Sample records for hadron collider lhc

  1. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  2. Progress towards next generation hadron colliders: FCC-hh, HE-LHC, and SPPC

    NASA Astrophysics Data System (ADS)

    Zimmermann, Frank; EuCARD-2 Extreme Beams Collaboration; Future Circular Collider (FCC) Study Collaboration

    2017-01-01

    A higher-energy circular proton collider is generally considered to be the only path available in this century for exploring energy scales well beyond the reach of the Large Hadron Collider (LHC) presently in operation at CERN. In response to the 2013 Update of the European Strategy for Particle Physics and aligned with the 2014 US ``P5'' recommendations, the international Future Circular Collider (FCC) study, hosted by CERN, is designing such future frontier hadron collider. This so-called FCC-hh will provide proton-proton collisions at a centre-of-mass energy of 100 TeV, with unprecedented luminosity. The FCC-hh energy goal is reached by combining higher-field, 16 T magnets, based on Nb3Sn superconductor, and a new 100 km tunnel connected to the LHC complex. In addition to the FCC-hh proper, the FCC study is also exploring the possibility of a High-Energy LHC (HE-LHC), with a centre-of-mass energy of 25-27 TeV, as could be achieved in the existing 27 km LHC tunnel using the FCC-hh magnet technology. A separate design effort centred at IHEP Beijing aims at developing and constructing a similar collider in China, with a smaller circumference of about 54 km, called SPPC. Assuming even higher-field 20 T magnets, by relying on high-temperature superconductor, the SPPC could reach a c.m. energy of about 70 TeV. This presentation will report the motivation and the present status of the R&D for future hadron colliders, a comparison of the three designs under consideration, the major challenges, R&D topics, the international technology programs, and the emerging global collaboration. Work supported by the European Commission under Capacities 7th Framework Programme project EuCARD-2, Grant Agreement 312453, and the HORIZON 2020 project EuroCirCol, Grant Agreement 654305.

  3. High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apollinari, G.; Béjar Alonso, I.; Brüning, O.

    2015-12-17

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHCmore » is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.« less

  4. Vector-like quarks coupling discrimination at the LHC and future hadron colliders

    NASA Astrophysics Data System (ADS)

    Barducci, D.; Panizzi, L.

    2017-12-01

    The existence of new coloured states with spin one-half, i.e. extra-quarks, is a striking prediction of various classes of new physics models. Should one of these states be discovered during the 13 TeV runs of the LHC or at future high energy hadron colliders, understanding its properties will be crucial in order to shed light on the underlying model structure. Depending on the extra-quarks quantum number under SU(2) L , their coupling to Standard Model quarks and bosons have either a dominant left- or right-handed chiral component. By exploiting the polarisation properties of the top quarks arising from the decay of pair-produced extra quarks, we show how it is possible to discriminate among the two hypothesis in the whole discovery range currently accessible at the LHC, thus effectively narrowing down the possible interpretations of a discovered state in terms of new physics scenarios. Moreover, we estimate the discovery and discrimination power of future prototype hadron colliders with centre of mass energies of 33 and 100 TeV.

  5. Flavorful leptoquarks at hadron colliders

    NASA Astrophysics Data System (ADS)

    Hiller, Gudrun; Loose, Dennis; Nišandžić, Ivan

    2018-04-01

    B -physics data and flavor symmetries suggest that leptoquarks can have masses as low as a few O (TeV ) , predominantly decay to third generation quarks, and highlight p p →b μ μ signatures from single production and p p →b b μ μ from pair production. Abandoning flavor symmetries could allow for inverted quark hierarchies and cause sizable p p →j μ μ and j j μ μ cross sections, induced by second generation couplings. Final states with leptons other than muons including lepton flavor violation (LFV) ones can also arise. The corresponding couplings can also be probed by precision studies of the B →(Xs,K*,ϕ )e e distribution and LFV searches in B -decays. We demonstrate sensitivity in single leptoquark production for the large hadron collider (LHC) and extrapolate to the high luminosity LHC. Exploration of the bulk of the parameter space requires a hadron collider beyond the reach of the LHC, with b -identification capabilities.

  6. Optimizing integrated luminosity of future hadron colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank

    2015-10-01

    The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).

  7. Exergy Analysis of the Cryogenic Helium Distribution System for the Large Hadron Collider (lhc)

    NASA Astrophysics Data System (ADS)

    Claudet, S.; Lebrun, Ph.; Tavian, L.; Wagner, U.

    2010-04-01

    The Large Hadron Collider (LHC) at CERN features the world's largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility.

  8. Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders

    NASA Astrophysics Data System (ADS)

    Lebrun, Philippe; Tavian, Laurent

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.

  9. Considerations on Energy Frontier Colliders after LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here wemore » overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].« less

  10. Will there be energy frontier colliders after LHC?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-09-15

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC collidersmore » from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics.« less

  11. The future of the Large Hadron Collider and CERN.

    PubMed

    Heuer, Rolf-Dieter

    2012-02-28

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  12. Large Hadron Collider commissioning and first operation.

    PubMed

    Myers, S

    2012-02-28

    A history of the commissioning and the very successful early operation of the Large Hadron Collider (LHC) is described. The accident that interrupted the first commissioning, its repair and the enhanced protection system put in place are fully described. The LHC beam commissioning and operational performance are reviewed for the period from 2010 to mid-2011. Preliminary plans for operation and future upgrades for the LHC are given for the short and medium term.

  13. Branon search in hadronic colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cembranos, J.A.R.; Departamento de Fisica Teorica, Universidad Complutense de Madrid, 28040 Madrid; Dobado, A.

    2004-11-01

    In the context of the brane-world scenarios with compactified extra dimensions, we study the production of brane fluctuations (branons) in hadron colliders (pp, pp, and e{sup {+-}}p) in terms of the brane tension parameter f, the branon mass M, and the number of branons N. From the absence of monojet events at HERA and Tevatron (run I), we set bounds on these parameters and we also study how such bounds could be improved at Tevatron (run II) and the future LHC. The single-photon channel is also analyzed for the two last colliders.

  14. LHC collider phenomenology of minimal universal extra dimensions

    NASA Astrophysics Data System (ADS)

    Beuria, Jyotiranjan; Datta, AseshKrishna; Debnath, Dipsikha; Matchev, Konstantin T.

    2018-05-01

    We discuss the collider phenomenology of the model of Minimal Universal Extra Dimensions (MUED) at the Large hadron Collider (LHC). We derive analytical results for all relevant strong pair-production processes of two level 1 Kaluza-Klein partners and use them to validate and correct the existing MUED implementation in the fortran version of the PYTHIA event generator. We also develop a new implementation of the model in the C++ version of PYTHIA. We use our implementations in conjunction with the CHECKMATE package to derive the LHC bounds on MUED from a large number of published experimental analyses from Run 1 at the LHC.

  15. Black Holes and the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Roy, Arunava

    2011-12-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film ``Angels and Demons.'' In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society1 website featured an article on BH formation at the LHC.2 This article examines some aspects of mini BHs and explores the possibility of their detection at the LHC.

  16. Higgs boson production at hadron colliders at N3LO in QCD

    NASA Astrophysics Data System (ADS)

    Mistlberger, Bernhard

    2018-05-01

    We present the Higgs boson production cross section at Hadron colliders in the gluon fusion production mode through N3LO in perturbative QCD. Specifically, we work in an effective theory where the top quark is assumed to be infinitely heavy and all other quarks are considered to be massless. Our result is the first exact formula for a partonic hadron collider cross section at N3LO in perturbative QCD. Furthermore, our result is an analytic computation of a hadron collider cross section involving elliptic integrals. We derive numerical predictions for the Higgs boson cross section at the LHC. Previously this result was approximated by an expansion of the cross section around the production threshold of the Higgs boson and we compare our findings. Finally, we study the impact of our new result on the state of the art prediction for the Higgs boson cross section at the LHC.

  17. Two-photon production of leptons at hadron colliders in semielastic and elastic cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manko, A. Yu., E-mail: andrej.j.manko@gmail.com; Shulyakovsky, R. G., E-mail: shul@ifanbel.bas-net.by, E-mail: shulyakovsky@iaph.bas-net.by

    The mechanism of two-photon dilepton production is studied in the equivalent-photon (Weizsäcker–Williams) approximation. This approximation is shown to describe well experimental data from hadron accelerators. The respective total and differential cross sections were obtained for the LHC and for the Tevatron collider at various energies of colliding hadrons. The differential cross sections were studied versus the dilepton invariant mass, transverse momentum, and emission angle in the reference frame comoving with the center of mass of colliding hadrons. The cases of semielastic and inelastic collisions were examined.

  18. Improving Identification of Dijet Resonances at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Izaguirre, Eder; Shuve, Brian; Yavin, Itay

    2015-01-01

    The experimental detection of resonances has played a vital role in the development of subatomic physics. The overwhelming multijet backgrounds at the Large Hadron Collider (LHC) necessitate the invention of new techniques to identify resonances decaying into a pair of partons. In this Letter we introduce an observable that achieves a significant improvement in several key measurements at the LHC: the Higgs boson decay to a pair of b quarks; W±/Z0 vector-boson hadronic decay; and extensions of the standard model (SM) with a new hadronic resonance. Measuring the Higgs decay to b quarks is a central test of the fermion mass generation mechanism in the SM, whereas the W±/Z0 production rates are important observables of the electroweak sector. Our technique is effective in large parts of phase space where the resonance is mildly boosted and is particularly well suited for experimental searches dominated by systematic uncertainties, which is true of many analyses in the high-luminosity running of the LHC.

  19. Improving identification of dijet resonances at hadron colliders.

    PubMed

    Izaguirre, Eder; Shuve, Brian; Yavin, Itay

    2015-01-30

    The experimental detection of resonances has played a vital role in the development of subatomic physics. The overwhelming multijet backgrounds at the Large Hadron Collider (LHC) necessitate the invention of new techniques to identify resonances decaying into a pair of partons. In this Letter we introduce an observable that achieves a significant improvement in several key measurements at the LHC: the Higgs boson decay to a pair of b quarks; W±/Z0 vector-boson hadronic decay; and extensions of the standard model (SM) with a new hadronic resonance. Measuring the Higgs decay to b quarks is a central test of the fermion mass generation mechanism in the SM, whereas the W±/Z0 production rates are important observables of the electroweak sector. Our technique is effective in large parts of phase space where the resonance is mildly boosted and is particularly well suited for experimental searches dominated by systematic uncertainties, which is true of many analyses in the high-luminosity running of the LHC.

  20. Black Holes and the Large Hadron Collider

    ERIC Educational Resources Information Center

    Roy, Arunava

    2011-01-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…

  1. Design of the large hadron electron collider interaction region

    NASA Astrophysics Data System (ADS)

    Cruz-Alaniz, E.; Newton, D.; Tomás, R.; Korostelev, M.

    2015-11-01

    The large hadron electron collider (LHeC) is a proposed upgrade of the Large Hadron Collider (LHC) within the high luminosity LHC (HL-LHC) project, to provide electron-nucleon collisions and explore a new regime of energy and luminosity for deep inelastic scattering. The design of an interaction region for any collider is always a challenging task given that the beams are brought into crossing with the smallest beam sizes in a region where there are tight detector constraints. In this case integrating the LHeC into the existing HL-LHC lattice, to allow simultaneous proton-proton and electron-proton collisions, increases the difficulty of the task. A nominal design was presented in the the LHeC conceptual design report in 2012 featuring an optical configuration that focuses one of the proton beams of the LHC to β*=10 cm in the LHeC interaction point to reach the desired luminosity of L =1033 cm-2 s-1 . This value is achieved with the aid of a new inner triplet of quadrupoles at a distance L*=10 m from the interaction point. However the chromatic beta beating was found intolerable regarding machine protection issues. An advanced chromatic correction scheme was required. This paper explores the feasibility of the extension of a novel optical technique called the achromatic telescopic squeezing scheme and the flexibility of the interaction region design, in order to find the optimal solution that would produce the highest luminosity while controlling the chromaticity, minimizing the synchrotron radiation power and maintaining the dynamic aperture required for stability.

  2. Instrumentation status of the low-b magnet systems at the Large Hadron Collider (LHC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darve, C.; /Fermilab; Balle, C.

    2011-05-01

    The low-{beta} magnet systems are located in the Large Hadron Collider (LHC) insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process allowing proton collisions at luminosity up to 10{sup 34}cm{sup -2}s{sup -1}. Those systems are a contribution of the US-LHC Accelerator project. The systems are mainly composed of the quadrupole magnets (triplets), the separation dipoles and their respective electrical feed-boxes (DFBX). The low-{beta} magnet systems operate in an environment of extreme radiation, high gradient magnetic field and high heat load to the cryogenic system due to the beam dynamic effect. Due tomore » the severe environment, the robustness of the diagnostics is primordial for the operation of the triplets. The hardware commissioning phase of the LHC was completed in February 2010. In the sake of a safer and more user-friendly operation, several consolidations and instrumentation modifications were implemented during this commissioning phase. This paper presents the instrumentation used to optimize the engineering process and operation of the final focusing/defocusing quadrupole magnets for the first years of operation.« less

  3. Future hadron colliders: From physics perspectives to technology R&D

    NASA Astrophysics Data System (ADS)

    Barletta, William; Battaglia, Marco; Klute, Markus; Mangano, Michelangelo; Prestemon, Soren; Rossi, Lucio; Skands, Peter

    2014-11-01

    High energy hadron colliders have been instrumental to discoveries in particle physics at the energy frontier and their role as discovery machines will remain unchallenged for the foreseeable future. The full exploitation of the LHC is now the highest priority of the energy frontier collider program. This includes the high luminosity LHC project which is made possible by a successful technology-readiness program for Nb3Sn superconductor and magnet engineering based on long-term high-field magnet R&D programs. These programs open the path towards collisions with luminosity of 5×1034 cm-2 s-1 and represents the foundation to consider future proton colliders of higher energies. This paper discusses physics requirements, experimental conditions, technological aspects and design challenges for the development towards proton colliders of increasing energy and luminosity.

  4. Accelerator physics and technology challenges of very high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  5. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGES

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  6. Higgs Boson Searches at Hadron Colliders (1/4)

    ScienceCinema

    Jakobs, Karl

    2018-05-21

    In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

  7. Supersymmetric dark matter in the harsh light of the Large Hadron Collider

    PubMed Central

    Peskin, Michael E.

    2015-01-01

    I review the status of the model of dark matter as the neutralino of supersymmetry in the light of constraints on supersymmetry given by the 7- to 8-TeV data from the Large Hadron Collider (LHC). PMID:25331902

  8. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    NASA Astrophysics Data System (ADS)

    Kotnig, C.; Tavian, L.

    2015-12-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets’ refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  9. Color-Sextet Quark Productions at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidekazu; Watanabe, Isamu

    Production cross-sections of color-sextet quarks at hadron colliders are estimated in various energies and the results are compared with cross-sections of the conventional top quark productions. Particular attentions are paid for a model recently proposed in Ref. 2 in order to explain the dynamical mechanism of the electroweak symmetry breaking. The model may be tested at SSC and LHC if the sextet quarks dominantly decay semileptonically through effective fourfermion interactions, or if the sextet quarks have long enough lifetime to reach the detectors.

  10. Towards future circular colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  11. The Large Hadron Collider, a personal recollection

    NASA Astrophysics Data System (ADS)

    Evans, Lyndon

    2014-03-01

    The construction of the Large Hadron Collider (LHC) has been a massive endeavor spanning almost 30 years from conception to commissioning. Building the machine with the highest possible energy (7 TeV) in the existing LEP tunnel of 27 km circumference and with a tunnel diameter of only 3.8 m has required considerable innovation. The first was the development of an idea first proposed by Bob Palmer at Brookhaven National Laboratory in 1978, where the two rings are integrated into a single magnetic structure. This compact 2-in-1 structure was essential for the LHC due to both the limited space available in the existing Large Electron-Positron collider tunnel and the cost. The second innovation was the bold move to use superfluid helium cooling on a massive scale, which was imposed by the need to achieve a high (8.3 T) magnetic field using an affordable Nb-Ti superconductor. In this article, no attempt is made to give a comprehensive review of the machine design. This can be found in the LHC Design Report [1], which gives a detailed description of the machine as it was built and comprehensive references. A more popular description of the LHC and its detectors can be found in [2]. Instead, this is a more personal account of the project from approval to commissioning, describing some of the main technologies and some of the trials and tribulations encountered in bringing this truly remarkable machine alive.

  12. Protection of the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Assmann, R.; Carlier, E.; Dehning, B.; Denz, R.; Goddard, B.; Holzer, E. B.; Kain, V.; Puccio, B.; Todd, B.; Uythoven, J.; Wenninger, J.; Zerlauth, M.

    2006-11-01

    The Large Hadron Collider (LHC) at CERN will collide two counter-rotating proton beams, each with an energy of 7 TeV. The energy stored in the superconducting magnet system will exceed 10 GJ, and each beam has a stored energy of 362 MJ which could cause major damage to accelerator equipment in the case of uncontrolled beam loss. Safe operation of the LHC will therefore rely on a complex system for equipment protection. The systems for protection of the superconducting magnets in case of quench must be fully operational before powering the magnets. For safe injection of the 450 GeV beam into the LHC, beam absorbers must be in their correct positions and specific procedures must be applied. Requirements for safe operation throughout the cycle necessitate early detection of failures within the equipment, and active monitoring of the beam with fast and reliable beam instrumentation, mainly beam loss monitors (BLM). When operating with circulating beams, the time constant for beam loss after a failure extends from apms to a few minutes—failures must be detected sufficiently early and transmitted to the beam interlock system that triggers a beam dump. It is essential that the beams are properly extracted on to the dump blocks at the end of a fill and in case of emergency, since the beam dump blocks are the only elements of the LHC that can withstand the impact of the full beam.

  13. Unveiling the top secrets with the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chierici, R.

    2013-12-01

    Top quark physics is one of the pillars of fundamental research in the field of high energy physics. It not only gives access to precision measurements for constraining the Standard Model of particles and interactions but also it represents a privileged domain for new physics searches. This contribution summarizes the main results in top quark physics obtained with the two general-purpose detectors ATLAS and CMS during the first two years of operations of the Large Hadron Collider (LHC) at CERN. It covers the 2010 and 2011 data taking periods, where the LHC ran at a centre-of-mass energy of 7 TeV.

