally examine the role of landscape attributes in determining retreat-site quality for saxicolous ectotherms, we deployed 198 identical artificial rocks in open (sun-exposed) sites on sandstone outcrops in southeastern Australia, and recorded faunal usage of those retreat sites over the next 29 months. Several landscape-scale attributes were associated with occupancy of experimental rocks, but different features were important for different species. For example, endangered broad-headed snakes (Hoplocephalus bungaroides) preferred retreat sites close to cliff edges, flat rock spiders (Hemicloea major) preferred small outcrops, and velvet geckos (Oedura lesueurii) preferred rocks close to the cliff edge with higher-than-average sun exposure. Standardized retreat sites can provide robust experimental data on the effects of landscape-scale attributes on retreat site selection, revealing interspecific divergences among sympatric taxa that use similar habitats.

  10. Robust Decision-making Applied to Model Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemez, Francois M.

    2012-08-06

    The scientific and engineering communities are relying more and more on numerical models to simulate ever-increasingly complex phenomena. Selecting a model, from among a family of models that meets the simulation requirements, presents a challenge to modern-day analysts. To address this concern, a framework is adopted anchored in info-gap decision theory. The framework proposes to select models by examining the trade-offs between prediction accuracy and sensitivity to epistemic uncertainty. The framework is demonstrated on two structural engineering applications by asking the following question: Which model, of several numerical models, approximates the behavior of a structure when parameters that define eachmore » of those models are unknown? One observation is that models that are nominally more accurate are not necessarily more robust, and their accuracy can deteriorate greatly depending upon the assumptions made. It is posited that, as reliance on numerical models increases, establishing robustness will become as important as demonstrating accuracy.« less

  11. Implications of scale-independent habitat specialization on persistence of a rare small mammal

    USGS Publications Warehouse

    Cleaver, Michael; Klinger, Robert C.; Anderson, Steven T.; Maier, Paul A.; Clark, Jonathan

    2015-01-01

    We assessed the habitat use patterns of the Amargosa vole Microtus californicus scirpensis , an endangered rodent endemic to wetland vegetation along a 3.5 km stretch of the Amargosa River in the Mojave Desert, USA. Our goals were to: (1) quantify the vole’s abundance, occupancy rates and habitat selection patterns along gradients of vegetation cover and spatial scale; (2) identify the processes that likely had the greatest influence on its habitat selection patterns. We trapped voles monthly in six 1 ha grids from January to May 2012 and measured habitat structure at subgrid (View the MathML source225m2) and trap (View the MathML source1m2) scales in winter and spring seasons. Regardless of scale, analyses of density, occupancy and vegetation structure consistently indicated that voles occurred in patches of bulrush (Schoenoplectus americanus ; Cyperaceae) where cover >50%. The majority of evidence indicates the vole's habitat selectivity is likely driven by bulrush providing protection from intense predation. However, a combination of selective habitat use and limited movement resulted in a high proportion of apparently suitable bulrush patches being unoccupied. This suggests the Amargosa vole's habitat selection behavior confers individual benefits but may not allow the overall population to persist in a changing environment.

  12. A multicriteria decision making model for assessment and selection of an ERP in a logistics context

    NASA Astrophysics Data System (ADS)

    Pereira, Teresa; Ferreira, Fernanda A.

    2017-07-01

    The aim of this work is to apply a methodology of decision support based on a multicriteria decision analyses (MCDA) model that allows the assessment and selection of an Enterprise Resource Planning (ERP) in a Portuguese logistics company by Group Decision Maker (GDM). A Decision Support system (DSS) that implements a MCDA - Multicriteria Methodology for the Assessment and Selection of Information Systems / Information Technologies (MMASSI / IT) is used based on its features and facility to change and adapt the model to a given scope. Using this DSS it was obtained the information system that best suited to the decisional context, being this result evaluated through a sensitivity and robustness analysis.

  13. Fish thermal habitat current use and simulation of thermal habitat availability in lakes of the Argentine Patagonian Andes under climate change scenarios RCP 4.5 and RCP 8.5.

    PubMed

    Vigliano, Pablo H; Rechencq, Magalí M; Fernández, María V; Lippolt, Gustavo E; Macchi, Patricio J

    2018-09-15

    Habitat use in relation to the thermal habitat availability and food source as a forcing factor on habitat selection and use of Percichthys trucha (Creole perch), Oncorhynchus mykiss (rainbow trout), Salmo trutta (brown trout) and Salvelinus fontinalis (brook trout) were determined as well as future potential thermal habitat availability for these species under climate change scenarios Representative Concentration Pathways 4.5 and 8.5. This study was conducted in three interconnected lakes of Northern Patagonia (Moreno Lake system). Data on fish abundance was obtained through gill netting and hydroacoustics, and thermal profiles and fish thermal habitat suitability index curves were used to identify current species-specific thermal habitat use. Surface air temperatures from the (NEX GDDP) database for RCP scenarios 4.5 and 8.5 were used to model monthly average temperatures of the water column up to the year 2099 for all three lakes, and to determine potential future habitat availability. In addition, data on fish diet were used to determine whether food could act as a forcing factor in current habitat selection. The four species examined do not use all the thermally suitable habitats currently available to them in the three lakes, and higher fish densities are not necessarily constrained to their "fundamental thermal niches" sensu Magnuson et al. (1979), as extensive use is made of less suitable habitats. This is apparently brought about by food availability acting as a major forcing factor in habitat selection and use. Uncertainties related to the multidimensionality inherent to habitat selection and climate change imply that fish resource management in Patagonia will not be feasible through traditional incremental policies and strategic adjustments based on short-term predictions, but will have to become highly opportunistic and adaptive. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Speciation: more likely through a genetic or through a learned habitat preference?

    PubMed Central

    Beltman, J.B; Metz, J.A.J

    2005-01-01

    A problem in understanding sympatric speciation is establishing how reproductive isolation can arise when there is disruptive selection on an ecological trait. One of the solutions that has been proposed is that a habitat preference evolves, and that mates are chosen within the preferred habitat. We present a model where the habitat preference can evolve either by means of a genetic mechanism or by means of learning. Employing an adaptive-dynamical analysis, we show that evolution proceeds either to a single population of specialists with a genetic preference for their optimal habitat, or to a population of generalists without a habitat preference. The generalist population subsequently experiences disruptive selection. Learning promotes speciation because it increases the intensity of disruptive selection. An individual-based version of the model shows that, when loci are completely unlinked and learning confers little cost, the presence of disruptive selection most probably leads to speciation via the simultaneous evolution of a learned habitat preference. For high costs of learning, speciation is most likely to occur via the evolution of a genetic habitat preference. However, the latter only happens when the effect of mutations is large, or when there is linkage between genes coding for the different traits. PMID:16011920

  15. An Optimization Model For Strategy Decision Support to Select Kind of CPO’s Ship

    NASA Astrophysics Data System (ADS)

    Suaibah Nst, Siti; Nababan, Esther; Mawengkang, Herman

    2018-01-01

    The selection of marine transport for the distribution of crude palm oil (CPO) is one of strategy that can be considered in reducing cost of transport. The cost of CPO’s transport from one area to CPO’s factory located at the port of destination may affect the level of CPO’s prices and the number of demands. In order to maintain the availability of CPO a strategy is required to minimize the cost of transporting. In this study, the strategy used to select kind of charter ships as barge or chemical tanker. This study aims to determine an optimization model for strategy decision support in selecting kind of CPO’s ship by minimizing costs of transport. The select of ship was done randomly, so that two-stage stochastic programming model was used to select the kind of ship. Model can help decision makers to select either barge or chemical tanker to distribute CPO.

  16. Mapping marine habitat suitability and uncertainty of Bayesian networks: a case study using Pacific benthic macrofauna

    Treesearch

    Andrea Havron; Chris Goldfinger; Sarah Henkel; Bruce G. Marcot; Chris Romsos; Lisa Gilbane

    2017-01-01

    Resource managers increasingly use habitat suitability map products to inform risk management and policy decisions. Modeling habitat suitability of data-poor species over large areas requires careful attention to assumptions and limitations. Resulting habitat suitability maps can harbor uncertainties from data collection and modeling processes; yet these limitations...

  17. Habitat suitability criteria via parametric distributions: estimation, model selection and uncertainty

    USGS Publications Warehouse

    Som, Nicholas A.; Goodman, Damon H.; Perry, Russell W.; Hardy, Thomas B.

    2016-01-01

    Previous methods for constructing univariate habitat suitability criteria (HSC) curves have ranged from professional judgement to kernel-smoothed density functions or combinations thereof. We present a new method of generating HSC curves that applies probability density functions as the mathematical representation of the curves. Compared with previous approaches, benefits of our method include (1) estimation of probability density function parameters directly from raw data, (2) quantitative methods for selecting among several candidate probability density functions, and (3) concise methods for expressing estimation uncertainty in the HSC curves. We demonstrate our method with a thorough example using data collected on the depth of water used by juvenile Chinook salmon (Oncorhynchus tschawytscha) in the Klamath River of northern California and southern Oregon. All R code needed to implement our example is provided in the appendix. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  18. Trial Maneuver Generation and Selection in the Paladin Tactical Decision Generation System

    NASA Technical Reports Server (NTRS)

    Chappell, Alan R.; McManus, John W.; Goodrich, Kenneth H.

    1992-01-01

    To date, increased levels of maneuverability and controllability in aircraft have been postulated as tactically advantageous, but little research has studied maneuvers or tactics that make use of these capabilities. In order to help fill this void, a real time tactical decision generation system for air combat engagements, Paladin, has been developed. Paladin models an air combat engagement as a series of discrete decisions. A detailed description of Paladin's decision making process is presented. This includes the sources of data used, methods of generating reasonable maneuvers for the Paladin aircraft, and selection criteria for choosing the "best" maneuver. Simulation results are presented that show Paladin to be relatively insensitive to errors introduced into the decision process by estimation of future positional and geometric data.

  19. Trial maneuver generation and selection in the Paladin tactical decision generation system

    NASA Technical Reports Server (NTRS)

    Chappell, Alan R.; Mcmanus, John W.; Goodrich, Kenneth H.

    1993-01-01

    To date, increased levels of maneuverability and controllability in aircraft have been postulated as tactically advantageous, but little research has studied maneuvers or tactics that make use of these capabilities. In order to help fill this void, a real-time tactical decision generation system for air combat engagements, Paladin, has been developed. Paladin models an air combat engagement as a series of discrete decisions. A detailed description of Paladin's decision making process is presented. This includes the sources of data used, methods of generating reasonable maneuvers for the Paladin aircraft, and selection criteria for choosing the 'best' maneuver. Simulation results are presented that show Paladin to be relatively insensitive to errors introduced into the decision process by estimation of future positional and geometric data.

  20. The Invasive Species Forecasting System (ISFS): An iRODS-Based, Cloud-Enabled Decision Support System for Invasive Species Habitat Suitability Modeling

    NASA Technical Reports Server (NTRS)

    Gill, Roger; Schnase, John L.

    2012-01-01

    The Invasive Species Forecasting System (ISFS) is an online decision support system that allows users to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of interest, such as a national park, monument, forest, or refuge. Target customers for ISFS are natural resource managers and decision makers who have a need for scientifically valid, model- based predictions of the habitat suitability of plant species of management concern. In a joint project involving NASA and the Maryland Department of Natural Resources, ISFS has been used to model the potential distribution of Wavyleaf Basketgrass in Maryland's Chesapeake Bay Watershed. Maximum entropy techniques are used to generate predictive maps using predictor datasets derived from remotely sensed data and climate simulation outputs. The workflow to run a model is implemented in an iRODS microservice using a custom ISFS file driver that clips and re-projects data to geographic regions of interest, then shells out to perform MaxEnt processing on the input data. When the model completes, all output files and maps from the model run are registered in iRODS and made accessible to the user. The ISFS user interface is a web browser that uses the iRODS PHP client to interact with the ISFS/iRODS- server. ISFS is designed to reside in a VMware virtual machine running SLES 11 and iRODS 3.0. The ISFS virtual machine is hosted in a VMware vSphere private cloud infrastructure to deliver the online service.

  1. A multicriteria decision making approach based on fuzzy theory and credibility mechanism for logistics center location selection.

    PubMed

    Wang, Bowen; Xiong, Haitao; Jiang, Chengrui

    2014-01-01

    As a hot topic in supply chain management, fuzzy method has been widely used in logistics center location selection to improve the reliability and suitability of the logistics center location selection with respect to the impacts of both qualitative and quantitative factors. However, it does not consider the consistency and the historical assessments accuracy of experts in predecisions. So this paper proposes a multicriteria decision making model based on credibility of decision makers by introducing priority of consistency and historical assessments accuracy mechanism into fuzzy multicriteria decision making approach. In this way, only decision makers who pass the credibility check are qualified to perform the further assessment. Finally, a practical example is analyzed to illustrate how to use the model. The result shows that the fuzzy multicriteria decision making model based on credibility mechanism can improve the reliability and suitability of site selection for the logistics center.

