Sample records for hachimantai

  1. Distribution of mountain wetlands and their response to Holocene climate change in the Hachimantai Volcanic Groups, northeastern Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, N.; Sugai, T.

    2017-12-01

    Mountain wetlands, natural peatlands or lakes, with narrow catchment areas need abundant water supply and topography retaining water because of unstable water condition. This study examines wetland distribution with a focus on topography and snow accumulation, and discuss wetland evolution responding to Holocene climate change in the Hachimantai Volcanic Group, northeastern Japan, where the East Asian winter monsoon brings heavier snow and where has many wetlands of varied origin: crater lakes and wetlands in nivation hollows on original volcanic surfaces, and wetlands in depressions formed by landslides. We identified and classified wetlands using aerial photographs and 5-m and 10-m digital elevation models. Wetlands on the original volcanic surfaces tend to be concentrated under the small scarps with much snow or on saddles of the mountain ridge where snowmelt from surrounding slopes maintains a moist environment. More lake type wetlands are formed in the saddle than in the snowdrifts. That may represent that the saddles can correct more recharge water and may be a more suitable topographic condition for wetland formation and endurance. On the contrary, wetlands on landslides lie at the foot of the scarps where spring water can be abundantly supplied, regardless of snow accumulation. We used lithological analysis, 14C dating, tephra age data, and carbon contents of wetland cores to compare the evolution of wetlands, one (the Oyachi wetland) within a huge landslide and three (the Appi Highland wetlands) outside of a landslide area. We suggest that the evolution of the wetland in the landslide is primarily influenced by landslide movements and stream dissection rather than climate change. In the Appi Highland wetlands, peatlands appeared much later and at the almost same time in the Medieval Warm Period. We suggest that the development of mountain wetlands outside of landslide areas is primarily related to climate changes. Responsiveness of mountain wetlands to

  2. Shifts in alpine lakes' ecosystems in Japan driven by increasing Asian dusts

    NASA Astrophysics Data System (ADS)

    Tsugeki, N. K.; Tani, Y.; Ueda, S.; Agusa, T.; Toyoda, K.; Kuwae, M.; Oda, H.; Tanabe, S.; Urabe, J.

    2011-12-01

    Recently in East Asia the amount of fossil fuel combustion have increased with economic growth. It has caused a problem of trans-boundary air pollution in the whole of eastern Asia. Furthermore, Asian dust storms contribute episodically to the global aerosol load. However, the effects of increased Asian dusts on aquatic ecosystems are not well understood. If biologically important nutrients such as nitrogen (N) and phosphorus (P) are transported via air dust, the atmospheric deposition of the dust may have serious impacts on recipient aquatic ecosystems because the biological production is limited by these nutrient elements. A previous report using sedimentary records has evaluated that atmospheric P inputs to the alpine lakes in the United States increased fivefold following the increased western settlement to this country during the nineteenth century. Since P is the most deficient nutrient for production in many lakes increase in P loading through atmospheric deposition of anthropogenically-derived dust might greatly affect the lake ecosystems. We examined fossil pigments and zooplankton remains from Pb-dated sediments taken from a high mountain lake of Hourai-Numa, located in the Towada-Hachimantai National Park of Japan, to uncover historical changes in the phyto- and zooplankton community over the past 100 years. Simultaneously, we measured the biogeochemical variables of TOC, TN, TP, δ13C, δ15N, and 206Pb/207Pb, 208Pb/207Pb in the sediments to identify environmental factors causing such changes. As a result, despite little anthropogenic activities in the watersheds, alpine lakes in Japan Islands increased algal and herbivore plankton biomasses by 3-6 folds for recent years depending on terrestrial the surrounded vegetations and landscape conditions. Biological and biogeochemical proxies recorded in the lake sediments indicate that this eutrophication occurred after the 1990s when P deposition increased due to atmospheric loading transported from Asian