  14. Test of Relativistic Gravity for Propulsion at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Felber, Franklin

    2010-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  15. Hadron Collider Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Incandela, J.R.

    2000-03-07

    Experiments are being prepared at the Fermilab Tevatron and the CERN Large Hadron Collider that promise to deliver extraordinary insights into the nature of spontaneous symmetry breaking, and the role of supersymmetry in the universe. This article reviews the goals, challenges, and designs of these experiments. The first hadron collider, the ISR at CERN, has to overcome two initial obstacles. The first was low luminosity, which steadily improved over time. The second was the broad angular spread of interesting events. In this regard Maurice Jacob noted (1): The answer is ... sophisticated detectors covering at least the whole central regionmore » (45{degree} {le} {theta} {le} 135{degree}) and full azimuth. This statement, while obvious today, reflects the major revelation of the ISR period that hadrons have partonic substructure. The result was an unexpectedly strong hadronic yield at large transverse momentum (p{sub T}). Partly because of this, the ISR missed the discovery of the J/{psi} and later missed the {Upsilon}. The ISR era was therefore somewhat less auspicious than it might have been. It did however make important contributions in areas such as jet production and charm excitation and it paved the way for the SPS collider, also at CERN.« less

  16. Hadron Spectra in p+p Collisions at Rhic and Lhc Energies

    NASA Astrophysics Data System (ADS)

    Khandai, P. K.; Sett, P.; Shukla, P.; Singh, V.

    2013-06-01

    We present the systematic analysis of transverse momentum (pT) spectra of identified hadrons in p+p collisions at Relativistic Heavy Ion Collider (√ {s} = 62.4 and 200 GeV) and at Large Hadron Collider (LHC) energies (√ {s} = 0.9, 2.76 and 7.0 TeV) using phenomenological fit functions. We review various forms of Hagedorn and Tsallis distributions and show their equivalence. We use Tsallis distribution which successfully describes the spectra in p+p collisions using two parameters, Tsallis temperature T which governs the soft bulk spectra and power n which determines the initial production in partonic collisions. We obtain these parameters for pions, kaons and protons as a function of center-of-mass energy (√ {s}). It is found that the parameter T has a weak but decreasing trend with increasing √ {s}. The parameter n decreases with increasing √ {s} which shows that production of hadrons at higher energies are increasingly dominated by point like qq scatterings. Another important observation is with increasing √ {s}, the separation between the powers for protons and pions narrows down hinting that the baryons and mesons are governed by same production process as one moves to the highest LHC energy.

  17. Flavour physics and the Large Hadron Collider beauty experiment.

    PubMed

    Gibson, Valerie

    2012-02-28

    An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future.

  18. Taking Energy to the Physics Classroom from the Large Hadron Collider at CERN

    ERIC Educational Resources Information Center

    Cid, Xabier; Cid, Ramon

    2009-01-01

    In 2008, the greatest experiment in history began. When in full operation, the Large Hadron Collider (LHC) at CERN will generate the greatest amount of information that has ever been produced in an experiment before. It will also reveal some of the most fundamental secrets of nature. Despite the enormous amount of information available on this…

  19. Viewpoint: the End of the World at the Large Hadron Collider?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peskin, Michael E.; /SLAC

    New arguments based on astrophysical phenomena constrain the possibility that dangerous black holes will be produced at the CERN Large Hadron Collider. On 8 August, the Large Hadron Collider (LHC) at CERN injected its first beams, beginning an experimental program that will produce proton-proton collisions at an energy of 14 TeV. Particle physicists are waiting expectantly. The reason is that the Standard Model of strong, weak, and electromagnetic interactions, despite its many successes, is clearly incomplete. Theory says that the holes in the model should be filled by new physics in the energy region that will be studied by themore » LHC. Some candidate theories are simple quick fixes, but the most interesting ones involve new concepts of spacetime waiting to be discovered. Look up the LHC on Wikipedia, however, and you will find considerable space devoted to safety concerns. At the LHC, we will probe energies beyond those explored at any previous accelerator, and we hope to create particles that have never been observed. Couldn't we, then, create particles that would actually be dangerous, for example, ones that would eat normal matter and eventually turn the earth into a blob of unpleasantness? It is morbid fun to speculate about such things, and candidates for such dangerous particles have been suggested. These suggestions have been analyzed in an article in Reviews of Modern Physics by Jaffe, Busza, Wilczek, and Sandweiss and excluded on the basis of constraints from observation and from the known laws of physics. These conclusions have been upheld by subsequent studies conducted at CERN.« less

  20. Hadronic production of the doubly heavy baryon {Xi}{sub bc} at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jiawei; Wu Xinggang; Zhong Tao

    We investigate the hadronic production of the doubly heavy baryon {Xi}{sub bc} at the Large Hadron Collider (LHC), where contributions from the four (bc)-diquark states (bc){sub 3,6}[{sup 1}S{sub 0}] and (bc){sub 3,6}[{sup 3}S{sub 1}] have been taken into consideration. Numerical results show that under the condition of p{sub T}>4 GeV and |y|<1.5, sizable {Xi}{sub bc} events about 1.7x10{sup 7} and 3.5x10{sup 9} per year can be produced for the center-of-mass energy {radical}(S)=7 TeV and {radical}(S)=14 TeV, respectively. For experimental usage, the total and the interested differential cross sections are estimated under some typical p{sub T} and y cuts for themore » LHC detectors CMS, ATLAS, and LHCb. The main uncertainties are discussed and a comparative study on the hadronic production of {Xi}{sub cc}, {Xi}{sub bc}, and {Xi}{sub bb} at the LHC are also presented.« less

  1. A large hadron electron collider at CERN

    DOE PAGES

    Abelleira Fernandez, J. L.

    2015-04-06

    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and eletron-ion physics. The LHeC is designed to run synchronously withmore » the LHC in the twenties and to achieve an integrated luminosity of O(100)fb –1. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.« less

  2. Big Science and the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Giudice, Gian Francesco

    2012-03-01

    The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development of science and technology. I then compare the methodologies of Small and Big Science, emphasizing their mutual linkage. Finally, after examining the cost of Big Science projects, I highlight several general aspects of their beneficial implications for society.

  3. Challenges for MSSM Higgs searches at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carena, Marcela S.; /Fermilab; Menon, A.

    2007-04-01

    In this article we analyze the impact of B-physics and Higgs physics at LEP on standard and non-standard Higgs bosons searches at the Tevatron and the LHC, within the framework of minimal flavor violating supersymmetric models. The B-physics constraints we consider come from the experimental measurements of the rare B-decays b {yields} s{gamma} and B{sub u} {yields} {tau}{nu} and the experimental limit on the B{sub s} {yields} {mu}{sup +}{mu}{sup -} branching ratio. We show that these constraints are severe for large values of the trilinear soft breaking parameter A{sub t}, rendering the non-standard Higgs searches at hadron colliders less promising.more » On the contrary these bounds are relaxed for small values of A{sub t} and large values of the Higgsino mass parameter {mu}, enhancing the prospects for the direct detection of non-standard Higgs bosons at both colliders. We also consider the available ATLAS and CMS projected sensitivities in the standard model Higgs search channels, and we discuss the LHC's ability in probing the whole MSSM parameter space. In addition we also consider the expected Tevatron collider sensitivities in the standard model Higgs h {yields} b{bar b} channel to show that it may be able to find 3 {sigma} evidence in the B-physics allowed regions for small or moderate values of the stop mixing parameter.« less

  4. Radial scaling in inclusive jet production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Taylor, Frank E.

    2018-03-01

    Inclusive jet production in p-p and p ¯ -p collisions shows many of the same kinematic systematics as observed in single-particle inclusive production at much lower energies. In an earlier study (1974) a phenomenology, called radial scaling, was developed for the single-particle inclusive cross sections that attempted to capture the essential underlying physics of pointlike parton scattering and the fragmentation of partons into hadrons suppressed by the kinematic boundary. The phenomenology was successful in emphasizing the underlying systematics of the inclusive particle productions. Here we demonstrate that inclusive jet production at the Large Hadron Collider (LHC) in high-energy p-p collisions and at the Tevatron in p ¯ -p inelastic scattering shows similar behavior. The ATLAS inclusive jet production plotted as a function of this scaling variable is studied for √s of 2.76, 7 and 13 TeV and is compared to p ¯ -p inclusive jet production at 1.96 TeV measured at the CDF and D0 at the Tevatron and p-Pb inclusive jet production at the LHC ATLAS at √sNN=5.02 TeV . Inclusive single-particle production at Fermi National Accelerator Laboratory fixed target and Intersecting Storage Rings energies are compared to inclusive J /ψ production at the LHC measured in ATLAS, CMS and LHCb. Striking common features of the data are discussed.

  5. The B  -  L supersymmetric standard model with inverse seesaw at the large hadron collider.

    PubMed

    Khalil, S; Moretti, S

    2017-03-01

    We review the TeV scale B  -  L extension of the minimal supersymmetric standard model (BLSSM) where an inverse seesaw mechanism of light neutrino mass generation is naturally implemented and concentrate on its hallmark manifestations at the large hadron collider (LHC).

  6. The case for future hadron colliders from B → K (*) μ + μ - decays

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Gripaios, Ben; You, Tevong

    2018-03-01

    Recent measurements in B → K (*) μ + μ - decays are somewhat discrepant with Standard Model predictions. They may be harbingers of new physics at an energy scale potentially accessible to direct discovery. We estimate the sensitivity of future hadron colliders to the possible new particles that may be responsible for the anomalies at tree-level: leptoquarks or Z's. We consider luminosity upgrades for a 14 TeV LHC, a 33 TeV LHC, and a 100 TeV pp collider such as the FCC-hh. In the most conservative and pessimistic models, for narrow particles with perturbative couplings, Z' masses up to 20 TeV and leptoquark masses up to 41 TeV may in principle explain the anomalies. Coverage of Z' models is excellent: a 33 TeV 1 ab-1 LHC is expected to cover most of the parameter space up to 8 TeV in mass, whereas the 100 TeV FCC-hh with 10 ab-1 will cover all of it. A smaller portion of the leptoquark parameter space is covered by future colliders: for example, in a μ + μ - jj di-leptoquark search, a 100 TeV 10 ab-1 collider has a projected sensitivity up to leptoquark masses of 12 TeV (extendable to 21 TeV with a strong coupling for single leptoquark production).

  7. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio; Previtali, Valentina; Valishev, Alexander

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. Themore » expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.« less

  8. Development of superconducting links for the Large Hadron Collider machine

    NASA Astrophysics Data System (ADS)

    Ballarino, Amalia

    2014-04-01

    In the framework of the upgrade of the Large Hadron Collider (LHC) machine, new superconducting lines are being developed for the feeding of the LHC magnets. The proposed electrical layout envisages the location of the power converters in surface buildings, and the transfer of the current from the surface to the LHC tunnel, where the magnets are located, via superconducting links containing tens of cables feeding different circuits and transferring altogether more than 150 kA. Depending on the location, the links will have a length ranging from 300 m to 500 m, and they will span a vertical distance of about 80 m. An overview of the R&D program that has been launched by CERN is presented, with special attention to the development of novel types of cables made from MgB2 and high temperature superconductors (Bi-2223 and REBCO) and to the results of the tests performed on prototype links. Plans for future activities are presented, together with a timeline for potential future integration in the LHC machine.

  9. Jet Substructure at the Large Hadron Collider : Experimental Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asquith, Lily; Campanelli, Mario; Delitzsch, Chris

    Jet substructure has emerged to play a central role at the Large Hadron Collider (LHC), where it has provided numerous innovative new ways to search for new physics and to probe the Standard Model, particularly in extreme regions of phase space. In this article we focus on a review of the development and use of state-of-the-art jet substructure techniques by the ATLAS and CMS experiments. ALICE and LHCb have been probing fragmentation functions since the start of the LHC and have also recently started studying other jet substructure techniques. It is likely that in the near future all LHC collaborationsmore » will make significant use of jet substructure and grooming techniques. Much of the work in this field in recent years has been galvanized by the Boost Workshop Series, which continues to inspire fruitful collaborations between experimentalists and theorists. We hope that this review will prove a useful introduction and reference to experimental aspects of jet substructure at the LHC. A companion overview of recent progress in theory and machine learning approaches is given in 1709.04464, the complete review will be submitted to Reviews of Modern Physics.« less

  10. Heavy-ion physics with the ALICE experiment at the CERN Large Hadron Collider.

    PubMed

    Schukraft, J

    2012-02-28

    After close to 20 years of preparation, the dedicated heavy-ion experiment A Large Ion Collider Experiment (ALICE) took first data at the CERN Large Hadron Collider (LHC) accelerator with proton collisions at the end of 2009 and with lead nuclei at the end of 2010. After a short introduction into the physics of ultra-relativistic heavy-ion collisions, this article recalls the main design choices made for the detector and summarizes the initial operation and performance of ALICE. Physics results from this first year of operation concentrate on characterizing the global properties of typical, average collisions, both in proton-proton (pp) and nucleus-nucleus reactions, in the new energy regime of the LHC. The pp results differ, to a varying degree, from most quantum chromodynamics-inspired phenomenological models and provide the input needed to fine tune their parameters. First results from Pb-Pb are broadly consistent with expectations based on lower energy data, indicating that high-density matter created at the LHC, while much hotter and larger, still behaves like a very strongly interacting, almost perfect liquid.

  11. Role of net baryon density on rapidity width of identified particles from the lowest energies available at the CERN Super Proton Synchrotron to those at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Hussain, Nur; Bhattacharjee, Buddhadeb

    2017-08-01

    Widths of the rapidity distributions of various identified hadrons generated with the UrQMD-3.4 event generator at all the Super Proton Synchrotron (SPS) energies have been presented and compared with the existing experimental results. An increase in the width of the rapidity distribution of Λ could be seen with both Monte Carlo (MC) and experimental data for the studied energies. Using MC data, the study has been extended to Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. A similar jump, as observed in the plot of rapidity width versus rest mass at Alternating Gradient Synchrotron (AGS) and all SPS energies, persists even at RHIC and LHC energies, confirming its universal nature from AGS to the highest LHC energies. Such observation indicates that pair production may not be the only mechanism of particle production at the highest LHC energies. However, with MC data, the separate mass scaling for mesons and baryons is found to exist even at the top LHC energy.

  12. Simulations of fast crab cavity failures in the high luminosity Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Yee-Rendon, Bruce; Lopez-Fernandez, Ricardo; Barranco, Javier; Calaga, Rama; Marsili, Aurelien; Tomás, Rogelio; Zimmermann, Frank; Bouly, Frédéric

    2014-05-01

    Crab cavities (CCs) are a key ingredient of the high luminosity Large Hadron Collider (HL-LHC) project for increasing the luminosity of the LHC. At KEKB, CCs have exhibited abrupt changes of phase and voltage during a time period of the order of a few LHC turns and considering the significant stored energy in the HL-LHC beam, CC failures represent a serious threat in regard to LHC machine protection. In this paper, we discuss the effect of CC voltage or phase changes on a time interval similar to, or longer than, the one needed to dump the beam. The simulations assume a quasistationary-state distribution to assess the particles losses for the HL-LHC. These distributions produce beam losses below the safe operation threshold for Gaussian tails, while, for non-Gaussian tails are on the same order of the limit. Additionally, some mitigation strategies are studied for reducing the damage caused by the CC failures.

  13. Higgs boson production with heavy quarks at hadron colliders

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher B.

    2005-11-01

    One of the remaining puzzles in particle physics is the origin of electroweak symmetry breaking. In the Standard Model (SM), a single doublet of complex scalar fields is responsible for breaking the SU(2) L x U(1)Y gauge symmetry thus giving mass to the electroweak gauge bosons via the Higgs mechanism and to the fermions via Yukawa couplings. The remnant of the process is a vet to he discovered scalar particle, the Higgs boson (h). However, current and future experiments at hadron colliders hold great promise. Of particular interest at hadron colliders is the production of a Higgs boson in association with a pair of heavy quarks, pp¯(pp) → QQ¯h, where Q can be either a top or a bottom quark. Indeed, the production of a Higgs boson with a pair of top quarks provides a very distinctive signal in hadronic collisions where background processes are formidable, and it will be instrumental in the discovery of a Higgs boson below about 130 GeV at the LHC. On the other hand, the production of a Higgs boson with bottom quarks can be strongly enhanced in models of new physics beyond the SM, e.g. supersymmetric models. If this is the case, bb¯h production will play a crucial role at the Tevatron where it could provide the first signal of new physics. Given the prominent role that Higgs production with heavy quarks can play at hadron colliders, it becomes imperative to have precise theoretical predictions for total and differential cross sections. In this dissertation, we outline and present detailed results for the next-to-leading order (NLO) calculation of the Quantum Chromodynamic (QCD) corrections to QQ¯h production at both the Tevatron and the LHC. This calculation involves several difficult issues due to the three massive particles in the final state, a situation which is at the frontier of radiative correction calculations in quantum field theory. We detail the novel techniques developed to deal with these challenges. The calculation of pp¯(pp) → bb¯h at NLO in

  14. Gluon shadowing and hadron production in heavy-ion collisions at LHC

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Tian; Wang, Xin-Nian; Xu, Rong

    2011-06-01

    The recently published first measurement of charged hadron multiplicity density at mid-rapidity dNch / dη = 1584 ± 4 (stat.) ± 76 (sys.) in central Pb + Pb collisions at √{ s} = 2.76 TeV by the ALICE experiment at LHC is in good agreement with the HIJING2.0 prediction within the experimental errors and theoretical uncertainties. The new data point is used to carry out a combined fit together with the RHIC data to reduce the uncertainty in the gluon shadowing parameter sg which controls the overall magnitude of gluon shadowing at small fractional momentum x in HIJING2.0 model. Predictions on the centrality dependence of charged hadron multiplicity density at mid-rapidity with reduced uncertainties are given for Pb + Pb collisions at √{ s} = 2.76 and 5.5 TeV. The centrality dependence is surprisingly independent of the colliding energy similar to that in Au + Au collisions at RHIC for most of centralities starting at Npart = 50 (100) at √{ s} = 2.76 (7) TeV. However, it becomes stronger in peripheral collisions at higher colliding energies.

  15. The physics of heavy quark distributions in hadrons: Collider tests

    NASA Astrophysics Data System (ADS)

    Brodsky, S. J.; Bednyakov, V. A.; Lykasov, G. I.; Smiesko, J.; Tokar, S.