  2. A Multicriteria Decision Making Approach Based on Fuzzy Theory and Credibility Mechanism for Logistics Center Location Selection

    PubMed Central

    Wang, Bowen; Jiang, Chengrui

    2014-01-01

    As a hot topic in supply chain management, fuzzy method has been widely used in logistics center location selection to improve the reliability and suitability of the logistics center location selection with respect to the impacts of both qualitative and quantitative factors. However, it does not consider the consistency and the historical assessments accuracy of experts in predecisions. So this paper proposes a multicriteria decision making model based on credibility of decision makers by introducing priority of consistency and historical assessments accuracy mechanism into fuzzy multicriteria decision making approach. In this way, only decision makers who pass the credibility check are qualified to perform the further assessment. Finally, a practical example is analyzed to illustrate how to use the model. The result shows that the fuzzy multicriteria decision making model based on credibility mechanism can improve the reliability and suitability of site selection for the logistics center. PMID:25215319

  3. Critical habitat for threatened and endangered species: how should the economic costs be evaluated?

    PubMed

    Plantinga, Andrew J; Helvoigt, Ted L; Walker, Kirsten

    2014-02-15

    The designation of critical habitat is a feature of endangered species protection laws in many countries. Under the U.S. Endangered Species Act, economics cannot enter into decisions to list species as threatened or endangered, but can be considered when critical habitat is designated. Areas can be excluded from proposed critical habitat if the economic cost of including them is determined to exceed the benefits of inclusion, and exclusion would not result in extinction of the species. The economic analysis done to support critical habitat exclusions has been controversial, and the focus of much litigation. We evaluate a sample of these analyses, and discuss the exclusions that were made in each case. We discuss how the methodology used to measure economic costs of critical habitat has changed over time and provide a critique of these alternative methods. We find that the approach currently in use is sound from an economic perspective. Nevertheless, quantification of the costs of critical habitat faces numerous challenges, including great uncertainty about future events, questions about the appropriate scale for the analysis, and the need to account for complex market feedbacks and values of non-market goods. For the studies we reviewed, there was no evidence that the results of the economic analyses provided information that was useful for making decisions about exemptions from critical habitat designations. If economics is to play a meaningful role in determining endangered species protections, an alternative would be to allow listing decisions to be based on economic as well as biological factors, as is typical for species conservation laws in other countries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Evaluation of habitat quality for selected wildlife species associated with back channels.

    USGS Publications Warehouse

    Anderson, James T.; Zadnik, Andrew K.; Wood, Petra Bohall; Bledsoe, Kerry

    2013-01-01

    The islands and associated back channels on the Ohio River, USA, are believed to provide critical habitat features for several wildlife species. However, few studies have quantitatively evaluated habitat quality in these areas. Our main objective was to evaluate the habitat quality of back and main channel areas for several species using habitat suitability index (HSI) models. To test the effectiveness of these models, we attempted to relate HSI scores and the variables measured for each model with measures of relative abundance for the model species. The mean belted kingfisher (Ceryle alcyon) HSI was greater on the main than back channel. However, the model failed to predict kingfisher abundance. The mean reproduction component of the great blue heron (Ardea herodias) HSI, total common muskrat (Ondatra zibethicus) HSI, winter cover component of the snapping turtle (Chelydra serpentina) HSI, and brood-rearing component of the wood duck (Aix sponsa) HSI were all greater on the back than main channel, and were positively related with the relative abundance of each species. We found that island back channels provide characteristics not found elsewhere on the Ohio River and warrant conservation as important riparian wildlife habitat. The effectiveness of using HSI models to predict species abundance on the river was mixed. Modifications to several of the models are needed to improve their use on the Ohio River and, likely, other large rivers.

  5. Advantages of a Modular Mars Surface Habitat Approach

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin

    2018-01-01

    Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.

  6. No net loss of fish habitat: a review and analysis of habitat compensation in Canada.

    PubMed

    Harper, D J; Quigley, J T

    2005-09-01

    The achievement of No Net Loss (NNL) through habitat compensation has rarely been assessed in Canada. Files relating to 124 Fisheries Act Section 35(2) authorizations issued by Fisheries and Oceans Canada for the harmful alteration, disruption, and destruction of fish habitat (HADD) were collected and reviewed. Data extracted from these files were pooled and analyzed to provide an indication of the types of HADDs that have been authorized in Canada, what habitats have been affected, and what habitat management approaches have been used when compensating for HADDs and monitoring and ensuring the success of the compensation. Determinations regarding the effectiveness of habitat compensation in achieving NNL were made. Impacts to 419,562 m2 of fish habitat from the 124 authorized HADDs were offset by 1,020,388 m2 of compensatory habitat. Eighty percent of the authorizations had compensation ratios (compensation area:HADD area) of 2:1 or less, and 25% of the authorizations had a compensation ratio that was less than 1:1. In-channel and riparian habitat were the most frequently impacted habitats. Urban development and roads and highways resulted in the greatest areal loss of habitat. The compensation option that was most often selected was the creation of in-kind habitat. The mean duration of post-construction monitoring programs was 3.7 years. Determinations of NNL could only be made for 17 authorizations as a result of poor proponent compliance with monitoring requirements and the qualitative assessment procedures used by the monitoring programs. Adequate resources, proper training, and standardized approaches to data management and monitoring programs are required to ensure that the conservation goal of NNL can be achieved in Canada.

  7. Parent Decision-Making When Selecting Schools: The Case of Nepal

    ERIC Educational Resources Information Center

    Joshi, Priyadarshani

    2014-01-01

    This paper analyzes the parent decision-making processes underlying school selection in Nepal. The analysis is based on primary survey and focus group data collected from parent meetings in diverse local education markets in two districts of Nepal in 2011. It highlights three main arguments that are less frequently discussed in the context of…

  8. Farmers’ decision analysis to select certified palm oil seedlings in Lampung, Indonesia

    NASA Astrophysics Data System (ADS)

    Utoyo, Bambang; Yolandika, Clara

    2018-03-01

    This research aimed to analyse (1) decission making process of certified and uncertified palm oil seedlings and (2) factors that influence farmer decision to select certified and uncertified palm oil seedlings. This research was conducted in some districts in Lampung, such as Mesuji, Central Lampung, Tulang Bawang, North Lampung, Way Kanan and South Lampung. The respondents consisted of 30 farmers using certified seeds and 30 farmers using uncertified seeds. The study was conducted from January to May 2017. In addition, factors that influence farmer decision was analysed by logistic regression model. The results showed that decision making on the use of certified or uncertified palm seeds by farmers through the stages: introduction of problems or needs, searching of information, alternative evaluation, purchasing decisions, and post-purchase behaviour. Factors that significantly influence farmer's decision to use certified seeds were land area, seeds price, external influenced, and farmers’ perception.

  9. Fine-scale movement decisions of tropical forest birds in a fragmented landscape.

    PubMed

    Gillies, Cameron S; Beyer, Hawthorne L; St Clair, Colleen Cassady

    2011-04-01

    The persistence of forest-dependent species in fragmented landscapes is fundamentally linked to the movement of individuals among subpopulations. The paths taken by dispersing individuals can be considered a series of steps built from individual route choices. Despite the importance of these fine-scale movement decisions, it has proved difficult to collect such data that reveal how forest birds move in novel landscapes. We collected unprecedented route information about the movement of translocated forest birds from two species in the highly fragmented tropical dry forest of Costa Rica. In this pasture-dominated landscape, forest remains in patches or riparian corridors, with lesser amounts of living fencerows and individual trees or "stepping stones." We used step selection functions to quantify how route choice was influenced by these habitat elements. We found that the amount of risk these birds were willing to take by crossing open habitat was context dependent. The forest-specialist Barred Antshrike (Thamnophilus doliatus) exhibited stronger selection for forested routes when moving in novel landscapes distant from its territory relative to locations closer to its territory. It also selected forested routes when its step originated in forest habitat. It preferred steps ending in stepping stones when the available routes had little forest cover, but avoided them when routes had greater forest cover. The forest-generalist Rufous-naped Wren (Campylorhynchus rufinucha) preferred steps that contained more pasture, but only when starting from non-forest habitats. Our results showed that forested corridors (i.e., riparian corridors) best facilitated the movement of a sensitive forest specialist through this fragmented landscape. They also suggested that stepping stones can be important in highly fragmented forests with little remaining forest cover. We expect that naturally dispersing birds and species with greater forest dependence would exhibit even stronger

  10. How do dispersal costs and habitat selection influence realized population connectivity?

    PubMed

    Burgess, Scott C; Treml, Eric A; Marshall, Dustin J

    2012-06-01

    Despite the importance of dispersal for population connectivity, dispersal is often costly to the individual. A major impediment to understanding connectivity has been a lack of data combining the movement of individuals and their survival to reproduction in the new habitat (realized connectivity). Although mortality often occurs during dispersal (an immediate cost), in many organisms costs are paid after dispersal (deferred costs). It is unclear how such deferred costs influence the mismatch between dispersal and realized connectivity. Through a series of experiments in the field and laboratory, we estimated both direct and indirect deferred costs in a marine bryozoan (Bugula neritina). We then used the empirical data to parameterize a theoretical model in order to formalize predictions about how dispersal costs influence realized connectivity. Individuals were more likely to colonize poor-quality habitat after prolonged dispersal durations. Individuals that colonized poor-quality habitat performed poorly after colonization because of some property of the habitat (an indirect deferred cost) rather than from prolonged dispersal per se (a direct deferred cost). Our theoretical model predicted that indirect deferred costs could result in nonlinear mismatches between spatial patterns of potential and realized connectivity. The deferred costs of dispersal are likely to be crucial for determining how well patterns of dispersal reflect realized connectivity. Ignoring these deferred costs could lead to inaccurate predictions of spatial population dynamics.

  11. Habitat selection of juvenile sole (Solea solea L.): Consequences for shoreface nourishment

    NASA Astrophysics Data System (ADS)

    Post, Marjolein H. M.; Blom, Ewout; Chen, Chun; Bolle, Loes J.; Baptist, Martin J.

    2017-04-01

    The shallow coastal zone is an essential nursery habitat for juvenile flatfish species such as sole (Solea solea L.). The increased frequency of shoreface nourishments along the coast is likely to affect this nursery function by altering important habitat conditions, including sediment grain size. Sediment preference of juvenile sole (41-91 mm) was studied in a circular preference chamber in order to understand the relationship between grain size and sole distribution. The preference tests were carried out at 11 °C and 20 °C to reflect seasonal influences. The juveniles showed a significant preference for finer sediments. This preference was not length dependent (within the length range tested) nor affected by either temperatures. Juvenile sole have a small home range and are not expected to move in response to unfavourable conditions. As a result, habitat alterations may have consequences for juvenile survival and subsequently for recruitment to adult populations. It is therefore important to carefully consider nourishment grain size characteristics to safeguard suitable nursery habitats for juvenile sole.

  12. Seasonal habitat selection by lake trout (Salvelinus namaycush) in a small Canadian shield lake: Constraints imposed by winter conditions

    USGS Publications Warehouse

    Blanchfield, P.J.; Tate, L.S.; Plumb, J.M.; Acolas, M.-L.; Beaty, K.G.

    2009-01-01

    The need for cold, well-oxygenated waters significantly reduces the habitat available for lake trout (Salvelinus namaycush) during stratification of small temperate lakes. We examined the spatial and pelagic distribution of lake trout over two consecutive summers and winters and tested whether winter increased habitat availability and access to littoral regions in a boreal shield lake in which pelagic prey fish are absent. In winter, lake trout had a narrowly defined pelagic distribution that was skewed to the upper 3 m of the water column and spatially situated in the central region of the lake. Individual core areas of use (50% Kernel utilization distributions) in winter were much reduced (75%) and spatially non-overlapping compared to summer areas, but activity levels were similar between seasons. Winter habitat selection is in contrast to observations from the stratified season, when lake trout were consistently located in much deeper waters (>6 m) and widely distributed throughout the lake. Winter distribution of lake trout appeared to be strongly influenced by ambient light levels; snow depth and day length accounted for up to 69% of the variation in daily median fish depth. More restricted habitat use during winter than summer was in contrast to our original prediction and illustrates that a different suite of factors influence lake trout distribution between these seasons. ?? Springer Science+Business Media B.V. 2009.

  13. Pelagic Habitat Analysis Module (PHAM) for GIS Based Fisheries Decision Support

    NASA Technical Reports Server (NTRS)

    Kiefer, D. A.; Armstrong, Edward M.; Harrison, D. P.; Hinton, M. G.; Kohin, S.; Snyder, S.; O'Brien, F. J.

    2011-01-01

    We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus & pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus nd pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.

  14. How the risky features of previous selection affect subsequent decision-making: evidence from behavioral and fMRI measures.

    PubMed

    Dong, Guangheng; Zhang, Yifen; Xu, Jiaojing; Lin, Xiao; Du, Xiaoxia

    2015-01-01

    Human decision making is rarely conducted in temporal isolation. It is often biased and affected by environmental variables, particularly prior selections. In this study, we used a task that simulates a real gambling process to explore the effect of the risky features of a previous selection on subsequent decision making. Compared with decision making after an advantageous risk-taking situation (Risk_Adv), that after a disadvantageous risk-taking situation (Risk_Disadv) is associated with a longer response time (RT, the time spent in making decisions) and higher brain activations in the caudate and the dorsolateral prefrontal cortex (DLPFC). Compared with decisions after Risk_Adv, those after Risk_Disadv in loss trials are associated with higher brain activations in the left superior temporal gyrus (STG) and the precuneus. Brain activity and relevant RTs significantly correlated. Overall, people who experience disadvantageous risk-taking selections tend to focus on current decision making and engage cognitive endeavors in value evaluation and in the regulation of their risk-taking behaviors during decision making.

