Science.gov

Sample records for hac trial harmonic

  1. [A New HAC Unsupervised Classifier Based on Spectral Harmonic Analysis].

    PubMed

    Yang, Ke-ming; Wei, Hua-feng; Shi, Gang-qiang; Sun, Yang-yang; Liu, Fei

    2015-07-01

    Hyperspectral images classification is one of the important methods to identify image information, which has great significance for feature identification, dynamic monitoring and thematic information extraction, etc. Unsupervised classification without prior knowledge is widely used in hyperspectral image classification. This article proposes a new hyperspectral images unsupervised classification algorithm based on harmonic analysis(HA), which is called the harmonic analysis classifer (HAC). First, the HAC algorithm counts the first harmonic component and draws the histogram, so it can determine the initial feature categories and the pixel of cluster centers according to the number and location of the peak. Then, the algorithm is to map the waveform information of pixels to be classified spectrum into the feature space made up of harmonic decomposition times, amplitude and phase, and the similar features can be gotten together in the feature space, these pixels will be classified according to the principle of minimum distance. Finally, the algorithm computes the Euclidean distance of these pixels between cluster center, and merges the initial classification by setting the distance threshold. so the HAC can achieve the purpose of hyperspectral images classification. The paper collects spectral curves of two feature categories, and obtains harmonic decomposition times, amplitude and phase after harmonic analysis, the distribution of HA components in the feature space verified the correctness of the HAC. While the HAC algorithm is applied to EO-1 satellite Hyperion hyperspectral image and obtains the results of classification. Comparing with the hyperspectral image classifying results of K-MEANS, ISODATA and HAC classifiers, the HAC, as a unsupervised classification method, is confirmed to have better application on hyperspectral image classification. PMID:26717767

  2. Global Harmonization of Quality Assurance Naming Conventions in Radiation Therapy Clinical Trials

    SciTech Connect

    Melidis, Christos; Bosch, Walther R.; Izewska, Joanna; Fidarova, Elena; Zubizarreta, Eduardo; Ulin, Kenneth; Ishikura, Satoshi; Followill, David; Galvin, James; Haworth, Annette; Besuijen, Deidre; Clark, Clark H.; Miles, Elizabeth; Aird, Edwin; and others

    2014-12-01

    Purpose: To review the various radiation therapy quality assurance (RTQA) procedures used by the Global Clinical Trials RTQA Harmonization Group (GHG) steering committee members and present the harmonized RTQA naming conventions by amalgamating procedures with similar objectives. Methods and Materials: A survey of the GHG steering committee members' RTQA procedures, their goals, and naming conventions was conducted. The RTQA procedures were classified as baseline, preaccrual, and prospective/retrospective data capture and analysis. After all the procedures were accumulated and described, extensive discussions took place to come to harmonized RTQA procedures and names. Results: The RTQA procedures implemented within a trial by the GHG steering committee members vary in quantity, timing, name, and compliance criteria. The procedures of each member are based on perceived chances of noncompliance, so that the quality of radiation therapy planning and treatment does not negatively influence the trial measured outcomes. A comparison of these procedures demonstrated similarities among the goals of the various methods, but the naming given to each differed. After thorough discussions, the GHG steering committee members amalgamated the 27 RTQA procedures to 10 harmonized ones with corresponding names: facility questionnaire, beam output audit, benchmark case, dummy run, complex treatment dosimetry check, virtual phantom, individual case review, review of patients' treatment records, and protocol compliance and dosimetry site visit. Conclusions: Harmonized RTQA harmonized naming conventions, which can be used in all future clinical trials involving radiation therapy, have been established. Harmonized procedures will facilitate future intergroup trial collaboration and help to ensure comparable RTQA between international trials, which enables meta-analyses and reduces RTQA workload for intergroup studies.

  3. Harmonization and streamlining of research oversight for pragmatic clinical trials

    PubMed Central

    O'Rourke, P Pearl; Carrithers, Judith; Patrick-Lake, Bray; Rice, Todd W; Corsmo, Jeremy; Hart, Raffaella; Drezner, Marc K; Lantos, John D

    2015-01-01

    The oversight of research involving human participants is a complex process that requires institutional review board (IRB) review as well as multiple non-IRB institutional reviews. This multifaceted process is particularly challenging for multisite research when each site independently completes all required local reviews. The lack of inter-institutional standardization can result in different review outcomes for the same protocol, which can delay study operations from start-up to study completion. Hence, there have been strong calls to harmonize and thus streamline the research oversight process. Although the IRB is only one of the required reviews, it is often identified as the target for harmonization and streamlining. Data regarding variability in decision-making and interpretation of the regulations across IRBs have led to a perception that variability among IRBs is a primary contributor to the problems with review of multisite research. In response, many researchers and policymakers have proposed the use of a single IRB of record, also called a central IRB (CIRB), as an important remedy. While this proposal has merit, the use of a CIRB for multisite research does not address the larger problem of completing non-IRB institutional review in addition to IRB review—and coordinating the interdependence of these reviews. In this paper we describe the overall research oversight process, distinguish between IRB and institutional responsibilities, and identify challenges and opportunities for harmonization and streamlining. We focus on procedural and organizational issues and presume that the protection of human subjects remains the paramount concern. Suggested modifications of IRB processes that focus on time, efficiency, and consistency of review must also address what effect such changes have on the quality of review. We acknowledge that assessment of quality is difficult in that quality metrics for IRB review remain elusive. At best, we may be able to assess the

  4. Harmonization and streamlining of research oversight for pragmatic clinical trials.

    PubMed

    O'Rourke, P Pearl; Carrithers, Judith; Patrick-Lake, Bray; Rice, Todd W; Corsmo, Jeremy; Hart, Raffaella; Drezner, Marc K; Lantos, John D

    2015-10-01

    The oversight of research involving human participants is a complex process that requires institutional review board review as well as multiple non-institutional review board institutional reviews. This multifaceted process is particularly challenging for multisite research when each site independently completes all required local reviews. The lack of inter-institutional standardization can result in different review outcomes for the same protocol, which can delay study operations from start-up to study completion. Hence, there have been strong calls to harmonize and thus streamline the research oversight process. Although the institutional review board is only one of the required reviews, it is often identified as the target for harmonization and streamlining. Data regarding variability in decision-making and interpretation of the regulations across institutional review boards have led to a perception that variability among institutional review boards is a primary contributor to the problems with review of multisite research. In response, many researchers and policymakers have proposed the use of a single institutional review board of record, also called a central institutional review board, as an important remedy. While this proposal has merit, the use of a central institutional review board for multisite research does not address the larger problem of completing non-institutional review board institutional review in addition to institutional review board review—and coordinating the interdependence of these reviews. In this article, we describe the overall research oversight process, distinguish between institutional review board and institutional responsibilities, and identify challenges and opportunities for harmonization and streamlining. We focus on procedural and organizational issues and presume that the protection of human subjects remains the paramount concern. Suggested modifications of institutional review board processes that focus on time

  5. HAC stability in murine cells is influenced by nuclear localization and chromatin organization

    PubMed Central

    Moralli, Daniela; Chan, David YL; Jefferson, Andrew; Volpi, Emanuela V; Monaco, Zoia L

    2009-01-01

    Background Human artificial chromosomes (HAC) are small functional extrachromosomal elements, which segregate correctly during each cell division. In human cells, they are mitotically stable, however when the HAC are transferred to murine cells they show an increased and variable rate of loss. In some cell lines the HAC are lost over a short period of time, while in others the HAC become stable without acquiring murine DNA. Results In this study, we linked the loss rate to the position of the HAC in the murine cell nucleus with respect to the chromocenters. HAC that associated preferentially with the chromocenter displayed a lower loss rate compared to the HAC that are less frequently associated. The chromocenter acts as a hub for the deposition of heterochromatic markers, controlling centromeric and pericentromeric DNA replication timing and chromosome segregation. The HAC which localized more frequently outside the chromocenters bound variable amounts of histone H3 tri-methylated at lysine 9, and the high level of intraclonal variability was associated with an increase in HAC segregation errors and delayed DNA replication timing. Conclusion This is a novel result indicating that HAC segregation is closely linked to the position in the murine nucleus and gives important insight for HAC gene expression studies in murine cells and establishing murine models of human genetic disease. PMID:19267891

  6. A prospective randomized trial comparing the harmonic scalpel with conventional knot tying in thyroidectomy.

    PubMed

    Kilic, Mehmet; Keskek, Mehmet; Ertan, Tamer; Yoldas, Omer; Bilgin, Aydin; Koc, Mahmut

    2007-01-01

    Currently, thyroidectomies are performed with very little morbidity. This study was undertaken to investigate whether the use of the harmonic scalpel during thyroid surgery has any advantage over the conventional technique. Eighty patients were randomly assigned to 2 groups. The patients in group 1 (n=40) underwent thyroidectomy performed with conventional knot tying and the electrocautery technique; in patients in group 2 (n=40), the harmonic scalpel was used for the procedure. Significant differences were observed between these 2 surgical techniques in terms of operative time, number of ligatures used, amount of bleeding, average length of incision, total amount of drainage fluid, and cosmetic satisfaction (P<.05). With the harmonic scalpel technique, there was a nearly 18% reduction in operative time. No significant differences were noted between mean hospital stay and postoperative pain (P>.05). No patient in either group had permanent recurrent laryngeal nerve palsy or hypoparathyroidism. The harmonic scalpel significantly shortens the duration of thyroidectomies; it can be used safely and effectively in thyroid surgery with no additional morbidity.

  7. A PILOT STUDY OF THE INFLUENCE OF RESIDENTIAL HAC DUTY CYCLE ON INDOOR AIR QUALITY (AE)

    EPA Science Inventory

    A simple methodology was developed to collect measurements of duty cycle, the fraction of time the heating and air conditioning (HAC) system was operating, inside residences. The primary purpose of the measurements was to assess whether the HAC duty cycle was related to reductio...

  8. A PILOT STUDY OF THE INFLUENCE OF RESIDENTIAL HAC DUTY CYCLE ON INDOOR AIR QUALITY

    EPA Science Inventory

    A simple methodology was developed to collect measurements of duty cycle, the fraction of time the heating and air conditioning (HAC) system was operating inside residences. The primary purpose of the measurements was to assess whether the HAC duty cycle was related to reducti...

  9. Rural Housing and Welfare Reform: HAC's 1997 Report on the State of the Nation's Rural Housing.

    ERIC Educational Resources Information Center

    Housing Assistance Council.

    This report, prepared by the Housing Assistance Council (HAC), presents the context within which welfare reform will affect the housing conditions of rural Americans. HAC is a nonprofit corporation that supports the development of rural low-income housing nationwide. Although the federal welfare reform legislation effective in 1997 makes few…

  10. Harmonizing international trials of early goal-directed resuscitation for severe sepsis and septic shock: methodology of ProCESS, ARISE, and ProMISe

    PubMed Central

    2013-01-01

    Purpose To describe and compare the design of three independent but collaborating multicenter trials of early goal-directed resuscitation for severe sepsis and septic shock. Methods We reviewed the three current trials, one each in the USA (ProCESS: protocolized care for early septic shock), Australasia (ARISE: Australasian resuscitation in sepsis evaluation), and the UK (ProMISe: protocolised management in sepsis). We used the 2010 CONSORT (consolidated standards of reporting trials) statement and the 2008 CONSORT extension for trials assessing non-pharmacologic treatments to describe and compare the underlying rationale, commonalities, and differences. Results All three trials conform to CONSORT guidelines, address the same fundamental questions, and share key design elements. Each trial is a patient-level, equal-randomized, parallel-group superiority trial that seeks to enroll emergency department patients with inclusion criteria that are consistent with the original early goal-directed therapy (EGDT) trial (suspected or confirmed infection, two or more systemic inflammatory response syndrome criteria, and refractory hypotension or elevated lactate), is powered to detect a 6–8 % absolute mortality reduction (hospital or 90-day), and uses trained teams to deliver EGDT. Design differences appear to primarily be driven by between-country variation in health care context. The main difference between the trials is the inclusion of a third, alternative resuscitation strategy arm in ProCESS. Conclusions Harmonization of study design and methods between severe sepsis trials is feasible and may facilitate pooling of data on completion of the trials. PMID:23958738

  11. YPEL4 modulates HAC15 adrenal cell proliferation and is associated with tumor diameter.

    PubMed

    Oki, Kenji; Plonczynski, Maria W; Gomez-Sanchez, Elise P; Gomez-Sanchez, Celso E

    2016-10-15

    Yippee-like (YPEL) proteins are thought to be related to cell proliferation because of their structure and location in the cell. The aim of this study was to clarify the effects of YPEL4 on aldosterone production and cell proliferation in the human adrenocortical cell line (HAC15) and aldosterone producing adenoma (APA). Basal aldosterone levels in HAC15 cells over-expressing YPEL4 was higher than those of control HAC15 cells. The positive effects of YPEL4 on cell proliferation were detected by XTT assay and crystal violet staining. YPEL4 levels in 39 human APA were 2.4-fold higher compared to those in 12 non-functional adrenocortical adenomas, and there was a positive relationship between YPEL4 levels and APA diameter (r = 0.316, P < 0.05). In summary, we have demonstrated that YPEL4 stimulates human adrenal cortical cell proliferation, increasing aldosterone production as a consequence. These results in human adrenocortical cells are consistent with the clinical observations with APA in humans. PMID:27333825

  12. Telomerase-mediated life-span extension of human primary fibroblasts by human artificial chromosome (HAC) vector

    SciTech Connect

    Shitara, Shingo; Kakeda, Minoru; Nagata, Keiko; Hiratsuka, Masaharu; Sano, Akiko; Osawa, Kanako; Okazaki, Akiyo; Katoh, Motonobu; Kazuki, Yasuhiro; Oshimura, Mitsuo; Tomizuka, Kazuma

    2008-05-09

    Telomerase-mediated life-span extension enables the expansion of normal cells without malignant transformation, and thus has been thought to be useful in cell therapies. Currently, integrating vectors including the retrovirus are used for human telomerase reverse transcriptase (hTERT)-mediated expansion of normal cells; however, the use of these vectors potentially causes unexpected insertional mutagenesis and/or activation of oncogenes. Here, we established normal human fibroblast (hPF) clones retaining non-integrating human artificial chromosome (HAC) vectors harboring the hTERT expression cassette. In hTERT-HAC/hPF clones, we observed the telomerase activity and the suppression of senescent-associated SA-{beta}-galactosidase activity. Furthermore, the hTERT-HAC/hPF clones continued growing beyond 120 days after cloning, whereas the hPF clones retaining the silent hTERT-HAC senesced within 70 days. Thus, hTERT-HAC-mediated episomal expression of hTERT allows the extension of the life-span of human primary cells, implying that gene delivery by non-integrating HAC vectors can be used to control cellular proliferative capacity of primary cultured cells.

  13. Genetic and epigenetic regulation of centromeres: a look at HAC formation.

    PubMed

    Ohzeki, Jun-ichirou; Larionov, Vladimir; Earnshaw, William C; Masumoto, Hiroshi

    2015-02-01

    The centromere is a specialized chromosomal locus required for accurate chromosome segregation. A specific histone H3 variant, CENP-A, assembles at centromeres. CENP-A is required for kinetochore protein assembly and is an epigenetic marker for the maintenance of a functional centromere. Human CENP-A chromatin normally assembles on α-satellite DNA (alphoid DNA), a centromeric repetitive sequence. Using alphoid DNA arrays, human artificial chromosomes (HACs) have been constructed in human HT1080 cells and used to dissect the requirements for CENP-A assembly on DNA sequence. However, centromere formation is not a simple genetic event. In other commonly used human cell lines, such as HeLa and U2OS cells, no functional de novo centromere formation occurs efficiently with the same centromeric alphoid DNA sequences. Recent studies using protein tethering combined with the HAC system and/or genetic manipulation have revealed that epigenetic chromatin regulation mechanisms are also involved in the CENP-A chromatin assembly pathway and subsequent centromere/kinetochore formation. We summarize the DNA sequence requirements for CENP-A assembly and discuss the epigenetic regulation of human centromeres. PMID:25682171

  14. Practical Thermal Evaluation Methods For HAC Fire Analysis In Type B Radiaoactive Material (RAM) Packages

    SciTech Connect

    Abramczyk, Glenn; Hensel, Stephen J; Gupta, Narendra K.

    2013-03-28

    Title 10 of the United States Code of Federal Regulations Part 71 for the Nuclear Regulatory Commission (10 CFR Part 71.73) requires that Type B radioactive material (RAM) packages satisfy certain Hypothetical Accident Conditions (HAC) thermal design requirements to ensure package safety during accidental fire conditions. Compliance with thermal design requirements can be met by prototype tests, analyses only or a combination of tests and analyses. Normally, it is impractical to meet all the HAC using tests only and the analytical methods are too complex due to the multi-physics non-linear nature of the fire event. Therefore, a combination of tests and thermal analyses methods using commercial heat transfer software are used to meet the necessary design requirements. The authors, along with his other colleagues at Savannah River National Laboratory in Aiken, SC, USA, have successfully used this 'tests and analyses' approach in the design and certification of several United States' DOE/NNSA certified packages, e.g. 9975, 9977, 9978, 9979, H1700, and Bulk Tritium Shipping Package (BTSP). This paper will describe these methods and it is hoped that the RAM Type B package designers and analysts can use them for their applications.

  15. Generation of a conditionally self-eliminating HAC gene delivery vector through incorporation of a tTAVP64 expression cassette

    PubMed Central

    Kononenko, Artem V.; Lee, Nicholas C.O.; Liskovykh, Mikhail; Masumoto, Hiroshi; Earnshaw, William C.; Larionov, Vladimir; Kouprina, Natalay

    2015-01-01

    Human artificial chromosome (HAC)-based vectors represent an alternative technology for gene delivery and expression with a potential to overcome the problems caused by virus-based vectors. The recently developed alphoidtetO-HAC has an advantage over other HAC vectors because it can be easily eliminated from cells by inactivation of the HAC kinetochore via binding of chromatin modifiers, tTA or tTS, to its centromeric tetO sequences. This provides a unique control for phenotypes induced by genes loaded into the HAC. The alphoidtetO-HAC elimination is highly efficient when a high level of chromatin modifiers as tetR fusion proteins is achieved following transfection of cells by a retrovirus vector. However, such vectors are potentially mutagenic and might want to be avoided under some circumstances. Here, we describe a novel system that allows verification of phenotypic changes attributed to expression of genes from the HAC without a transfection step. We demonstrated that a single copy of tTAVP64 carrying four tandem repeats of the VP16 domain constitutively expressed from the HAC is capable to generate chromatin changes in the HAC kinetochore that are not compatible with its function. To adopt the alphoidtetO-HAC for routine gene function studies, we constructed a new TAR-BRV- tTAVP64 cloning vector that allows a selective isolation of a gene of interest from genomic DNA in yeast followed by its direct transfer to bacterial cells and subsequent loading into the loxP site of the alphoidtetO-HAC in hamster CHO cells from where the HAC may be MMCT-transferred to the recipient human cells. PMID:25712097

  16. Results with the Roseland(®) HAC trapeziometacarpal prosthesis after more than 10 years.

    PubMed

    Semere, A; Vuillerme, N; Corcella, D; Forli, A; Moutet, F

    2015-04-01

    The Roseland(®) hydroxyapatite-coated prosthesis is a total trapeziometacarpal joint prosthesis used for the surgical treatment of thumb basal joint arthritis. The aim of this retrospective study was to evaluate its long-term outcomes. Fifty-one patients (64 thumbs) underwent trapeziometacarpal joint replacement with this prosthesis. The mean follow-up was 12.5 years. Survival rate of the prosthesis was 91%. There was either no pain or only occasional pain in 91% of cases. The mean QuickDASH score was 27.6. Abnormal radiographic findings were present in 70% of cases. Since they were often asymptomatic, no further treatment was carried out. Complications were common (25%) and occurred early on but could often be treated without surgery. The long-term results with the Roseland(®) HAC prosthesis are satisfactory in terms of pain relief and function. However, the high complication rate is a major concern. PMID:25769771

  17. Presence of PAH or HAC below 900 km in the Titan's stratosphere?

    NASA Astrophysics Data System (ADS)

    Cordier, Daniel; COURS, Thibaud; Rey, Michael; Maltagliati, Luca; Seignovert, Benoit; Biennier, Ludovic

    2016-10-01

    In 2006, during Cassini's 10th flyby of Titan (T10), Bellucci et al. (2009) observed a solar occultation by Titan's atmosphere through the solar port of the Cassini/VIMS instrument. These authors noticed the existence of an unexplained additional absorption superimposed to the CH4 3.3 microns band. Because they were unable to model this absorption with gases, they attributed this intriguing feature to the signature of solid state organic components. Kim et al. (2011) revisited the data collected by Bellucci et al. (2009) and they considered the possible contribution of aerosols formed by hydrocarbon ices. They specifically took into account C2H6, CH4, CH3CN, C5H12 and C6H12 ices. More recently, Maltagliati et al. (2015) analyzed a set of four VIMS solar occultations, corresponding to flybys performed between January 2006 and September 2011 at different latitudes. They confirmed the presence of the 3.3 µm absorption in all occultations and underlined the possible importance of gaseous ethane, which has a strong plateau of absorption lines in that wavelength range. In this work, we show that neither hydrocarbon ices nor molecular C2H6 cannot satisfactorily explain the observed absorption. Our simulations speak in favor of an absorption due to the presence of PAH molecules or HAC in the stratosphere of Titan. PAH have been already considered by Lopes-Puertas et al. (2013) at altitudes larger than ~900 km and tentatively identified in the stratosphere by Maltagliati et al. (2015); PAH and HAC are good candidates for Titan's aerosols precursors.

  18. The effect of pioglitazone on aldosterone and cortisol production in HAC15 human adrenocortical carcinoma cells.

    PubMed

    Pan, Zhi-qiang; Xie, Ding; Choudhary, Vivek; Seremwe, Mutsa; Tsai, Ying-Ying; Olala, Lawrence; Chen, Xunsheng; Bollag, Wendy B

    2014-08-25

    Pioglitazone belongs to the class of drugs called thiazolidinediones (TZDs), which are widely used as insulin sensitizers in the treatment of diabetes. A major side effect of TZDs is fluid retention. The steroid hormone aldosterone also promotes sodium and fluid retention; however, the effect of pioglitazone on aldosterone production is controversial. We analyzed the effect of pioglitazone alone and in combination with angiotensin II (AngII) on the late rate-limiting step of adrenocortical steroidogenesis in human adrenocortical carcinoma HAC15 cells. Treatment with pioglitazone for 24 h significantly increased the expression of CYP11B2 and enhanced AngII-induced CYP11B2 expression. Despite the observed changes in mRNA levels, pioglitazone significantly inhibited AngII-induced aldosterone production and CYP11B2 protein levels. On the other hand, pioglitazone stimulated the expression of the unfolded protein response (UPR) marker DDIT3, with this effect occurring at early times and inhibitable by the PPARγ antagonist GW9962. The levels of DDIT3 (CHOP) and phospho-eIF2α (Ser51), a UPR-induced event that inhibits protein translation, were also increased. Thus, pioglitazone promotes CYP11B2 expression but nevertheless inhibits aldosterone production in AngII-treated HAC15 cells, likely by blocking global protein translation initiation through DDIT3 and phospho-eIF2α. In contrast, pioglitazone promoted AngII-induced CYP11B1 expression and cortisol production. Since cortisol enhances lipolysis, this result suggests the possibility that PPARs, activated by products of fatty acid oxidation, stimulate cortisol secretion to promote utilization of fatty acids during fasting. In turn, the ability of pioglitazone to stimulate cortisol production could potentially underlie the effects of this drug on fluid retention. PMID:25038520

  19. The effect of pioglitazone on aldosterone and cortisol production in HAC15 human adrenocortical carcinoma cells.

    PubMed

    Pan, Zhi-qiang; Xie, Ding; Choudhary, Vivek; Seremwe, Mutsa; Tsai, Ying-Ying; Olala, Lawrence; Chen, Xunsheng; Bollag, Wendy B

    2014-08-25

    Pioglitazone belongs to the class of drugs called thiazolidinediones (TZDs), which are widely used as insulin sensitizers in the treatment of diabetes. A major side effect of TZDs is fluid retention. The steroid hormone aldosterone also promotes sodium and fluid retention; however, the effect of pioglitazone on aldosterone production is controversial. We analyzed the effect of pioglitazone alone and in combination with angiotensin II (AngII) on the late rate-limiting step of adrenocortical steroidogenesis in human adrenocortical carcinoma HAC15 cells. Treatment with pioglitazone for 24 h significantly increased the expression of CYP11B2 and enhanced AngII-induced CYP11B2 expression. Despite the observed changes in mRNA levels, pioglitazone significantly inhibited AngII-induced aldosterone production and CYP11B2 protein levels. On the other hand, pioglitazone stimulated the expression of the unfolded protein response (UPR) marker DDIT3, with this effect occurring at early times and inhibitable by the PPARγ antagonist GW9962. The levels of DDIT3 (CHOP) and phospho-eIF2α (Ser51), a UPR-induced event that inhibits protein translation, were also increased. Thus, pioglitazone promotes CYP11B2 expression but nevertheless inhibits aldosterone production in AngII-treated HAC15 cells, likely by blocking global protein translation initiation through DDIT3 and phospho-eIF2α. In contrast, pioglitazone promoted AngII-induced CYP11B1 expression and cortisol production. Since cortisol enhances lipolysis, this result suggests the possibility that PPARs, activated by products of fatty acid oxidation, stimulate cortisol secretion to promote utilization of fatty acids during fasting. In turn, the ability of pioglitazone to stimulate cortisol production could potentially underlie the effects of this drug on fluid retention.

  20. Synthetic High-Density Lipoprotein (sHDL) Inhibits Steroid Production in HAC15 Adrenal Cells.

    PubMed

    Taylor, Matthew J; Sanjanwala, Aalok R; Morin, Emily E; Rowland-Fisher, Elizabeth; Anderson, Kyle; Schwendeman, Anna; Rainey, William E

    2016-08-01

    High density lipoprotein (HDL) transported cholesterol represents one of the sources of substrate for adrenal steroid production. Synthetic HDL (sHDL) particles represent a new therapeutic option to reduce atherosclerotic plaque burden by increasing cholesterol efflux from macrophage cells. The effects of the sHDL particles on steroidogenic cells have not been explored. sHDL, specifically ETC-642, was studied in HAC15 adrenocortical cells. Cells were treated with sHDL, forskolin, 22R-hydroxycholesterol, or pregnenolone. Experiments included time and concentration response curves, followed by steroid assay. Quantitative real-time RT-PCR was used to study mRNA of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, lanosterol 14-α-methylase, cholesterol side-chain cleavage enzyme, and steroid acute regulatory protein. Cholesterol assay was performed using cell culture media and cell lipid extracts from a dose response experiment. sHDL significantly inhibited production of cortisol. Inhibition occurred in a concentration- and time-dependent manner and in a concentration range of 3μM-50μM. Forskolin (10μM) stimulated cortisol production was also inhibited. Incubation with 22R-hydroxycholesterol (10μM) and pregnenolone (10μM) increased cortisol production, which was unaffected by sHDL treatment. sHDL increased transcript levels for the rate-limiting cholesterol biosynthetic enzyme, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase. Extracellular cholesterol assayed in culture media showed a positive correlation with increasing concentration of sHDL, whereas intracellular cholesterol decreased after treatment with sHDL. The current study suggests that sHDL inhibits HAC15 adrenal cell steroid production by efflux of cholesterol, leading to an overall decrease in steroid production and an adaptive rise in adrenal cholesterol biosynthesis. PMID:27253994

  1. Hansenula polymorpha Hac1p Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analyses.

    PubMed

    Moon, Hye-Yun; Cheon, Seon Ah; Kim, Hyunah; Agaphonov, M O; Kwon, Ohsuk; Oh, Doo-Byoung; Kim, Jeong-Yoon; Kang, Hyun Ah

    2015-10-01

    Aggregation of misfolded protein in the endoplasmic reticulum (ER) induces a cellular protective response to ER stress, the unfolded protein response (UPR), which is mediated by a basic leucine zipper (bZIP) transcription factor, Hac1p/Xbp1. In this study, we identified and studied the molecular functions of a HAC1 homolog from the thermotolerant yeast Hansenula polymorpha (HpHAC1). We found that the HpHAC1 mRNA contains a nonconventional intron of 177 bp whose interaction with the 5' untranslated region is responsible for the translational inhibition of the HpHAC1 mRNA. The H. polymorpha hac1-null (Hphac1Δ) mutant strain grew slowly, even under normal growth conditions, and was less thermotolerant than the wild-type (WT) strain. The mutant strain was also more sensitive to cell wall-perturbing agents and to the UPR-inducing agents dithiothreitol (DTT) and tunicamycin (TM). Using comparative transcriptome analysis of the WT and Hphac1Δ strains treated with DTT and TM, we identified HpHAC1-dependent core UPR targets, which included genes involved in protein secretion and processing, particularly those required for N-linked protein glycosylation. Notably, different glycosylation and processing patterns of the vacuolar glycoprotein carboxypeptidase Y were observed in the WT and Hphac1Δ strains. Moreover, overexpression of active HpHac1p significantly increased the N-linked glycosylation efficiency and TM resistance. Collectively, our results suggest that the function of HpHac1p is important not only for UPR induction but also for efficient glycosylation in H. polymorpha. PMID:26231645

  2. Hansenula polymorpha Hac1p Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analyses.

    PubMed

    Moon, Hye-Yun; Cheon, Seon Ah; Kim, Hyunah; Agaphonov, M O; Kwon, Ohsuk; Oh, Doo-Byoung; Kim, Jeong-Yoon; Kang, Hyun Ah

    2015-10-01

    Aggregation of misfolded protein in the endoplasmic reticulum (ER) induces a cellular protective response to ER stress, the unfolded protein response (UPR), which is mediated by a basic leucine zipper (bZIP) transcription factor, Hac1p/Xbp1. In this study, we identified and studied the molecular functions of a HAC1 homolog from the thermotolerant yeast Hansenula polymorpha (HpHAC1). We found that the HpHAC1 mRNA contains a nonconventional intron of 177 bp whose interaction with the 5' untranslated region is responsible for the translational inhibition of the HpHAC1 mRNA. The H. polymorpha hac1-null (Hphac1Δ) mutant strain grew slowly, even under normal growth conditions, and was less thermotolerant than the wild-type (WT) strain. The mutant strain was also more sensitive to cell wall-perturbing agents and to the UPR-inducing agents dithiothreitol (DTT) and tunicamycin (TM). Using comparative transcriptome analysis of the WT and Hphac1Δ strains treated with DTT and TM, we identified HpHAC1-dependent core UPR targets, which included genes involved in protein secretion and processing, particularly those required for N-linked protein glycosylation. Notably, different glycosylation and processing patterns of the vacuolar glycoprotein carboxypeptidase Y were observed in the WT and Hphac1Δ strains. Moreover, overexpression of active HpHac1p significantly increased the N-linked glycosylation efficiency and TM resistance. Collectively, our results suggest that the function of HpHac1p is important not only for UPR induction but also for efficient glycosylation in H. polymorpha.

  3. Ricin Inhibits Activation of the Unfolded Protein Response by Preventing Splicing of the HAC1 mRNA*

    PubMed Central

    Parikh, Bijal A.; Tortora, Andrew; Li, Xiao-Ping; Tumer, Nilgun E.

    2011-01-01

    Ricin A chain (RTA) inhibits protein synthesis by removing a specific adenine from the highly conserved α-sarcin/ricin loop in the large rRNA. Expression of RTA with its own signal sequence in yeast resulted in its translocation into the endoplasmic reticulum (ER) and subsequent glycosylation. Because RTA must unfold within the ER, it may be vulnerable to host defenses, such as the unfolded protein response (UPR). UPR was induced in cells expressing an active site mutant but not the wild type RTA, indicating that the active site of RTA played a role in perturbing the ER stress response. The inactive RTA without the signal sequence did not induce UPR, indicating that translocation into the ER was critical for induction of UPR. The wild type RTA inhibited activation of UPR not only due to ER stress induced by the protein itself but also by global effectors such as tunicamycin and dithiothreitol. Mature RTA without the signal sequence also inhibited UPR, providing evidence that inhibition of UPR occurred on the cytosolic face of the ER. RTA could not inhibit UPR when the spliced form of HAC1 mRNA was provided in trans, indicating that it had a direct effect on UPR upstream of HAC1-dependent transcriptional activation. Only the precursor form of HAC1 mRNA was detected in cells expressing RTA after exposure to ER stress, demonstrating that ricin inhibits activation of UPR by preventing HAC1 mRNA splicing. The RTA mutants that depurinated ribosomes but did not kill cells were not able to inhibit activation of UPR by tunicamycin, providing evidence that the inability to activate UPR in response to ER stress contributes to the cytotoxicity of ricin. PMID:18180297

  4. Harmonic engine

    DOEpatents

    Bennett, Charles L.

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  5. Harmonic engine

    SciTech Connect

    Bennett, Charles L.; Sewall, Noel; Boroa, Carl

    2014-08-19

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.

  6. UV irradiated hydrogenated amorphous carbon (HAC) materials as a carrier candidate of the interstellar UV bump at 217.5 nm

    NASA Astrophysics Data System (ADS)

    Gadallah, K. A. K.; Mutschke, H.; Jäger, C.

    2011-04-01

    Context. Hydrogenated amorphous carbon (HAC) materials have been considered as a laboratory analog of cosmic carbonaceous nanoparticles in the interstellar medium (ISM). In the diffuse ISM, UV radiation can modify the electronic and atomic structure of HAC materials. Aims: Studying structural and optical properties of HAC materials in correlation with UV processing is very important to understand more clearly the effect of the UV radiation on carbonaceous dust grains in the diffuse ISM. This scenario can explain some astronomical spectral features such as the interstellar UV bump at 4.6 μm-1. Methods: Laser ablation has been used to produce nano-sized HAC materials which are subsequently irradiated by strong UV doses in a high vacuum. Transmission electron microscope images and spectroscopic analyses show the evolution of the internal structure of the material with the UV irradiation. Results: It is found that hydrogen content and the sp3/sp2 hybridization ratio decrease with the UV irradiation. The graphene layers become longer in processed materials. Also, graphitic fibers are observed in modified materials. The variation in the internal structure leads to dramatic changes in the spectral properties in the FUV-VIS range. The UV irradiation of HAC materials, coresponding to 21-33% of the average dose of the UV radiation in diffuse ISM, has produced a new band centered at 4.6 μm-1 (217.5 nm). Conclusions: Consequently, these results confirm for the first time the suggestion by Mennella et al. (1996) that irradiated HAC materials might be considered the carrier of the interstellar UV bump at 4.6 μm-1. However, so far the amount of carbon needed to produce the interstellar 4.6 μm-1 band is higher than that available for interstellar carbon dust grains. So the ideal structure of irradiated HAC materials that would produce a band of sufficient strength is not yet clear for the interstellar dust.

  7. Predicting Effects of Corrosion Erosion of High Strength Steel Pipelines Elbow on CO2-Acetic Acid (HAc) Solution

    NASA Astrophysics Data System (ADS)

    Asmara, Y. P.; Ismail, M. F.; Giok Chui, L.; Halimi, Jamiludin

    2016-02-01

    Simultaneously effect of erosion combined with corrosion becomes the most concern in oil and gas industries. It is due to the fast deterioration of metal as effects of solid particles mixed with corrosive environment. There are many corrosion software to investigate possible degradation mechanisms developed by researchers. They are using many combination factors of chemical reactions and physical process. However effects of CO2 and acid on pipelines orientations are still remain uncovered in their simulation. This research will investigate combination effects of CO2 and HAc on corrosion and erosion artificial environmental containing sands particles in 45°, 90° and 180° elbow pipelines. The research used theoretical calculations combined with experiments for verification. The main concerns are to investigate the maximum erosion corrosion rate and maximum shear stress at the surface. Methodology used to calculate corrosion rate are Linear Polarization Resistance (LPR) and weight loss. The results showed that at 45°, erosion rate is the more significant effects in contributing degradation of the metal. The effects of CO2 and HAc gave significant effects when flow rate of the solution are high which reflect synergism effects of solid particles and those chemical compositions.

  8. Development of a novel HAC-based “gain of signal” quantitative assay for measuring chromosome instability (CIN) in cancer cells

    PubMed Central

    Kim, Jung-Hyun; Lee, Hee-Sheung; Lee, Nicholas C. O.; Goncharov, Nikolay V.; Kumeiko, Vadim; Masumoto, Hiroshi; Earnshaw, William C.; Kouprina, Natalay; Larionov, Vladimir

    2016-01-01

    Accumulating data indicates that chromosome instability (CIN) common to cancer cells can be used as a target for cancer therapy. At present the rate of chromosome mis-segregation is quantified by laborious techniques such as coupling clonal cell analysis with karyotyping or fluorescence in situ hybridization (FISH). Recently, a novel assay was developed based on the loss of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene (“loss of signal” assay). Using this system, anticancer drugs can be easily ranked on by their effect on HAC loss. However, it is problematic to covert this “loss of signal” assay into a high-throughput screen to identify drugs and mutations that increase CIN levels. To address this point, we re-designed the HAC-based assay. In this new system, the HAC carries a constitutively expressed shRNA against the EGFP transgene integrated into human genome. Thus, cells that inherit the HAC display no green fluorescence, while cells lacking the HAC do. We verified the accuracy of this “gain of signal” assay by measuring the level of CIN induced by known antimitotic drugs and added to the list of previously ranked CIN inducing compounds, two newly characterized inhibitors of the centromere-associated protein CENP-E, PF-2771 and GSK923295 that exhibit the highest effect on chromosome instability measured to date. The “gain of signal” assay was also sensitive enough to detect increase of CIN after siRNA depletion of known genes controlling mitotic progression through distinct mechanisms. Hence this assay can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer. Also described is the possible conversion of this new assay into a high-throughput screen using a fluorescence microplate reader to characterize chemical libraries and identify new conditions that modulate CIN level. PMID:26943579

  9. Poster 7: Could PAH or HAC explain the Titan's stratosphere absorption around 3.4 µm revealed by solar occultations?

    NASA Astrophysics Data System (ADS)

    Cordier, Daniel; Cours, Thibaud; Rey, Michael; Maltagliati, Luca; Seignovert, Benoit; Biennier, Ludovic

    2016-06-01

    In 2006, during Cassini's 10th flyby of Titan (T10), Bellucci et al. (2009) observed a solar occultation by Titan's atmosphere through the solar port of the Cassini/VIMS instrument. These authors noticed the existence of an unexplained additional absorption superimposed to the CH4 3.3 µm band. Because they were unable to model this absorption with gases, they attributed this intriguing feature to the signature of solid state organic components. Kim et al. (2011) revisited the data collected by Bellucci et al. (2009) and they considered the possible contribution of aerosols formed by hydrocarbon ices. They specifically took into account C2H6, CH4, CH3CN, C5H12 and C6H12 ices. More recently, Maltagliati et al. (2015) analyzed a set of four VIMS solar occultations, corresponding to flybys performed between January 2006 and September 2011 at different latitudes. They confirmed the presence of the 3.3 µm absorption in all occultations and underlined the possible importance of gaseous ethane, which has a strong plateau of absorption lines in that wavelength range.In this work, we show that neither hydrocarbon ices nor molecular C2H6 cannot satisfactorily explain the observed absorption. Our simulations speak in favor of an absorption due to the presence of PAH molecules or HAC in the stratosphere of Titan. PAH have been already considered by Lopes-Puertas et al. (2013) at altitudes larger than ˜900 km and tentatively identified in the stratosphere by Maltagliati et al. (2015); PAH and HAC are good candidates for Titan's aerosols precursors.

  10. Harmonic polynomials, hyperspherical harmonics, and atomic spectra

    NASA Astrophysics Data System (ADS)

    Avery, John Scales

    2010-01-01

    The properties of monomials, homogeneous polynomials and harmonic polynomials in d-dimensional spaces are discussed. The properties are shown to lead to formulas for the canonical decomposition of homogeneous polynomials and formulas for harmonic projection. Many important properties of spherical harmonics, Gegenbauer polynomials and hyperspherical harmonics follow from these formulas. Harmonic projection also provides alternative ways of treating angular momentum and generalised angular momentum. Several powerful theorems for angular integration and hyperangular integration can be derived in this way. These purely mathematical considerations have important physical applications because hyperspherical harmonics are related to Coulomb Sturmians through the Fock projection, and because both Sturmians and generalised Sturmians have shown themselves to be extremely useful in the quantum theory of atoms and molecules.

  11. Color harmonization for images

    NASA Astrophysics Data System (ADS)

    Tang, Zhen; Miao, Zhenjiang; Wan, Yanli; Wang, Zhifei

    2011-04-01

    Color harmonization is an artistic technique to adjust a set of colors in order to enhance their visual harmony so that they are aesthetically pleasing in terms of human visual perception. We present a new color harmonization method that treats the harmonization as a function optimization. For a given image, we derive a cost function based on the observation that pixels in a small window that have similar unharmonic hues should be harmonized with similar harmonic hues. By minimizing the cost function, we get a harmonized image in which the spatial coherence is preserved. A new matching function is proposed to select the best matching harmonic schemes, and a new component-based preharmonization strategy is proposed to preserve the hue distribution of the harmonized images. Our approach overcomes several shortcomings of the existing color harmonization methods. We test our algorithm with a variety of images to demonstrate the effectiveness of our approach.

  12. The bZIP Transcription Factor HAC-1 Is Involved in the Unfolded Protein Response and Is Necessary for Growth on Cellulose in Neurospora crassa

    PubMed Central

    Larrondo, Luis F.

    2015-01-01

    High protein secretion capacity in filamentous fungi requires an extremely efficient system for protein synthesis, folding and transport. When the folding capacity of the endoplasmic reticulum (ER) is exceeded, a pathway known as the unfolded protein response (UPR) is triggered, allowing cells to mitigate and cope with this stress. In yeast, this pathway relies on the transcription factor Hac1, which mediates the up-regulation of several genes required under these stressful conditions. In this work, we identified and characterized the ortholog of the yeast HAC1 gene in the filamentous fungus Neurospora crassa. We show that its mRNA undergoes an ER stress-dependent splicing reaction, which in N. crassa removes a 23 nt intron and leads to a change in the open reading frame. By disrupting the N. crassa hac-1 gene, we determined it to be crucial for activating UPR and for proper growth in the presence of ER stress-inducing chemical agents. Neurospora is naturally found growing on dead plant material, composed primarily by lignocellulose, and is a model organism for the study of plant cell wall deconstruction. Notably, we found that growth on cellulose, a substrate that requires secretion of numerous enzymes, imposes major demands on ER function and is dramatically impaired in the absence of hac-1, thus broadening the range of physiological functions of the UPR in filamentous fungi. Growth on hemicellulose however, another carbon source that necessitates the secretion of various enzymes for its deconstruction, is not impaired in the mutant nor is the amount of proteins secreted on this substrate, suggesting that secretion, as a whole, is unaltered in the absence of hac-1. The characterization of this signaling pathway in N. crassa will help in the study of plant cell wall deconstruction by fungi and its manipulation may result in important industrial biotechnological applications. PMID:26132395

  13. Simple Harmonic Motion in Harmonic Plane Waves.

    ERIC Educational Resources Information Center

    Benumof, Reuben

    1980-01-01

    Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)

  14. Impact of pre-procedural cardiopulmonary instability in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction Trial).

    PubMed

    Brener, Sorin J; Brodie, Bruce R; Guerchicoff, Alejandra; Witzenbichler, Bernhard; Guagliumi, Giulio; Xu, Ke; Mehran, Roxana; Stone, Gregg W

    2014-10-01

    Rapid reperfusion with primary percutaneous coronary intervention improves survival in patients with ST-segment elevation myocardial infarction. Preprocedural cardiopulmonary instability and adverse events (IAE) may delay reperfusion time and worsen prognosis. The aim of this study was to evaluate the relation between preprocedural cardiopulmonary IAE, door-to-balloon time (DBT), and outcomes in the Harmonizing Outcomes With Revascularization and Stents in AMI (HORIZONS-AMI) trial. Preprocedural cardiopulmonary IAE included sustained ventricular or supraventricular tachycardia or fibrillation requiring cardioversion or defibrillation, heart block or bradycardia requiring pacemaker implantation, severe hypotension requiring vasopressors or intra-aortic balloon counterpulsation, respiratory failure requiring mechanical ventilation, and cardiopulmonary resuscitation. Three-year outcomes of patients with and without IAE according to DBT were compared. Among 3,602 patients, 159 (4.4%) had ≥1 IAE. DBT did not differ significantly in patients with and without IAE; however, patients with IAE were less likely to have Thrombolysis In Myocardial Infarction (TIMI) grade 3 flow after percutaneous coronary intervention. Mortality at 3 years was significantly higher in patients with versus those without IAE (17.0% vs 6.3%, p<0.0001), and IAE was an independent predictor of mortality, whereas DBT was not. However, a significant interaction was present such that 3-year mortality was reduced in patients with DBT<99 minutes (the median) versus ≥99 minutes to a greater extent in patients with IAE (9.9% vs 20.7%, hazard ratio 0.43, 95% confidence interval 0.16 to 1.16) compared with those without IAE (5.0% vs 7.2%, hazard ratio 0.69, 95% confidence interval 0.50 to 0.95) (p for interaction=0.004). In conclusion, IAE before PCI is an independent predictor of death and identifies a high-risk group in whom faster reperfusion may be particularly important to improve survival.

  15. Workshop on Harmonic Oscillators

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S. (Editor); Zachary, W. W. (Editor)

    1993-01-01

    Proceedings of a workshop on Harmonic Oscillators held at the College Park Campus of the University of Maryland on March 25 - 28, 1992 are presented. The harmonic oscillator formalism is playing an important role in many branches of physics. This is the simplest mathematical device which can connect the basic principle of physics with what is observed in the real world. The harmonic oscillator is the bridge between pure and applied physics.

  16. Covariant harmonic oscillators and coupled harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Han, Daesoo; Kim, Young S.; Noz, Marilyn E.

    1995-01-01

    It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.

  17. Analysis of crustal structure of Venus utilizing residual Line-of-Sight (LOS) gravity acceleration and surface topography data. A trial of global modeling of Venus gravity field using harmonic spline method

    NASA Technical Reports Server (NTRS)

    Fang, Ming; Bowin, Carl

    1992-01-01

    To construct Venus' gravity disturbance field (or gravity anomaly) with the spacecraft-observer line of site (LOS) acceleration perturbation data, both a global and a local approach can be used. The global approach, e.g., spherical harmonic coefficients, and the local approach, e.g., the integral operator method, based on geodetic techniques are generally not the same, so that they must be used separately for mapping long wavelength features and short wavelength features. Harmonic spline, as an interpolation and extrapolation technique, is intrinsically flexible to both global and local mapping of a potential field. Theoretically, it preserves the information of the potential field up to the bound by sampling theorem regardless of whether it is global or local mapping, and is never bothered with truncation errors. The improvement of harmonic spline methodology for global mapping is reported. New basis functions, a singular value decomposition (SVD) based modification to Parker & Shure's numerical procedure, and preliminary results are presented.

  18. Harmonization Initiatives in Europe

    PubMed Central

    2016-01-01

    Introduction Modern medicine is more and more based on protocols and guidelines; clinical laboratory data play very often a relevant role in these documents and for this reason the need for their harmonization is increasing. To achieve harmonized results the harmonization process must not be limited to only the analytical part, but has to include the pre- and the post-analytical phases. Results To fulfill this need the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) has started several initiatives. A Working Group on harmonization of the total testing process (WG-H) has been created with the aims of: 1) surveying and summarizing national European and pan European harmonization initiatives; 2) promoting and coordinating the dissemination of especially promising harmonization initiatives among the EFLM member societies; and 3) taking initiatives to harmonize nomenclature, units and reference intervals at a European level. The activity of the WG started this year with a questionnaire targeted at surveying the status of various harmonization activities, especially those in the pre- and post-analytical phase categories, among the European laboratory medicine societies. Conclusions Based on the results of the questionnaire, some activities promoting the dissemination of best practice in blood sampling, sample storage and transportation, in collaboration with WG on the pre-analytical phase, will be promoted, and initiatives to spread to all the European countries the use of SI units in reporting, will be undertaken. Moreover, EFLM has created a Task and Finish Group on standardization of the color coding for blood collection tube closures that is actively working to accomplish this difficult task through collaboration with manufacturers. PMID:27683503

  19. Harmonic 'signatures' of microorganisms.

    PubMed

    Blake-Coleman, B C; Hutchings, M J; Silley, P

    1994-01-01

    The frequency/amplitude effect of various microorganisms exposed to periodic (time varying) electric fields, when proximate to immersed electrodes, has been studied using a novel analytical instrument. The harmonic distribution, in complex signals caused by cells exposed to harmonic free waveforms and occupying part of the electrode/suspension interface volume, was shown to be almost entirely due to the change in the standing interfacial transfer function by the (dielectrically nonlinear) presence of cells. Thus, the characteristic interfacial non-linearity is viewed as variable, being uniquely modulated by the presence of particular cells in the interfacial region. Little can be attributed to bulk (far field) effects. The tendency for subtle (characteristic) signal distortion to occur as a function of particulate (cell or molecular) occupancy of the near electrode interfacial region under controlled current conditions leads to the method of sample characterisation by harmonic (Fourier) analysis. We report here, as a sequel to our original studies (Hutchings et al., 1993; Hutchings and Blake-Coleman, 1993), preliminary results of the harmonic analysis of microbial suspensions under controlled signal conditions using a three-electrode configuration. These data provide three-dimensional graphical representations producing harmonic 'surfaces' for various microorganisms. Thus, cell type differences are characterised by their 'harmonic signature'. The visual distinction provided by these 'surface' forming three-dimensional plots is striking and gives a convincing impression of the ability to identify and enumerate specific microorganisms by acquisition of cell-modulated electrode interfacial Fourier spectra. PMID:8060593

  20. Higher harmonic generation microscopy.

    PubMed

    Sun, Chi-Kuang

    2005-01-01

    Higher harmonic-generation, including second harmonic generation and third harmonic generation, leaves no energy deposition to the interacted matters due to its virtual-level transition characteristic, providing a truly non-invasive modality and is ideal for in vivo imaging of live specimens without any preparation. Second harmonic generation microscopy provides images on stacked membranes and arranged proteins with organized nano-structures due to the bio-photonic crystalline effect. Third harmonic generation microscopy provides general cellular or subcellular interface imaging due to optical inhomogeneity. Due to their virtual-transition nature, no saturation or bleaching in the generated signal is expected. With no energy release, continuous viewing without compromising sample viability can thus be achieved. Combined with its nonlinearity, higher harmonic generation microscopy provides sub-micron three-dimensional sectioning capability and millimeter penetration in live samples without using fluorescence and exogenous markers, offering morphological, structural, functional, and cellular information of biomedical specimens without modifying their natural biological and optical environments.

  1. Optical harmonic generator

    DOEpatents

    Summers, Mark A.; Eimerl, David; Boyd, Robert D.

    1985-01-01

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").

  2. Optical harmonic generator

    DOEpatents

    Summers, M.A.; Eimerl, D.; Boyd, R.D.

    1982-06-10

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).

  3. Harmonic uniflow engine

    DOEpatents

    Bennett, Charles L.

    2016-03-22

    A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.

  4. Harmonic Frequency Lowering

    PubMed Central

    Kirchberger, Martin

    2016-01-01

    A novel algorithm for frequency lowering in music was developed and experimentally tested in hearing-impaired listeners. Harmonic frequency lowering (HFL) combines frequency transposition and frequency compression to preserve the harmonic content of music stimuli. Listeners were asked to make judgments regarding detail and sound quality in music stimuli. Stimuli were presented under different signal processing conditions: original, low-pass filtered, HFL, and nonlinear frequency compressed. Results showed that participants reported perceiving the most detail in the HFL condition. In addition, there was no difference in sound quality across conditions. PMID:26834122

  5. Booster double harmonic setup notes

    SciTech Connect

    Gardner, C. J.

    2015-02-17

    The motivation behind implementing a booster double harmonic include the reduced transverse space charge force from a reduced peak beam current and reduced momentum spread of the beam, both of which can be achieved from flattening the RF bucket. RF capture and acceleration of polarized protons (PP) is first set up in the single harmonic mode with RF harmonic h=1. Once capture and acceleration have been set up in the single harmonic mode, the second harmonic system is brought on and programmed to operate in concert with the single harmonic system.

  6. A novel HAC1-based dual-luciferase reporter vector for detecting endoplasmic reticulum stress and unfolded protein response in yeast Saccharomyces cerevisiae.