    2017-03-01

    We present a review of the current understanding of the heavy quark distributions in the nucleon and their impact on collider physics. The origin of strange, charm and bottom quark pairs at high light-front (LF) momentum fractions in hadron wavefunction-the "intrinsic" quarks, is reviewed. The determination of heavy-quark parton distribution functions (PDFs) is particularly significant for the analysis of hard processes at LHC energies. We show that a careful study of the inclusive production of open charm and the production of γ / Z / W particles, accompanied by the heavy jets at large transverse momenta can give essential information on the intrinsic heavy quark (IQ) distributions. We also focus on the theoretical predictions concerning other observables which are very sensitive to the intrinsic charm contribution to PDFs including Higgs production at high xF and novel fixed target measurements which can be tested at the LHC.

  16. Top quark studies at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinervo, P.K.

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  17. The discovery of the Higgs boson at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Nisati, A.; Tonelli, G.

    2015-11-01

    This paper summarises the work done by the ATLAS and CMS collaborations, and by the teams of the Large Hadron Collider at CERN, that led to the discovery of a new particle, with mass near 125GeV and properties consistent with the ones predicted for the Standard Model Higgs boson. An overview of the Standard Model, with a description of the role of the Higgs boson in the theory, and a summary of the searches for this particle prior to the LHC operations is also given. The paper presents the results obtained by ATLAS and CMS from the analysis of the full data set produced in the first physics run of LHC. After a short discussion on the implications of the discovery, the future prospects for the precision study of the new particle are lastly discussed.

  18. Probing small parton densities in ultraperipheral A A and pA collisions at the CERN large Hadron Collider.

    PubMed

    Strikman, Mark; Vogt, Ramona; White, Sebastian

    2006-03-03

    We calculate photoproduction rates for several hard processes in ultraperipheral proton-lead and lead-lead collisions at the CERN Large Hadron Collider (LHC) with square root of sNN = 8.8 and 5.5 TeV, respectively, which could be triggered in the large LHC detectors. We use ATLAS as an example. The lead ion is treated as a source of (coherently produced) photons with energies and intensities greater than those of equivalent ep collisions at the DESY collider HERA. We find very large rates for both inclusive and diffractive production that will extend the HERA x range by nearly an order of magnitude for similar virtualities. We demonstrate that it is possible to reach the kinematic regime where nonlinear effects are larger than at HERA.

  19. The physics of heavy quark distributions in hadrons: Collider tests

    DOE PAGES

    Brodsky, S. J.; Bednyakov, V. A.; Lykasov, G. I.; ...

    2016-12-18

    Here, we present a review of the current understanding of the heavy quark distributions in the nucleon and their impact on collider physics. The origin of strange, charm and bottom quark pairs at high light-front (LF) momentum fractions in hadron wavefunction—the “intrinsic” quarks, is reviewed. The determination of heavy-quark parton distribution functions (PDFs) is particularly significant for the analysis of hard processes at LHC energies. We show that a careful study of the inclusive production of open charm and the production of γ/Z/W particles, accompanied by the heavy jets at large transverse momenta can give essential information on the intrinsicmore » heavy quark (IQ) distributions. We also focus on the theoretical predictions concerning other observables which are very sensitive to the intrinsic charm contribution to PDFs including Higgs production at high x F and novel fixed target measurements which can be tested at the LHC.« less

  20. Cryogenic studies for the proposed CERN large hadron electron collider (LHEC)

    NASA Astrophysics Data System (ADS)

    Haug, F.; LHeC Study Team, The

    2012-06-01

    The LHeC (Large Hadron electron Collider) is a proposed future colliding beam facility for lepton-nucleon scattering particle physics at CERN. A new 60 GeV electron accelerator will be added to the existing 27 km circumference 7 TeV LHC for collisions of electrons with protons and heavy ions. Two basic design options are being pursued. The first is a circular accelerator housed in the existing LHC tunnel which is referred to as the "Ring-Ring" version. Low field normal conducting magnets guide the particle beam while superconducting (SC) RF cavities cooled to 2 K are installed at two opposite locations at the LHC tunnel to accelerate the beams. For this version in addition a 10 GeV re-circulating SC injector will be installed. In total four refrigerators with cooling capacities between 1.2 kW and 3 kW @ 4.5 K are needed. The second option, referred to as the "Linac-Ring" version consists of a race-track re-circulating energyrecovery type machine with two 1 km long straight acceleration sections. The 944 high field 2 K SC cavities dissipate 30 kW at CW operation. Eight 10 kW @ 4.5 K refrigerators are proposed. The particle detector contains a combined SC solenoid and dipole forming the cold mass and an independent liquid argon calorimeter. Cooling is done with two individual small sized cryoplants; a 4.5 K helium, and a 87 K liquid nitrogen plant.

  1. Fully automated precision predictions for heavy neutrino production mechanisms at hadron colliders

    NASA Astrophysics Data System (ADS)

    Degrande, Céline; Mattelaer, Olivier; Ruiz, Richard; Turner, Jessica

    2016-09-01

    Motivated by TeV-scale neutrino mass models, we propose a systematic treatment of heavy neutrino (N ) production at hadron colliders. Our simple and efficient modeling of the vector boson fusion (VBF) W±γ →N ℓ± and N ℓ±+nj signal definitions resolve collinear and soft divergences that have plagued past studies, and is applicable to other color-singlet processes, e.g., associated Higgs (W±h), sparticle (ℓ˜±νℓ˜), and charged Higgs (h±±h∓) production. We present, for the first time, a comparison of all leading N production modes, including both gluon fusion (GF) g g →Z*/h*→N νℓ (-) and VBF. We obtain fully differential results up to next-to-leading order (NLO) in QCD accuracy using a Monte Carlo tool chain linking feynrules, nloct, and madgraph5_amc@nlo. Associated model files are publicly available. At the 14 TeV LHC, the leading order GF rate is small and comparable to the NLO N ℓ±+1 j rate; at a future 100 TeV Very Large Hadron Collider, GF dominates for mN=300 - 1500 GeV , beyond which VBF takes the lead.

  2. Lepton jets and low-mass sterile neutrinos at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dube, Sourabh; Gadkari, Divya; Thalapillil, Arun M.

    2017-09-01

    Sterile neutrinos, if they exist, are potential harbingers for physics beyond the Standard Model. They have the capacity to shed light on our flavor sector, grand unification frameworks, dark matter sector and origins of baryon antibaryon asymmetry. There have been a few seminal studies that have broached the subject of sterile neutrinos with low, electroweak-scale masses (i.e. ΛQCD≪mNR≪mW± ) and investigated their reach at hadron colliders using lepton jets. These preliminary studies nevertheless assume background-free scenarios after certain selection criteria which are overly optimistic and untenable in realistic situations. These lead to incorrect projections. The unique signal topology and challenging hadronic environment also make this mass-scale regime ripe for a careful investigation. With the above motivations, we attempt to perform the first systematic study of low, electroweak-scale, right-handed neutrinos at hadron colliders, in this unique signal topology. There are currently no active searches at hadron colliders for sterile neutrino states in this mass range, and we frame the study in the context of the 13 TeV high-luminosity Large Hadron Collider and the proposed FCC-hh/SppC 100 TeV p p -collider.

  3. Imaging hadron calorimetry for future Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Repond, José

    2013-12-01

    To fully exploit the physics potential of a future Lepton Collider requires detectors with unprecedented jet energy and dijet-mass resolution. To meet these challenges, detectors optimized for the application of Particle Flow Algorithms (PFAs) are being designed and developed. The application of PFAs, in turn, requires calorimeters with very fine segmentation of the readout, so-called imaging calorimeters. This talk reviews progress in imaging hadron calorimetry as it is being developed for implementation in a detector at a future Lepton Collider. Recent results from the large prototypes built by the CALICE Collaboration, such as the Scintillator Analog Hadron Calorimeter (AHCAL) and the Digital Hadron Calorimeters (DHCAL and SDHCAL) are being presented. In addition, various R&D efforts beyond the present prototypes are being discussed.

  4. LHC: The Emptiest Space in the Solar System

    ERIC Educational Resources Information Center

    Cid-Vidal, Xabier; Cid, Ramon

    2011-01-01

    Proton beams have been colliding at 7 TeV in the Large Hadron Collider (LHC) since 30 March 2010, meaning that the LHC research programme is underway. Particle physicists around the world are looking forward to using the data from these collisions, as the LHC is running at an energy three and a half times higher than previously achieved at any…

  5. Photoproduction of vector mesons in proton-proton ultraperipheral collisions at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Xie, Ya-Ping; Chen, Xurong

    2018-05-01

    Photoproduction of vector mesons is computed with dipole model in proton-proton ultraperipheral collisions (UPCs) at the CERN Large Hadron Collider (LHC). The dipole model framework is employed in the calculations of vector mesons production in diffractive processes. Parameters of the bCGC model are refitted with the latest inclusive deep inelastic scattering experimental data. Employing the bCGC model and boosted Gaussian light-cone wave function for vector mesons, we obtain the prediction of rapidity distributions of J/ψ and ψ(2s) mesons in proton-proton ultraperipheral collisions at the LHC. The predictions give a good description of the experimental data of LHCb. Predictions of ϕ and ω mesons are also evaluated in this paper.

  6. Black holes in many dimensions at the CERN Large Hadron Collider: testing critical string theory.

    PubMed

    Hewett, JoAnne L; Lillie, Ben; Rizzo, Thomas G

    2005-12-31

    We consider black hole production at the CERN Large Hadron Collider (LHC) in a generic scenario with many extra dimensions where the standard model fields are confined to a brane. With approximately 20 dimensions the hierarchy problem is shown to be naturally solved without the need for large compactification radii. We find that in such a scenario the properties of black holes can be used to determine the number of extra dimensions, . In particular, we demonstrate that measurements of the decay distributions of such black holes at the LHC can determine if is significantly larger than 6 or 7 with high confidence and thus can probe one of the critical properties of string theory compactifications.

  7. The Large Hadron Collider (LHC): The Energy Frontier

    NASA Astrophysics Data System (ADS)

    Brianti, Giorgio; Jenni, Peter

    The following sections are included: * Introduction * Superconducting Magnets: Powerful, Precise, Plentiful * LHC Cryogenics: Quantum Fluids at Work * Current Leads: High Temperature Superconductors to the Fore * A Pumping Vacuum Chamber: Ultimate Simplicity * Vertex Detectors at LHC: In Search of Beauty * Large Silicon Trackers: Fast, Precise, Efficient * Two Approaches to High Resolution Electromagnetic Calorimetry * Multigap Resistive Plate Chamber: Chronometry of Particles * The LHCb RICH: The Lord of the Cherenkov Rings * Signal Processing: Taming the LHC Data Avalanche * Giant Magnets for Giant Detectors

  8. Physics and Analysis at a Hadron Collider - An Introduction (1/3)

    ScienceCinema

    None

    2018-05-11

    This is the first lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This first lecture provides a brief introduction to hadron collider physics and collider detector experiments as well as offers some analysis guidelines. The lectures are aimed at graduate students.

  9. Calculations of safe collimator settings and β* at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Bruce, R.; Assmann, R. W.; Redaelli, S.

    2015-06-01

    The first run of the Large Hadron Collider (LHC) at CERN was very successful and resulted in important physics discoveries. One way of increasing the luminosity in a collider, which gave a very significant contribution to the LHC performance in the first run and can be used even if the beam intensity cannot be increased, is to decrease the transverse beam size at the interaction points by reducing the optical function β*. However, when doing so, the beam becomes larger in the final focusing system, which could expose its aperture to beam losses. For the LHC, which is designed to store beams with a total energy of 362 MJ, this is critical, since the loss of even a small fraction of the beam could cause a magnet quench or even damage. Therefore, the machine aperture has to be protected by the collimation system. The settings of the collimators constrain the maximum beam size that can be tolerated and therefore impose a lower limit on β*. In this paper, we present calculations to determine safe collimator settings and the resulting limit on β*, based on available aperture and operational stability of the machine. Our model was used to determine the LHC configurations in 2011 and 2012 and it was found that β* could be decreased significantly compared to the conservative model used in 2010. The gain in luminosity resulting from the decreased margins between collimators was more than a factor 2, and a further contribution from the use of realistic aperture estimates based on measurements was almost as large. This has played an essential role in the rapid and successful accumulation of experimental data in the LHC.

  10. Precision searches in dijets at the HL-LHC and HE-LHC

    NASA Astrophysics Data System (ADS)

    Chekanov, S. V.; Childers, J. T.; Proudfoot, J.; Wang, R.; Frizzell, D.

    2018-05-01

    This paper explores the physics reach of the High-Luminosity Large Hadron Collider (HL-LHC) for searches of new particles decaying to two jets. We discuss inclusive searches in dijets and b-jets, as well as searches in semi-inclusive events by requiring an additional lepton that increases sensitivity to different aspects of the underlying processes. We discuss the expected exclusion limits for generic models predicting new massive particles that result in resonant structures in the dijet mass. Prospects of the Higher-Energy LHC (HE-LHC) collider are also discussed. The study is based on the Pythia8 Monte Carlo generator using representative event statistics for the HL-LHC and HE-LHC running conditions. The event samples were created using supercomputers at NERSC.

  11. On the soft-gluon resummation in top quark pair production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Czakon, M.; Mitov, A.

    2009-09-01

    We uncover a contribution to the NLO/NLL threshold resummed total cross section for top quark pair production at hadron colliders, which has not been taken into account in earlier literature. We derive this contribution - the difference between the singlet and octet hard (matching) coefficients - in exact analytic form. The numerical impact of our findings on the Sudakov resummed cross section turns out to be large, and comparable in size to the current estimates for the theoretical uncertainty of the total cross section. A rough estimate points toward a few percent decrease of the latter at the LHC.

  12. Kinematical Correlations for Higgs Boson Plus High PT Jet Production at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Yuan, C.-P.; Yuan, Feng

    2015-05-01

    We investigate the effect of QCD resummation to kinematical correlations in the Higgs boson plus high transverse momentum (PT) jet events produced at hadron colliders. We show that at the complete one-loop order, the Collins-Soper-Sterman resummation formalism can be applied to derive the Sudakov form factor. We compare the singular behavior of resummation calculation to fixed order prediction in the case that a Higgs boson and high PT jet are produced nearly back to back in their transverse momenta, and find perfect agreement. The phenomenological importance of the resummation effect at the LHC is also demonstrated.

  13. Commercial associative memory performance for applications in track-based triggers at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Webster, Jordan

    2017-01-01

    Dense track environments in pp collisions at the Large Hadron Collider (LHC) motivate the use of triggers with dedicated hardware for fast track reconstruction. The ATLAS Collaboration is in the process of implementing a Fast Tracker (FTK) trigger upgrade, in which Content Addressable Memories (CAMs) will be used to rapidly match hit patterns with large banks of simulated tracks. The FTK CAMs are produced primarily at the University of Pisa. However, commercial CAM technology is rapidly developing due to applications in computer networking devices. This poster presents new studies comparing FTK CAMs to cutting-edge ternary CAMs developed by Cavium. The comparison is intended to guide the design of future track-based trigger systems for the next Phase at the LHC.

  14. Searches for and identification of effects of extra spatial dimensions in dilepton and diphoton production at the Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankov, A. A., E-mail: pankov@ictp.it; Serenkova, I. A., E-mail: inna.serenkova@cern.ch; Tsytrinov, A. V., E-mail: tsytrin@gstu.by

    2015-06-15

    Prospects of discovering and identifying effects of extra spatial dimensions in dilepton and diphoton production at the Large Hadron Collider (LHC) are studied. Such effects may be revealed by the characteristic behavior of the invariant-mass distributions of dileptons and diphotons, and their identification can be performed on the basis of an analysis of their angular distributions. The discovery and identification reaches are estimated for the scale parameter M{sub S} of the Kaluza-Klein gravitational towers, which can be determined in experiments devoted to measuring the dilepton and diphoton channels at the LHC.

  15. Electron cloud buildup driving spontaneous vertical instabilities of stored beams in the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Romano, Annalisa; Boine-Frankenheim, Oliver; Buffat, Xavier; Iadarola, Giovanni; Rumolo, Giovanni

    2018-06-01

    At the beginning of the 2016 run, an anomalous beam instability was systematically observed at the CERN Large Hadron Collider (LHC). Its main characteristic was that it spontaneously appeared after beams had been stored for several hours in collision at 6.5 TeV to provide data for the experiments, despite large chromaticity values and high strength of the Landau-damping octupole magnet. The instability exhibited several features characteristic of those induced by the electron cloud (EC). Indeed, when LHC operates with 25 ns bunch spacing, an EC builds up in a large fraction of the beam chambers, as revealed by several independent indicators. Numerical simulations have been carried out in order to investigate the role of the EC in the observed instabilities. It has been found that the beam intensity decay is unfavorable for the beam stability when LHC operates in a strong EC regime.

  16. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Tortajada, Ignacio Asensi

    2018-01-01

    The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. The Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade, two of them based on ASICs, and a final solution will be chosen after extensive laboratory and test beam studies that are in progress. A hybrid demonstrator module is being developed using the new electronics while conserving compatibility with the current system. The status of the developments will be presented, including results from the several tests with particle beams.

  17. Lead Ions and Coulomb's Law at the LHC (CERN)

    ERIC Educational Resources Information Center

    Cid-Vidal, Xabier; Cid, Ramon

    2018-01-01

    Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics…

  18. Collider and Detector Protection at Beam Accidents

    NASA Astrophysics Data System (ADS)

    Rakhno, I. L.; Mokhov, N. V.; Drozhdin, A. I.

    2003-12-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occured at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  19. Probing high scale physics with top quarks at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Dong, Zhe

    With the Large Hadron Collider (LHC) running at TeV scale, we are expecting to find the deviations from the Standard Model in the experiments, and understanding what is the origin of these deviations. Being the heaviest elementary particle observed so far in the experiments with the mass at the electroweak scale, top quark is a powerful probe for new phenomena of high scale physics at the LHC. Therefore, we concentrate on studying the high scale physics phenomena with top quark pair production or decay at the LHC. In this thesis, we study the discovery potential of string resonances decaying to t/tbar final state, and examine the possibility of observing baryon-number-violating top-quark production or decay, at the LHC. We point out that string resonances for a string scale below 4 TeV can be detected via the t/tbar channel, by reconstructing center-of-mass frame kinematics of the resonances from either the t/tbar semi-leptonic decay or recent techniques of identifying highly boosted tops. For the study of baryon-number-violating processes, by a model independent effective approach and focusing on operators with minimal mass-dimension, we find that corresponding effective coefficients could be directly probed at the LHC already with an integrated luminosity of 1 inverse femtobarns at 7 TeV, and further constrained with 30 (100) inverse femtobarns at 7 (14) TeV.