  15. Utilities and the Issue of Fairness in a Decision Theoretic Model for Selection

    ERIC Educational Resources Information Center

    Sawyer, Richard L.; And Others

    1976-01-01

    This article examines some of the values that might be considered in a selection situation within the context of a decision theoretic model also described here. Several alternate expressions of fair selection are suggested in the form of utility statements in which these values can be understood and compared. (Author/DEP)

  16. Application Of Decision Tree Approach To Student Selection Model- A Case Study

    NASA Astrophysics Data System (ADS)

    Harwati; Sudiya, Amby

    2016-01-01

    The main purpose of the institution is to provide quality education to the students and to improve the quality of managerial decisions. One of the ways to improve the quality of students is to arrange the selection of new students with a more selective. This research takes the case in the selection of new students at Islamic University of Indonesia, Yogyakarta, Indonesia. One of the university's selection is through filtering administrative selection based on the records of prospective students at the high school without paper testing. Currently, that kind of selection does not yet has a standard model and criteria. Selection is only done by comparing candidate application file, so the subjectivity of assessment is very possible to happen because of the lack standard criteria that can differentiate the quality of students from one another. By applying data mining techniques classification, can be built a model selection for new students which includes criteria to certain standards such as the area of origin, the status of the school, the average value and so on. These criteria are determined by using rules that appear based on the classification of the academic achievement (GPA) of the students in previous years who entered the university through the same way. The decision tree method with C4.5 algorithm is used here. The results show that students are given priority for admission is that meet the following criteria: came from the island of Java, public school, majoring in science, an average value above 75, and have at least one achievement during their study in high school.

  17. Accuracy of gap analysis habitat models in predicting physical features for wildlife-habitat associations in the southwest U.S.

    USGS Publications Warehouse

    Boykin, K.G.; Thompson, B.C.; Propeck-Gray, S.

    2010-01-01

    Despite widespread and long-standing efforts to model wildlife-habitat associations using remotely sensed and other spatially explicit data, there are relatively few evaluations of the performance of variables included in predictive models relative to actual features on the landscape. As part of the National Gap Analysis Program, we specifically examined physical site features at randomly selected sample locations in the Southwestern U.S. to assess degree of concordance with predicted features used in modeling vertebrate habitat distribution. Our analysis considered hypotheses about relative accuracy with respect to 30 vertebrate species selected to represent the spectrum of habitat generalist to specialist and categorization of site by relative degree of conservation emphasis accorded to the site. Overall comparison of 19 variables observed at 382 sample sites indicated ???60% concordance for 12 variables. Directly measured or observed variables (slope, soil composition, rock outcrop) generally displayed high concordance, while variables that required judgments regarding descriptive categories (aspect, ecological system, landform) were less concordant. There were no differences detected in concordance among taxa groups, degree of specialization or generalization of selected taxa, or land conservation categorization of sample sites with respect to all sites. We found no support for the hypothesis that accuracy of habitat models is inversely related to degree of taxa specialization when model features for a habitat specialist could be more difficult to represent spatially. Likewise, we did not find support for the hypothesis that physical features will be predicted with higher accuracy on lands with greater dedication to biodiversity conservation than on other lands because of relative differences regarding available information. Accuracy generally was similar (>60%) to that observed for land cover mapping at the ecological system level. These patterns demonstrate

  18. Systematic narrative review of decision frameworks to select the appropriate modelling approaches for health economic evaluations.

    PubMed

    Tsoi, B; O'Reilly, D; Jegathisawaran, J; Tarride, J-E; Blackhouse, G; Goeree, R

    2015-06-17

    In constructing or appraising a health economic model, an early consideration is whether the modelling approach selected is appropriate for the given decision problem. Frameworks and taxonomies that distinguish between modelling approaches can help make this decision more systematic and this study aims to identify and compare the decision frameworks proposed to date on this topic area. A systematic review was conducted to identify frameworks from peer-reviewed and grey literature sources. The following databases were searched: OVID Medline and EMBASE; Wiley's Cochrane Library and Health Economic Evaluation Database; PubMed; and ProQuest. Eight decision frameworks were identified, each focused on a different set of modelling approaches and employing a different collection of selection criterion. The selection criteria can be categorized as either: (i) structural features (i.e. technical elements that are factual in nature) or (ii) practical considerations (i.e. context-dependent attributes). The most commonly mentioned structural features were population resolution (i.e. aggregate vs. individual) and interactivity (i.e. static vs. dynamic). Furthermore, understanding the needs of the end-users and stakeholders was frequently incorporated as a criterion within these frameworks. There is presently no universally-accepted framework for selecting an economic modelling approach. Rather, each highlights different criteria that may be of importance when determining whether a modelling approach is appropriate. Further discussion is thus necessary as the modelling approach selected will impact the validity of the underlying economic model and have downstream implications on its efficiency, transparency and relevance to decision-makers.

  19. Habitat segregation of mosquito arbovirus vectors in south Florida.

    PubMed

    Rey, Jorge R; Nishimura, Naoya; Wagner, Billi; Braks, Marieta A H; O'Connell, Sheila M; Lounibos, L Philip

    2006-11-01

    Oviposition traps set in rural to urban environments in three south Florida counties were colonized predominantly by Culex quinquefasciatus Say (35.1%), Aedes albopictus (Skuse) (34.5%), Aedes aegypti (L.) (23.8%), and Culex nigripalpus Theobald (6.6%) during 1 yr of monthly sampling. Significant differences were detected among counties for abundances of Cx. quinquefasciatus and for percentage composition of that species and Ae. albopictus. Aerial images of habitats around each collection site were digitized, and coverages by each of 16 habitat variables were recorded. Abundances ofAe. aegypti were positively related to habitat variables associated with urbanization and negatively correlated to those reflecting rural characteristics. Multiple regression models of habitat selection explained similar proportions of variances in abundance of Ae. aegypti and Ae. albopictus, but signs of significant variables were opposite for these two species. No consistent trends of habitat associations were observed among counties for the two Culex spp. Co-occurrences of the four species in individual traps depended on container type (tub versus cup), and, for Aedes spp. with Culex spp., county. The results underscore the importance of scale in evaluating habitat selection and the utility of quantifiable habitat characteristics of intermediate scale to identify site characteristics favored by the arboviral vectors Ae. aegypti and Ae. albopictus.

  20. Wildlife habitat evaluation demonstration project. [Michigan

    NASA Technical Reports Server (NTRS)

    Burgoyne, G. E., Jr.; Visser, L. G.

    1981-01-01

    To support the deer range improvement project in Michigan, the capability of LANDSAT data in assessing deer habitat in terms of areas and mixes of species and age classes of vegetation is being examined to determine whether such data could substitute for traditional cover type information sources. A second goal of the demonstration project is to determine whether LANDSAT data can be used to supplement and improve the information normally used for making deer habitat management decisions, either by providing vegetative cover for private land or by providing information about the interspersion and juxtaposition of valuable vegetative cover types. The procedure to be used for evaluating in LANDSAT data of the Lake County test site is described.

  1. Risk of predation and weather events affect nest site selection by sympatric Pacific (Gavia pacifica) and Yellow-billed (Gavia adamsii) loons in Arctic habitats

    USGS Publications Warehouse

    Haynes, Trevor B.; Schmutz, Joel A.; Lindberg, Mark S.; Rosenberger, Amanda E.

    2014-01-01

    Pacific (Gavia pacifica) and Yellow-billed (G. adamsii) loons nest sympatrically in Arctic regions. These related species likely face similar constraints and requirements for nesting success; therefore, use of similar habitats and direct competition for nesting habitat is likely. Both of these loon species must select a breeding lake that provides suitable habitat for nesting and raising chicks; however, characteristics of nest site selection by either species on interior Arctic lakes remains poorly understood. Here, logistic regression was used to compare structural and habitat characteristics of all loon nest locations with random points from lakes on the interior Arctic Coastal Plain, Alaska. Results suggest that both loon species select nest sites to avoid predation and exposure to waves and shifting ice. Loon nest sites were more likely to be on islands and peninsulas (odds ratio = 16.13, 95% CI = 4.64–56.16) than mainland shoreline, which may help loons avoid terrestrial predators. Further, nest sites had a higher degree of visibility (mean degrees of visibility to 100 and 200 m) of approaching predators than random points (odds ratio = 2.57, 95% CI = 1.22–5.39). Nests were sheltered from exposure, having lower odds of being exposed to prevailing winds (odds ratio = 0.34, 95% CI = 0.13–0.92) and lower odds of having high fetch values (odds ratio = 0.46, 95% CI = 0.22–0.96). Differences between Pacific and Yellow-billed loon nesting sites were subtle, suggesting that both species have similar general nest site requirements. However, Yellow-billed Loons nested at slightly higher elevations and were more likely to nest on peninsulas than Pacific Loons. Pacific Loons constructed built up nests from mud and vegetation, potentially in response to limited access to suitable shoreline due to other territorial loons. Results suggest that land managers wishing to protect habitats for these species should focus on lakes with islands as well as shorelines

  2. Optimal flow for brown trout: Habitat - prey optimization.

    PubMed

    Fornaroli, Riccardo; Cabrini, Riccardo; Sartori, Laura; Marazzi, Francesca; Canobbio, Sergio; Mezzanotte, Valeria

    2016-10-01

    The correct definition of ecosystem needs is essential in order to guide policy and management strategies to optimize the increasing use of freshwater by human activities. Commonly, the assessment of the optimal or minimum flow rates needed to preserve ecosystem functionality has been done by habitat-based models that define a relationship between in-stream flow and habitat availability for various species of fish. We propose a new approach for the identification of optimal flows using the limiting factor approach and the evaluation of basic ecological relationships, considering the appropriate spatial scale for different organisms. We developed density-environment relationships for three different life stages of brown trout that show the limiting effects of hydromorphological variables at habitat scale. In our analyses, we found that the factors limiting the densities of trout were water velocity, substrate characteristics and refugia availability. For all the life stages, the selected models considered simultaneously two variables and implied that higher velocities provided a less suitable habitat, regardless of other physical characteristics and with different patterns. We used these relationships within habitat based models in order to select a range of flows that preserve most of the physical habitat for all the life stages. We also estimated the effect of varying discharge flows on macroinvertebrate biomass and used the obtained results to identify an optimal flow maximizing habitat and prey availability. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of Organizational Citizenship Behaviors on Selection Decisions in Employment Interviews

    ERIC Educational Resources Information Center

    Podsakoff, Nathan P.; Whiting, Steven W.; Podsakoff, Philip M.; Mishra, Paresh

    2011-01-01

    This article reports on an experiment examining the effects of job candidates' propensity to exhibit organizational citizenship behaviors (OCBs) on selection decisions made in the context of a job interview. We developed videos that manipulated candidate responses to interview questions tapping task performance and citizenship behavior content in…

  4. 20 CFR 405.410 - Selecting claims for Decision Review Board review.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Selecting claims for Decision Review Board review. 405.410 Section 405.410 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ADMINISTRATIVE REVIEW... will not review claims based on the identity of the administrative law judge who decided the claim. (b...

  5. Threat and Selective Exposure: The Moderating Role of Threat and Decision Context on Confirmatory Information Search after Decisions

    ERIC Educational Resources Information Center

    Fischer, Peter; Kastenmuller, Andreas; Greitemeyer, Tobias; Fischer, Julia; Frey, Dieter; Crelley, David

    2011-01-01

    Previous studies on the impact of perceived threat on confirmatory information search (selective exposure) in the context of decision making have yielded mixed results. Some studies have suggested that confirmatory information search is reduced, yet others have found contradictory effects. The present series of 5 studies consistently found that…

  6. A comparison of two modeling approaches for evaluating wildlife--habitat relationships

    Treesearch

    Ryan A. Long; Jonathan D. Muir; Janet L. Rachlow; John G. Kie

    2009-01-01

    Studies of resource selection form the basis for much of our understanding of wildlife habitat requirements, and resource selection functions (RSFs), which predict relative probability of use, have been proposed as a unifying concept for analysis and interpretation of wildlife habitat data. Logistic regression that contrasts used and available or unused resource units...

  7. Hyperspectral analysis of columbia spotted frog habitat

    USGS Publications Warehouse

    Shive, J.P.; Pilliod, D.S.; Peterson, C.R.

    2010-01-01

    Wildlife managers increasingly are using remotely sensed imagery to improve habitat delineations and sampling strategies. Advances in remote sensing technology, such as hyperspectral imagery, provide more information than previously was available with multispectral sensors. We evaluated accuracy of high-resolution hyperspectral image classifications to identify wetlands and wetland habitat features important for Columbia spotted frogs (Rana luteiventris) and compared the results to multispectral image classification and United States Geological Survey topographic maps. The study area spanned 3 lake basins in the Salmon River Mountains, Idaho, USA. Hyperspectral data were collected with an airborne sensor on 30 June 2002 and on 8 July 2006. A 12-year comprehensive ground survey of the study area for Columbia spotted frog reproduction served as validation for image classifications. Hyperspectral image classification accuracy of wetlands was high, with a producer's accuracy of 96 (44 wetlands) correctly classified with the 2002 data and 89 (41 wetlands) correctly classified with the 2006 data. We applied habitat-based rules to delineate breeding habitat from other wetlands, and successfully predicted 74 (14 wetlands) of known breeding wetlands for the Columbia spotted frog. Emergent sedge microhabitat classification showed promise for directly predicting Columbia spotted frog egg mass locations within a wetland by correctly identifying 72 (23 of 32) of known locations. Our study indicates hyperspectral imagery can be an effective tool for mapping spotted frog breeding habitat in the selected mountain basins. We conclude that this technique has potential for improving site selection for inventory and monitoring programs conducted across similar wetland habitat and can be a useful tool for delineating wildlife habitats. ?? 2010 The Wildlife Society.