    PubMed

    Fang, Zhijia; Kuang, Xin; Zhang, Youshang; Shi, Ping; Huang, Zhiwei

    2015-05-01

    Unfolded protein response (UPR) is an important cellular phenomenon induced by over-accumulation of unfolded proteins in the endoplasmic reticulum (ER) lumen. ER stress and UPR are implicated in human diseases such as diabetes, atherosclerosis and neurodegenerative diseases. Current methods for measuring ER stress levels and UPR activation usually include cells lysis and other complicated procedures such as reverse transcription-PCR (RT-PCR). These methods typically have low sensitivity and are not suitable for live detection. In this study, we developed a dual-luciferase gene reporter system to monitor UPR activation in live cells of the yeast Saccharomyces cerevisiae by taking advantage of the HAC1 intron and its unconventional splicing-regulation mechanism. We showed that this reporter can be used to monitor UPR in live cells with high sensitivity.

  7. A Harmonic Motion Experiment

    ERIC Educational Resources Information Center

    Gluck, P.; Krakower, Zeev

    2010-01-01

    We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)

  8. Introducing Simple Harmonic Motion.

    ERIC Educational Resources Information Center

    Roche, John

    2002-01-01

    Explains the origin and significance of harmonic motion which is an important topic that has wide application in the world. Describes the phenomenon by using an auxiliary circle to help illustrate the key relationships between acceleration, displacement, time, velocity, and phase. (Contains 16 references.) (Author/YDS)

  9. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  10. Stress in Harmonic Serialism

    ERIC Educational Resources Information Center

    Pruitt, Kathryn Ringler

    2012-01-01

    This dissertation proposes a model of word stress in a derivational version of Optimality Theory (OT) called Harmonic Serialism (HS; Prince and Smolensky 1993/2004, McCarthy 2000, 2006, 2010a). In this model, the metrical structure of a word is derived through a series of optimizations in which the "best" metrical foot is chosen…

  11. Quaternionic Harmonic Analysis of Texture

    SciTech Connect

    Mason, J.

    2012-10-01

    QHAT uses various functions and data structures native to MATLAB to analyze crystallographic texture information using harmonic functions on the space of rotations represented as normalized quaternions. These harmonic functions generalize the spherical harmonics in three dimensions, and form the basis for the irreducible representations of the four-dimensional rotation group. This allows the basis of harmonic functions to be reduced to linearly independent combinations that satisfy the crystal and sample symmetry point groups.

  12. Harmonization, Trade, and the Environment.

    ERIC Educational Resources Information Center

    Stevens, Candice

    1993-01-01

    Discusses the harmonization of international methods for the development and administration of product standards. Defines the term "harmonization" and discusses the harmonization of environmental policies and purposes involving product standards; environmental regulations on production methods, technologies, and practices; and life-cycle…

  13. Harmonic Golay coded excitation based on harmonic quadrature demodulation method.

    PubMed

    Kim, Sang-Min; Song, Jae-Hee; Song, Tai-Kyong

    2008-01-01

    Harmonic coded excitation techniques have been used to increase SNR of harmonic imaging with limited peak voltage. Harmonic Golay coded excitation, in particular, generates each scan line using four transmit-receive cycles, unlike conventional Golay coded excitation method, thus resulting in low frame rates. In this paper we propose a method of increasing the frame rate of said method without impacting the image quality. The proposed method performs two transmit-receive cycles using QPSK code to ensure that the harmonic components of incoming signals are Golay coded and uses harmonic quadrature demodulation to extract compressed second harmonic component only. The proposed method has been validated through mathematical analysis and MATLAB simulation, and has been verified to yield a limited error of -52.08dB compared to the ideal case. Therefore, the proposed method doubles the frame rate compared to the existing harmonic Golay coded excitation method without significantly deteriorating the image quality.

  14. Harmonic multiplication using resonant tunneling

    NASA Technical Reports Server (NTRS)

    Sollner, T. C. L. G.; Brown, E. R.; Goodhue, W. D.; Correa, C. A.

    1988-01-01

    This paper demonstrates the use of resonant-tunneling diodes as varistors for harmonic multiplication. It is shown that efficient odd-harmonic conversion is possible and that even harmonics do not appear because of the antisymmetry of the current-voltage (I-V) curve. It is also shown that, with the proper choice of resonant-tunneling structure and pump amplitude, most of the harmonic output power can be confined to a single odd-harmonic frequency. Fifth-harmonic multiplication was demonstrated with an output at 21.75 GHz and a power conversion efficiency of 0.5 percent, and a fifth-harmonic efficiency of 2.7 percent was achieved in a circuit simulation using an improved I-V curve.

  15. Three-dimensional simulations of harmonic radiation and harmonic lasing

    NASA Astrophysics Data System (ADS)

    Schmitt, Mark J.; McVey, Brian D.

    Characteristics of the harmonic emission from free electron lasers (FELs) are examined in the spontaneous, coherent-spontaneous and stimulated emission regimes. The radiation at both odd and even harmonic frequencies is treated for electron beams with finite emittance and energy spread. In the spontaneous emission regime, the transverse radiation patterns including the transverse frequency dependences, are given. How this expression is modified to include energy spread and emittance is described. In the coherent-spontaneous emission and stimulated emission regimes, the interaction of the radiation fields with the electrons must be treated self consistently. Here, a single frequency distributed transverse source function for each electron is used in the harmonic version of the 3-D code FELEX to model the harmonic radiation. The code has recently been modified to simultaneously model the fundamental and harmonic interactions for multiple-pass oscillator simulations. These modifications facilitate the examination of FELs under various operating conditions. When the FEL is lasing at the fundamental, the evolution of the harmonic fields can be examined. This evolution is unique in the sense that the electron beam radiates at the harmonic frequencies in the presence of the harmonic radiation circulating in the cavity. As a result, enhancements of the harmonic emission can be observed. Finally, harmonic lasing can occur in cases where there is sufficient gain to overcome cavity losses and lasing at the fundamental can be suppressed. The characteristics and efficiency of these interactions are explored.

  16. Three-dimensional simulations of harmonic radiation and harmonic lasing

    NASA Astrophysics Data System (ADS)

    Schmitt, Mark J.; McVey, Brian D.

    1991-07-01

    Characteristics of the harmonic emission from free electron lasers (FELs) are examined in the spontaneous, coherent-spontaneous and stimulated emission regimes. The radiation at both odd and even harmonic frequencies is treated for electron beams with finite emittance and energy spread. In the spontaneous emission regime, the transverse radiation patterns including the transverse frequency dependences, are given. How this expression is modified to include energy spread and emittance is described. In the coherent-spontaneous emission and stimulated emission (lasing) regimes, the interaction of the radiation fields with the electrons must be treated self-consistently. Here, a single-frequency distributed transverse source function for each electron is used in the harmonic version (HELEX) of the 3D code FELEX to model the harmonic radiation. This code has recently been modified to simultaneously model the fundamental and harmonic interactions for multiple-pass oscillator simulations. These modifications facilitate the examination of FELs under various operating conditions. When the FEL is lasing at the fundamental, the evolution of the harmonic fields can be examined. This evolution is unique in the sense that the electron beam (which is bunched by the fundamental optical field) radiates at the harmonic frequencies in the presence of the harmonic radiation circulating in the cavity. As a result, enhancements of the harmonic emission can be observed. Finally, harmonic lasing can occur in cases where there is sufficient gain to overcome cavity losses and lasing at the fundamental can be suppressed. The characteristics and efficiency of these interactions are explored.

  17. Outcome of patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention during on- versus off-hours (a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial substudy).

    PubMed

    Cubeddu, Roberto J; Palacios, Igor F; Blankenship, James C; Horvath, Sofia A; Xu, Ke; Kovacic, Jason C; Dangas, George D; Witzenbichler, Bernhard; Guagliumi, Giulio; Kornowski, Ran; Dudek, Dariusz; Stone, Gregg W; Mehran, Roxana

    2013-04-01

    Patients with ST-segment elevation myocardial infarction (STEMI) admitted during nonregular working hours (off-hours) have been reported to have greater mortality than those admitted during regular working hours (on-hours), perhaps because of the lower availability of catheterization laboratory services and longer door-to-balloon times. This might not be the case, however, for hospital centers in which primary percutaneous coronary intervention (PCI) is invariably performed. We conducted a substudy using the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction study data to determine whether the STEMI arrival time was associated with differing clinical outcomes. We identified all patients with STEMI admitted to a PCI-capable hospital who underwent primary PCI. Patients presenting during on-hours were compared to those presenting during off-hours. The primary outcome of death, major adverse cardiovascular events, and net adverse clinical events was examined. We identified 2,440 patients (1,205 [49%] on-hours and 1,235 [51%] off-hours). Similar baseline characteristics were observed. The off-hour patients had a significantly longer door-to-balloon time (92 vs 75 minutes; p <0.0001) and total ischemic time (209 vs 194 minutes; p <0.0001). Despite these differences, the risk-adjusted all-cause mortality, major adverse cardiovascular events, and net adverse clinical events rates were similar for both groups during the in-hospital, 1-year, and 3-year follow-up. In conclusion, patients with STEMI presenting to primary PCI hospitals during off-hours might have slightly longer delays to revascularization; however, they experienced similar short- and long-term survival and clinical outcomes as those arriving during on-hours. PMID:23340031

  18. MODEL HARMONIZATION POTENTIAL AND BENEFITS

    EPA Science Inventory

    The IPCS Harmonization Project, which is currently ongoing under the auspices of the WHO, in the context of chemical risk assessment or exposure modeling, does not imply global standardization. Instead, harmonization is thought of as an effort to strive for consistency among appr...

  19. Harmonic Series Meets Fibonacci Sequence

    ERIC Educational Resources Information Center

    Chen, Hongwei; Kennedy, Chris

    2012-01-01

    The terms of a conditionally convergent series may be rearranged to converge to any prescribed real value. What if the harmonic series is grouped into Fibonacci length blocks? Or the harmonic series is arranged in alternating Fibonacci length blocks? Or rearranged and alternated into separate blocks of even and odd terms of Fibonacci length?

  20. High-harmonic gyrotrons

    NASA Astrophysics Data System (ADS)

    McDermott, D. B.; Luhmann, N. C., Jr.

    1984-08-01

    There is currently much interest in the development of moderate to high power (1 kW - 1 MW) millimeter wave sources. Considered applications are mainly related to radar and communication systems. There are, however, also applications in plasma diagnostics, heating, and the nondestructive testing of dielectrics. The dominant source of high-power, high-frequency radiation has become the gyrotron. Jory et al. (1983) have reported operation of a 60 GHz, CW gyrotron, producing output powers in excess of 200 kW. High power, compact submillimeter-wave sources have become possible by making use of the concept of a high-harmonic gyrotron, in which the magnetic field can be reduced by an order of magnitude. Attention is given to synchronism, negative-mass instability, energy requirements, oscillators, efficiency, high power, dielectric loading, the peniotron, and amplifiers.

  1. Synchronous Discrete Harmonic Oscillator

    SciTech Connect

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-17

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  2. Specificity in endoplasmic reticulum-stress signaling in yeast entails a step-wise engagement of HAC1 mRNA to clusters of the stress sensor Ire1

    PubMed Central

    van Anken, Eelco; Pincus, David; Coyle, Scott; Aragón, Tomás; Osman, Christof; Lari, Federica; Gómez Puerta, Silvia; Korennykh, Alexei V; Walter, Peter

    2014-01-01

    Insufficient protein-folding capacity in the endoplasmic reticulum (ER) induces the unfolded protein response (UPR). In the ER lumen, accumulation of unfolded proteins activates the transmembrane ER-stress sensor Ire1 and drives its oligomerization. In the cytosol, Ire1 recruits HAC1 mRNA, mediating its non-conventional splicing. The spliced mRNA is translated into Hac1, the key transcription activator of UPR target genes that mitigate ER-stress. In this study, we report that oligomeric assembly of the ER-lumenal domain is sufficient to drive Ire1 clustering. Clustering facilitates Ire1's cytosolic oligomeric assembly and HAC1 mRNA docking onto a positively charged motif in Ire1's cytosolic linker domain that tethers the kinase/RNase to the transmembrane domain. By the use of a synthetic bypass, we demonstrate that mRNA docking per se is a pre-requisite for initiating Ire1's RNase activity and, hence, splicing. We posit that such step-wise engagement between Ire1 and its mRNA substrate contributes to selectivity and efficiency in UPR signaling. DOI: http://dx.doi.org/10.7554/eLife.05031.001 PMID:25549299

  3. Upper Campanian calciclastic turbidite sequences from the Hacımehmet area (eastern Pontides, NE Turkey): integrated biostratigraphy and microfacies analysis

    NASA Astrophysics Data System (ADS)

    Sari, Bilal; Kandemir, Raif; Özer, Sacit; Walaszczyk, Ireneusz; Görmüş, Muhittin; Demircan, Huriye; Yilmaz, Cemil

    2014-12-01

    The upper Campanian (Cretaceous) of the Hacımehmet area (south of the city of Trabzon; Eastern Pontides) is mainly composed of calciclastic turbidites. The basinal unit of the 119 m thick succession includes thin red pelagic limestone interlayers and conglomerates dominated by volcanic clasts. The overlying upper slope and lower slope units of the sequence consist of an alternation of allochthonous calcarenite/calcirudite beds and pelagic marls and mudstones. Calcarenite/calcirudite beds dominate the upper slope unit of the succession and are composed of transported material, including benthic foraminifers, red algae, bryozoan, crinoid and rudist fragments, inoceramid bivalve prisms and neritic and pelagic carbonate lithoclasts. The occurrence of Helicorbitoides boluensis (Sirel) extracted from the calcarenite/calcirudite beds indicates a Campanian age. Identifiable rudists such as Joufia reticulata Boehm, Bournonia cf. anatolica Ozer, Biradiolites cf. bulgaricus Pamouktchiev and ?Biradiolites sp. from the upper slope unit of the succession indicate a late Campanian- Maastrichtian age. The planktonic foraminifers within the red pelagic limestone beds, marls and mudstones throughout the succession consist mainly of Campanian-Maastrichtian forms and suggest mainly basinal depositional conditions. The presence of Radotruncana cf. calcarata (Cushman) accompanied by Globotruncanita elevata (Brotzen) in the basinal unit of the succession indicates an early late Campanian age for the lower part of the succession. Inoceramid bivalves have been collected from the upper part of the succession. The fauna is dominated by `Inoceramus' tenuilineatus Hall and Meek, 1854 and Cataceramus haldemensis (Giers, 1964); other taxa recognised are: `Inoceramus' algeriensis Heinz, 1932, Platyceramus vanuxemi (Meek and Hayden, 1860), `Inoceramus' cf. nebrascensis Owen, 1852, Cataceramus aff. barabini (Morton, 1834), Cataceramus gandjaensis (Aliev, 1956), and `Inoceramus' sp.; the assemblage

  4. Relativistic harmonic oscillator revisited

    SciTech Connect

    Bars, Itzhak

    2009-02-15

    The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approach that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.

  5. Parameter Choices for Approximation by Harmonic Splines

    NASA Astrophysics Data System (ADS)

    Gutting, Martin

    2016-04-01

    The approximation by harmonic trial functions allows the construction of the solution of boundary value problems in geoscience, e.g., in terms of harmonic splines. Due to their localizing properties regional modeling or the improvement of a global model in a part of the Earth's surface is possible with splines. Fast multipole methods have been developed for some cases of the occurring kernels to obtain a fast matrix-vector multiplication. The main idea of the fast multipole algorithm consists of a hierarchical decomposition of the computational domain into cubes and a kernel approximation for the more distant points. This reduces the numerical effort of the matrix-vector multiplication from quadratic to linear in reference to the number of points for a prescribed accuracy of the kernel approximation. The application of the fast multipole method to spline approximation which also allows the treatment of noisy data requires the choice of a smoothing parameter. We investigate different methods to (ideally automatically) choose this parameter with and without prior knowledge of the noise level. Thereby, the performance of these methods is considered for different types of noise in a large simulation study. Applications to gravitational field modeling are presented as well as the extension to boundary value problems where the boundary is the known surface of the Earth itself.

  6. Echo-Enabled Harmonic Generation

    SciTech Connect

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  7. Echo-Enabled Harmonic Generation

    SciTech Connect

    Stupakov, Gennady

    2010-08-25

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  8. Spherical harmonics in texture analysis

    NASA Astrophysics Data System (ADS)

    Schaeben, Helmut; van den Boogaart, K. Gerald

    2003-07-01

    The objective of this contribution is to emphasize the fundamental role of spherical harmonics in constructive approximation on the sphere in general and in texture analysis in particular. The specific purpose is to present some methods of texture analysis and pole-to-orientation probability density inversion in a unifying approach, i.e. to show that the classic harmonic method, the pole density component fit method initially introduced as a distinct alternative, and the spherical wavelet method for high-resolution texture analysis share a common mathematical basis provided by spherical harmonics. Since pole probability density functions and orientation probability density functions are probability density functions defined on the sphere Ω3⊂ R3 or hypersphere Ω4⊂ R4, respectively, they belong at least to the space of measurable and integrable functions L1( Ωd), d=3, 4, respectively. Therefore, first a basic and simplified method to derive real symmetrized spherical harmonics with the mathematical property of providing a representation of rotations or orientations, respectively, is presented. Then, standard orientation or pole probability density functions, respectively, are introduced by summation processes of harmonic series expansions of L1( Ωd) functions, thus avoiding resorting to intuition and heuristics. Eventually, it is shown how a rearrangement of the harmonics leads quite canonically to spherical wavelets, which provide a method for high-resolution texture analysis. This unified point of view clarifies how these methods, e.g. standard functions, apply to texture analysis of EBSD orientation measurements.

  9. Harmonic analysis of electrical distribution systems

    SciTech Connect

    1996-03-01

    This report presents data pertaining to research on harmonics of electric power distribution systems. Harmonic data is presented on RMS and average measurements for determination of harmonics in buildings; fluorescent ballast; variable frequency drive; georator geosine harmonic data; uninterruptible power supply; delta-wye transformer; westinghouse suresine; liebert datawave; and active injection mode filter data.

  10. CACNA1H(M1549V) Mutant Calcium Channel Causes Autonomous Aldosterone Production in HAC15 Cells and Is Inhibited by Mibefradil.

    PubMed

    Reimer, Esther N; Walenda, Gudrun; Seidel, Eric; Scholl, Ute I

    2016-08-01

    We recently demonstrated that a recurrent gain-of-function mutation in a T-type calcium channel, CACNA1H(M1549V), causes a novel Mendelian disorder featuring early-onset primary aldosteronism and hypertension. This variant was found independently in five families. CACNA1H(M1549V) leads to impaired channel inactivation and activation at more hyperpolarized potentials, inferred to cause increased calcium entry. We here aimed to study the effect of this variant on aldosterone production. We heterologously expressed empty vector, CACNA1H(WT) and CACNA1H(M1549V) in the aldosterone-producing adrenocortical cancer cell line H295R and its subclone HAC15. Transfection rates, expression levels, and subcellular distribution of the channel were similar between CACNA1H(WT) and CACNA1H(M1549V). We measured aldosterone production by an ELISA and CYP11B2 (aldosterone synthase) expression by real-time PCR. In unstimulated cells, transfection of CACNA1H(WT) led to a 2-fold increase in aldosterone levels compared with vector-transfected cells. Expression of CACNA1H(M1549V) caused a 7-fold increase in aldosterone levels. Treatment with angiotensin II or increased extracellular potassium levels further stimulated aldosterone production in both CACNA1H(WT)- and CACNA1H(M1549V)-transfected cells. Similar results were obtained for CYP11B2 expression. Inhibition of CACNA1H channels with the T-type calcium channel blocker Mibefradil completely abrogated the effects of CACNA1H(WT) and CACNA1H(M1549V) on CYP11B2 expression. These results directly link CACNA1H(M1549V) to increased aldosterone production. They suggest that calcium channel blockers may be beneficial in the treatment of a subset of patients with primary aldosteronism. Such blockers could target CACNA1H or both CACNA1H and the L-type calcium channel CACNA1D that is also expressed in the adrenal gland and mutated in patients with primary aldosteronism.

  11. Harmonic Nanoparticles for Regenerative Research

    PubMed Central

    Ronzoni, Flavio; Magouroux, Thibaud; Vernet, Remi; Extermann, Jérôme; Crotty, Darragh; Prina-Mello, Adriele; Ciepielewski, Daniel; Volkov, Yuri; Bonacina, Luigi; Wolf, Jean-Pierre; Jaconi, Marisa

    2014-01-01

    In this visualized experiment, protocol details are provided for in vitro labeling of human embryonic stem cells (hESC) with second harmonic generation nanoparticles (HNPs). The latter are a new family of probes recently introduced for labeling biological samples for multi-photon imaging. HNPs are capable of doubling the frequency of excitation light by the nonlinear optical process of second harmonic generation with no restriction on the excitation wavelength. Multi-photon based methodologies for hESC differentiation into cardiac clusters (maintained as long term air-liquid cultures) are presented in detail. In particular, evidence on how to maximize the intense second harmonic (SH) emission of isolated HNPs during 3D monitoring of beating cardiac tissue in 3D is shown. The analysis of the resulting images to retrieve 3D displacement patterns is also detailed. PMID:24836220

  12. Evaluation of harmonic suppression devices

    SciTech Connect

    Tolbert, L.M.; Hollis, H.D.; Hale, P.S. Jr.

    1996-09-01

    An assessment has been conducted of five commercially available devices to determine their ability to provide clean sinusoidal voltage to nonlinear loads and to eliminate harmonic currents demanded by nonlinear loads. The devices tested were a passive series-shunt filter, a delta-wye isolation transformer, a ferroresonant magnetic synthesizer, an active power line conditioner, and an active injection mode filter. These devices were installed in existing Department of Energy facilities that had substantial non-linear loads which drew a significant harmonic current. These devices were then compared in the following categories: cancellation of harmonic currents, supply of nondistorted voltage, supply of regulated voltage, elimination of transients and impulses, efficiency, reliability, and cost.

  13. The harmonic frequencies of benzene

    NASA Astrophysics Data System (ADS)

    Handy, Nicholas C.; Maslen, Paul E.; Amos, Roger D.; Andrews, Jamie S.; Murray, Christopher W.; Laming, Gregory J.

    1992-09-01

    We report calculations for the harmonic frequencies of C 6H 6 and C 6D 6. Our most sophisticated quantum chemistry values are obtained with the MP2 method and a TZ2P+f basis set (288 basis functions), which are the largest such calculations reported on benzene to date. Using the SCF density, we also calculate the frequencies using the exchange and correlation expressions of density functional theory. We compare our calculated harmonic frequencies with those deduced from experiment by Goodman, Ozkabak and Thakur. The density functional frequencies appear to be more reliable predictions than the MP2 frequencies and they are obtained at significantly less cost.

  14. Analytic signals and harmonic measures

    NASA Astrophysics Data System (ADS)

    Qian, Tao

    2006-02-01

    We prove that a sufficient and necessary condition for Hei[Theta](s)=-iei[Theta](s), where H is Hilbert transformation, [Theta] is a continuous and strictly increasing function with [Theta](R)=2[pi], is that d[Theta](s) is a harmonic measure on the line. The counterpart result for the periodic case is also established. The study is motivated by, and has significant impact to time-frequency analysis, especially to aspects of analytic signals inducing instantaneous amplitude and frequency. As a by-product we introduce the theory of Hardy-space-preserving weighted trigonometric series and Fourier transformations induced by harmonic measures in the respective contexts.

  15. Covariant harmonic oscillators: 1973 revisited

    NASA Technical Reports Server (NTRS)

    Noz, M. E.

    1993-01-01

    Using the relativistic harmonic oscillator, a physical basis is given to the phenomenological wave function of Yukawa which is covariant and normalizable. It is shown that this wave function can be interpreted in terms of the unitary irreducible representations of the Poincare group. The transformation properties of these covariant wave functions are also demonstrated.

  16. Univalent harmonic mappings convex in one direction

    NASA Astrophysics Data System (ADS)

    Ponnusamy, S.; Kaliraj, A. Sairam

    2014-09-01

    In this paper, we present a criterion for a harmonic function to be convex in one direction. Also, we discuss the class of harmonic functions starlike in one direction in the unit disk and obtain a method to construct univalent harmonic functions convex in one direction. Although the converse of classical Alexander's theorem for harmonic functions was proved to be false, we obtain a version of converse of it under a suitable additional condition.

  17. Harmon Craig (1926-2003)

    NASA Astrophysics Data System (ADS)

    Weiss, Ray

    Harmon Craig, one of the great pioneers of isotope geochemistry died on 14 March after suffering a massive heart attack at his home in La Jolla, California. He was one day shy of his 77th birthday. Through an academic career of more than fifty years, Craig—or simply “Harmon,” as he was known throughout the world of geochemistry—made a remarkable number of fundamental and far-reaching contributions in a wide range of important areas concerned with the chemical and physical processes by which the solid Earth, the oceans, the atmosphere, and the solar system interact. While his research was broad in scope, it was also characterized by a strong emphasis on meticulous field and laboratory work, and on original and insightful interpretations of the resulting observations.

  18. Dislocation Detection Through Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Reinhardt, B. T.; Kropf, M.; Boudraeu, K.; Guers, M. J.; Tittmann, B. R.

    2010-02-01

    A fundamental goal of ultrasonic nondestructive evaluation is to characterize material defects before failure. During material fatigue, dislocations tend to nucleate, becoming sources of stress concentration. Eventually, cracks start to form and lead to material failure. Recent research has indicated that nonlinear harmonic generation can be used to distinguish between materials of high and low dislocation densities. This research reports nonlinear harmonic generation measurements to distinguish between those areas of high and low dislocation densities in copper bars. The copper bars were subjected to flexural fatigue. Periodic scans were taken in order to track dislocation development during the fatigue life of the material. We show that this technique provides improved early detection for critical components of failure.

  19. Harmonic ratcheting for fast acceleration

    NASA Astrophysics Data System (ADS)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  20. Neural correlates of processing harmonic expectancy violations in children and adolescents with OCD

    PubMed Central

    Buse, Judith; Roessner, Veit

    2015-01-01

    It has been suggested that patients with obsessive–compulsive disorder (OCD) exhibit enhanced awareness of embedded stimulus patterns as well as enhanced allocation of attention towards unexpected stimuli. Our study aimed at investigating these OCD characteristics by running the harmonic expectancy violation paradigm in 21 boys with OCD and 29 healthy controls matched for age, gender and IQ during a functional magnetic resonance imaging (fMRI) scan. Each trial consisted of a chord sequence in which the first four chords induced a strong expectancy for a harmonic chord at the next position. In 70% of the trials the fifth chord fulfilled this expectancy (harmonic condition), while in 30% the expectancy was violated (disharmonic condition). Overall, the harmonic condition elicited blood-oxygen-level dependent (BOLD) activation in the auditory cortex, while during the disharmonic condition the precuneus, the auditory cortex, the medial frontal gyrus, the premotor cortex, the lingual gyrus, the inferior frontal gyrus and the superior frontal gyrus were activated. In a cluster extending from the right superior temporal gyrus to the inferior frontal gyrus, boys with OCD exhibited increased activation compared to healthy controls in the harmonic condition and decreased activation in the disharmonic condition. Our findings might indicate that patients with OCD are excessively engaged in processing the implicit structure embedded in music stimuli, but they speak against the suggestion that OCD is associated with a misallocation of attention towards the processing of unexpected stimuli. PMID:26900566

  1. Clinical Trials

    MedlinePlus

    Clinical trials are research studies that test how well new medical approaches work in people. Each study answers ... prevent, screen for, diagnose, or treat a disease. Clinical trials may also compare a new treatment to a ...

  2. Symmetries of coupled harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.

    1993-01-01

    It is shown that the system of two coupled harmonic oscillators possesses many interesting symmetries. It is noted that the symmetry of a single oscillator is that of the three-parameter group Sp(2). Thus two uncoupled oscillator exhibits a direct product of two Sp(2) groups, with six parameters. The coupling can be achieved through a rotation in the two-dimensional space of two oscillator coordinates. The closure of the commutation relations for the generators leads to the ten-parameter group Sp(4) which is locally isomorphic to the deSitter group O(3,2).

  3. Killing vector fields and harmonic superfield theories

    SciTech Connect

    Groeger, Josua

    2014-09-15

    The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.

  4. Harmonic generation in magnetized quantum plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Punit; Singh, Shiv; Singh, Abhisek Kumar

    2016-05-01

    A study of second harmonic generation by propagation of a linearly polarized electromagnetic wave through homogeneous high density quantum plasma in the presence of transverse magnetic field. The nonlinear current density and dispersion relations for the fundamental and second harmonic frequencies have been obtained using the recently developed quantum hydrodynamic (QHD) model. The effect of quantum Bohm potential, Fermi pressure and the electron spin have been taken into account. The second harmonic is found to be less dispersed than the first.

  5. A neural network model of harmonic detection

    NASA Astrophysics Data System (ADS)

    Lewis, Clifford F.

    2003-04-01

    Harmonic detection theories postulate that a virtual pitch is perceived when a sufficient number of harmonics is present. The harmonics need not be consecutive, but higher harmonics contribute less than lower harmonics [J. Raatgever and F. A. Bilsen, in Auditory Physiology and Perception, edited by Y. Cazals, K. Horner, and L. Demany (Pergamon, Oxford, 1992), pp. 215-222 M. K. McBeath and J. F. Wayand, Abstracts of the Psychonom. Soc. 3, 55 (1998)]. A neural network model is presented that has the potential to simulate this operation. Harmonics are first passed through a bank of rounded exponential filters with lateral inhibition. The results are used as inputs for an autoassociator neural network. The model is trained using harmonic data for symphonic musical instruments, in order to test whether it can self-organize by learning associations between co-occurring harmonics. It is shown that the trained model can complete the pattern for missing-fundamental sounds. The Performance of the model in harmonic detection will be compared with experimental results for humans.

  6. Resonantly-enhanced harmonic generation in Argon.

    PubMed

    Ackermann, P; Münch, H; Halfmann, T

    2012-06-18

    We present systematic investigations of harmonic generation in Argon, driven in the vicinity of a five-photon resonance by intense, tunable picosecond radiation pulses. When properly matching the laser frequency with the Stark-shifted multi-photon resonance, we observe a pronounced enhancement not only of the 5th, but also the 7th and 9th harmonic of the driving laser (i.e. at orders higher than the involved multi-photon resonance). We study the harmonic yield at different intensities and wavelengths of the driving laser to determine optimal conditions for resonantly-enhanced harmonic generation.

  7. The harmonic organization of auditory cortex.

    PubMed

    Wang, Xiaoqin

    2013-01-01

    A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds. PMID:24381544

  8. Harmonic oscillator states in aberration optics

    NASA Technical Reports Server (NTRS)

    Wolf, Kurt Bernardo

    1993-01-01

    The states of the three-dimensional quantum harmonic oscillator classify optical aberrations of axis-symmetric systems due to the isomorphism between the two mathematical structures. Cartesian quanta and angular momentum classifications have their corresponding aberration classifications. The operation of concatenation of optical elements introduces a new operation between harmonic oscillator states.

  9. Sunspots and Their Simple Harmonic Motion

    ERIC Educational Resources Information Center

    Ribeiro, C. I.

    2013-01-01

    In this paper an example of a simple harmonic motion, the apparent motion of sunspots due to the Sun's rotation, is described, which can be used to teach this subject to high-school students. Using real images of the Sun, students can calculate the star's rotation period with the simple harmonic motion mathematical expression.

  10. Surface-Enhanced Second-Harmonic Generation

    SciTech Connect

    Chen, C. K.; de Castro, A. R.B.; Shen, Y. R.

    1981-01-12

    Second harmonic generation at a silver-air interface was enhanced due to surface roughness by a factor of 10⁴. The local field enhancement is believed to be responsible for the effect. An unusually broad luminescence background extending far beyond the antiStokes side of the second harmonic was also observed.

  11. Dynamics and control of instrumented harmonic drives

    NASA Technical Reports Server (NTRS)

    Kazerooni, H.; Ellis, S. R. (Principal Investigator)

    1995-01-01

    Since torque in harmonic drives is transmitted by a pure couple, harmonic drives do not generate radial forces and therefore can be instrumented with torque sensors without interference from radial forces. The installation of torque sensors on the stationary component of harmonic drives (the Flexipline cup in this research work) produce backdrivability needed for robotic and telerobotic compliant maneuvers. Backdrivability of a harmonic drive, when used as torque increaser, means that the output shaft can be rotated via finite amount of torque. A high ratio harmonic drive is non-backdrivable because its output shaft cannot be turned by applying a torque on it. This article first develops the dynamic behavior of a harmonic drive, in particular the non-backdrivability, in terms of a sensitivity transfer function. The instrumentation of the harmonic drive with torque sensor is then described. This leads to a description of the control architecture which allows modulation of the sensitivity transfer function within the limits established by the closed-loop stability. A set of experiments on an active hand controller, powered by a DC motor coupled to an instrumented harmonic drive, is given to exhibit this method's limitations.

  12. Organometallic Salts Generate Optical Second Harmonics

    NASA Technical Reports Server (NTRS)

    Marder, Seth R.; Perry, Joseph W.

    1991-01-01

    Series of organometallic salts exhibit large second-order dielectric susceptibilities, as evidenced by generation of second harmonics when illuminated at visible and near-infrared wavelengths. Investigations of these and related compounds continue with view toward development of materials for use as optical second-harmonic generators, electro-optical modulators, optical switches, piezoelectric sensors, and parametric crystals.

  13. Hyperspherical harmonics with arbitrary arguments

    SciTech Connect

    Meremianin, A. V.

    2009-01-15

    The derivation scheme for hyperspherical harmonics (HSH) with arbitrary arguments is proposed. It is demonstrated that HSH can be presented as the product of HSH corresponding to spaces with lower dimensionality multiplied by the orthogonal (Jacobi or Gegenbauer) polynomial. The relation of HSH to quantum few-body problems is discussed. The explicit expressions for orthonormal HSH in spaces with dimensions from two to six are given. The important particular cases of four- and six-dimensional spaces are analyzed in detail and explicit expressions for HSH are given for several choices of hyperangles. In the six-dimensional space, HSH representing the kinetic-energy operator corresponding to (i) the three-body problem in physical space and (ii) four-body planar problem are derived.

  14. Hyperspherical harmonics with arbitrary arguments

    NASA Astrophysics Data System (ADS)

    Meremianin, A. V.

    2009-01-01

    The derivation scheme for hyperspherical harmonics (HSH) with arbitrary arguments is proposed. It is demonstrated that HSH can be presented as the product of HSH corresponding to spaces with lower dimensionality multiplied by the orthogonal (Jacobi or Gegenbauer) polynomial. The relation of HSH to quantum few-body problems is discussed. The explicit expressions for orthonormal HSH in spaces with dimensions from two to six are given. The important particular cases of four- and six-dimensional spaces are analyzed in detail and explicit expressions for HSH are given for several choices of hyperangles. In the six-dimensional space, HSH representing the kinetic-energy operator corresponding to (i) the three-body problem in physical space and (ii) four-body planar problem are derived.

  15. Point-based manifold harmonics.

    PubMed

    Liu, Yang; Prabhakaran, Balakrishnan; Guo, Xiaohu

    2012-10-01

    This paper proposes an algorithm to build a set of orthogonal Point-Based Manifold Harmonic Bases (PB-MHB) for spectral analysis over point-sampled manifold surfaces. To ensure that PB-MHB are orthogonal to each other, it is necessary to have symmetrizable discrete Laplace-Beltrami Operator (LBO) over the surfaces. Existing converging discrete LBO for point clouds, as proposed by Belkin et al., is not guaranteed to be symmetrizable. We build a new point-wisely discrete LBO over the point-sampled surface that is guaranteed to be symmetrizable, and prove its convergence. By solving the eigen problem related to the new operator, we define a set of orthogonal bases over the point cloud. Experiments show that the new operator is converging better than other symmetrizable discrete Laplacian operators (such as graph Laplacian) defined on point-sampled surfaces, and can provide orthogonal bases for further spectral geometric analysis and processing tasks.

  16. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  17. Quantum wormholes and harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Garay, Luis J.

    1993-01-01

    The quantum state of a wormhole can be represented by a path integral over all asymptotically Euclidean four-geometries and all matter fields which have prescribed values, the arguments of the wave function, on a three-surface which divides the space time manifold into two disconnected parts. Minisuperspace models which consist of a homogeneous massless scalar field coupled to a Friedmann-Robertson-Walker space time are considered. Once the path integral over the lapse function is performed, the requirement that the space time be asymptotically Euclidean can be accomplished by fixing the asymptotic gravitational momentum in the remaining path integral. It is argued that there does not exist any wave function which corresponds to asymptotic field configurations such that the effective gravitational constant is negative in the asymptotic region. Then, the wormhole wave functions can be written as linear combinations of harmonic oscillator wave functions.

  18. High order harmonic generation in rare gases

    SciTech Connect

    Budil, K.S.

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I {approximately}10{sup 13}-10{sup 14} W/cm{sup 2}) is focused into a dense ({approximately}10{sup l7} particles/cm{sup 3}) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic {open_quotes}source{close_quotes}. A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.

  19. A high-fidelity harmonic drive model.

    SciTech Connect

    Preissner, C.; Royston, T. J.; Shu, D.

    2012-01-01

    In this paper, a new model of the harmonic drive transmission is presented. The purpose of this work is to better understand the transmission hysteresis behavior while constructing a new type of comprehensive harmonic drive model. The four dominant aspects of harmonic drive behavior - nonlinear viscous friction, nonlinear stiffness, hysteresis, and kinematic error - are all included in the model. The harmonic drive is taken to be a black box, and a dynamometer is used to observe the input/output relations of the transmission. This phenomenological approach does not require any specific knowledge of the internal kinematics. In a novel application, the Maxwell resistive-capacitor hysteresis model is applied to the harmonic drive. In this model, sets of linear stiffness elements in series with Coulomb friction elements are arranged in parallel to capture the hysteresis behavior of the transmission. The causal hysteresis model is combined with nonlinear viscous friction and spectral kinematic error models to accurately represent the harmonic drive behavior. Empirical measurements are presented to quantify all four aspects of the transmission behavior. These measurements motivate the formulation of the complete model. Simulation results are then compared to additional measurements of the harmonic drive performance.

  20. Asymptotic porosity of planar harmonic measure

    NASA Astrophysics Data System (ADS)

    Graczyk, Jacek; Świaţek, Grzegorz

    2013-04-01

    We study the distribution of harmonic measure on connected Julia sets of unicritical polynomials. Harmonic measure on a full compact set in ℂ is always concentrated on a set which is porous for a positive density of scales. We prove that there is a topologically generic set {A} in the boundary of the Mandelbrot set such that for every cin {A}, β>0, and λ∈(0,1), the corresponding Julia set is a full compact set with harmonic measure concentrated on a set which is not β-porous in scale λ n for n from a set with positive density amongst natural numbers.

  1. Harmonics generated from a DC biased transformer

    SciTech Connect

    Shu Lu; Yilu Liu; Ree, J. De La . The Bradley Dept. of Electrical Engineering)

    1993-04-01

    The paper presents harmonic characteristics of transformer excitation currents under DC bias caused by geomagnetically induced currents (GIC). A newly developed saturation model of a single phase shell form transformer based on 3D finite element analysis is used to calculate the excitation currents. As a consequence, the complete variations of excitation current harmonics with respect to an extended range of GIC bias are revealed. The results of this study are useful in understanding transformers as harmonic sources and the impact on power systems during a solar magnetic disturbance.

  2. The International Consortium for Harmonization of Clinical Laboratory Results (ICHCLR) - A Pathway for Harmonization.

    PubMed

    Myers, Gary L; Miller, W Greg

    2016-02-01

    Results from clinical laboratory measurement procedures must be equivalent to enable effective use of clinical guidelines for disease diagnosis and patient management. Analytical results that are harmonized and independent of the measurement system, time, and location of testing is essential for providing adequate patient care. The key to generating harmonized results is establishing traceability to an accepted reference standard where available. Awareness of the benefits of having traceable measurement results that are harmonized has increased along with efforts to develop approaches to enable and facilitate the implementation of harmonization. Although several organizations are addressing harmonization of test procedures, centralized and cooperative global oversight is needed to ensure that the most important tests are being addressed and resources are optimally used. Working with its domestic and international partners, the American Association for Clinical Chemistry (AACC) has created an International Consortium for Harmonization of Clinical Laboratory Results. Advances in this area will improve the quality of patient care. PMID:27683504

  3. The International Consortium for Harmonization of Clinical Laboratory Results (ICHCLR) – A Pathway for Harmonization

    PubMed Central

    Miller, W. Greg

    2016-01-01

    Results from clinical laboratory measurement procedures must be equivalent to enable effective use of clinical guidelines for disease diagnosis and patient management. Analytical results that are harmonized and independent of the measurement system, time, and location of testing is essential for providing adequate patient care. The key to generating harmonized results is establishing traceability to an accepted reference standard where available. Awareness of the benefits of having traceable measurement results that are harmonized has increased along with efforts to develop approaches to enable and facilitate the implementation of harmonization. Although several organizations are addressing harmonization of test procedures, centralized and cooperative global oversight is needed to ensure that the most important tests are being addressed and resources are optimally used. Working with its domestic and international partners, the American Association for Clinical Chemistry (AACC) has created an International Consortium for Harmonization of Clinical Laboratory Results. Advances in this area will improve the quality of patient care. PMID:27683504

  4. The International Consortium for Harmonization of Clinical Laboratory Results (ICHCLR) – A Pathway for Harmonization

    PubMed Central

    Miller, W. Greg

    2016-01-01

    Results from clinical laboratory measurement procedures must be equivalent to enable effective use of clinical guidelines for disease diagnosis and patient management. Analytical results that are harmonized and independent of the measurement system, time, and location of testing is essential for providing adequate patient care. The key to generating harmonized results is establishing traceability to an accepted reference standard where available. Awareness of the benefits of having traceable measurement results that are harmonized has increased along with efforts to develop approaches to enable and facilitate the implementation of harmonization. Although several organizations are addressing harmonization of test procedures, centralized and cooperative global oversight is needed to ensure that the most important tests are being addressed and resources are optimally used. Working with its domestic and international partners, the American Association for Clinical Chemistry (AACC) has created an International Consortium for Harmonization of Clinical Laboratory Results. Advances in this area will improve the quality of patient care.

  5. Semiclassical approaches to below-threshold harmonics

    SciTech Connect

    Hostetter, James A.; Tate, Jennifer L.; Schafer, Kenneth J.; Gaarde, Mette B.

    2010-08-15

    We study the generation of below-threshold harmonics in a model atom by extending the three-step semiclassical model of harmonic generation to include effects of the atomic potential. We explore the generalization of semiclassical trajectories of the electron in the presence of the combined laser-atom potential and calculate the intensity-dependent dipole phase associated with these trajectories. Our results are in good agreement with fully quantum mechanical calculations, as well as with recent experimental observations. We show that the so-called long trajectory readily generalizes to below-threshold harmonic generation and is relatively insensitive to the choice of initial conditions. We also find that the short trajectory can only lead to low-energy harmonics for electrons that have been released close to the ion core in a process that is closer to multiphoton than to tunnel ionization.

  6. High-harmonic generation in cavitated plasmas

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Comier-Michel, E.; Leemans, W. P.

    2008-05-15

    A method is proposed for producing coherent x-rays via high-harmonic generation using ultraintense lasers interacting with highly stripped ions in cavitated plasmas. This method relies on plasma cavitation by the wake of an intense drive beam (laser or electron beam) to produce an ion cavity. An ultrashort pulse laser propagating in the plasma-electron-free ion cavity generates laser harmonics. The longitudinal electron motion, which inhibits high-harmonic generation at high laser intensities, can be suppressed by the space-charge field in the ion cavity or by using a counterpropagating laser pulse. Periodic suppression of the longitudinal electron motion may also be used to quasi-phase-match. This method enables harmonic generation to be extended to the sub-A regime.

  7. Geomagnetic local and regional harmonic analyses.

    USGS Publications Warehouse

    Alldredge, L.R.

    1982-01-01

    Procedures are developed for using rectangular and cylindrical harmonic analyses in local and regional areas. Both the linear least squares analysis, applicable when component data are available, and the nonlinear least squares analysis, applicable when only total field data are available, are treated. When component data are available, it is advantageous to work with residual fields obtained by subtracting components derived from a harmonic potential from the observed components. When only total field intensity data are available, they must be used directly. Residual values cannot be used. Cylindrical harmonic analyses are indicated when fields tend toward cylindrical symmetry; otherwise, rectangular harmonic analyses will be more advantageous. Examples illustrating each type of analysis are given.-Author

  8. New ladder operators for the monopole harmonics

    SciTech Connect

    Fakhri, H.; Dehghani, A.; Jafari, A.

    2007-02-15

    Using the ladder operators shifting the index m of the associated Jacobi functions, for a given n, the monopole harmonics and their corresponding angular momentum operators are, respectively, extracted as the irreducible representation space and generators of su(2) Lie algebra. The indices n and m play the role of principal and azimuthal quantum numbers. By introducing the ladder operators shifting the index n of the same associated Jacobi functions, we also get a new type of the raising and lowering relations which are realized by the operators shifting only the index n of the monopole harmonics. Moreover, other symmetries, including the transformation of the irreducible representation spaces into each other, are derived based on the operators that shift the indices n and m of the monopole harmonics simultaneously and agreeably as well as simultaneously and inversely. Our results are reduced to spherical harmonics by eliminating magnetic charge of the monopole.

  9. Multisite EPR Oximetry from Multiple Quadrature Harmonics

    PubMed Central

    Ahmad, R.; Som, S.; Johnson, D.H.; Zweier, J.L.; Kuppusamy, P.; Potter, L.C.

    2011-01-01

    Multisite continuous wave (CW) electron paramagnetic resonance (EPR) oximetry using multiple quadrature field modulation harmonics is presented. First, a recently developed digital receiver is used to extract multiple harmonics of field modulated projection data. Second, a forward model is presented that relates the projection data to unknown parameters, including linewidth at each site. Third, a maximum likelihood estimator of unknown parameters is reported using an iterative algorithm capable of jointly processing multiple quadrature harmonics. The data modeling and processing are applicable for parametric lineshapes under nonsaturating conditions. Joint processing of multiple harmonics leads to 2-3 fold acceleration of EPR data acquisition. For demonstration in two spatial dimensions, both simulations and phantom studies on an L-band system are reported. PMID:22154283

  10. SEVENTH HARMONIC 20 GHz CO-GENERATOR

    SciTech Connect

    Hirshfield, Jay L

    2014-04-08

    To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.

  11. Harmonic Lasing Characterization at Jefferson Lab

    SciTech Connect

    Stephen Benson; Michelle D. Shinn

    2006-08-27

    Harmonic lasing is normally suppressed because of lasing at the fundamental wavelength. It can, however, be achieved by using any of several methods that suppress fundamental lasing. In this paper we discuss two methods used at Jefferson Lab. The first is to use the characteristics of dielectric coatings to allow harmonic lasing at cavity lengths longer than the synchronous length for the fundamental. The second is to use a dielectric coating that has little reflectivity at the fundamental. This allows us to directly compare fundamental and harmonic lasing with the same optical resonator and electron beam. We present measurement carried out at Jefferson Lab using the IR Upgrade FEL operating at 0.53, 0.94, 1.04, 1.6, and 2.8 microns in which both schemes are used to produce lasing at both the 3rd and 5th harmonic of the fundamental.

  12. Measuring Spherical Harmonic Coefficients on a Sphere

    SciTech Connect

    Pollaine, S; Haan, S W

    2003-05-16

    The eigenfunctions of Rayleigh-Taylor modes on a spherical capsule are the spherical harmonics Y{sub l,m} These can be measured by measuring the surface perturbations along great circles and fitting them to the first few modes by a procedure described in this article. For higher mode numbers, it is more convenient to average the Fourier power spectra along the great circles, and then transform them to spherical harmonic modes by an algorithm derived here.

  13. HARMONIC CAVITY PERFORMANCE FOR NSLS-II

    SciTech Connect

    BLEDNYKH, A.; KRINSKY, S.; PODOBEDOV, B.; ROSE, J.; TOWNE, N.; WANG, J.M.

    2005-05-15

    NSLS-II is a 3 GeV ultra-high brightness storage ring planned to succeed the present NSLS rings at BNL. Ultralow emittance combined with short bunch length means that it is critical to minimize the effects of Touschek scattering and coherent instabilities. Improved lifetime and stability can be achieved by including a third-harmonic RF cavity in the baseline design. This paper describes the required harmonic RF parameters and the expected system performance.

  14. The Case of the Missing Harmonic Structure

    SciTech Connect

    Arp, U.

    2007-01-19

    Classical synchrotron radiation theory predicts emission in harmonics of the revolution frequency of the radiating particles. The Synchrotron Ultraviolet Radiation Facility SURF is an electron storage ring based on the weak focusing principle. The particles travel on a near perfect circular path, which makes SURF an ideal test-bed for synchrotron radiation theory. The harmonic structure of the radiation emitted by the electrons stored in SURF will be explored.

  15. Harmonic plane wave propagation in gyroelectric media

    NASA Astrophysics Data System (ADS)

    Hillion, Pierre

    2006-05-01

    We analyse the behaviour of harmonic plane waves in unbounded gyroelectric media once the refractive index in the direction of propagation is known from the Fresnel equation. We get, for the electric and magnetic fields, analytical expressions simple enough to use in a plane wave spectrum representation of more structured electromagnetic fields in these media. We also discuss the reflection and refraction of harmonic plane waves at the boundary between an isotropic medium and a gyroelectric material.

  16. Quantum harmonic oscillator with superoscillating initial datum

    SciTech Connect

    Buniy, R. V.; Struppa, D. C.; Colombo, F.; Sabadini, I.

    2014-11-15

    In this paper, we study the evolution of superoscillating initial data for the quantum driven harmonic oscillator. Our main result shows that superoscillations are amplified by the harmonic potential and that the analytic solution develops a singularity in finite time. We also show that for a large class of solutions of the Schrödinger equation, superoscillating behavior at any given time implies superoscillating behavior at any other time.

  17. Higher-Order Harmonic Generation from Fullerene by Means of the Plasma Harmonic Method

    SciTech Connect

    Ganeev, R. A.; Bom, L. B. Elouga; Abdul-Hadi, J.; Ozaki, T.; Wong, M. C. H.; Brichta, J. P.; Bhardwaj, V. R.

    2009-01-09

    We demonstrate, for the first time, high-order harmonic generation from C{sub 60} by an intense femtosecond Ti:sapphire laser. Laser-produced plasmas from C{sub 60}-rich epoxy and C{sub 60} films were used as the nonlinear media. Harmonics up to the 19th order were observed. The harmonic yield from fullerene-rich plasma is about 25 times larger compared with those produced from a bulk carbon target. Structural studies of plasma debris confirm the presence and integrity of fullerenes within the plasma plume, indicating fullerenes as the source of high-order harmonics.

  18. Automatic recognition of harmonic bird sounds

    NASA Astrophysics Data System (ADS)

    Heller, Jason R.; Pinezich, John D.

    2005-09-01

    The method of sound recognition relies on a transformation of a sound into a spectrogram followed by extraction of the harmonics as curves. The extracted curves are called frequency tracks. A procedure called find-feasible-sets is used to extract sets of tracks that may correspond to harmonic sounds. If a set of tracks overlap each other sufficiently in time, then the set is designated a feasible set. Following the extraction of the feasible sets, the procedure find-maximal-subsets is applied to each feasible set. This procedure uses a function called harmonic-relate that determines if two tracks are harmonically related. All tracks that are not harmonically related to any other tracks in the feasible set are discarded. Furthermore, the feasible set is divided into maximal subsets. A maximal subset is a subset of the feasible set in which every track is harmonically related to one fixed track in the set called the reference track but no other tracks in the feasible set are related to the reference track. Each frequency track in a track set is transformed into a feature vector whose components describe the frequency, slope, and shape of the track. The species of birds analyzed are bluejay and herring gull.

  19. Evaluating harmonic-induced transformer heating

    SciTech Connect

    Bishop, M.T.; Baranowski, J.F.; Heath, D.; Benna, S.J.

    1996-01-01

    The proliferation of non-linear loads on power systems has increased the awareness of the potential reduction of a transformer`s life due to increased losses. Over the past few years, several manufacturers and users have been applying a harmonic rating system to specify transformers based on relationships developed in ANSI/IEEE C57.110. The specification or evaluation of transformers in a harmonic environment requires a knowledge of the load mix as well as details of the load current harmonic content. The additional heating experienced by a transformer depends on the harmonic content of the load current, and the design of the unit. A heat run circuit was devised to produce harmonic rich load current on a 25 kVA oil-immersed distribution transformer. The test was conducted at 100% of nameplate current using a purely resistive load, and a 2.4 ms current pulse. The temperature rise experienced under harmonic excitation was observed and documented.