  20. Deciphering the MSSM Higgs mass at future hadron colliders

    DOE PAGES

    Agrawal, Prateek; Fan, JiJi; Reece, Matthew; ...

    2017-06-06

    Here, future hadron colliders will have a remarkable capacity to discover massive new particles, but their capabilities for precision measurements of couplings that can reveal underlying mechanisms have received less study. In this work we study the capability of future hadron colliders to shed light on a precise, focused question: is the higgs mass of 125 GeV explained by the MSSM? If supersymmetry is realized near the TeV scale, a future hadron collider could produce huge numbers of gluinos and electroweakinos. We explore whether precision measurements of their properties could allow inference of the scalar masses and tan β withmore » sufficient accuracy to test whether physics beyond the MSSM is needed to explain the higgs mass. We also discuss dark matter direct detection and precision higgs physics as complementary probes of tan β. For concreteness, we focus on the mini-split regime of MSSM parameter space at a 100 TeV pp collider, with scalar masses ranging from 10s to about 1000 TeV.« less

  1. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Bruce, R.; Assmann, R. W.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  2. Kinematical Correlations for Higgs Boson Plus High P_{T} Jet Production at Hadron Colliders.

    PubMed

    Sun, Peng; Yuan, C-P; Yuan, Feng

    2015-05-22

    We investigate the effect of QCD resummation to kinematical correlations in the Higgs boson plus high transverse momentum (P(T)) jet events produced at hadron colliders. We show that at the complete one-loop order, the Collins-Soper-Sterman resummation formalism can be applied to derive the Sudakov form factor. We compare the singular behavior of resummation calculation to fixed order prediction in the case that a Higgs boson and high P(T) jet are produced nearly back to back in their transverse momenta, and find perfect agreement. The phenomenological importance of the resummation effect at the LHC is also demonstrated.

  3. Slepton Pair Production at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Fuks, B.

    2007-04-01

    In R-parity conserving supersymmetric models, sleptons are produced in pairs at hadron colliders. We show that measurements of the longitudinal single-spin asymmetry at possible polarization upgrades of existing colliders allow for a direct extraction of the slepton mixing angle. A calculation of the transverse-momentum spectrum shows the importance of resummed contributions at next-to-leading logarithmic accuracy in the small and intermediate transverse-momentum regions and little dependence on unphysical scales and non-perturbative contributions.

  4. Tune variations in the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Aquilina, N.; Giovannozzi, M.; Lamont, M.; Sammut, N.; Steinhagen, R.; Todesco, E.; Wenninger, J.

    2015-04-01

    The horizontal and vertical betatron tunes of the Large Hadron Collider (LHC) mainly depend on the strength of the quadrupole magnets, but are also affected by the quadrupole component in the main dipoles. In case of systematic misalignments, the sextupole component from the main dipoles and sextupole corrector magnets also affect the tunes due to the feed down effect. During the first years of operation of the LHC, the tunes have been routinely measured and corrected through either a feedback or a feed forward system. In this paper, the evolution of the tunes during injection, ramp and flat top are reconstructed from the beam measurements and the settings of the tune feedback loop and of the feed forward corrections. This gives the obtained precision of the magnetic model of the machine with respect to quadrupole and sextupole components. Measurements at the injection plateau show an unexpected large decay whose origin is not understood. This data is discussed together with the time constants and the dependence on previous cycles. We present results of dedicated experiments that show that this effect does not originate from the decay of the main dipole component. During the ramp, the tunes drift by about 0.022. It is shown that this is related to the precision of tracking the quadrupole field in the machine and this effect is reduced to about 0.01 tune units during flat top.

  5. Jet-hadron correlations relative to the event plane at the LHC with ALICE

    NASA Astrophysics Data System (ADS)

    Mazer, Joel; Alice Collaboration

    2017-11-01

    In ultra relativistic heavy-ion collisions at the Large Hadron Collider (LHC), conditions are met to produce a hot, dense and strongly interacting medium known as the Quark Gluon Plasma (QGP). Quarks and gluons from incoming nuclei collide to produce partons at high momenta early in the collisions. By fragmenting into collimated sprays of hadrons, these partons form 'jets'. The outgoing partons scatter and interact with the medium, leading to a manifestation of medium modifications of jets in the final state, known as jet quenching. Within the framework of perturbative QCD, jet production is well understood in pp collisions. We use jets measured in pp interactions as a baseline reference for comparing to heavy-ion collision systems to detect and study jet quenching. The jet quenching mechanism can be studied through the angular correlations of jets with charged hadrons and is examined in transverse momentum (pT) bins of the jets, pT bins of the associated hadrons, and as a function of collision centrality. A robust and precise background subtraction method is used in this analysis to remove the complex, flow dominated, heavy-ion background. The analysis of angular correlations for different orientations of the jet relative to the event plane allows for the study of the path-length dependence of medium modifications to jets. The event plane dependence of azimuthal angular correlations of charged hadrons with respect to the axis of an R = 0.2 reconstructed full (charged + neutral) jet in Pb-Pb collisions at √{sNN} = 2.76 TeV in ALICE is presented. Results are compared for three angular bins of the jet relative to the event plane in mid-peripheral events. The yields relative to the event plane are presented and then quantified through yield ratio calculations. The results show no significant path-length dependence on the medium modifications.

  6. The LHCb Detector at the LHC

    NASA Astrophysics Data System (ADS)

    LHCb Collaboration; Alves, A. Augusto, Jr.; Filho, L. M. Andrade; Barbosa, A. F.; Bediaga, I.; Cernicchiaro, G.; Guerrer, G.; Lima, H. P., Jr.; Machado, A. A.; Magnin, J.; Marujo, F.; de Miranda, J. M.; Reis, A.; Santos, A.; Toledo, A.; Akiba, K.; Amato, S.; de Paula, B.; de Paula, L.; da Silva, T.; Gandelman, M.; Lopes, J. H.; Maréchal, B.; Moraes, D.; Polycarpo, E.; Rodrigues, F.; Ballansat, J.; Bastian, Y.; Boget, D.; DeBonis, I.; Coco, V.; David, P. Y.; Decamp, D.; Delebecque, P.; Drancourt, C.; Dumont-Dayot, N.; Girard, C.; Lieunard, B.; Minard, M. N.; Pietrzyk, B.; Rambure, T.; Rospabe, G.; T'Jampens, S.; Ajaltouni, Z.; Bohner, G.; Bonnefoy, R.; Borras, D.; Carloganu, C.; Chanal, H.; Conte, E.; Cornat, R.; Crouau, M.; Delage, E.; Deschamps, O.; Henrard, P.; Jacquet, P.; Lacan, C.; Laubser, J.; Lecoq, J.; Lefèvre, R.; Magne, M.; Martemiyanov, M.; Mercier, M.-L.; Monteil, S.; Niess, V.; Perret, P.; Reinmuth, G.; Robert, A.; Suchorski, S.; Arnaud, K.; Aslanides, E.; Babel, J.; Benchouk, C.; Cachemiche, J.-P.; Cogan, J.; Derue, F.; Dinkespiler, B.; Duval, P.-Y.; Garonne, V.; Favard, S.; LeGac, R.; Leon, F.; Leroy, O.; Liotard, P.-L.; Marin, F.; Menouni, M.; Ollive, P.; Poss, S.; Roche, A.; Sapunov, M.; Tocco, L.; Viaud, B.; Tsaregorodtsev, A.; Amhis, Y.; Barrand, G.; Barsuk, S.; Beigbeder, C.; Beneyton, R.; Breton, D.; Callot, O.; Charlet, D.; D'Almagne, B.; Duarte, O.; Fulda-Quenzer, F.; Jacholkowska, A.; Jean-Marie, B.; Lefrancois, J.; Machefert, F.; Robbe, P.; Schune, M.-H.; Tocut, V.; Videau, I.; Benayoun, M.; David, P.; DelBuono, L.; Gilles, G.; Domke, M.; Futterschneider, H.; Ilgner, Ch; Kapusta, P.; Kolander, M.; Krause, R.; Lieng, M.; Nedos, M.; Rudloff, K.; Schleich, S.; Schwierz, R.; Spaan, B.; Wacker, K.; Warda, K.; Agari, M.; Bauer, C.; Baumeister, D.; Bulian, N.; Fuchs, H. P.; Fallot-Burghardt, W.; Glebe, T.; Hofmann, W.; Knöpfle, K. T.; Löchner, S.; Ludwig, A.; Maciuc, F.; Sanchez Nieto, F.; Schmelling, M.; Schwingenheuer, B.; Sexauer, E.; Smale, N. J.; Trunk, U.; Voss, H.; Albrecht, J.; Bachmann, S.; Blouw, J.; Deissenroth, M.; Deppe, H.; Dreis, H. B.; Eisele, F.; Haas, T.; Hansmann-Menzemer, S.; Hennenberger, S.; Knopf, J.; Moch, M.; Perieanu, A.; Rabenecker, S.; Rausch, A.; Rummel, C.; Rusnyak, R.; Schiller, M.; Stange, U.; Uwer, U.; Walter, M.; Ziegler, R.; Avoni, G.; Balbi, G.; Bonifazi, F.; Bortolotti, D.; Carbone, A.; D'Antone, I.; Galli, D.; Gregori, D.; Lax, I.; Marconi, U.; Peco, G.; Vagnoni, V.; Valenti, G.; Vecchi, S.; Bonivento, W.; Cardini, A.; Cadeddu, S.; DeLeo, V.; Deplano, C.; Furcas, S.; Lai, A.; Oldeman, R.; Raspino, D.; Saitta, B.; Serra, N.; Baldini, W.; Brusa, S.; Chiozzi, S.; Cotta Ramusino, A.; Evangelisti, F.; Franconieri, A.; Germani, S.; Gianoli, A.; Guoming, L.; Landi, L.; Malaguti, R.; Padoan, C.; Pennini, C.; Savriè, M.; Squerzanti, S.; Zhao, T.; Zhu, M.; Bizzeti, A.; Graziani, G.; Lenti, M.; Lenzi, M.; Maletta, F.; Pennazzi, S.; Passaleva, G.; Veltri, M.; Alfonsi, M.; Anelli, M.; Balla, A.; Battisti, A.; Bencivenni, G.; Campana, P.; Carletti, M.; Ciambrone, P.; Corradi, G.; Dané, E.; Di Virgilio, A.; DeSimone, P.; Felici, G.; Forti, C.; Gatta, M.; Lanfranchi, G.; Murtas, F.; Pistilli, M.; Poli Lener, M.; Rosellini, R.; Santoni, M.; Saputi, A.; Sarti, A.; Sciubba, A.; Zossi, A.; Ameri, M.; Cuneo, S.; Fontanelli, F.; Gracco, V.; Miní, G.; Parodi, M.; Petrolini, A.; Sannino, M.; Vinci, A.; Alemi, M.; Arnaboldi, C.; Bellunato, T.; Calvi, M.; Chignoli, F.; DeLucia, A.; Galotta, G.; Mazza, R.; Matteuzzi, C.; Musy, M.; Negri, P.; Perego, D.; Pessina, G.; Auriemma, G.; Bocci, V.; Buccheri, A.; Chiodi, G.; Di Marco, S.; Iacoangeli, F.; Martellotti, G.; Nobrega, R.; Pelosi, A.; Penso, G.; Pinci, D.; Rinaldi, W.; Rossi, A.; Santacesaria, R.; Satriano, C.; Carboni, G.; Iannilli, M.; Massafferri Rodrigues, A.; Messi, R.; Paoluzzi, G.; Sabatino, G.; Santovetti, E.; Satta, A.; Amoraal, J.; van Apeldoorn, G.; Arink, R.; van Bakel, N.; Band, H.; Bauer, Th; Berkien, A.; van Beuzekom, M.; Bos, E.; Bron, Ch; Ceelie, L.; Doets, M.; van der Eijk, R.; Fransen, J.-P.; de Groen, P.; Gromov, V.; Hierck, R.; Homma, J.; Hommels, B.; Hoogland, W.; Jans, E.; Jansen, F.; Jansen, L.; Jaspers, M.; Kaan, B.; Koene, B.; Koopstra, J.; Kroes, F.; Kraan, M.; Langedijk, J.; Merk, M.; Mos, S.; Munneke, B.; Palacios, J.; Papadelis, A.; Pellegrino, A.; van Petten, O.; du Pree, T.; Roeland, E.; Ruckstuhl, W.; Schimmel, A.; Schuijlenburg, H.; Sluijk, T.; Spelt, J.; Stolte, J.; Terrier, H.; Tuning, N.; Van Lysebetten, A.; Vankov, P.; Verkooijen, J.; Verlaat, B.; Vink, W.; de Vries, H.; Wiggers, L.; Ybeles Smit, G.; Zaitsev, N.; Zupan, M.; Zwart, A.; van den Brand, J.; Bulten, H. J.; de Jong, M.; Ketel, T.; Klous, S.; Kos, J.; M'charek, B.; Mul, F.; Raven, G.; Simioni, E.; Cheng, J.; Dai, G.; Deng, Z.; Gao, Y.; Gong, G.; Gong, H.; He, J.; Hou, L.; Li, J.; Qian, W.; Shao, B.; Xue, T.; Yang, Z.; Zeng, M.; Muryn, B.; Ciba, K.; Oblakowska-Mucha, A.; Blocki, J.; Galuszka, K.; Hajduk, L.; Michalowski, J.; Natkaniec, Z.; Polok, G.; Stodulski, M.; Witek, M.; Brzozowski, K.; Chlopik, A.; Gawor, P.; Guzik, Z.; Nawrot, A.; Srednicki, A.; Syryczynski, K.; Szczekowski, M.; Anghel, D. V.; Cimpean, A.; Coca, C.; Constantin, F.; Cristian, P.; Dumitru, D. D.; Dumitru, D. T.; Giolu, G.; Kusko, C.; Magureanu, C.; Mihon, Gh; Orlandea, M.; Pavel, C.; Petrescu, R.; Popescu, S.; Preda, T.; Rosca, A.; Rusu, V. L.; Stoica, R.; Stoica, S.; Tarta, P. D.; Filippov, S.; Gavrilov, Yu; Golyshkin, L.; Gushchin, E.; Karavichev, O.; Klubakov, V.; Kravchuk, L.; Kutuzov, V.; Laptev, S.; Popov, S.; Aref'ev, A.; Bobchenko, B.; Dolgoshein, V.; Egorychev, V.; Golutvin, A.; Gushchin, O.; Konoplyannikov, A.; Korolko, I.; Kvaratskheliya, T.; Machikhiliyan, I.; Malyshev, S.; Mayatskaya, E.; Prokudin, M.; Rusinov, D.; Rusinov, V.; Shatalov, P.; Shchutska, L.; Tarkovskiy, E.; Tayduganov, A.; Voronchev, K.; Zhiryakova, O.; Bobrov, A.; Bondar, A.; Eidelman, S.; Kozlinsky, A.; Shekhtman, L.; Beloous, K. S.; Dzhelyadin, R. I.; Gelitsky, Yu V.; Gouz, Yu P.; Kachnov, K. G.; Kobelev, A. S.; Matveev, V. D.; Novikov, V. P.; Obraztsov, V. F.; Ostankov, A. P.; Romanovsky, V. I.; Rykalin, V. I.; Soldatov, A. P.; Soldatov, M. M.; Tchernov, E. N.; Yushchenko, O. P.; Bochin, B.; Bondar, N.; Fedorov, O.; Golovtsov, V.; Guets, S.; Kashchuk, A.; Lazarev, V.; Maev, O.; Neustroev, P.; Sagidova, N.; Spiridenkov, E.; Volkov, S.; Vorobyev, An; Vorobyov, A.; Aguilo, E.; Bota, S.; Calvo, M.; Comerma, A.; Cano, X.; Dieguez, A.; Herms, A.; Lopez, E.; Luengo, S.; Garra, J.; Garrido, Ll; Gascon, D.; Gaspar de Valenzuela, A.; Gonzalez, C.; Graciani, R.; Grauges, E.; Perez Calero, A.; Picatoste, E.; Riera, J.; Rosello, M.; Ruiz, H.; Vilasis, X.; Xirgu, X.; Adeva, B.; Cid Vidal, X.; MartÉnez Santos, D.; Esperante Pereira, D.; Fungueiriño Pazos, J. L.; Gallas Torreira, A.; Gómez, C. Lois; Pazos Alvarez, A.; Pérez Trigo, E.; Pló Casasús, M.; Rodriguez Cobo, C.; Rodríguez Pérez, P.; Saborido, J. J.; Seco, M.; Vazquez Regueiro, P.; Bartalini, P.; Bay, A.; Bettler, M.-O.; Blanc, F.; Borel, J.; Carron, B.; Currat, C.; Conti, G.; Dormond, O.; Ermoline, Y.; Fauland, P.; Fernandez, L.; Frei, R.; Gagliardi, G.; Gueissaz, N.; Haefeli, G.; Hicheur, A.; Jacoby, C.; Jalocha, P.; Jimenez-Otero, S.; Hertig, J.-P.; Knecht, M.; Legger, F.; Locatelli, L.; Moser, J.-R.; Needham, M.; Nicolas, L.; Perrin-Giacomin, A.; Perroud, J.-P.; Potterat, C.; Ronga, F.; Schneider, O.; Schietinger, T.; Steele, D.; Studer, L.; Tareb, M.; Tran, M. T.; van Hunen, J.; Vervink, K.; Villa, S.; Zwahlen, N.; Bernet, R.; Büchler, A.; Gassner, J.; Lehner, F.; Sakhelashvili, T.; Salzmann, C.; Sievers, P.; Steiner, S.; Steinkamp, O.; Straumann, U.; van Tilburg, J.; Vollhardt, A.; Volyanskyy, D.; Ziegler, M.; Dovbnya, A.; Ranyuk, Yu; Shapoval, I.; Borisova, M.; Iakovenko, V.; Kyva, V.; Kovalchuk, O.; Okhrimenko, O.; Pugatch, V.; Pylypchenko, Yu; Adinolfi, M.; Brook, N. H.; Head, R. D.; Imong, J. P.; Lessnoff, K. A.; Metlica, F. C. D.; Muir, A. J.; Rademacker, J. H.; Solomin, A.; Szczypka, P. M.; Barham, C.; Buszello, C.; Dickens, J.; Gibson, V.; Haines, S.; Harrison, K.; Jones, C. R.; Katvars, S.; Kerzel, U.; Lazzeroni, C.; Li, Y. Y.; Rogers, G.; Storey, J.; Skottowe, H.; Wotton, S. A.; Adye, T. J.; Densham, C. J.; Easo, S.; Franek, B.; Loveridge, P.; Morrow, D.; Morris, J. V.; Nandakumar, R.; Nardulli, J.; Papanestis, A.; Patrick, G. N.; Ricciardi, S.; Woodward, M. L.; Zhang, Z.; Chamonal, R. J. U.; Clark, P. J.; Clarke, P.; Eisenhardt, S.; Gilardi, N.; Khan, A.; Kim, Y. M.; Lambert, R.; Lawrence, J.; Main, A.; McCarron, J.; Mclean, C.; Muheim, F.; Osorio-Oliveros, A. F.; Playfer, S.; Styles, N.; Xie, Y.; Bates, A.; Carson, L.; da Cunha Marinho, F.; Doherty, F.; Eklund, L.; Gersabeck, M.; Haddad, L.; Macgregor, A. A.; Melone, J.; McEwan, F.; Petrie, D. M.; Paterson, S. K.; Parkes, C.; Pickford, A.; Rakotomiaramanana, B.; Rodrigues, E.; Saavedra, A. F.; Soler, F. J. P.; Szumlak, T.; Viret, S.; Allebone, L.; Awunor, O.; Back, J.; Barber, G.; Barnes, C.; Cameron, B.; Clark, D.; Clark, I.; Dornan, P.; Duane, A.; Eames, C.; Egede, U.; Girone, M.; Greenwood, S.; Hallam, R.; Hare, R.; Howard, A.; Jolly, S.; Kasey, V.; Khaleeq, M.; Koppenburg, P.; Miller, D.; Plackett, R.; Price, D.; Reece, W.; Savage, P.; Savidge, T.; Simmons, B.; Vidal-Sitjes, G.; Websdale, D.; Affolder, A.; Anderson, J. S.; Biagi, S. F.; Bowcock, T. J. V.; Carroll, J. L.; Casse, G.; Cooke, P.; Donleavy, S.; Dwyer, L.; Hennessy, K.; Huse, T.; Hutchcroft, D.; Jones, D.; Lockwood, M.; McCubbin, M.; McNulty, R.; Muskett, D.; Noor, A.; Patel, G. D.; Rinnert, K.; Shears, T.; Smith, N. A.; Southern, G.; Stavitski, I.; Sutcliffe, P.; Tobin, M.; Traynor, S. M.; Turner, P.; Whitley, M.; Wormald, M.; Wright, V.; Bibby, J. H.; Brisbane, S.; Brock, M.; Charles, M.; Cioffi, C.; Gligorov, V. V.; Handford, T.; Harnew, N.; Harris, F.; John, M. J. J.; Jones, M.; Libby, J.; Martin, L.; McArthur, I. A.; Muresan, R.; Newby, C.; Ottewell, B.; Powell, A.; Rotolo, N.; Senanayake, R. S.; Somerville, L.; Soroko, A.; Spradlin, P.; Sullivan, P.; Stokes-Rees, I.; Topp-Jorgensen, S.; Xing, F.; Wilkinson, G.; Artuso, M.; Belyaev, I.; Blusk, S.; Lefeuvre, G.; Menaa, N.; Menaa-Sia, R.; Mountain, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Abadie, L.; Aglieri-Rinella, G.; Albrecht, E.; André, J.; Anelli, G.; Arnaud, N.; Augustinus, A.; Bal, F.; Barandela Pazos, M. C.; Barczyk, A.; Bargiotti, M.; Batista Lopes, J.; Behrendt, O.; Berni, S.; Binko, P.; Bobillier, V.; Braem, A.; Brarda, L.; Buytaert, J.; Camilleri, L.; Cambpell, M.; Castellani, G.; Cataneo, F.; Cattaneo, M.; Chadaj, B.; Charpentier, P.; Cherukuwada, S.; Chesi, E.; Christiansen, J.; Chytracek, R.; Clemencic, M.; Closier, J.; Collins, P.; Colrain, P.; Cooke, O.; Corajod, B.; Corti, G.; D'Ambrosio, C.; Damodaran, B.; David, C.; de Capua, S.; Decreuse, G.; Degaudenzi, H.; Dijkstra, H.; Droulez, J.-P.; Duarte Ramos, D.; Dufey, J. P.; Dumps, R.; Eckstein, D.; Ferro-Luzzi, M.; Fiedler, F.; Filthaut, F.; Flegel, W.; Forty, R.; Fournier, C.; Frank, M.; Frei, C.; Gaidioz, B.; Gaspar, C.; Gayde, J.-C.; Gavillet, P.; Go, A.; Gracia Abril, G.; Graulich, J.-S.; Giudici, P.-A.; Guirao Elias, A.; Guglielmini, P.; Gys, T.; Hahn, F.; Haider, S.; Harvey, J.; Hay, B.; Hernando Morata, J.-A.; Herranz Alvarez, J.; van Herwijnen, E.; Hilke, H. J.; von Holtey, G.; Hulsbergen, W.; Jacobsson, R.; Jamet, O.; Joram, C.; Jost, B.; Kanaya, N.; Knaster Refolio, J.; Koestner, S.; Koratzinos, M.; Kristic, R.; Lacarrère, D.; Lasseur, C.; Lastovicka, T.; Laub, M.; Liko, D.; Lippmann, C.; Lindner, R.; Losasso, M.; Maier, A.; Mair, K.; Maley, P.; Mato Vila, P.; Moine, G.; Morant, J.; Moritz, M.; Moscicki, J.; Muecke, M.; Mueller, H.; Nakada, T.; Neufeld, N.; Ocariz, J.; Padilla Aranda, C.; Parzefall, U.; Patel, M.; Pepe-Altarelli, M.; Piedigrossi, D.; Pivk, M.; Pokorski, W.; Ponce, S.; Ranjard, F.; Riegler, W.; Renaud, J.; Roiser, S.; Rossi, A.; Roy, L.; Ruf, T.; Ruffinoni, D.; Saladino, S.; Sambade Varela, A.; Santinelli, R.; Schmelling, S.; Schmidt, B.; Schneider, T.; Schöning, A.; Schopper, A.; Seguinot, J.; Snoeys, W.; Smith, A.; Smith, A. C.; Somogyi, P.; Stoica, R.; Tejessy, W.; Teubert, F.; Thomas, E.; Toledo Alarcon, J.; Ullaland, O.; Valassi, A.; Vannerem, P.; Veness, R.; Wicht, P.; Wiedner, D.; Witzeling, W.; Wright, A.; Wyllie, K.; Ypsilantis, T.