  8. Habitat selection, movement patterns, and hazards encountered by northern leopard frogs (Lithobates pipiens) in an agricultural landscape

    USGS Publications Warehouse

    Knutson, Melinda G.; Herner-Thogmartin, Jennifer H.; Thogmartin, Wayne E.; Kapfer, Joshua M.; Nelson, John

    2018-01-01

    Telemetry data for 59 Northern Leopard Frogs (Lithobates pipiens) breeding in ponds in Houston and Winona Counties, MN; 2001-2002. Agricultural intensification is causing declines in many wildlife species, including Northern Leopard Frogs (Lithobates pipiens). Specific information about frog movements, habitat selection, and sources of mortality can be used to inform conservation-focused land management and acquisition. We studied Northern Leopard Frogs in southeastern Minnesota, part of the Driftless Area ecoregion, characterized by hills and valleys and a mix of agriculture, forests, small towns and farmsteads. In this area, small farm ponds, originally built to control soil erosion are used by the species for breeding and wintering in addition to riparian wetlands. But, this agricultural landscape may be hazardous for frogs moving between breeding, feeding, and wintering habitats. We surgically implanted transmitters into the peritoneal cavity of 59 Northern Leopard Frogs and tracked them from May to October 2001-2002. The total distance traveled by radio-tagged frogs ranged from 12 to 3316 m, the 95% home range averaged 5.3 ± 1.2 (SE) ha, and the 50% core area averaged 1.05 ± 0.3 (SE) ha. As expected, Northern Leopard Frogs selected wetlands over all other land cover classes and row crops were generally avoided at all levels of selection. Only a few tracked frogs were successful at dispersing (n = 6). Most frogs attempting to disperse (n =31) ended up missing (n = 14), died due to mowing (n = 8), or were recorded as transmitter failure (n = 2) or unknown mortalities (n = 1). For the conservation of Northern Leopard Frogs in this agricultural setting, we must consider both the aquatic and the terrestrial needs of this species. Conservation agencies that restore, manage, and acquire wetlands should consider the hazards posed by land uses adjacent to frog breeding and wintering sites and plan for movement corridors between these locations. For example

  9. Toward a Rapid Synthesis of Field and Desktop Data for Classifying Streams in the Pacific Northwest: Guiding the Sampling and Management of Salmonid Habitat

    NASA Astrophysics Data System (ADS)

    Kasprak, A.; Wheaton, J. M.; Bouwes, N.; Weber, N. P.; Trahan, N. C.; Jordan, C. E.

    2012-12-01

    River managers often seek to understand habitat availability and quality for riverine organisms within the physical template provided by their landscape. Yet the large amount of natural heterogeneity in landscapes gives rise to stream systems which are highly variable over small spatial scales, potentially complicating site selection for surveying aquatic habitat while simultaneously making a simple, wide-reaching management strategy elusive. This is particularly true in the rugged John Day River Basin of northern Oregon, where efforts as part of the Columbia Habitat Monitoring Program to conduct site-based surveys of physical habitat for endangered steelhead salmon (Oncorhynchus mykiss) are underway. As a complete understanding of the type and distribution of habitat available to these fish would require visits to all streams in the basin (impractical due to its large size), here we develop an approach for classifying channel types which combines remote desktop GIS analyses with rapid field-based stream and landscape surveys. At the core of this method, we build off of the River Styles Framework, an open-ended and process-based approach for classifying streams and informing management decisions. This framework is combined with on-the-ground fluvial audits, which aim to quickly and continuously map sediment dynamics and channel behavior along selected channels. Validation of this classification method is completed by on-the-ground stream surveys using a digital iPad platform and by rapid small aircraft overflights to confirm or refine predictions. We further compare this method with existing channel classification approaches for the region (e.g. Beechie, Montgomery and Buffington). The results of this study will help guide both the refinement of site stratification and selection for salmonid habitat monitoring within the basin, and will be vital in designing and prioritizing restoration and management strategies tailored to the distribution of river styles found

  10. Habitat selection and adult-recruit interactions in Pectinaria koreni (Malmgren) (Annelida: Polychaeta) post-larval populations: Results of flume experiments

    NASA Astrophysics Data System (ADS)

    Olivier, Frédéric; Desroy, Nicolas; Retière, Christian

    1996-12-01

    The fate of recently settled populations of soft-bottom invertebrates depends not only on dispersal of pelagic larvae by tidal currents but also on other physical ( e. g. resuspension) and biological mechanisms ( e.g. habitat selection and adult-recruit interactions) acting at the water-substratum interface. To assess the relative importance of such processes under megatidal conditions in the Abra alba community of the eastern Baie de Seine (English Channel), flume experiments were conducted on post-larvae of the dominant polychaete species, Pectinaria koreni. Habitat selection by post-larvae of P. koreni was determined in a first set of experiments, where individuals were sowed either on a suitable or on an unsuitable substratum. Once resuspended, post-larvae were given a choice between two highly contrasting treatments with a natural organic-rich muddy sand and a bare flat PVC surface. P. koreni post-larvae were able to leave an unfavourable substratum into which they had initially burrowed and reach a more suitable substrate by drifting (induced by the secretion of mucus) before final settlement. The influence of adults on habitat selection and survival of P. koreni post-larvae was analysed in a second set of experiments, where individuals were sowed onto a suitable sediment with adults (test treatment) or without (control treatment). The presence of conspecific adults induced a high resuspension rate of the post-larvae. Drifting occurred mainly just after the introduction of the current and affected the whole experimental population, regardless of size. Such a response seems to be related to the intense bioturbation caused by the sub-surface deposit-feeding habit of the adults, which alters the boundary-layer flow. In contrast, the presence of adults of Owenia fusiformis, another dominant polychaete of the Abra alba community, led to an enhanced recruitment by a reduction in post-larvae resuspension. In fact, at low shear velocities, dense aggregates of tubes

  11. Spatial multi-criteria decision analysis for modelling suitable habitats of Ornithodoros soft ticks in the Western Palearctic region.

    PubMed

    Vial, L; Ducheyne, E; Filatov, S; Gerilovych, A; McVey, D S; Sindryakova, I; Morgunov, S; Pérez de León, A A; Kolbasov, D; De Clercq, E M

    2018-01-15

    Ticks are economically and medically important ectoparasites due to the injuries inflicted through their bite, and their ability to transmit pathogens to humans, livestock, and wildlife. Whereas hard ticks have been intensively studied, little is known about soft ticks, even though they can also transmit pathogens, including African Swine Fever Virus (ASFV) affecting domestic and wild suids or Borrelia bacteria causing tick-borne relapsing fever (TBRF) in humans. We thus developed a regional model to identify suitable spatial areas for a community of nine Ornithodoros tick species (O. erraticus, O. sonrai, O. alactagalis, O. nereensis, O. tholozani, O. papillipes, O. tartakovskyi, O. asperus, O. verrucosus), which may be of medical and veterinary importance in the Western Palearctic region. Multi-Criteria Decision Analysis was used due to the relative scarcity of high-quality occurrence data. After an in-depth literature review on the ecological requirements of the selected tick community, five climate-related factors appeared critical for feeding activity and tick development: (i) a spring temperature exceeding 10°C to induce the end of winter soft tick quiescent period, (ii) a three-months summer temperature above 20°C to allow tick physiological activities, (iii) annual precipitation ranging from 60mm to 750mm and, in very arid areas, (iv) dry seasons interrupted by small rain showers to maintain minimum moisture inside their habitat along the year or (v) residual water provided by perennial rivers near habitats. We deliberately chose not to include biological factors such as host availability or vegetation patterns. A sensitivity analysis was done by performing multiple runs of the model altering the environmental variables, their suitability function, and their attributed weights. To validate the models, we used 355 occurrence data points, complemented by random points within sampled ecoregions. All models indicated suitable areas in the Mediterranean Basin

  12. Extreme habitats as refuge from parasite infections? Evidence from an extremophile fish

    NASA Astrophysics Data System (ADS)

    Tobler, Michael; Schlupp, Ingo; García de León, Francisco J.; Glaubrecht, Matthias; Plath, Martin

    2007-05-01

    Living in extreme habitats typically requires costly adaptations of any organism tolerating these conditions, but very little is known about potential benefits that trade off these costs. We suggest that extreme habitats may function as refuge from parasite infections, since parasites can become locally extinct either directly, through selection by an extreme environmental parameter on free-living parasite stages, or indirectly, through selection on other host species involved in its life cycle. We tested this hypothesis in a small freshwater fish, the Atlantic molly ( Poecilia mexicana) that inhabits normal freshwaters as well as extreme habitats containing high concentrations of toxic hydrogen sulfide. Populations from such extreme habitats are significantly less parasitized by the trematode Uvulifer sp. than a population from a non-sulfidic habitat. We suggest that reduced parasite prevalence may be a benefit of living in sulfidic habitats.

  13. A Rapid Approach to Modeling Species-Habitat Relationships

    NASA Technical Reports Server (NTRS)

    Carter, Geoffrey M.; Breinger, David R.; Stolen, Eric D.

    2005-01-01

    A growing number of species require conservation or management efforts. Success of these activities requires knowledge of the species' occurrence pattern. Species-habitat models developed from GIS data sources are commonly used to predict species occurrence but commonly used data sources are often developed for purposes other than predicting species occurrence and are of inappropriate scale and the techniques used to extract predictor variables are often time consuming and cannot be repeated easily and thus cannot efficiently reflect changing conditions. We used digital orthophotographs and a grid cell classification scheme to develop an efficient technique to extract predictor variables. We combined our classification scheme with a priori hypothesis development using expert knowledge and a previously published habitat suitability index and used an objective model selection procedure to choose candidate models. We were able to classify a large area (57,000 ha) in a fraction of the time that would be required to map vegetation and were able to test models at varying scales using a windowing process. Interpretation of the selected models confirmed existing knowledge of factors important to Florida scrub-jay habitat occupancy. The potential uses and advantages of using a grid cell classification scheme in conjunction with expert knowledge or an habitat suitability index (HSI) and an objective model selection procedure are discussed.

  14. Causes and consequences of habitat fragmentation in river networks.

    PubMed

    Fuller, Matthew R; Doyle, Martin W; Strayer, David L

    2015-10-01

    Increases in river fragmentation globally threaten freshwater biodiversity. Rivers are fragmented by many agents, both natural and anthropogenic. We review the distribution and frequency of these major agents, along with their effects on connectivity and habitat quality. Most fragmentation research has focused on terrestrial habitats, but theories and generalizations developed in terrestrial habitats do not always apply well to river networks. For example, terrestrial habitats are usually conceptualized as two-dimensional, whereas rivers often are conceptualized as one-dimensional or dendritic. In addition, river flow often leads to highly asymmetric effects of barriers on habitat and permeability. New approaches tailored to river networks can be applied to describe the network-wide effects of multiple barriers on both connectivity and habitat quality. The net effects of anthropogenic fragmentation on freshwater biodiversity are likely underestimated, because of time lags in effects and the difficulty of generating a single, simple signal of fragmentation that applies to all aquatic species. We conclude by presenting a decision tree for managing freshwater fragmentation, as well as some research horizons for evaluating fragmented riverscapes. © 2015 New York Academy of Sciences.

  15. Mourning Dove nesting habitat and nest success in Central Missouri

    USGS Publications Warehouse

    Drobney, R.D.; Schulz, J.H.; Sheriff, S.L.; Fuemmeler, W.J.

    1998-01-01

    Previous Mourning Dove (Zenaida macroura) nesting studies conducted in areas containing a mixture of edge and continuous habitats have focused on edge habitats. Consequently, little is known about the potential contribution of continuous habitats to dove production. In this study we evaluated the relative importance of these two extensive habitat types by monitoring the habitat use and nest success of 59 radio-marked doves during 1990-1991 in central Missouri. Of 83 nests initiated by our marked sample, most (81.9%) were located in edge habitats. Although continuous habitats were selected less as nest sites, the proportion of successful nests did not differ significantly from that in edge habitats. Our data indicate that continuous habitats should not be considered marginal nesting habitat. If the intensity of use and nest success that we observed are representative regionally or nationally, continuous habitats could contribute substantially to annual Mourning Dove production because of the high availability of these habitats throughout much of the Mourning Dove breeding range.

  16. Generalisation of physical habitat-discharge relationships

    NASA Astrophysics Data System (ADS)

    Booker, D. J.; Acreman, M. C.

    2007-01-01

    Physical habitat is increasingly used worldwide as a measure of river ecosystem health when assessing changes to river flows, such as those caused by abstraction. The major drawback with this approach is that defining precisely the relationships between physical habitat and flow for a given river reach requires considerable data collection and analysis. Consequently, widely used models such as the Physical Habitat Simulation (PHABSIM) system are expensive to apply. There is, thus, a demand for rapid methods for defining habitat-discharge relationships from simple field measurements. This paper reports the analysis of data from 63 sites in the UK where PHABSIM has been applied. The results demonstrate that there are strong relationships between single measurements of channel form and river hydraulics and the habitat available for target species. The results can form the basis of a method to estimate sensitivity of physical habitat to flow change by visiting a site at only one flow. Furthermore, the uncertainty in estimates reduces as more information is collected. This allows the user to select the level of investment in data collection appropriate for the desired confidence in the estimates. The method is demonstrated using habitat indicators for different life stages of Atlantic salmon, brown trout, roach and dace.