  20. Harmonic Oscillators as Bridges between Theories

    SciTech Connect

    Kim, Y.S.; Noz, Marilyn E.

    2005-03-31

    Other than scattering problems where perturbation theory is applicable, there are basically two ways to solve problems in physics. One is to reduce the problem to harmonic oscillators, and the other is to formulate the problem in terms of two-by-two matrices. If two oscillators are coupled, the problem combines both two-by-two matrices and harmonic oscillators. This method then becomes a powerful research tool to cover many different branches of physics. Indeed, the concept and methodology in one branch of physics can be translated into another through the common mathematical formalism. It is noted that the present form of quantum mechanics is largely a physics of harmonic oscillators. Special relativity is the physics of the Lorentz group which can be represented by the group of by two-by-two matrices commonly called SL(2, c). Thus the coupled harmonic oscillators can therefore play the role of combining quantum mechanics with special relativity. Both Paul A. M. Dirac and Richard P. Feynman were fond of harmonic oscillators, while they used different approaches to physical problems. Both were also keenly interested in making quantum mechanics compatible with special relativity. It is shown that the coupled harmonic oscillators can bridge these two different approaches to physics.

  1. Clinical Trials

    MedlinePlus

    ... of visits, and any adjustments to treatment. (back) Requirements for Participation Admission into a clinical trial is based on a rigid set of requirements. You must be diagnosed with the illness that ...

  2. 2. LOOKING NORTH ON COMMERCE ST. SHOWING HARMON MATTRESS FACTORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. LOOKING NORTH ON COMMERCE ST. SHOWING HARMON MATTRESS FACTORY. BRIDGE CONNECTS HARMON MATTRESS FACTORY WITH HARMON WAREHOUSE (SEE PHOTO HABS WA-165-15). BUILDING IN LEFT FOREGROUND IS LINDSTROM-BERG CABINET FACTORY (SEE PHOTO HABS WA-165-36). - Union Depot Area Study, F. S. Harmon Mattress Company, 1953 South C Street, Tacoma, Pierce County, WA

  3. Dual aperture dipole magnet with second harmonic component

    DOEpatents

    Praeg, Walter F.

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  4. Dual aperture dipole magnet with second harmonic component

    DOEpatents

    Praeg, W.F.

    1983-08-31

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  5. Possible role of cochlear nonlinearity in the detection of mistuning of a harmonic component in a harmonic complex

    NASA Astrophysics Data System (ADS)

    Stoelinga, Christophe; Heo, Inseok; Long, Glenis; Lee, Jungmee; Lutfi, Robert; Chang, An-Chieh

    2015-12-01

    The human auditory system has a remarkable ability to "hear out" a wanted sound (target) in the background of unwanted sounds. One important property of sound which helps us hear-out the target is inharmonicity. When a single harmonic component of a harmonic complex is slightly mistuned, that component is heard to separate from the rest. At high harmonic numbers, where components are unresolved, the harmonic segregation effect is thought to result from detection of modulation of the time envelope (roughness cue) resulting from the mistuning. Neurophysiological research provides evidence that such envelope modulations are represented early in the auditory system, at the level of the auditory nerve. When the mistuned harmonic is a low harmonic, where components are resolved, the harmonic segregation is attributed to more centrally-located auditory processes, leading harmonic components to form a perceptual group heard separately from the mistuned component. Here we consider an alternative explanation that attributes the harmonic segregation to detection of modulation when both high and low harmonic numbers are mistuned. Specifically, we evaluate the possibility that distortion products in the cochlea generated by the mistuned component introduce detectable beating patterns for both high and low harmonic numbers. Distortion product otoacoustic emissions (DPOAEs) were measured using 3, 7, or 12-tone harmonic complexes with a fundamental frequency (F0) of 200 or 400 Hz. One of two harmonic components was mistuned at each F0: one when harmonics are expected to be resulted and the other from unresolved harmonics. Many non-harmonic DPOAEs are present whenever a harmonic component is mistuned. These non-harmonic DPOAEs are often separated by the amount of the mistuning (ΔF). This small frequency difference will generate a slow beating pattern at ΔF, because this beating is only present when a harmonic component is mistuned, it could provide a cue for behavioral detection

  6. High-harmonic spectroscopy of molecular isomers

    SciTech Connect

    Wong, M. C. H.; Brichta, J.-P.; Bhardwaj, V. R.; Spanner, M.; Patchkovskii, S.

    2011-11-15

    We demonstrate that high-order-harmonic generation (HHG) spectroscopy can be used to probe stereoisomers of randomly oriented 1,2-dichloroethylene (C{sub 2}H{sub 2}Cl{sub 2}) and 2-butene (C{sub 4}H{sub 8}). The high-harmonic spectra of these isomers are distinguishable over a range of laser intensities and wavelengths. Time-dependent numerical calculations of angle-dependent ionization yields for 1,2-dichloroethylene suggest that the harmonic spectra of molecular isomers reflect differences in their strong-field ionization. The subcycle ionization yields for the cis isomer are an order of magnitude higher than those for the trans isomer. The sensitivity in discrimination of the harmonic spectra of cis- and trans- isomers is greater than 8 and 5 for 1,2-dichloroethylene and 2-butene, respectively. We show that HHG spectroscopy cannot differentiate the harmonic spectra of the two enantiomers of the chiral molecule propylene oxide (C{sub 3}H{sub 6}O).

  7. Nonlinear harmonic generation in the STARS FEL

    NASA Astrophysics Data System (ADS)

    Abo-Bakr, M.; Goldammer, K.; Kamps, T.; Knobloch, J.; Kuske, B.; Leitner, T.; Meseck, A.

    2008-08-01

    BESSY proposes to build STARS, an FEL to demonstrate cascaded High Gain Harmonic Generation (HGHG). In two HGHG stages, a laser source of 700-900 nm is converted down to a wavelength of 40-70 nm. The STARS facility consists of a normal-conducting RF photoinjector, three superconducting TESLA-type acceleration modules, a magnetic bunch compressor and two stages of HGHG, each consisting of a modulator, dispersive chicane and a radiator. At the entrance of the undulator section, the beam energy is 325 MeV and the peak current is about 500 A. With these parameters, the STARS FEL reaches saturation with a peak power of 100-350 MW. A superradiant mode is also foreseen which boosts the radiation power to the GW-level. Due to nonlinear harmonic generation (NHG), free electron lasers also radiate coherently at higher harmonics of the FEL resonant frequency. STARS can hence extend its output range to even shorter wavelengths. This paper presents studies of the STARS harmonic content in the wavelength range of 6-20 nm. Seeding with high harmonic generation pulses at 32 nm is also discussed.

  8. Microwave harmonic generation and nonlinearity in microplasmas

    NASA Astrophysics Data System (ADS)

    Gregório, José; Parsons, Stephen; Hopwood, Jeffrey

    2016-06-01

    Nonlinearities in microplasmas excited by microwaves are described both experimentally and through a 2D fluid model. A split-ring resonator generates a microplasma in a 150 μm discharge gap at 1 GHz. Nonlinearity generates both radiated and conducted harmonics which are measured from 0.2–760 Torr (Ar) for power levels between 0.5 and 3 W. Asymmetric electrode configurations produce the highest 3rd harmonic power (>10 mW) at an optimal pressure of the order of 0.3 Torr. The microplasma is also demonstrated as a mixer. The experimental results are explained with the aid of a fluid model of the microplasma. The model shows that the smaller electrode in an asymmetric device is forced to attain a large microwave potential that strongly modulates the sheath thickness and the local electron energy. The voltage-dependent sheath width gives rises to a nonlinear sheath capacitance as well as short pulses of hot electron flux to the electrode. The modeled 3rd harmonic current is converted to an extractable harmonic power by a microwave circuit model. Using this technique the modeled and measured harmonic production of the microplasma are found to compare favorably.

  9. A critique of emerging European legislation in the pharmaceutical industry: a clinical trials analysis.

    PubMed

    Murray, Elizabeth; McAdam, Rodney; Burke, Moira T

    2004-01-01

    The objective of this paper is to critique emerging legislation in the pharmaceutical industry, focusing on the clinical trials sector. Possible changes are identified and discussed inrelation to their impact on phase I clinical trials conducted in the UK. It is concluded that smaller contract research organisations, which have benefited in the past from European Union legislative variation, may have resource problems in trying to cope with the changing business environment created through legislative harmonization. These SMEs must use this opportunity to seek clinical trials research partnerships in a new harmonized EU market.

  10. GRACE Harmonic and Mascon Solutions at JPL

    NASA Astrophysics Data System (ADS)

    Watkins, M. M.; Yuan, D.; Kuang, D.; Bertiger, W.; Kim, M.; Kruizinga, G. L.

    2005-12-01

    Gravity field solutions at JPL over the past few years have explored use of range, range-rate, and range-acceleration K/Ka-band satellite-satellite data types (with and without GPS), and with both spherical harmonic and mascon-type local mass representations. Until recently, resource and computing limitations have limited the scope of our mascon and other local solutions to a few months and/or small spatial regions and the standard GRACE products have remained spherical harmonic fields. The use of a new very large (~500 node) beowulf machine at JPL is now enabling a wider range of solutions over longer time spans and deeper understanding of their characteristics. These include much higher spherical harmonic degrees, mascons, and hybrids of the two. We will present the current status for several solution types, strengths and weaknesses of each, and our assessments of limiting errors including data noise and aliasing sensitivity.

  11. The harmonic oscillator and nuclear physics

    NASA Technical Reports Server (NTRS)

    Rowe, D. J.

    1993-01-01

    The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.

  12. Xe/+/ -induced ion-cyclotron harmonic waves

    NASA Astrophysics Data System (ADS)

    Jones, D.

    Xenon ion sources on an ejectable package separated from the main payload during the flights of Porcupine rockets F3 and F4 which were launched from Kiruna, Sweden on March 19 and 31, 1979, respectively. The effects of the xenon ion beam, detected by the LF (f less than 16 kHz) wideband electric field experiment and analyzed by using a sonograph, are discussed. Particular attention is given to the stimulation of the ion-cyclotron harmonic waves which are usually linked to the local proton gyro-frequency, but are sometimes related to half that frequency. It was found that in a plasma dominated by O(+) ions, a small amount (1-10%) of protons could cause an effect such that the O(+) cyclotron harmonic waves are set up by the hydrogen ions, the net result being the observation of harmonic emissions separated by the hydrogen ion gyro frequency.

  13. Second International Workshop on Harmonic Oscillators

    NASA Technical Reports Server (NTRS)

    Han, Daesoo (Editor); Wolf, Kurt Bernardo (Editor)

    1995-01-01

    The Second International Workshop on Harmonic Oscillators was held at the Hotel Hacienda Cocoyoc from March 23 to 25, 1994. The Workshop gathered 67 participants; there were 10 invited lecturers, 30 plenary oral presentations, 15 posters, and plenty of discussion divided into the five sessions of this volume. The Organizing Committee was asked by the chairman of several Mexican funding agencies what exactly was meant by harmonic oscillators, and for what purpose the new research could be useful. Harmonic oscillators - as we explained - is a code name for a family of mathematical models based on the theory of Lie algebras and groups, with applications in a growing range of physical theories and technologies: molecular, atomic, nuclear and particle physics; quantum optics and communication theory.

  14. Degradation in finite-harmonic subcarrier demodulation

    NASA Technical Reports Server (NTRS)

    Feria, Y.; Townes, S.; Pham, T.

    1995-01-01

    Previous estimates on the degradations due to a subcarrier loop assume a square-wave subcarrier. This article provides a closed-form expression for the degradations due to the subcarrier loop when a finite number of harmonics are used to demodulate the subcarrier, as in the case of the buffered telemetry demodulator. We compared the degradations using a square wave and using finite harmonics in the subcarrier demodulation and found that, for a low loop signal-to-noise ratio, using finite harmonics leads to a lower degradation. The analysis is under the assumption that the phase noise in the subcarrier (SC) loop has a Tikhonov distribution. This assumption is valid for first-order loops.

  15. High harmonic phase in molecular nitrogen

    SciTech Connect

    McFarland, Brian K.

    2009-10-17

    Electronic structure in atoms and molecules modulates the amplitude and phase of high harmonic generation (HHG). We report measurements of the high harmonic spectral amplitude and phase in N{sub 2}. The phase is measured interferometrically by beating the N{sub 2} harmonics with those of an Ar reference oscillator in a gas mixture. A rapid phase shift of 0.2{pi} is observed in the vicinity of the HHG spectral minimum, where a shift of {pi} had been presumed [J. Itatani et al., Nature 432, 867 (2004)]. We compare the phase measurements to a simulation of the HHG recombination step in N{sub 2} that is based on a simple interference model. The results of the simulation suggest that modifications beyond the simple interference model are needed to explain HHG spectra in molecules.

  16. Microscopic optical buffering in a harmonic potential

    PubMed Central

    Sumetsky, M.

    2015-01-01

    In the early days of quantum mechanics, Schrödinger noticed that oscillations of a wave packet in a one-dimensional harmonic potential well are periodic and, in contrast to those in anharmonic potential wells, do not experience distortion over time. This original idea did not find applications up to now since an exact one-dimensional harmonic resonator does not exist in nature and has not been created artificially. However, an optical pulse propagating in a bottle microresonator (a dielectric cylinder with a nanoscale-high bump of the effective radius) can exactly imitate a quantum wave packet in the harmonic potential. Here, we propose a tuneable microresonator that can trap an optical pulse completely, hold it as long as the material losses permit, and release it without distortion. This result suggests the solution of the long standing problem of creating a microscopic optical buffer, the key element of the future optical signal processing devices. PMID:26689546

  17. Clinical trials

    PubMed Central

    Garnham, J. C.

    1974-01-01

    The choice of standard drugs to be used in clinical trials must be based on consideration of human absorption data, in vitro characteristics, possible interactions, comparative efficacy and safety, previous data regarding the standard in relation to the syndrome to be studied, and correlation of blood levels, effectiveness and safety. PMID:4465771

  18. Broadband beam shaping with harmonic diffractive optics.

    PubMed

    Singh, Manisha; Tervo, Jani; Turunen, Jari

    2014-09-22

    We consider spatial shaping of broadband (either stationary or pulsed) spatially coherent light, comparing refractive, standard diffractive, and harmonic diffractive (modulo 2πM) elements. Considering frequency-integrated target profiles we show that, contrary to common belief, standard diffractive (M = 1) elements work reasonably well for, e.g., Gaussian femtosecond pulses and spatially coherent amplified-spontaneous-emission sources such as superluminescent diodes. It is also shown that harmonic elements with M ≥ 5 behave in essentially the same way as refractive elements and clearly outperform standard diffractive elements for highly broadband light.

  19. Nonlinear harmonic generation in distributed optical klystrons

    SciTech Connect

    H.P. Freund; George R. Neil

    2001-12-01

    A distributed optical klystron has the potential for dramatically shortening the total interaction length in high-gain free-electron lasers (INP 77-59, Novosibirsk, 1977; Nucl. Instr. and Meth A 304 (1991) 463) in comparison to a single-wiggler-segment configuration. This shortening can be even more dramatic if a nonlinear harmonic generation mechanism is used to reach the desired wavelength. An example operating at a 4.5{angstrom} fundamental and a 1.5{angstrom} harmonic is discussed.

  20. Harmonic demodulation of nonstationary shot noise.

    PubMed

    Gray, M B; Stevenson, A J; Bachor, H A; McClelland, D E

    1993-05-15

    We report on experimental demodulation of nonstationary shot noise, which is associated with strongly modulated light. For sinusoidal modulation and demodulation, measurements confirm theoretical predictions of 1.8-dB excess noise in the modulation quadrature and 3-dB noise reduction in the opposite quadrature, relative to the standard quantum limit. Demodulation with a third harmonic produces noise correlated with that which is due to the fundamental. Reducing excess noise by 0.8 dB in the modulation quadrature, by combining the fundamental and third harmonics in a 2:1 ratio, is shown to be feasible. PMID:19802263

  1. Spherical harmonic analysis of steady photospheric flows

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1987-01-01

    A technique is presented in which full disk Doppler velocity measurements are analyzed using spherical harmonic functions to determine the characteristics of the spectrum of spherical harmonic modes and the nature of steady photospheric flows. Synthetic data are constructed in order to test the technique. In spite of the mode mixing due to the lack of information about the motions on the backside of the sun, solar rotation and differential rotation can be accurately measured and monitored for secular changes, and meridional circulations with small amplitudes can be measured. Furthermore, limb shift measurements can be accurately obtained, and supergranules can be fully resolved and separated from giant cells by their spatial characteristics.

  2. Quantum stochastic thermodynamic on harmonic networks

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian

    2016-01-01

    Fluctuation theorems are symmetry relations for the probability to observe an amount of entropy production in a finite-time process. In a recent paper Pigeon et al (2016 New. J. Phys. 18 013009) derived fluctuation theorems for harmonic networks by means of the large deviation theory. Their novel approach is illustrated with various examples of experimentally relevant systems. As a main result, however, Pigeon et al provide new insight how to consistently formulate quantum stochastic thermodynamics, and provide new and robust tools for the study of the thermodynamics of quantum harmonic networks.

  3. Damped harmonics and polynomial phase signals

    NASA Astrophysics Data System (ADS)

    Zhou, Guotong; Giannakis, Georgios B.

    1994-10-01

    The concern here is of retrieving damped harmonics and polynomial phase signals in the presence of additive noise. The damping function is not limited to the exponential model, and in certain cases, the additive noise does not have to be white. Three classes of algorithms are presented, namely DFT based, Kumaresan-Tufts type extensions, and subspace variants including the MUSIC algorithm. Preference should be based on the available data length and frequency separations. In addition, retrieval of self coupled damped harmonics, which may be present when nonlinearities exist in physical systems, is investigated. Simulation examples illustrate main points of the paper.

  4. Analytic model of bunched beams for harmonic generation in thelow-gain free electron laser regime

    SciTech Connect

    Penn, G.; Reinsch, M.; Wurtele, J.S.

    2006-02-20

    One scheme for harmonic generation employs free electron lasers (FELs) with two undulators: the first uses a seed laser to modulate the energy of the electron beam; following a dispersive element which acts to bunch the beam, the second undulator radiates at a higher harmonic. These processes are currently evaluated using extensive calculations or simulation codes which can be slow to evaluate and difficult to set up. We describe a simple algorithm to predict the output of a harmonic generation beamline in the low-gain FEL regime, based on trial functions for the output radiation. Full three-dimensional effects are included. This method has been implemented as a Mathematica package, named CAMPANILE, which runs rapidly and can be generalized to include effects such as asymmetric beams and misalignments. This method is compared with simulation results using the FEL code GENESIS, both for single stages of harmonic generation and for the LUX project, a design concept for an ultrafast X-ray facility, where multiple stages upshift the input laser frequency by factors of up to 200.

  5. Medicinal products in the European Union--between harmonization and divergence.

    PubMed

    Lojko, Natalia

    2010-03-01

    The rules governing the manufacture and trade in medicinal products in the European Union are, to a large extent, harmonized covering almost the entire life cycle of a medicinal product, starting from the conduct of clinical trials (Directive 2001/20, 2005/28), through manufacture (Directive 2003/94), registration, distribution and pharmacovigilance (Directive 2001/83) to the principles concerning pricing and reimbursement (Directive 89/105). A unified registration procedure has been established with respect to highly innovative medicinal products (Regulation 726/2004). There is also abundant case law of the European Court of Justice concerning medicinal products. The harmonization both judicial and legislative--took place in spite of the lack of explicit competence of the EU as regards healthcare and was based to a large extent on the provisions of economic nature, whose aim was to ensure the unfettered functioning of the internal market. In spite of those harmonization efforts, national rules governing pharmaceuticals are still to a large extent divergent, in particular as regards financing and distribution of medicinal products. This paper explores the level of harmonization of pharmaceutical market in Europe, in particular in the light of the primary competence of the Member States in the field of healthcare and discusses its implications.

  6. Harmonic versus LigaSure hemostasis technique in thyroid surgery: A meta-analysis

    PubMed Central

    Upadhyaya, Arun; Hu, Tianpeng; Meng, Zhaowei; Li, Xue; He, Xianghui; Tian, Weijun; Jia, Qiang; Tan, Jian

    2016-01-01

    Harmonic scalpel and LigaSure vessel sealing systems have been suggested as options for saving surgical time and reducing postoperative complications. The aim of the present meta-analysis was to compare surgical time, postoperative complications and other parameters between them in for the open thyroidectomy procedure. Studies were retrieved from MEDLINE, Cochrane Library, EMBASE and ISI Web of Science until December 2015. All the randomized controlled trials (RCTs) comparing Harmonic scalpel and LigaSure during open thyroidectomy were selected. Following data extraction, statistical analyses were performed. Among the 24 studies that were evaluated for eligibility, 7 RCTs with 981 patients were included. The Harmonic scalpel significantly reduced surgical time compared with LigaSure techniques (8.79 min; 95% confidence interval, −15.91 to −1.67; P=0.02). However, no significant difference was observed for the intraoperative blood loss, postoperative blood loss, duration of hospital stay, thyroid weight and serum calcium level postoperatively in either group. The present meta-analysis indicated superiority of Harmonic Scalpel only in terms of surgical time compared with LigaSure hemostasis techniques in open thyroid surgery. PMID:27446546

  7. The exact transformation from spherical harmonic to ellipsoidal harmonic coefficients for gravitational field modeling

    NASA Astrophysics Data System (ADS)

    Hu, Xuanyu

    2016-06-01

    The spherical and ellipsoidal harmonic series of the external gravitational potential for a given mass distribution are equivalent in their mutual region of uniform convergence. In an instructive case, the equality of the two series on the common coordinate surface of an infinitely large sphere reveals the exact correspondence between the spherical and ellipsoidal harmonic coefficients. The transformation between the two sets of coefficients can be accomplished via the numerical methods by Walter (Celest Mech 2:389-397, 1970) and Dechambre and Scheeres (Astron Astrophys 387:1114-1122, 2002), respectively. On the other hand, the harmonic coefficients are defined by the integrals of mass density moments in terms of the respective solid harmonics. This paper presents general algebraic formulas for expressing the solid ellipsoidal harmonics as a linear combination of the corresponding solid spherical harmonics. An exact transformation from spherical to ellipsoidal harmonic coefficients is found by incorporating these connecting expressions into the density integral. A computational procedure is proposed for the transformation. Numerical results based on the nearly ellipsoidal Martian moon, Phobos, are presented for validation of the method.

  8. Extraction of small boat harmonic signatures from passive sonar.

    PubMed

    Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

    2011-06-01

    This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures.

  9. Resonant high-order harmonic generation from plasma ablation: Laser intensity dependence of the harmonic intensity and phase

    SciTech Connect

    Milosevic, D. B.

    2010-02-15

    Experimentally observed strong enhancement of a single high-order harmonic in harmonic generation from low-ionized laser plasma ablation is explained as resonant harmonic generation. The resonant harmonic intensity increases regularly with the increase of the laser intensity, while the phase of the resonant harmonic is almost independent of the laser intensity. This is in sharp contrast with the usual plateau and cutoff harmonics, the intensity of which exhibits wild oscillations while its phase changes rapidly with the laser intensity. The temporal profile of a group of harmonics, which includes the resonant harmonic, has the form of a broad peak in each laser-field half cycle. These characteristics of resonant harmonics can have an important application in attoscience. We illustrate our results using examples of Sn and Sb plasmas.

  10. Globalization of Alzheimer's disease clinical trials

    PubMed Central

    2011-01-01

    Alzheimer's disease (AD) therapies are increasingly being tested in global clinical trials. A search of ClincalTrials.gov revealed that of 269 currently active trials, 28% are currently being conducted in the United States; the majority of trials and the majority of trial sites are ex-US. The US has the largest number of trial sites of any single country; cumulatively, nearly half of all sites are outside the US. The US conducts more trials in all phases of drug development but has a greater proportion of phase 3 trials. The increasing importance of global participants in clinical trials emphasizes the importance of considering the ethnic and international factors that may influence trial outcome. The International Conference on Harmonization guidelines divide ethnic factors that may affect drug development into intrinsic and extrinsic influences. These include language, cultural factors, educational levels, the general level of health and standard of care, as well as nutrition and diet. Ethnic influences on pharmacokinetics are known for some metabolic pathways. The biology of AD may also differ among the world's populations. The frequency of the apolipoprotein e4 allele, a major risk factor for AD, differs internationally. Genetic variations might also affect inflammatory, excitotoxic, and oxidative components of AD. Diagnostic standards and experience vary from country to country. Levels of practitioner training and experience, diagnostic approaches to AD, and attitudes regarding aging and AD may differ. Experience and sophistication with regard to clinical trial conduct also vary within and between countries. Experience with conducting the necessary examinations, as well as the linguistic and cultural validity of instrument translations, may affect trial outcomes. Operational and regulatory aspects of clinical trials vary and provide important barriers to seamless conduct of multiregional clinical trials. Collection and testing of biological samples, continuous

  11. Harmonization of Clinical Laboratory Test Results.

    PubMed

    2016-02-01

    Clinical laboratory testing is now a global activity with laboratories no longer working in isolation but as regional and national networks, and often at international levels. We now have all of the electronic gadgetry via internet technology at our fingertips to rapidly and accurately measure and report on laboratory testing but are our test results harmonized? PMID:27683501

  12. Group Theory of Covariant Harmonic Oscillators

    ERIC Educational Resources Information Center

    Kim, Y. S.; Noz, Marilyn E.

    1978-01-01

    A simple and concrete example for illustrating the properties of noncompact groups is presented. The example is based on the covariant harmonic-oscillator formalism in which the relativistic wave functions carry a covariant-probability interpretation. This can be used in a group theory course for graduate students who have some background in…

  13. Harmonic Scalpel versus Monopolar Electrocauterization in Cholecystectomy

    PubMed Central

    Wen, Shunqian; Xie, Xueyi; Wu, Qing

    2016-01-01

    Background and Objectives: Laparoscopic cholecystectomy (LC) using surgical electrocautery is considered to be the gold standard procedure for the treatment of uncomplicated cholecystitis and cholelithiasis. The objective of the current study was to evaluate the effectiveness and safety of the Harmonic scalpel, an advanced laparoscopic technique associated with less thermal damage in LC, when compared to electrocautery. Methods: From October 2010 through June 2013, a total of 198 patients were randomly allocated to LC with a Harmonic scalpel (experimental group, 117 patients) or conventional monopolar electrocautery (control group, 81 patients). The main outcome measures were operative time, blood loss, conversion to laparotomy, postoperative hospital stay, post-LC pain, and cost effectiveness. Results: The 2 groups were comparable with respect to baseline patient characteristics. When compared to conventional monopolar electrocautery, there were no significant reductions in the operative time, bleeding, frequency of conversion to laparotomy, and duration of postoperative recovery with the Harmonic scalpel (P > .05 for all). Conclusions: Laparoscopic cholecystectomy using conventional monopolar electrocautery is as effective and safe as that with the Harmonic scalpel, for treating uncomplicated cholecystitis and cholelithiasis. PMID:27547026

  14. Harmonization of Clinical Laboratory Test Results

    PubMed Central

    2016-01-01

    EDITORIAL Clinical laboratory testing is now a global activity with laboratories no longer working in isolation but as regional and national networks, and often at international levels. We now have all of the electronic gadgetry via internet technology at our fingertips to rapidly and accurately measure and report on laboratory testing but are our test results harmonized? PMID:27683501

  15. On the simulation of harmonically related signals

    NASA Astrophysics Data System (ADS)

    Gerlach, Albert A.; Kunz, Edward L.; Anderson, Wendell L.; Flowers, Kenneth D.

    1988-06-01

    Narrowband harmonically related signals, embedded in broadband noise and other unrelated signals, occur in specific applications. To study these signals and to evaluate techniques for their discernment, it is convenient to model or simulate harmonically related signals in the laboratory. A means of accomplishing this task on a conventional digital computer is developed in discrete algorithm format. The resulting simulator uses parameters that allow one to select the mean frequency and harmonic ratio of the signals and to control both the extent and autocorrelation (or power spectral density) of the random signal-frequency fluctuations. Broadband noise and other nonharmonically related signals may also be accommodated in the simulator concept. Examples, using the algorithm, demonstrate its performance and its conformance with theoretical predictions. Conclusions: A relatively simple algorithm is formulated to simulate harmonically related narrowband signals with random frequency fluctuations in discrete format on a digital computer. Signal parameters are incorporated into the algorithm to select the signal mean frequencies and to control both the spectral bounds and the autocorrelation (or power spectral density) of the signal fluctuations. Examples, using the algorithm, demonstrate the performance of the signal simulator and its conformance with theoretical predictions.

  16. Light and harmonicity: the golden section

    NASA Astrophysics Data System (ADS)

    Raftopoulos, Dionysios G.

    2015-09-01

    Adhering to Werner Heisenberg's and to the school of Copenhagen's physical philosophy we introduce the localized observer as an absolutely necessary element of a consistent physical description of nature. Thus we have synthesized the theory of the harmonicity of the field of light, which attempts to present a new approach to the events in the human perceptible space. It is an axiomatic theory based on the selection of the projective space as the geometrical space of choice, while its first fundamental hypothesis is none other than special relativity theory's second hypothesis, properly modified. The result is that all our observations and measurements of physical entities always refer not to their present state but rather to a previous one, a conclusion evocative of the "shadows" paradigm in Plato's cave allegory. In the kinematics of a material point this previous state we call "conjugate position", which has been called the "retarded position" by Richard Feynman. We prove that the relation of the present position with its conjugate is ruled by a harmonic tetrad. Thus the relation of the elements of the geometrical (noetic) and the perceptible space is harmonic. In this work we show a consequence of this harmonic relation: the golden section.

  17. Harmonic generation with multiple wiggler schemes

    SciTech Connect

    Bonifacio, R.; De Salvo, L.; Pierini, P.

    1995-02-01

    In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.

  18. 21 CFR 26.48 - Harmonization.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Harmonization. 26.48 Section 26.48 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND...

  19. 21 CFR 26.48 - Harmonization.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Harmonization. 26.48 Section 26.48 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND...

  20. 21 CFR 26.48 - Harmonization.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Harmonization. 26.48 Section 26.48 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND...

  1. 21 CFR 26.48 - Harmonization.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Harmonization. 26.48 Section 26.48 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND...

  2. Power Divider for Waveforms Rich in Harmonics

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III

    2005-01-01

    A method for dividing the power of an electronic signal rich in harmonics involves the use of an improved divider topology. A divider designed with this topology could be used, for example, to propagate a square-wave signal in an amplifier designed with a push-pull configuration to enable the generation of more power than could be generated in another configuration.

  3. Harmonic cascade FEL designs for LUX

    SciTech Connect

    Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.

    2004-07-16

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.

  4. Mapping from rectangular to harmonic representation

    SciTech Connect

    Schneider, W.; Bateman, G.

    1986-08-01

    An algorithm is developed to determine the Fourier harmonics representing the level contours of a scalar function given on a rectangular grid. This method is applied to the problem of computing the flux coordinates and flux surface average needed for 1-1/2-D transport codes and MHD stability codes from an equilibrium flux function given on a rectangular grid.

  5. Quantum harmonic oscillator in a thermal bath

    NASA Technical Reports Server (NTRS)

    Zhang, Yuhong

    1993-01-01

    The influence functional path-integral treatment of quantum Brownian motion is briefly reviewed. A newly derived exact master equation of a quantum harmonic oscillator coupled to a general environment at arbitrary temperature is discussed. It is applied to the problem of loss of quantum coherence.

  6. Quantum nondemolition measurements of harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Caves, C. M.; Zimmermann, M.; Sandberg, V. D.; Drever, R. W. P.

    1978-01-01

    Measuring systems to determine the real component of the complex amplitude of a harmonic oscillator are described. This amplitude is constant in the absence of driving forces, and the uncertainty principle accounts for the fact that only the real component can be measured precisely and continuously ('quantum nondemolition measurement'). Application of the measuring systems to the detection of gravitational waves is considered.

  7. Perfusion harmonic imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  8. Strongly Dispersive Transient Bragg Grating for High Harmonics

    SciTech Connect

    Farrell, J.; Spector, L.S.; Gaarde, M.B.; McFarland, B.K.; Bucksbaum, P.H.; Guhr, Markus; /SLAC, PULSE /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.

    2010-06-04

    We create a transient Bragg grating in a high harmonic generation medium using two counterpropagating pulses. The Bragg grating disperses the harmonics in angle and can diffract a large bandwidth with temporal resolution limited only by the source size.

  9. Complete Vector Spherical Harmonic Expansion for Maxwell's Equations

    ERIC Educational Resources Information Center

    Lambert, R. H.

    1978-01-01

    Conventional expansions of solutions to Maxwell's equations in vector spherical harmonics apply only outside the sources. The complete solution, applying both inside and outside the sources, is given here. Harmonic time dependence is assumed. (Author/GA)

  10. Harmonic Current Suppression for PMSM by Repetitive Perfect Tracking Control

    NASA Astrophysics Data System (ADS)

    Nakai, Takahiro; Fujimoto, Hiroshi

    PM motor drives are widely used for high performance servo applications. However, PM motor has imperfect sinusoidal flux distribution which causes harmonic current. Dead time of inverter and current measurement error leads to harmonic current, too. The repetitive control method was applied to the harmonic current suppression. For the repetitive control which is based on the internal model principle, the characteristic of the harmonic suppression is excellent. However, it amplifies inter-harmonic components. The inter-harmonic components have frequencies with non-integral multiples of the fundamental frequency. Therefore, the feedforward compensation is applied for the harmonic current to improve a suppression characteristic. Authors proposed harmonic current suppression control of PM motor in αβ coordinate by using repetitive perfect tracking control with PWM-hold model. Finally, we show the advantages of proposed method by simulations and experiments.

  11. Trial Watch

    PubMed Central

    Galluzzi, Lorenzo; Vacchelli, Erika; Fridman, Wolf Hervé; Galon, Jerome; Sautès-Fridman, Catherine; Tartour, Eric; Zucman-Rossi, Jessica; Zitvogel, Laurence; Kroemer, Guido

    2012-01-01

    Since the advent of hybridoma technology, dating back to 1975, monoclonal antibodies have become an irreplaceable diagnostic and therapeutic tool for a wide array of human diseases. During the last 15 years, several monoclonal antibodies (mAbs) have been approved by FDA for cancer therapy. These mAbs are designed to (1) activate the immune system against tumor cells, (2) inhibit cancer cell-intrinsic signaling pathways, (3) bring toxins in the close proximity of cancer cells, or (4) interfere with the tumor-stroma interaction. More recently, major efforts have been made for the development of immunostimulatory mAbs that either enhance cancer-directed immune responses or limit tumor- (or therapy-) driven immunosuppression. Some of these antibodies, which are thought to facilitate tumor eradication by initiating or sustaining a tumor-specific immune response, have already entered clinical trials. In this Trial Watch, we will review and discuss the clinical progress of the most important mAbs that are have entered clinical trials after January 2008. PMID:22720209

  12. Trial Watch

    PubMed Central

    Vacchelli, Erika; Aranda, Fernando; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Cremer, Isabelle; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Accumulating evidence suggests that the clinical efficacy of selected anticancer drugs, including conventional chemotherapeutics as well as targeted anticancer agents, originates (at least in part) from their ability to elicit a novel or reinstate a pre-existing tumor-specific immune response. One of the mechanisms whereby chemotherapy can stimulate the immune system to recognize and destroy malignant cells is commonly known as immunogenic cell death (ICD). Cancer cells succumbing to ICD are de facto converted into an anticancer vaccine and as such elicit an adaptive immune response. Several common chemotherapeutics share the ability of triggering ICD, as demonstrated in vaccination experiments relying on immunocompetent mice and syngeneic cancer cells. A large number of ongoing clinical trials involve such ICD inducers, often (but not always) as they are part of the gold standard therapeutic approach against specific neoplasms. In this Trial Watch, we summarize the latest advances on the use of cyclophosphamide, doxorubicin, epirubicin, oxaliplatin, and mitoxantrone in cancer patients, discussing high-impact studies that have been published during the last 13 months as well as clinical trials that have been initiated in the same period to assess the antineoplastic profile of these immunogenic drugs as off-label therapeutic interventions. PMID:24800173

  13. Trial Watch

    PubMed Central

    Aranda, Fernando; Vacchelli, Erika; Obrist, Florine; Eggermont, Alexander; Galon, Jérôme; Hervé Fridman, Wolf; Cremer, Isabelle; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    The expression “adoptive cell transfer” (ACT) is commonly employed to indicate an immunotherapeutic regimen involving the isolation of autologous blood-borne or tumor-infiltrating lymphocytes, their selection/expansion/activation ex vivo, and their reinfusion into the patient, most often in the context of lymphodepleting pre-conditioning and in combination with immunostimulatory treatments. Optionally, the cellular material for ACT is genetically manipulated before expansion to (1) target specific tumor-associated antigens; (2) endogenously express immunostimulatory molecules; and/or (3) persist for long periods upon reinfusion. Consistent efforts have been dedicated at the amelioration of this immunotherapeutic regimen throughout the past decade, resulting in the establishment of ever more efficient and safer ACT protocols. Accordingly, the number of clinical trials testing ACT in oncological indications does not cease to increase. In this Trial Watch, we summarize recent developments in this exciting area of research, covering both high-impact studies that have been published during the last 12 months and clinical trials that have been launched in the same period to evaluate the safety and therapeutic potential of ACT in cancer patients. PMID:25050207

  14. Recommended dietary allowances harmonization in Southeast Asia.

    PubMed

    Barba, Corazon Vc; Cabrera, Ma Isabel Z

    2008-01-01

    Issues and opportunities for RDA harmonization within the SEA region were first raised during the First Regional Forum and Workshop "RDAs: Scientific Basis and Future Directions", held in Singapore in March 1997. A regional review on RDAs in SEA showed general similarities for the different RDAs, although in some cases a country listed an exceptionally high or low RDA for a particular nutrient for a specific group. It also revealed differences in physiologic groupings and reference body weights, nutrients included and units of expression. Realizing these differences in RDA components between countries which makes technical composition different, a consensus on the need for regional collaboration and harmonization of RDAs was reached by participants from Indonesia, Malaysia, Philippines, Singapore, Thailand and Vietnam. A follow-up workshop was organized to work towards agreement throughout the region on common approaches, concepts and terminologies; application and uses, format and a research agenda. Round table discussions were held to arrive at specific recommendations for achieving harmonization. While divergence in opinions were expected, some clear-cut agreements were settled. Globalization envisions to achieve economic growth and development, with the effects expected to ripple through health, nutrition and welfare improvements. The harmonization of RDAs in SEA seeks to reach this vision by strengthening R and D capabilities (both logistic and manpower) within the region and within the countries in the region, as well as harmonizing the efforts of governments and industry within the region to reduce potential trade barriers such as those relating to food and nutrition quality assurance standards. PMID:18460439

  15. Participating in Clinical Trials

    MedlinePlus

    ... this page please turn Javascript on. Participating in Clinical Trials About Clinical Trials A Research Study With Human Subjects A clinical ... to treat or cure a disease. Phases of Clinical Trials Clinical trials of drugs are usually described based ...

  16. The evolution of harmonic Indian musical drums: A mathematical perspective

    NASA Astrophysics Data System (ADS)

    Gaudet, Samuel; Gauthier, Claude; Léger, Sophie

    2006-03-01

    We explain using mathematics how harmonic musical drums were discovered by Indian artisans and musicians more than 2000 years ago. To this end, we introduce a harmonic error function which measures the quality of the harmonic relationship and degeneracy of the first modes of vibration of a centrally symmetric loaded membrane. We explain that although the tabla configuration found by the ancient Indians is the most natural one, other configurations exist and some are harmonically superior to the classical one.

  17. Reduced Switching Frequency Active Harmonic Elimination for Multilevel Converters

    SciTech Connect

    Du, Zhong; Tolbert, Leon M; Chiasson, John N; Ozpineci, Burak

    2008-01-01

    This paper presents a reduced switching-frequency active-harmonic-elimination method (RAHEM) to eliminate any number of specific order harmonics of multilevel converters. First, resultant theory is applied to transcendental equations to eliminate low-order harmonics and to determine switching angles for a fundamental frequency-switching scheme. Next, based on the number of harmonics to be eliminated, Newton climbing method is applied to transcendental equations to eliminate high-order harmonics and to determine switching angles for the fundamental frequency-switching scheme. Third, the magnitudes and phases of the residual lower order harmonics are computed, generated, and subtracted from the original voltage waveform to eliminate these low-order harmonics. Compared to the active-harmonic-elimination method (AHEM), which generates square waves to cancel high-order harmonics, RAHEM has lower switching frequency. The simulation results show that the method can effectively eliminate all the specific harmonics, and a low total harmonic distortion (THD) near sine wave is produced. An experimental 11-level H-bridge multilevel converter with a field-programmable gate-array controller is employed to experimentally validate the method. The experimental results show that RAHEM does effectively eliminate any number of specific harmonics, and the output voltage waveform has low switching frequency and low THD.

  18. A Look at Damped Harmonic Oscillators through the Phase Plane

    ERIC Educational Resources Information Center

    Daneshbod, Yousef; Latulippe, Joe

    2011-01-01

    Damped harmonic oscillations appear naturally in many applications involving mechanical and electrical systems as well as in biological systems. Most students are introduced to harmonic motion in an elementary ordinary differential equation (ODE) course. Solutions to ODEs that describe simple harmonic motion are usually found by investigating the…

  19. Experimental verification of the mechanisms for nonlinear harmonic growth and suppression by harmonic injection in a traveling wave tube.

    PubMed

    Singh, A; Wöhlbier, J G; Booske, J H; Scharer, J E

    2004-05-21

    Understanding the generation and growth of nonlinear harmonic (and intermodulation) distortion in microwave amplifiers such as traveling wave tubes (TWTs), free electron lasers (FELs), and klystrons is of current research interest. Similar to FELs, the nonlinear harmonic growth rate scales with the harmonic number in TWTs. In klystrons, the wave number scaling applies to the nonlinear harmonic bunching and associated nonlinear space-charge waves. Using a custom-modified TWT that has sensors along the helix, we provide the first experimental confirmation of the scaling of nonlinear harmonic growth rate and wave number in TWTs. These scalings of a nonlinearly generated harmonic mode versus an injected linear harmonic mode imply that suppression by harmonic injection occurs at a single axial position that can be located as desired by changing the injected amplitude and phase.

  20. Experimental Verification of the Mechanisms for Nonlinear Harmonic Growth and Suppression by Harmonic Injection in a Traveling Wave Tube

    NASA Astrophysics Data System (ADS)

    Singh, A.; Wöhlbier, J. G.; Booske, J. H.; Scharer, J. E.

    2004-05-01

    Understanding the generation and growth of nonlinear harmonic (and intermodulation) distortion in microwave amplifiers such as traveling wave tubes (TWTs), free electron lasers (FELs), and klystrons is of current research interest. Similar to FELs, the nonlinear harmonic growth rate scales with the harmonic number in TWTs. In klystrons, the wave number scaling applies to the nonlinear harmonic bunching and associated nonlinear space-charge waves. Using a custom-modified TWT that has sensors along the helix, we provide the first experimental confirmation of the scaling of nonlinear harmonic growth rate and wave number in TWTs. These scalings of a nonlinearly generated harmonic mode versus an injected linear harmonic mode imply that suppression by harmonic injection occurs at a single axial position that can be located as desired by changing the injected amplitude and phase.

  1. Improved Endpoints for Cancer Immunotherapy Trials

    PubMed Central

    Eggermont, Alexander M. M.; Janetzki, Sylvia; Hodi, F. Stephen; Ibrahim, Ramy; Anderson, Aparna; Humphrey, Rachel; Blumenstein, Brent; Wolchok, Jedd

    2010-01-01

    Unlike chemotherapy, which acts directly on the tumor, cancer immunotherapies exert their effects on the immune system and demonstrate new kinetics that involve building a cellular immune response, followed by changes in tumor burden or patient survival. Thus, adequate design and evaluation of some immunotherapy clinical trials require a new development paradigm that includes reconsideration of established endpoints. Between 2004 and 2009, several initiatives facilitated by the Cancer Immunotherapy Consortium of the Cancer Research Institute and partner organizations systematically evaluated an immunotherapy-focused clinical development paradigm and created the principles for redefining trial endpoints. On this basis, a body of clinical and laboratory data was generated that supports three novel endpoint recommendations. First, cellular immune response assays generate highly variable results. Assay harmonization in multicenter trials may minimize variability and help to establish cellular immune response as a reproducible biomarker, thus allowing investigation of its relationship with clinical outcomes. Second, immunotherapy may induce novel patterns of antitumor response not captured by Response Evaluation Criteria in Solid Tumors or World Health Organization criteria. New immune-related response criteria were defined to more comprehensively capture all response patterns. Third, delayed separation of Kaplan–Meier curves in randomized immunotherapy trials can affect results. Altered statistical models describing hazard ratios as a function of time and recognizing differences before and after separation of curves may allow improved planning of phase III trials. These recommendations may improve our tools for cancer immunotherapy trials and may offer a more realistic and useful model for clinical investigation. PMID:20826737

  2. Trial watch

    PubMed Central

    Galluzzi, Lorenzo; Senovilla, Laura; Vacchelli, Erika; Eggermont, Alexander; Fridman, Wolf Hervé; Galon, Jerome; Sautès-Fridman, Catherine; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido

    2012-01-01

    Dendritic cells (DCs) occupy a central position in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the elicitation of potent cellular and humoral immunity. Accordingly, DCs are involved in the etiology of conditions as diverse as infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. During the last decade, several methods have been developed to load DCs with tumor-associated antigens, ex vivo or in vivo, in the attempt to use them as therapeutic anticancer vaccines that would elicit clinically relevant immune responses. While this has not always been the case, several clinical studies have demonstrated that DC-based anticancer vaccines are capable of activating tumor-specific immune responses that increase overall survival, at least in a subset of patients. In 2010, this branch of clinical research has culminated with the approval by FDA of a DC-based therapeutic vaccine (sipuleucel-T, Provenge®) for use in patients with asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. Intense research efforts are currently dedicated to the identification of the immunological features of patients that best respond to DC-based anticancer vaccines. This knowledge may indeed lead to personalized combination strategies that would extend the benefit of DC-based immunotherapy to a larger patient population. In addition, widespread enthusiasm has been generated by the results of the first clinical trials based on in vivo DC targeting, an approach that holds great promises for the future of DC-based immunotherapy. In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating DC-based interventions for cancer therapy. PMID:23170259

  3. Harmonic generation by circularly polarized laser beams propagating in plasma

    SciTech Connect

    Agrawal, Ekta; Hemlata,; Jha, Pallavi

    2015-04-15

    An analytical theory is developed for studying the phenomenon of generation of harmonics by the propagation of an obliquely incident, circularly polarized laser beam in homogeneous, underdense plasma. The amplitudes of second and third harmonic radiation as well as detuning distance have been obtained and their variation with the angle of incidence is analyzed. The amplitude of harmonic radiation increases with the angle of incidence while the detuning distance decreases, for a given plasma electron density. It is observed that the generated second and third harmonic radiation is linearly and elliptically polarized, respectively. The harmonic radiation vanishes at normal incidence of the circularly polarized laser beam.

  4. Harmonized Medical Device Regulation: Need, Challenges, and Risks of not Harmonizing the Regulation in Asia

    PubMed Central

    Kaushik, A; Saini, KS; Anil, B; Rambabu, S

    2010-01-01

    Medical device sector is one of the most complex and challenging business segments of the healthcare industry with close collaboration between science and engineering. Despite the fact that Asia has 60% of the world population providing large market potential, Asian healthcare expenditure constitutes only 15% of the global healthcare expenditure. The accelerated ageing population and increasing prevalence of chronic disease are the key drivers that contribute toward the increase in the total healthcare expenditure on medical devices in the region. Several policies clearly showed the eagerness of the government to provide better healthcare infrastructure with better medical devices and facilities. The fundamental objective of the regulatory harmonization is to improve the efficiency of national economies and their ability to adopt to change and remain competitive. After the era of liberalization and globalization, the desires of developing economies is to ensure safety and performance of the product brought to their markets and for this harmonized regulation is an important tool for strengthening the same. If we talk about the industry need, then this approach will eliminate redundant requirements that do not contribute to safety and effectiveness. In addition, Asia is diverse in many respects and with it come the various challenges to harmonizing the regulation which includes diversity in culture, politics, economy, historical issues, etc. If, by any reason, the regulation of medical devices is not harmonized and consequently, the harmonized regulation is not adopted, then it leads to serious concerns like delayed or absent access to innovative technology, continued rise in the cost of medical therapies, etc. So this issue is written to attract all stakeholders to move toward the concept of harmonization, keeping in mind their need, challenges, and risks of not harmonizing the regulation as well. PMID:21331201

  5. Harmonized Medical Device Regulation: Need, Challenges, and Risks of not Harmonizing the Regulation in Asia.

    PubMed

    Kaushik, A; Saini, Ks; Anil, B; Rambabu, S

    2010-01-01

    Medical device sector is one of the most complex and challenging business segments of the healthcare industry with close collaboration between science and engineering. Despite the fact that Asia has 60% of the world population providing large market potential, Asian healthcare expenditure constitutes only 15% of the global healthcare expenditure. The accelerated ageing population and increasing prevalence of chronic disease are the key drivers that contribute toward the increase in the total healthcare expenditure on medical devices in the region. Several policies clearly showed the eagerness of the government to provide better healthcare infrastructure with better medical devices and facilities. The fundamental objective of the regulatory harmonization is to improve the efficiency of national economies and their ability to adopt to change and remain competitive. After the era of liberalization and globalization, the desires of developing economies is to ensure safety and performance of the product brought to their markets and for this harmonized regulation is an important tool for strengthening the same. If we talk about the industry need, then this approach will eliminate redundant requirements that do not contribute to safety and effectiveness. In addition, Asia is diverse in many respects and with it come the various challenges to harmonizing the regulation which includes diversity in culture, politics, economy, historical issues, etc. If, by any reason, the regulation of medical devices is not harmonized and consequently, the harmonized regulation is not adopted, then it leads to serious concerns like delayed or absent access to innovative technology, continued rise in the cost of medical therapies, etc. So this issue is written to attract all stakeholders to move toward the concept of harmonization, keeping in mind their need, challenges, and risks of not harmonizing the regulation as well.

  6. Harmonized Medical Device Regulation: Need, Challenges, and Risks of not Harmonizing the Regulation in Asia.

    PubMed

    Kaushik, A; Saini, Ks; Anil, B; Rambabu, S

    2010-01-01

    Medical device sector is one of the most complex and challenging business segments of the healthcare industry with close collaboration between science and engineering. Despite the fact that Asia has 60% of the world population providing large market potential, Asian healthcare expenditure constitutes only 15% of the global healthcare expenditure. The accelerated ageing population and increasing prevalence of chronic disease are the key drivers that contribute toward the increase in the total healthcare expenditure on medical devices in the region. Several policies clearly showed the eagerness of the government to provide better healthcare infrastructure with better medical devices and facilities. The fundamental objective of the regulatory harmonization is to improve the efficiency of national economies and their ability to adopt to change and remain competitive. After the era of liberalization and globalization, the desires of developing economies is to ensure safety and performance of the product brought to their markets and for this harmonized regulation is an important tool for strengthening the same. If we talk about the industry need, then this approach will eliminate redundant requirements that do not contribute to safety and effectiveness. In addition, Asia is diverse in many respects and with it come the various challenges to harmonizing the regulation which includes diversity in culture, politics, economy, historical issues, etc. If, by any reason, the regulation of medical devices is not harmonized and consequently, the harmonized regulation is not adopted, then it leads to serious concerns like delayed or absent access to innovative technology, continued rise in the cost of medical therapies, etc. So this issue is written to attract all stakeholders to move toward the concept of harmonization, keeping in mind their need, challenges, and risks of not harmonizing the regulation as well. PMID:21331201

  7. Variational study of a two-level system coupled to a harmonic oscillator in an ultrastrong-coupling regime

    SciTech Connect

    Hwang, Myung-Joong; Choi, Mahn-Soo

    2010-08-15

    The nonclassical behavior of a two-level system coupled to a harmonic oscillator is investigated in the ultrastrong coupling regime. We revisit the variational solution of the ground state and find that the existing solutions do not account accurately for nonclassical effects such as squeezing. We suggest a trial wave function and demonstrate that it has an excellent accuracy for the quantum correlation effects as well as for the energy.

  8. Investigation of Student Reasoning about Harmonic Motions

    NASA Astrophysics Data System (ADS)

    Tongnopparat, N.; Poonyawatpornkul, J.; Wattanakasiwich, P.