    2008-08-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.

  7. Final implementation, commissioning, and performance of embedded collimator beam position monitors in the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Valentino, Gianluca; Baud, Guillaume; Bruce, Roderik; Gasior, Marek; Mereghetti, Alessio; Mirarchi, Daniele; Olexa, Jakub; Redaelli, Stefano; Salvachua, Belen; Valloni, Alessandra; Wenninger, Jorg

    2017-08-01

    During Long Shutdown 1, 18 Large Hadron Collider (LHC) collimators were replaced with a new design, in which beam position monitor (BPM) pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β* and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.

  8. Anisotropic flow of thermal photons at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chatterjee, Rupa; Dasgupta, Pingal; Srivastava, Dinesh K.

    2017-07-01

    We calculate elliptic and triangular flow parameters of thermal photons using an event-by-event hydrodynamic model with fluctuating initial conditions at 200 A GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and at 2.76 A TeV Pb+Pb collisions at the Cern Large Hadron Collider (LHC) for three different centrality bins. The photon elliptic flow shows strong centrality dependence where v2(pT) increases towards peripheral collisions both at RHIC and at the LHC energies. However, the triangular flow parameter does not show significant dependence on the collision centrality. The elliptic as well as the triangular flow parameters found to underestimate the PHENIX data at RHIC by a large margin for all three centrality bins. We calculate pT spectrum and anisotropic flow of thermal photons from 200 A GeV Cu+Cu collisions at RHIC for a 0-20% centrality bin and compare with the results with those from Au+Au collisions. The production of thermal photons is found to decrease significantly for Cu+Cu collisions compared to Au+Au collisions. However, the effect of initial state fluctuation is found to be more pronounced for anisotropic flow, resulting in larger v2 and v3 for Cu+Cu collisions. We study the correlation between the anisotropic flow parameters and the corresponding initial spatial anisotropies from their event-by-event distributions at RHIC and at the LHC energies. The linear correlation between v2 and ɛ2 is found be stronger compared to the correlation between v3 and ɛ3. In addition, the correlation coefficient is found to be larger at LHC than at RHIC.

  9. Long term dynamics of the high luminosity Large Hadron Collider with crab cavities

    NASA Astrophysics Data System (ADS)

    Barranco García, J.; De Maria, R.; Grudiev, A.; Tomás García, R.; Appleby, R. B.; Brett, D. R.

    2016-10-01

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) aims to achieve an integrated luminosity of 200 - 300 fb-1 per year, including the contribution from the upgrade of the injector chain. For the HL-LHC the larger crossing angle together with a smaller beta function at the collision point would result in more than 70% luminosity loss due to the incomplete geometric overlap of colliding bunches. To recover head-on collisions at the high-luminosity particle-physics detectors ATLAS and CMS and benefit from the very low β* provided by the Achromatic Telescopic Squeezing (ATS) optics, a local crab cavity scheme provides transverse kicks to the proton bunches. The tight space constraints at the location of these cavities leads to designs which are axially non-symmetric, giving rise to high order multipoles components of the main deflecting mode and, since these kicks are harmonic in time, we expand them in a series of multipoles in a similar fashion as is done for static field magnets. In this work we calculate, for the first time, the higher order multipoles and their impact on beam dynamics for three different crab cavity prototypes. Different approaches to calculate the multipoles are presented. Furthermore, we perform the first calculation of their impact on the long term stability of the machine using the concept of dynamic aperture.

  10. Performance of the ATLAS Hadronic Tile Calorimeter in Run-2 and its Upgrade for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Solovyanov, Oleg

    2017-10-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tauparticles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudo-rapidity up to 1.7, with almost 10000 channels measuring energies ranging from ˜30 MeV to ˜2 TeV. Each stage of the signal production, from scintillation light to the signal reconstruction, is monitored and calibrated. The performance of the Tile calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions, acquired during the operations of the LHC. Prompt isolated muons of high momentum from electroweak bosons decays are employed to study the energy response of the calorimeter at the electromagnetic scale. The calorimeter response to hadronic particles is evaluated with a sample of isolated hadrons. The modelling of the response by the Monte Carlo simulation is discussed. The calorimeter timing calibration and resolutions are studied with a sample of multijets events. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. TileCal performance satisfies the design requirements and has provided an essential contribution to physics results in ATLAS. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC), delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, the Tile Calorimeter will undergo a major replacement of its on- and off-detector electronics. All signals will be digitised and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz

  11. Development of N+ in P pixel sensors for a high-luminosity large hadron collider

    NASA Astrophysics Data System (ADS)

    Kamada, Shintaro; Yamamura, Kazuhisa; Unno, Yoshinobu; Ikegami, Yoichi

    2014-11-01

    Hamamatsu Photonics K. K. is developing an N+ in a p planar pixel sensor with high radiation tolerance for the high-luminosity large hadron collider (HL-LHC). The N+ in the p planar pixel sensor is a candidate for the HL-LHC and offers the advantages of high radiation tolerance at a reasonable price compared with the N+ in an n planar sensor, the three-dimensional sensor, and the diamond sensor. However, the N+ in the p planar pixel sensor still presents some problems that need to be solved, such as its slim edge and the danger of sparks between the sensor and readout integrated circuit. We are now attempting to solve these problems with wafer-level processes, which is important for mass production. To date, we have obtained a 250-μm edge with an applied bias voltage of 1000 V. To protect against high-voltage sparks from the edge, we suggest some possible designs for the N+ edge.

  12. The LHC Experiments

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Large Hadron Collider or LHC is the world’s biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilab’s Dr. Don Lincoln introduces us to these detectors and gives us an idea of each one’s capabilities.

  13. Promising diphoton signals of the little radion at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoudiasl, H.; McElmurry, T; Soni, A.

    2010-12-28

    In little Randall-Sundrum models, the bulk couplings of the radion to massless gauge fields can yield a greatly enhanced diphoton signal at hadron colliders. We examine the implications of the Tevatron data for the little radion and also show that the 7 TeV run at the Large Hadron Collider will have an impressive reach in this channel. The diphoton signal is crucial in the search for a light radion, or the dual dilaton, and can potentially probe the ultraviolet scale of the theory.

  14. Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2013-03-02

    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of √s = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K s and Λ particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scalemore » uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2–5 % for central isolated hadrons and 1–3 % for the final calorimeter jet energy scale.« less

  15. Baryon anomaly and strong color fields in Pb + Pb collisions at 2.76A TeV at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Topor Pop, V.; Gyulassy, M.; Barrette, J.; Gale, C.

    2011-10-01

    With the HIJING/B¯B v2.0 heavy ion event generator, we explore the phenomenological consequences of several high parton density dynamical effects predicted in central Pb+Pb collisions at the Large Hadron Collider (LHC) energies. These include (1) jet quenching due to parton energy loss (dE/dx), (2) strangeness and hyperon enhancement due to strong longitudinal color field (SCF), and (3) enhancement of baryon-to-meson ratios due to baryon-antibaryon junction (J¯J) loops and SCF effects. The saturation/minijet cutoff scale p0(s,A) and effective string tension κ(s,A) are constrained by our previous analysis of LHC p+p data and recent data on the charged multiplicity for Pb+Pb collisions reported by the ALICE collaboration. We predict the hadron flavor dependence (mesons and baryons) of the nuclear modification factor RAA(pT) and emphasize the possibility that the baryon anomaly could persist at the LHC up to pT˜10 GeV, well beyond the range observed in central Au+Au collisions at RHIC energies.

  16. Fundamental cavity impedance and longitudinal coupled-bunch instabilities at the High Luminosity Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Baudrenghien, P.; Mastoridis, T.

    2017-01-01

    The interaction between beam dynamics and the radio frequency (rf) station in circular colliders is complex and can lead to longitudinal coupled-bunch instabilities at high beam currents. The excitation of the cavity higher order modes is traditionally damped using passive devices. But the wakefield developed at the cavity fundamental frequency falls in the frequency range of the rf power system and can, in theory, be compensated by modulating the generator drive. Such a regulation is the responsibility of the low-level rf (llrf) system that measures the cavity field (or beam current) and generates the rf power drive. The Large Hadron Collider (LHC) rf was designed for the nominal LHC parameter of 0.55 A DC beam current. At 7 TeV the synchrotron radiation damping time is 13 hours. Damping of the instability growth rates due to the cavity fundamental (400.789 MHz) can only come from the synchrotron tune spread (Landau damping) and will be very small (time constant in the order of 0.1 s). In this work, the ability of the present llrf compensation to prevent coupled-bunch instabilities with the planned high luminosity LHC (HiLumi LHC) doubling of the beam current to 1.1 A DC is investigated. The paper conclusions are based on the measured performances of the present llrf system. Models of the rf and llrf systems were developed at the LHC start-up. Following comparisons with measurements, the system was parametrized using these models. The parametric model then provides a more realistic estimation of the instability growth rates than an ideal model of the rf blocks. With this modeling approach, the key rf settings can be varied around their set value allowing for a sensitivity analysis (growth rate sensitivity to rf and llrf parameters). Finally, preliminary measurements from the LHC at 0.44 A DC are presented to support the conclusions of this work.

  17. Viscous Flow in Heavy-Ion Collisions from RHIC to LHC

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Heinz, Ulrich

    2013-05-01

    We present a systematic hydrodynamic study of the evolution of hadron spectra and their azimuthal anisotropy from the lowest collision energy studied at the Relativistic Heavy Ion Collider (RHIC), s=7.7A GeV, to the highest energy reachable at the Large Hadron Collider (LHC), s=5500A GeV [C. Shen and U. Heinz, Phys. Rev. C 85, 054902 (2012) [arXiv:1202.6620 [nucl-th

  18. \\psi (2S) enhancement in p-Pb collision as an indication of quark-gluon plasma formation at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Ganesh, S.; Singh, R., Captain; Mishra, M.

    2018-03-01

    Proton-nucleus collisions serve as an important baseline for the understanding and interpretation of the nucleus-nucleus collisions. These collisions have been employed to characterize the cold nuclear matter effects at SPS and Relativistic Heavy-Ion Collider energies for the past several years, as it was thought that quark-gluon plasma (QGP) is not formed in such collisions. However, at the Large Hadron Collider (LHC), there seems a possibility that QGP is formed during proton-lead (p-Pb) collisions. In this work, we have derived an expression for gluon induced excitation of J/\\psi to \\psi (2S), using pNRQCD, and show that the relative enhancement of \\psi (2S) vis-à-vis J/\\psi , especially at high p T , gives further indication that the QGP is indeed formed in p-Pb collisions at the most central collisions at LHC energy. J/\\psi and \\psi (2S) suppression effects seen at ALICE are also qualitatively explained.

  19. Extra dimension searches at hadron colliders to next-to-leading order-QCD

    NASA Astrophysics Data System (ADS)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.

    2007-11-01

    The quantitative impact of NLO-QCD corrections for searches of large and warped extra dimensions at hadron colliders are investigated for the Drell-Yan process. The K-factor for various observables at hadron colliders are presented. Factorisation, renormalisation scale dependence and uncertainties due to various parton distribution functions are studied. Uncertainties arising from the error on experimental data are estimated using the MRST parton distribution functions.

  20. Hadron-collider limits on new electroweak interactions from the heterotic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Aguila, F.; Moreno, J.M.; Quiros, M.