  17. Temporal dynamics of selective attention and conflict resolution during cross-dimensional Go-NoGo decisions.

    PubMed

    Kopp, Bruno; Tabeling, Sandra; Moschner, Carsten; Wessel, Karl

    2007-08-17

    Decision-making is a fundamental capacity which is crucial to many higher-order psychological functions. We recorded event-related potentials (ERPs) during a visual target-identification task that required go-nogo choices. Targets were identified on the basis of cross-dimensional conjunctions of particular colors and forms. Color discriminability was manipulated in three conditions to determine the effects of color distinctiveness on component processes of decision-making. Target identification was accompanied by the emergence of prefrontal P2a and P3b. Selection negativity (SN) revealed that target-compatible features captured attention more than target-incompatible features, suggesting that intra-dimensional attentional capture was goal-contingent. No changes of cross-dimensional selection priorities were measurable when color discriminability was altered. Peak latencies of the color-related SN provided a chronometric measure of the duration of attention-related neural processing. ERPs recorded over the frontocentral scalp (N2c, P3a) revealed that color-overlap distractors, more than form-overlap distractors, required additional late selection. The need for additional response selection induced by color-overlap distractors was severely reduced when color discriminability decreased. We propose a simple model of cross-dimensional perceptual decision-making. The temporal synchrony of separate color-related and form-related choices determines whether or not distractor processing includes post-perceptual stages. ERP measures contribute to a comprehensive explanation of the temporal dynamics of component processes of perceptual decision-making.

  18. Sensitivity analysis of physiological factors in space habitat design

    NASA Technical Reports Server (NTRS)

    Billingham, J.

    1982-01-01

    The costs incurred by design conservatism in space habitat design are discussed from a structural standpoint, and areas of physiological research into less than earth-normal conditions that offer the greatest potential decrease in habitat construction and operating costs are studied. The established range of human tolerance limits is defined for those physiological conditions which directly affect habitat structural design. These entire ranges or portions thereof are set as habitat design constraints as a function of habitat population and degree of ecological closure. Calculations are performed to determine the structural weight and cost associated with each discrete population size and its selected environmental conditions, on the basis of habitable volume equivalence for four basic habitat configurations: sphere, cylinder with hemispherical ends, torus, and crystal palace.

  19. A risk-based decision support framework for selection of appropriate safety measure system for underground coal mines.

    PubMed

    Samantra, Chitrasen; Datta, Saurav; Mahapatra, Siba Sankar

    2017-03-01

    In the context of underground coal mining industry, the increased economic issues regarding implementation of additional safety measure systems, along with growing public awareness to ensure high level of workers safety, have put great pressure on the managers towards finding the best solution to ensure safe as well as economically viable alternative selection. Risk-based decision support system plays an important role in finding such solutions amongst candidate alternatives with respect to multiple decision criteria. Therefore, in this paper, a unified risk-based decision-making methodology has been proposed for selecting an appropriate safety measure system in relation to an underground coal mining industry with respect to multiple risk criteria such as financial risk, operating risk, and maintenance risk. The proposed methodology uses interval-valued fuzzy set theory for modelling vagueness and subjectivity in the estimates of fuzzy risk ratings for making appropriate decision. The methodology is based on the aggregative fuzzy risk analysis and multi-criteria decision making. The selection decisions are made within the context of understanding the total integrated risk that is likely to incur while adapting the particular safety system alternative. Effectiveness of the proposed methodology has been validated through a real-time case study. The result in the context of final priority ranking is seemed fairly consistent.

  20. Acute knee injuries: use of decision rules for selective radiograph ordering.

    PubMed

    Tandeter, H B; Shvartzman, P; Stevens, Max A

    1999-12-01

    Family physicians often encounter patients with acute knee trauma. Radiographs of injured knees are commonly ordered, even though fractures are found in only 6 percent of such patients and emergency department physicians can usually discriminate clinically between fracture and nonfracture. Decision rules have been developed to reduce the unnecessary use of radiologic studies in patients with acute knee injury. The Ottawa knee rules and the Pittsburgh decision rules are the latest guidelines for the selective use of radiographs in knee trauma. Application of these rules may lead to a more efficient evaluation of knee injuries and a reduction in health costs without an increase in adverse outcomes.

  1. Differentiation of flea communities infesting small mammals across selected habitats of the Baltic coast, central lowlands, and southern mountains of Poland.

    PubMed

    Kowalski, Krzysztof; Eichert, Urszula; Bogdziewicz, Michał; Rychlik, Leszek

    2014-05-01

    Only a few studies comparing flea composition on the coast and in the mountains have been conducted. We investigated differences in flea communities infesting small mammals in selected habitats in northern, central, and southern Poland. We predicted (1) a greater number of flea species in the southeastern Poland and a lower number in the north, (2) a greater number of flea species in fertile and wet habitats than in poor and arid habitats, and (3) a low similarity of flea species between flea communities in western and eastern Poland. We found a negative effect of increasing latitude on flea species richness. We suppose that the mountains providing a variety of environments and the limits of the geographic ranges of several flea subspecies in southeastern Poland result in a higher number of flea species. There was a positive effect of increasing wetness of habitat on flea species richness. We found a high diversity in flea species composition between western and eastern Poland (beta diversity = 11) and between central and eastern Poland (beta diversity = 12). Re-colonization of Poland by small mammals and their ectoparasites from different (western and eastern) refugees can affect on this high diversity of flea species.

  2. The decision: Relations to oneself, authority and vulnerability in the field of selective abortion

    PubMed Central

    Risøy, Sølvi Marie; Sirnes, Thorvald

    2015-01-01

    This article is about selective abortion. It concentrates on the existential, moral and social conditions that arise when pregnant women, using prenatal diagnosis (PND), are told that there is something seriously wrong with the foetuses that they are carrying. This is characterised as a micro state of emergency, where both normal cognitive categories and normative orders are dissolved. The analyses are anchored in the womens' own presentations and understandings of the processes and dilemmas related to the abortion decisions, and our most important empirical materials are interviews with women who have experienced them. Our main ambition is to show the relation between some important dimensions of the situation in which the abortion decision has to be made, and the special kind of authority on behalf of the women that presents itself. Of equal importance is the vulnerability of the pregnant women, resulting in a co-production of the women as both Sovereigns and Homo Sacer in the decision situation. We also analyse some of the experienced relations between the women and the foetuses, and how the women constitute themselves as moral subjects, with a particular emphasis on the motifs of sacrifice and self-sacrifice. It is a central argument in the article that we have to understand the specificity of the decision situation, without reducing it either to other phases (before or after) of the total processes of PND and selective abortion, or to general discourses of disability or normality. The specificity of the situation in which the abortion decision is made is a pivotal point in society's regulation (in a broad sense) of the field and in the constitution of the regime of selective abortion. PMID:26345395

  3. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    PubMed

    Kweka, Eliningaya J; Zhou, Guofa; Munga, Stephen; Lee, Ming-Chieh; Atieli, Harrysone E; Nyindo, Mramba; Githeko, Andrew K; Yan, Guiyun

    2012-01-01

    Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya. A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60%) and An.arabiensis (18.34%), the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024) and An. arabiensis (P = 0.002) larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001), grass cover (P≤0.001), while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001). The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001) when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002). When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines. These findings suggest that implementation of effective larval control programme should be targeted with larval habitats

  4. Transport Infrastructure Shapes Foraging Habitat in a Raptor Community

    PubMed Central

    Planillo, Aimara; Kramer-Schadt, Stephanie; Malo, Juan E.

    2015-01-01

    Transport infrastructure elements are widespread and increasing in size and length in many countries, with the subsequent alteration of landscapes and wildlife communities. Nonetheless, their effects on habitat selection by raptors are still poorly understood. In this paper, we analyzed raptors’ foraging habitat selection in response to conventional roads and high capacity motorways at the landscape scale, and compared their effects with those of other variables, such as habitat structure, food availability, and presence of potential interspecific competitors. We also analyzed whether the raptors’ response towards infrastructure depends on the spatial scale of observation, comparing the attraction or avoidance behavior of the species at the landscape scale with the response of individuals observed in the proximity of the infrastructure. Based on ecological hypotheses for foraging habitat selection, we built generalized linear mixed models, selected the best models according to Akaike Information Criterion and assessed variable importance by Akaike weights. At the community level, the traffic volume was the most relevant variable in the landscape for foraging habitat selection. Abundance, richness, and diversity values reached their maximum at medium traffic volumes and decreased at highest traffic volumes. Individual species showed different degrees of tolerance toward traffic, from higher abundance in areas with high traffic values to avoidance of it. Medium-sized opportunistic raptors increased their abundance near the traffic infrastructures, large scavenger raptors avoided areas with higher traffic values, and other species showed no direct response to traffic but to the presence of prey. Finally, our cross-scale analysis revealed that the effect of transport infrastructures on the behavior of some species might be detectable only at a broad scale. Also, food availability may attract raptor species to risky areas such as motorways. PMID:25786218

  5. Transport infrastructure shapes foraging habitat in a raptor community.

    PubMed

    Planillo, Aimara; Kramer-Schadt, Stephanie; Malo, Juan E

    2015-01-01

    Transport infrastructure elements are widespread and increasing in size and length in many countries, with the subsequent alteration of landscapes and wildlife communities. Nonetheless, their effects on habitat selection by raptors are still poorly understood. In this paper, we analyzed raptors' foraging habitat selection in response to conventional roads and high capacity motorways at the landscape scale, and compared their effects with those of other variables, such as habitat structure, food availability, and presence of potential interspecific competitors. We also analyzed whether the raptors' response towards infrastructure depends on the spatial scale of observation, comparing the attraction or avoidance behavior of the species at the landscape scale with the response of individuals observed in the proximity of the infrastructure. Based on ecological hypotheses for foraging habitat selection, we built generalized linear mixed models, selected the best models according to Akaike Information Criterion and assessed variable importance by Akaike weights. At the community level, the traffic volume was the most relevant variable in the landscape for foraging habitat selection. Abundance, richness, and diversity values reached their maximum at medium traffic volumes and decreased at highest traffic volumes. Individual species showed different degrees of tolerance toward traffic, from higher abundance in areas with high traffic values to avoidance of it. Medium-sized opportunistic raptors increased their abundance near the traffic infrastructures, large scavenger raptors avoided areas with higher traffic values, and other species showed no direct response to traffic but to the presence of prey. Finally, our cross-scale analysis revealed that the effect of transport infrastructures on the behavior of some species might be detectable only at a broad scale. Also, food availability may attract raptor species to risky areas such as motorways.

  6. A competitive interaction theory of attentional selection and decision making in brief, multielement displays.

    PubMed

    Smith, Philip L; Sewell, David K

    2013-07-01

    We generalize the integrated system model of Smith and Ratcliff (2009) to obtain a new theory of attentional selection in brief, multielement visual displays. The theory proposes that attentional selection occurs via competitive interactions among detectors that signal the presence of task-relevant features at particular display locations. The outcome of the competition, together with attention, determines which stimuli are selected into visual short-term memory (VSTM). Decisions about the contents of VSTM are made by a diffusion-process decision stage. The selection process is modeled by coupled systems of shunting equations, which perform gated where-on-what pathway VSTM selection. The theory provides a computational account of key findings from attention tasks with near-threshold stimuli. These are (a) the success of the MAX model of visual search and spatial cuing, (b) the distractor homogeneity effect, (c) the double-target detection deficit, (d) redundancy costs in the post-stimulus probe task, (e) the joint item and information capacity limits of VSTM, and (f) the object-based nature of attentional selection. We argue that these phenomena are all manifestations of an underlying competitive VSTM selection process, which arise as a natural consequence of our theory. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  7. California Spotted Owl (Strix occidentalis occidentalis) habitat use patterns in a burned landscape

    USGS Publications Warehouse

    Eyes, Stephanie; Roberts, Susan L.; Johnson, Matthew D.

    2017-01-01

    Fire is a dynamic ecosystem process of mixed-conifer forests of the Sierra Nevada, but there is limited scientific information addressing wildlife habitat use in burned landscapes. Recent studies have presented contradictory information regarding the effects of stand-replacing wildfires on Spotted Owls (Strix occidentalis) and their habitat. While fire promotes heterogeneous forest landscapes shown to be favored by owls, high severity fire may create large canopy gaps that can fragment the closed-canopy habitat preferred by Spotted Owls. We used radio-telemetry to determine whether foraging California Spotted Owls (S. o. occidentalis) in Yosemite National Park, California, USA, showed selection for particular fire severity patch types within their home ranges. Our results suggested that Spotted Owls exhibited strong habitat selection within their home ranges for locations near the roost and edge habitats, and weak selection for lower fire severity patch types. Although owls selected high contrast edges with greater relative probabilities than low contrast edges, we did not detect a statistical difference between these probabilities. Protecting forests from stand-replacing fires via mechanical thinning or prescribed fire is a priority for management agencies, and our results suggest that fires of low to moderate severity can create habitat conditions within California Spotted Owls' home ranges that are favored for foraging.