    This study aimed to investigate student reasoning about harmonic oscillations. We conducted a semi-structured interview based on three situations of harmonic motions—(1) a mass attaching to spring and horizontally oscillating without damping, (2) the same situation but vertically oscillating and (3) a mass attaching to spring and oscillating in viscous liquid. Forty-five second-year students taking a vibrations and wave course at Chiang Mai University, Thailand participated in a fifteen-minute interview, which was video-recorded. The videos were transcribed and analyzed by three physics instructors. As results, we found that most students had misconceptions about angular frequency and energy mostly in the second and third situations.

  9. Honeycomb optical lattices with harmonic confinement

    SciTech Connect

    Block, J. Kusk; Nygaard, N.

    2010-05-15

    We consider the fate of the Dirac points in the spectrum of a honeycomb optical lattice in the presence of a harmonic confining potential. By numerically solving the tight binding model, we calculate the density of states and find that the energy dependence can be understood from analytical arguments. In addition, we show that the density of states of the harmonically trapped lattice system can be understood by application of a local density approximation based on the density of states in the homogeneous lattice. The Dirac points are found to survive locally in the trap as evidenced by the local density of states. Furthermore, they give rise to a distinct spatial profile of a noninteracting Fermi gas.

  10. Transport of correlations in a harmonic chain

    NASA Astrophysics Data System (ADS)

    Nicacio, F.; Semião, F. L.

    2016-07-01

    We study the propagation of different types of correlations through a quantum bus formed by a chain of coupled harmonic oscillators. This includes steering, entanglement, mutual information, quantum discord, and Bell-like nonlocality. The whole system consists of the quantum bus (propagation medium) and other quantum harmonic oscillators (sources and receivers of quantum correlations) weakly coupled to the chain. We are particularly interested in using the point of view of transport to spot distinctive features displayed by different kinds of correlations. We found, for instance, that there are fundamental differences in the way steering and discord propagate, depending on the way they are defined with respect to the parties involved in the initial correlated state. We analyzed both the closed- and open-system dynamics as well as the role played by thermal excitations in the propagation of the correlations.

  11. Inhomogeneous high harmonic generation in krypton clusters.

    PubMed

    Ruf, H; Handschin, C; Cireasa, R; Thiré, N; Ferré, A; Petit, S; Descamps, D; Mével, E; Constant, E; Blanchet, V; Fabre, B; Mairesse, Y

    2013-02-22

    High order harmonic generation from clusters is a controversial topic: conflicting theories exist, with different explanations for similar experimental observations. From an experimental point of view, separating the contributions from monomers and clusters is challenging. By performing a spectrally and spatially resolved study in a controlled mixture of clusters and monomers, we are able to isolate a region of the spectrum where the emission purely originates from clusters. Surprisingly, the emission from clusters is depolarized, which is the signature of statistical inhomogeneous emission from a low-density source. The harmonic response to laser ellipticity shows that this generation is produced by a new recollisional mechanism, which opens the way to future theoretical studies.

  12. Prolate spheroidal harmonic expansion of gravitational field

    SciTech Connect

    Fukushima, Toshio

    2014-06-01

    As a modification of the oblate spheroidal case, a recursive method is developed to compute the point value and a few low-order derivatives of the prolate spheroidal harmonics of the second kind, Q{sub nm} (y), namely the unnormalized associated Legendre function (ALF) of the second kind with its argument in the domain, 1 < y < ∞. They are required in evaluating the prolate spheroidal harmonic expansion of the gravitational field in addition to the point value and the low-order derivatives of P-bar {sub nm}(t), the 4π fully normalized ALF of the first kind with its argument in the domain, |t| ≤ 1. The new method will be useful in the gravitational field computation of elongated celestial objects.

  13. Fast interferometric second harmonic generation microscopy

    PubMed Central

    Bancelin, Stéphane; Couture, Charles-André; Légaré, Katherine; Pinsard, Maxime; Rivard, Maxime; Brown, Cameron; Légaré, François

    2016-01-01

    We report the implementation of fast Interferometric Second Harmonic Generation (I-SHG) microscopy to study the polarity of non-centrosymmetric structures in biological tissues. Using a sample quartz plate, we calibrate the spatially varying phase shift introduced by the laser scanning system. Compensating this phase shift allows us to retrieve the correct phase distribution in periodically poled lithium niobate, used as a model sample. Finally, we used fast interferometric second harmonic generation microscopy to acquire phase images in tendon. Our results show that the method exposed here, using a laser scanning system, allows to recover the polarity of collagen fibrils, similarly to standard I-SHG (using a sample scanning system), but with an imaging time about 40 times shorter. PMID:26977349

  14. Harmonic oscillator in presence of nonequilibrium environment

    SciTech Connect

    Chaudhuri, Jyotipratim Ray; Chaudhury, Pinaki; Chattopadhyay, Sudip

    2009-06-21

    Based on a microscopic Hamiltonian picture where the system is coupled with the nonequilibrium environment, comprising of a set of harmonic oscillators, the Langevin equation with proper microscopic specification of Langevin force is formulated analytically. In our case, the reservoir is perturbed by an external force, either executing rapid or showing periodic fluctuations, hence the reservoir is not in thermal equilibrium. In the presence of external fluctuating force, using Shapiro-Loginov procedure, we arrive at the linear coupled first order differential equations for the two-time correlations and examine the time evolution of the same considering the system as a simple harmonic oscillator. We study the stochastic resonance phenomena of a Kubo-type oscillator (assumed to be the system) when the bath is modulated by a periodic force. The result(s) obtained here is of general significance and can be used to analyze the signature of stochastic resonance.

  15. High-order harmonic generation in alkanes

    SciTech Connect

    Altucci, C.; Velotta, R.; Heesel, E.; Springate, E.; Marangos, J. P.; Vozzi, C.; Benedetti, E.; Calegari, F.; Sansone, G.; Stagira, S.; Nisoli, M.; Tosa, V.

    2006-04-15

    We have investigated the process of high-order harmonic generation in light alkanes by using femtosecond laser pulses. We show the experimental results cannot be matched by a model that assumes a single active electron only in a hydrogenic s orbital. Clear evidences are shown of the important role played by the p-like character originating from the covalent C-H bond. By constructing a suitable mixture of s-type and p-type atomic wave functions, an excellent agreement between measurements in methane and simulations is found, thus confirming the validity of the developed method as a general tool for the analysis of high-order harmonic generation in complex molecules.

  16. Possible second harmonic gyroemission at Uranus

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Curran, D. B.

    1990-01-01

    During the inbound trajectory toward Uranus, the Planetary Radio Astronomy Instrument on board the Voyager 2 spacecraft observed narrow-band smooth (n-smooth) emission at frequencies centered near 60 kHz. By assuming models of the plasma density for the dayside magnetosphere of Uranus and by using cold plasma theory together with stringent observational constraints, ray-tracing calculations were performed to determine the source location and mode of the n-smooth emission. Ray-tracing calculations suggest that the n-smooth emission with sources near the magnetic equator may be fundamental X mode for certain conditions or second harmonic gyroemission. If the emission is second harmonic gyroemission, the fundamental emission at 30 kHz is expected but apparently not observed. These findings are discussed in the context of the most recent developments in the theory of the cyclotron maser instability.

  17. Harmonics in a Wind Power Plant: Preprint

    SciTech Connect

    Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.

    2015-04-02

    Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.

  18. Trial Watch

    PubMed Central

    Aranda, Fernando; Vacchelli, Erika; Eggermont, Alexander; Galon, Jerome; Fridman, Wolf Hervé; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Immunostimulatory monoclonal antibodies (mAbs) exert antineoplastic effects by eliciting a novel or reinstating a pre-existing antitumor immune response. Most often, immunostimulatory mAbs activate T lymphocytes or natural killer (NK) cells by inhibiting immunosuppressive receptors, such as cytotoxic T lymphocyte-associated protein 4 (CTLA4) or programmed cell death 1 (PDCD1, best known as PD-1), or by engaging co-stimulatory receptors, like CD40, tumor necrosis factor receptor superfamily, member 4 (TNFRSF4, best known as OX40) or TNFRSF18 (best known as GITR). The CTLA4-targeting mAb ipilimumab has been approved by the US Food and Drug Administration for use in patients with unresectable or metastatic melanoma in 2011. The therapeutic profile of ipilimumab other CTLA4-blocking mAbs, such as tremelimumab, is currently being assessed in subjects affected by a large panel of solid neoplasms. In the last few years, promising clinical results have also been obtained with nivolumab, a PD-1-targeting mAb formerly known as BMS-936558. Accordingly, the safety and efficacy of nivolumab and other PD-1-blocking molecules are being actively investigated. Finally, various clinical trials are underway to test the therapeutic potential of OX40- and GITR-activating mAbs. Here, we summarize recent findings on the therapeutic profile of immunostimulatory mAbs and discuss clinical trials that have been launched in the last 14 months to assess the therapeutic profile of these immunotherapeutic agents. PMID:24701370

  19. Trial Watch

    PubMed Central

    Vacchelli, Erika; Aranda, Fernando; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    In 1997, for the first time in history, a monoclonal antibody (mAb), i.e., the chimeric anti-CD20 molecule rituximab, was approved by the US Food and Drug Administration for use in cancer patients. Since then, the panel of mAbs that are approved by international regulatory agencies for the treatment of hematopoietic and solid malignancies has not stopped to expand, nowadays encompassing a stunning amount of 15 distinct molecules. This therapeutic armamentarium includes mAbs that target tumor-associated antigens, as well as molecules that interfere with tumor-stroma interactions or exert direct immunostimulatory effects. These three classes of mAbs exert antineoplastic activity via distinct mechanisms, which may or may not involve immune effectors other than the mAbs themselves. In previous issues of OncoImmunology, we provided a brief scientific background to the use of mAbs, all types confounded, in cancer therapy, and discussed the results of recent clinical trials investigating the safety and efficacy of this approach. Here, we focus on mAbs that primarily target malignant cells or their interactions with stromal components, as opposed to mAbs that mediate antineoplastic effects by activating the immune system. In particular, we discuss relevant clinical findings that have been published during the last 13 months as well as clinical trials that have been launched in the same period to investigate the therapeutic profile of hitherto investigational tumor-targeting mAbs. PMID:24605265

  20. Trial Watch

    PubMed Central

    Aranda, Fernando; Vacchelli, Erika; Obrist, Florine; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Cremer, Isabelle; Henrik ter Meulen, Jan; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic. PMID:25083332

  1. Trial watch

    PubMed Central

    Vacchelli, Erika; Galluzzi, Lorenzo; Eggermont, Alexander; Fridman, Wolf Hervé; Galon, Jerome; Sautès-Fridman, Catherine; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido

    2012-01-01

    Toll-like receptors (TLRs) have first been characterized for their capacity to detect conserved microbial components like lipopolysaccharide (LPS) and double-stranded RNA, resulting in the elicitation of potent (innate) immune responses against invading pathogens. More recently, TLRs have also been shown to promote the activation of the cognate immune system against cancer cells. Today, only three TLR agonists are approved by FDA for use in humans: the bacillus Calmette-Guérin (BCG), monophosphoryl lipid A (MPL) and imiquimod. BCG (an attenuated strain of Mycobacterium bovis) is mainly used as a vaccine against tuberculosis, but also for the immunotherapy of in situ bladder carcinoma. MPL (derived from the LPS of Salmonella minnesota) is included in the formulation of Cervarix®, a vaccine against human papillomavirus-16 and -18. Imiquimod (a synthetic imidazoquinoline) is routinely employed for actinic keratosis, superficial basal cell carcinoma, and external genital warts (condylomata acuminata). In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating FDA-approved TLR agonists as off-label medications for cancer therapy. PMID:23162757

  2. Two atoms in an anisotropic harmonic trap

    SciTech Connect

    Idziaszek, Z.; Calarco, T.

    2005-05-15

    We consider the system of two interacting atoms confined in axially symmetric harmonic trap. Within the pseudopotential approximation, we solve the Schroedinger equation exactly, discussing the limits of quasi-one-and quasi-two-dimensional geometries. Finally, we discuss the application of an energy-dependent pseudopotential, which allows us to extend the validity of our results to the case of tight traps and large scattering lengths.

  3. Comments on the Method of harmonic balance

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1984-01-01

    The advantages and limitations of the harmonic-balance or describing-function approximation scheme for solving nonlinear ordinary differential equations of oscillatory motion are discussed. Advantages include appicability to equations of any order and with large degrees of nonlinearity, ease of determining limit-cycle behavior and its stability, and overall speed and efficiency; the limitation rules are essentially those described by Mickens (1983). It is pointed out that perturbation procedures provide better results when the degree of nonlinearity is small.

  4. Orientation dependence of high-order harmonic generation in molecules

    NASA Astrophysics Data System (ADS)

    Lein, M.; Corso, P. P.; Marangos, J. P.; Knight, P. L.

    2003-02-01

    We present two- and three-dimensional model calculations of high-order harmonic generation in H+2. The harmonic spectra exhibit clear signatures of intramolecular interference. An interference minimum appears at a harmonic order that depends on the molecular orientation. Harmonic generation in three-center molecules is studied on the basis of two-dimensional calculations for a H2+3 model system. From analytical considerations, the orientation dependence of the harmonic intensities in three-center molecules exhibits a double minimum due to intramolecular interference. In the numerical results, the double minimum is broadened into a single wide minimum. The effect of nonzero laser ellipticity on harmonic generation is investigated by means of two-dimensional simulations for H+2. We find that harmonic generation with elliptical polarization is governed by interference effects similar to linear polarization.

  5. Analyzing correlation functions with tesseral and Cartesian spherical harmonics

    SciTech Connect

    Danielewicz, Pawel; Pratt, Scott

    2007-03-15

    The dependence of interparticle correlations on the orientation of particle relative momentum can yield unique information on the space-time features of emission in reactions with multiparticle final states. In the present paper, the benefits of a representation and analysis of the three-dimensional correlation information in terms of surface spherical harmonics is presented. The harmonics include the standard complex tesseral harmonics and the real Cartesian harmonics. Mathematical properties of the lesser known Cartesian harmonics are illuminated. The physical content of different angular harmonic components in a correlation is described. The resolving power of different final-state effects with regard to determining angular features of emission regions is investigated. The considered final-state effects include identity interference, strong interactions, and Coulomb interactions. The correlation analysis in terms of spherical harmonics is illustrated with the cases of Gaussian and blast-wave sources for proton-charged meson and baryon-baryon pairs.

  6. Unlocking higher harmonics in atomic force microscopy with gentle interactions

    PubMed Central

    Font, Josep; Verdaguer, Albert

    2014-01-01

    Summary In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interactions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography from that induced by compositional heterogeneity. PMID:24778948

  7. Unlocking higher harmonics in atomic force microscopy with gentle interactions.

    PubMed

    Santos, Sergio; Barcons, Victor; Font, Josep; Verdaguer, Albert

    2014-01-01

    In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interactions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography from that induced by compositional heterogeneity.

  8. Food legislation and its harmonization in Russia.

    PubMed

    Shamtsyan, Mark

    2014-08-01

    Bringing Russian legislation into compliance with international norms and standards is necessary after its accession to the World Trade Organization. Harmonization of food legislation and of sanitary and phytosanitary measures are among the problems that had to be solved first. Many Russian food and trade regulations had been changed or are still in the process of being reformed, largely owing to a policy of integration pursued by the Customs Union of Russia, Belarus and Kazakhstan. However, as a member of the Eurasian Economic Community, Russia is also engaged not only in harmonization throughout the Customs Union but also Kirgizstan and Tajikistan, and Armenia, Moldova and Ukraine as observer countries. Russia also continues to coordinate policy reforms closely with the European Union, its primary trade partner, ultimately bringing Russian food and sanitary norms closer to international standards (e.g. Codex). Today, all participants in the Russian food production chain, processing and sale of foods have to deal with growing numbers of security standards. Many organizations are certified under several schemes, which leads to unnecessary costs. Harmonization of standards has helped promote solutions in the domestic market as well as import-export of foods and raw materials for production. Priorities have included food safety for human health, consumer protection, removal of hazardous and/or adulterated products and increased competition within the domestic food market as well as mutual recognition of certification in bilateral and multilateral (inter)national agreements.

  9. Dark-matter harmonics beyond annual modulation

    SciTech Connect

    Lee, Samuel K.; Lisanti, Mariangela; Safdi, Benjamin R. E-mail: mlisanti@princeton.edu

    2013-11-01

    The count rate at dark-matter direct-detection experiments should modulate annually due to the motion of the Earth around the Sun. We show that higher-frequency modulations, including daily modulation, are also present and in some cases are nearly as strong as the annual modulation. These higher-order modes are particularly relevant if (i) the dark matter is light, O(10) GeV, (ii) the scattering is inelastic, or (iii) velocity substructure is present; for these cases, the higher-frequency modes are potentially observable at current and ton-scale detectors. We derive simple expressions for the harmonic modes as functions of the astrophysical and geophysical parameters describing the Earth's orbit, using an updated expression for the Earth's velocity that corrects a common error in the literature. For an isotropic halo velocity distribution, certain ratios of the modes are approximately constant as a function of nuclear recoil energy. Anisotropic distributions can also leave observable features in the harmonic spectrum. Consequently, the higher-order harmonic modes are a powerful tool for identifying a potential signal from interactions with the Galactic dark-matter halo.

  10. Volumetric Colon Wall Unfolding Using Harmonic Differentials

    PubMed Central

    Zeng, Wei; Marino, Joseph; Kaufman, Arie; Gu, Xianfeng David

    2011-01-01

    Volumetric colon wall unfolding is a novel method for virtual colon analysis and visualization with valuable applications in virtual colonoscopy (VC) and computer-aided detection (CAD) systems. A volumetrically unfolded colon enables doctors to visualize the entire colon structure without occlusions due to haustral folds, and is critical for performing efficient and accurate texture analysis on the volumetric colon wall. Though conventional colon surface flattening has been employed for these uses, volumetric colon unfolding offers the advantages of providing the needed quantities of information with needed accuracy. This work presents an efficient and effective volumetric colon unfolding method based on harmonic differentials. The colon volumes are reconstructed from CT images and are represented as tetrahedral meshes. Three harmonic 1-forms, which are linearly independent everywhere, are computed on the tetrahedral mesh. Through integration of the harmonic 1-forms, the colon volume is mapped periodically to a canonical cuboid. The method presented is automatic, simple, and practical. Experimental results are reported to show the performance of the algorithm on real medical datasets. Though applied here specifically to the colon, the method is general and can be generalized for other volumes. PMID:21765563

  11. Food legislation and its harmonization in Russia.

    PubMed

    Shamtsyan, Mark

    2014-08-01

    Bringing Russian legislation into compliance with international norms and standards is necessary after its accession to the World Trade Organization. Harmonization of food legislation and of sanitary and phytosanitary measures are among the problems that had to be solved first. Many Russian food and trade regulations had been changed or are still in the process of being reformed, largely owing to a policy of integration pursued by the Customs Union of Russia, Belarus and Kazakhstan. However, as a member of the Eurasian Economic Community, Russia is also engaged not only in harmonization throughout the Customs Union but also Kirgizstan and Tajikistan, and Armenia, Moldova and Ukraine as observer countries. Russia also continues to coordinate policy reforms closely with the European Union, its primary trade partner, ultimately bringing Russian food and sanitary norms closer to international standards (e.g. Codex). Today, all participants in the Russian food production chain, processing and sale of foods have to deal with growing numbers of security standards. Many organizations are certified under several schemes, which leads to unnecessary costs. Harmonization of standards has helped promote solutions in the domestic market as well as import-export of foods and raw materials for production. Priorities have included food safety for human health, consumer protection, removal of hazardous and/or adulterated products and increased competition within the domestic food market as well as mutual recognition of certification in bilateral and multilateral (inter)national agreements. PMID:23633268

  12. Harmonic Pinnacles in the Discrete Gaussian Model

    NASA Astrophysics Data System (ADS)

    Lubetzky, Eyal; Martinelli, Fabio; Sly, Allan

    2016-06-01

    The 2 D Discrete Gaussian model gives each height function {η : {mathbb{Z}^2tomathbb{Z}}} a probability proportional to {exp(-β mathcal{H}(η))}, where {β} is the inverse-temperature and {mathcal{H}(η) = sum_{x˜ y}(η_x-η_y)^2} sums over nearest-neighbor bonds. We consider the model at large fixed {β}, where it is flat unlike its continuous analog (the Discrete Gaussian Free Field). We first establish that the maximum height in an {L× L} box with 0 boundary conditions concentrates on two integers M, M + 1 with {M˜ √{(1/2πβ)log Lloglog L}}. The key is a large deviation estimate for the height at the origin in {mathbb{Z}2}, dominated by "harmonic pinnacles", integer approximations of a harmonic variational problem. Second, in this model conditioned on {η≥ 0} (a floor), the average height rises, and in fact the height of almost all sites concentrates on levels H, H + 1 where {H˜ M/√{2}}. This in particular pins down the asymptotics, and corrects the order, in results of Bricmont et al. (J. Stat. Phys. 42(5-6):743-798, 1986), where it was argued that the maximum and the height of the surface above a floor are both of order {√{log L}}. Finally, our methods extend to other classical surface models (e.g., restricted SOS), featuring connections to p-harmonic analysis and alternating sign matrices.

  13. A method for suppression of spurious fundamental-harmonic waves in gyrotrons operating at the second cyclotron harmonic

    NASA Astrophysics Data System (ADS)

    Kalynov, Yu. K.; Osharin, I. V.; Savilov, A. V.

    2016-05-01

    A typical problem of gyrotrons operating at high harmonics of the electron cyclotron frequency is the suppression of parasitic near-cutoff waves excited at lower harmonics. In this paper, a method for a significant improvement of the selectivity of the second-harmonic gyrotrons is proposed. This method is based on the use of quasi-regular cavities with short irregularities, which provide different effects on the process of excitation of the operating second-harmonic wave and the spurious fundamental-harmonic wave by the electron beam.

  14. Angle-resolved second harmonic light scattering from colloidal suspensions and second harmonic particle microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Ningping

    2001-08-01

    We have carried out two nonlinear optical experiments with colloidal particles. Our first nonlinear optical experiment studied Second-Harmonic Generation (SHG) light scattering from colloidal suspension. In particular, we measured the angle-resolved second-harmonic generation light scattering from suspensions of centrosymmetric micron-size polystyrene spheres with surface-adsorbed dye (malachite green). The second-harmonic scattering angular profiles differ qualitatively from the linear light scattering angular profiles of the same particles. We have investigated these radiation patterns using several polarization configurations and particle diameters. We introduce a simple Rayleigh-Gans-Debye model to account for the SHG scattering anisotropy. The model compares favorably with our experimental data. Our measurements suggest scattering anisotropy may be used to isolate particle nonlinear optical effect from other bulk nonlinear optical effects in suspension. Our second nonlinear optical experiment studied the Second-Harmonic Generation (SHG) from single micron-size particles. We built a nonlinear optical microscope for this purpose. We report experimental observations of second harmonic generation from single micron-size polystyrene (PS), silica, and PolyMethylMethAcrylate (PMMA) spheres on flat substrates by SHG microscopy. At low input light intensities the SH signals depend quadratically on the intensity of the excitation beam, but at larger input intensities some of the SH signals increase exponentially with increasing input intensity. This exponential enhancement depends on particle size and sphere composition. We describe the experiments, report the observations and provide an approximate analytical framework for understanding our measurements.

  15. HVDC-AC system interaction from AC harmonics. Volume 1. Harmonic impedance calculations. Final report

    SciTech Connect

    Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R

    1982-09-01

    Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.

  16. Trial Watch

    PubMed Central

    Vacchelli, Erika; Eggermont, Alexander; Fridman, Wolf Hervé; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-01-01

    During the past two decades, the notion that cancer would merely constitute a cell-intrinsic disease has gradually been complemented by a model postulating that the immune system plays a relevant role during all stages of oncogenesis and tumor progression. Along with this conceptual shift, several strategies have been devised to stimulate tumor-specific immune responses, including relatively unselective approaches such as the systemic administration of adjuvants or immunomodulatory cytokines. One year ago, in the July issue of OncoImmunology, we described the main biological features of this large group of proteins and discussed the progress of ongoing clinical studies evaluating their safety and therapeutic potential in cancer patients. Here, we summarize the latest developments in this area of clinical research, focusing on high impact studies that have been published during the last 13 mo and clinical trials launched in the same period to investigate which cytokines can be employed as safe and efficient immunostimulatory interventions against cancer. PMID:24073369

  17. Trial watch

    PubMed Central

    Vacchelli, Erika; Eggermont, Alexander; Sautès-Fridman, Catherine; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-01-01

    Oncolytic virotherapy is emerging as a promising approach for the treatment of several neoplasms. The term “oncolytic viruses” is generally employed to indicate naturally occurring or genetically engineered attenuated viral particles that cause the demise of malignant cells while sparing their non-transformed counterparts. From a conceptual standpoint, oncolytic viruses differ from so-called “oncotropic viruses” in that only the former are able to kill cancer cells, even though both display a preferential tropism for malignant tissues. Of note, such a specificity can originate at several different steps of the viral cycle, including the entry of virions (transductional specificity) as well as their intracellular survival and replication (post-transcriptional and transcriptional specificity). During the past two decades, a large array of replication-competent and replication-incompetent oncolytic viruses has been developed and engineered to express gene products that would specifically promote the death of infected (cancer) cells. However, contrarily to long-standing beliefs, the antineoplastic activity of oncolytic viruses is not a mere consequence of the cytopathic effect, i.e., the lethal outcome of an intense, productive viral infection, but rather involves the elicitation of an antitumor immune response. In line with this notion, oncolytic viruses genetically modified to drive the local production of immunostimulatory cytokines exert more robust therapeutic effects than their non-engineered counterparts. Moreover, the efficacy of oncolytic virotherapy is significantly improved by some extent of initial immunosuppression (facilitating viral replication and spread) followed by the administration of immunostimulatory molecules (boosting antitumor immune responses). In this Trial Watch, we will discuss the results of recent clinical trials that have evaluated/are evaluating the safety and antineoplastic potential of oncolytic virotherapy. PMID:23894720

  18. Trial watch

    PubMed Central

    Vacchelli, Erika; Vitale, Ilio; Eggermont, Alexander; Fridman, Wolf Hervé; Fučíková, Jitka; Cremer, Isabelle; Galon, Jérôme; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-01-01

    Dendritic cells (DCs) occupy a privileged position at the interface between innate and adaptive immunity, orchestrating a large panel of responses to both physiological and pathological cues. In particular, whereas the presentation of antigens by immature DCs generally results in the development of immunological tolerance, mature DCs are capable of priming robust, and hence therapeutically relevant, adaptive immune responses. In line with this notion, functional defects in the DC compartment have been shown to etiologically contribute to pathological conditions including (but perhaps not limited to) infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. Thus, the possibility of harnessing the elevated immunological potential of DCs for anticancer therapy has attracted considerable interest from both researchers and clinicians over the last decade. Alongside, several methods have been developed not only to isolate DCs from cancer patients, expand them, load them with tumor-associated antigens and hence generate highly immunogenic clinical grade infusion products, but also to directly target DCs in vivo. This intense experimental effort has culminated in 2010 with the approval by the US FDA of a DC-based preparation (sipuleucel-T, Provenge®) for the treatment of asymptomatic or minimally symptomatic metastatic castration-refractory prostate cancer. As an update to the latest Trial Watch dealing with this exciting field of research (October 2012), here we summarize recent advances in DC-based anticancer regimens, covering both high-impact studies that have been published during the last 13 mo and clinical trials that have been launched in the same period to assess the antineoplastic potential of this variant of cellular immunotherapy. PMID:24286020

  19. Trial Watch

    PubMed Central

    Vacchelli, Erika; Eggermont, Alexander; Fridman, Wolf Hervé; Galon, Jérôme; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-01-01

    Adoptive cell transfer (ACT) represents a prominent form of immunotherapy against malignant diseases. ACT is conceptually distinct from dendritic cell-based approaches (which de facto constitute cellular vaccines) and allogeneic transplantation (which can be employed for the therapy of hematopoietic tumors) as it involves the isolation of autologous lymphocytes exhibiting antitumor activity, their expansion/activation ex vivo and their reintroduction into the patient. Re-infusion is most often performed in the context of lymphodepleting regimens (to minimize immunosuppression by host cells) and combined with immunostimulatory interventions, such as the administration of Toll-like receptor agonists. Autologous cells that are suitable for ACT protocols can be isolated from tumor-infiltrating lymphocytes or generated by engineering their circulating counterparts for the expression of transgenic tumor-specific T-cell receptors. Importantly, lymphocytes can be genetically modified prior to re-infusion for increasing their persistence in vivo, boosting antitumor responses and minimizing side effects. Moreover, recent data indicate that exhausted antitumor T lymphocytes may be rejuvenated in vitro by exposing them to specific cytokine cocktails, a strategy that might considerably improve the clinical success of ACT. Following up the Trial Watch that we published on this topic in the third issue of OncoImmunology (May 2012), here we summarize the latest developments in ACT-related research, covering both high-impact studies that have been published during the last 13 months and clinical trials that have been initiated in the same period to assess the antineoplastic profile of this form of cellular immunotherapy. PMID:23762803

  20. How Do Clinical Trials Work?

    MedlinePlus

    ... Trials Clinical Trial Websites How Do Clinical Trials Work? If you take part in a clinical trial, ... kol). This plan explains how the trial will work. The trial is led by a principal investigator ( ...

  1. Hysteresis Control for Current Harmonics Suppression Using Shunt Active Filter

    NASA Astrophysics Data System (ADS)

    Ahuja, Rajesh Kr; Chauhan, Aasha; Sharma, Sachin

    2012-11-01

    Recently wide spread of power electronic equipment has caused an increase of the harmonic disturbances in the power systems. The nonlinear loads draw harmonic and reactive power components of current from ac mains. Current harmonics generated by nonlinear loads such as adjustable speed drives,static powersupplies and UPS. Thus a perfect compensator is required to avoid the consequences due to harmonics. To overcome problems due to harmonics, Shunt Active Power Filter (SAPF) has been considered extensively. SAPF has better harmonic compensation than the other approaches used for solving the harmonic related problems. The performance of the SAPF depends upon different control strategies. This paper presents the performance analysis of SAPF under most important control strategy namely instantaneous real active and reactive power method (p-q) for extracting reference currents of shunt active filters under unbalanced load condition. Detailed simulations have been carried out considering this control strategy and adequate results were presented. In this paper, harmonic control strategy is applied to compensate the current harmonics in the system. A detailed study about the harmonic control method has been used using shunt active filter technique.

  2. The sheath effect on the floating harmonic method

    SciTech Connect

    Lee, Jaewon; Kim, Kyung-Hyun; Chung, Chin-Wook

    2015-12-15

    The floating harmonic method biases sinusoidal voltage to a probe sheath, and as its response, harmonic currents can be obtained. These currents can be used to determine the plasma parameters. However, different shapes of probes have different shapes of sheaths that can affect the diagnostic results. However, no research has been done on the sheath effect on the floating harmonic method. Therefore, we investigate the effect of the sheath during floating harmonic diagnostics by comparing cylindrical and planar probes. While the sinusoidal voltages were applied to a probe, because the sheath oscillated, the time variant ion current and their harmonic currents were added to the electron harmonic currents. In the floating harmonic method, the harmonic currents are composed of only the electron harmonic currents. Therefore, the ion harmonic currents affect the diagnostic results. In particular, the electron temperature obtained by the small probe tip was higher than that of the large probe tip. This effect was exacerbated when the ratio of the probe tip radius to the sheath length was smaller.

  3. Coherent harmonic production using a two-section undulator FEL

    SciTech Connect

    Jaroszynski, D.A.; Prazeres, R.; Glotin, F.

    1995-12-31

    We present measurements and a theoretical analysis of a new method of generating harmonic radiation in a free-electron laser oscillator with a two section undulator in a single optical cavity. To produce coherent harmonic radiation the undulator is arranged so that the downstream undulator section resonance frequency matches a harmonic of the upstream undulator. Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction fractions using a hole in one of the cavity mirrors. We present measurements that show that the optical power at the second and third harmonic can be enhanced by more than an order of magnitude in this fundamental/harmonic configuration. We compare the production of harmonic radiation of a two sectioned fundamental/harmonic undulator with that produced from a FEL operating at its highest efficiency with a step-tapered undulator, where the bunching at the end of the first section is very large. We examine, the dependence of the harmonic power on the intracavity power by adjusting the optical cavity desynchronism, {delta}L. We also examine the evolution of the fundamental and harmonic powers as a function of cavity roundtrip number to evaluate the importance of the small signal gain at the harmonic. We compare our measurements with predictions of a multi-electron numerical model that follows the evolution of fundamental and harmonic power to saturation. This fundamental/harmonic mode, of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture.

  4. Stroke Trials Registry

    MedlinePlus

    ... Trials News About Neurology Image Library Search The Internet Stroke Center Trials Registry Clinical Trials Interventions Conditions ... UT Southwestern Medical Center. Copyright © 1997-2011 - The Internet Stroke Center. All rights reserved. The information contained ...

  5. 34 GHz second-harmonic peniotron oscillator

    NASA Astrophysics Data System (ADS)

    Dressman, Lawrence Jude

    Harmonic operation of gyro-devices has been proposed as a way to lower the magnetic field required to a level feasible with normal (i.e., non-superconducting) magnets. The problem is, however, that gyrotron efficiency drops dramatically at harmonics greater than two, making development of such a device of limited utility. A promising solution to this quandary is the development of a related device, the peniotron, which is believed capable of achieving both high efficiency and harmonic operation resulting in a reduction of the required axial magnetic field. Although the physics of the peniotron interaction, including its high electronic conversion efficiency, has been understood and experimentally verified, demonstration of characteristics consistent with a practical device has been more elusive. This is the goal of this effort---specifically, to demonstrate high device efficiency (defined as the actual power output as a fraction of the electron beam power) with an electron beam generated by a compact cusp electron gun consistent in size and performance with other microwave vacuum electron devices. The cavity design process revealed that the pi/2 mode couples easily to the output circular waveguide. In fact, the transition to circular waveguide produced such a low reflection coefficient that an iris was needed at the cavity output to achieve the desired Q. Integral couplers were also designed to couple directly into the slotted cavity for diagnostic purposes for simplicity in this proof-of-principle physics experiment. This eliminated the need for a high-power circular vacuum window and allowed the diagnostic coupling to be made in standard WR-28 rectangular waveguide. Although mode competition did prevent the second-harmonic peniotron mode from being tuned over its entire range of magnetic field, the peniotron mode was stable over a range sufficient to allow useful experimental data to be obtained. However, another unexpected problem which occurred during execution

  6. Algal Supply System Design - Harmonized Version

    SciTech Connect

    Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  7. Harmonic Vibrational Analysis in Delocalized Internal Coordinates.

    PubMed

    Jensen, Frank; Palmer, David S

    2011-01-11

    It is shown that a principal component analysis of a large set of internal coordinates can be used to define a nonredundant set of delocalized internal coordinates suitable for the calculation of harmonic vibrational normal modes. The selection of internal coordinates and the principal component analysis provide large degrees of freedom in extracting a nonredundant set of coordinates, and thus influence how the vibrational normal modes are described. It is shown that long-range coordinates may be especially suitable for describing low-frequency global deformation modes in proteins.

  8. Second harmonics HOE recording in Bayfol HX

    NASA Astrophysics Data System (ADS)

    Bruder, Friedrich-Karl; Fäcke, Thomas; Hagen, Rainer; Hönel, Dennis; Orselli, Enrico; Rewitz, Christian; Rölle, Thomas; Walze, Günther; Wewer, Brita

    2015-05-01

    Volume Holographic Optical Elements (vHOEs) provide superior optical properties over DOEs (surface gratings) due to high diffraction efficiencies in the -1st order and their excellent Bragg selectivity. Bayer MaterialScience is offering a variety of customized instant-developing photopolymer films to meet requirements for a specific optics design of a phase hologram. For instance, the photopolymer film thickness is an ideal means to adjust the angular and the spectral selectivity while the index modulation can be adopted with the film thickness to achieve a specific required dynamic range. This is especially helpful for transmission type holograms and in multiplex recordings. The selection of different substrates is helpful to achieve the overall optical properties for a targeted application that we support in B2B-focused developments. To provide further guidance on how to record volume holograms in Bayfol HX, we describe in this paper a new route towards the recording of substrate guided vHOEs by using optimized photopolymer films. Furthermore, we discuss special writing conditions that are suitable to create higher 2nd harmonic intensities and their useful applications. Due to total internal reflection (TIR) at the photopolymer-air interface in substrate guided vHOEs, hologram recording with those large diffraction angles cannot usually be done with two free-space beams. Edge-lit recording setups are used to circumvent this limitation. However, such setups require bulky recording blocks or liquid bathes and are complex and hard to align. A different approach that we present in this paper is to exploit 2nd harmonic grating generation in a freespace recording scheme. Those 2nd harmonic components allow the replay of diffraction angles that are normally only accessible with edge-lit writing configurations. Therefore, this approach significantly simplifies master recordings for vHOEs with edge-lit functionalities, which later can be used in contact copy schemes for

  9. Virial expansion coefficients in the harmonic approximation.

    PubMed

    Armstrong, J R; Zinner, N T; Fedorov, D V; Jensen, A S

    2012-08-01

    The virial expansion method is applied within a harmonic approximation to an interacting N-body system of identical fermions. We compute the canonical partition functions for two and three particles to get the two lowest orders in the expansion. The energy spectrum is carefully interpolated to reproduce ground-state properties at low temperature and the noninteracting high-temperature limit of constant virial coefficients. This resembles the smearing of shell effects in finite systems with increasing temperature. Numerical results are discussed for the second and third virial coefficients as functions of dimension, temperature, interaction, and transition temperature between low- and high-energy limits. PMID:23005730

  10. Harmonic forms on ALF gravitational instantons

    NASA Astrophysics Data System (ADS)

    Franchetti, Guido

    2014-12-01

    We study the space of square-integrable harmonic forms over ALF gravitational instantons of type A K-1 and of type D K . We first calculate its dimension making use of a result by Hausel, Hunsicker and Mazzeo which relates the Hodge cohomology of a gravitational instanton M to the singular cohomology of a particular compactification X M of M. We then exhibit an explicit basis, exact for A K-1 and approximate for D K , and interpret geometrically the relations between M, X M and their cohomologies.

  11. Two dipolar atoms in a harmonic trap

    NASA Astrophysics Data System (ADS)

    Ołdziejewski, Rafał; Górecki, Wojciech; Rzążewski, Kazimierz

    2016-05-01

    Two identical dipolar atoms moving in a harmonic trap without an external magnetic field are investigated. Using the algebra of angular momentum we reduce the problem to a simple numerics. We show that the internal spin-spin interactions between the atoms couple to the orbital angular momentum causing an analogue of the Einstein-de Haas effect. We show a possibility of adiabatically pumping our system from the s-wave to the d-wave relative motion. The effective spin-orbit coupling occurs at anti-crossings of the energy levels.

  12. Generating Second Harmonics In Nonlinear Resonant Cavities

    NASA Technical Reports Server (NTRS)

    Kozlovsky, William J.; Nabors, C. David; Byer, Robert L.

    1990-01-01

    Single-axial-mode lasers pump very-low-loss doubling crystals. Important advance in making resonant generation of second harmonics possible for diode-laser-pumped solid-state lasers is recent development of monolithic nonplanar ring geometries in neodymium:yttrium aluminum garnet (Nd:YAG) lasers that produce frequency-stable single-mode outputs. Other advance is development of high-quality MgO:LiNbO3 as electro-optically nonlinear material. Series of experiments devised to improve doubling efficiency of low-power lasers, and particularly of diode-laser-pumped continuous-wave Nd:YAG lasers.

  13. Harmonic oscillations and rotations in quantum theory

    NASA Astrophysics Data System (ADS)

    Trendafilov, Simeon T.

    Similarly to the classical connection between simple harmonic motion and rotation about an axis there exists the possibility of a unified quantum treatment of angle and harmonic phase in the case of the electromagnetic field mode. This can be accomplished within the framework of a single mathematical construction based on the tensor product of the Hilbert spaces of two harmonic oscillators. The construction can be used to obtain PV extensions of the harmonic oscillator phase POV measure and define relative phase measurements. We have examined the limits placed by quantum mechanics on the variance of an ideal phase measurement, along with the improvement that can be achieved with the use of a collapsible relative phase measurement. While the optimizing input states were determined and some of their properties studied, no suggestions have been made about experimental generation of such states. The similarity of the quantum angle measurement to that of the relative phase measurement was exploited to find optimum input states that give the least variance in the angle variable of axial rotation. For sufficiently small values of J the optimizing states were shown to be close to the states of maximum angular momentum projection along the direction that is perpendicular to the rotation axis and lies in the plane of the most probable angle value. These two types of states become essentially different for higher values of J. The description of the simultaneous measurement of two spin 1/2 components of angular momentum was also accomplished. Different methods for the derivation of appropriate overcomplete sets of vectors were presented for the case of components at right angle and the more general case of components at an arbitrary angle. The results were applied to exploring how the violation of a Bell's inequality depends on the ideal nature of the quantum measurements involved, showing how the violation of the inequality

  14. Higher harmonic rotor blade pitch control

    NASA Technical Reports Server (NTRS)

    Ewans, J. R.

    1976-01-01

    Tests of a model 'Reverse Velocity Rotor' system at high advance ratios and with twice-per-revolution cyclic pitch control were made under joint Navy-NASA sponsorship in the NASA, Ames 12 ft. pressure tunnel. The results showed significant gains in rotor performance at all advance ratios by using twice-per-revolution control. Detailed design studies have been made of alternative methods of providing higher harmonic motion including four types of mechanical systems and an electro-hydraulic system. The relative advantages and disadvantages are evaluated on the basis of stiffness, weight, volume, reliability and maintainability.

  15. High harmonic generation in undulators for FEL

    NASA Astrophysics Data System (ADS)

    Zhukovsky, K.

    2016-02-01

    The analytical study of the undulator radiation (UR), accounting for major sources of the spectral line broadening is presented. Analytical expressions for the UR spectrum and intensity are obtained. They demonstrate possibilities of the compensation of the divergency by the constant magnetic component. Some examples of single and double frequency undulators are considered. Generation of harmonics is studied with account for homogeneous and inhomogeneous broadening in real devices. The obtained results with account for all broadening sources are applied for evaluation of free electron laser (FEL) performance and compared with those, obtained with the ideal undulator.

  16. Promoting Spontaneous Second Harmonic Generation through Organogelation.

    PubMed

    Marco, A Belén; Aparicio, Fátima; Faour, Lara; Iliopoulos, Konstantinos; Morille, Yohann; Allain, Magali; Franco, Santiago; Andreu, Raquel; Sahraoui, Bouchta; Gindre, Denis; Canevet, David; Sallé, Marc

    2016-07-27

    An organogelator based on the Disperse Red nonlinear optical chromophore was synthesized according to a simple and efficient three-step procedure. The supramolecular gel organization leads to xerogels which display a spontaneous second harmonic generation (SHG) response without any need for preprocessing, and this SHG activity appears to be stable over several months. These findings, based on an intrinsic structural approach, are supported by favorable intermolecular supramolecular interactions, which promote a locally non-centrosymmetric NLO-active organization. This is in sharp contrast with most materials designed for SHG purposes, which generally require the use of expensive or heavy-to-handle external techniques for managing the dipoles' alignment. PMID:27415660

  17. Trial watch

    PubMed Central

    Vacchelli, Erika; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-01-01

    During the past 20 years, dozens—if not hundreds—of monoclonal antibodies have been developed and characterized for their capacity to mediate antineoplastic effects, either as they activate/enhance tumor-specific immune responses, either as they interrupt cancer cell-intrinsic signal transduction cascades, either as they specifically delivery toxins to malignant cells or as they block the tumor-stroma interaction. Such an intense research effort has lead to the approval by FDA of no less than 14 distinct molecules for use in humans affected by hematological or solid malignancies. In the inaugural issue of OncoImmunology, we briefly described the scientific rationale behind the use of monoclonal antibodies in cancer therapy and discussed recent, ongoing clinical studies investigating the safety and efficacy of this approach in patients. Here, we summarize the latest developments in this exciting area of clinical research, focusing on high impact studies that have been published during the last 15 months and clinical trials launched in the same period to investigate the therapeutic profile of promising, yet hitherto investigational, monoclonal antibodies. PMID:23482847

  18. Trial Watch

    PubMed Central

    Bloy, Norma; Pol, Jonathan; Manic, Gwenola; Vitale, Ilio; Eggermont, Alexander; Galon, Jérôme; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    During the past two decades, it has become increasingly clear that the antineoplastic effects of radiation therapy do not simply reflect the ability of X-, β- and γ-rays to damage transformed cells and directly cause their permanent proliferative arrest or demise, but also involve cancer cell-extrinsic mechanisms. Indeed, among other activities, radiotherapy has been shown to favor the establishment of tumor-specific immune responses that operate systemically, underpinning the so-called ‘out-of-field’ or ‘abscopal’ effect. Thus, ionizing rays appear to elicit immunogenic cell death, a functionally peculiar variant of apoptosis associated with the emission of a particularly immunostimulatory combination of damage-associated molecular patterns. In line with this notion, radiation therapy fosters, and thus exacerbates, the antineoplastic effects of various treatment modalities, including surgery, chemotherapy and various immunotherapeutic agents. Here, we summarize recent advances in the use of ionizing rays as a means to induce or potentiate therapeutically relevant anticancer immune responses. In addition, we present clinical trials initiated during the past 12 months to test the actual benefit of radioimmunotherapy in cancer patients. PMID:25941606

  19. Trial Watch

    PubMed Central

    Vacchelli, Erika; Eggermont, Alexander; Sautès-Fridman, Catherine; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-01-01

    Toll-like receptors (TLRs) have long been known for their ability to initiate innate immune responses upon exposure to conserved microbial components such as lipopolysaccharide (LPS) and double-stranded RNA. More recently, this family of pattern recognition receptors has been attributed a critical role in the elicitation of anticancer immune responses, raising interest in the development of immunochemotherapeutic regimens based on natural or synthetic TLR agonists. In spite of such an intense wave of preclinical and clinical investigation, only three TLR agonists are currently licensed by FDA for use in cancer patients: bacillus Calmette–Guérin (BCG), an attenuated strain of Mycobacterium bovis that operates as a mixed TLR2/TLR4 agonist; monophosphoryl lipid A (MPL), a derivative of Salmonella minnesota that functions as a potent agonist of TLR4; and imiquimod, a synthetic imidazoquinoline that activates TLR7. One year ago, in the August and September issues of OncoImmunology, we described the main biological features of TLRs and discussed the progress of clinical studies evaluating the safety and therapeutic potential of TLR agonists in cancer patients. Here, we summarize the latest developments in this exciting area of research, focusing on preclinical studies that have been published during the last 13 mo and clinical trials launched in the same period to investigate the antineoplastic activity of TLR agonists. PMID:24083080

  20. Trial Watch

    PubMed Central

    Pol, Jonathan; Bloy, Norma; Obrist, Florine; Eggermont, Alexander; Galon, Jérôme; Hervé Fridman, Wolf; Cremer, Isabelle; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    During the past 2 decades, the possibility that preparations capable of eliciting tumor-specific immune responses would mediate robust therapeutic effects in cancer patients has received renovated interest. In this context, several approaches to vaccinate cancer patients against their own malignancies have been conceived, including the administration of DNA constructs coding for one or more tumor-associated antigens (TAAs). Such DNA-based vaccines conceptually differ from other types of gene therapy in that they are not devised to directly kill cancer cells or sensitize them to the cytotoxic activity of a drug, but rather to elicit a tumor-specific immune response. In spite of an intense wave of preclinical development, the introduction of this immunotherapeutic paradigm into the clinical practice is facing difficulties. Indeed, while most DNA-based anticancer vaccines are well tolerated by cancer patients, they often fail to generate therapeutically relevant clinical responses. In this Trial Watch, we discuss the latest advances on the use of DNA-based vaccines in cancer therapy, discussing the literature that has been produced around this topic during the last 13 months as well as clinical studies that have been launched in the same time frame to assess the actual therapeutic potential of this intervention. PMID:24800178

  1. Trial Watch:

    PubMed Central

    Pol, Jonathan; Bloy, Norma; Obrist, Florine; Eggermont, Alexander; Galon, Jérôme; Cremer, Isabelle; Erbs, Philippe; Limacher, Jean-Marc; Preville, Xavier; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Oncolytic viruses are natural or genetically modified viral species that selectively infect and kill neoplastic cells. Such an innate or exogenously conferred specificity has generated considerable interest around the possibility to employ oncolytic viruses as highly targeted agents that would mediate cancer cell-autonomous anticancer effects. Accumulating evidence, however, suggests that the therapeutic potential of oncolytic virotherapy is not a simple consequence of the cytopathic effect, but strongly relies on the induction of an endogenous immune response against transformed cells. In line with this notion, superior anticancer effects are being observed when oncolytic viruses are engineered to express (or co-administered with) immunostimulatory molecules. Although multiple studies have shown that oncolytic viruses are well tolerated by cancer patients, the full-blown therapeutic potential of oncolytic virotherapy, especially when implemented in the absence of immunostimulatory interventions, remains unclear. Here, we cover the latest advances in this active area of translational investigation, summarizing high-impact studies that have been published during the last 12 months and discussing clinical trials that have been initiated in the same period to assess the therapeutic potential of oncolytic virotherapy in oncological indications. PMID:25097804

  2. Trial Watch

    PubMed Central

    Semeraro, Michaela; Vacchelli, Erika; Eggermont, Alexander; Galon, Jerome; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-01-01

    Lenalidomide is a synthetic derivative of thalidomide currently approved by the US Food and Drug Administration for use in patients affected by multiple myeloma (in combination with dexamethasone) and low or intermediate-1 risk myelodysplastic syndromes that harbor 5q cytogenetic abnormalities. For illustrative purposes, the mechanism of action of lenalidomide can be subdivided into a cancer cell-intrinsic, a stromal, and an immunological component. Indeed, lenalidomide not only exerts direct cell cycle-arresting and pro-apoptotic effects on malignant cells, but also interferes with their physical and functional interaction with the tumor microenvironment and mediates a robust, pleiotropic immunostimulatory activity. In particular, lenalidomide has been shown to stimulate the cytotoxic functions of T lymphocytes and natural killer cells, to limit the immunosuppressive impact of regulatory T cells, and to modulate the secretion of a wide range of cytokines, including tumor necrosis factor α, interferon γ as well as interleukin (IL)-6, IL-10, and IL-12. Throughout the last decade, the antineoplastic and immunostimulatory potential of lenalidomide has been investigated in patients affected by a wide variety of hematological and solid malignancies. Here, we discuss the results of these studies and review the status of clinical trials currently assessing the safety and efficacy of this potent immunomodulatory drug in oncological indications. PMID:24482747

  3. Intense harmonics generation with customized photon frequency and optical vortex

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Zhang, Lingang; Ji, Liangliang; Wang, Xiaofeng; Xu, Zhizhan; Tajima, Toshiki

    2016-08-01

    An optical vortex with orbital angular momentum (OAM) enriches the light and matter interaction process, and helps reveal unexpected information in relativistic nonlinear optics. A scheme is proposed for the first time to explore the origin of photons in the generated harmonics, and produce relativistic intense harmonics with expected frequency and an optical vortex. When two counter-propagating Laguerre-Gaussian laser pulses impinge on a solid thin foil and interact with each other, the contribution of each input pulse in producing harmonics can be distinguished with the help of angular momentum conservation of photons, which is almost impossible for harmonic generation without an optical vortex. The generation of tunable, intense vortex harmonics with different photon topological charge is predicted based on the theoretical analysis and three-dimensional particle-in-cell simulations. Inheriting the properties of OAM and harmonics, the obtained intense vortex beam can be applied in a wide range of fields, including atom or molecule control and manipulation.

  4. Intense harmonics generation with customized photon frequency and optical vortex

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Zhang, Lingang; Ji, Liangliang; Wang, Xiaofeng; Xu, Zhizhan; Tajima, Toshiki

    2016-08-01

    An optical vortex with orbital angular momentum (OAM) enriches the light and matter interaction process, and helps reveal unexpected information in relativistic nonlinear optics. A scheme is proposed for the first time to explore the origin of photons in the generated harmonics, and produce relativistic intense harmonics with expected frequency and an optical vortex. When two counter-propagating Laguerre–Gaussian laser pulses impinge on a solid thin foil and interact with each other, the contribution of each input pulse in producing harmonics can be distinguished with the help of angular momentum conservation of photons, which is almost impossible for harmonic generation without an optical vortex. The generation of tunable, intense vortex harmonics with different photon topological charge is predicted based on the theoretical analysis and three-dimensional particle-in-cell simulations. Inheriting the properties of OAM and harmonics, the obtained intense vortex beam can be applied in a wide range of fields, including atom or molecule control and manipulation.