    1990-01-01

    We evaluate the {ital Z}{prime}{r arrow}{ital l}{sup +}l{sup {minus}} cross section at present and future hadron colliders, for the minimal (E{sub 6}) extended electroweak models inspired by superstrings (including renormalization effects on new gauge couplings and new mixing angles). Popular models are discussed for comparison. Analytical expressions for the bounds on the mass of a new gauge boson, {ital M}{sub {ital Z}{prime}}, as a function of the bound on the ratio {ital R}{equivalent to}{sigma}({ital Z}{prime}){ital B}(Z{prime}{r arrow}l{sup +}{ital l}{sup {minus}})/{sigma}({ital Z}){ital B} ({ital Z}{r arrow}{ital l}{sup +}{ital l}{sup {minus}}), are given for the CERN S{ital p {bar p}}S, Fermilab Teva-more » tron, Serpukhov UNK, CERN Large Hadron Collider, and Superconducting Super Collider for the different models. In particular, the {ital M}{sub {ital Z}{prime}} bounds from the present {ital R} limit at CERN, as well as from the eventually available {ital R} limits at Fermilab and at the future hadron colliders (after three months of running at the expected luminosity), are given explicitly.« less

  1. Signals of doubly-charged Higgsinos at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, Durmus A.; Deutsches Elektronen--Synchrotron, DESY, D-22603 Hamburg; Frank, Mariana

    2008-08-01

    Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly-charged Higgsinos. In this work we study productions and decays of doubly-charged Higgsinos present in left-right supersymmetric models, and show that they invariably lead to novel collider signals not found in the minimal supersymmetric model or in any of its extensions motivated by the {mu} problem or even in extra dimensional theories. We investigate their distinctive signatures at the Large Hadron Collider in both pair- and single-production modes, and show that they are powerful tools in determining the underlying model viamore » the measurements at the Large Hadron Collider experiments.« less

  2. Performance Analysis of the Ironless Inductive Position Sensor in the Large Hadron Collider Collimators Environment

    PubMed Central

    Danisi, Alessandro; Masi, Alessandro; Losito, Roberto

    2015-01-01

    The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 µm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic immunity and the long-term stability (on 7 days). These three indicators are assessed from data acquired during the LHC operation in 2015 and compared with those of LVDTs. PMID:26569259

  3. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.

    2017-06-01

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going.

  4. Radiative return capabilities of a high-energy, high-luminosity e + e - collider

    DOE PAGES

    Karliner, Marek; Low, Matthew; Rosner, Jonathan L.; ...

    2015-08-14

    An electron-positron collider operating at a center-of-mass energy E CM can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at E CM = 250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy e +e - colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavymore » flavor spectroscopy are given.« less

  5. The CERN Large Hadron Collider as a tool to study high-energy density matter.

    PubMed

    Tahir, N A; Kain, V; Schmidt, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Temporal, M; Hoffmann, D H H; Fortov, V E

    2005-04-08

    The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15x10(11) protons so that the total number of protons in one beam will be about 3x10(14) and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma=0.2 mm. The total duration of the beam will be about 89 mus. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.

  6. Exploring triplet-quadruplet fermionic dark matter at the LHC and future colliders

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Wei; Bi, Xiao-Jun; Xiang, Qian-Fei; Yin, Peng-Fei; Yu, Zhao-Huan

    2018-02-01

    We study the signatures of the triplet-quadruplet dark matter model at the LHC and future colliders, including the 100 TeV Super Proton-Proton Collider and the 240 GeV Circular Electron Positron Collider. The dark sector in this model contains one fermionic electroweak triplet and two fermionic quadruplets, which have two kinds of Yukawa couplings to the Higgs doublet. Electroweak production signals of the dark sector fermions in the monojet+ ET, disappearing track, and multilepton+ET channels at the LHC and the Super Proton-Proton Collider are investigated. Moreover, we study the loop effects of this model on the Circular Electron Positron Collider precision measurements of e+e-→Z h and h →γ γ . We find that most of the parameter regions allowed by the observed dark matter relic density will be well explored by such direct and indirect searches at future colliders.

  7. LHC searches for dark sector showers

    NASA Astrophysics Data System (ADS)

    Cohen, Timothy; Lisanti, Mariangela; Lou, Hou Keong; Mishra-Sharma, Siddharth

    2017-11-01

    This paper proposes a new search program for dark sector parton showers at the Large Hadron Collider (LHC). These signatures arise in theories characterized by strong dynamics in a hidden sector, such as Hidden Valley models. A dark parton shower can be composed of both invisible dark matter particles as well as dark sector states that decay to Standard Model particles via a portal. The focus here is on the specific case of `semi-visible jets,' jet-like collider objects where the visible states in the shower are Standard Model hadrons. We present a Simplified Model-like parametrization for the LHC observables and propose targeted search strategies for regions of parameter space that are not covered by existing analyses. Following the `mono- X' literature, the portal is modeled using either an effective field theoretic contact operator approach or with one of two ultraviolet completions; sensitivity projections are provided for all three cases. We additionally highlight that the LHC has a unique advantage over direct detection experiments in the search for this class of dark matter theories.

  8. Disambiguating seesaw models using invariant mass variables at hadron colliders

    DOE PAGES

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-19

    Here, we propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. Furthermore, these kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. We also conducted a Monte Carlo simulation with detector effects in order to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at themore » $$\\sqrt{s}$$ = 14 and 100TeV hadron colliders.« less

  9. Disambiguating seesaw models using invariant mass variables at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-01

    We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √{s}=14 and 100 TeV hadron colliders.

  10. Lead ions and Coulomb’s Law at the LHC (CERN)

    NASA Astrophysics Data System (ADS)

    Cid-Vidal, Xabier; Cid, Ramon

    2018-03-01

    Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics community. All the large experiments of the LHC have now joined the heavy-ion programme, including the LHCb experiment, which was not at first expected to be part of it. The aim of this article is to introduce a few simple physical calculations relating to some electrical phenomena that occur when lead-ion bunches are running in the LHC, using Coulomb’s Law, to be taken to the secondary school classroom to help students understand some important physical concepts.

  11. Estimating the charm quark diffusion coefficient and thermalization time from D meson spectra at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Scardina, Francesco; Das, Santosh K.; Minissale, Vincenzo; Plumari, Salvatore; Greco, Vincenzo

    2017-10-01

    We describe the propagation of charm quarks in the quark-gluon plasma (QGP) by means of a Boltzmann transport approach. Nonperturbative interaction between heavy quarks and light quarks have been taken into account through a quasiparticle approach in which light partons are dressed with thermal masses tuned to lattice quantum chromodynamics (lQCD) thermodynamics. Such a model is able to describe the main feature of the nonperturbative dynamics: the enhancement of the interaction strength near Tc. We show that the resulting charm in-medium evolution is able to correctly predict simultaneously the nuclear suppression factor, RAA, and the elliptic flow, v2, at both Relativistic Heavy Ion Collider and Large Hadron Collider (LHC) energies and at different centralities. The hadronization of charm quarks is described by mean of an hybrid model of fragmentation plus coalescence and plays a key role toward the agreement with experimental data. We also performed calculations within the Langevin approach, which can lead to very similar RAA(pT) as Boltzmann, but the charm drag coefficient as to be reduced by about a 30 % and also generates an elliptic flow v2(pT) is about a 15 % smaller. We finally compare the space diffusion coefficient 2 π T Ds extracted by our phenomenological approach to lattice QCD results, finding a satisfying agreement within the present systematic uncertainties. Our analysis implies a charm thermalization time, in the p →0 limit, of about 4 -6 fm/c , which is smaller than the QGP lifetime at LHC energy.

  12. Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David Wilkins

    2012-03-20

    This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of {radical}s = 7 TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLASmore » physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include the jet mass and sub-jet multiplicity as well as those concerned with multi-body hadronic decays and color flow within jets. Finally, the first boosted hadronic object observed at the LHC - the decay of the top quark to a single jet - is presented.« less

  13. Discovering Higgs boson decays to lepton jets at hadron colliders.

    PubMed

    Falkowski, Adam; Ruderman, Joshua T; Volansky, Tomer; Zupan, Jure

    2010-12-10

    The Higgs boson may decay predominantly into a hidden sector, producing lepton jets instead of the standard Higgs signatures. We propose a search strategy for such a signal at hadron colliders. A promising channel is the associated production of the Higgs boson with a Z or W. The dominant background is Z or W plus QCD jets. The lepton jets can be discriminated from QCD jets by cutting on the electromagnetic fraction and charge ratio. The former is the fraction of jet energy deposited in the electromagnetic calorimeter and the latter is the ratio of energy carried by charged particles to the electromagnetic energy. We use a Monte Carlo description of detector response to estimate QCD rejection efficiencies of O(10⁻³) per jet. The expected 5σ (3σ) discovery reach in Higgs boson mass is ∼115 GeV (150 GeV) at the Tevatron with 10 fb⁻¹ of data and ∼110 GeV (130 GeV) at the 7 TeV LHC with 1 fb⁻¹.

  14. Electron Lenses for the Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as anmore » option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.« less

  15. Particle production at energies available at the CERN Large Hadron Collider within an evolutionary model

    NASA Astrophysics Data System (ADS)

    Sinyukov, Yu. M.; Shapoval, V. M.

    2018-06-01

    The particle yields and particle number ratios in Pb+Pb collisions at the CERN Large Hadron Collider (LHC) energy √{sN N}=2.76 TeV are described within the integrated hydrokinetic model (iHKM) at two different equations of state (EoS) for quark-gluon matter and the two corresponding hadronization temperatures T =165 MeV and T =156 MeV. The role of particle interactions at the final afterburner stage of the collision in the particle production is investigated by means of comparison of the results of full iHKM simulations with those where the annihilation and other inelastic processes (except for resonance decays) are switched off after hadronization/particlization, similarly as in the thermal models. An analysis supports the picture of continuous chemical freeze-out in the sense that the corrections to the sudden chemical freeze-out results, which arise because of the inelastic reactions at the subsequent evolution times, are noticeable and improve the description of particle number ratios. An important observation is that, although the particle number ratios with switched-off inelastic reactions are quite different at different particlization temperatures which are adopted for different equations of state to reproduce experimental data, the complete iHKM calculations bring very close results in both cases.