  8. Habitat selection by green turtles in a spatially heterogeneous benthic landscape in Dry Tortugas National Park, Florida

    USGS Publications Warehouse

    Fujisaki, Ikuko; Hart, Kristen M.; Sartain-Iverson, Autumn R.

    2016-01-01

    We examined habitat selection by green turtles Chelonia mydas at Dry Tortugas National Park, Florida, USA. We tracked 15 turtles (6 females and 9 males) using platform transmitter terminals (PTTs); 13 of these turtles were equipped with additional acoustic transmitters. Location data by PTTs comprised periods of 40 to 226 d in varying months from 2009 to 2012. Core areas were concentrated in shallow water (mean bathymetry depth of 7.7 m) with a comparably dense coverage of seagrass; however, the utilization distribution overlap index indicated a low degree of habitat sharing. The probability of detecting a turtle on an acoustic receiver was inversely associated with the distance from the receiver to turtle capture sites and was lower in shallower water. The estimated daily detection probability of a single turtle at a given acoustic station throughout the acoustic array was small (<0.1 in any year), and that of multiple turtle detections was even smaller. However, the conditional probability of multiple turtle detections, given at least one turtle detection at a receiver, was much higher despite the small number of tagged turtles in each year (n = 1 to 5). Also, multiple detections of different turtles at a receiver frequently occurred within a few minutes (40%, or 164 of 415, occurred within 1 min). Our numerical estimates of core area overlap, co-occupancy probabilities, and habitat characterization for green turtles could be used to guide conservation of the area to sustain the population of this species.

  9. Evaluation of the Effectiveness of Stormwater Decision Support Tools for Infrastructure Selection and the Barriers to Implementation

    NASA Astrophysics Data System (ADS)

    Spahr, K.; Hogue, T. S.

    2016-12-01

    Selecting the most appropriate green, gray, and / or hybrid system for stormwater treatment and conveyance can prove challenging to decision markers across all scales, from site managers to large municipalities. To help streamline the selection process, a multi-disciplinary team of academics and professionals is developing an industry standard for selecting and evaluating the most appropriate stormwater management technology for different regions. To make the tool more robust and comprehensive, life-cycle cost assessment and optimization modules will be included to evaluate non-monetized and ecosystem benefits of selected technologies. Initial work includes surveying advisory board members based in cities that use existing decision support tools in their infrastructure planning process. These surveys will qualify the decisions currently being made and identify challenges within the current planning process across a range of hydroclimatic regions and city size. Analysis of social and other non-technical barriers to adoption of the existing tools is also being performed, with identification of regional differences and institutional challenges. Surveys will also gage the regional appropriateness of certain stormwater technologies based off experiences in implementing stormwater treatment and conveyance plans. In additional to compiling qualitative data on existing decision support tools, a technical review of components of the decision support tool used will be performed. Gaps in each tool's analysis, like the lack of certain critical functionalities, will be identified and ease of use will be evaluated. Conclusions drawn from both the qualitative and quantitative analyses will be used to inform the development of the new decision support tool and its eventual dissemination.

  10. A guide to calculating habitat-quality metrics to inform conservation of highly mobile species

    USGS Publications Warehouse

    Bieri, Joanna A.; Sample, Christine; Thogmartin, Wayne E.; Diffendorfer, James E.; Earl, Julia E.; Erickson, Richard A.; Federico, Paula; Flockhart, D. T. Tyler; Nicol, Sam; Semmens, Darius J.; Skraber, T.; Wiederholt, Ruscena; Mattsson, Brady J.

    2018-01-01

    Many metrics exist for quantifying the relative value of habitats and pathways used by highly mobile species. Properly selecting and applying such metrics requires substantial background in mathematics and understanding the relevant management arena. To address this multidimensional challenge, we demonstrate and compare three measurements of habitat quality: graph-, occupancy-, and demographic-based metrics. Each metric provides insights into system dynamics, at the expense of increasing amounts and complexity of data and models. Our descriptions and comparisons of diverse habitat-quality metrics provide means for practitioners to overcome the modeling challenges associated with management or conservation of such highly mobile species. Whereas previous guidance for applying habitat-quality metrics has been scattered in diversified tracks of literature, we have brought this information together into an approachable format including accessible descriptions and a modeling case study for a typical example that conservation professionals can adapt for their own decision contexts and focal populations.Considerations for Resource ManagersManagement objectives, proposed actions, data availability and quality, and model assumptions are all relevant considerations when applying and interpreting habitat-quality metrics.Graph-based metrics answer questions related to habitat centrality and connectivity, are suitable for populations with any movement pattern, quantify basic spatial and temporal patterns of occupancy and movement, and require the least data.Occupancy-based metrics answer questions about likelihood of persistence or colonization, are suitable for populations that undergo localized extinctions, quantify spatial and temporal patterns of occupancy and movement, and require a moderate amount of data.Demographic-based metrics answer questions about relative or absolute population size, are suitable for populations with any movement pattern, quantify demographic

  11. A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge.

    PubMed

    Rahman, M Azizur; Rusteberg, Bernd; Gogu, R C; Lobo Ferreira, J P; Sauter, Martin

    2012-05-30

    This study reports the development of a new spatial multi-criteria decision analysis (SMCDA) software tool for selecting suitable sites for Managed Aquifer Recharge (MAR) systems. The new SMCDA software tool functions based on the combination of existing multi-criteria evaluation methods with modern decision analysis techniques. More specifically, non-compensatory screening, criteria standardization and weighting, and Analytical Hierarchy Process (AHP) have been combined with Weighted Linear Combination (WLC) and Ordered Weighted Averaging (OWA). This SMCDA tool may be implemented with a wide range of decision maker's preferences. The tool's user-friendly interface helps guide the decision maker through the sequential steps for site selection, those steps namely being constraint mapping, criteria hierarchy, criteria standardization and weighting, and criteria overlay. The tool offers some predetermined default criteria and standard methods to increase the trade-off between ease-of-use and efficiency. Integrated into ArcGIS, the tool has the advantage of using GIS tools for spatial analysis, and herein data may be processed and displayed. The tool is non-site specific, adaptive, and comprehensive, and may be applied to any type of site-selection problem. For demonstrating the robustness of the new tool, a case study was planned and executed at Algarve Region, Portugal. The efficiency of the SMCDA tool in the decision making process for selecting suitable sites for MAR was also demonstrated. Specific aspects of the tool such as built-in default criteria, explicit decision steps, and flexibility in choosing different options were key features, which benefited the study. The new SMCDA tool can be augmented by groundwater flow and transport modeling so as to achieve a more comprehensive approach to the selection process for the best locations of the MAR infiltration basins, as well as the locations of recovery wells and areas of groundwater protection. The new spatial

  12. Winter habitat use by cutthroat trout in the Snake River near Jackson, Wyoming

    USGS Publications Warehouse

    Harper, D.D.; Farag, A.M.

    2004-01-01

    Winter habitat use by Yellowstone cutthroat trout Oncorhynchus clarki bouvieri was monitored with radiotelemetry during November-March 1998-2001 in channelized and unaltered sections of the Snake River near Jackson, Wyoming. The use of run and off-channel pool habitat was significantly correlated to water temperature; run use was most frequent when mean water temperature exceeded 1.0°C, and off-channel pool use was greatest when mean water temperature was below 1.0°C. Available habitat was surveyed during winter 1999-2000 and was compared with actual habitat use. This comparison indicated that cutthroat trout avoided riffle habitat, selected deep runs, and strongly selected off-channel pool habitat. Large, deep, off-channel pools with groundwater influence were uncommon in the study area but were frequently selected as over-wintering habitat in the channelized section during all three study years. During 2000-2001, mainstem water temperatures were significantly colder than in 1998-1999 or 1999-2000, and anchor ice was observed more frequently in 2000-2001 than in 1998-1999 or 1999-2000 (on 18 d versus 5 d and 3 d, respectively). Mean water temperatures in off-channel pools were not significantly different among years. Depth and shelf ice were most frequently identified as cover elements in the channelized section. Run habitat was more common and used more frequently upstream of the channelized section. Large woody debris was more common and selected more frequently as cover in the unaltered section than in the channelized section.

  13. Landscape selection by piping plovers has implications for measuring habitat and population size

    USGS Publications Warehouse

    Anteau, Michael J.; Shaffer, Terry L.; Wiltermuth, Mark T.; Sherfy, Mark H.

    2014-01-01

    How breeding birds distribute in relation to landscape-scale habitat features has important implications for conservation because those features may constrain habitat suitability. Furthermore, knowledge of these associations can help build models to improve area-wide demographic estimates or to develop a sampling stratification for research and monitoring. This is particularly important for rare species that have uneven distributions across vast areas, such as the federally listed piping plover (Charadrius melodus; hereafter plover). We examined how remotely-sensed landscape features influenced the distribution of breeding plover pairs among 2-km shoreline segments during 2006–2009 at Lake Sakakawea in North Dakota, USA. We found strong associations between remotely-sensed landscape features and plover abundance and distribution (R2 = 0.65). Plovers were nearly absent from segments with bluffs (>25 m elevation increase within 250 m of shoreline). Relative plover density (pairs/ha) was markedly greater on islands (4.84 ± 1.22 SE) than on mainlands (0.85 ± 0.17 SE). Pair numbers increased with abundance of nesting habitat (unvegetated-flat areas β^=0.28±0.08SE ). On islands, pair numbers also increased with the relative proportion of the total area that was habitat ( β^=3.27±0.46SE ). Our model could be adapted to estimate the breeding population of plovers or to make predictions that provide a basis for stratification and design of future surveys. Knowledge of landscape features, such as bluffs, that exclude use by birds refines habitat suitability and facilitates more accurate estimates of habitat and population abundance, by decreasing the size of the sampling universe. Furthermore, techniques demonstrated here are applicable to other vast areas where birds breed in sparse or uneven densities.

  14. Comparison of Naive Bayes and Decision Tree on Feature Selection Using Genetic Algorithm for Classification Problem

    NASA Astrophysics Data System (ADS)

    Rahmadani, S.; Dongoran, A.; Zarlis, M.; Zakarias

    2018-03-01

    This paper discusses the problem of feature selection using genetic algorithms on a dataset for classification problems. The classification model used is the decicion tree (DT), and Naive Bayes. In this paper we will discuss how the Naive Bayes and Decision Tree models to overcome the classification problem in the dataset, where the dataset feature is selectively selected using GA. Then both models compared their performance, whether there is an increase in accuracy or not. From the results obtained shows an increase in accuracy if the feature selection using GA. The proposed model is referred to as GADT (GA-Decision Tree) and GANB (GA-Naive Bayes). The data sets tested in this paper are taken from the UCI Machine Learning repository.

  15. Decision-support models for empiric antibiotic selection in Gram-negative bloodstream infections.

    PubMed

    MacFadden, D R; Coburn, B; Shah, N; Robicsek, A; Savage, R; Elligsen, M; Daneman, N

    2018-04-25

    Early empiric antibiotic therapy in patients can improve clinical outcomes in Gram-negative bacteraemia. However, the widespread prevalence of antibiotic-resistant pathogens compromises our ability to provide adequate therapy while minimizing use of broad antibiotics. We sought to determine whether readily available electronic medical record data could be used to develop predictive models for decision support in Gram-negative bacteraemia. We performed a multi-centre cohort study, in Canada and the USA, of hospitalized patients with Gram-negative bloodstream infection from April 2010 to March 2015. We analysed multivariable models for prediction of antibiotic susceptibility at two empiric windows: Gram-stain-guided and pathogen-guided treatment. Decision-support models for empiric antibiotic selection were developed based on three clinical decision thresholds of acceptable adequate coverage (80%, 90% and 95%). A total of 1832 patients with Gram-negative bacteraemia were evaluated. Multivariable models showed good discrimination across countries and at both Gram-stain-guided (12 models, areas under the curve (AUCs) 0.68-0.89, optimism-corrected AUCs 0.63-0.85) and pathogen-guided (12 models, AUCs 0.75-0.98, optimism-corrected AUCs 0.64-0.95) windows. Compared to antibiogram-guided therapy, decision-support models of antibiotic selection incorporating individual patient characteristics and prior culture results have the potential to increase use of narrower-spectrum antibiotics (in up to 78% of patients) while reducing inadequate therapy. Multivariable models using readily available epidemiologic factors can be used to predict antimicrobial susceptibility in infecting pathogens with reasonable discriminatory ability. Implementation of sequential predictive models for real-time individualized empiric antibiotic decision-making has the potential to both optimize adequate coverage for patients while minimizing overuse of broad-spectrum antibiotics, and therefore requires

  16. Blind Man's Bluff: Instructional Leadership, Teacher Selection and Rational Decision-Making.

    ERIC Educational Resources Information Center

    Mertz, Norma T.; McNeely, Sonja R.

    Little research has been done to discover the process of selection of teachers by principals. This paper reports the results of a small study in which 29 principals in 11 districts in Tennessee were interviewed to determine the process used to hire a teacher, with the results analyzed for instructional leadership and rational decision making. If…

  17. Wildlife habitats of the north coast of California: new techniques for extensive forest inventory.

    Treesearch

    Janet L. Ohmann

    1992-01-01

    A study was undertaken to develop methods for extensive inventory and analysis of wildlife habitats. The objective was to provide information about amounts and conditions of wildlife habitats from extensive, sample based inventories so that wildlife can be better considered in forest planning and policy decisions at the regional scale. The new analytical approach...