  5. Multi-regional clinical trials and global drug development.

    PubMed

    Shenoy, Premnath

    2016-01-01

    Drug development has been globalized, and multi-regional clinical trial (MRCT) for regulatory submission has widely been conducted by many discovery based global pharmaceutical companies with the objective of reducing the time lag of launch in key markets and improve patient access to new and innovative treatments. Sponsors are facing several challenges while conducting multiregional clinical trials. Challenges under the heads statistics, clinical, regulatory operational, and ethics have been discussed. Regulators in different countries such as USA, EU-Japan, and China have issued guidance documents in respect of MRCT's. Lack of harmonization in the design and planning of MRCT is perceived to create a difficult situation to sponsors adversely affecting progressing MRCT in more and more discoveries. International conference on hormonisation (ICH) has initiated the process for having a harmonized guidance document on MRCT. This document is likely to be issued in early 2017. PMID:27141471

  6. Multi-regional clinical trials and global drug development

    PubMed Central

    Shenoy, Premnath

    2016-01-01

    Drug development has been globalized, and multi-regional clinical trial (MRCT) for regulatory submission has widely been conducted by many discovery based global pharmaceutical companies with the objective of reducing the time lag of launch in key markets and improve patient access to new and innovative treatments. Sponsors are facing several challenges while conducting multiregional clinical trials. Challenges under the heads statistics, clinical, regulatory operational, and ethics have been discussed. Regulators in different countries such as USA, EU-Japan, and China have issued guidance documents in respect of MRCT's. Lack of harmonization in the design and planning of MRCT is perceived to create a difficult situation to sponsors adversely affecting progressing MRCT in more and more discoveries. International conference on hormonisation (ICH) has initiated the process for having a harmonized guidance document on MRCT. This document is likely to be issued in early 2017. PMID:27141471

  7. The third harmonic in the Russia-Finland DC interconnection

    SciTech Connect

    Kazachkov, Yu. ); Boyarsky, A.; Kraichik, Yu. )

    1994-10-01

    During 12 years of operation of the DC back-to-back tie between Russia and Finland some undesirable phenomena at frequencies close to the third harmonic have been noticed. They may become more severe after the planned upgrading of the converter station. Steady state and transient processes with dominant third harmonic and their improvement by means of filters in the power and control circuits have been studied. Recordings of steady states with noticeable third harmonic are included.

  8. Separation of High Order Harmonics with Fluoride Windows

    SciTech Connect

    Allison, Tom; van Tilborg, Jeroen; Wright, Travis; Hertlein, Marcus; Falcone, Roger; Belkacem, Ali

    2010-08-02

    The lower orders produced in high order harmonic generation can be effciently temporally separated into monochromatic pulses by propagation in a Fluoride window while still preserving their femtosecond pulse duration. We present calculations for MgF2, CaF2, and LiF windows for the third, fifth, and seventh harmonics of 800 nm. We demonstrate the use of this simple and inexpensive technique in a femtosecond pump/probe experiment using the fifth harmonic.

  9. Lifetime increase using passive harmonic cavities insynchrotronlight sources

    SciTech Connect

    Byrd, J.M.; Georgsson, M.

    2000-09-22

    Harmonic cavities have been used in storage rings to increase beam lifetime and Landau damping by lengthening the bunch.The need for lifetime increase is particularly great in the present generation of low to medium energy synchrotron light sources where the small transverse beam sizes lead to relatively short lifetimes from large-angle intrabeam (Touschek) scattering. We review the beam dynamics of harmonic radiofrequency (RF) systems and discuss optimization of the beam lifetime using passive harmonic cavities.

  10. Illuminating Molecular Symmetries with Bicircular High-Order-Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Reich, Daniel M.; Madsen, Lars Bojer

    2016-09-01

    We present a general theory of bicircular high-order-harmonic generation from N -fold rotationally symmetric molecules. Using a rotating frame of reference we predict the complete structure of the high-order-harmonic spectra for arbitrary driving frequency ratios and show how molecular symmetries can be directly identified from the harmonic signal. Our findings reveal that a characteristic fingerprint of rotational molecular symmetries can be universally observed in the ultrafast response of molecules to strong bicircular fields.

  11. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout.

    PubMed

    Xu, Xiangbo; Chen, Shao

    2015-01-01

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously. PMID:26334281

  12. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout.

    PubMed

    Xu, Xiangbo; Chen, Shao

    2015-08-31

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.

  13. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout

    PubMed Central

    Xu, Xiangbo; Chen, Shao

    2015-01-01

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously. PMID:26334281

  14. Nonlinear harmonic generation and proposed experimental verification in SASE FELs.

    SciTech Connect

    Biedron, S. G.; Freund, H. P.; Milton, S. V.

    1999-08-24

    Recently, a 3D, polychromatic, nonlinear simulation code was developed to study the growth of nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs). The simulation was applied to the parameters for each stage of the Advanced Photon Source (APS) SASE FEL, intended for operation in the visible, UV, and short UV wavelength regimes, respectively, to study the presence of nonlinear harmonic generation. Significant nonlinear harmonic growth is seen. Here, a discussion of the code development, the APS SASE FEL, the simulations and results, and, finally, the proposed experimental procedure for verification of such nonlinear harmonic generation at the APS SASE FEL will be given.

  15. Application of higher harmonic blade feathering for helicopter vibration reduction

    NASA Technical Reports Server (NTRS)

    Powers, R. W.

    1978-01-01

    Higher harmonic blade feathering for helicopter vibration reduction is considered. Recent wind tunnel tests confirmed the effectiveness of higher harmonic control in reducing articulated rotor vibratory hub loads. Several predictive analyses developed in support of the NASA program were shown to be capable of calculating single harmonic control inputs required to minimize a single 4P hub response. In addition, a multiple-input, multiple-output harmonic control predictive analysis was developed. All techniques developed thus far obtain a solution by extracting empirical transfer functions from sampled data. Algorithm data sampling and processing requirements are minimal to encourage adaptive control system application of such techniques in a flight environment.

  16. Goos-Hänchen shifts in harmonic generation from metals.

    PubMed

    Yallapragada, V J; Gopal, Achanta Venu; Agarwal, G S

    2013-05-01

    We present the first calculation of the Goos-Hänchen shifts in the context of the nonlinear generation of fields. We specifically concentrate on shifts of second harmonic generated at metallic surfaces. At metallic surfaces the second harmonic primarily arises from discontinuities of the field at surfaces which not only result in large harmonic generation but also in significant Goos-Hänchen shifts of the generated second harmonic. Our results can be extended to other shifts like angular shifts and Fedorov-Imbert shifts.

  17. Comparative Analysis of Instruments Measuring Time Varying Harmonics

    NASA Astrophysics Data System (ADS)

    Belchior, Fernando Nunes; Ribeiro, Paulo Fernando; Carvalho, Frederico Marques

    2016-08-01

    This paper aims to evaluate the performance of commercial class A and class S power quality (PQ) instruments when measuring time-varying harmonics. By using a high precision programmable voltage and current source, two meters from different manufacturers are analyzed and compared. Three-phase voltage signals are applied to PQ instruments, considering 3 situations of time-varying harmonic distortions, whose harmonic distortion values are in accordance with typical values found in power systems. This work is relevant considering that international standardization documents do not pay much attention to this aspect of harmonic distortion.

  18. Origin of second-harmonic generation from individual silicon nanowires

    NASA Astrophysics Data System (ADS)

    Wiecha, Peter R.; Arbouet, Arnaud; Girard, Christian; Baron, Thierry; Paillard, Vincent

    2016-03-01

    We investigate second harmonic generation from individual silicon nanowires and study the influence of resonant optical modes on the far field nonlinear emission. We find that the polarization of the second harmonic has a size-dependent behavior and explain this phenomenon by considering different surface and bulk nonlinear susceptibility contributions. We show that the second harmonic generation has an entirely different origin, depending on the nanowire diameter and on whether the incident illumination is polarized parallel or perpendicular to the nanowire axis. The results open perspectives for further geometry-based studies on the origin and control of second harmonic generation in nanostructures of high-refractive index centrosymmetric dielectrics.

  19. Analysing harmonic motions with an iPhone’s magnetometer

    NASA Astrophysics Data System (ADS)

    Yavuz, Ahmet; Kağan Temiz, Burak

    2016-05-01

    In this paper, we propose an experiment for analysing harmonic motion using an iPhone’s (or iPad’s) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone’s magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone’s screen using the Sensor Kinetics application. Data from this application was analysed with Eureqa software to establish the equation of the harmonic motion. Analyses show that the use of an iPhone’s magnetometer to analyse harmonic motion is a practical and effective method for small oscillations and frequencies less than 15-20 Hz.

  20. Second and third harmonic waves excited by focused Gaussian beams.

    PubMed

    Levy, Uri; Silberberg, Yaron

    2015-10-19

    Harmonic generation by tightly-focused Gaussian beams is finding important applications, primarily in nonlinear microscopy. It is often naively assumed that the nonlinear signal is generated predominantly in the focal region. However, the intensity of Gaussian-excited electromagnetic harmonic waves is sensitive to the excitation geometry and to the phase matching condition, and may depend on quite an extended region of the material away from the focal plane. Here we solve analytically the amplitude integral for second harmonic and third harmonic waves and study the generated harmonic intensities vs. focal-plane position within the material. We find that maximum intensity for positive wave-vector mismatch values, for both second harmonic and third harmonic waves, is achieved when the fundamental Gaussian is focused few Rayleigh lengths beyond the front surface. Harmonic-generation theory predicts strong intensity oscillations with thickness if the material is very thin. We reproduced these intensity oscillations in glass slabs pumped at 1550nm. From the oscillations of the 517nm third-harmonic waves with slab thickness we estimate the wave-vector mismatch in a Soda-lime glass as Δk(H)= -0.249μm(-1). PMID:26480441

  1. Trial Watch

    PubMed Central

    Aranda, Fernando; Vacchelli, Erika; Eggermont, Alexander; Galon, Jerome; Sautès-Fridman, Catherine; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-01-01

    Throughout the past 3 decades, along with the recognition that the immune system not only influences oncogenesis and tumor progression, but also determines how established neoplastic lesions respond therapy, renovated enthusiasm has gathered around the possibility of using vaccines as anticancer agents. Such an enthusiasm quickly tempered when it became clear that anticancer vaccines would have to be devised as therapeutic, rather than prophylactic, measures, and that malignant cells often fail to elicit (or actively suppress) innate and adaptive immune responses. Nonetheless, accumulating evidence indicates that a variety of anticancer vaccines, including cell-based, DNA-based, and purified component-based preparations, are capable of circumventing the poorly immunogenic and highly immunosuppressive nature of most tumors and elicit (at least under some circumstances) therapeutically relevant immune responses. Great efforts are currently being devoted to the identification of strategies that may provide anticancer vaccines with the capacity of breaking immunological tolerance and eliciting tumor-associated antigen-specific immunity in a majority of patients. In this sense, promising results have been obtained by combining anticancer vaccines with a relatively varied panels of adjuvants, including multiple immunostimulatory cytokines, Toll-like receptor agonists as well as inhibitors of immune checkpoints. One year ago, in the December issue of OncoImmunology, we discussed the biological mechanisms that underlie the antineoplastic effects of peptide-based vaccines and presented an abundant literature demonstrating the prominent clinical potential of such an approach. Here, we review the latest developments in this exciting area of research, focusing on high-profile studies that have been published during the last 13 mo and clinical trials launched in the same period to evaluate purified peptides or full-length proteins as therapeutic anticancer agents. PMID:24498550

  2. Trial Watch

    PubMed Central

    Vacchelli, Erika; Vitale, Ilio; Tartour, Eric; Eggermont, Alexander; Sautès-Fridman, Catherine; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-01-01

    Radiotherapy has extensively been employed as a curative or palliative intervention against cancer throughout the last century, with a varying degree of success. For a long time, the antineoplastic activity of X- and γ-rays was entirely ascribed to their capacity of damaging macromolecules, in particular DNA, and hence triggering the (apoptotic) demise of malignant cells. However, accumulating evidence indicates that (at least part of) the clinical potential of radiotherapy stems from cancer cell-extrinsic mechanisms, including the normalization of tumor vasculature as well as short- and long-range bystander effects. Local bystander effects involve either the direct transmission of lethal signals between cells connected by gap junctions or the production of diffusible cytotoxic mediators, including reactive oxygen species, nitric oxide and cytokines. Conversely, long-range bystander effects, also known as out-of-field or abscopal effects, presumably reflect the elicitation of tumor-specific adaptive immune responses. Ionizing rays have indeed been shown to promote the immunogenic demise of malignant cells, a process that relies on the spatiotemporally defined emanation of specific damage-associated molecular patterns (DAMPs). Thus, irradiation reportedly improves the clinical efficacy of other treatment modalities such as surgery (both in neo-adjuvant and adjuvant settings) or chemotherapy. Moreover, at least under some circumstances, radiotherapy may potentiate anticancer immune responses as elicited by various immunotherapeutic agents, including (but presumably not limited to) immunomodulatory monoclonal antibodies, cancer-specific vaccines, dendritic cell-based interventions and Toll-like receptor agonists. Here, we review the rationale of using radiotherapy, alone or combined with immunomodulatory agents, as a means to elicit or boost anticancer immune responses, and present recent clinical trials investigating the therapeutic potential of this approach in

  3. Tissue harmonic synthetic aperture ultrasound imaging.

    PubMed

    Hemmsen, Martin Christian; Rasmussen, Joachim Hee; Jensen, Jørgen Arendt

    2014-10-01

    Synthetic aperture sequential beamforming (SASB) and tissue harmonic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a comparative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined with THI improves the image quality compared to DRF-THI. The major benefit of SASB is a reduced bandwidth between the probe and processing unit. A BK Medical 2202 Ultraview ultrasound scanner was used to acquire beamformed RF data for offline evaluation. The acquisition was made interleaved between methods, and data were recorded with and without pulse inversion for tissue harmonic imaging. Data were acquired using a Sound Technology 192 element convex array transducer from both a wire phantom and a tissue mimicking phantom to investigate spatial resolution and penetration. In vivo scans were also performed for a visual comparison. The spatial resolution for SASB-THI is on average 19% better than DRI-THI, and the investigation of penetration showed equally good signal-to-noise ratio. In vivo B-mode scans were made and compared. The comparison showed that SASB-THI reduces the artifact and noise interference and improves image contrast and spatial resolution.

  4. Limitations and improvements for harmonic generation measurements

    SciTech Connect

    Best, Steven; Croxford, Anthony; Neild, Simon

    2014-02-18

    A typical acoustic harmonic generation measurement comes with certain limitations. Firstly, the use of the plane wave-based analysis used to extract the nonlinear parameter, β, ignores the effects of diffraction, attenuation and receiver averaging which are common to most experiments, and may therefore limit the accuracy of a measurement. Secondly, the method usually requires data obtained from a through-transmission type setup, which may not be practical in a field measurement scenario where access to the component is limited. Thirdly, the technique lacks a means of pinpointing areas of damage in a component, as the measured nonlinearity represents an average over the length of signal propagation. Here we describe a three-dimensional model of harmonic generation in a sound beam, which is intended to provide a more realistic representation of a typical experiment. The presence of a reflecting boundary is then incorporated into the model to assess the feasibility of performing single-sided measurements. Experimental validation is provided where possible. Finally, a focusing acoustic source is modelled to provide a theoretical indication of the afforded advantages when the nonlinearity is localized.

  5. Harmonization of pre-analytical quality indicators.

    PubMed

    Plebani, Mario; Sciacovelli, Laura; Aita, Ada; Chiozza, Maria Laura

    2014-01-01

    Quality indicators (QIs) measure the extent to which set targets are attained and provide a quantitative basis for achieving improvement in care and, in particular, laboratory services. A body of evidence collected in recent years has demonstrated that most errors fall outside the analytical phase, while the pre- and post-analytical steps have been found to be more vulnerable to the risk of error. However, the current lack of attention to extra-laboratory factors and related QIs prevent clinical laboratories from effectively improving total quality and reducing errors. Errors in the pre-analytical phase, which account for 50% to 75% of all laboratory errors, have long been included in the 'identification and sample problems' category. However, according to the International Standard for medical laboratory accreditation and a patient-centered view, some additional QIs are needed. In particular, there is a need to measure the appropriateness of all test request and request forms, as well as the quality of sample transportation. The QIs model developed by a working group of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) is a valuable starting point for promoting the harmonization of available QIs, but further efforts should be made to achieve a consensus on the road map for harmonization.

  6. The IPNS second harmonic RF upgrade.

    SciTech Connect

    Middendorf, M. E.; Brumwell, F. R.; Dooling, J. C.; Horan, D.; Kustom, R. L.; Lien, M. K.; McMichael, G. E.; Moser, M. R.; Nassiri, A.; Wang, S.; Accelerator Systems Division

    2008-01-01

    The intense pulsed neutron source (IPNS) rapid cycling synchrotron (RCS) is used to accelerate protons from 50 MeV to 450 MeV, at a repetition rate of 30 Hz. The original ring design included two identical rf systems, each consisting of an accelerating cavity, cavity bias supply, power amplifiers and low-level analog electronics. The original cavities are located 180 degrees apart in the ring and provide a total peak accelerating voltage of {approx}21 kV over the 2.21-MHz to 5.14-MHz revolution frequency sweep. A third rf system has been constructed and installed in the RCS. The third rf system is capable of operating at the fundamental revolution frequency for the entire acceleration cycle, providing an additional peak accelerating voltage of up to {approx}11 kV, or at the second harmonic of the revolution frequency for the first {approx}4 ms of the acceleration cycle, providing an additional peak voltage of up to {approx}11 kV for bunch shape control. We describe here the hardware implementation and operation to date of the third rf cavity in the second harmonic mode.

  7. Modelling harmonic generation measurements in solids.

    PubMed

    Best, S R; Croxford, A J; Neild, S A

    2014-02-01

    Harmonic generation measurements typically make use of the plane wave result when extracting values for the nonlinearity parameter, β, from experimental measurements. This approach, however, ignores the effects of diffraction, attenuation, and receiver integration which are common features in a typical experiment. Our aim is to determine the importance of these effects when making measurements of β over different sample dimensions, or using different input frequencies. We describe a three-dimensional numerical model designed to accurately predict the results of a typical experiment, based on a quasi-linear assumption. An experiment is designed to measure the axial variation of the fundamental and second harmonic amplitude components in an ultrasonic beam, and the results are compared with those predicted by the model. The absolute β values are then extracted from the experimental data using both the simulation and the standard plane wave result. A difference is observed between the values returned by the two methods, which varies with axial range and input frequency. PMID:23786784

  8. Balancing Vibrations at Harmonic Frequencies by Injecting Harmonic Balancing Signals into the Armature of a Linear Motor/Alternator Coupled to a Stirling Machine

    NASA Technical Reports Server (NTRS)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.

  9. A new method for both harmonic voltage and harmonic current suppression and power factor correction in industrial power systems

    SciTech Connect

    Cheng, H.; Sasaki, Hiroshi; Yorino, Naoto

    1995-12-31

    This paper proposes a new method for designing a group of single tuned filters for both harmonic current injection suppression and harmonic voltage distortion reduction and power factor correction. The proposed method is based on three purposes: (1) reduction of harmonic voltage distortion in the source terminals to an acceptable level, (2) suppression of harmonic current injection in the source terminals to an acceptable level, (3) improvement of power factor at the source terminals. To determine the size of the capacitor in a group of single tuned filters, three new NLP mathematical formulations will be introduced. The first is to suppress harmonic current injection within an acceptable level. The second is to minimize the fundamental reactive power output while reducing harmonic voltage distortion to an acceptable level. The third is to determine an optimal assignment of reactive power output based on the results of harmonic voltage reduction and power factor correction. This new method has been demonstrated for designing a group of single tuned filters and its validity has been successfully confirmed through numerical simulation in a 35 KV industrial power system. The proposed method can efficiently provide an optimal coordination in a group of single tuned filters relating to suppressing harmonic current injection, reducing harmonic voltage distortion and improving power factor.

  10. Mock Trials for Children.

    ERIC Educational Resources Information Center

    Hickey, M. Gail

    1990-01-01

    Demonstrates how role-playing in a mock trial situation allows children to view critically both sides of an issue and introduce them to trial procedure. Offers pre-trial activities, ways to teach students to see both sides of a situation, themes for mock trials, and supporting resources. (GG)

  11. Generation mechanism of power line harmonic radiation

    NASA Astrophysics Data System (ADS)

    Kostrov, Alexander; Gushchin, Mikhail; Korobkov, Sergei

    The questions concerning the generation of power line harmonic radiation (PLHR) and magne-tospheric line radiation (MLR) are discussed, including the effective source of high harmonics of 50/60 Hz, and fine dynamic structure of the frequency spectrum of PLHR and MLR. It is shown, that thyristor-based power regulators used by large electrical power consumers produce the periodic sequences of current pulses with duration of about 10 microseconds in a power line. The repetition rate of these pulses is typically 100/120 Hz; the bandwidth is as broad as 100 kHz. For high harmonics of 50/60 Hz, the power line represents an effective traveling-wave (or Beverage) antenna, especially in a frequency range of several kHz corresponding to VLF whistler band in Earth ionosphere and magnetosphere. For the fixed length of the power line, which acts as antenna, radiation directivity diagram in relation to horizon depends of frequency. Hence the spatial separation of whistlers emitted at various frequencies (1-10 kHz in a consid-ered case) is possible, with subsequent propagation of whistlers with different frequencies along different L-shells. Estimations show that the efficiency of power line as travelling-wave antenna can be changed by variations of its load, but not more than twice ("weekend effect"). Since the PLHR can represent the sequence of short electromagnetic bursts, then careful se-lection of frequency-time resolution of the data acquisition equipment is needed. Typically, the time constant of the data recording and processing is too large, and the spectra of PLHR or MLR are characterized by a well-known line structure. At the same time, original bursty structure of PLHR can not be defined. Fine structure of MLR is also discussed. Frequency drift of MLR can be explained by the perturbations of the magnetospheric plasma by intense ULF waves and particle flows affecting the propagation of PLHR. Hence the physical nature of PLHR and MLR is the same, excepting the

  12. The ultrasonic harmonic scalpel for circumcision: experimental evaluation using dogs.

    PubMed

    Peng, Mou; Meng, Zhe; Yang, Zhong-Hua; Wang, Xing-Huan

    2013-01-01

    Male circumcision is one of the most commonly performed operations worldwide, and many novel techniques have been developed for better postoperative outcomes. The purpose of this study was to explore the feasibility of applying the ultracision harmonic scalpel (UHS) for circumcision by using dogs. Sixteen adult male dogs were divided into two groups: the UHS group and the control group. The dogs were circumcised with either the UHS or a conventional scalpel. The UHS circumcision procedure and the effects were imaged 1 week after surgery. The two groups were compared with respect to the operative time and volume of blood loss. Postoperative complications, including oedema, infection, bleeding of the incision and wound dehiscence, were recorded for both groups. The mean operative time for the UHS group was only 5.1 min compared with the 35.5 min of the conventional group. The mean blood loss was less than 2 ml for the UHS group and 15 ml for the conventional group. There was only one case of mild oedema in the UHS group, but the postoperative complications in the conventional group included two cases of mild oedema, one infection of the incision and one case of bleeding of the incision. In conclusion, circumcision using UHS is a novel technique to treat patients with phimosis and excessive foreskin, and this method has a short operative time, less blood loss and fewer complications than the conventional scalpel method. This small animal study provides a basis for embarking on a larger-scale clinical trial of the UHS. PMID:23042449

  13. Harmonization of Clinical Laboratory Information – Current and Future Strategies

    PubMed Central

    2016-01-01

    According to a patient-centered viewpoint, the meaning of harmonization in the context of laboratory medicine is that the information should be comparable irrespective of the measurement procedure used and where and/or when a measurement is made. Harmonization represents a fundamental aspect of quality in laboratory medicine as its ultimate goal is to improve patient outcomes through the provision of an accurate and actionable laboratory information. Although the initial focus has to a large extent been to harmonize and standardize analytical processes and methods, the scope of harmonization goes beyond to include all other aspects of the total testing process (TTP), such as terminology and units, report formats, reference intervals and decision limits, as well as tests and test profiles request and criteria for interpretation. Two major progresses have been made in the area of harmonization in laboratory medicine: first, the awareness that harmonization should take into consideration not only the analytical phase but all steps of the TTP, thus dealing with the request, the sample, the measurement, and the report. Second, as the processes required to achieve harmonization are complicated, a systematic approach is needed. The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) has played a fundamental and successful role in the development of standardized and harmonized assays, and now it should continue to work in the field through the collaboration and cooperation with many other stakeholders.

  14. 78 FR 73858 - Harmon, Steven A.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... Energy Regulatory Commission Harmon, Steven A.; Notice of Filing Take notice that on November 27, 2013, Steven A. Harmon submitted for filing, an application for authority to hold interlocking positions...); order on reh'g, 114 FERC ] 61,142 (2006) (Order No. 664-A). Any person desiring to intervene or...

  15. Higher order harmonic detection for exploring nonlinear interactions

    SciTech Connect

    Vasudevan, Rama K; Okatan, M. B.; Rajapaksa, Indrajit; Kim, Yunseok; Marincel, Dan; Trolier-McKinstry, Susan; Jesse, Stephen; Nagarajan, Valanoor; Kalinin, Sergei V

    2013-01-01

    Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to jamming transitions. In many cases, decoupling the contributions of competing or co-existing mechanisms to the system response can be achieved through investigation of higher order harmonics. Here, a method using band excitation scanning probe microscopy to investigate higher order harmonics of the electromechanical response, with nanometer scale spatial resolution is presented. The utility of the technique is demonstrated by probing the first three harmonics of strain for a well-known system, a model Pb(Zr1-xTix)O3 ferroelectric capacitor. It is shown that the second order harmonic response is correlated with the first harmonic response, whereas the third harmonic is not. Additionally, nanoscale measurements of the second harmonic response with field reveal significant deviations from Rayleigh-type models in the form of a much more complicated field dependence than is observed in the spatially averaged data. These results illustrate the versatility of combining proximal probe techniques with nth harmonic detection methods in exploring and decoupling nonlinear dynamics in a wide variety of nanoscale materials.

  16. Harmonization of Clinical Laboratory Information - Current and Future Strategies.

    PubMed

    Plebani, Mario

    2016-02-01

    According to a patient-centered viewpoint, the meaning of harmonization in the context of laboratory medicine is that the information should be comparable irrespective of the measurement procedure used and where and/or when a measurement is made. Harmonization represents a fundamental aspect of quality in laboratory medicine as its ultimate goal is to improve patient outcomes through the provision of an accurate and actionable laboratory information. Although the initial focus has to a large extent been to harmonize and standardize analytical processes and methods, the scope of harmonization goes beyond to include all other aspects of the total testing process (TTP), such as terminology and units, report formats, reference intervals and decision limits, as well as tests and test profiles request and criteria for interpretation. Two major progresses have been made in the area of harmonization in laboratory medicine: first, the awareness that harmonization should take into consideration not only the analytical phase but all steps of the TTP, thus dealing with the request, the sample, the measurement, and the report. Second, as the processes required to achieve harmonization are complicated, a systematic approach is needed. The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) has played a fundamental and successful role in the development of standardized and harmonized assays, and now it should continue to work in the field through the collaboration and cooperation with many other stakeholders. PMID:27683502

  17. Harmonization of Training in Librarianship, Information Science and Archives.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Paris (France). General Information Programme.

    This pamphlet is designed to show why there are many advantages in a harmonized approach to the training of archivists, librarians, and specialists in information science and what these advantages are. Following introductory discussions of the concept of harmonization, a brief history traces Unesco's role in training information professionals in…

  18. Analysing Harmonic Motions with an iPhone's Magnetometer

    ERIC Educational Resources Information Center

    Yavuz, Ahmet; Temiz, Burak Kagan

    2016-01-01

    In this paper, we propose an experiment for analysing harmonic motion using an iPhone's (or iPad's) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone's magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone's screen using the "Sensor Kinetics"…

  19. Compact fluorescent lamps, LED lamps and harmonic distortion

    NASA Astrophysics Data System (ADS)

    Franco, A. M. R.; Debatin, R. M.; Cotia, F. C. G.; Silva, M. V. M.; Ribeiro, R. S.; Zampilis, R. R. N.

    2015-01-01

    The aim of this paper is to evaluate the harmonic distortion in the current waveform of Compact Fluorescent Lamps (CFL) and Lamps Lighting Emitting Diode (LED). For this, we analysed the power factor, voltage waveform, current waveform, total harmonic distortion (THD) and active power consumed.

  20. Harmonization: the Sample, the Measurement, and the Report

    PubMed Central

    Tate, Jillian R.; Barth, Julian H.; Jones, Graham R. D.

    2014-01-01

    Harmonization of clinical laboratory results means that results are comparable irrespective of the measurement procedure used and where or when a measurement was made. Harmonization of test results includes consideration of pre-analytical, analytical, and post-analytical aspects. Progress has been made in each of these aspects, but there is currently poor coordination of the effort among different professional organizations in different countries. Pre-analytical considerations include terminology for the order, instructions for preparation of the patient, collection of the samples, and handling and transportation of the samples to the laboratory. Key analytical considerations include calibration traceability to a reference system, commutability of reference materials used in a traceability scheme, and specificity of the measurement of the biomolecule of interest. International organizations addressing harmonization include the International Federation for Clinical Chemistry and Laboratory Medicine, the World Health Organization, and the recently formed International Consortium for Harmonization of Clinical Laboratory Results (ICHCLR). The ICHCLR will provide a prioritization process for measurands and a service to coordinate global harmonization activities to avoid duplication of effort. Post-analytical considerations include nomenclature, units, significant figures, and reference intervals or decision values for results. Harmonization in all of these areas is necessary for optimal laboratory service. This review summarizes the status of harmonization in each of these areas and describes activities underway to achieve the goal of fully harmonized clinical laboratory testing. PMID:24790905

  1. Documentation and Records: Harmonized GMP Requirements

    PubMed Central

    Patel, KT; Chotai, NP

    2011-01-01

    ‘If it’s not written down, then it didn’t happen!’ The basic rules in any good manufacturing practice (GMP) regulations specify that the pharmaceutical manufacturer must maintain proper documentation and records. Documentation helps to build up a detailed picture of what a manufacturing function has done in the past and what it is doing now and, thus, it provides a basis for planning what it is going to do in the future. Regulatory inspectors, during their inspections of manufacturing sites, often spend much time examining a company’s documents and records. Effective documentation enhances the visibility of the quality assurance system. In light of above facts, we have made an attempt to harmonize different GMP requirements and prepare comprehensive GMP requirements related to ‘documentation and records,’ followed by a meticulous review of the most influential and frequently referred regulations. PMID:21731360

  2. Legal harmonization and reproductive tourism in Europe.

    PubMed

    Pennings, Guido

    2004-12-01

    Legislation of ethical issues illustrates the uneasy mix of ethics and politics. Although the majority has the political right to express its moral views in the law, a number of important ethical values like autonomy, tolerance and respect for other people's opinions urge the majority to take the minorities' position into account. Ignoring pluralism in society will inevitably lead to reproductive tourism. Although European legislation and harmonization in the domain of medically assisted reproduction is presented as a partial solution to this phenomenon, it is argued that European legislation should be avoided as much as possible. Regulation of these private ethical matters should be left to the national parliaments. A soft or compromise legislation will keep reproductive travelling to a minimum. Reproductive tourism is a safety valve that reduces moral conflict and expresses minimal recognition of the others' moral autonomy. PMID:15513984

  3. Harmonic components of decametric solar radio bursts

    NASA Astrophysics Data System (ADS)

    Tsybko, Ia. G.

    1984-05-01

    Type IIIb, IIId, and III solar decametric radio bursts distinguished by the typical negative drift rate of their dynamic spectra are compared and noted to fall into two groups: the type IIIb chains of simple stria bursts and normal type III storm bursts observed at central regions constitute a group of events with a fast drifting spectrum, while type III bursts from type IIIb-III pairs and the limb variant of normal III bursts, as well as peculiar type IIId chains of diffuse striae and related chains with an echo component, constitute a second group of events with comparatively slow drift rates. The first group is associated with the fundamental F frequency; the second group is associated with the harmonic H of the coronal plasma frequency.

  4. Coherent states for the relativistic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Aldaya, Victor; Guerrero, J.

    1995-01-01

    Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann transform relating fock wave functions and a set of relativistic Hermite polynomials. Nevertheless, the relativistic creation and annihilation operators satisfy typical relativistic commutation relations of the Lie product (vector-z, vector-z(sup dagger)) approximately equals Energy (an SL(2,R) algebra). Here we find higher-order polarization operators on the SL(2,R) group, providing canonical creation and annihilation operators satisfying the Lie product (vector-a, vector-a(sup dagger)) = identity vector 1, the eigenstates of which are 'true' coherent states.

  5. Asymmetric network connectivity using weighted harmonic averages

    NASA Astrophysics Data System (ADS)

    Morrison, Greg; Mahadevan, L.

    2011-02-01

    We propose a non-metric measure of the "closeness" felt between two nodes in an undirected, weighted graph using a simple weighted harmonic average of connectivity, that is a real-valued Generalized Erdös Number (GEN). While our measure is developed with a collaborative network in mind, the approach can be of use in a variety of artificial and real-world networks. We are able to distinguish between network topologies that standard distance metrics view as identical, and use our measure to study some simple analytically tractable networks. We show how this might be used to look at asymmetry in authorship networks such as those that inspired the integer Erdös numbers in mathematical coauthorships. We also show the utility of our approach to devise a ratings scheme that we apply to the data from the NetFlix prize, and find a significant improvement using our method over a baseline.

  6. Should Reproductive Medicine Be Harmonized within Europe?

    PubMed

    Flatscher-Thöni, Magdalena; Voithofer, Caroline

    2015-03-01

    The medical as well as societal developments in reproductive medicine and respectively artificial reproductive technologies have challenged lawmakers, courts, politicians, medical experts and society itself over the last decades. Challenges can be seen in cross-border reproductive care, equal access to reproductive care, social freezing, disposal of embryos, multiple implantation, homosexual parenthood or surrogacy. Since different regulatory regimes have been enacted throughout Europe (e.g. liberal system in Spain, restrictive system in Austria) to accommodate, limit and regulate reproductive issues, we are analysing the question, if reproductive medicine should be harmonized within Europe. Therefore we are not only discussing already existing approaches e.g. self-regulation, or minimal standards of safety and quality, but we are also scrutinizing the role of high courts, such as the European Court of Human Rights (EC HR) and international declarations and conventions. Concluding we are briefly sketching aspects of a proposal for a potential harmonisation of reproductive medicine in Europe. PMID:26387260

  7. High-order harmonic generation in solids: A unifying approach

    NASA Astrophysics Data System (ADS)

    Luu, Tran Trung; Wörner, Hans Jakob

    2016-09-01

    There have been several experimental reports showing high-order harmonic generation from solids, but there has been no unifying theory presented as of yet for all these experiments. Here we report on the systematic investigation of high-order harmonic generation within the semiconductor Bloch equations, taking into account multiple bands and relaxation processes phenomenologically. In addition to reproducing key experiments, we show the following: (i) Electronic excitations, direct-indirect excitation pathways, and relaxation processes are responsible for high-order harmonic generation and control using midinfrared drivers in zinc oxide. We describe an intuitive picture explaining a two-color experiment involving noninversion symmetric crystals. (ii) High-order harmonic generation can be considered as a general feature of ultrafast strong-field-driven electronic dynamics in solids. We demonstrate this statement by predicting high-order harmonic spectra of solids that have not been studied yet.

  8. Spectrum of second-harmonic radiation generated from incoherent light

    SciTech Connect

    Stabinis, A.; Pyragaite, V.; Tamosauskas, G.; Piskarskas, A.

    2011-10-15

    We report on the development of the theory of second-harmonic generation by an incoherent pump with broad angular and frequency spectra. We show that spatial as well as temporal walk-off effects in a nonlinear crystal result in angular dispersion of the second-harmonic radiation. We demonstrate that the acceptance angle in second-harmonic generation by incoherent light is caused by the width of the pump angular spectrum and the resulting angular dispersion of second-harmonic radiation but does not depend on crystal length. In this case the frequency spectrum of second-harmonic radiation is determined by its angular dispersion and the pump angular spectrum. The theory is supported by an experiment in which a LiIO{sub 3} crystal was pumped by a tungsten halogen lamp.

  9. Terahertz pinch harmonics enabled by single nano rods.

    PubMed

    Park, Hyeong-Ryeol; Bahk, Young-Mi; Choe, Jong Ho; Han, Sanghoon; Choi, Seong Soo; Ahn, Kwang Jun; Park, Namkyoo; Park, Q-Han; Kim, Dai-Sik

    2011-11-21

    A pinch harmonic (or guitar harmonic) is a musical note produced by lightly pressing the thumb of the picking hand upon the string immediately after it is picked [J. Chem. Educ. 84, 1287 (2007)]. This technique turns off the fundamental and all overtones except those with a node at that location. Here we present a terahertz analogue of pinch harmonics, whereby a metallic nano rod placed at a harmonic node on a terahertz nanoresonator suppresses the fundamental mode, making the higher harmonics dominant. Strikingly, a skin depth-wide nano rod placed at the mid-point turns off all resonances. Our work demonstrates that terahertz electromagnetic waves can be tailored by nanoparticles strategically positioned, paving important path towards terahertz switching and detection applications.

  10. Terahertz pinch harmonics enabled by single nano rods.

    PubMed

    Park, Hyeong-Ryeol; Bahk, Young-Mi; Choe, Jong Ho; Han, Sanghoon; Choi, Seong Soo; Ahn, Kwang Jun; Park, Namkyoo; Park, Q-Han; Kim, Dai-Sik

    2011-11-21

    A pinch harmonic (or guitar harmonic) is a musical note produced by lightly pressing the thumb of the picking hand upon the string immediately after it is picked [J. Chem. Educ. 84, 1287 (2007)]. This technique turns off the fundamental and all overtones except those with a node at that location. Here we present a terahertz analogue of pinch harmonics, whereby a metallic nano rod placed at a harmonic node on a terahertz nanoresonator suppresses the fundamental mode, making the higher harmonics dominant. Strikingly, a skin depth-wide nano rod placed at the mid-point turns off all resonances. Our work demonstrates that terahertz electromagnetic waves can be tailored by nanoparticles strategically positioned, paving important path towards terahertz switching and detection applications. PMID:22109504

  11. High harmonic generation in a semi-infinite gas cell.

    PubMed

    Sutherland, Julia; Christensen, E; Powers, N; Rhynard, S; Painter, J; Peatross, J

    2004-09-20

    Ten-millijoule 35-femtosecond laser pulses interact with a cell of helium or neon that extends from a focusing lens to an exit foil near the laser focus. High harmonic orders in the range of 50 to 100 are investigated as a function of focal position relative to the exit foil. An aperture placed in front of the focusing lens increases the brightness of observed harmonics by more than an order of magnitude. Counter-propagating light is used to directly probe where the high harmonics are generated within the laser focus. In neon, the harmonics are generated in the last few millimeters before the exit foil, limited by absorption. In helium, the harmonics are produced over a much longer distance. PMID:19483992

  12. Quantum interference of high-order harmonics from mixed gases

    NASA Astrophysics Data System (ADS)

    González-Fernández, A.; Velarde, P.

    2016-08-01

    We present a theoretical study about the interference of the harmonics generated by a mixture of two gases, He-Ne. Our model is based on the electron quantum paths, a discrete number of electron trajectories, and continuum-bound transitions. A laser with intensity around 1014W/cm2 that interacts with a mixture of gases, He-Ne, produces an interference that is destructive at the low-order harmonics and oscillates between constructive and destructive near to cutoff. This destructive interference at high-order harmonics may be used to explore other transitions, which are currently hidden. At low-order harmonic frequencies, our numerical results are in very good agreement with experimental data. At higher-order harmonics, where there are no experimental data, comparison is with a Schrödinger solver.

  13. Expansion of the gravitational potential in triaxial ellipsoidal harmonics

    NASA Astrophysics Data System (ADS)

    Panou, G.; Delikaraoglou, D.

    2012-04-01

    Spherical harmonics have been extensively used in geodesy because they are relatively simple and the shape of the earth is nearly spherical. However, since the shape of the earth is closer to an ellipsoid of revolution, spheroidal harmonics have also been used. In modern geodesy, the triaxial ellipsoid as a generalization of the ellipsoid of revolution will have a significant role to play in studying the figure of the earth. In the era of outer space explorations, small bodies of the solar system are becoming the target of current and forthcoming space missions. These bodies have irregular shapes and the triaxial ellipsoid, being a genuine three-dimensional shape, provides a very good approximation. Thus, it might be expected that ellipsoidal harmonics, which are defined in a way similar to that of the spheroidal harmonics, would be even more suitable for the representation of the gravitational field of the earth, asteroids and comets. The purpose of the presentation is to discuss the theory of ellipsoidal harmonics and the basic background required to solve Dirichlet's boundary-value problem for a triaxial ellipsoid. We introduce triaxial ellipsoidal coordinates and we express Laplace's equation in these coordinates. By applying the method of separation of variables to Laplace's equation, the solution is obtained by solving Lamé's differential equation. For this reason, we present Lamé's functions in some detail. Using these functions, we formulate the ellipsoidal harmonics expansion of the gravitational potential in the exterior of a triaxial ellipsoid. Also, we show that the spherical and spheroidal harmonics can be produced as degenerated cases of the ellipsoidal harmonics. In spite of the fact that ellipsoidal harmonics are more complicated than spherical or spheroidal harmonics, they can be used in certain special cases which nevertheless are important, such as in modeling, for instance, the gravity field of a level triaxial ellipsoid.

  14. Bounce-harmonic Landau Damping of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v harmonics damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  15. Evidence of high harmonics from echo-enabled harmonic generation for seeding x-ray free electron lasers.

    PubMed

    Xiang, D; Colby, E; Dunning, M; Gilevich, S; Hast, C; Jobe, K; McCormick, D; Nelson, J; Raubenheimer, T O; Soong, K; Stupakov, G; Szalata, Z; Walz, D; Weathersby, S; Woodley, M

    2012-01-13

    Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.

  16. Evidence of High Harmonics from Echo-Enabled Harmonic Generation for Seeding X-ray Free Electron Lasers

    SciTech Connect

    Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodle, M.; /SLAC

    2012-02-15

    Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.

  17. High harmonics from solids probe Angstrom scale structure

    NASA Astrophysics Data System (ADS)

    You, Yong Sing; Reis, David; Ghimire, Shambhu

    2016-05-01

    The basic microscopic mechanism for the high harmonics generation (HHG) in isolated atoms and molecules has been understood in the 90's. Since then the gas harmonics have been utilized widely in ultrafast x-ray science, from attosecond pulse generation to imaging molecular orbitals of the target molecule. In contrast, the solid-state harmonic generation mechanism is currently being investigated following the recent experimental discovery in zinc oxide crystal. In particular, because of the fundamental differences, attributed to the high density and periodicity of the crystal, it was not clear if the solid-state harmonics could be used to reveal bonding structures in crystals. Here we report our experimental results on generation of XUV harmonics in single crystal MgO subjected to the field strengths on the order of 1V/Å without damage. High harmonics in MgO show strong crystal orientation dependence as well as a strong laser ellipticity dependence. By exploiting these unique characteristics, we demonstrate that XUV harmonics from bulk crystals can probe Angstrom scale electronic structure of the crystal.

  18. Resonant plasmonic nanoparticles for multicolor second harmonic imaging

    NASA Astrophysics Data System (ADS)

    Accanto, Nicolò; Piatkowski, Lukasz; Hancu, Ion M.; Renger, Jan; van Hulst, Niek F.

    2016-02-01

    Nanoparticles capable of efficiently generating nonlinear optical signals, like second harmonic generation, are attracting a lot of attention as potential background-free and stable nano-probes for biological imaging. However, second harmonic nanoparticles of different species do not produce readily distinguishable optical signals, as the excitation laser mainly defines their second harmonic spectrum. This is in marked contrast to other fluorescent nano-probes like quantum dots that emit light at different colors depending on their sizes and materials. Here, we present the use of resonant plasmonic nanoparticles, combined with broadband phase-controlled laser pulses, as tunable sources of multicolor second harmonic generation. The resonant plasmonic nanoparticles strongly interact with the electromagnetic field of the incident light, enhancing the efficiency of nonlinear optical processes. Because the plasmon resonance in these structures is spectrally narrower than the laser bandwidth, the plasmonic nanoparticles imprint their fingerprints on the second harmonic spectrum. We show how nanoparticles of different sizes produce different colors in the second harmonic spectra even when excited with the same laser pulse. Using these resonant plasmonic nanoparticles as nano-probes is promising for multicolor second harmonic imaging while keeping all the advantages of nonlinear optical microscopy.

  19. Responses of Inferior Colliculus Neurons to Double Harmonic Tones

    PubMed Central

    Li, Hongzhe

    2008-01-01

    The auditory system can segregate sounds that overlap in time and frequency, if the sounds differ in acoustic properties such as fundamental frequency (f0). However, the neural mechanisms that underlie this ability are poorly understood. Responses of neurons in the inferior colliculus (IC) of the anesthetized chinchilla were measured. The stimuli were harmonic tones, presented alone (single harmonic tones) and in the presence of a second harmonic tone with a different f0 (double harmonic tones). Responses to single harmonic tones exhibited no stimulus-related temporal pattern, or in some cases, a simple envelope modulated at f0. Responses to double harmonic tones exhibited complex slowly modulated discharge patterns. The discharge pattern varied with the difference in f0 and with characteristic frequency. The discharge pattern also varied with the relative levels of the two tones; complex temporal patterns were observed when levels were equal, but as the level difference increased, the discharge pattern reverted to that associated with single harmonic tones. The results indicated that IC neurons convey information about simultaneous sounds in their temporal discharge patterns and that the patterns are produced by interactions between adjacent components in the spectrum. The representation is “low-resolution,” in that it does not convey information about single resolved components from either individual sound. PMID:17913991

  20. Effect of ultrarelativistic laser beam filamentation on third harmonic spectrum

    SciTech Connect

    Gupta, Ruchika; Rafat, M.; Sharma, Prerana; Chauhan, Prashant K.; Sharma, R. P.

    2009-04-15

    This paper investigates the generation of plasma wave and third harmonic generation in a hot collision less plasma by an intense laser beam. On the account of the V-vectorxB-vector force, a plasma wave at 2{omega}{sub 0} (here {omega}{sub 0} is the pump laser frequency) is generated. The solution of the pump laser beam has been obtained within the nonparaxial ray approximation. Filamentary structures of the laser beam are observed due to relativistic nonlinearity. By expanding the eikonal and the other relevant quantities up to the fourth power of r it is observed that the focusing of the laser beams become fast in the nonparaxial region. Interaction of the plasma wave with the incident laser beam generates the third harmonics. The mechanism of the plasma wave, third harmonic generation, and the parameters, which govern the third harmonic yield and hence the spectrum of third harmonics, have been studied in detail. Correlation of the third harmonic spectrum with the filamentation has been pointed out. Therefore, the broadening of the third harmonic spectra can be used as a diagnostic tool to study the presence of the filamentation of laser beams in laser plasma experiments.

  1. Entropic Fluctuations in Thermally Driven Harmonic Networks

    NASA Astrophysics Data System (ADS)

    Jakšić, V.; Pillet, C.-A.; Shirikyan, A.

    2016-10-01

    We consider a general network of harmonic oscillators driven out of thermal equilibrium by coupling to several heat reservoirs at different temperatures. The action of the reservoirs is implemented by Langevin forces. Assuming the existence and uniqueness of the steady state of the resulting process, we construct a canonical entropy production functional S^t which satisfies the Gallavotti-Cohen fluctuation theorem. More precisely, we prove that there exists κ_c>1/2 such that the cumulant generating function of S^t has a large-time limit e(&alpha) which is finite on a closed interval [1/2-κ_c,1/2+κ_c] , infinite on its complement and satisfies the Gallavotti-Cohen symmetry e(1-&alpha)=e(&alpha) for all α in R. Moreover, we show that e(&alpha) is essentially smooth, i.e., that e'(&alpha)→ ∓ ∞ as α → {1}/{2}∓ κ_c . It follows from the Gärtner-Ellis theorem that S^t satisfies a global large deviation principle with a rate function I(s) obeying the Gallavotti-Cohen fluctuation relation I(-s)-I(s)=s for all sin R. We also consider perturbations of S^t by quadratic boundary terms and prove that they satisfy extended fluctuation relations, i.e., a global large deviation principle with a rate function that typically differs from I(s) outside a finite interval. This applies to various physically relevant functionals and, in particular, to the heat dissipation rate of the network. Our approach relies on the properties of the maximal solution of a one-parameter family of algebraic matrix Riccati equations. It turns out that the limiting cumulant generating functions of S^t and its perturbations can be computed in terms of spectral data of a Hamiltonian matrix depending on the harmonic potential of the network and the parameters of the Langevin reservoirs. This approach is well adapted to both analytical and numerical investigations.

  2. Second-harmonic generation with Bessel beams

    NASA Astrophysics Data System (ADS)

    Shatrovoy, Oleg

    We present the results of a numerical simulation tool for modeling the second-harmonic generation (SHG) interaction experienced by a diffracting beam. This code is used to study the simultaneous frequency and spatial profile conversion of a truncated Bessel beam that closely resembles a higher-order mode (HOM) of an optical fiber. SHG with Bessel beams has been investigated in the past and was determined have limited value because it is less efficient than SHG with a Gaussian beam in the undepleted pump regime. This thesis considers, for the first time to the best of our knowledge, whether most of the power from a Bessel-like beam could be converted into a second-harmonic beam (full depletion), as is the case with a Gaussian beam. We study this problem because using HOMs for fiber lasers and amplifiers allows reduced optical intensities, which mitigates nonlinearities, and is one possible way to increase the available output powers of fiber laser systems. The chief disadvantage of using HOM fiber amplifiers is the spatial profile of the output, but this can be transformed as part of the SHG interaction, most notably to a quasi-Gaussian profile when the phase mismatch meets the noncollinear criteria. We predict, based on numerical simulation, that noncollinear SHG (NC-SHG) can simultaneously perform highly efficient (90%) wavelength conversion from 1064 nm to 532 nm, as well as concurrent mode transformation from a truncated Bessel beam to a Gaussian-like beam (94% overlap with a Gaussian) at modest input powers (250 W, peak power or continuous-wave operation). These simulated results reveal two attractive features -- the feasibility of efficiently converting HOMs of fibers into Gaussian-like beams, and the ability to simultaneously perform frequency conversion. Combining the high powers that are possible with HOM fiber amplifiers with access to non-traditional wavelengths may offer significant advantages over the state of the art for many important applications

  3. Dengue surveillance in preparation for field vaccine trials.

    PubMed

    Letson, G William

    2009-10-01

    Preparations for dengue vaccine trials as well as vaccine introduction strategies require laboratory-based surveillance on an international and coordinated level. The Pediatric Dengue Vaccine Initiative (PDVI) has developed an international consortium of field sites in Latin America and Asia. These sites conduct community- based and enhanced passive laboratory-based surveillance of dengue fever. Through this consortium, PDVI is facilitating harmonized laboratory-based surveillance processes, so that disease incidence can be compared between different regions and countries. This process prepares sites for the rigorous case detection, diagnosis, recording and analysis to meet good clinical practice standards necessary for clinical dengue vaccine trials. In addition to several years of laboratory-based dengue surveillance data, dengue vaccine trial site criteria include low population migration of an endemic disease area, documentation of other local flavivirus epidemiology, good medical infrastructure, political stability, and country and target population commitment to vaccine trials and need for vaccine. Prevention of dengue fever is the most suitable primary end point for a proof-of-concept dengue vaccine trial. However, such trials may provide insufficient information for stratified analysis of outcomes according to varied risk factors and virus serotype. Consequently large community-based demonstration trials may be necessary.

  4. Research Areas - Clinical Trials

    Cancer.gov

    Information about NCI programs and initiatives that sponsor, conduct, develop, or support clinical trials, including NCI’s Clinical Trial Network (NCTN) and NCI Community Oncology Research Program (NCORP) initiatives.

  5. Hepatitis C: Clinical Trials

    MedlinePlus

    ... and Public Home » Hepatitis C » Treatment Decisions Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... can I find out about participating in a hepatitis C clinical trial? Many trials are being conducted ...