  16. The ATLAS Experiment at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    ATLAS Collaboration; Aad, G.; Abat, E.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B. A.; Abolins, M.; Abramowicz, H.; Acerbi, E.; Acharya, B. S.; Achenbach, R.; Ackers, M.; Adams, D. L.; Adamyan, F.; Addy, T. N.; Aderholz, M.; Adorisio, C.; Adragna, P.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Aielli, G.; Åkesson, P. F.; Åkesson, T. P. A.; Akimov, A. V.; Alam, S. M.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alimonti, G.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Aloisio, A.; Alonso, J.; Alves, R.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amaral, S. P.; Ambrosini, G.; Ambrosio, G.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amram, N.; Anastopoulos, C.; Anderson, B.; Anderson, K. J.; Anderssen, E. C.; Andreazza, A.; Andrei, V.; Andricek, L.; Andrieux, M.-L.; Anduaga, X. S.; Anghinolfi, F.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Apsimon, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arguin, J.-F.; Arik, E.; Arik, M.; Arms, K. E.; Armstrong, S. R.; Arnaud, M.; Arnault, C.; Artamonov, A.; Asai, S.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Athar, B.; Atkinson, T.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aulchenko, V. M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, A.; Ay, C.; Azuelos, G.; Baccaglioni, G.; Bacci, C.; Bachacou, H.; Bachas, K.; Bachy, G.; Badescu, E.; Bagnaia, P.; Bailey, D. C.; Baines, J. T.; Baker, O. K.; Ballester, F.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barberio, E. L.; Barberis, D.; Barbier, G.; Barclay, P.; Bardin, D. Y.; Bargassa, P.; Barillari, T.; Barisonzi, M.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barone, M.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barriuso Poy, A.; Barros, N.; Bartheld, V.; Bartko, H.; Bartoldus, R.; Basiladze, S.; Bastos, J.; Batchelor, L. E.; Bates, R. L.; Batley, J. R.; Batraneanu, S.; Battistin, M.; Battistoni, G.; Batusov, V.; Bauer, F.; Bauss, B.; Baynham, D. E.; Bazalova, M.; Bazan, A.; Beauchemin, P. H.; Beaugiraud, B.; Beccherle, R. B.; Beck, G. A.; Beck, H. P.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Behar Harpaz, S.; Belanger, G. A. N.; Belanger-Champagne, C.; Belhorma, B.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellachia, F.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Beltramello, O.; Belymam, A.; Ben Ami, S.; Ben Moshe, M.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benes, J.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas, E.; Berger, N.; Berghaus, F.; Berglund, S.; Bergsma, F.; Beringer, J.; Bernabéu, J.; Bernardet, K.; Berriaud, C.; Berry, T.; Bertelsen, H.; Bertin, A.; Bertinelli, F.; Bertolucci, S.; Besson, N.; Beteille, A.; Bethke, S.; Bialas, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieri, M.; Biglietti, M.; Bilokon, H.; Binder, M.; Binet, S.; Bingefors, N.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bischofberger, M.; Bitadze, A.; Bizzell, J. P.; Black, K. M.; Blair, R. E.; Blaising, J. J.; Blanch, O.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G. J.; Bocci, A.; Bocian, D.; Bock, R.; Boehm, M.; Boek, J.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bonino, R.; Bonis, J.; Bonivento, W.; Bonneau, P.; Boonekamp, M.; Boorman, G.; Boosten, M.; Booth, C. N.; Booth, P. S. L.; Booth, P.; Booth, J. R. A.; Borer, K.; Borisov, A.; Borjanovic, I.; Bos, K.; Boscherini, D.; Bosi, F.; Bosman, M.; Bosteels, M.; Botchev, B.; Boterenbrood, H.; Botterill, D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boutemeur, M.; Bouzakis, K.; Boyd, G. R.; Boyd, J.; Boyer, B. H.; Boyko, I. R.; Bozhko, N. I.; Braccini, S.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, O.; Bratzler, U.; Braun, H. M.; Bravo, S.; Brawn, I. P.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Breugnon, P.; Bright-Thomas, P. G.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Broklova, Z.; Bromberg, C.; Brooijmans, G.; Brouwer, G.; Broz, J.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buchanan, N. J.; Buchholz, P.; Budagov, I. A.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E. J.; Bujor, F.; Buran, T.; Burckhart, H.; Burckhart-Chromek, D.; Burdin, S.; Burns, R.; Busato, E.; Buskop, J. J. F.; Buszello, K. P.; Butin, F.; Butler, J. M.; Buttar, C. M.; Butterworth, J.; Butterworth, J. M.; Byatt, T.; Cabrera Urbán, S.; Cabruja Casas, E.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calderón Terol, D.; Callahan, J.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camard, A.; Camarena, F.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campabadal Segura, F.; Campana, S.; Canale, V.; Cantero, J.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Caprio, M.; Caracinha, D.; Caramarcu, C.; Carcagno, Y.; Cardarelli, R.; Cardeira, C.; Cardiel Sas, L.; Cardini, A.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carr, F. S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castelo, J.; Castillo Gimenez, V.; Castro, N.; Castrovillari, F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerna, C.; Cernoch, C.; Cerqueira, A. S.; Cerri, A.; Cerutti, F.; Cervetto, M.; Cetin, S. A.; Cevenini, F.; Chalifour, M.; Chamizo llatas, M.; Chan, A.; Chapman, J. W.; Charlton, D. G.; Charron, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, L.; Chen, T.; Chen, X.; Cheng, S.; Cheng, T. L.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chesneanu, D.; Cheu, E.; Chevalier, L.; Chevalley, J. L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Chilingarov, A.; Chiodini, G.; Chouridou, S.; Chren, D.; Christiansen, T.; Christidi, I. A.; Christov, A.; Chu, M. L.; Chudoba, J.; Chuguev, A. G.; Ciapetti, G.; Cicalini, E.; Ciftci, A. K.; Cindro, V.; Ciobotaru, M. D.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Civera, J. V.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B. C.; Clément, C.; Clements, D.; Clifft, R. W.; Cobal, M.; Coccaro, A.; Cochran, J.; Coco, R.; Coe, P.; Coelli, S.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins-Tooth, C.; Collot, J.; Coluccia, R.; Comune, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F. A.; Cook, J.; Cooke, M.; Cooper-Smith, N. J.; Cornelissen, T.; Corradi, M.; Correard, S.; Corso-Radu, A.; Coss, J.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Coura Torres, R.; Courneyea, L.; Couyoumtzelis, C.; Cowan, G.; Cox, B. E.; Cox, J.; Cragg, D. A.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Cuenca Almenar, C.; Cuneo, S.; Cunha, A.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; Da Silva, R.; Dabrowski, W.; Dael, A.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Dalmau, J.; Daly, C. H.; Dam, M.; Damazio, D.; Dameri, M.; Danielsen, K. M.; Danielsson, H. O.; Dankers, R.; Dannheim, D.; Darbo, G.; Dargent, P.; Daum, C.; Dauvergne, J. P.; David, M.; Davidek, T.; Davidson, N.; Davidson, R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; de Boer, R.; DeCastro, S.; DeGroot, N.; de Jong, P.; de La Broise, X.; DeLa Cruz-Burelo, E.; DeLa Taille, C.; DeLotto, B.; DeOliveira Branco, M.; DePedis, D.; de Saintignon, P.; DeSalvo, A.; DeSanctis, U.; DeSanto, A.; DeVivie DeRegie, J. B.; DeZorzi, G.; Dean, S.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degele, R.; Dehchar, M.; Deile, M.; DelPapa, C.; DelPeso, J.; DelPrete, T.; Delagnes, E.; Delebecque, P.; Dell'Acqua, A.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca Silberberg, C.; Demers, S.; Demichev, M.; Demierre, P.; Demirköz, B.; Deng, W.; Denisov, S. P.; Dennis, C.; Densham, C. J.; Dentan, M.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K. K.; Dewhurst, A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Simone, A.; Diaz Gomez, M. M.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietsche, W.; Diglio, S.; Dima, M.; Dindar, K.; Dinkespiler, B.; Dionisi, C.; Dipanjan, R.; Dita, P.; Dita, S.; Dittus, F.; Dixon, S. D.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Domingo, E.; Donega, M.; Dopke, J.; Dorfan, D. E.; Dorholt, O.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doyle, A. T.; Drake, G.; Drakoulakos, D.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J. G.; Dubbert, J.; Dubbs, T.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dührssen, M.; Dür, H.; Duerdoth, I. P.; Duffin, S.; Duflot, L.; Dufour, M.-A.; Dumont Dayot, N.; Duran Yildiz, H.; Durand, D.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Díez Cornell, S.; Düren, M.; Ebenstein, W. L.; Eckert, S.; Eckweiler, S.; Eerola, P.; Efthymiopoulos, I.; Egede, U.; Egorov, K.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; Eklund, L. M.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engström, M.; Ennes, P.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eremin, V.; Eriksson, D.; Ermoline, I.; Ernwein, J.; Errede, D.; Errede, S.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Esteves, F.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Evdokimov, V. N.; Evtoukhovitch, P.; Eyring, A.; Fabbri, L.; Fabjan, C. W.; Fabre, C.; Faccioli, P.; Facius, K.; Fadeyev, V.; Fakhrutdinov, R. M.; Falciano, S.; Falleau, I.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farrell, J.; Farthouat, P.; Fasching, D.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fawzi, F.; Fayard, L.; Fayette, F.; Febbraro, R.; Fedin, O. L.; Fedorko, I.; Feld, L.; Feldman, G.; Feligioni, L.; Feng, C.; Feng, E. J.; Fent, J.; Fenyuk, A. B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferro, F.; Fiascaris, M.; Fichet, S.; Fiedler, F.; Filimonov, V.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Finocchiaro, G.; Fiorini, L.; Firan, A.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flaminio, V.; Flammer, J.; Flechl, M.; Fleck, I.; Flegel, W.; Fleischmann, P.; Fleischmann, S.; Fleta Corral, C. M.; Fleuret, F.; Flick, T.; Flix, J.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T. M.; Fopma, J.; Forbush, D. A.; Formica, A.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fox, H.; Francavilla, P.; Francis, D.; Franz, S.; Fraser, J. T.; Fraternali, M.; Fratianni, S.; Freestone, J.; French, R. S.; Fritsch, K.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fulachier, J.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gan, K. K.; Gannaway, F. C.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garciá, C.; Garcia-Sciveres, M.; Garcìa Navarro, J. E.; Garde, V.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V. G.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gayde, J.-C.; Gazis, E. N.; Gazo, E.; Gee, C. N. P.; Geich-Gimbel, C.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M. A.; George, S.; Gerlach, P.; Gernizky, Y.; Geweniger, C.; Ghazlane, H.; Ghete, V. M.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, M. D.; Gibson, S. M.; Gieraltowski, G. F.; Gil Botella, I.; Gilbert, L. M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Girard, C. G.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Gnanvo, K. G.; Godlewski, J.; Göpfert, T.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Goldschmidt, N.; Golling, T.; Gollub, N. P.; Golonka, P. J.; Golovnia, S. N.; Gomes, A.; Gomes, J.; Gonçalo, R.; Gongadze, A.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; González Millán, V.; Gonzalez Silva, M. L.; Gonzalez-Pineiro, B.; González-Sevilla, S.; Goodrick, M. J.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordeev, A.; Gordon, H.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Gorski, B. T.; Goryachev, S. V.; Goryachev, V. N.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Goujdami, D.; Goulette, M.; Gousakov, I.; Gouveia, J.; Gowdy, S.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassmann, H.; Gratchev, V.; Gray, H. M.; Graziani, E.; Green, B.; Greenall, A.; Greenfield, D.; Greenwood, D.; Gregor, I. M.; Grewal, A.; Griesmayer, E.; Grigalashvili, N.; Grigson, C.; Grillo, A. A.; Grimaldi, F.; Grimm, K.; Gris, P. L. Y.; Grishkevich, Y.; Groenstege, H.; Groer, L. S.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Grothe, M. E. M.; Grudzinski, J.; Gruse, C.; Gruwe, M.; Grybel, K.; Grybos, P.; Gschwendtner, E. M.; Guarino, V. J.; Guicheney, C. J.; Guilhem, G.; Guillemin, T.; Gunther, J.; Guo, B.; Gupta, A.; Gurriana, L.; Gushchin, V. N.; Gutierrez, P.; Guy, L.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Haboubi, G.; Hackenburg, R.; Hadash, E.; Hadavand, H. K.; Haeberli, C.; Härtel, R.; Haggerty, R.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakimi, M.; Hakobyan, H.; Hakobyan, H.; Haller, J.; Hallewell, G. D.; Hallgren, B.; Hamacher, K.; Hamilton, A.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Hanke, P.; Hansen, C. J.; Hansen, F. H.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hanson, G.; Hansson, P.; Hara, K.; Harder, S.; Harel, A.; Harenberg, T.; Harper, R.; Hart, J. C.; Hart, R. G. G.; Hartjes, F.; Hartman, N.; Haruyama, T.; Harvey, A.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Hatley, R. W.; Haubold, T. G.; Hauff, D.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Hauviller, C.; Havranek, M.; Hawes, B. M.; Hawkings, R. J.; Hawkins, D.; Hayler, T.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; He, Y. P.; Head, S. J.; Hedberg, V.; Heelan, L.; Heinemann, F. E. W.; Heldmann, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Hendriks, P. J.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Henß, T.; Herten, G.; Hertenberger, R.; Hervas, L.; Hess, M.; Hessey, N. P.; Hicheur, A.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.; Hill, J. C.; Hill, N.; Hillier, S. J.; Hinchliffe, I.; Hindson, D.; Hinkelbein, C.; Hodges, T. A.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, A. E.; Hoffmann, D.; Hoffmann, H. F.; Holder, M.; Hollins, T. I.; Hollyman, G.; Holmes, A.; Holmgren, S. O.; Holt, R.; Holtom, E.; Holy, T.; Homer, R. J.; Homma, Y.; Homola, P.; Honerbach, W.; Honma, A.; Hooton, I.; Horazdovsky, T.; Horn, C.; Horvat, S.; Hostachy, J.-Y.; Hott, T.; Hou, S.; Houlden, M. A.; Hoummada, A.; Hover, J.; Howell, D. F.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, B. T.; Hughes, E.; Hughes, G.; Hughes-Jones, R. E.; Hulsbergen, W.; Hurst, P.; Hurwitz, M.; Huse, T.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Iglesias Escudero, M. C.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Ilyushenka, Y.; Imbault, D.; Imbert, P.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Inoue, K.; Ioannou, P.; Iodice, M.; Ionescu, G.; Ishii, K.; Ishino, M.; Ishizawa, Y.; Ishmukhametov, R.; Issever, C.; Ito, H.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J.; Jackson, J. N.; Jaekel, M.; Jagielski, S.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakubek, J.; Jansen, E.; Jansweijer, P. P. M.; Jared, R. C.; Jarlskog, G.; Jarp, S.; Jarron, P.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jézéquel, S.; Jiang, Y.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, M.; Jones, R.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jones, A.; Jonsson, O.; Joo, K. K.; Joos, D.; Joos, M.; Joram, C.; Jorgensen, S.; Joseph, J.; Jovanovic, P.; Junnarkar, S. S.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagawa, S.; Kaiser, S.; Kajomovitz, E.; Kakurin, S.; Kalinovskaya, L. V.; Kama, S.; Kambara, H.; Kanaya, N.; Kandasamy, A.; Kandasamy, S.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Karr, K.; Karst, P.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katunin, S.; Kawagoe, K.; Kawai, M.; Kawamoto, T.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazarov, A.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Ketterer, C.; Khakzad, M.; Khalilzade, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khomutnikov, V. P.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kieft, G.; Kierstead, J. A.; Kilvington, G.; Kim, H.; Kim, H.; Kim, S. H.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kisielewski, B.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Kleinknecht, K.; Klier, A.; Klimentov, A.; Kline, C. R.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. K.; Kneringer, E.; Knezo, E.; Knobloch, J.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kodys, P.; König, A. C.; König, S.; Köpke, L.; Koetsveld, F.; Koffas, T.; Koffeman, E.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Kollefrath, M.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kondo, Y.; Kondratyeva, N. V.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korotkov, V. A.; Korsmo, H.; Kortner, O.; Kostrikov, M. E.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotchetkov, D.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kovalenko, S.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V.; Kramberger, G.; Kramer, A.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Krepouri, A.; Krieger, P.; Krivkova, P.; Krobath, G.; Kroha, H.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruger, K.; Krumshteyn, Z. V.; Kubik, P.; Kubischta, W.; Kubota, T.; Kudin, L. G.; Kudlaty, J.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kundu, N.; Kupco, A.; Kupper, M.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuzhir, P.; Kuznetsova, E. K.; Kvasnicka, O.; Kwee, R.; La Marra, D.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J. A.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, E.; Lambacher, M.; Lambert, F.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Langstaff, R. R.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapin, V. V.; Laplace, S.; Laporte, J. F.; Lara, V.; Lari, T.; Larionov, A. V.; Lasseur, C.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Lazarev, A. B.; LeBihan, A.-C.; LeDortz, O.; LeManer, C.; LeVine, M.; Leahu, L.; Leahu, M.; Lebel, C.; Lechowski, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Lefevre, R. P.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Leitner, R.; Lelas, D.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lepidis, J.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Letheren, M.; Fook Cheong, A. Leung; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Leyton, M.; Li, J.; Li, W.; Liabline, M.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Liebig, W.; Lifshitz, R.; Liko, D.; Lim, H.; Limper, M.; Lin, S. C.; Lindahl, A.; Linde, F.; Lindquist, L.; Lindsay, S. W.; Linhart, V.; Lintern, A. J.; Liolios, A.; Lipniacka, A.; Liss, T. M.; Lissauer, A.; List, J.; Litke, A. M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Llosá Llácer, G.; Lloyd, S. L.; Lobkowicz, F.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lokwitz, S.; Long, M. C.; Lopes, L.; Lopez Mateos, D.; Losty, M. J.; Lou, X.; Loureiro, K. F.; Lovas, L.; Love, J.; Lowe, A.; Lozano Fantoba, M.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H. J.; Lucas, S.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lüke, D.; Luijckx, G.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundquist, J.; Lupi, A.; Lupu, N.; Lutz, G.; Lynn, D.; Lynn, J.; Lys, J.; Lysan, V.; Lytken, E.; López-Amengual, J. M.; Ma, H.; Ma, L. L.; Maaß en, M.; Maccarrone, G.; Mace, G. G. R.; Macina, D.; Mackeprang, R.; Macpherson, A.; MacQueen, D.; Macwaters, C.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maidantchik, C.; Maio, A.; Mair, G. M.; Mair, K.; Makida, Y.; Makowiecki, D.; Malecki, P.; Maleev, V. P.; Malek, F.; Malon, D.; Maltezos, S.; Malychev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Manara, A.; Manca, G.; Mandelli, L.; Mandić, I.; Mandl, M.; Maneira, J.; Maneira, M.; Mangeard, P. S.; Mangin-Brinet, M.; Manjavidze, I. D.; Mann, W. A.; Manolopoulos, S.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchesotti, M.; Marcisovsky, M.; Marin, A.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Garcia, S. Marti i.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph; Martinez, G.; Martínez Lacambra, C.; Martinez Outschoorn, V.; Martini, A.; Martins, J.; Maruyama, T.; Marzano, F.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mathes, M.; Matheson, J.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Maugain, J. M.; Maxfield, S. J.; May, E. N.; Mayer, J. K.; Mayri, C.; Mazini, R.; Mazzanti, M.; Mazzanti, P.; Mazzoni, E.; Mazzucato, F.; McKee, S. P.; McCarthy, R. L.; McCormick, C.; McCubbin, N. A.; McDonald, J.; McFarlane, K. W.; McGarvie, S.; McGlone, H.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McMahon, T. J.; McPherson, R. A.; Mechtel, M.; Meder-Marouelli, D.; Medinnis, M.; Meera-Lebbai, R.; Meessen, C.; Mehdiyev, R.; Mehta, A.; Meier, K.; Meinhard, H.; Meinhardt, J.; Meirosu, C.; Meisel, F.; Melamed-Katz, A.; Mellado Garcia, B. R.; Mendes Jorge, P.; Mendez, P.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Merola, L.; Meroni, C.; Merritt, F. S.; Messmer, I.; Metcalfe, J.; Meuser, S.; Meyer, J.-P.; Meyer, T. C.; Meyer, W. T.; Mialkovski, V.; Michelotto, M.; Micu, L.; Middleton, R.; Miele, P.; Migliaccio, A.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikestikova, M.; Mikulec, B.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Miller, W.; Milosavljevic, M.; Milstead, D. A.; Mima, S.; Minaenko, A. A.; Minano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitra, A.; Mitrofanov, G. Y.; Mitsou, V. A.; Miyagawa, P. S.; Miyazaki, Y.; Mjörnmark, J. U.; Mkrtchyan, S.; Mladenov, D.; Moa, T.; Moch, M.; Mochizuki, A.; Mockett, P.; Modesto, P.; Moed, S.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles Valls, R. M.; Molina-Perez, J.; Moll, A.; Moloney, G.; Mommsen, R.; Moneta, L.; Monnier, E.; Montarou, G.; Montesano, S.; Monticelli, F.; Moore, R. W.; Moore, T. B.; Moorhead, G. F.; Moraes, A.; Morel, J.; Moreno, A.; Moreno, D.; Morettini, P.; Morgan, D.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, E. J.; Morris, J.; Morrissey, M. C.; Moser, H. G.; Mosidze, M.; Moszczynski, A.; Mouraviev, S. V.; Mouthuy, T.; Moye, T. H.; Moyse, E. J. W.; Mueller, J.; Müller, M.; Muijs, A.; Muller, T. R.; Munar, A.; Munday, D. J.; Murakami, K.; Murillo Garcia, R.; Murray, W. J.; Myagkov, A. G.; Myska, M.; Nagai, K.; Nagai, Y.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Naito, D.; Nakamura, K.; Nakamura, Y.; Nakano, I.; Nanava, G.; Napier, A.; Nassiakou, M.; Nasteva, I.; Nation, N. R.; Naumann, T.; Nauyock, F.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Neganov, A.; Negri, A.; Negroni, S.; Nelson, C.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neukermans, L.; Nevski, P.; Newcomer, F. M.; Nichols, A.; Nicholson, C.; Nicholson, R.; Nickerson, R. B.; Nicolaidou, R.; Nicoletti, G.; Nicquevert, B.; Niculescu, M.; Nielsen, J.; Niinikoski, T.; Niinimaki, M. J.; Nikitin, N.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, B. S.; Nilsson, P.; Nisati, A.; Nisius, R.; Nodulman, L. J.; Nomachi, M.; Nomoto, H.; Noppe, J.-M.; Nordberg, M.; Norniella Francisco, O.; Norton, P. R.; Novakova, J.; Nowak, M.; Nozaki, M.; Nunes, R.; Nunes Hanninger, G.; Nunnemann, T.; Nyman, T.; O'Connor, P.; O'Neale, S. W.; O'Neil, D. C.; O'Neill, M.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermaier, M.; Oberson, P.; Ochi, A.; Ockenfels, W.; Odaka, S.; Odenthal, I.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohshima, T.; Ohshita, H.; Okawa, H.; Olcese, M.; Olchevski, A. G.; Oliver, C.; Oliver, J.; Olivo Gomez, M.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onea, A.; Onofre, A.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I. O.; Orr, R. S.; Orsini, F.; Osborne, L. S.; Osculati, B.; Osuna, C.; Otec, R.; Othegraven, R.; Ottewell, B.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Øye, O. K.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pailler, P. M.; Pajchel, K.; Palestini, S.; Palla, J.; Pallin, D.; Palmer, M. J.; Pan, Y. B.; Panikashvili, N.; Panin, V. N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadopoulos, I.; Papadopoulou, T.; Park, I.; Park, W.; Parker, M. A.; Parker, S.; Parkman, C.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Passmore, M. S.; Pastore, F.; Pastore, Fr; Pataraia, S.; Pate, D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pauna, E.; Peak, L. S.; Peeters, S. J. M.; Peez, M.; Pei, E.; Peleganchuk, S. V.; Pellegrini, G.; Pengo, R.; Pequenao, J.; Perantoni, M.; Perazzo, A.; Pereira, A.; Perepelkin, E.; Perera, V. J. O.; Perez Codina, E.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrin, E.; Perrino, R.; Perrodo, P.; Perrot, G.; Perus, P.; Peshekhonov, V. D.; Petereit, E.; Petersen, J.; Petersen, T. C.; Petit, P. J. F.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petti, R.; Pezzetti, M.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pier, S.; Pilcher, J. E.; Pilkington, A. D.; Pimenta Dos Santos, M. A.; Pina, J.; Pinfold, J. L.; Ping, J.; Pinhão, J.; Pinto, B.; Pirotte, O.; Placakyte, R.; Placci, A.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Podkladkin, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polak, I.; Polesello, G.; Policicchio, A.; Polini, A.; Polychronakos, V.; Pomarede, D. M.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popescu, R.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Postranecky, M.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Pousada, A.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Prast, J.; Prat, S.; Prata, M.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Primor, D.; Prokofiev, K.; Prosso, E.; Proudfoot, J.; Przysiezniak, H.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylaev, A. N.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Rabbers, J. J.; Radeka, V.; Rafi, J. M.; Ragusa, F.; Rahimi, A. M.; Rahm, D.; Raine, C.; Raith, B.; Rajagopalan, S.; Rajek, S.; Rammer, H.; Ramstedt, M.; Rangod, S.; Ratoff, P. N.; Raufer, T.; Rauscher, F.; Rauter, E.; Raymond, M.; Reads, A. L.; Rebuzzi, D.; Redlinger, G. R.; Reeves, K.; Rehak, M.; Reichold, A.; Reinherz-Aronis, E.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.; Renaudin-Crepe, S. R. C.; Renkel, P.; Rensch, B.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Rewiersma, P.; Rey, J.; Rey-Campagnolle, M.; Rezaie, E.; Reznicek, P.; Richards, R. A.; Richer, J.-P.; Richter, R. H.; Richter, R.; Richter-Was, E.; Ridel, M.; Riegler, W.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rios, R. R.; Riu Dachs, I.; Rivline, M.; Rivoltella, G.; Rizatdinova, F.; Robertson, S. H.; Robichaud-Veronneau, A.; Robins, S.; Robinson, D.; Robson, A.; Rochford, J. H.; Roda, C.; Rodier, S.; Roe, S.; Røhne, O.; Rohrbach, F.; Roldán, J.; Rolli, S.; Romance, J. B.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, F.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruber, R.; Ruckert, B.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruggiero, G.; Ruiz, H.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkine, G.; da Costa, J. Sá; Saavedra, A. F.; Saboumazrag, S.; F-W Sadrozinski, H.; Sadykov, R.; Sakamoto, H.; Sala, P.; Salamon, A.; Saleem, M.; Salihagic, D.; Salt, J.; Saltó Bauza, O.; Salvachúa Ferrando, B. M.; Salvatore, D.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sánchez Sánchez, C. A.; Sanchis Lozano, M. A.; Sanchis Peris, E.; Sandaker, H.; Sander, H. G.; Sandhoff, M.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansone, S.; Sansoni, A.; Santamarina Rios, C.; Santander, J.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Sapinski, M.; Saraiva, J. G.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, D.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Savoy-Navarro, A.; Savva, P.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrissa, E.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schaller, M.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schick, H.; Schieck, J.; Schieferdecker, P.; Schioppa, M.; Schlager, G.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmitt, C.; Schmitt, K.; Schmitz, M.; Schmücker, H.; Schoerner, T.; Scholte, R. C.; Schott, M.; Schouten, D.; Schram, M.; Schricker, A.; Schroff, D.; Schuh, S.; Schuijlenburg, H. W.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schune, Ph; Schwartzman, A.; Schweiger, D.; Schwemling, Ph; Schwick, C.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Secker, H.; Sedykh, E.; Seguin-Moreau, N.; Segura, E.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Selldén, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sexton, K. A.; Sfyrla, A.; Shah, T. P.; Shan, L.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shears, T. G.; Sherwood, P.; Shibata, A.; Shield, P.; Shilov, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shoa, M.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siebel, M.; Siegrist, J.; Sijacki, D.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S.; Sjölin, J.; Skubic, P.; Skvorodnev, N.; Slattery, P.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Small, A.; Smirnov, S. Yu; Smirnov, Y.; Smirnova, L.; Smirnova, O.; Smith, N. A.; Smith, B. C.; Smith, D. S.; Smith, J.; Smith, K. M.; Smith, B.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Soares, S.; Sobie, R.; Sodomka, J.; Söderberg, M.; Soffer, A.; Solans, C. A.; Solar, M.; Sole, D.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solov'yanov, O. V.; Soloviev, I.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sorbi, M.; Soret Medel, J.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Soukup, J.; Spagnolo, S.; Spano, F.; Speckmayer, P.; Spegel, M.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spogli, L.; Spousta, M.; Sprachmann, G.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Staley, R. J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Staroba, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavrianakou, M.; Stavropoulos, G.; Stefanidis, E.; Steffens, J. L.; Stekl, I.; Stelzer, H. J.; Stenzel, H.; Stewart, G.; Stewart, T. D.; Stiller, W.; Stockmanns, T.; Stodulski, M.; Stonjek, S.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandlie, A.; Strauss, M.; Strickland, V.; Striegel, D.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Su, D.; Subramania, S.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suk, M.; Sulin, V. V.; Sultanov, S.; Sun, Z.; Sundal, B.; Sushkov, S.; Susinno, G.; Sutcliffe, P.; Sutton, M. R.; Sviridov, Yu M.; Sykora, I.; Szczygiel, R. R.; Szeless, B.; Szymocha, T.; Sánchez, J.; Ta, D.; Taboada Gameiro, S.; Tadel, M.; Tafirout, R.; Taga, A.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, K.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tappern, G. P.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tarrant, J.; Tartarelli, G.; Tas, P.; Tasevsky, M.; Tayalati, Y.; Taylor, F. E.; Taylor, G.; Taylor, G. N.; Taylor, R. P.; Tcherniatine, V.; Tegenfeldt, F.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Ter-Antonyan, R.; Terada, S.; Terron, J.; Terwort, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thion, J.; Thioye, M.; Thomas, A.; Thomas, J. P.; Thomas, T. L.; Thomas, E.; Thompson, R. J.; Thompson, A. S.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timm, S.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Titov, M.; Tobias, J.; Tocut, V. M.; Toczek, B.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres Pais, J. G.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Towndrow, E. F.; Trefzger, T.; Treichel, M.; Treis, J.; Tremblet, L.; Tribanek, W.; Tricoli, A.; Trigger, I. M.; Trilling, G.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trka, Z.; Trocmé, B.; Troncon, C.; C-L Tseng, J.; Tsiafis, I.; Tsiareshka, P. V.; Tsipolitis, G.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Turala, M.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzamarioudaki, E.; Tzanakos, G.; Ueda, I.; Uhrmacher, M.; Ukegawa, F.; Ullán Comes, M.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urkovsky, E.; Usai, G.; Usov, Y.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valero, A.; Valkar, S.; Valls Ferrer, J. A.; Van der Bij, H.; van der Graaf, H.; van der Kraaij, E.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Van Berg, R.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vannucci, F.; Varanda, M.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vassilieva, L.; Vataga, E.; Vaz, L.; Vazeille, F.; Vedrine, P.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, S.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vertogardov, L.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Vigeolas, E.; Villa, M.; Villani, E. G.; Villate, J.; Villella, I.; Vilucchi, E.; Vincent, P.; Vincke, H.; Vincter, M. G.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vivarelli, I.; Vives, R.; Vives Vaques, F.; Vlachos, S.; Vogt, H.; Vokac, P.; Vollmer, C. F.; Volpi, M.; Volpini, G.; von Boehn-Buchholz, R.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorozhtsov, A. S.; Vorozhtsov, S. B.; Vos, M.; Voss, K. C.; Voss, R.; Vossebeld, J. H.; Vovenko, A. S.; Vranjes, N.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuaridel, B.; Vudragovic, M.; Vuillemin, V.; Vuillermet, R.; Wänanen, A.; Wahlen, H.; Walbersloh, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wallny, R. S.; Walsh, S.; Wang, C.; Wang, J. C.; Wappler, F.; Warburton, A.; Ward, C. P.; Warner, G. P.; Warren, M.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watts, G.; Waugh, A. T.; Waugh, B. M.; Weaverdyck, C.; Webel, M.; Weber, G.; Weber, J.; Weber, M.; Weber, P.; Weidberg, A. R.; Weilhammer, P. M.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wellisch, H. P.; Wells, P. S.; Wemans, A.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werneke, P.; Werner, P.; Werthenbach, U.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiesmann, M.; Wiesmann, M.; Wijnen, T.; Wildauer, A.; Wilhelm, I.; Wilkens, H. G.; Williams, H. H.; Willis, W.; Willocq, S.; Wilmut, I.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winton, L.; Witzeling, W.; Wlodek, T.; Woehrling, E.; Wolter, M. W.; Wolters, H.; Wosiek, B.; Wotschack, J.; Woudstra, M. J.; Wright, C.; Wu, S. L.; Wu, X.; Wuestenfeld, J.; Wunstorf, R.; Xella-Hansen, S.; Xiang, A.; Xie, S.; Xie, Y.; Xu, G.; Xu, N.; Yamamoto, A.; Yamamoto, S.; Yamaoka, H.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, J. C.; Yang, S.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yarradoddi, K.; Yasu, Y.; Ye, J.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, H.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajac, J.; Zajacova, Z.; Zalite, A. Yu; Zalite, Yo K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zendler, C.; Zenin, A. V.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zhang, H.; Zhang, J.; Zheng, W.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, X.; Zhao, Z.; Zhelezko, A.; Zhemchugov, A.; Zheng, S.; Zhichao, L.; Zhou, B.; Zhou, N.; Zhou, S.; Zhou, Y.; Zhu, C. G.; Zhu, H. Z.; Zhuang, X. A.; Zhuravlov, V.; Zilka, B.; Zimin, N. I.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zoeller, M. M.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zychacek, V.