  18. Hydrologic habitat preferences of select southeastern USA fishes resilient to river ecosystem fragmentation

    Treesearch

    Andrew L. Rypel; David R. Bayne

    2009-01-01

    Large-scale habitat preferences of riverine taxa are not always revealed by examining community data. Here, we show how lipid and growth can be used to evaluate hydrologic habitat preferences of fishes resilient to river fragmentation (i.e. species that can tolerate river fragmentation by dams, but not collapse). Lipid content was examined for seven fishes in a major...

  19. Motor Decisions Are Not Black and White: Selecting Actions in the “Gray Zone”

    PubMed Central

    Comalli, D. M.; Persand, D.; Adolph, K. E.

    2017-01-01

    In many situations, multiple actions are possible to achieve a goal. How do people select a particular action among equally possible alternatives? In six experiments, we determined whether action selection is consistent and biased toward one decision by observing participants’ decisions to go over or under a horizontal bar set at varying heights. We assessed the height at which participants transitioned from going over to under the bar within a “gray zone”—the range of bar heights at which going over and under were both possible. In Experiment 1, participants’ transition points were consistently located near the upper boundary of the gray zone, indicating a bias to go over rather than under the bar. Moreover, transitional behaviors were clustered tightly into a small region, indicating that decisions were highly consistent. Subsequent experiments examined potential influences on action selection. In Experiment 2, participants wore ankle weights to increase the cost of going over the bar. In Experiment 3, they were tested on a padded surface that made crawling under the bar more comfortable. In Experiment 4, we introduced a secondary task that required participants to crawl immediately after navigating the bar. None of these manipulations altered participants’ decisions relative to Experiment 1. In Experiment 5, participants started in a crawling position, which led to significantly lower transition points. In Experiment 6, we tested 5- to 6-year-old children as in Experiment 1 to determine the effects of social pressure on action selection. Children displayed lower transition points, larger transition regions, and reduced ability to go over the bar compared to adults. Across experiments, results indicate that adults have a strong and robust bias for upright locomotion. PMID:28293691

  20. Selecting essential information for biosurveillance--a multi-criteria decision analysis.

    PubMed

    Generous, Nicholas; Margevicius, Kristen J; Taylor-McCabe, Kirsten J; Brown, Mac; Daniel, W Brent; Castro, Lauren; Hengartner, Andrea; Deshpande, Alina

    2014-01-01

    The National Strategy for Biosurveillance defines biosurveillance as "the process of gathering, integrating, interpreting, and communicating essential information related to all-hazards threats or disease activity affecting human, animal, or plant health to achieve early detection and warning, contribute to overall situational awareness of the health aspects of an incident, and to enable better decision-making at all levels." However, the strategy does not specify how "essential information" is to be identified and integrated into the current biosurveillance enterprise, or what the metrics qualify information as being "essential". The question of data stream identification and selection requires a structured methodology that can systematically evaluate the tradeoffs between the many criteria that need to be taken in account. Multi-Attribute Utility Theory, a type of multi-criteria decision analysis, can provide a well-defined, structured approach that can offer solutions to this problem. While the use of Multi-Attribute Utility Theoryas a practical method to apply formal scientific decision theoretical approaches to complex, multi-criteria problems has been demonstrated in a variety of fields, this method has never been applied to decision support in biosurveillance.We have developed a formalized decision support analytic framework that can facilitate identification of "essential information" for use in biosurveillance systems or processes and we offer this framework to the global BSV community as a tool for optimizing the BSV enterprise. To demonstrate utility, we applied the framework to the problem of evaluating data streams for use in an integrated global infectious disease surveillance system.

  1. Selecting Essential Information for Biosurveillance—A Multi-Criteria Decision Analysis

    PubMed Central

    Generous, Nicholas; Margevicius, Kristen J.; Taylor-McCabe, Kirsten J.; Brown, Mac; Daniel, W. Brent; Castro, Lauren; Hengartner, Andrea; Deshpande, Alina

    2014-01-01

    The National Strategy for Biosurveillancedefines biosurveillance as “the process of gathering, integrating, interpreting, and communicating essential information related to all-hazards threats or disease activity affecting human, animal, or plant health to achieve early detection and warning, contribute to overall situational awareness of the health aspects of an incident, and to enable better decision-making at all levels.” However, the strategy does not specify how “essential information” is to be identified and integrated into the current biosurveillance enterprise, or what the metrics qualify information as being “essential”. Thequestion of data stream identification and selection requires a structured methodology that can systematically evaluate the tradeoffs between the many criteria that need to be taken in account. Multi-Attribute Utility Theory, a type of multi-criteria decision analysis, can provide a well-defined, structured approach that can offer solutions to this problem. While the use of Multi-Attribute Utility Theoryas a practical method to apply formal scientific decision theoretical approaches to complex, multi-criteria problems has been demonstrated in a variety of fields, this method has never been applied to decision support in biosurveillance.We have developed a formalized decision support analytic framework that can facilitate identification of “essential information” for use in biosurveillance systems or processes and we offer this framework to the global BSV community as a tool for optimizing the BSV enterprise. To demonstrate utility, we applied the framework to the problem of evaluating data streams for use in an integrated global infectious disease surveillance system. PMID:24489748

  2. Acute stress induces selective alterations in cost/benefit decision-making.

    PubMed

    Shafiei, Naghmeh; Gray, Megan; Viau, Victor; Floresco, Stan B

    2012-09-01

    Acute stress can exert beneficial or detrimental effects on different forms of cognition. In the present study, we assessed the effects of acute restraint stress on different forms of cost/benefit decision-making, and some of the hormonal and neurochemical mechanisms that may underlie these effects. Effort-based decision-making was assessed where rats chose between a low effort/reward (1 press=2 pellets) or high effort/reward option (4 pellets), with the effort requirement increasing over 4 blocks of trials (2, 5, 10, and 20 lever presses). Restraint stress for 1 h decreased preference for the more costly reward and induced longer choice latencies. Control experiments revealed that the effects on decision-making were not mediated by general reductions in motivation or preference for larger rewards. In contrast, acute stress did not affect delay-discounting, when rats chose between a small/immediate vs larger/delayed reward. The effects of stress on decision-making were not mimicked by treatment with physiological doses of corticosterone (1-3 mg/kg). Blockade of dopamine receptors with flupenthixol (0.25 mg/kg) before restraint did not attenuate stress-induced effects on effort-related choice, but abolished effects on choice latencies. These data suggest that acute stress interferes somewhat selectively with cost/benefit evaluations concerning effort costs. These effects do not appear to be mediated solely by enhanced glucocorticoid activity, whereas dopaminergic activation may contribute to increased deliberation times induced by stress. These findings may provide insight into impairments in decision-making and anergia associated with stress-related disorders, such as depression.

  3. Acute Stress Induces Selective Alterations in Cost/Benefit Decision-Making

    PubMed Central

    Shafiei, Naghmeh; Gray, Megan; Viau, Victor; Floresco, Stan B

    2012-01-01

    Acute stress can exert beneficial or detrimental effects on different forms of cognition. In the present study, we assessed the effects of acute restraint stress on different forms of cost/benefit decision-making, and some of the hormonal and neurochemical mechanisms that may underlie these effects. Effort-based decision-making was assessed where rats chose between a low effort/reward (1 press=2 pellets) or high effort/reward option (4 pellets), with the effort requirement increasing over 4 blocks of trials (2, 5, 10, and 20 lever presses). Restraint stress for 1 h decreased preference for the more costly reward and induced longer choice latencies. Control experiments revealed that the effects on decision-making were not mediated by general reductions in motivation or preference for larger rewards. In contrast, acute stress did not affect delay-discounting, when rats chose between a small/immediate vs larger/delayed reward. The effects of stress on decision-making were not mimicked by treatment with physiological doses of corticosterone (1–3 mg/kg). Blockade of dopamine receptors with flupenthixol (0.25 mg/kg) before restraint did not attenuate stress-induced effects on effort-related choice, but abolished effects on choice latencies. These data suggest that acute stress interferes somewhat selectively with cost/benefit evaluations concerning effort costs. These effects do not appear to be mediated solely by enhanced glucocorticoid activity, whereas dopaminergic activation may contribute to increased deliberation times induced by stress. These findings may provide insight into impairments in decision-making and anergia associated with stress-related disorders, such as depression. PMID:22569506

  4. The Pelagics Habitat Analysis Module (PHAM): Decision Support Tools for Pelagic Fisheries

    NASA Astrophysics Data System (ADS)

    Armstrong, E. M.; Harrison, D. P.; Kiefer, D.; O'Brien, F.; Hinton, M.; Kohin, S.; Snyder, S.

    2009-12-01

    PHAM is a project funded by NASA to integrate satellite imagery and circulation models into the management of commercial and threatened pelagic species. Specifically, the project merges data from fishery surveys, and fisheries catch and effort data with satellite imagery and circulation models to define the habitat of each species. This new information on habitat will then be used to inform population distribution and models of population dynamics that are used for management. During the first year of the project, we created two prototype modules. One module, which was developed for the Inter-American Tropical Tuna Commission, is designed to help improve information available to manage the tuna fisheries of the eastern Pacific Ocean. The other module, which was developed for the Coastal Pelagics Division of the Southwest Fishery Science Center, assists management of by-catch of mako, blue, and thresher sharks along the Californian coast. Both modules were built with the EASy marine geographic information system, which provides a 4 dimensional (latitude, longitude, depth, and time) home for integration of the data. The projects currently provide tools for automated downloading and geo-referencing of satellite imagery of sea surface temperature, height, and chlorophyll concentrations; output from JPL’s ECCO2 global circulation model and its ROM California current model; and gridded data from fisheries and fishery surveys. It also provides statistical tools for defining species habitat from these and other types of environmental data. These tools include unbalanced ANOVA, EOF analysis of satellite imagery, and multivariate search routines for fitting fishery data to transforms of the environmental data. Output from the projects consists of dynamic maps of the distribution of the species that are driven by the time series of satellite imagery and output from the circulation models. It also includes relationships between environmental variables and recruitment. During

  5. Patterns of space and habitat use by northern bobwhites in South Florida, USA

    USGS Publications Warehouse

    Singh, A.; Hines, T.C.; Hostetler, J.A.; Percival, H.F.; Oli, M.K.

    2011-01-01

    The manner by which animals use space and select resources can have important management consequences. We studied patterns of habitat selection by northern bobwhites (Colinus virginianus) on Babcock-Webb Wildlife Management Area, Charlotte County, Florida and evaluated factors influencing the sizes of their home ranges. A total of 1,245 radio-tagged bobwhites were monitored for 19,467 radio days during 2002-2007. The mean (?? 1 SE) annual home range size, estimated using the Kernel density method, was 88. 43 (?? 6. 16) ha and did not differ between genders. Winter home ranges of bobwhites (69. 27 ?? 4. 92 ha) were generally larger than summer home ranges (53. 90 ?? 4. 93 ha). Annual and winter home ranges were smaller for bobwhites whose ranges contained food plots compared to those that did not; however, the presence of food plots did not influence summer home ranges. We used distance-based methods to investigate habitat selection by bobwhites at two scales: selection of home ranges within the study site (second-order selection) and selection of habitats within home ranges (third-order selection). Across both scales, bobwhites generally preferred food plots and dry prairie habitat and avoided wet prairies and roads. This pattern was generally consistent between genders and across years. Our data indicate that management practices aimed at increasing and maintaining a matrix of food plots and dry prairie habitat would provide the most favorable environment for bobwhites. ?? 2010 Springer-Verlag.

  6. Water-quality assessment of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma- habitat data and characteristics at selected sites, 1993-95

    USGS Publications Warehouse

    Femmer, Suzanne R.

    1997-01-01

    The characterization of instream and riparian habitat is part of the multiple lines of evidence used by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program to assess the water quality of streams. In the NAWQA Program, integrated physical, chemical, and biological assessments are used to describe water-quality conditions. The instream and riparian habitat data are collected at sites selected for surface-water chemistry analyses and biological assessment. Instream and riparian habitat data are structured in a nested scheme?at sampling reach, segment, and basin scales. The habitat data were collected in the Ozark Plateaus study unit at 41 sites during 1993-95. Thirteen of these sites, representative of selected combinations of physiography, land use, and basin size, have longitudinal, transverse, and quarter point vegetation plot surveys in addition to the Level I survey measurements (reach length, depth, velocity, dominant substrate, embeddedness, and vegetation quarter points, for example) recommended by the NAWQA Program protocols. These habitat data were from onsite measurements, U.S. Geological Survey topographic maps, and a geographic information system. The analyses of the habitat data indicates substantial differences between sites of differing physiography and basin-scale land-use activities. The basins range from 46.4 to 4,318 square kilometers and have stream orders from 2 to 6. All streams studied are a riffle/pool type, and most have cobble that is less than 50 percent embedded as the dominant streambed substrate. Of the three physiographic sections studied, the Boston Mountains have the largest mean segment and sideslope gradients, basin relief, woody species diversity, and stream depths when compared with sites of similar size. Channel sinuosities, mean velocities, and canopy angles are largest at sites in the Springfield Plateau physiographic section. The sites in the Salem Plateau physiographic section have the largest woody

  7. Habitat selection and overlap of Atlantic salmon and smallmouth bass juveniles in nursery streams

    USGS Publications Warehouse

    Wathen, G.; Coghlan, S.M.; Zydlewski, Joseph D.; Trial, J.G.