  6. Teaching Drama Via Trials.

    ERIC Educational Resources Information Center

    Mansour, Wisam

    1998-01-01

    Suggests using a court trial as an activity for teaching drama to English-as-a-foreign-language (EFL) students. Describes use of a court trial for teaching Macbeth to EFL students in Jordan. (Author/VWL)

  7. Harmonics tracking of intracranial and arterial blood pressure waves.

    PubMed

    Shahsavari, Sima; McKelvey, Tomas

    2008-01-01

    Considering cardiorespiratory interaction and heart rate variability, a new approach is proposed to decompose intracranial pressure and arterial blood pressure to their different harmonics. The method is based on tracking the amplitudes of the harmonics by a Kalman filter based tracking algorithm. The algorithm takes benefit of combined frequency estimation technique which uses both Fast Fourier Transform and RR-interval detection. The result would be of use in intracranial pressure and arterial blood pressure waveform analysis as well as other investigations which need to estimate contribution of specific harmonic in above mentioned signals such as Pressure-Volume Compensatory Reserve assessment.

  8. Imaging diffusion in a microfluidic device by third harmonic microscopy

    NASA Astrophysics Data System (ADS)

    Petzold, Uwe; Büchel, Andreas; Hardt, Steffen; Halfmann, Thomas

    2012-09-01

    We monitor and characterize near-surface diffusion of miscible, transparent liquids in a microfluidic device by third harmonic microscopy. The technique enables observations even of transparent or index-matched media without perturbation of the sample. In particular, we image concentrations of ethanol diffusing in water and estimate the diffusion coefficient from the third harmonic images. We obtain a diffusion coefficient D = (460 ± 30) μm2/s, which is consistent with theoretical predictions. The investigations clearly demonstrate the potential of harmonic microscopy also under the challenging conditions of transparent fluids.

  9. Noble gas clusters and nanoplasmas in high harmonic generation

    NASA Astrophysics Data System (ADS)

    Aladi, M.; Bolla, R.; Rácz, P.; Földes, I. B.

    2016-02-01

    We report a study of high harmonic generation from noble gas clusters of xenon atoms in a gas jet. Harmonic spectra were investigated as a function of backing pressure, showing spectral shifts due to the nanoplasma electrons in the clusters. At certain value of laser intensity this process may oppose the effect of the well-known ionization-induced blueshift. In addition, these cluster-induced harmonic redshifts may give the possibility to estimate cluster density and cluster size in the laser-gas jet interaction range.

  10. Aerodynamic Analysis of Cup Anemometers Performance: The Stationary Harmonic Response

    PubMed Central

    Pindado, Santiago; Cubas, Javier; Sanz-Andrés, Ángel

    2013-01-01

    The effect of cup anemometer shape parameters, such as the cups' shape, their size, and their center rotation radius, was experimentally analyzed. This analysis was based on both the calibration constants of the transfer function and the most important harmonic term of the rotor's movement, which due to the cup anemometer design is the third one. This harmonic analysis represents a new approach to study cup anemometer performances. The results clearly showed a good correlation between the average rotational speed of the anemometer's rotor and the mentioned third harmonic term of its movement. PMID:24381512

  11. Effects of the Spatial Extent of Multiple Harmonic Layers

    SciTech Connect

    Burby, J. W.; Kramer, G. J.; Phillips, C. K.; Valeo, E. J.

    2011-12-23

    An analytic model for single particle motion in the presence of a wave field and multiple cyclotron harmonics is developed and investigated. The model suggests that even in the absence of Doppler broadening, cyclotron harmonic layers have finite spatial extent. This allows for particles to interact with more than one harmonic layer simultaneously, provided the layers are tightly packed. The latter phenomenon is investigated in the context of the model using symplectic mapping techniques. Then the model behavior is compared with numerical simulations of neutral beam particle trajectories in NSTX using the full-orbit code SPIRAL.

  12. Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires

    PubMed Central

    2016-01-01

    We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing. PMID:27563688

  13. Harmonic Skeleton Guided Evaluation of Stenoses in Human Coronary Arteries

    PubMed Central

    Yang, Yan; Zhu, Lei; Haker, Steven; Tannenbaum, Allen R.; Giddens, Don P.

    2013-01-01

    This paper presents a novel approach that three-dimensionally visualizes and evaluates stenoses in human coronary arteries by using harmonic skeletons. A harmonic skeleton is the center line of a multi-branched tubular surface extracted based on a harmonic function, which is the solution of the Laplace equation. This skeletonization method guarantees smoothness and connectivity and provides a fast and straightforward way to calculate local cross-sectional areas of the arteries, and thus provides the possibility to localize and evaluate coronary artery stenosis, which is a commonly seen pathology in coronary artery disease. PMID:16685882

  14. Harmonic skeleton guided evaluation of stenoses in human coronary arteries.

    PubMed

    Yang, Yan; Zhu, Lei; Haker, Steven; Tannenbaum, Allen R; Giddens, Don P

    2005-01-01

    This paper presents a novel approach that three-dimensionally visualizes and evaluates stenoses in human coronary arteries by using harmonic skeletons. A harmonic skeleton is the center line of a multi-branched tubular surface extracted based on a harmonic function, which is the solution of the Laplace equation. This skeletonization method guarantees smoothness and connectivity and provides a fast and straightforward way to calculate local cross-sectional areas of the arteries, and thus provides the possibility to localize and evaluate coronary artery stenosis, which is a commonly seen pathology in coronary artery disease. PMID:16685882

  15. Control of Laser High-Harmonic Generation with Counterpropagating Light

    NASA Astrophysics Data System (ADS)

    Voronov, S. L.; Kohl, I.; Madsen, J. B.; Simmons, J.; Terry, N.; Titensor, J.; Wang, Q.; Peatross, J.

    2001-09-01

    Relatively weak counterpropagating light is shown to disrupt the emission of laser high-harmonic generation. Harmonic orders ranging from the teens to the low thirties produced by a 30-femtosecond pulse in a narrow argon jet are ``shut down'' with a contrast as high as 2 orders of magnitude by a chirped 1-picosecond counterpropagating laser pulse (60 times less intense). Alternatively, under poor phase-matching conditions, the counterpropagating light boosts harmonic production by similar contrast through quasiphase matching where out-of-phase emission is suppressed.

  16. Quantum theory of third-harmonic generation in graphene

    NASA Astrophysics Data System (ADS)

    Mikhailov, S. A.

    2014-12-01

    A quantum theory of third-harmonic generation in graphene is presented. An analytical formula for the nonlinear conductivity tensor σαβ γ δ (3 )(ω ,ω ,ω ) is derived. Resonant maxima of the third harmonic are shown to exist at low frequencies ω ≪EF/ℏ , as well as around the frequency ω =2 EF/ℏ , where EF is the Fermi energy in graphene. At an input power of a CO2 laser (λ ≈10 μ m ) of about 1 MW /cm2 , the output power of the third harmonic (λ ≈3.3 μ m ) is expected to be ≃50 W /cm2 .

  17. Harmonic operation of a free-electron laser

    SciTech Connect

    Latham, P.E.; Levush, B.; Antonsen, T.M. Jr. ); Metzler, N. )

    1991-03-18

    Harmonic operation of a free-electron-laser amplifier is studied. The key issue investigated here is suppression of the fundamental. For a tapered amplifier with the right choice of parameters, it is found that the presence of the harmonic mode greatly reduces the growth rate of the fundamental. A limit on the reflection coefficient of the fundamental mode that will ensure stable operation is derived. The relative merits of tripling the frequency by operating at the third harmonic versus decreasing the wiggler period by a factor of 3 are discussed.

  18. Frequency multiplied harmonic gyrotron-traveling-wave-tube amplifier

    SciTech Connect

    Choi, J.J.; Ganguly, A.K.; Armstrong, C.M. )

    1994-06-01

    Numerical simulations of a [ital W]-band two-stage tapered, frequency multiplied gyrotron- traveling-wave-tube amplifier are reported. Unlike conventional harmonic gyrodevices, a drive signal at the fundamental harmonic frequency is injected in the first stage for beam modulation, and amplified output radiation is extracted from the third harmonic cyclotron resonance interaction. Numerical results show that broadband millimeter wave radiation is obtained with an efficiency of 10%--15%, a gain of [similar to]30 dB, and an instantaneous bandwidth of [similar to]10% at a center frequency of 95 GHz for [Delta][ital v][sub [ital z

  19. High order harmonic generation in dual gas multi-jets

    SciTech Connect

    Tosa, Valer E-mail: calin.hojbota@itim-cj.ro; Hojbota, Calin E-mail: calin.hojbota@itim-cj.ro

    2013-11-13

    High order harmonic generation (HHG) in gas media suffers from a low conversion efficiency that has its origins in the interaction of the atom/molecule with the laser field. Phase matching is the main way to enhance the harmonic flux and several solutions have been designed to achieve it. Here we present numerical results modeling HHG in a system of multi-jets in which two gases alternate: the first gas jet (for example Ne) generates harmonics and the second one which ionizes easier, recover the phase matching condition. We obtain configurations which are experimentally feasible with respect to pressures and dimensions of the jets.

  20. A systematic review and meta-analysis of Harmonic technology compared with conventional techniques in mastectomy and breast-conserving surgery with lymphadenectomy for breast cancer

    PubMed Central

    Cheng, Hang; Clymer, Jeffrey W; Ferko, Nicole C; Patel, Leena; Soleas, Ireena M; Cameron, Chris G; Hinoul, Piet

    2016-01-01

    Background Mastectomy and breast-conserving surgery (BCS) are important treatment options for breast cancer patients. A previous meta-analysis demonstrated that the risk of certain complications can be reduced with the Harmonic technology compared with conventional methods in mastectomy. However, the meta-analysis did not include studies of BCS patients and focused on a subset of surgical complications. The objective of this study was to compare Harmonic technology and conventional techniques for a range of clinical outcomes and complications in both mastectomy and BCS patients, including axillary lymph node dissection. Methods A comprehensive literature search was performed for randomized controlled trials comparing Harmonic technology and conventional methods in breast cancer surgery. Outcome measures included blood loss, drainage volume, total complications, seroma, necrosis, wound infections, ecchymosis, hematoma, hospital length of stay, and operating time. Risk of bias was analyzed for all studies. Meta-analysis was performed using random-effects models for mean differences of continuous variables and a fixed-effects model for risk ratios of dichotomous variables. Results Twelve studies met the inclusion criteria. Across surgery types, compared to conventional techniques, Harmonic technology reduced total complications by 52% (P=0.002), seroma by 46% (P<0.0001), necrosis by 49% (P=0.04), postoperative chest wall drainage by 46% (P=0.0005), blood loss by 38% (P=0.0005), and length of stay by 22% (P=0.007). Although benefits generally appeared greatest in mastectomy patients with lymph node dissection, Harmonic technology showed significant reductions in complications in the BCS study subgroup. Conclusion In this meta-analysis of both mastectomy and BCS procedures, the use of Harmonic technology reduced the risk of most complications by about half across breast cancer surgery patients. These benefits may be due to superior hemostatic capabilities of Harmonic

  1. Improving Density Functionals with Quantum Harmonic Oscillators

    NASA Astrophysics Data System (ADS)

    Tkatchenko, Alexandre

    2013-03-01

    Density functional theory (DFT) is the most widely used and successful approach for electronic structure calculations. However, one of the pressing challenges for DFT is developing efficient functionals that can accurately capture the omnipresent long-range electron correlations, which determine the structure and stability of many molecules and materials. Here we show that, under certain conditions, the problem of computing the long-range correlation energy of interacting electrons can be mapped to a system of coupled quantum harmonic oscillators (QHOs). The proposed model allows us to synergistically combine concepts from DFT, quantum chemistry, and the widely discussed random-phase approximation for the correlation energy. In the dipole limit, the interaction energy for a system of coupled QHOs can be calculated exactly, thereby leading to an efficient and accurate model for the many-body dispersion energy of complex molecules and materials. The studied examples include intermolecular binding energies, the conformational hierarchy of DNA structures, the geometry and stability of molecular crystals, and supramolecular host-guest complexes (A. Tkatchenko, R. A. DiStasio Jr., R. Car, M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012); R. A. DiStasio Jr., A. von Lilienfeld, A. Tkatchenko, PNAS 109, 14791 (2012); A. Tkatchenko, D. Alfe, K. S. Kim, J. Chem. Theory and Comp. (2012), doi: 10.1021/ct300711r; A. Tkatchenko, A. Ambrosetti, R. A. DiStasio Jr., arXiv:1210.8343v1).

  2. Harmonic Balance Computations of Fan Aeroelastic Stability

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Reddy, T. S. R.

    2010-01-01

    A harmonic balance (HB) aeroelastic analysis, which has been recently developed, was used to determine the aeroelastic stability (flutter) characteristics of an experimental fan. To assess the numerical accuracy of this HB aeroelastic analysis, a time-domain aeroelastic analysis was also used to determine the aeroelastic stability characteristics of the same fan. Both of these three-dimensional analysis codes model the unsteady flowfield due to blade vibrations using the Reynolds-averaged Navier-Stokes (RANS) equations. In the HB analysis, the unsteady flow equations are converted to a HB form and solved using a pseudo-time marching method. In the time-domain analysis, the unsteady flow equations are solved using an implicit time-marching approach. Steady and unsteady computations for two vibration modes were carried out at two rotational speeds: 100 percent (design) and 70 percent (part-speed). The steady and unsteady results obtained from the two analysis methods compare well, thus verifying the recently developed HB aeroelastic analysis. Based on the results, the experimental fan was found to have no aeroelastic instability (flutter) at the conditions examined in this study.

  3. A harmonic analysis of lunar gravity

    NASA Astrophysics Data System (ADS)

    Bills, B. G.; Ferrari, A. J.

    1980-02-01

    An improved model of lunar global gravity has been obtained by fitting a sixteenth-degree harmonic series to a combination of Doppler tracking data from Apollo missions 8, 12, 15, and 16, and Lunar Orbiters 1, 2, 3, 4, and 5, and laser ranging data to the lunar surface. To compensate for the irregular selenographic distribution of these data, the solution algorithm has also incorporated a semi-empirical a priori covariance function. Maps of the free-air gravity disturbance and its formal error are presented, as are free-air anomaly and Bouguer anomaly maps. The lunar gravitational variance spectrum has the form V(G; n) = O(n to the -4th power), as do the corresponding terrestrial and martian spectra. The variance spectra of the Bouguer corrections (topography converted to equivalent gravity) for these bodies have the same basic form as the observed gravity; and, in fact, the spectral ratios are nearly constant throughout the observed spectral range for each body. Despite this spectral compatibility, the correlation between gravity and topography is generally quite poor on a global scale.

  4. Aeroelastic simulation of higher harmonic control

    NASA Technical Reports Server (NTRS)

    Robinson, Lawson H.; Friedmann, Peretz P.

    1994-01-01

    This report describes the development of an aeroelastic analysis of a helicopter rotor and its application to the simulation of helicopter vibration reduction through higher harmonic control (HHC). An improved finite-state, time-domain model of unsteady aerodynamics is developed to capture high frequency aerodynamic effects. An improved trim procedure is implemented which accounts for flap, lead-lag, and torsional deformations of the blade. The effect of unsteady aerodynamics is studied and it is found that its impact on blade aeroelastic stability and low frequency response is small, but it has a significant influence on rotor hub vibrations. Several different HHC algorithms are implemented on a hingeless rotor and their effectiveness in reducing hub vibratory shears is compared. All the controllers are found to be quite effective, but very differing HHC inputs are required depending on the aerodynamic model used. Effects of HHC on rotor stability and power requirements are found to be quite small. Simulations of roughly equivalent articulated and hingeless rotors are carried out, and it is found that hingeless rotors can require considerably larger HHC inputs to reduce vibratory shears. This implies that the practical implementation of HHC on hingeless rotors might be considerably more difficult than on articulated rotors.

  5. Second harmonic generation in human ovarian neoplasias

    NASA Astrophysics Data System (ADS)

    Lamonier, L.; Bottcher-Luiz, F.; Pietro, L.; Andrade, L. A. L. A.; de Thomaz, A. A.; Machado, C. L.; Cesar, C. L.

    2010-02-01

    Metastasis is the main cause of death in cancer patients; it requires a complex process of tumor cell dissemination, extra cellular matrix (ECM) remodeling, cell invasion and tumor-host interactions. Collagen is the major component of ECM; its fiber polymerization or degradation evolves in parallel with the evolution of the cancerous lesions. This study aimed to identify the collagen content, spatial distribution and fiber organization in biopsies of benign and malignant human ovarian tissues. Biopsies were prepared in slides without dyes and were exposed to 800nm Ti:Sapphire laser (Spectra Physics, 100 fs pulse duration, 800mW average power, 80MHz repetition rate). The obtained images were recorded at triplets, corresponding to clear field, multiphoton and second harmonic generation (SHG) mycroscopy. Data showed considerable anisotropy in malignant tissues, with regions of dense collagen arranged as individual fibers or in combination with immature segmental filaments. Radial fiber alignment or regions with minimal signal were observed in the high clinical grade tumors, suggesting degradation of original fibers or altered polymerization state of them. These findings allow us to assume that the collagen signature will be a reliable and a promising marker for diagnosis and prognosis in human ovarian cancers.

  6. Miniaturized Blue Laser using Second Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Kitaoka, Yasuo; Yokoyama, Toshifumi; Mizuuchi, Kiminori; Yamamoto, Kazuhisa

    2000-06-01

    We demonstrate a miniaturized blue laser (5× 12× 1.5 mm3) using second harmonic generation (SHG), which consists of a quasi-phase-matched (QPM)-SHG waveguide device on an x-cut Mg-doped LiNbO3 substrate and a tunable distributed-Bragg-reflector (DBR) laser diode. By using the QPM-SHG waveguide device on an x-cut substrate, efficient optical coupling was realized without a half-wave plate, and the maximum coupling efficiency of 75% was achieved. The blue light power of 2 mW was generated for the fundamental coupling power of 20 mW, which agreed with a conversion efficiency of 10%. The mechanical stability of the planar-type butt-coupled SHG blue laser was examined, where the coupling efficiency was maintained constantly under the change of module temperature and the temperature cycle test from 10 to 60°C. We succeeded in downsizing the SHG blue laser to 0.1 cm3, which is sufficiently small for its application to optical disk systems.

  7. Second harmonic generation from the 'centrosymmetric' crystals.

    PubMed

    Nalla, Venkatram; Medishetty, Raghavender; Wang, Yue; Bai, Zhaozhi; Sun, Handong; Wei, Ji; Vittal, Jagadese J

    2015-05-01

    Second harmonic generation (SHG) is a well known non-linear optical phenomena which can be observed only in non-centrosymmetric crystals due to non-zero hyperpolarizability. In the current work we observed SHG from a Zn(II) complex which was originally thought to have crystallized in the centrosymmetric space group C2/c. This has been attributed to the unequal antiparallel packing of the metal complexes in the non-symmetric space group Cc or residual non-centrosymmetry in C2/c giving rise to polarizability leading to strong SHG. The enhancement of SHG by UV light has been attributed to the increase in non-centrosymmetry and hence polarity of packing due to strain induced in the crystals. The SHG signals measured from these crystals were as large as potassium dihydrogen phosphate crystals, KH2PO4 (KDP), and showed temperature dependence. The highest SHG efficiency was observed at 50 K. The SHG phenomenon was observed at broad wavelengths ranging from visible to below-red in these crystals.

  8. Harmonic oscillator interaction with squeezed radiation

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Nikonov, D. E.

    1993-01-01

    Although the problem of electromagnetic radiation by a quantum harmonic oscillator is considered in textbooks on quantum mechanics, some of its aspects have remained unclear until now. By this, we mean that usually the initial quantum states of both the oscillator and the field are assumed to be characterized by a definite energy level of the oscillator and definite occupation numbers of the field modes. In connection with growing interest in squeezed states, it would be interesting to analyze the general case when the initial states of both subsystems are arbitrary superpositions of energy eigenstates. This problem was considered in other work, where the power of the spontaneous emission was calculated in the case of an arbitrary oscillator's initial state, but the field was initially in a vacuum state. In the present article, we calculate the rate of the oscillator average energy, squeezing, and correlation parameter change under the influence of an arbitrary external radiation field. Some other problems relating to the interaction between quantum particles (atoms) or oscillators where the electromagnetic radiation is an arbitrary (in particular squeezed) state were investigated.

  9. Second harmonic generation polarization properties of myofilaments

    NASA Astrophysics Data System (ADS)

    Samim, Masood; Prent, Nicole; Dicenzo, Daniel; Stewart, Bryan; Barzda, Virginijus

    2014-05-01

    Second harmonic generation (SHG) polarization microscopy was used to investigate the organization of myosin nanomotors in myofilaments of muscle cells. The distribution of the second-order nonlinear susceptibility component ratio χzzz(2)/χzxx(2) along anisotropic bands of sarcomeres revealed differences between the headless and head-containing regions of myofilaments. The polarization-in polarization-out SHG measurements of headless myosin mutants of indirect flight muscle in Drosophila melanogaster confirmed a lower susceptibility component ratio compared to the head-containing myocytes with wild-type myosins. The increase in the ratio is assigned to the change in the deflection angle of the myosin S2 domain and possible contribution of myosin heads. The nonlinear susceptibility component ratio is a sensitive indicator of the myosin structure, and therefore, it can be used for conformational studies of myosin nanomotors. The measured ratio values can also be used as the reference for ab initio calculations of nonlinear optical properties of different parts of myosins.

  10. Salem Witch Trials.

    ERIC Educational Resources Information Center

    Ray, Benjamin

    2003-01-01

    Presents a lesson plan that focuses on the Salem (Massachusetts) witchcraft trials. Explains that the first section of the lesson has students learn about the trials as described in the court records. The second section asks students to interpret various images of the trials. (CMK)

  11. Investigation of plasma diagnostics using a dual frequency harmonic technique

    SciTech Connect

    Kim, Dong-Hwan; Kim, Young-Do; Cho, Sung-Won; Kim, Yu-Sin; Chung, Chin-Wook

    2014-09-07

    Plasma diagnostic methods using harmonic currents analysis of electrostatic probes were experimentally investigated to understand the differences in their measurement of the plasma parameters. When dual frequency voltage (ω{sub 1},ω{sub 2}) was applied to a probe, various harmonic currents (ω{sub 1}, 2ω{sub 1},ω{sub 2}, 2ω{sub 2},ω{sub 2}±ω{sub 1},ω{sub 2}±2ω{sub 1}) were generated due to the non-linearity of the probe sheath. The electron temperature can be obtained from the ratio of the two harmonics of the probe currents. According to the combinations of the two harmonics, the sensitivities in the measurement of the electron temperature differed, and this results in a difference of the electron temperature. From experiments and simulation, it is shown that this difference is caused by the systematic and random noise.

  12. Harmonic gyrotrons operating in high-order symmetric modes

    SciTech Connect

    Nusinovich, Gregory S.; Kashyn, Dmytro G.; Antonsen, T. M.

    2015-01-05

    It is shown that gyrotrons operating at cyclotron harmonics can be designed for operation in symmetric TE{sub 0,p}-modes. Such operation in fundamental harmonic gyrotrons is possible only at small radial indices (p≤3) because of the severe mode competition with TE{sub 2,p}-modes, which are equally coupled to annular beams as the symmetric modes. At cyclotron harmonics, however, this “degeneracy” of coupling is absent, and there is a region in the parameter space where harmonic gyrotrons can steadily operate in symmetric modes. This fact is especially important for sub-THz and THz-range gyrotrons where ohmic losses limit the power achievable in continuous-wave and high duty cycle regimes.

  13. Harmonic-Resonance Analysis in a Maglev Feeding System

    NASA Astrophysics Data System (ADS)

    Shigeeda, Hidenori; Okui, Akinobu; Akagi, Hirofumi

    A feeding circuit for a superconducting magnetic levitation train system, or the so-called “maglev” consists of feeder cables and armature coils which show characteristics of a distributed-parameter line. Electric power is supplied to the cables and coils by PWM inverters whose output voltage contains a large amount of harmonics. As a result, a harmonic resonance may occur in the feeding circuit. Besides the above characteristics, the connecting point of sections (groups of armature coils) or the feeder cables length changes according to the movement of a maglev train, thus causing changes in the harmonic-resonance characteristics of the feeding circuit. This paper describes analytical results of the harmonic resonance in the feeding circuit for the maglev, with the focus on changes in the connecting point of sections and the feeder cables length.

  14. Estimates on Bloch constants for planar harmonic mappings

    NASA Astrophysics Data System (ADS)

    Xinzhong, Huang

    2008-01-01

    The Schwarz lemma and Bloch constants for planar bounded harmonic mappings are considered. Sharper form and better estimates are obtained. Our results improve the one made by Dorff and Nowak as well as by Chen, Gauthier and Hengartner.

  15. Building Mathematical Models of Simple Harmonic and Damped Motion.

    ERIC Educational Resources Information Center

    Edwards, Thomas

    1995-01-01

    By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)

  16. Motion artifacts of pulse inversion-based tissue harmonic imaging.

    PubMed

    Shen, Che-Chou; Li, Pai-Chi

    2002-09-01

    Motion artifacts of the pulse inversion technique were studied for finite amplitude distortion-based harmonic imaging. Motion in both the axial and the lateral directions was considered. Two performance issues were investigated. One is the harmonic signal intensity relative to the fundamental intensity and the other is the potential image quality degradation resulting from spectral leakage. A one-dimensional (1-D) correlation-based correction scheme also was used to compensate for motion artifacts. Results indicated that the tissue harmonic signal is significantly affected by tissue motion. For axial motion, the tissue harmonic intensity decreases much more rapidly than with lateral motion. The fundamental signal increases for both axial and lateral motion. Thus, filtering is still required to remove the fundamental signal, even if the pulse inversion technique is applied. The motion also potentially decreases contrast resolution because of the uncancelled spectral leakage. Also, it was indicated that 1-D motion correction is not adequate if nonaxial motion is present.

  17. Attosecond Lighthouse Effect: from tilted waves to isolated harmonic beams

    NASA Astrophysics Data System (ADS)

    Wheeler, Jonathan; Borot, Antonin; Vincenti, Henri; Monchoce, Sylvain; Ricci, Aurelien; Jullien, Aurelie; Malvache, Arnaud; Quere, Fabien; Lopez-Martens, Rodrigo

    2012-06-01

    Spatio-temporal coupling (STC) within a laser pulse is normally a negative feature to be avoided as it leads to non-uniform pulse characteristics and reduced intensity at focus. In this study, STC is purposefully introduced into the laser pulse leading to wavefront rotation at the focus. When such a modified focus is applied to plasma mirror harmonic generation, each harmonic pulse produced from cycle to cycle has a shifted propagation direction. Dependant on the degree of wavefront rotation introduced, this can lead from tilted harmonic spectra due to small displacements of the overlapping beams to fully isolated, individual pulses arising from each cycle of the driving laser pulse, the so-called Attosecond Lighthouse effect. This work discusses the recently measured results of spatially-separated, single harmonic beams from a solid target source obtained with 1kHz, CEP-locked, 800nm laser pulses of both 25 and 5 fs duration.

  18. Nonlinearly coupled localized plasmon resonances: Resonant second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Ginzburg, Pavel; Krasavin, Alexey; Sonnefraud, Yannick; Murphy, Antony; Pollard, Robert J.; Maier, Stefan A.; Zayats, Anatoly V.

    2012-08-01

    The efficient resonant nonlinear coupling between localized surface plasmon modes is demonstrated in a simple and intuitive way using boundary integral formulation and utilizing second-order optical nonlinearity. The nonlinearity is derived from the hydrodynamic description of electron plasma and originates from the presence of material interfaces in the case of small metal particles. The coupling between fundamental and second-harmonic modes is shown to be symmetry selective and proportional to the spatial overlap between polarization dipole density of the second-harmonic mode and the square of the polarization charge density of the fundamental mode. Particles with high geometrical symmetry will convert a far-field illumination into dark nonradiating second-harmonic modes, such as quadrupoles. Effective second-harmonic susceptibilities are proportional to the surface-to-volume ratio of a particle, emphasizing the nanoscale enhancement of the effect.

  19. Application of harmonic wavelet to filtering of rockbolt detecting signal

    NASA Astrophysics Data System (ADS)

    Zhao, Yucheng; Liu, Hongyan; Wang, Jiyan; Miao, Xiexing

    2008-11-01

    Harmonic wavelet had explicit functional expression, flexible time-frequency division, simple transforming algorithm and a finer frequency refinement function than the others wavelet. In this paper based on frequency distributing characteristic of nondestructive testing signal from rockbolt supporting system, the discrete harmonic wavelet transforming theory was used to get rid of the lower and higher frequency signal from the initial signal. Meanwhile, the reconstruction algorithm of harmonic wavelet was brought forward to gain the signal without the unnecessary bandwidth signals. Finally, a numerical signal and real signal which can demonstrate superiority of harmonic wavelet in filtering are presented, and the transforming result shows that it would make the system run more precise and stably in the detecting to the quality of rockbolt supporting system.

  20. Ellipticity of near-threshold harmonics from stretched molecules.

    PubMed

    Li, Weiyan; Dong, Fulong; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun

    2015-11-30

    We study the ellipticity of near-threshold harmonics (NTH) from aligned molecules with large internuclear distances numerically and analytically. The calculated harmonic spectra show a broad plateau for NTH which is several orders of magnitude higher than that for high-order harmonics. In particular, the NTH plateau shows high ellipticity at small and intermediate orientation angles. Our analyses reveal that the main contributions to the NTH plateau come from the transition of the electron from continuum states to these two lowest bound states of the system, which are strongly coupled together by the laser field. Besides continuum states, higher excited states also play a role in the NTH plateau, resulting in a large phase difference between parallel and perpendicular harmonics and accordingly high ellipticity of the NTH plateau. The NTH plateau with high intensity and large ellipticity provides a promising manner for generating strong elliptically-polarized extreme-ultraviolet (EUV) pulses. PMID:26698731

  1. A harmonic oscillator having “volleyball damping”

    NASA Astrophysics Data System (ADS)

    Mickens, R. E.; Oyedeji, K.; Rucker, S. A.

    2006-05-01

    Volleyball damping corresponds to linear damping up to a certain critical velocity, with zero damping above this value. The dynamics of a linear harmonic oscillator is investigated with this damping mechanism.

  2. Detection of Molecular Monolayers by Optical Second-Harmonic Generation

    SciTech Connect

    Chen, C. K.; Heinz, T. F.; Ricard, D.; Shen, Y. R.

    1980-12-22

    Second harmonic generation is shown to be sensitive enough to detect molecular monolayers adsorbed on a silver surface. Adsorption of AgCl and pyridine on silver during and after an electrolytic cycle can be easily observed,

  3. Vector Operators and Spherical Harmonics in Quantum Mechanics.

    ERIC Educational Resources Information Center

    Andrews, M.

    1979-01-01

    Shows that the basic properties of spherical harmonics follow in a simple and elegant way from the commutation relations for angular momentum operators and the commutation relations between these operators and arbitrary vector operators. (Author/HM)

  4. Human brain networks function in connectome-specific harmonic waves.

    PubMed

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  5. Frequency-resolved optical grating using third-harmonic generation

    SciTech Connect

    Tsang, T.; Krumbuegel, M.A.; Delong, K.W.

    1995-12-01

    We demonstrate the first frequency-resolved optical gating measurement of an laser oscillator without the time ambiguity using third-harmonic generation. The experiment agrees well with the phase-retrieved spectrograms.

  6. Optical third-harmonic generation using ultrashort laser pulses

    SciTech Connect

    Stoker, D.; Keto, J.W.; Becker, M.F.

    2005-06-15

    To better predict optical third-harmonic generation (THG) in transparent dielectrics, we model a typical ultrashort pulsed Gaussian beam, including both group velocity mismatch and phase mismatch of the fundamental and harmonic fields. We find that competition between the group velocity mismatch and phase mismatch leads to third-harmonic generation that is sensitive only to interfaces. In this case, the spatial resolution is determined by the group velocity walk-off length. THG of modern femtosecond lasers in optical solids is a bulk process, without a surface susceptibility, but bears the signature of a surface enhancement effect in z-scan measurements. We demonstrate the accuracy of the model, by showing the agreement between the predicted spectral intensity and the measured third-harmonic spectrum from a thin sapphire crystal.

  7. Squeezed light from second-harmonic generation: experiment versus theory.

    PubMed

    Ralph, T C; Taubman, M S; White, A G; McClelland, D E; Bachor, H A

    1995-06-01

    We report excellent quantitative agreement between theoretical predictions and experimental observation of squeezing from a singly resonant second-harmonic-generating crystal. Limitations in the noise suppression imposed by the pump laser are explicitly modeled and confirmed by our measurements.

  8. Creating high-harmonic beams with controlled orbital angular momentum.

    PubMed

    Gariepy, Genevieve; Leach, Jonathan; Kim, Kyung Taec; Hammond, T J; Frumker, E; Boyd, Robert W; Corkum, P B

    2014-10-10

    A beam with an angular-dependant phase Φ = ℓϕ about the beam axis carries an orbital angular momentum of ℓℏ per photon. Such beams are exploited to provide superresolution in microscopy. Creating extreme ultraviolet or soft-x-ray beams with controllable orbital angular momentum is a critical step towards extending superresolution to much higher spatial resolution. We show that orbital angular momentum is conserved during high-harmonic generation. Experimentally, we use a fundamental beam with |ℓ| = 1 and interferometrically determine that the harmonics each have orbital angular momentum equal to their harmonic number. Theoretically, we show how any small value of orbital angular momentum can be coupled to any harmonic in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.

  9. Efficient millimeter wave 1140 GHz/ diode for harmonic power generation

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Epitaxial gallium arsenide diode junction formed in a crossed waveguide structure operates as a variable reactance harmonic generator. This varactor diode can generate power efficiently in the low-millimeter wavelength.

  10. Human brain networks function in connectome-specific harmonic waves

    PubMed Central

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-01

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call ‘connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory–inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation–inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness. PMID:26792267

  11. Autonomous Mobile Robot Navigation Using Harmonic Potential Field

    NASA Astrophysics Data System (ADS)

    Panati, Subbash; Baasandorj, Bayanjargal; Chong, Kil To

    2015-05-01

    Mobile robot navigation has been an area of robotics which has gained massive attention among the researchers of robotics community. Path planning and obstacle avoidance are the key aspects of mobile robot navigation. This paper presents harmonic potential field based navigation algorithm for mobile robots. Harmonic potential field method overcomes the issue of local minima which was a major bottleneck in the case of artificial potential field method. The harmonic potential field is calculated using harmonic functions and Dirichlet boundary conditions are used for the obstacles, goal and initial position. The simulation results shows that the proposed method is able to overcome the local minima issue and navigate successfully from initial position to the goal without colliding into obstacles in static environment.

  12. The Coupled Harmonic Oscillator: Not Just for Seniors Anymore.

    ERIC Educational Resources Information Center

    Preyer, Norris W.

    1996-01-01

    Presents experiments that use Microcomputer Based Laboratory (MBL) techniques to enable freshmen physics students to investigate complex systems, such as nonlinear oscillators or coupled harmonic oscillators, at a level appropriate for an independent project. (JRH)

  13. Effect of power frequency harmonics on magnetic field measurements.

    PubMed

    Isokorpi, J; Rautee, J; Keikko, T; Korpinen, L

    2000-03-01

    This paper presents a study of the effect of harmonic frequencies on magnetic field measurements. We introduced magnetic field meters in a known magnetic field of different frequencies: power frequency (50 Hz) as well as 3rd (150 Hz) and 5th (250 Hz) harmonic frequencies. Two magnetic field levels (0.25 A and 2.5 A) were used. A Helmholtz coil was applied to generate an exact magnetic field. The difference between the measurement results at harmonic frequencies and at power frequency was analyzed using the t-test for matched pairs. The test results show significant differences (P< or =0.01) for 13 out of 28 tests carried out, which is probably due to a curved frequency response near the power frequency. It is, therefore, essential to consider harmonic frequencies in magnetic field measurements in practice.

  14. Action principle for the generalized harmonic formulation of general relativity

    SciTech Connect

    Brown, J. David

    2011-10-15

    An action principle for the generalized harmonic formulation of general relativity is presented. The action is a functional of the spacetime metric and the gauge source vector. An action principle for the Z4 formulation of general relativity has been proposed recently by Bona, Bona-Casas, and Palenzuela. The relationship between the generalized harmonic action and the Bona, Bona-Casas, and Palenzuela action is discussed in detail.

  15. Debunching into a bucket of lower harmonic number

    SciTech Connect

    MacLachlan, J.A.; Griffin, J.E.

    1987-12-09

    The adiabatic debunching of beam from buckets of higher harmonic number into waiting buckets of lower harmonic number is a critical step in the current scheme of operation for Tev I. The optimum choice of rf system parameters for this ''bunch coalescing'' process is not immediately obvious. In this note two examples are presented along with generalizations based upon them and experience with the Tevatron I design which can simplify the selection of appropriate parameters for different conditions.

  16. Wind LCA Harmonization (Fact Sheet), NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Not Available

    2013-06-01

    NREL recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that provides more exact estimates of GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty. This involved a systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems in order to determine the causes of life cycle greenhouse gases (GHG) emissions and, where possible, reduce variability in GHG estimates.

  17. Nonlinearly driven harmonics of Alfvén modes

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Breizman, B. N.; Zheng, L. J.; Berk, H. L.

    2014-01-01

    In order to study the leading order nonlinear magneto-hydrodynamic (MHD) harmonic response of a plasma in realistic geometry, the AEGIS code has been generalized to account for inhomogeneous source terms. These source terms are expressed in terms of the quadratic corrections that depend on the functional form of a linear MHD eigenmode, such as the Toroidal Alfvén Eigenmode. The solution of the resultant equation gives the second order harmonic response. Preliminary results are presented here.

  18. Harmonic scalpel for a bloodless partial glossectomy: a case report.

    PubMed

    Irfan, M; Aliyu, Y A; Baharudin, A; Shahid, H

    2011-06-01

    Tongue surgery is almost always complicated by intraoperative bleeding. Its rich blood supply especially from the lingual vessels makes the operative field bloody. Electrocautery has been widely used to replace cold scissors in order to achieve better hemostasis. The use of ultrasonic harmonic scalpel for glossectomy is still new in this country. We report a case of partial glossectomy using the harmonic scalpel in a patient who had a squamous cell carcinoma of the lateral border of the tongue.

  19. Brilliant high harmonic sources with extended cut-off

    SciTech Connect

    Seres, Josef; Spielmann, Christian; Seres, Enikoe

    2010-02-02

    The most challenging application of time resolved spectroscopy is to directly watch the structural and electronic dynamics. Here we present several ways for realizing laser driven x-ray sources, offering atomic spatial and temporal resolution. Our approaches are based on high harmonic generation and include quasi-phase matching in two successive gas jets, extending the cut-off by high harmonic generation in an ion channel, and amplification of HHG in a plasma based amplifier.

  20. Spatiotemporal toroidal waves from the transverse second-harmonic generation.

    PubMed

    Saltiel, Solomon M; Neshev, Dragomir N; Fischer, Robert; Krolikowski, Wieslaw; Arie, Ady; Kivshar, Yuri S

    2008-03-01

    We study the second-harmonic generation via transversely matched interaction of two counterpropagating ultrashort pulses in chi(2) photonic structures. We show that the emitted second-harmonic wave attains the form of spatially expanding toroid with the initial thickness given by the cross correlation of the pulses. We demonstrate the formation of such toroidal waves in crystals with random ferroelectric domains as well as in annularly poled nonlinear photonic structures.

  1. Roadmap for harmonization of clinical laboratory measurement procedures.

    PubMed

    Greg Miller, W; Myers, Gary L; Lou Gantzer, Mary; Kahn, Stephen E; Schönbrunner, E Ralf; Thienpont, Linda M; Bunk, David M; Christenson, Robert H; Eckfeldt, John H; Lo, Stanley F; Nübling, C Micha; Sturgeon, Catharine M

    2011-08-01

    Results between different clinical laboratory measurement procedures (CLMP) should be equivalent, within clinically meaningful limits, to enable optimal use of clinical guidelines for disease diagnosis and patient management. When laboratory test results are neither standardized nor harmonized, a different numeric result may be obtained for the same clinical sample. Unfortunately, some guidelines are based on test results from a specific laboratory measurement procedure without consideration of the possibility or likelihood of differences between various procedures. When this happens, aggregation of data from different clinical research investigations and development of appropriate clinical practice guidelines will be flawed. A lack of recognition that results are neither standardized nor harmonized may lead to erroneous clinical, financial, regulatory, or technical decisions. Standardization of CLMPs has been accomplished for several measurands for which primary (pure substance) reference materials exist and/or reference measurement procedures (RMPs) have been developed. However, the harmonization of clinical laboratory procedures for measurands that do not have RMPs has been problematic owing to inadequate definition of the measurand, inadequate analytical specificity for the measurand, inadequate attention to the commutability of reference materials, and lack of a systematic approach for harmonization. To address these problems, an infrastructure must be developed to enable a systematic approach for identification and prioritization of measurands to be harmonized on the basis of clinical importance and technical feasibility, and for management of the technical implementation of a harmonization process for a specific measurand. PMID:21677092

  2. Harmonization of environmental quality objectives for air, water and soil

    SciTech Connect

    Plassche, E.J. van de

    1994-12-31

    Environmental quality objectives (EQO) are often derived for single compartments only. However, concentrations at or below EQO level for one compartment may lead to exceeding of the EQO in another compartment due to intermedia transport of the chemical. Hence, achieving concentrations lower than the EQO in e.g. air does not necessarily mean that a ``safe`` concentration in soil can be maintained because of deposition from air to soil. This means that EQOs for air, water and soil must be harmonized in such a way that they meet a coherence criterion. This criterion implies that a EQO for one compartment has to be set at a level that full protection to organisms living in other compartments is ensured. In The Netherlands a project has been started to derive harmonized EQOs for a large number of chemicals. First, EQ0s are derived for all compartments based on ecotoxicological data for single species applying extrapolation methods. Secondly, these independently derived EQOs are harmonized. For harmonization of EQOs for water, sediment and soil the equilibrium partitioning method is used. For harmonization of EQOs for water and soil with the E00s for air a procedure is used applying computed steady state concentration ratios rather than equilibrium partitioning. The model SimpleBox is used for these computations. Some results of the project mentioned above will be presented. Attention will be paid to the derivation of independent EQ0s as well as the harmonization procedures applied.

  3. Solid-state harmonics beyond the atomic limit.

    PubMed

    Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A

    2016-06-23

    Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids. PMID:27281195

  4. Electromagnetic ion beam instabilities - Growth at cyclotron harmonic wave numbers

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Gary, S. Peter

    1987-01-01

    The linear theory of electromagnetic ion beam instabilities for arbitrary angles of propagation is studied, with an emphasis on the conditions necessary to generate unstable modes at low harmonics of the ion cyclotron resonance condition. The present results extend the analysis of Smith et al. (1985). That paper considered only the plasma parameters at a time during which harmonic wave modes were observed in the earth's foreshock. The parameters of that paper are used as the basis of parametric variations here to establish the range of beam properties which may give rise to observable harmonic spectra. It is shown that the growth rates of both left-hand and right-hand cyclotron harmonic instabilities are enhanced by an increase in the beam temperature anisotropy and/or the beam speed. Decreases in the beam density and/or the core-ion beta reduce the overall growth of the cyclotron harmonic instabilities but favor the growth of these modes over the growth of the nonresonant instability and thereby enhance the observability of the harmonics.

  5. Improved Active Harmonic Current Elimination Based on Voltage Detection

    PubMed Central

    Tan, Tianyuan; Dong, Shuan; Huang, Yingwei; Liu, Jian; Le, Jian; Liu, Kaipei

    2016-01-01

    With the increasing penetration of power electronic equipment in modern residential distribution systems, harmonics mitigation through the distributed generation (DG) interfacing converters has received significant attention. Among recently proposed methods, the so-called active resonance damper (ARD) and harmonic voltage compensator (HVC) based on voltage detection can effectively reduce the harmonic distortions in selected areas of distribution systems. However, it is found out that when traditional ARD algorithm is used to eliminate harmonic current injected by non-linear loads, its performance is constrained by stability problems and can at most eliminate half of the load harmonic currents. Thus, inspired by the duality between ARD and HVC, this paper presents a novel improved resistive active power filter (R-APF) algorithm based on integral-decoupling control. The design guideline for its parameters is then investigated through carefully analyzing the closed-loop poles’ trajectory. Computer studies demonstrate that the proposed algorithm can effectively mitigate the load harmonic currents and its performance is much better than traditional ARD based on proportional control. PMID:27295213

  6. Bernstein wave aided laser third harmonic generation in a plasma

    NASA Astrophysics Data System (ADS)

    Tyagi, Yachna; Tripathi, Deepak; Kumar, Ashok

    2016-09-01

    The process of Bernstein wave aided resonant third harmonic generation of laser in a magnetized plasma is investigated. The extra-ordinary mode (X-mode) laser of frequency ω 0 and wave number k → 0 , travelling across the magnetic field in a plasma, exerts a second harmonic ponderomotive force on the electrons imparting them an oscillatory velocity v → 2 ω0 , 2 k → 0 . This velocity beats with the density perturbation due to the Bernstein wave to produce a density perturbation at cyclotron frequency shifted second harmonic. The density perturbation couples with the oscillatory velocity v → ω0 , k → 0 of X-mode of the laser to produce the cyclotron frequency shifted third harmonic current density leading to harmonic radiation. The phase matching condition for the up shifted frequency is satisfied when the Bernstein wave is nearly counter-propagating to the laser. As the transverse wave number of the Bernstein wave is large, it is effective in the phase matched third harmonic generation, when the laser frequency is not too far from the upper hybrid frequency.

  7. Solid-state harmonics beyond the atomic limit.

    PubMed

    Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A

    2016-06-06

    Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.

  8. Solid-state harmonics beyond the atomic limit

    NASA Astrophysics Data System (ADS)

    Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A.; Schafer, Kenneth J.; Gaarde, Mette B.; Reis, David A.

    2016-06-01

    Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.

  9. Improved Active Harmonic Current Elimination Based on Voltage Detection.

    PubMed

    Tan, Tianyuan; Dong, Shuan; Huang, Yingwei; Liu, Jian; Le, Jian; Liu, Kaipei

    2016-01-01

    With the increasing penetration of power electronic equipment in modern residential distribution systems, harmonics mitigation through the distributed generation (DG) interfacing converters has received significant attention. Among recently proposed methods, the so-called active resonance damper (ARD) and harmonic voltage compensator (HVC) based on voltage detection can effectively reduce the harmonic distortions in selected areas of distribution systems. However, it is found out that when traditional ARD algorithm is used to eliminate harmonic current injected by non-linear loads, its performance is constrained by stability problems and can at most eliminate half of the load harmonic currents. Thus, inspired by the duality between ARD and HVC, this paper presents a novel improved resistive active power filter (R-APF) algorithm based on integral-decoupling control. The design guideline for its parameters is then investigated through carefully analyzing the closed-loop poles' trajectory. Computer studies demonstrate that the proposed algorithm can effectively mitigate the load harmonic currents and its performance is much better than traditional ARD based on proportional control. PMID:27295213

  10. The origin of harmonic tremor at Old Faithful geyser

    NASA Astrophysics Data System (ADS)

    Kedar, Sharon; Sturtevant, Bradford; Kanamori, Hiroo

    1996-02-01

    VOLCANIC eruptions are sometimes accompanied by a characteristic type of seismicity known as harmonic tremor, in which the signal is dominated by discrete vibration frequencies1-4. This harmonic structure could reflect resonance behaviour in the excitation source4-6 or filtering of the seismic waves as they propagate through the surrounding rocks7-10 but complexity and variability in the properties of volcanic systems make it difficult to discriminate between such mechanisms. To address this question, we have analysed the source and propagation characteristics of seismicity at Old Faithful geyser (Yellowstone National Park), the cyclic behaviour and accessibility of which make it an ideal natural laboratory for studying harmonic tremor associated with near-surface sources. We find that sharp pressure pulses inside the water column trigger distinct seismic events that give rise to a harmonic ground response whose frequency varies spatially but not temporally. A superposition of these seismic events creates the appearance of continuous harmonic tremor. The absence of resonance within the water column suggests that the harmonic motion must arise from the interaction of the seismic waves with heterogeneities in the surrounding elastic medium-most probably a near-surface soft layer.

  11. Single-shot fluctuations in waveguided high-harmonic generation.

    PubMed

    Goh, S J; Tao, Y; van der Slot, P J M; Bastiaens, H J M; Herek, J; Biedron, S G; Danailov, M B; Milton, S V; Boller, K-J

    2015-09-21

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot drive laser beam profiles and single-shot high-harmonic beam profiles we prove the absence of drive laser beam-pointing-induced fluctuations in the high-harmonic output. We attribute the main source of high-harmonic fluctuations to ionization-induced nonlinear mode mixing during propagation of the drive laser pulse inside the capillary waveguide. PMID:26406689

  12. High-order harmonics from laser-irradiated plasma surfaces

    SciTech Connect

    Teubner, U.; Gibbon, P.

    2009-04-15

    The investigation of high-order harmonic generation (HHG) of femtosecond laser pulses by means of laser-produced plasmas is surveyed. This kind of harmonic generation is an alternative to the HHG in gases and shows significantly higher conversion efficiency. Furthermore, with plasma targets there is no limitation on applicable laser intensity and thus the generated harmonics can be much more intense. In principle, harmonic light may also be generated at relativistic laser intensity, in which case their harmonic intensities may even exceed that of the focused laser pulse by many orders of magnitude. This phenomenon presents new opportunities for applications such as nonlinear optics in the extreme ultraviolet region, photoelectron spectroscopy, and opacity measurements of high-density matter with high temporal and spatial resolution. On the other hand, HHG is strongly influenced by the laser-plasma interaction itself. In particular, recent results show a strong correlation with high-energy electrons generated during the interaction process. The harmonics are a promising tool for obtaining information not only on plasma parameters such as the local electron density, but also on the presence of large electric and magnetic fields, plasma waves, and the (electron) transport inside the target. This paper reviews the theoretical and experimental progress on HHG via laser-plasma interactions and discusses the prospects for applying HHG as a short-wavelength, coherent optical tool.

  13. An Arduino Investigation of Simple Harmonic Motion

    NASA Astrophysics Data System (ADS)

    Galeriu, Calin; Edwards, Scott; Esper, Geoffrey

    2014-03-01

    We cannot hope for a new generation of scientists and engineers if we don't let our young students take ownership of their scientific and engineering explorations, if we don't let them enjoy the hands-on cycle of design and production, and if we don't let them implant their creativity into a technologically friendly environment. With this educational philosophy in mind, Massimo Banzi and his team have developed and popularized the open source Arduino microcontroller board. The Arduino board has helped countless people in their science, electronics, robotics, or engineering projects, allowing them to build things that we have not even dreamed of. Physics instructors have also realized the advantages of using Arduino boards for lab experiments. The schools are saving money because the homemade experimental equipment is much cheaper than the commercial alternatives. The students are thankful for an educational experience that is more interesting, more loaded with STEM content, and more fun. As further proof of this new trend in physics education, Vernier5 is now documenting the use of their probes with Arduino boards. This is why we have developed an Arduino-based physics investigation of the simple harmonic motion (SHM) of a mass on a spring. The experimental data are collected with the help of an ultrasonic distance sensor and an Arduino Uno board. The data are then graphed and analyzed using Origin 9. This rich cross-curricular STEM activity integrates electronics, computer programming, physics, and mathematics in a way that is both experimentally exciting and intellectually rewarding.

  14. Spherical harmonics methods for thermal radiation transport

    NASA Astrophysics Data System (ADS)

    McClarren, Ryan G.

    An implicit, spherical harmonic (Pn) method for solving thermal transport problems is developed. The method uses a high resolution Riemann solver to produce an upwinded discretization. The high resolution scheme introduces nonlinearities to the radiation transport operator to avoid the creation of artificial oscillations in the solution. By using a minmod limiter a quasi-linear approach to solving this nonlinear system of equations is developed. Through analysis and numerical results it is shown that the quasi-linear approach does suppress artificial oscillations and gives better than first order accuracy and is less computationally demanding than a fully nonlinear solve. The time integration methods considered are the backward Euler method and a high resolution time integration method. Also, reflecting boundary conditions for the Pn equations in three-dimensions are presented. It is shown that the standard Riemann solver is not robust in the diffusion limit. A fix is suggested that scales out the dissipation added by the Riemann solver as spatial cells become optically thick. The Green's function for the one-dimensional P 1 thermal transport equations with Cv ∝ T3 is derived. The Green's function is used to create the P1 solution to a common benchmark and to a problem of an infinite, pulsed line source. The implicit method was able to produce robust results to thermal transport problems in one and two dimensions. The implicit approach allowed the numerical method to take times steps on the longer material energy time scale rather than the speed of light time scale. In two dimensional problems the Pn solutions contained negative radiation energy densities. These negatives caused the material temperature to become negative as well. The free-streaming limit of the Pn equations is explored and it is shown why in transient problems in multiple-dimensions the Pn solutions can have negative energy densities.

  15. Designs and numerical calculations for echo-enabled harmonic generation at very high harmonics

    NASA Astrophysics Data System (ADS)

    Penn, G.; Reinsch, M.

    2011-09-01

    The echo-enabled harmonic generation (EEHG) scheme for driving an FEL using two seeded energy modulations at much longer wavelengths than the output wavelength is a promising concept for future seeded FELs. There are many competing requirements in the design of an EEHG beamline which need careful optimization. Furthermore, revised simulation tools and methods are necessary because of both the high harmonic numbers simulated and the complicated nature of the phase space manipulations which are intrinsic to the scheme. This paper explores the constraints on performance and the required tolerances for reaching wavelengths well below 1/100th of that of the seed lasers, and describes some of the methodology for designing such a beamline. Numerical tools, developed both for the GENESIS and GINGER FEL codes, are presented and used here for more accurate study of the scheme beyond a time-averaged model. In particular, the impact of the local structure in peak current and bunching, which is an inherent part of the EEHG scheme, is evaluated.

  16. Research of rural power grids harmonics monitoring system based on technology of LabVIEW

    NASA Astrophysics Data System (ADS)

    Zhou, Yuhong; Xie, Yunfang; Zhang, Su

    2009-07-01

    A virtual harmonic system based on the development platform of LabVIEW is developed in the article. The basic design idea of this system is virtual instrument(VI). The system is OK to add the harmonic signal collecting from actual electrified wire netting , and also load the platform simulating harmonic signal coming into being. And the on-line harmonic monitoring is carried out through this system, revealing the state of its basic wave and harmonic waves. During the analysis of harmonics, FFT algorithm with high accuracy is used to improve accuracy of harmonics analysis. This system has advantages of better analyzed effection and low cost, and can be extended easily.

  17. Identification and tracking of harmonic sources in a power system using a Kalman filter

    SciTech Connect

    Ma, H.; Girgis, A.A.

    1996-07-01

    In this paper, two problems have been addressed on harmonic sources identification: the optimal locations of a limited number of harmonic meters and the optimal dynamic estimates of harmonic source locations and their injections in unbalanced three-phase power systems. A Kalman filtering is used to attack these problems. System error covariance analysis by the Kalman filter associated with a harmonic injection estimate determines the optimal arrangement of limited harmonic meters. Based on the optimally-arranged harmonic metering locations, the Kalman filter then yields the optimal dynamic estimates of harmonic injections with a few noisy harmonic measurements. The method is dynamic and has the capability of identifying, analyzing and tracking each harmonic injection at all buses in unbalanced three-phase power systems. Actual recorded harmonic measurements and simulated data in a power distribution system are provided to prove the efficiency of this approach.

  18. Modernization of Physical Appearance and Solution Color Tests Using Quantitative Tristimulus Colorimetry: Advantages, Harmonization, and Validation Strategies.

    PubMed

    Pack, Brian W; Montgomery, Laura L; Hetrick, Evan M

    2015-10-01

    Color measurements, including physical appearance, are important yet often misunderstood and underappreciated aspects of a control strategy for drug substances and drug products. From a patient safety perspective, color can be an important control point for detecting contamination, impurities, and degradation products, with human visual acuity often more sensitive for colored impurities than instrumental techniques such as HPLC. Physical appearance tests and solution color tests can also serve an important role in ensuring that appropriate steps are taken such that clinical trials do not become unblinded when the active material is compared with another product or a placebo. Despite the importance of color tests, compendial visual tests are not harmonized across the major pharmacopoeias, which results in ambiguous specifications of little value, difficult communication of true sample color, and significant extra work required for global registration. Some pharmacopoeias have not yet recognized or adopted technical advances in the instrumental measurement of color and appearance, whereas others begin to acknowledge the advantage of instrumental colorimetry, yet leave implementation of the technology ambiguous. This commentary will highlight the above-mentioned inconsistencies, provide an avenue toward harmonization and modernization, and outline a scientifically sound approach for implementing quantitative technologies for improved measurement, communication, and control of color and appearance for both solutions and solids. Importantly, this manuscript, for the first time, outlines a color method validation approach that is consistent with the International Conference on Harmonization's guidance on the topic of method validation.

  19. Harmonization in laboratory medicine: Requests, samples, measurements and reports.

    PubMed

    Plebani, Mario

    2016-01-01

    In laboratory medicine, the terms "standardization" and "harmonization" are frequently used interchangeably as the final goal is the same: the equivalence of measurement results among different routine measurement procedures over time and space according to defined analytical and clinical quality specifications. However, the terms define two distinct, albeit closely linked, concepts based on traceability principles. The word "standardization" is used when results for a measurement are equivalent and traceable to the International System of Units (SI) through a high-order primary reference material and/or a reference measurement procedure (RMP). "Harmonization" is generally used when results are equivalent, but neither a high-order primary reference material nor a reference measurement procedure is available. Harmonization is a fundamental aspect of quality in laboratory medicine as its ultimate goal is to improve patient outcomes through the provision of accurate and actionable laboratory information. Patients, clinicians and other healthcare professionals assume that clinical laboratory tests performed by different laboratories at different times on the same sample and specimen can be compared, and that results can be reliably and consistently interpreted. Unfortunately, this is not necessarily the case, because many laboratory test results are still highly variable and poorly standardized and harmonized. Although the initial focus was mainly on harmonizing and standardizing analytical processes and methods, the scope of harmonization now also includes all other aspects of the total testing process (TTP), such as terminology and units, report formats, reference intervals and decision limits as well as tests and test profiles, requests and criteria for interpretation. Several projects and initiatives aiming to improve standardization and harmonization in the testing process are now underway. Laboratory professionals should therefore step up their efforts to provide

  20. Ion gyro-harmonic structuring in the stimulated radiation spectrum and optical emissions during electron gyro-harmonic heating

    NASA Astrophysics Data System (ADS)

    Mahmoudian, A.; Scales, W. A.; Bernhardt, P. A.; Samimi, A.; Kendall, E.; Ruohoniemi, J. M.; Isham, B.; Vega-Cancel, O.; Bordikar, M.

    2013-03-01

    Stimulated electromagnetic emissions (SEEs) are secondary radiation produced during active space experiments in which the ionosphere is actively heated with high power high frequency (HF) ground-based radio transmitters. Recently, there has been significant interest in ion gyro-harmonic structuring the SEE spectrum due to the potential for new diagnostic information available such as electron acceleration and creation of artificial ionization layers. These relatively recently discovered gyro-harmonic spectral features have almost exclusively been studied when the transmitting frequency is near the second electron gyro-harmonic frequency. The first extensive systematic experimental investigations of the possibility of these spectral features for third electron gyro-harmonic heating are provided here. Discrete spectral features shifted from the transmit frequency ordered by harmonics of the ion gyro-frequency were observed for third electron gyro-harmonic heating for the first time at a recent campaign at the High Frequency Active Auroral Research Program (HAARP) facility. These features were also closely correlated with a broader band feature at a larger frequency shift from the transmit frequency known as the downshifted peak (DP). The power threshold of these spectral features was measured, as well as their behavior with heater beam angle, and proximity of the transmit frequency to the third electron gyro-harmonic frequency. Comparisons were also made with similar spectral features observed during second electron gyro-harmonic heating during the same campaign. A theoretical model is provided that interprets these spectral features as resulting from parametric decay instabilities in which the pump field ultimately decays into high frequency upper hybrid/electron Bernstein and low frequency neutralized ion Bernstein IB and/or obliquely propagating ion acoustic waves at the upper hybrid interaction altitude. Coordinated optical and SEE observations were carried out

  1. Design of clinical trials.

    PubMed

    Rollo, David; Machado, Sanjay; Ceschin, Mauro

    2010-09-01

    Clinical trial design for nuclear medicine diagnostic imaging radiopharmaceuticals must include a design for preclinical safety studies. These studies should establish that the investigational product (IP) does not have a toxic effect. As a further requirement, radiopharmaceutical clinical trials include a human study (phase 1) that provides biodistribution, pharmacokinetics, and radiation dosimetry information. These studies demonstrate to the Food and Drug Administration that the IP either meets or exceeds the toxicology and radiation exposure safety limits. Satisfying this requirement can result in the Food and Drug Administration approving the performance of late-phase (phase 2/3) clinical trials that are designed to validate the clinical efficacy of the diagnostic imaging agent in patients who have a confirmed diagnosis for the intended application. Emphasis is placed on the most typical trial design for diagnostic imaging agents that use a comparator to demonstrate that the new IP is similar in efficacy to an established standard comparator. Such trials are called equivalence, or noninferiority, trials that attempt to show that the new IP is not less effective than the comparator by more than a statistically defined amount. Importantly, the trial design must not inappropriately favor one diagnostic imaging agent over the other. Bias is avoided by the use of a core laboratory with expert physicians who are not involved in the trial for interpreting and objectively scoring the image sets obtained at the clinical trial sites. Clinical trial design must also follow Good Clinical Practice (GCP) guidelines. GCP stipulates the clinical trial process, including protocol and Case Report Form design, analyses planning, as well as analyzing and preparing interim and final clinical trial/study reports.

  2. Design of clinical trials.

    PubMed

    Rollo, David; Machado, Sanjay; Ceschin, Mauro

    2010-09-01

    Clinical trial design for nuclear medicine diagnostic imaging radiopharmaceuticals must include a design for preclinical safety studies. These studies should establish that the investigational product (IP) does not have a toxic effect. As a further requirement, radiopharmaceutical clinical trials include a human study (phase 1) that provides biodistribution, pharmacokinetics, and radiation dosimetry information. These studies demonstrate to the Food and Drug Administration that the IP either meets or exceeds the toxicology and radiation exposure safety limits. Satisfying this requirement can result in the Food and Drug Administration approving the performance of late-phase (phase 2/3) clinical trials that are designed to validate the clinical efficacy of the diagnostic imaging agent in patients who have a confirmed diagnosis for the intended application. Emphasis is placed on the most typical trial design for diagnostic imaging agents that use a comparator to demonstrate that the new IP is similar in efficacy to an established standard comparator. Such trials are called equivalence, or noninferiority, trials that attempt to show that the new IP is not less effective than the comparator by more than a statistically defined amount. Importantly, the trial design must not inappropriately favor one diagnostic imaging agent over the other. Bias is avoided by the use of a core laboratory with expert physicians who are not involved in the trial for interpreting and objectively scoring the image sets obtained at the clinical trial sites. Clinical trial design must also follow Good Clinical Practice (GCP) guidelines. GCP stipulates the clinical trial process, including protocol and Case Report Form design, analyses planning, as well as analyzing and preparing interim and final clinical trial/study reports. PMID:20674592

  3. The clinical trial.

    PubMed

    Chalmers, T C

    1981-01-01

    This paper argues that scientific clinical trials are the most ethical way to benefit patients whenever there is uncertainty about proper diagnosis and therapy. An increasing number of trials reported in clinical journals have employed randomization since the 1st extensive use of randomized controlled trials after the 2nd World War. A review of 4 examples of the response of physicians to trial results that differ from their own opinions indicates considerable reluctance to accept the results, no matter how well the trials were designed. Such reluctance may gradually disappear as physicians become better educated in clinical trial methodology. A good trial requires that unconscious bias be controlled, that data be recorded in detail and expertly analyzed, and that the sample size be considered when interpreting the results. Procedures designed to handle the ethical issues related to clinical trials include peer review, informed consent, initiation of randomization with the 1st use of a new therapy, reference to the previous outcomes in protocols and informed consent procedures and deferring decisions about when to stop studies to 3rd parties (such as data monitoring committees or policy advisory boards) and avoiding the use of placebos when an effective therapy is known. It is recommended that money for clinical trials be provided from the general medical care budget rather than the 2% that is devoted to all biomedical research.

  4. Multimode Directional Coupler for Utilization of Harmonic Frequencies from TWTAs

    NASA Technical Reports Server (NTRS)

    Simmons, Rainee N.; Wintucky, Edwin G.

    2013-01-01

    A novel waveguide multimode directional coupler (MDC) intended for the measurement and potential utilization of the second and higher order harmonic frequencies from high-power traveling wave tube amplifiers (TWTAs) has been successfully designed, fabricated, and tested. The design is based on the characteristic multiple propagation modes of the electrical and magnetic field components of electromagnetic waves in a rectangular waveguide. The purpose was to create a rugged, easily constructed, more efficient waveguide- based MDC for extraction and exploitation of the second harmonic signal from the RF output of high-power TWTs used for space communications. The application would be a satellitebased beacon source needed for Qband and V/W-band atmospheric propagation studies. The MDC could function as a CW narrow-band source or as a wideband source for study of atmospheric group delay effects on highdata- rate links. The MDC is fabricated from two sections of waveguide - a primary one for the fundamental frequency and a secondary waveguide for the second harmonic - that are joined together such that the second harmonic higher order modes are selectively coupled via precision- machined slots for propagation in the secondary waveguide. In the TWTA output waveguide port, both the fundamental and the second harmonic signals are present. These signals propagate in the output waveguide as the dominant and higher order modes, respectively. By including an appropriate mode selective waveguide directional coupler, such as the MDC presented here at the output of the TWTA, the power at the second harmonic can be sampled and amplified to the power level needed for atmospheric propagation studies. The important conclusions from the preliminary test results for the multimode directional coupler are: (1) the second harmonic (Ka-band) can be measured and effectively separated from the fundamental (Ku-band) with no coupling of the latter, (2) power losses in the fundamental frequency

  5. Efficiency enhancement of a harmonic lasing free-electron laser

    SciTech Connect

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2015-03-15

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered.

  6. Dynamics of harmonically-confined systems: Some rigorous results

    SciTech Connect

    Wu, Zhigang Zaremba, Eugene

    2014-03-15

    In this paper we consider the dynamics of harmonically-confined atomic gases. We present various general results which are independent of particle statistics, interatomic interactions and dimensionality. Of particular interest is the response of the system to external perturbations which can be either static or dynamic in nature. We prove an extended Harmonic Potential Theorem which is useful in determining the damping of the centre of mass motion when the system is prepared initially in a highly nonequilibrium state. We also study the response of the gas to a dynamic external potential whose position is made to oscillate sinusoidally in a given direction. We show in this case that either the energy absorption rate or the centre of mass dynamics can serve as a probe of the optical conductivity of the system. -- Highlights: •We derive various rigorous results on the dynamics of harmonically-confined atomic gases. •We derive an extension of the Harmonic Potential Theorem. •We demonstrate the link between the energy absorption rate in a harmonically-confined system and the optical conductivity.

  7. Even harmonic generation in isotropic media of dissociating homonuclear molecules

    PubMed Central

    Silva, R. E. F.; Rivière, P.; Morales, F.; Smirnova, O.; Ivanov, M.; Martín, F.

    2016-01-01

    Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schrödinger equation for and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are produced is controlled by pulse duration. Our results (i) show how the interplay of femtosecond nuclear and attosecond electronic dynamics, which affects the charge flow inside the dissociating molecule, is reflected in the nonlinear response, and (ii) force one to augment standard selection rules found in nonlinear optics textbooks by considering light-induced modifications of the medium during the generation process. PMID:27596609

  8. Higher harmonics increase LISA's mass reach for supermassive black holes

    SciTech Connect

    Arun, K. G.; Iyer, Bala R.; Sathyaprakash, B. S.; Sinha, Siddhartha

    2007-06-15

    Current expectations on the signal-to-noise ratios and masses of supermassive black holes which the Laser Interferometer Space Antenna (LISA) can observe are based on using in matched filtering only the dominant harmonic of the inspiral waveform at twice the orbital frequency. Other harmonics will affect the signal-to-noise ratio of systems currently believed to be observable by LISA. More significantly, inclusion of other harmonics in our matched filters would mean that more massive systems that were previously thought to be not visible in LISA should be detectable with reasonable SNRs. Our estimates show that we should be able to significantly increase the mass reach of LISA and observe the more commonly occurring supermassive black holes of masses {approx}10{sup 8}M{sub {center_dot}}. More specifically, with the inclusion of all known harmonics LISA will be able to observe even supermassive black hole coalescences with total mass {approx}10{sup 8}M{sub {center_dot}}(10{sup 9}M{sub {center_dot}}) (and mass ratio 0.1) for a low frequency cutoff of 10{sup -4} Hz (10{sup -5} Hz) with an SNR up to {approx}60 ({approx}30) at a distance of 3 Gpc. This is important from the astrophysical viewpoint since observational evidence for the existence of black holes in this mass range is quite strong and binaries containing such supermassive black holes will be inaccessible to LISA if one uses as detection templates only the dominant harmonic.

  9. The Local Stellar Velocity Field via Vector Spherical Harmonics

    NASA Technical Reports Server (NTRS)

    Makarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...

  10. Dynamic investigation of Drosophila myocytes with second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Catherine; Stewart, Bryan; Cisek, Richard; Prent, Nicole; Major, Arkady; Barzda, Virginijus

    2006-09-01

    The functional dynamics and structure of both larval and adult Drosophila melanogaster muscle were investigated with a nonlinear multimodal microscope. Imaging was carried out using a home built microscope capable of recording the multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation signals simultaneously at a scanning rate of up to ~12 frames/sec. The sample was excited by a home built femtosecond Ti:Sapphire laser at 840 nm, or by a Yb-ion doped potassium gadolinium tungstate (Yb:KGW) crystal based oscillator at 1042 nm. There was no observable damage detected in the myocyte after prolonged scanning with either of the lasers. Microscopic second harmonic generation (SHG) appears particularly strong in the myocytes. This allows the fast contraction dynamics of the myocytes to be followed. The larger sarcomere size observed in the larvae myocytes is especially well suited for studying the contraction dynamics. Microscopic imaging of muscle contractions showed different relaxation and contraction rates. The SHG intensities were significantly higher in the relaxed state of the myocyte compared to the contracted state. The imaging also revealed disappearance of SHG signal in highly stretched sarcomeres, indicating that SHG diminishes in the disordered structures. The study illustrates that SHG microscopy, combined with other nonlinear contrast mechanisms, can help to elucidate physiological mechanisms of contraction. This study also provides further insight into the mechanisms of harmonic generation in biological tissue and shows that crystalline arrangement of macromolecules has a determining factor for the high efficiency second harmonic generation from the bulk structures.

  11. Accompanying coordinate expansion formulas derived with the solid harmonic gradient.

    PubMed

    Ishida, Kazuhiro

    2002-02-01

    A series of accompanying coordinate expansion (ACE) formulas for calculating the electron repulsion integral (ERI) over both generally and segmentally contracted solid harmonic (SH) Gaussian-type orbitals (GTOs) can be rederived by the use of the modified operator (called solid harmonic gradient here) of the spherical tensor gradient of Bayman and the reducing solid harmonic gradient defined in this article. The final general formulas contain the reducing mixed solid harmonics defined in a previous article [Ishida, K. J Chem Phys 1999, 111, 4913] and the reducing triply mixed solid harmonics defined previously [Ishida, K. J Chem Phys 2000, 113, 7818]. Each general formula in the series is named ACEb1k1, ACEb2k3, or ACEb3k3. New general algorithm can be obtained inductively from the general formula named ACEb2k3, in addition to the previously developed ACEb1k1 and ACEb3k3. For calculating ERI practically, we select one of these ACE algorithms, as it gives the minimum floating-point operation (FLOP) count. Theoretical assessment by the use of the FLOP count is performed for the (LL/LL) class of ERIs over both generally and segmentally contracted SH-GTOs (L = 1-3). It is found that the present ACE is theoretically the fastest among all rigorous methods in the literature. PMID:11908501

  12. Even harmonic generation in isotropic media of dissociating homonuclear molecules.

    PubMed

    Silva, R E F; Rivière, P; Morales, F; Smirnova, O; Ivanov, M; Martín, F

    2016-01-01

    Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schrödinger equation for and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are produced is controlled by pulse duration. Our results (i) show how the interplay of femtosecond nuclear and attosecond electronic dynamics, which affects the charge flow inside the dissociating molecule, is reflected in the nonlinear response, and (ii) force one to augment standard selection rules found in nonlinear optics textbooks by considering light-induced modifications of the medium during the generation process. PMID:27596609

  13. Complex metabolic oscillations in plants forced by harmonic irradiance.

    PubMed Central

    Nedbal, Ladislav; Brezina, Vítezslav

    2002-01-01

    Plants exposed to harmonically modulated irradiance, approximately 1 + cos(omegat), exhibit a complex periodic pattern of chlorophyll fluorescence emission that can be deconvoluted into a steady-state component, a component that is modulated with the frequency of the irradiance (omega), and into at least two upper harmonic components (2omega and 3omega). A model is proposed that accounts for the upper harmonics in fluorescence emission by nonlinear negative feedback regulation of photosynthesis. In contrast to simpler linear models, the model predicts that the steady-state fluorescence component will depend on the frequency of light modulation, and that amplitudes of all fluorescence components will exhibit resonance peak(s) when the irradiance frequency is tuned to an internal frequency of a regulatory component. The experiments confirmed that the upper harmonic components appear and exhibit distinct resonant peaks. The frequency of autonomous oscillations observed earlier upon an abrupt increase in CO(2) concentration corresponds to the sharpest of the resonant peaks of the forced oscillations. We propose that the underlying principles are general for a wide spectrum of negative-feedback regulatory mechanisms. The analysis by forced harmonic oscillations will enable us to examine internal dynamics of regulatory processes that have not been accessible to noninvasive fluorescence monitoring to date. PMID:12324435

  14. Pitch, Harmonicity and Concurrent Sound Segregation: Psychoacoustical and Neurophysiological Findings

    PubMed Central

    Micheyl, Christophe; Oxenham, Andrew J.

    2009-01-01

    Harmonic complex tones are a particularly important class of sounds found in both speech and music. Although these sounds contain multiple frequency components, they are usually perceived as a coherent whole, with a pitch corresponding to the fundamental frequency (F0). However, when two or more harmonic sounds occur concurrently, e.g., at a cocktail party or in a symphony, the auditory system must separate harmonics and assign them to their respective F0s so that a coherent and veridical representation of the different sounds sources is formed. Here we review both psychophysical and neurophysiological (single-unit and evoked-potential) findings, which provide some insight into how, and how well, the auditory system accomplishes this task. A survey of computational models designed to estimate multiple F0s and segregate concurrent sources is followed by a review of the empirical literature on the perception and neural coding of concurrent harmonic sounds, including vowels, as well as findings obtained using single complex tones with “mistuned” harmonics. PMID:19788920

  15. Intensification of Harmonic Spontaneous Radiation with a Novel Undulator

    SciTech Connect

    Marshall, T.C.; Shao, Yichen; Parsa, Zohreh

    1998-11-01

    We have calculated the on-axis spectrum of spontaneous radiation emitted by an electron moving along a planar undulator that has a magnetic profile along the axis that approximates a square wave. (This could be obtained in practice by driving a ferromagnetic undulator into saturation by excessive current in the windings.) We find considerable enhancement of the harmonic radiation spectrum. We compare the harmonic power emitted by an electron moving through an undulator having a sine-wave field profile with the radiation emitted from an undulator having a square-wave profile; the latter is approximated by the first three Fourier components of the undulator magnetic field profile along the axial direction. Examples are computed for 40MeV electrons taking K < 1, for spontaneous radiation emitted along the axis of the system. The emission at harmonics f > 1 is greatly enhanced for the approximate square-wave magnetic profile: the ratio of the power emitted at f=5 by the square-wave undulator to that of the sine-wave undulator is about 15 (whereas the corresponding ratio at f=1 is only 1.5). While this enhancement might be expected because of the appreciable n=1 and n=5 Fourier components of the undulator field, higher odd harmonics are enhanced even more (e.g., x1000 at f=11). FEL gain at the harmonics should be enhanced by similar factors.

  16. The graph theoretical analysis of the SSVEP harmonic response networks.

    PubMed

    Zhang, Yangsong; Guo, Daqing; Cheng, Kaiwen; Yao, Dezhong; Xu, Peng

    2015-06-01

    Steady-state visually evoked potentials (SSVEP) have been widely used in the neural engineering and cognitive neuroscience researches. Previous studies have indicated that the SSVEP fundamental frequency responses are correlated with the topological properties of the functional networks entrained by the periodic stimuli. Given the different spatial and functional roles of the fundamental frequency and harmonic responses, in this study we further investigated the relation between the harmonic responses and the corresponding functional networks, using the graph theoretical analysis. We found that the second harmonic responses were positively correlated to the mean functional connectivity, clustering coefficient, and global and local efficiencies, while negatively correlated with the characteristic path lengths of the corresponding networks. In addition, similar pattern occurred with the lowest stimulus frequency (6.25 Hz) at the third harmonic responses. These findings demonstrate that more efficient brain networks are related to larger SSVEP responses. Furthermore, we showed that the main connection pattern of the SSVEP harmonic response networks originates from the interactions between the frontal and parietal-occipital regions. Overall, this study may bring new insights into the understanding of the brain mechanisms underlying SSVEP.

  17. Two dimensional kinetic analysis of electrostatic harmonic plasma waves

    NASA Astrophysics Data System (ADS)

    Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R.; Yoon, P. H.

    2016-06-01

    Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.

  18. High power operation of first and second harmonic gyrotwystrons

    SciTech Connect

    Lawson, W.; Latham, P.E.; Calame, J.P.; Cheng, J.; Hogan, B.; Nusinovich, G.S.; Irwin, V.; Granatstein, V.L.; Reiser, M.

    1995-07-01

    We report the first experimental operation of overmoded first and second harmonic gyrotwystron amplifier configurations. Both devices utilize a single cavity which is driven near 9.87 GHz in the TE{sub 011} mode, heavily attenuated drift tubes, and long tapered output waveguide sections. A magnetron injection gun produces a 460 kV, 245 A beam with a maximum average perpendicular-to-parallel velocity ratio approximately equal to one. The axial magnetic field profile is sharply tapered in the output section. Peak powers above 21 MW are achieved in 1 {mu}s pulses with an efficiency exceeding 22% and a large signal gain near 24 dB in the first harmonic tube. The second harmonic tube achieves nearly 12 MW of the peak power with an efficiency of 11% and a gain above 21 dB. First harmonic amplifier performance is limited principally by competition from a fundamental mode output waveguide interaction; the second harmonic tube is limited by both travelling wave output modes and by a down-taper oscillation. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  19. Efficiency enhancement of a harmonic lasing free-electron laser

    NASA Astrophysics Data System (ADS)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2015-03-01

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered.

  20. Harmonic Generation in Argon by Femtosecond Ti:Sapphire Laser

    NASA Astrophysics Data System (ADS)

    Qindeel, Rabia; Samad, Ricardo Elgul; de Freitas, Anderson Zanardi; de Matos, Paulo Sergio Fabris; Falcão, Edilson Lucena; Vieira Junior, Nilson Dias

    Generation of harmonics using a gas nozzle has remarkable feature in various applications. Pulses from a Ti:Sapphire laser, centered at 785 nm, in a 4 kHz train, with 25 femtoseconds and 800 μJ of maximum energy were employed to generate harmonics in an argon gas nozzle. We present the current results on the focusability of the nozzle, harmonic radiation, measurement of the influence of laser power and laser focus position on the divergence of gas nozzle. We have successfully generated 3rd, 5th and 7th harmonics in Argon at different laser powers. The results show that the harmonic signals are almost same for laser average powers over 1.0 W and variation always appears below 1.0 W. It means that there is saturation in the physical phenomenon happening inside the gas nozzle at high laser powers and the variation is non-linear below 1.0 W. These results are embedded in an effort towards x-ray generation in the water window.

  1. Harmonic Generation from Solid Targets - Optmization of Source Parameters

    NASA Astrophysics Data System (ADS)

    Zepf, Matthew; Watts, I. F.; Dangor, A. E.; Norreys, P. A.; Chambers, D. M.; Machacek, A.; Wark, J. S.; Tsakiris, G. D.

    1998-11-01

    High harmonics from solid targets have received renewed interest over the last few years. Theoretical predictions using 1 1/2 D codes suggest that very high orders (>100 ) can be generated at conversion efficiencies in excess of 10-6 [1,2] at Iλ^2 > 10^19 W/cm^2. Experiments have since been performed with pulses varying from 100 fs to 2.5 ps in duration [3-6]. The steep density gradient necessary to generate the harmonics can be generated by either ponderomotive steepening or by using ultraclean pulses which preserve the initial solid vacuum boundary. The two regimes are compared in terms of their dependence on the laser parameters and the emitted harmonic radiation. Particular emphasis will be given to measurements of the holeboring velocity, the polarisation of the harmonics and the intensity scaling in the two regimes. This comparison enables us to find the ideal parameter range for the optimization of harmonic source. [1] R. Lichters et al., Physics of Plasmas 3, 3425, (1996). [2] P. Gibbon, IEEE J. of Q. Elec. 33, 1915 (1997). [3] S. Kohlweyer, et al., Optics Comm. 177, 431 (1995). [4] P. Norreys et al., Phys. Rev. Lett., 76, 1832 (1995). [5] D. von der Linde et al., Phys. Rev. A, 52, R25 (1995) [6] M. Zepf, et al., submitted for publication in Phys. Rev. Lett.

  2. User-centered semantic harmonization: a case study.

    PubMed

    Weng, Chunhua; Gennari, John H; Fridsma, Douglas B

    2007-06-01

    Semantic interoperability is one of the great challenges in biomedical informatics. Methods such as ontology alignment or use of metadata neither scale nor fundamentally alleviate semantic heterogeneity among information sources. In the context of the Cancer Biomedical Informatics Grid program, the Biomedical Research Integrated Domain Group (BRIDG) has been making an ambitious effort to harmonize existing information models for clinical research from a variety of sources and modeling agreed-upon semantics shared by the technical harmonization committee and the developers of these models. This paper provides some observations on this user-centered semantic harmonization effort and its inherent technical and social challenges. The authors also compare BRIDG with related efforts to achieve semantic interoperability in healthcare, including UMLS, InterMed, the Semantic Web, and the Ontology for Biomedical Investigations initiative. The BRIDG project demonstrates the feasibility of user-centered collaborative domain modeling as an approach to semantic harmonization, but also highlights a number of technology gaps in support of collaborative semantic harmonization that remain to be filled.

  3. The effects of harmonics generated by an over-excited transformer on a multimachine system

    SciTech Connect

    Jalali, J.; Mokhtari, S.

    1995-09-01

    An electric power system consisting of three generators and nine buses is considered. The transformer connected to bus seven is considered as a source of harmonics, and it is modeled accordingly. The harmonic source generates harmonics with 6K {+-} 1 orders for K = 1, 2, 3 ..., n. The harmonics of order 6K {+-} 1 with significant effects on different buses of the power system network are evaluated during the steady state operation of the system by using SKM System Software for HIWAVE. Frequency scan and distortion calculations are studied to determine how the harmonics vary the operation of the power system network. The frequency spectrum of the harmonic source indicates that 5th order harmonic affects the operation of the power system. The effects of harmonics on the system are reduced by modeling a single-tuned shunt filter connected to bus seven parallel to the harmonic source to improve the system operation.

  4. Thermoelectricity in molecular junctions with harmonic and anharmonic modes.

    PubMed

    Agarwalla, Bijay Kumar; Jiang, Jian-Hua; Segal, Dvira

    2015-01-01

    We study charge and energy transfer in two-site molecular electronic junctions in which electron transport is assisted by a vibrational mode. To understand the role of mode harmonicity/anharmonicity in transport behavior, we consider two limiting situations: (i) the mode is assumed harmonic, (ii) we truncate the mode spectrum to include only two levels, to represent an anharmonic mode. Based on the cumulant generating functions of the models, we analyze the linear-response and nonlinear performance of these junctions and demonstrate that while the electrical and thermal conductances are sensitive to whether the mode is harmonic/anharmonic, the Seebeck coefficient, the thermoelectric figure-of-merit, and the thermoelectric efficiency beyond linear response, conceal this information. PMID:26665085

  5. Three-Particle Relativistic Harmonic Dynamics in the Constraint Formalism

    NASA Astrophysics Data System (ADS)

    Maheshwari, A.

    1982-05-01

    Three-particle relativistic harmonic dynamics in the constraint formalism has been studied in two different schemes for the reduction of the 24-dimensional covariant phase space to an 18-dimensional minimum phase space. Three-body potential for the harmonic problem has been determined from the Bidikov-Todorov equation. It is found that the classical equations of motion are separable in a single time formalism in the case when the phase space is reduced by a set of first class kinematic constraints and the Hamiltonian is introduced as an independent dynamic constraint. For this case in the centre of mass frame the Hamiltonian constraint leads to a time-independent Schrödinger equation which is separable as two independent harmonic oscillators as a special case.

  6. Phase responses of harmonics reflected from radio-frequency electronics

    NASA Astrophysics Data System (ADS)

    Mazzaro, Gregory J.; McGowan, Sean F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Martone, Anthony F.; Narayanan, Ram M.

    2016-05-01

    The phase responses of nonlinear-radar targets illuminated by stepped frequencies are studied. Data is presented for an experimental radar and two commercial electronic targets at short standoff ranges. The amplitudes and phases of harmonics generated by each target at each frequency are captured over a 100-MHz-wide transmit band. As in the authors' prior work, target detection is demonstrated by receiving at least one harmonic of at least one transmit frequency. In the present work, experiments confirm that the phase of a harmonic reflected from a radio-frequency electronic target at a standoff distance is linear versus frequency. Similar to traditional wideband radar, the change of the reflected phase with respect to frequency indicates the range to the nonlinear target.

  7. Equity prices as a simple harmonic oscillator with noise

    NASA Astrophysics Data System (ADS)

    Ataullah, Ali; Tippett, Mark

    2007-08-01

    The centred return on the London Stock Exchange's FTSE All Share Index is modelled as a simple harmonic oscillator with noise over the period from 1 January, 1994 until 30 June 2006. Our empirical results are compatible with the hypothesis that there is a period in the FTSE All Share Index of between two and two and one half years. This means the centred return will on average continue to increase for about a year after reaching the minimum in its oscillatory cycle; alternatively, it will continue on average to decline for about a year after reaching a maximum. Our analysis also shows that there is potential to exploit the harmonic nature of the returns process to earn abnormal profits. Extending our analysis to the low energy states of a quantum harmonic oscillator is also suggested.

  8. Harmonic scalpel tonsillectomy versus monopolar diathermy tonsillectomy: a prospective study.

    PubMed

    Roth, Jason A; Pincock, Tobias; Sacks, Raymond; Forer, Martin; Boustred, Neil; Johnston, William; Bailey, Michael

    2008-06-01

    For tonsillectomy, the ultrasonic harmonic scalpel has been purported to cause less tissue injury and postoperative morbidity while providing adequate levels of hemostasis. We undertook a prospective study to compare outcomes in 162 patients who had undergone harmonic scalpel tonsillectomy and 40 patients who had undergone monopolar diathermy tonsillectomy over a 33-month period. We found that patients in the harmonic scalpel group experienced significantly less intraoperative bleeding (5.0 vs. 16.5 ml; p < 0.0001). There was no clinically significant difference between the groups with respect to (1) the amount of operating time, (2) the incidence of postoperative nausea and vomiting, dysphonia, and primary or secondary bleeding, and (3) the amount of time patients needed to resume normal diet and activities. PMID:18561118

  9. Ionospheric mapping by regional spherical harmonic analysis: New developments

    NASA Astrophysics Data System (ADS)

    de Franceschi, G.; de Santis, A.; Pau, S.

    1994-12-01

    The method of Spherical Cap Harmonic Analysis (SCHA) /1/ has been applied /2/ to the critical frequency of the F2 layer (f0F2) for mapping and modelling it over Europe. The model was based on longitudinal expansion in Fourier series, and fractional Legendre colatitudinal functions over a spherical cap including Europe. Here a new and simpler technique, previously developed for the regional modelling of the geomagnetic field /3/, is introduced and described. The basic improvement of the new method, called Adjusted Spherical Harmonic Analysis (ASHA), implies the use of conventional Spherical Harmonic (SH) functions after the colatitude interval is adjusted to that of a hemisphere. Examples are shown dealing with the application of ASHA to retrospective mapping and modelling of the monthly medians of f0F2 over Europe.

  10. Observation of Electronic Structure Minima in High-Harmonic Generation

    SciTech Connect

    Woerner, Hans Jakob; Villeneuve, D. M.; Niikura, Hiromichi; Bertrand, Julien B.; Corkum, P. B.

    2009-03-13

    We report detailed measurements of the high-harmonic spectra generated from argon atoms. The spectra exhibit a deep minimum that is shown to be independent of the laser intensity, and is thus a clear measure of the electronic structure of the atom. We show that exact field-free continuum wave functions reproduce the minimum, but plane wave and Coulomb wave functions do not. This remarkable observation suggests that electronic structure can be accurately determined in high-harmonic experiments despite the presence of the strong laser field. Our results clarify the relation between high-harmonic generation and photoelectron spectroscopy. The use of exact continuum functions also resolves the ambiguity associated with the choice of the dispersion relation.

  11. Double-peaked electrostatic ion cyclotron harmonic waves

    NASA Technical Reports Server (NTRS)

    Boardsen, S. A.; Gurnett, D. A.; Peterson, W. K.

    1990-01-01

    Electrostatic H(+) cyclotron harmonic waves are often observed along the auroral field lines at altitudes of 1-3.5 R(E) by the Dynamics Explorer 1 satellite. A small fraction of these waves are found to have two peaks associated with each harmonic instead of one peak. The waves occur below the lower hybrid frequency and are usually relatively weak, about a factor of 4 smaller than typical electric field amplitudes of other H(+) cyclotron harmonic wave events. The double-peaked spectral signature is believed to be produced by Doppler shifts arising from the satellite velocity relative to the plasma rest frame. The waves were found to have wavelengths of the order of 300 m and phase velocities of the order of 150 km/s.

  12. Harmonic three-phase circular inclusions in finite elasticity

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Schiavone, Peter

    2015-09-01

    We study the exterior stress field in a three-phase circular inclusion which is bonded to the surrounding matrix through an intermediate interphase layer. All three phases belong to a particular class of compressible hyperelastic materials of harmonic type. We focus on the design of a harmonic elastic inclusion which by definition, does not disturb the sum of the normal stresses in the surrounding matrix. We show that in order to make the coated inclusion harmonic, certain inequalities concerning the material and geometric parameters of the three-phase composite must first be satisfied. The corresponding remote loading parameters can then be uniquely determined while keeping the associated phase angles arbitrary. Our results allow for both uniform and non-uniform remote loading. We show that the stress field inside the inclusion is uniform when the remote loading is uniform.

  13. Thermoelectricity in molecular junctions with harmonic and anharmonic modes

    PubMed Central

    Agarwalla, Bijay Kumar; Jiang, Jian-Hua

    2015-01-01

    Summary We study charge and energy transfer in two-site molecular electronic junctions in which electron transport is assisted by a vibrational mode. To understand the role of mode harmonicity/anharmonicity in transport behavior, we consider two limiting situations: (i) the mode is assumed harmonic, (ii) we truncate the mode spectrum to include only two levels, to represent an anharmonic mode. Based on the cumulant generating functions of the models, we analyze the linear-response and nonlinear performance of these junctions and demonstrate that while the electrical and thermal conductances are sensitive to whether the mode is harmonic/anharmonic, the Seebeck coefficient, the thermoelectric figure-of-merit, and the thermoelectric efficiency beyond linear response, conceal this information. PMID:26665085

  14. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.

    PubMed

    Humphrey, V F

    2000-03-01

    In high amplitude ultrasonic fields, such as those used in medical ultrasound, nonlinear propagation can result in waveform distortion and the generation of harmonics of the initial frequency. In the nearfield of a transducer this process is complicated by diffraction effects associated with the source. The results of a programme to study the nonlinear propagation in the fields of circular, focused and rectangular transducers are described, and comparisons made with numerical predictions obtained using a finite difference solution to the Khokhlov-Zabolotskaya-Kuznetsov (or KZK) equation. These results are extended to consider nonlinear propagation in tissue-like media and the implications for ultrasonic measurements and ultrasonic heating are discussed. The narrower beamwidths and reduced side-lobe levels of the harmonic beams are illustrated and the use of harmonics to form diagnostic images with improved resolution is described. PMID:10829672

  15. Continuous control of the nonlinearity phase for harmonic generations.

    PubMed

    Li, Guixin; Chen, Shumei; Pholchai, Nitipat; Reineke, Bernhard; Wong, Polis Wing Han; Pun, Edwin Yue Bun; Cheah, Kok Wai; Zentgraf, Thomas; Zhang, Shuang

    2015-06-01

    The capability of locally engineering the nonlinear optical properties of media is crucial in nonlinear optics. Although poling is the most widely employed technique for achieving locally controlled nonlinearity, it leads only to a binary nonlinear state, which is equivalent to a discrete phase change of π in the nonlinear polarizability. Here, inspired by the concept of spin-rotation coupling, we experimentally demonstrate nonlinear metasurfaces with homogeneous linear optical properties but spatially varying effective nonlinear polarizability with continuously controllable phase. The continuous phase control over the local nonlinearity is demonstrated for second and third harmonic generation by using nonlinear metasurfaces consisting of nanoantennas of C3 and C4 rotational symmetries, respectively. The continuous phase engineering of the effective nonlinear polarizability enables complete control over the propagation of harmonic generation signals. Therefore, this method seamlessly combines the generation and manipulation of harmonic waves, paving the way for highly compact nonlinear nanophotonic devices. PMID:25849530

  16. Efficient Forward Second-Harmonic Generation from Planar Archimedean Nanospirals

    DOE PAGESBeta

    Davidson, Roderick B.; Ziegler, Jed I.; Vargas, Guillermo; Avanesyan, Sergey M.; Gong, Yu; Hess, Wayne P.; Haglund, Jr., Richard F.

    2015-05-21

    The enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from noncentrosymmetric nanoparticles that retain a local axis of symmetry. Here we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulse from a Ti:sapphire oscillator tuned to 800 nm wavelength. The measured harmonic-generation efficiencies are 2.6•10-9, 8•10-9 and 1.3•10-8 for left-handedmore » circular, linear, and right-handed circular polarizations, respectively.« less

  17. Spurious Harmonic Response of Multipulse Quantum Sensing Sequences

    NASA Astrophysics Data System (ADS)

    Loretz, M.; Boss, J. M.; Rosskopf, T.; Mamin, H. J.; Rugar, D.; Degen, C. L.

    2015-04-01

    Multipulse sequences based on Carr-Purcell decoupling are frequently used for narrow-band signal detection in single-spin magnetometry. We have analyzed the behavior of multipulse sensing sequences under real-world conditions, including finite pulse durations and the presence of detunings. We find that these nonidealities introduce harmonics to the filter function, allowing additional frequencies to pass the filter. In particular, we find that the X Y family of sequences can generate signals at the 2 fac , 4 fac, and 8 fac harmonics and their odd subharmonics, where fac is the ac signal frequency. Consideration of the harmonic response is especially important for diamond-based nuclear-spin sensing where the nuclear magnetic resonance frequency is used to identify the nuclear-spin species, as it leads to ambiguities when several isotopes are present.

  18. Free fall and harmonic oscillations: analyzing trampoline jumps

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie; Eager, David

    2015-01-01

    Trampolines can be found in many gardens and also in some playgrounds. They offer an easily accessible vertical motion that includes free fall. In this work, the motion on a trampoline is modelled by assuming a linear relation between force and deflection, giving harmonic oscillations for small amplitudes. An expression for the cycle-time is obtained in terms of maximum normalized force from the trampoline and the harmonic frequency. A simple expression is obtained for the ratio between air-time and harmonic period, and the maximum g-factor. The results are compared to experimental results, including accelerometer data showing 7g during bounces on a small trampoline in an amusement park play area. Similar results are obtained on a larger garden trampoline, and even larger accelerations have been measured for gymnastic trampolines.

  19. Nonlinearly generated harmonic signals in ultra-small waveguides with magnetic films: Tunable enhancements of 2nd and 4th harmonics

    NASA Astrophysics Data System (ADS)

    Marsh, J.; Zagorodnii, V.; Celinski, Z.; Camley, R. E.

    2012-03-01

    The nonlinear generation of high harmonic signals (up to 5th harmonic) is explored in an ultra-small waveguide which contains a thin ferromagnetic film. The strength of the different harmonics is highly tunable. In particular, the power in the 2nd and 4th harmonic signals may be enhanced by over two orders of magnitude by varying the direction of a static magnetic field with respect to the long axis of the waveguide. In contrast, the 3rd and 5th harmonics are relatively insensitive to the direction of the magnetic field. The experimental results are explained by analytical and numerical calculations.

  20. Observations of High Frequency Harmonics of the Ionospheric Alfven Resonator

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Usanova, Maria; Bortnik, Jacob; Milling, David; Kale, Andy; Shao, Leo; Miles, David; Rae, I. Jonathan

    We present observations of high frequency harmonics of the ionospheric Alfven Resonator (IAR). These are seen in the form of spectral resonance structures (SRS) recorded by a ground-based search coil magnetometer sampling at 100 samples/s at the Ministik Lake station at L=4.2 within the expanded CARISMA magnetometer array. Previous observational studies have indicated that such SRS are typically confined to frequencies <~5 Hz with only several SRS harmonics being observed. We report the first observations of clear and discrete SRS, which we believe are harmonics of the IAR, and which extend to around 20 Hz in at least 10-12 clear SRS harmonics. We additionally demonstrate the utility of the Bortnik et al. (2007) auto-detection algorithm, designed for Pc1 wavepackets, for characterising the properties of the IAR. Our results also indicate that the cavity supporting SRS in the IAR at this time must be structured to support and trap much higher frequency IAR harmonics than previously assumed. This impacts the potential importance of the IAR for magnetosphere-ionosphere coupling, especially in relation to the impacts of incident Alfven waves on the ionosphere including Alfvenic aurora. Our observations also highlight the potential value of IAR observations for diagnosing the structure of the topside ionosphere, not least using the observed structure of the SRS. These are the first mid-latitude observations demonstrating that the IAR can extend to frequencies beyond those of the lowest few harmonics of the Schumann resonances - significantly suggesting the possibility that the Schumann resonance modes and the IAR may be coupled. The in-situ structure of the IAR is also examined by combining satellite data with conjugate measurements from the ground, and the impacts of the IAR for magnetosphere-ionosphere-thermosphere coupling examined.

  1. Harmonic analysis of precipitation climatology in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Tarawneh, Qassem

    2016-04-01

    Annual rainfall records of 20 stations for 30 years are used in order to detect rainfall regimes and climatic features of Saudi Arabia using harmonic analysis techniques. In this study, the percentages of variance, amplitudes, and phase angles are calculated in order to depict the spatial and temporal characteristics of the country's rainfall. The first harmonic explains 42 % of rainfall variation in the western (W) region. This percentage increases toward east (E) and north (N) with 69 and 67 %, respectively. In the southwest (SW) region, the percentages explain 43 % of rainfall variation. The percentages of variance in W and SW are lower than in the E, NW, and central (C) regions. This implies significant contributions of the second harmonic in W and SW regions with 26 and 16 %, respectively. The high percentages of the second and third harmonics in W and SW regions suggest that these two regions are affected by different weather systems at different times. The SW region has the highest amplitudes of the first, second, and third harmonics. The amplitude of the first harmonic reaches to 21 mm in SW and 9 mm in both C and E regions. The time of maximum rainfall is calculated using phase angle; the result reflects that maximum rainfall is shifted forward on the time axis toward the spring season in SW and C regions, January in E and NW regions, and October and November in the W region. This reveals that the SW region is a completely different climatic region, though some of what affects this region also affects the central region. Conditions in the E and NW regions are mainly affected by Mediterranean weather systems, while the W region is affected by unstable conditions caused by the active Red Sea Trough (RST) in October and November.

  2. Clinical trials in children

    PubMed Central

    Joseph, Pathma D; Craig, Jonathan C; Caldwell, Patrina HY

    2015-01-01

    Safety and efficacy data on many medicines used in children are surprisingly scarce. As a result children are sometimes given ineffective medicines or medicines with unknown harmful side effects. Better and more relevant clinical trials in children are needed to increase our knowledge of the effects of medicines and to prevent the delayed or non-use of beneficial therapies. Clinical trials provide reliable evidence of treatment effects by rigorous controlled testing of interventions on human subjects. Paediatric trials are more challenging to conduct than trials in adults because of the paucity of funding, uniqueness of children and particular ethical concerns. Although current regulations and initiatives are improving the scope, quantity and quality of trials in children, there are still deficiencies that need to be addressed to accelerate radically equitable access to evidence-based therapies in children. PMID:24325152

  3. First-harmonic approximation in nonlinear chirped-driven oscillators.

    PubMed

    Uzdin, Raam; Friedland, Lazar; Gat, Omri

    2014-01-01

    Nonlinear classical oscillators can be excited to high energies by a weak driving field provided the drive frequency is properly chirped. This process is known as autoresonance (AR). We find that for a large class of oscillators, it is sufficient to consider only the first harmonic of the motion when studying AR, even when the dynamics is highly nonlinear. The first harmonic approximation is also used to relate AR in an asymmetric potential to AR in a "frequency equivalent" symmetric potential and to study the autoresonance breakdown phenomenon.

  4. Predicting charmonium and bottomonium spectra with a quark harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Badavi, F. F.; Townsend, L. W.

    1986-01-01

    The nonrelativistic quark model is applied to heavy (nonrelativistic) meson (two-body) systems to obtain sufficiently accurate predictions of the spin-averaged mass levels of the charmonium and bottomonium spectra as an example of the three-dimensional harmonic oscillator. The present calculations do not include any spin dependence, but rather, mass values are averaged for different spins. Results for a charmed quark mass value of 1500 MeV/c-squared show that the simple harmonic oscillator model provides good agreement with experimental values for 3P states, and adequate agreement for the 3S1 states.

  5. Harmonic and interharmonic distortion modeling in multiconverter systems

    SciTech Connect

    Carbone, R.; Morrison, R.E.; Testa, A.; Menniti, D.

    1995-07-01

    The problem of modeling multiconverter systems in presence of harmonic and interharmonic distortion is considered. Specifically, current source rectifiers are considered as distortion sources some supply d.c. motors and the remaining supplying inverters feeding a.c. machines. The classical analogue, frequency domain and time domain models proposed in the literature to study harmonic distortion in a multiconverter system are considered and for each model suitable extension to include the interharmonic distortion are presented and critically analyzed. The results of several experiments are reported to show the usefulness and to compare the accuracy of the different extensions considered.

  6. Corrected formula for the polarization of second harmonic plasma emission

    NASA Technical Reports Server (NTRS)

    Melrose, D. B.; Dulk, G. A.; Gary, D. E.

    1980-01-01

    Corrections for the theory of polarization of second harmonic plasma emission are proposed. The nontransversality of the magnetoionic waves was not taken into account correctly and is here corrected. The corrected and uncorrected results are compared for two simple cases of parallel and isotropic distributions of Langmuir waves. It is found that whereas with the uncorrected formula plausible values of the coronal magnetic fields were obtained from the observed polarization of the second harmonic, the present results imply fields which are stronger by a factor of three to four.

  7. Random reverse-cyclic matrices and screened harmonic oscillator.

    PubMed

    Srivastava, Shashi C L; Jain, Sudhir R

    2012-04-01

    We have calculated the joint probability distribution function for random reverse-cyclic matrices and shown that it is related to an N-body exactly solvable model. We refer to this well-known model potential as a screened harmonic oscillator. The connection enables us to obtain all the correlations among the particle positions moving in a screened harmonic potential. The density of nontrivial eigenvalues of this ensemble is found to be of the Wigner form and admits a hole at the origin, in contrast to the semicircle law of the Gaussian orthogonal ensemble of random matrices. The spacing distributions assume different forms ranging from Gaussian-like to Wigner. PMID:22680453

  8. Classical theory for second-harmonic generation from metallic nanoparticles

    SciTech Connect

    Zeng Yong; Liu Jinjie; Moloney, Jerome V.; Hoyer, Walter; Koch, Stephan W.

    2009-06-15

    In this paper, we develop a classical electrodynamic theory to study the optical nonlinearities of metallic nanoparticles. The quasi free electrons inside the metal are approximated as a classical Coulomb-interacting electron gas, and their motion under the excitation of an external electromagnetic field is described by the plasma equations. This theory is further tailored to study second-harmonic generation. Through detailed experiment-theory comparisons, we validate this classical theory as well as the associated numerical algorithm. It is demonstrated that our theory not only provides qualitative agreement with experiments but it also reproduces the overall strength of the experimentally observed second-harmonic signals.