    2011-01-01

    Introduced smallmouth bass Micropterus dolomieu have invaded much of the historic freshwater habitat of Atlantic salmon Salmo salar in North America, yet little is known about the ecological interactions between the two species. We investigated the possibility of competition for habitat between age-0 Atlantic salmon and age-0 and age-1 smallmouth bass by means of in situ observations and a mesocosm experiment. We used snorkel observation to identify the degree and timing of overlap in habitat use in our in situ observations and to describe habitat shifts by Atlantic salmon in the presence of smallmouth bass in our mesocosm experiments. In late July 2008, we observed substantial overlap in the depths and mean water column velocities used by both species in sympatric in situ conditions and an apparent shift by age-0 Atlantic salmon to shallower water that coincided with the period of high overlap. In the mesocosm experiments, we detected no overlap or habitat shifts by age-0 Atlantic salmon in the presence age-1 smallmouth bass and low overlap and no habitat shifts of Atlantic salmon and age-0 smallmouth bass in fall 2009. In 2009, summer floods with sustained high flows and low temperatures resulted in the nearly complete reproductive failure of the smallmouth bass in our study streams, and we did not observe a midsummer habitat shift by Atlantic salmon similar to that seen in 2008. Although this prevented us from replicating our 2008 experiments under similar conditions, the virtual year-class failure of smallmouth bass itself is enlightening. We suggest that future studies incorporate the effects of varying temperature and discharge to determine how abiotic factors affect the interactions between these species and thus mediate the outcomes of potential competition.

  8. Manual and computer-aided materials selection for industrial production: An exercise in decision making

    NASA Technical Reports Server (NTRS)

    Bates, Seth P.

    1990-01-01

    Students are introduced to methods and concepts for systematic selection and evaluation of materials which are to be used to manufacture specific products in industry. For this laboratory exercise, students are asked to work in groups to identify and describe a product, then to proceed through the process to select a list of three candidates to make the item from. The exercise draws on knowledge of mechanical, physical, and chemical properties, common materials test techniques, and resource management skills in finding and assessing property data. A very important part of the exercise is the students' introduction to decision making algorithms, and learning how to apply them to a complex decision making process.

  9. Principal Selection Decisions Made by Teachers: The Influence of Principal Candidate Experience

    ERIC Educational Resources Information Center

    Winter, Paul A.; Jaeger, Mary Grace

    2004-01-01

    Public school teachers (N = 189) role-played as members of school councils making principal selection decisions by rating simulated candidates for principal vacancies. The independent variables were principal candidate job experience, candidate person characteristics, and teacher school level. The dependent variable was teacher rating of the job…

  10. Modelling riverine habitat for robust redhorse: assessment for reintroduction of an imperilled species

    USGS Publications Warehouse

    Fisk, J. M.; Kwak, Thomas J.; Heise, R. J.

    2014-01-01

    A critical component of a species reintroduction is assessment of contemporary habitat suitability. The robust redhorse, Moxostoma robustum (Cope), is an imperilled catostomid that occupies a restricted range in the south-eastern USA. A remnant population persists downstream of Blewett Falls Dam, the terminal dam in the Pee Dee River, North Carolina. Reintroduction upstream of Blewett Falls Dam may promote long-term survival of this population. Tillery Dam is the next hydroelectric facility upstream, which includes a 30 rkm lotic reach. Habitat suitability indices developed in the Pee Dee River were applied to model suitable habitat for proposed minimum flows downstream of Tillery Dam. Modelling results indicate that the Tillery reach provides suitable robust redhorse habitat, with spawning habitat more abundant than non-spawning habitat. Sensitivity analyses suggested that suitable water depth and substrate were limiting physical habitat variables. These results can inform decisions on flow regulation and guide planning for reintroduction of the robust redhorse and other species.

  11. Aquatic biological communities and associated habitats at selected sites in the Big Wood River Watershed, south-central Idaho, 2014

    USGS Publications Warehouse

    MacCoy, Dorene E.; Short, Terry M.

    2016-09-28

    Assessments of streamflow (discharge) parameters, water quality, physical habitat, and biological communities were completed between May and September 2014 as part of a monitoring program in the Big Wood River watershed of south-central Idaho. The sampling was conducted by the U.S. Geological Survey in cooperation with Blaine County, Trout Unlimited, the Nature Conservancy, and the Wood River Land Trust to help identify the status of aquatic resources at selected locations in the watershed. Information in this report provides a basis with which to evaluate and monitor the long-term health of the Big Wood River and its major tributaries. Sampling sites were co-located with existing U.S. Geological Survey streamgaging stations: three on the main stem Big Wood River and four on the North Fork Big Wood River (North Fork), Warm Springs Creek (Warm Sp), Trail Creek (Trail Ck), and East Fork Big Wood River (East Fork) tributaries.The analytical results and quality-assurance information for water quality, physical habitat, and biological community samples collected at study sites during 2 weeks in September 2014 are summarized. Water-quality data include concentrations of major nutrients, suspended sediment, dissolved oxygen, and fecal-coliform bacteria. To assess the potential effects of nutrient enrichment on algal growth, concentrations of periphyton biomass (chlorophyll-a and ash free dry weight) in riffle habitats were determined at each site. Physical habitat parameters include stream channel morphology, habitat volume, instream structure, substrate composition, and riparian vegetative cover. Biological data include taxa richness, abundance, and stream-health indicator metrics for macroinvertebrate and fish communities. Statistical summaries of the water-quality, habitat, and biological data are provided along with discussion of how these findings relate to the health of aquatic resources in the Big Wood River watershed.Seasonal discharge patterns using statistical

  12. The Feasibility of a Decision Support System for the Determination of Source Selection Evaluation Criteria

    DTIC Science & Technology

    1984-09-01

    is not only difficult and time consuming , but also crucial to the success of the project, the question is whether a decision support system designed...KtI I - uAujvhIMtf IENE In THE FEASIBILITY OF A DECISION SUPPORT SYSTEM FOR THE DETERMINATION OF SOURCE SELECTION EVALUATION ’CRITERIA THESIS .2...INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DZM=0N STATEMENT A ,’r !’ILMILSHIM S /8 4 THE FEASIBILITY OF A DECISION SUPPORT SYSTEM FOR

  13. Bird Use of Grassland Habitat Patches at a Military Airfield

    EPA Science Inventory

    In light of reported declines in grassland bird populations in North America, information about their use of airfield habitats can help inform management decisions in the context of conflicting objectives of minimizing wildlife-aircraft collisions and helping to conserve grasslan...

  14. A framework to support decision making in the selection of sustainable drainage system design alternatives.

    PubMed

    Wang, Mingming; Sweetapple, Chris; Fu, Guangtao; Farmani, Raziyeh; Butler, David

    2017-10-01

    This paper presents a new framework for decision making in sustainable drainage system (SuDS) scheme design. It integrates resilience, hydraulic performance, pollution control, rainwater usage, energy analysis, greenhouse gas (GHG) emissions and costs, and has 12 indicators. The multi-criteria analysis methods of entropy weight and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) were selected to support SuDS scheme selection. The effectiveness of the framework is demonstrated with a SuDS case in China. Indicators used include flood volume, flood duration, a hydraulic performance indicator, cost and resilience. Resilience is an important design consideration, and it supports scheme selection in the case study. The proposed framework will help a decision maker to choose an appropriate design scheme for implementation without subjectivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Distribution, habitat and adaptability of the genus Tapirus.

    PubMed

    García, Manolo J; Medici, Emília Patrícia; Naranjo, Eduardo J; Novarino, Wilson; Leonardo, Raquel S

    2012-12-01

    In this manuscript, as a starting point, the ancient and current distribution of the genus Tapirus are summarized, from its origins, apparently in Europe, to current ranges. Subsequently, original and current tapir habitats are described, as well as changes in ancient habitats. As the manuscript goes on, we examine the ways in which tapir species interact with their habitats and the main aspects of habitat use, spatial ecology and adaptability. Having reviewed the historic and current distribution of tapirs, as well as their use and selection of habitats, we introduce the concept of adaptability, considering that some of the tapir physiological characteristics and behavioral strategies can reduce the negative impact of habitat alteration and climate change. Finally, we provide recommendations for future research priorities. The conservation community is still missing important pieces of information for the effective conservation of tapirs and their remaining habitats in Central and South America and Southeast Asia. Reconstructing how tapir species reached their current distribution ranges, interpreting how they interact with their habitats and gathering information regarding the strategies they use to cope with habitat changes will increase our understanding about these animals and contribute to the development of conservation strategies. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  16. Wildlife guilds in Arizona desert habitats

    USGS Publications Warehouse

    Short, Henry L.

    1983-01-01

    This report summarizes information produced from Interagency Agreement No. AA-851-IA1-27 between the Bureau of Land Management (BLM), USDI, and the Fish and Wildlife Service (FWS), USDI. The contract was instrumental in the final development of wildlife guilds for the Hualapai-Aquarius planning area of the BLM in westcentral Arizona, reported herein. The Arizona study area was selected for the application of the guilding technology because a thorough assessment of the floral and faunal resources had recently occurred in conjunction with the development of a grazing Environmental Impact Statement (EIS). Thus, the association of wildlife species with habitat type was well known, which aided in the compilation of the data base necessary for the development of guilds. Some data were also available that described the vegetative structure of habitats. This was useful in the development of a model that evaluated the quality of habitat on the basis of the diversity of cover in those habitats (Short 1982).

  17. Modeling sensitive elasmobranch habitats

    NASA Astrophysics Data System (ADS)

    Pennino, M. Grazia; Muñoz, Facundo; Conesa, David; López-Quílez, Antonio; Bellido, José Marí; a

    2013-10-01

    Basic information on the distribution and habitat preferences of ecologically important species is essential for their management and protection. In the Mediterranean Sea there is increasing concern over elasmobranch species because their biological (ecological) characteristics make them highly vulnerable to fishing pressure. Their removal could affect the structure and function of marine ecosystems, inducing changes in trophic interactions at the community level due to the selective elimination of predators or prey species, competitors and species replacement. In this study Bayesian hierarchical spatial models are used to map the sensitive habitats of the three most caught elasmobranch species (Galeus melastomus, Scyliorhinus canicula, Etmopterus spinax) in the western Mediterranean Sea, based on fishery-dependent bottom trawl data. Results show that habitats associated with hard substrata and sandy beds, mainly in deep waters and with a high seabed gradient, have a greater probability registering the presence of the studied species than those associated with muddy shallow waters. Temperature and chlorophyll-α concentration show a negative relationship with S. canicula occurrence. Our results identify some of the sensitive habitats for elasmobranchs in the western Mediterranean Sea (GSA06 South), providing essential and easy-to-use interpretation tools, such as predictive distribution maps, with the final aim of improving management and conservation of these vulnerable species.

  18. Ontogenetic shifts in habitat use by the endangered Roanoke logperch (Percina rex)

    Treesearch

    Amanda Rosenberger; Paul L. Angermeier

    2003-01-01

    1. Conservation of the federally endangered Roanoke logperch (Percina rex, Jordan and Evermann) necessitates protection of habitat that is critical for all age classes. We examined habitat use patterns of individual logperch to determine: (1) if age classes of logperch in the Nottoway and Roanoke Rivers exhibit habitat selectivity, (2) if...

  19. Movement and habitat use by radio-tagged paddlefish in the upper Mississippi River and tributaries

    USGS Publications Warehouse

    Zigler, S.J.; Dewey, M.R.; Knights, B.C.; Runstrom, A.L.; Steingraeber, M.T.

    2003-01-01

    We used radio telemetry to evaluate the movement and habitat use of paddlefish Polyodon spathula in the upper Mississippi River and two tributary rivers. Radio transmitters were surgically implanted into 71 paddlefish in Navigation Pools 5A and 8 of the upper Mississippi River, the Chippewa River, and the Wisconsin River during fall 1994 through fall 1996. Radiotagged paddlefish were located through summer 1997. The range of paddlefish movement was typically low during all seasons except spring, but some paddlefish moved throughout the 420-km extent of the study area. Paddlefish tagged in the Chippewa River were closely linked with the upper Mississippi River, as substantial portions of the population inhabited the adjacent Navigation Pool 4 each spring; paddlefish in the Wisconsin River, however, rarely ventured out of that tributary. The use of aquatic area types by paddlefish varied among the study reaches. A cartographic model of paddlefish habitat suitability was developed for Navigation Pool 8 based on geographic information systems (GIS) coverages of bathymetry and current velocity. The value of paddlefish habitat in the cartographic model increased with depth and decreased with current velocity. For example, areas modeled as excellent corresponded to regions classified as having both deep water (greater than or equal to6.0 m) and negligible (<5 cm/s) current velocities. Our study suggests that aquatic area types are an inadequate basis for making sound management decisions regarding the critical habitats of paddlefish in complex riverine systems because such strata rely on gross geomorpological features rather than on the physicochemical variables that fish use to choose habitats. The development of systemic GIS coverages of such variables could improve the understanding of fish habitat selection and management in the upper Mississippi River.

  20. Assessing three fish species ecological status in Colorado River, Grand Canyon based on physical habitat and population models.

    PubMed

    Yao, Weiwei; Chen, Yuansheng

    2018-04-01

    Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.