  9. Controlling attosecond angular streaking with second harmonic radiation.

    PubMed

    Hammond, T J; Kim, Kyung Taec; Zhang, Chunmei; Villeneuve, D M; Corkum, P B

    2015-04-15

    High harmonic generation, which produces a coherent burst of radiation every half cycle of the driving field, has been combined with ultrafast wavefront rotation to create a series of spatially separated attosecond pulses, called the attosecond lighthouse. By adding a coherent second harmonic beam with polarization parallel to the fundamental, we decrease the generating frequency from twice per optical cycle to once. The increased temporal separation increases the pulse contrast. By scanning the carrier envelope phase, we see that the signal is 2π periodic. PMID:25872069

  10. Yukawa bosons in two-dimensional harmonic confinement

    SciTech Connect

    Rajagopal, K. K.

    2007-08-01

    The ground state property of Yukawa Bose fluid confined in a radial harmonic trap is studied. The calculation was carried out using the density functional theory formalism within the Kohn-Sham scheme. The excess-correlation energy for this inhomogeneous fluid is approximated via the local density approximation. A comparison is also made with the Gross-Piteavskii model. We found that the system of bosons interacting in terms of Yukawa potential in a harmonic trap is energetically favorable compared to the ones interacting via contact delta potential.

  11. RHIC RF Harmonic Numbers for Low Energy Operations

    SciTech Connect

    Satogata,T.

    2008-05-01

    There have been several test runs of RHIC operations to explore the feasibility of luminosity production at low energies. There is considerable international interest in the possible existence of a QCD phase diagram critical point in the RHIC gold-gold collision energy range of {radical}s{sub NN} = 5-50 GeV[l, 2, 3]. This paper reviews the RF harmonic number constraints for RHIC gold-gold collisions in this energy range, and concludes that optimal simultaneous collisions at both experiments are only feasible when the harmonic number is divisible by 9.

  12. The Role of Higher Harmonics In Musical Interval Perception

    NASA Astrophysics Data System (ADS)

    Krantz, Richard; Douthett, Jack

    2011-10-01

    Using an alternative parameterization of the roughness curve we make direct use of critical band results to investigate the role of higher harmonics on the perception of tonal consonance. We scale the spectral amplitudes in the complex home tone and complex interval tone to simulate acoustic signals of constant energy. Our analysis reveals that even with a relatively small addition of higher harmonics the perfect fifth emerges as a consonant interval with more, musically important, just intervals emerging as consonant as more and more energy is shifted into higher frequencies.

  13. Spherical harmonic expansion of the Levitus Sea surface topography

    NASA Technical Reports Server (NTRS)

    Engelis, Theodossios

    1987-01-01

    Prior information for the stationary sea surface topography (SST) may be needed in altimetric solutions that intend to simultaneously improve the gravity field and determine the SST. For this purpose the oceanographically derived SST estimates are represented by a spherical harmonic expansion. The spherical harmonic coefficients are computed from a least squares adjustment of the data covering the majority of the oceanic regions of the world. Several tests are made to determine the optimum maximum degree of solution and the best configuration of the geometry of the data in order to obtain a solution that fits the data and also provides a good spectral representation of the SST.

  14. Regular and irregular geodesics on spherical harmonic surfaces

    NASA Astrophysics Data System (ADS)

    Waters, Thomas J.

    2012-03-01

    The behavior of geodesic curves on even seemingly simple surfaces can be surprisingly complex. In this paper we use the Hamiltonian formulation of the geodesic equations to analyze their integrability properties. In particular, we examine the behavior of geodesics on surfaces defined by the spherical harmonics. Using the Morales-Ramis theorem and Kovacic algorithm we are able to prove that the geodesic equations on all surfaces defined by the sectoral harmonics are not integrable, and we use Poincaré sections to demonstrate the breakdown of regular motion.

  15. An algebraic cluster model based on the harmonic oscillator basis

    NASA Technical Reports Server (NTRS)

    Levai, Geza; Cseh, J.

    1995-01-01

    We discuss the semimicroscopic algebraic cluster model introduced recently, in which the internal structure of the nuclear clusters is described by the harmonic oscillator shell model, while their relative motion is accounted for by the Vibron model. The algebraic formulation of the model makes extensive use of techniques associated with harmonic oscillators and their symmetry group, SU(3). The model is applied to some cluster systems and is found to reproduce important characteristics of nuclei in the sd-shell region. An approximate SU(3) dynamical symmetry is also found to hold for the C-12 + C-12 system.

  16. Confocal Imaging of Biological Tissues Using Second Harmonic Generation

    SciTech Connect

    Kim, B-M.; Stoller, P.; Reiser, K.; Eichler, J.; Yan, M.; Rubenchik, A.; Da Silva, L.

    2000-03-06

    A confocal microscopy imaging system was devised to selectively detect Second harmonic signals generated by biological tissues. Several types of biological tissues were examined using this imaging system, including human teeth, bovine blood vessels, and chicken skin. All these tissues generated strong second harmonic signals. There is considerable evidence that the source of these signals in tissue is collagen. Collagen, the predominant component of most tissues, is known to have second order nonlinear susceptibility. This technique may have diagnostic usefulness in pathophysiological conditions characterized by changes in collagen structure including malignant transformation of nevi, progression of diabetic complications, and abnormalities in wound healing.

  17. Effect of Structural Modification on Second Harmonic Generation in Collagen

    SciTech Connect

    Stoller, P C; Reiser, K M; Celliers, P M; Rubenchik, A M

    2003-04-04

    The effects of structural perturbation on second harmonic generation in collagen were investigated. Type I collagen fascicles obtained from rat tails were structurally modified by increasing nonenzymatic cross-linking, by thermal denaturation, by collagenase digestion, or by dehydration. Changes in polarization dependence were observed in the dehydrated samples. Surprisingly, no changes in polarization dependence were observed in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable second harmonic signal. Prior to loss of signal, no change in polarization dependence was observed in partially heated or digested collagen.

  18. Microscopic approach to second harmonic generation in quantum cascade lasers.

    PubMed

    Winge, David O; Lindskog, Martin; Wacker, Andreas

    2014-07-28

    Second harmonic generation is analyzed from a microscopical point of view using a non-equilibrium Green's function formalism. Through this approach the complete on-state of the laser can be modeled and results are compared to experiment with good agreement. In addition, higher order current response is extracted from the calculations and together with waveguide properties, these currents provide the intensity of the second harmonic in the structure considered. This power is compared to experimental results, also with good agreement. Furthermore, our results, which contain all coherences in the system, allow to check the validity of common simplified expressions.

  19. High-order harmonic generation in a capillary discharge

    DOEpatents

    Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.

    2010-06-01

    A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.

  20. The progress in developing superconducting third harmonic cavity

    SciTech Connect

    Solyak, Nikolay; Edwards, Helen; Foley, Mike; Gonin, Ivan; Harms, Elvin; Khabiboulline, Timergali; Mitchell, Donald; Olis, Daniel; Rowe, Allan; /Fermilab

    2006-06-01

    The XFEL and TTF facilities are planning to use section with a few third harmonic cavities (3.9GHz) upstream of the bunch compressor to improve beam performance [1-2]. Fermilab is developing superconducting third harmonic section for the TTFII upgrade. This section will include four cavities equipped with couplers and blade tuners installed in cryostat. Up to now, two cavities are complete and one of them is under test. The status of the cavity development and preliminary test results are presented in this paper.

  1. A harmonized immunization schedule for Canada: A call to action

    PubMed Central

    MacDonald, NE; Bortolussi, R

    2011-01-01

    In Canada, the National Advisory Committee on Immunization systematically reviews the evidence for the effectiveness and safety of new and old vaccines, and sets a ‘minimum’ recommended schedule. However, in contrast to other industrialized countries where single, harmonized countrywide immunization schedules are de rigeur, Canada has a confusing system, with each province and territory defining its own schedule – and none are the same. The time has come to rectify this decades-old patient equity and safety problem. The Canadian Paediatric Society calls for a harmonized schedule to improve the health and safety of Canadian children and youth. PMID:22211070

  2. Ground System Harmonization Efforts at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    2011-01-01

    This slide presentation reviews the efforts made at Goddard Space Flight Center in harmonizing the ground systems to assist in collaboration in space ventures. The key elements of this effort are: (1) Moving to a Common Framework (2) Use of Consultative Committee for Space Data Systems (CCSDS) Standards (3) Collaboration Across NASA Centers (4) Collaboration Across Industry and other Space Organizations. These efforts are working to bring into harmony the GSFC systems with CCSDS standards to allow for common software, use of Commercial Off the Shelf Software and low risk development and operations and also to work toward harmonization with other NASA centers

  3. A parametric study of harmonic rotor hub loads

    NASA Technical Reports Server (NTRS)

    He, Chengjian

    1993-01-01

    A parametric study of vibratory rotor hub loads in a nonrotating system is presented. The study is based on a CAMRAD/JA model constructed for the GBH (Growth Version of Blackhawk Helicopter) Mach-scaled wind tunnel rotor model with high blade twist (-16 deg). The theoretical hub load predictions are validated by correlation with available measured data. Effects of various blade aeroelastic design changes on the harmonic nonrotating frame hub loads at both low and high forward flight speeds are investigated. The study aims to illustrate some of the physical mechanisms for change in the harmonic rotor hub loads due to blade design variations.

  4. Energy repartition for a harmonic chain with local reservoirs

    NASA Astrophysics Data System (ADS)

    Falasco, Gianmaria; Baiesi, Marco; Molinaro, Leo; Conti, Livia; Baldovin, Fulvio

    2015-08-01

    We exactly analyze the vibrational properties of a chain of harmonic oscillators in contact with local Langevin heat baths. Nonequilibrium steady-state fluctuations are found to be described by a set of mode temperatures, independent of the strengths of both the harmonic interaction and the viscous damping. Energy is equally distributed between the conjugate variables of a given mode but differently among different modes, in a manner which depends exclusively on the bath temperatures and on the boundary conditions. We outline how bath-temperature profiles can be designed to enhance or reduce fluctuations at specific frequencies in the power spectrum of the chain length.

  5. Optimization study of third harmonic generation in quantum cascade lasers.

    PubMed

    Mojibpour, Ali; Pourfath, Mahdi; Kosina, Hans

    2014-08-25

    A systematic optimization study of quantum cascade lasers with integrated nonlinearity for third-harmonic generation is performed. To model current transport the Pauli master equation is solved using a Monte Carlo approach. A multi-objective particle swarm optimization algorithm is applied to obtain the Pareto front. Our theoretical analysis indicates an optimized structure with five orders of magnitude increase in the generated third-harmonic power with respect to the reference design. This striking performance comes with a low threshold current density of about 1.6 kA/cm2 and is attributed to double resonant phonon scattering assisted extraction and injection scheme of the laser.

  6. Detection and accurate localization of harmonic chipless tags

    NASA Astrophysics Data System (ADS)

    Dardari, Davide

    2015-12-01

    We investigate the detection and localization properties of harmonic tags working at microwave frequencies. A two-tone interrogation signal and a dedicated signal processing scheme at the receiver are proposed to eliminate phase ambiguities caused by the short signal wavelength and to provide accurate distance/position estimation even in the presence of clutter and multipath. The theoretical limits on tag detection and localization accuracy are investigated starting from a concise characterization of harmonic backscattered signals. Numerical results show that accuracies in the order of centimeters are feasible within an operational range of a few meters in the RFID UHF band.

  7. Tomography of high harmonic generation in a cluster jet.

    PubMed

    Pai, Chih-Hao; Kuo, Cheng-Cheng; Lin, Ming-Wei; Wang, Jyhpyng; Chen, Szu-yuan; Lin, Jiunn-Yuan

    2006-04-01

    Tomographic measurement of high harmonic generation in a cluster jet was demonstrated by programming the cluster density distribution with a laser machining technique. The growth of harmonic energy with the propagation of the pump pulse was resolved by scanning the end of the argon cluster distribution in the path of the pump pulse. A downstream shift of the position of rapid growth and a decrease of the slope with increasing backing pressure as results of changes in the phase-matching condition were observed, which explains the presence of an optimal backing pressure. PMID:16599232

  8. Efficient forward second-harmonic generation from planar archimedean nanospirals

    SciTech Connect

    Davidson, II, Roderick B.; Ziegler, Jed I.; Vargas, Guillermo; Avanesyan, Sergey M.; Gong, Yu; Hess, Wayne; Haglund, Jr., Richard F.

    2015-05-01

    Here, the enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from non-centrosymmetric nanoparticles that retain a local axis of symmetry. Here, we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulses from a Ti:sapphire oscillator tuned to 800 nm wavelength.

  9. Violation of smooth observable macroscopic realism in a harmonic oscillator.

    PubMed

    Leshem, Amir; Gat, Omri

    2009-08-14

    We study the emergence of macrorealism in a harmonic oscillator subject to consecutive measurements of a squeezed action. We demonstrate a breakdown of dynamical realism in a wide parameter range that is maximized in a scaling limit of extreme squeezing, where it is based on measurements of smooth observables, implying that macroscopic realism is not valid in the harmonic oscillator. We propose an indirect experimental test of these predictions with entangled photons by demonstrating that local realism in a composite system implies dynamical realism in a subsystem.

  10. Circular current loops, magnetic dipoles and spherical harmonic analysis.

    USGS Publications Warehouse

    Alldredge, L.R.

    1980-01-01

    Spherical harmonic analysis (SHA) is the most used method of describing the Earth's magnetic field, even though spherical harmonic coefficients (SHC) almost completely defy interpretation in terms of real sources. Some moderately successful efforts have been made to represent the field in terms of dipoles placed in the core in an effort to have the model come closer to representing real sources. Dipole sources are only a first approximation to the real sources which are thought to be a very complicated network of electrical currents in the core of the Earth. -Author

  11. Harmonic Measuring Approach Based on Quantum Neural Network

    NASA Astrophysics Data System (ADS)

    Li, Yueling; Wu, Xinghua

    Develop a quantum neural network with more effective study and generalized ability. A method proposed to measure the parameters of harmonic is three lays quantum neural networks. With the example of 3rd and 5th harmonic parameters, elaborates the composition of the training method and training sample in the quantum neuron networks. A simulation which trains the quantum neutron network with training samples firstly, then measures untrained samples, is performed by Matlab programs. And the results of the simulation show the validity of the method.

  12. A Miniaturized Branch Line Coupler with Harmonic Suppression

    NASA Astrophysics Data System (ADS)

    Hayati, Mohsen; Ehteshami, Mahin

    2014-07-01

    In this paper, a miniaturized branch-line coupler with harmonic suppression is presented. Approximately 80% size reduction in comparison with the conventional branch-line coupler is achieved using the step impedance bent transmission line, loaded by in-line beeline structure. Experimental result shows more than 24 dB suppression for primary odd harmonics (3rd, 5th, and 7th). The measured relative low insertion loss (3.2 dB) and desired coupling (3.1 dB) as well as 89.7° phase difference between through and coupled ports for the center frequency are verified.

  13. Harmonics at the utility industrial interface: A real world example

    SciTech Connect

    Almonte, R.L.; Ashley, A.W.

    1995-11-01

    This paper describes the application of 5th and 7th harmonic filters to an oil gathering and processing facility substation to reduce total harmonic voltage distortion on the local utility system to within IEEE Standard 519 recommended limits. The example oil company`s Beaver Creek Facility consists of producing fields and a gas processing plant, located in central Wyoming near the town of Riverton. Electrical power for the plant ad field is provided by a small electric cooperative which serves and meters the facility at 69 KV. In addition, gas powered turbines provide cogenerated power.

  14. Generation of higher odd harmonics in a defective photonic crystal

    SciTech Connect

    Ramanujam, N. R.; Wilson, K. S. Joseph

    2015-06-24

    A photonic crystal (AB){sup 2}(DB)(AB){sup 2} with high refractive index medium as silicon and low refractive medium as air is considered. Using the transfer matrix method, the transmission properties as a function of wavelength with photonic band gaps has been obtained. We are able to demonstrate the generation of third, fifth, seventh and ninth harmonics in the present work. We show that if the air medium is removed in the defect, the defect modes are generated but not harmonics. It can be designed to have a frequency conversion, and have a potential for becoming the basis for the next generation of optical devices.

  15. Second harmonic detection in the electrochemical strain microscopy of Ag-ion conducting glass

    SciTech Connect

    Yang, Sangmo; Okatan, Mahmut Baris; Paranthaman, Mariappan Parans; Jesse, Stephen; Noh, Tae Won; Kalinin, Sergei V.

    2014-11-14

    The first and second harmonic electromechanical responses and their cross-correlation in Ag-ion conducting glass were investigated using band-excitation electrochemical strain microscopy (ESM). Consecutive ESM images with increasing magnitudes of the applied AC voltage allowed observation of not only reversible surface displacement but also irreversible silver nanoparticle formation above a certain threshold voltage. The second harmonic ESM response was anticorrelated with the first harmonic response in many local regions. Furthermore, the nucleation sites of silver nanoparticles were closely related to the anti-correlated regions, specifically, with low second harmonic and high first harmonic ESM responses. The possible origins of the second harmonic ESM response are discussed.

  16. Setting the Stage for Harmonized Risk Assessment by Seismic Hazard Harmonization in Europe (SHARE)

    NASA Astrophysics Data System (ADS)

    Woessner, Jochen; Giardini, Domenico; SHARE Consortium

    2010-05-01

    Probabilistic seismic hazard assessment (PSHA) is arguably one of the most useful products that seismology can offer to society. PSHA characterizes the best available knowledge on the seismic hazard of a study area, ideally taking into account all sources of uncertainty. Results form the baseline for informed decision making, such as building codes or insurance rates and provide essential input to each risk assessment application. Several large scale national and international projects have recently been launched aimed at improving and harmonizing PSHA standards around the globe. SHARE (www.share-eu.org) is the European Commission funded project in the Framework Programme 7 (FP-7) that will create an updated, living seismic hazard model for the Euro-Mediterranean region. SHARE is a regional component of the Global Earthquake Model (GEM, www.globalquakemodel.org), a public/private partnership initiated and approved by the Global Science Forum of the OECD-GSF. GEM aims to be the uniform, independent and open access standard to calculate and communicate earthquake hazard and risk worldwide. SHARE itself will deliver measurable progress in all steps leading to a harmonized assessment of seismic hazard - in the definition of engineering requirements, in the collection of input data, in procedures for hazard assessment, and in engineering applications. SHARE scientists will create a unified framework and computational infrastructure for seismic hazard assessment and produce an integrated European probabilistic seismic hazard assessment (PSHA) model and specific scenario based modeling tools. The results will deliver long-lasting structural impact in areas of societal and economic relevance, they will serve as reference for the Eurocode 8 (EC8) application, and will provide homogeneous input for the correct seismic safety assessment for critical industry, such as the energy infrastructures and the re-insurance sector. SHARE will cover the whole European territory, the

  17. Feasibility study of generating ultra-high harmonic radiation with a single stage echo-enabled harmonic generation scheme

    NASA Astrophysics Data System (ADS)

    Zhou, Kaishang; Feng, Chao; Wang, Dong

    2016-10-01

    The echo enabled harmonic generation (EEHG) scheme holds the ability for the generation of fully coherent soft x-ray free-electron laser (FEL) pulses directly from external UV seeding sources. In this paper, we study the feasibility of using a single stage EEHG to generate coherent radiation in the "water window" and beyond. Using the high-order operating modes of the EEHG scheme, intensive numerical simulations have been performed considering various three-dimensional effects. The simulation results demonstrated that coherent soft x-ray radiation at 150th harmonic (1.77 nm) of the seed can be produced by a single stage EEHG. The decreasing of the final bunching factor at the desired harmonic caused by intra beam scattering (IBS) effect has also been analyzed.

  18. Systems Harmonization and Convergence - the GIGAS Approach

    NASA Astrophysics Data System (ADS)

    Marchetti, P. G.; Biancalana, A.; Coene, Y.; Uslander, T.

    2009-04-01

    0.1 Background The GIGAS1 Support Action promotes the coherent and interoperable development of the GMES, INSPIRE and GEOSS initiatives through their concerted adoption of standards, protocols, and open architectures. 0.2 Preparing for Coordinated Data Access The GMES Coordinated Data Access System is under design and implementation2. This objective has motivated the definition of the interoperability standards between the contributing missions. The following elements have been addressed with associated papers submitted to OGC: The EO Product Metadata has been based on the OGC Geographic Markup Language, addressing sensor characteristics for optical, radar and atmospheric products. Collection and service discovery: an ISO extension package for CSW ebRim has been proposed. Catalogue Service (CSW): an Earth Observation extension package of the CSW ebRim has been proposed. Feasibility Analysis and Order: an Order interface control document and an Earth Observation profile of the Sensor Planning Service have been proposed. Online Data Access: an Earth Observation profile of the Web Map Services (WMS) for visualization and evaluation purposes has been proposed. Identity (user) management: the objective in the long term is to allow for a single sign-on to the Coordinated Data Access system by users registered in the various Earth Observation ground segments by providing a federated identity across participating ground segments, exploiting OASIS standards. 0.3 The GIGAS proposed harmonization approach The approach proposed by GIGAS is based on three elements: Technology watch Comparative analysis Shaping of initiatives and standards This paper concentrates on the methodology for technology watch and comparative analysis. The complexity of the GIGAS scenario involving huge systems (i.e. GEOSS, INSPIRE, GMES etc.) entails the interaction with different heterogeneous partners, each with a specific competence, expertise and know-how. 0.3.1 Technology watch The methodology

  19. Building clinical trial capacity to develop a new treatment for multidrug-resistant tuberculosis

    PubMed Central

    Tupasi, Thelma; Danilovits, Manfred; Cirule, Andra; Sanchez-Garavito, Epifanio; Xiao, Heping; Cabrera-Rivero, Jose L; Vargas-Vasquez, Dante E; Gao, Mengqiu; Awad, Mohamed; Gentry, Leesa M; Geiter, Lawrence J; Wells, Charles D

    2016-01-01

    Abstract Problem New drugs for infectious diseases often need to be evaluated in low-resource settings. While people working in such settings often provide high-quality care and perform operational research activities, they generally have less experience in conducting clinical trials designed for drug approval by stringent regulatory authorities. Approach We carried out a capacity-building programme during a multi-centre randomized controlled trial of delamanid, a new drug for the treatment of multidrug-resistant tuberculosis. The programme included: (i) site identification and needs assessment; (ii) achieving International Conference on Harmonization – Good Clinical Practice (ICH-GCP) standards; (iii) establishing trial management; and (iv) increasing knowledge of global and local regulatory issues. Local setting Trials were conducted at 17 sites in nine countries (China, Egypt, Estonia, Japan, Latvia, Peru, the Philippines, the Republic of Korea and the United States of America). Eight of the 10 sites in low-resource settings had no experience in conducting the requisite clinical trials. Relevant changes Extensive capacity-building was done in all 10 sites. The programme resulted in improved local capacity in key areas such as trial design, data safety and monitoring, trial conduct and laboratory services. Lessons learnt Clinical trials designed to generate data for regulatory approval require additional efforts beyond traditional research-capacity strengthening. Such capacity-building approaches provide an opportunity for product development partnerships to improve health systems beyond the direct conduct of the specific trial. PMID:26908964

  20. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    PubMed

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  1. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    SciTech Connect

    Loganathan, Muthukumaran; Bristow, Douglas A.

    2014-04-15

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  2. A microchip laser with intracavity second-harmonic generation

    SciTech Connect

    Derzhavin, S I; Mashkovskii, D A; Timoshkin, V N

    2008-12-31

    A short-pulse 'green' 532-nm Nd{sup 3+}:YVO{sub 4} and KTiOPO{sub 4} microchip laser with intracavity second-harmonic generation, which is pumped by a 809-nm semiconductor laser diode, is developed. (lasers. amplifiers)

  3. High-Efficiency Harmonically Terminated Diode and Transistor Rectifiers

    SciTech Connect

    Roberg, M; Reveyrand, T; Ramos, I; Falkenstein, EA; Popovic, Z

    2012-12-01

    This paper presents a theoretical analysis of harmonically terminated high-efficiency power rectifiers and experimental validation on a class-C single Schottky-diode rectifier and a class-F-1 GaN transistor rectifier. The theory is based on a Fourier analysis of current and voltage waveforms, which arise across the rectifying element when different harmonic terminations are presented at its terminals. An analogy to harmonically terminated power amplifier (PA) theory is discussed. From the analysis, one can obtain an optimal value for the dc load given the RF circuit design. An upper limit on rectifier efficiency is derived for each case as a function of the device on-resistance. Measured results from fundamental frequency source-pull measurement of a Schottky diode rectifier with short-circuit terminations at the second and third harmonics are presented. A maximal device rectification efficiency of 72.8% at 2.45 GHz matches the theoretical prediction. A 2.14-GHz GaN HEMT rectifier is designed based on a class-F-1 PA. The gate of the transistor is terminated in an optimal impedance for self-synchronous rectification. Measurements of conversion efficiency and output dc voltage for varying gate RF impedance, dc load, and gate bias are shown with varying input RF power at the drain. The rectifier demonstrates an efficiency of 85% for a 10-W input RF power at the transistor drain with a dc voltage of 30 V across a 98-Omega resistor.

  4. Electromagnetic ion cyclotron waves at proton cyclotron harmonics

    NASA Astrophysics Data System (ADS)

    Chaston, C. C.; Bonnell, J. W.; McFadden, J. P.; Ergun, R. E.; Carlson, C. W.

    2002-11-01

    Waves with frequencies in the vicinity of the proton cyclotron frequency and its harmonics are commonly observed from the Fast Auroral Snapshot spacecraft when traversing regions of auroral particle acceleration. In areas of upward current, large-amplitude electromagnetic waves with frequencies within 5% of the local proton gyrofrequency Ωp and its harmonics are often observed where upstreaming ion beams exist. These waves have electric field (E1) and magnetic field (B1) amplitudes of up to 1 V m-1 and 2 nT with the ratio E1/B1 as small as c. The waves occur in the low-altitude portion of the primary auroral acceleration potential, where plasma densities are ≤1 cm-3. It is shown how these waves grow through inverse Landau resonance with a cold field-aligned electron beam superimposed on an accelerated and magnetically mirrored plasma sheet electron component in the absence of any significant plasma densities at energies below ˜100 eV. Significantly, the drift velocity of the cold beam (voeb) is several times larger than its thermal velocity veb, and it is this feature that allows the wave to become electromagnetic at cyclotron harmonics while simultaneously giving rise to broadband electrostatic emissions spanning the first few cyclotron harmonics as is observed.

  5. Transmit beamforming for optimal second-harmonic generation.

    PubMed

    Hoilund-Kaupang, Halvard; Masoy, Svein-Erik

    2011-08-01

    A simulation study of transmit ultrasound beams from several transducer configurations is conducted to compare second-harmonic imaging at 3.5 MHz and 11 MHz. Second- harmonic generation and the ability to suppress near field echoes are compared. Each transducer configuration is defined by a chosen f-number and focal depth, and the transmit pressure is estimated to not exceed a mechanical index of 1.2. The medium resembles homogeneous muscle tissue with nonlinear elasticity and power-law attenuation. To improve computational efficiency, the KZK equation is utilized, and all transducers are circular-symmetric. Previous literature shows that second-harmonic generation is proportional to the square of the transmit pressure, and that transducer configurations with different transmit frequencies, but equal aperture and focal depth in terms of wavelengths, generate identical second-harmonic fields in terms of shape. Results verify this for a medium with attenuation f1. For attenuation f1.1, deviations are found, and the high frequency subsequently performs worse than the low frequency. The results suggest that high frequencies are less able to suppress near-field echoes in the presence of a heterogeneous body wall than low frequencies.

  6. Excitation of electron Langmuir frequency harmonics in the solar atmosphere

    SciTech Connect

    Fomichev, V. V.; Fainshtein, S. M.; Chernov, G. P.

    2013-05-15

    An alternative mechanism for the excitation of electron Langmuir frequency harmonics as a result of the development of explosive instability in a weakly relativistic beam-plasma system in the solar atmosphere is proposed. The efficiency of the new mechanism as compared to the previously discussed ones is analyzed.

  7. Symmetry algebra of a generalized anisotropic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Castanos, O.; Lopez-Pena, R.

    1993-01-01

    It is shown that the symmetry Lie algebra of a quantum system with accidental degeneracy can be obtained by means of the Noether's theorem. The procedure is illustrated by considering a generalized anisotropic two dimensional harmonic oscillator, which can have an infinite set of states with the same energy characterized by an u(1,1) Lie algebra.

  8. Time-Symmetric Discretization of The Harmonic Oscillator

    SciTech Connect

    Antippa, Adel F.; Dubois, Daniel M.

    2010-11-24

    We explicitly and analytically demonstrate that simple time-symmetric discretization of the harmonic oscillator (used as a simple model of a discrete dynamical system), leads to discrete equations of motion whose solutions are perfectly stable at all time scales, and whose energy is exactly conserved. This result is important for both fundamental discrete physics, as well as for numerical analysis and simulation.

  9. Harmonic and Anharmonic Behaviour of a Simple Oscillator

    ERIC Educational Resources Information Center

    O'Shea, Michael J.

    2009-01-01

    We consider a simple oscillator that exhibits harmonic and anharmonic regimes and analyse its behaviour over the complete range of possible amplitudes. The oscillator consists of a mass "m" fixed at the midpoint of a horizontal rope. For zero initial rope tension and small amplitude the period of oscillation, tau, varies as tau is approximately…

  10. Harmonics analysis of the photonic time stretch system.

    PubMed

    Mei, Yuan; Xu, Boyu; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin

    2016-09-10

    Photonic time stretch (PTS) has been intensively investigated in recent decades due to its potential application to ultra-wideband analog-to-digital conversion. A high-speed analog signal can be captured by an electronic analog-to-digital converter (ADC) with the help of the PTS technique, which slows down the speed of signal in the photonic domain. Unfortunately, the process of the time stretch is not linear due to the nonlinear modulation of the electro-optic intensity modulator in the PTS system, which means the undesired harmonics distortion. In this paper, we present an exact analytical model to fully characterize the harmonics generation in the PTS systems for the first time, to the best of our knowledge. We obtain concise and closed-form expressions for all harmonics of the PTS system with either a single-arm Mach-Zehnder modulator (MZM) or a push-pull MZM. The presented model can largely simplify the PTS system design and the system parameters estimation, such as system bandwidth, harmonics power, time-bandwidth product, and dynamic range. The correctness of the mathematic model is verified by the numerical and experimental results.

  11. Effects of using passive filter for reduce electrical load harmonics

    NASA Astrophysics Data System (ADS)

    Sucita, T.

    2016-04-01

    Due to the use of electrical current load that uses a lot of electronic components (passive non-linear electrical loads), so the impact will cause harmonics in the electrical network system. These harmonics can unwittingly cause a relatively large loss in electrical energy consumption and can lower the power factor of an electrical installation. Limits how much the harmonic distortion that is installed on the load adjusted to the IEEE 519-1992 standard. The study was conducted by taking data on a network of electrical installation of a building using measuring devices Fluke 43B Power Quality Analyser. The data is then processed and consulted with the standard IEEE 519-1992. Once the data has a discrepancy with the standard, further made the filter design using linear passive components. The design is then installed on the network installation by means of simulated order harmonic losses can be overcome so that the circuit meets the IEEE standard installation by changing the parameters of the linear load L and C. The results of this study indicate that THDi value decreased after the installation of filters for phase R fell by 9.39%, the S phase decreased by 7.54% and for the T phase decreased by 16.88%. So that meets the IEEE standard by 15%.

  12. Physiological responses during cycling with noncircular "Harmonic" and circular chainrings.

    PubMed

    Ratel, Sébastien; Duché, Pascale; Hautier, Christophe A; Williams, Craig A; Bedu, Mario

    2004-01-01

    The aim of the present study was to compare physiological data obtained during cycling using a noncircular "Harmonic" chainring versus a standard circular chainring over a range of speeds and slopes in endurance-trained cyclists. Thirteen male subnational cyclists (16-45 years) performed two maximal graded exercises on their own bicycle: one with a circular chainring, the other with a Harmonic chainring with the same gearwheel (52 teeth). The two chainrings were randomly assigned to avoid learning effects. The tests were carried out on a simulator. Speeds and/or slopes were increased every 2 min 30 s until exhaustion of the subject. Ventilation, oxygen uptake, carbon dioxide output, respiratory exchange ratio, and heart rate were continuously measured during the tests. Blood lactate concentration was measured during the last 30 s of each level. No significant difference was observed in any of the submaximal parameters measured during the tests ( P>0.05). Similarly, maximal values were not statistically different ( P>0.05). In conclusion, although the design of the Harmonic chainring was based on optimization analysis, comparison of the physiological response in this study did not translate into an advantage of the Harmonic over circular chainring during submaximal and maximal pedaling in trained cyclists. PMID:12955523

  13. Current drive with the second ECR harmonic on T-10

    SciTech Connect

    Alikaev, V.V.; Bagdasarov, A.A.; Borshegovskij, A.A.; Dremin, M.M.; Esipchuk, Y.V.; Gorelov, Y.A.; Ivanov, N.V.; Kislov, A.Y.; Kuznetsova, L.K.; Notkin, G.E.; Pavlov, Y.D.; Razumova, K.A.; Roy, I.N.; Vasin, N.L.; Vershkov, V.A. , Moscow ); Forest, C.B.; Lohr, J.; Luce, T.C.; Harvey, R.W. ); The T-10 Team

    1994-10-15

    The experiments on ECCD on the second harmonic were done. Current about 35 kA was generated. The efficiency of ECCD and its dependencies on plasma parameters were measured. Not all observed phenomena may be explained by the predictions of linear theory.

  14. Presence of strong harmonics during visual entrainment: a magnetoencephalography study.

    PubMed

    Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2012-09-01

    Visual neurons are known to synchronize their firing with stimuli that flicker at a constant rate (e.g. 12Hz). These so-called visual steady-state responses (VSSR) are a well-studied phenomenon, yet the underlying mechanisms are widely disagreed upon. Furthermore, there is limited evidence that visual neurons may simultaneously synchronize at harmonics of the stimulation frequency. We utilized magnetoencephalography (MEG) to examine synchronization at harmonics of the visual stimulation frequency (18Hz). MEG data were analyzed for event-related-synchronization (ERS) at the fundamental frequency, 36, 54, and 72Hz. We found strong ERS in all bands. Only 31% of participants showed maximum entrainment at the fundamental; others showed stronger entrainment at either 36 or 54Hz. The cortical foci of these responses indicated that the harmonics involved cortices that were partially distinct from the fundamental. These findings suggest that spatially-overlapping subpopulations of neurons are simultaneously entrained at different harmonics of the stimulus frequency. PMID:22569101

  15. 78 FR 987 - Hazardous Materials: Harmonization with International Standards (RRR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... the air transportation and handling of lithium batteries. However, in that NPRM, PHMSA did propose the... the HMR a shipment of lithium batteries would be permitted to be transported by air in accordance with... (RRR), Harmonization with the United Nations, and Transportation of Lithium Batteries; Final Rules...

  16. Wavemoth-Fast Spherical Harmonic Transforms by Butterfly Matrix Compression

    NASA Astrophysics Data System (ADS)

    Seljebotn, D. S.

    2012-03-01

    We present Wavemoth, an experimental open source code for computing scalar spherical harmonic transforms (SHTs). Such transforms are ubiquitous in astronomical data analysis. Our code performs substantially better than existing publicly available codes owing to improvements on two fronts. First, the computational core is made more efficient by using small amounts of pre-computed data, as well as paying attention to CPU instruction pipelining and cache usage. Second, Wavemoth makes use of a fast and numerically stable algorithm based on compressing a set of linear operators in a pre-computation step. The resulting SHT scales as O(L 2log2 L) for the resolution range of practical interest, where L denotes the spherical harmonic truncation degree. For low- and medium-range resolutions, Wavemoth tends to be twice as fast as libpsht, which is the current state-of-the-art implementation for the HEALPix grid. At the resolution of the Planck experiment, L ~ 4000, Wavemoth is between three and six times faster than libpsht, depending on the computer architecture and the required precision. Because of the experimental nature of the project, only spherical harmonic synthesis is currently supported, although adding support for spherical harmonic analysis should be trivial.

  17. Pitch perception for mixtures of spectrally overlapping harmonic complex tones

    PubMed Central

    Micheyl, Christophe; Keebler, Michael V.; Oxenham, Andrew J.

    2010-01-01

    This study measured difference limens for fundamental frequency (DLF0s) for a target harmonic complex in the presence of a simultaneous spectrally overlapping harmonic masker. The resolvability of the target harmonics was manipulated by bandpass filtering the stimuli into a low (800–2400 Hz) or high (1600–3200 Hz) spectral region, using different nominal F0s for the targets (100, 200, and 400 Hz), and different masker F0s (0, +9, or −9 semitones) relative to the target. Three different modes of masker presentation, relative to the target, were tested: ipsilateral, contralateral, and dichotic, with a higher masker level in the contralateral ear. Ipsilateral and dichotic maskers generally caused marked elevations in DLF0s compared to both the unmasked and contralateral masker conditions. Analyses based on excitation patterns revealed that ipsilaterally masked F0 difference limens were small (<2%) only when the excitation patterns evoked by the target-plus-masker mixture contained several salient (>1 dB) peaks at or close to target harmonic frequencies, even though these peaks were rarely produced by the target alone. The findings are discussed in terms of place- or place-time mechanisms of pitch perception. PMID:20649221

  18. A tutorial on the principles of harmonic intonation for trombonists

    NASA Astrophysics Data System (ADS)

    Keener, Michael Kenneth

    A Tutorial on the Principles of Harmonic Intonation for Trombonists includes a manual containing background information, explanations of the principles of harmonic intonation, and printed musical examples for use in learning and practicing the concepts of harmonic intonation. An audio compact disk containing music files corresponding to the printed music completes the set. This tutorial is designed to allow performing musicians and students to practice intonation skills with the pitch-controlled music on the compact disc. The music on the CD was recorded in movable-comma just intonation, replicating performance parameters of wind, string, and vocal ensembles. The compact disc includes sixty tracks of ear-training exercises and interval studies with which to practice intonation perception and adjustment. Tuning notes and examples of equal-tempered intervals and just intervals are included on the CD. The intonation exercises consist of musical major scales, duets, trios, and quartet phrases to be referenced while playing the printed music. The CD tracks allow the performer to play scales in unison (or practice other harmonic intervals) or the missing part of the corresponding duet, trio, or quartet exercise. Instructions in the manual guide the user through a process that can help prepare musicians for more accurate musical ensemble performance. The contextual essay that accompanies the tutorial includes a description of the tutorial, a review of related literature, methodology of construction of the tutorial, evaluations and outcomes, conclusions and recommendations for further research, and a selected bibliography.

  19. The One-Dimensional Damped Forced Harmonic Oscillator Revisited

    ERIC Educational Resources Information Center

    Flores-Hidalgo, G.; Barone, F. A.

    2011-01-01

    In this paper we give a general solution to the problem of the damped harmonic oscillator under the influence of an arbitrary time-dependent external force. We employ simple methods accessible for beginners and useful for undergraduate students and professors in an introductory course of mechanics.

  20. Generation of harmonics and supercontinuum in nematic liquid crystals

    SciTech Connect

    Nyushkov, B N; Trashkeev, S I; Klementyev, Vasilii M; Pivtsov, V S; Kobtsev, Sergey M

    2013-02-28

    Nonlinear optical properties of nematic liquid crystals (NLC) have been investigated. A technique for efficient laser frequency conversion in a microscopic NLC volume deposited on an optical fibre end face is experimentally demonstrated. An efficient design of a compact NLC-based IR frequency converter with a fibre input and achromatic collimator is proposed and implemented. Simultaneous generation of the second and third harmonics is obtained for the first time under pumping NLC by a 1.56-mm femtosecond fibre laser. The second-harmonic generation efficiency is measured to be about 1 %, while the efficiency of third-harmonic generation is several tenths of percent. A strong polarisation dependence of the third-harmonic generation efficiency is revealed. When pumping NLC by a cw laser, generation of spectral supercontinua (covering the visible and near-IR spectral ranges) is observed. The nonlinear effects revealed can be due to the light-induced change in the orientational order in liquid crystals, which breaks the initial symmetry and leads to formation of disclination structures. The NLC optical nonlinearity is believed to be of mixed orientationalelectronic nature as a whole. (laser optics 2012)

  1. Harmonics analysis of the photonic time stretch system.

    PubMed

    Mei, Yuan; Xu, Boyu; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin

    2016-09-10

    Photonic time stretch (PTS) has been intensively investigated in recent decades due to its potential application to ultra-wideband analog-to-digital conversion. A high-speed analog signal can be captured by an electronic analog-to-digital converter (ADC) with the help of the PTS technique, which slows down the speed of signal in the photonic domain. Unfortunately, the process of the time stretch is not linear due to the nonlinear modulation of the electro-optic intensity modulator in the PTS system, which means the undesired harmonics distortion. In this paper, we present an exact analytical model to fully characterize the harmonics generation in the PTS systems for the first time, to the best of our knowledge. We obtain concise and closed-form expressions for all harmonics of the PTS system with either a single-arm Mach-Zehnder modulator (MZM) or a push-pull MZM. The presented model can largely simplify the PTS system design and the system parameters estimation, such as system bandwidth, harmonics power, time-bandwidth product, and dynamic range. The correctness of the mathematic model is verified by the numerical and experimental results. PMID:27661356

  2. Spin-Squeezing Entanglement of Second-Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Shu, Jian

    2016-10-01

    An experimentally feasible scheme for generating spin-squeezing entanglement via second-harmonic generation was presented. Its shown that spin-squeezing entanglement can be generated rapidly in the dynamical process by adjusting coupling constant, detuning, the total number of particles and the evolution time.

  3. Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms

    SciTech Connect

    Ablinger, Jakob; Schneider, Carsten; Blümlein, Johannes

    2013-08-15

    In recent three-loop calculations of massive Feynman integrals within Quantum Chromodynamics (QCD) and, e.g., in recent combinatorial problems the so-called generalized harmonic sums (in short S-sums) arise. They are characterized by rational (or real) numerator weights also different from ±1. In this article we explore the algorithmic and analytic properties of these sums systematically. We work out the Mellin and inverse Mellin transform which connects the sums under consideration with the associated Poincaré iterated integrals, also called generalized harmonic polylogarithms. In this regard, we obtain explicit analytic continuations by means of asymptotic expansions of the S-sums which started to occur frequently in current QCD calculations. In addition, we derive algebraic and structural relations, like differentiation with respect to the external summation index and different multi-argument relations, for the compactification of S-sum expressions. Finally, we calculate algebraic relations for infinite S-sums, or equivalently for generalized harmonic polylogarithms evaluated at special values. The corresponding algorithms and relations are encoded in the computer algebra package HarmonicSums.

  4. Simulating Harmonic Oscillator and Electrical Circuits: A Didactical Proposal

    ERIC Educational Resources Information Center

    Albano, Giovannina; D'Apice, Ciro; Tomasiello, Stefania

    2002-01-01

    A Mathematica[TM] package is described that uses simulations and animations to illustrate key concepts in harmonic oscillation and electric circuits for students not majoring in physics or mathematics. Students are not required to know the Mathematica[TM] environment: a user-friendly interface with buttons functionalities and on-line help allows…

  5. Wave packet motion in harmonic potential and computer visualization

    NASA Technical Reports Server (NTRS)

    Tsuru, Hideo; Kobayashi, Takeshi

    1993-01-01

    Wave packet motions of a single electron in harmonic potentials or a magnetic field are obtained analytically. The phase of the wave function which depends on both time and space is also presented explicitly. The probability density of the electron changes its width and central position periodically. These results are visualized using computer animation techniques.

  6. The Study of Damped Harmonic Oscillations Using an Electronic Counter

    ERIC Educational Resources Information Center

    Wadhwa, Ajay

    2009-01-01

    We study damped harmonic oscillations in mechanical systems like the loaded spring and simple pendulum with the help of an oscillation measuring electronic counter. The experimental data are used in a software program that solves the differential equation for damped vibrations of any system and determines its position, velocity and acceleration as…

  7. Imaging Collagen Orientation Using Polarization-Modulated Second Harmonic Generation

    SciTech Connect

    Stoller, P; Celliers, P M; Reiser, K M; Rubenchik, A M

    2002-01-10

    We use polarization-modulated second harmonic generation to image fiber orientation in collagen tissues, with an axial resolution of about 10 {micro}m and a transverse resolution of up to 1 {micro}m. A linearly polarized ultra-short pulse (200 fs) Ti:Sapphire laser beam is modulated using an electro-optic modulator and quarter-wave plate combination and focused onto a translation stage mounted sample using a microscope objective. The generated second harmonic light is collected using a photomultiplier tube and demodulated using phase sensitive detection to obtain signal intensity and fiber orientation information. In order to obtain second harmonic generation images of different types of collagen organization, we analyze several different tissues, including rat-tail tendon, mouse aorta, mouse fibrotic liver, and porcine skin. We can use our technique to image fibrotic tissue in histological sections of damaged liver and to identify burned tissue in porcine skin to a depth of a few hundred microns. Polarization-modulated second harmonic generation potentially could be a useful clinical technique for diagnosing collagen related disease or damage, especially in the skin.

  8. S2HAT: Scalable Spherical Harmonic Transform Library

    NASA Astrophysics Data System (ADS)

    Stompor, Radek

    2011-10-01

    Many problems in astronomy and astrophysics require a computation of the spherical harmonic transforms. This is in particular the case whenever data to be analyzed are distributed over the sphere or a set of corresponding mock data sets has to be generated. In many of those contexts, rapidly improving resolutions of both the data and simulations puts increasingly bigger emphasis on our ability to calculate the transforms quickly and reliably. The scalable spherical harmonic transform library S2HAT consists of a set of flexible, massively parallel, and scalable routines for calculating diverse (scalar, spin-weighted, etc) spherical harmonic transforms for a class of isolatitude sky grids or pixelizations. The library routines implement the standard algorithm with the complexity of O(n^3/2), where n is a number of pixels/grid points on the sphere, however, owing to their efficient parallelization and advanced numerical implementation, they achieve very competitive performance and near perfect scalability. S2HAT is written in Fortran 90 with a C interface. This software is a derivative of the spherical harmonic transforms included in the HEALPix package and is based on both serial and MPI routines of its version 2.01, however, since version 2.5 this software is fully autonomous of HEALPix and can be compiled and run without the HEALPix library.

  9. 76 FR 40306 - Harmonizing Schedule I Drug Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    .... The proposal also harmonizes FMCSA's provisions regarding pre-employment and return-to-duty test... Act Statement in the Federal Register published on January 17, 2008 (73 FR 3316), or you may visit... Motor Carrier Safety Administration. FR Federal Register. NEPA National Environmental Policy Act....

  10. 77 FR 4479 - Harmonizing Schedule I Drug Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... harmonizes FMCSA's provisions regarding pre-employment and return-to-duty test refusals with corresponding... Statement in the Federal Register published on January 17, 2008 (73 FR 3316), or you may visit http... Safety Administration FR Federal Register NEPA National Environmental Policy Act OTETA...

  11. High-Speed Video Analysis of Damped Harmonic Motion

    ERIC Educational Resources Information Center

    Poonyawatpornkul, J.; Wattanakasiwich, P.

    2013-01-01

    In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…

  12. WAVEMOTH-FAST SPHERICAL HARMONIC TRANSFORMS BY BUTTERFLY MATRIX COMPRESSION

    SciTech Connect

    Seljebotn, D. S.

    2012-03-01

    We present Wavemoth, an experimental open source code for computing scalar spherical harmonic transforms (SHTs). Such transforms are ubiquitous in astronomical data analysis. Our code performs substantially better than existing publicly available codes owing to improvements on two fronts. First, the computational core is made more efficient by using small amounts of pre-computed data, as well as paying attention to CPU instruction pipelining and cache usage. Second, Wavemoth makes use of a fast and numerically stable algorithm based on compressing a set of linear operators in a pre-computation step. The resulting SHT scales as O(L{sup 2}log{sup 2} L) for the resolution range of practical interest, where L denotes the spherical harmonic truncation degree. For low- and medium-range resolutions, Wavemoth tends to be twice as fast as libpsht, which is the current state-of-the-art implementation for the HEALPix grid. At the resolution of the Planck experiment, L {approx} 4000, Wavemoth is between three and six times faster than libpsht, depending on the computer architecture and the required precision. Because of the experimental nature of the project, only spherical harmonic synthesis is currently supported, although adding support for spherical harmonic analysis should be trivial.

  13. Using "Tracker" to Prove the Simple Harmonic Motion Equation

    ERIC Educational Resources Information Center

    Kinchin, John

    2016-01-01

    Simple harmonic motion (SHM) is a common topic for many students to study. Using the free, though versatile, motion tracking software; "Tracker", we can extend the students experience and show that the general equation for SHM does lead to the correct period of a simple pendulum.

  14. Predicting charmonium and bottomonium spectra with a quark harmonic oscillator.

    PubMed

    Norbury, J W; Badavi, F F; Townsend, L W

    1986-11-01

    We present a simple application of the three-dimensional harmonic oscillator which should provide a very nice particle physics example to be presented in introductory undergraduate quantum mechanics course. The idea is to use the nonrelativistic quark model to calculate the spin-averaged mass levels of the charmonium and bottomonium spectra. PMID:11538828

  15. 78 FR 8431 - Hazardous Materials: Harmonization with International Standards (RRR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 172 RIN 2137-AE87 Hazardous Materials: Harmonization with International Standards (RRR) Correction In rule document 2012-31243 appearing on pages...

  16. A need for harmonized legislation: perspectives in South America.

    PubMed

    de F Toledo, M Cecilia

    2014-08-01

    The harmonization of national food standards in South America has been undertaken by Argentina, Brazil, Paraguay and Uruguay within the Southern Common Market (MERCOSUR). Since food is among the most important commodities traded internationally, the harmonization of national food standards has been considered a priority. MERCOSUR countries have different laws governing food that are based, among other things, on historical, cultural and economic factors. Some regulations are complex and contain many controls while others are less developed and lack basic requirements. As a consequence, from the inception of preparing a common legislation through its adoption by the member countries, a long and difficult task has been foreseen. Although not immediately apparent, the difficulty in achieving consensus within MERCOSUR is not unlike that experience by the members of the European Union. Currently, food harmonization within MERCOSUR has been reached for issues where technical standards may represent serious trade barriers. These decisions have been based on Codex limentarius Commission guidelines and recommendations as well as on the European Union experience. This article will briefly discuss the current status of the MERCOSUR harmonization process with focus on issues related to food safety. A historical background of MERCOSUR and its institutional structure are included.

  17. A Simple Mechanical Model for the Isotropic Harmonic Oscillator

    ERIC Educational Resources Information Center

    Nita, Gelu M.

    2010-01-01

    A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels. (Contains 2 figures.)

  18. Solution procedure of residue harmonic balance method and its applications

    NASA Astrophysics Data System (ADS)

    Guo, ZhongJin; Leung, A. Y. T.; Ma, XiaoYan

    2014-08-01

    This paper presents a simple and rigorous solution procedure of residue harmonic balance for predicting the accurate approximation of certain autonomous ordinary differential systems. In this solution procedure, no small parameter is assumed. The harmonic residue of balance equation is separated in two parts at each step. The first part has the same number of Fourier terms as the present order of approximation and the remaining part is used in the subsequent improvement. The corrections are governed by linear ordinary differential equation so that they can be solved easily by means of harmonic balance method again. Three kinds of different differential equations involving general, fractional and delay ordinary differential systems are given as numerical examples respectively. Highly accurate limited cycle frequency and amplitude are captured. The results match well with the exact solutions or numerical solutions for a wide range of control parameters. Comparison with those available shows that the residue harmonic balance solution procedure is very effective for these autonomous differential systems. Moreover, the present method works not only in predicting the amplitude but also the frequency of bifurcated period solution for delay ordinary differential equation.

  19. Using Tracker to prove the simple harmonic motion equation

    NASA Astrophysics Data System (ADS)

    Kinchin, John

    2016-09-01

    Simple harmonic motion (SHM) is a common topic for many students to study. Using the free, though versatile, motion tracking software; Tracker, we can extend the students experience and show that the general equation for SHM does lead to the correct period of a simple pendulum.

  20. Teaching Resonance and Harmonics with Guitar and Piano

    ERIC Educational Resources Information Center

    Sobel, Michael

    2014-01-01

    In a recent paper, Kasar, Yurumezoglu, and Sengoren show how to use a guitar, or two guitars, to demonstrate resonance. Here we extend this idea by showing how to use a guitar or a piano (both acoustic) to demonstrate resonance, harmonics, and the properties of the musical scale. We discuss the advantages and disadvantages of each instrument.…