    2008-08-01

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  17. Signatures for Black Hole Production from Hadronic Observables at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Humanic, Thomas J.; Koch, Benjamin; Stöcker, Horst

    The concept of Large Extra Dimensions (LED) provides a way of solving the Hierarchy Problem which concerns the weakness of gravity compared with the strong and electro-weak forces. A consequence of LED is that miniature Black Holes (mini-BHs) may be produced at the Large Hadron Collider in p + p collisions. The present work uses the CHARYBDIS mini-BH generator code to simulate the hadronic signal which might be expected in a mid-rapidity particle tracking detector from the decay of these exotic objects if indeed they are produced. An estimate is also given for Pb+Pb collisions.

  18. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  19. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    2014-04-01

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  20. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    2015-02-01

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  1. Design of superconducting corrector magnets for LHC

    NASA Astrophysics Data System (ADS)

    Baynham, D. E.; Coombs, R. C.; Ijspeert, A.; Perin, R.

    1994-07-01

    The Large Hadron Collider (LHC) will require a range of superconducting corrector magnets. This paper presents the design of sextupole and decapole corrector coils which will be included as spool pieces adjacent to each main ring dipole. The paper gives detailed 3D field computations of the coil configurations to meet LHC beam dynamics requirements. Coil protection within a long string environment is addressed and mechanical design outlines are presented.

  2. Reaching record-low β* at the CERN Large Hadron Collider using a novel scheme of collimator settings and optics

    NASA Astrophysics Data System (ADS)

    Bruce, R.; Bracco, C.; De Maria, R.; Giovannozzi, M.; Mereghetti, A.; Mirarchi, D.; Redaelli, S.; Quaranta, E.; Salvachua, B.

    2017-03-01

    The Large Hadron Collider (LHC) at CERN is built to collide intense proton beams with an unprecedented energy of 7 TeV. The design stored energy per beam of 362 MJ makes the LHC beams highly destructive, so that any beam losses risk to cause quenches of superconducting magnets or damage to accelerator components. Collimators are installed to protect the machine and they define a minimum normalized aperture, below which no other element is allowed. This imposes a limit on the achievable luminosity, since when squeezing β* (the β-function at the collision point) to smaller values for increased luminosity, the β-function in the final focusing system increases. This leads to a smaller normalized aperture that risks to go below the allowed collimation aperture. In the first run of the LHC, this was the main limitation on β*, which was constrained to values above the design specification. In this article, we show through theoretical and experimental studies how tighter collimator openings and a new optics with specific phase-advance constraints allows a β* as small as 40 cm, a factor 2 smaller than β*=80 cm used in 2015 and significantly below the design value β*=55 cm, in spite of a lower beam energy. The proposed configuration with β*=40 cm has been successfully put into operation and has been used throughout 2016 as the LHC baseline. The decrease in β* compared to 2015 has been an essential contribution to reaching and surpassing, in 2016, the LHC design luminosity for the first time, and to accumulating a record-high integrated luminosity of around 40 fb-1 in one year, in spite of using less bunches than in the design.

  3. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82 + 208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  4. HL-LHC and HE-LHC Upgrade Plans and Opportunities for US Participation

    NASA Astrophysics Data System (ADS)

    Apollinari, Giorgio

    2017-01-01

    The US HEP community has identified the exploitation of physics opportunities at the High Luminosity-LHC (HL-LHC) as the highest near-term priority. Thanks to multi-year R&D programs, US National Laboratories and Universities have taken the leadership in the development of technical solutions to increase the LHC luminosity, enabling the HL-LHC Project and uniquely positioning this country to make critical contributions to the LHC luminosity upgrade. This talk will describe the shaping of the US Program to contribute in the next decade to HL-LHC through newly developed technologies such as Nb3Sn focusing magnets or superconducting crab cavities. The experience gained through the execution of the HL-LHC Project in the US will constitute a pool of knowledge and capabilities allowing further developments in the future. Opportunities for US participations in proposed hadron colliders, such as a possible High Energy-LHC (HE-LHC), will be described as well.

  5. Physics Goals and Experimental Challenges of the Proton-Proton High-Luminosity Operation of the LHC

    NASA Astrophysics Data System (ADS)

    Campana, P.; Klute, M.; Wells, P. S.

    2016-10-01

    The completion of Run 1 of the Large Hadron Collider (LHC) at CERN has seen the discovery of the Higgs boson and an unprecedented number of precise measurements of the Standard Model, and Run 2 has begun to provide the first data at higher energy. The high-luminosity upgrade of the LHC (HL-LHC) and the four experiments (ATLAS, CMS, ALICE, and LHCb) will exploit the full potential of the collider to discover and explore new physics beyond the Standard Model. We review the experimental challenges and the physics opportunities in proton-proton collisions at the HL-LHC.

  6. Introducing the LHC in the classroom: an overview of education resources available

    NASA Astrophysics Data System (ADS)

    Wiener, Gerfried J.; Woithe, Julia; Brown, Alexander; Jende, Konrad

    2016-05-01

    In the context of the recent re-start of CERN’s Large Hadron Collider (LHC) and the challenge presented by unidentified falling objects (UFOs), we seek to facilitate the introduction of high energy physics in the classroom. Therefore, this paper provides an overview of the LHC and its operation, highlighting existing education resources, and linking principal components of the LHC to topics in physics curricula.

  7. Introducing the LHC in the Classroom: An Overview of Education Resources Available

    ERIC Educational Resources Information Center

    Wiener, Gerfried J.; Woithe, Julia; Brown, Alexander; Jende, Konrad

    2016-01-01

    In the context of the recent re-start of CERN's Large Hadron Collider (LHC) and the challenge presented by unidentified falling objects (UFOs), we seek to facilitate the introduction of high energy physics in the classroom. Therefore, this paper provides an overview of the LHC and its operation, highlighting existing education resources, and…

  8. Using Data from the Large Hadron Collider in the Classroom

    NASA Astrophysics Data System (ADS)

    Smith, Jeremy

    2017-01-01

    Now is an exciting time for physics students, because they have access to technology and experiments all over the world that were unthinkable a generation ago. Therefore, now is also the ideal time to bring these experiments into the classroom, so students can see what cutting edge science looks like, both in terms of the underlying physics and in terms of the technology used to gather data. With the continued running of the Large Hadron Collider at CERN, and the lab's continued dedication to providing open, worldwide access to their data, there is a unique opportunity for students to use these data in a manner very similar to how it's done in the particle physics community. In this session, we will explore ways for students to analyze real data from the CMS experiment at the LHC, plot these data to discover patterns and signals, and use these plots to determine quantities such as the invariant masses of the W, Z and Higgs bosons. Furthermore, we will show how such activities already fit well into standard introductory physics classes, and can in fact enhance already-existing lessons in the topics of momentum, kinematics, energy and electromagnetism.

  9. A conceptual solution for a beam halo collimation system for the Future Circular hadron-hadron Collider (FCC-hh)

    NASA Astrophysics Data System (ADS)

    Fiascaris, M.; Bruce, R.; Redaelli, S.

    2018-06-01

    We present the first conceptual solution for a collimation system for the hadron-hadron option of the Future Circular Collider (FCC-hh). The collimation layout is based on the scaling of the present Large Hadron Collider collimation system to the FCC-hh energy and it includes betatron and momentum cleaning, as well as dump protection collimators and collimators in the experimental insertions for protection of the final focus triplet magnets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at injection and collision energy taking into account mechanical and optics imperfections. The performance of the system is then assessed through the analysis of normalized halo distributions and complete loss maps for an ideal lattice. The performance limitations are discussed and a solution to improve the system performance with the addition of dispersion suppression collimators around the betatron cleaning insertion is presented.

  10. U.S. Involvement in the LHC

    DOE PAGES

    Green, Dan

    2016-12-14

    The demise of the SSC in the U.S. created an upheaval in the U.S. high energy physics (HEP) community. Here, the subsequent redirection of HEP efforts to the CERN Large Hadron Collider (LHC) can perhaps be seen as informing on possible future paths for worldwide collaboration on future HEP megaprojects.

  11. Rare b-hadron decays as probe of new physics

    NASA Astrophysics Data System (ADS)

    Lanfranchi, Gaia

    2018-05-01

    The unexpected absence of unambiguous signals of New Physics (NP) at the TeV scale at the Large Hadron Collider (LHC) puts today flavor physics at the forefront. In particular, rare decays of b-hadrons represent a unique probe to challenge the Standard Model (SM) paradigm and test models of NP at a scale much higher than that accessible by direct searches. This article reviews the status of the field.

  12. High Luminosity LHC: challenges and plans

    NASA Astrophysics Data System (ADS)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Brüning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, M.; Iadarola, G.; Li, K.; Lechner, A.; Medina Medrano, L.; Métral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomás, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. The dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  13. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, M. J.

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less

  14. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    DOE PAGES

    Tannenbaum, M. J.

    2018-01-30

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less

  15. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    NASA Astrophysics Data System (ADS)

    Tannenbaum, M. J.

    2018-05-01

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/ Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPS p¯ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.

  16. The Lhc Collider:. Status and Outlook to Operation

    NASA Astrophysics Data System (ADS)

    Schmidt, Rüdiger

    2006-04-01

    For the LHC to provide particle physics with proton-proton collisions at the centre of mass energy of 14 TeV with a luminosity of 1034 cm-2s-1, the machine will operate with high-field dipole magnets using NbTi superconductors cooled to below the lambda point of helium. In order to reach design performance, the LHC requires both, the use of existing technologies pushed to the limits as well as the application of novel technologies. The construction follows a decade of intensive R&D and technical validation of major collider sub-systems. This paper will focus on the required LHC performance, and on the implications on the used technologies. The consequences of the unprecedented quantity of energy stored in both magnets and beams will be discussed. A brief outlook to operation and its consequences for machine protection will be given.

  17. Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O(αS4)

    NASA Astrophysics Data System (ADS)

    Czakon, Michał; Fiedler, Paul; Mitov, Alexander

    2013-06-01

    We compute the next-to-next-to-leading order (NNLO) quantum chromodynamics (QCD) correction to the total cross section for the reaction gg→tt¯+X. Together with the partonic channels we computed previously, the result derived in this Letter completes the set of NNLO QCD corrections to the total top pair-production cross section at hadron colliders. Supplementing the fixed order results with soft-gluon resummation with next-to-next-to-leading logarithmic accuracy, we estimate that the theoretical uncertainty of this observable due to unknown higher order corrections is about 3% at the LHC and 2.2% at the Tevatron. We observe a good agreement between the standard model predictions and the available experimental measurements. The very high theoretical precision of this observable allows a new level of scrutiny in parton distribution functions and new physics searches.

  18. Total top-quark pair-production cross section at hadron colliders through O(αS(4)).

    PubMed

    Czakon, Michał; Fiedler, Paul; Mitov, Alexander

    2013-06-21

    We compute the next-to-next-to-leading order (NNLO) quantum chromodynamics (QCD) correction to the total cross section for the reaction gg → tt + X. Together with the partonic channels we computed previously, the result derived in this Letter completes the set of NNLO QCD corrections to the total top pair-production cross section at hadron colliders. Supplementing the fixed order results with soft-gluon resummation with next-to-next-to-leading logarithmic accuracy, we estimate that the theoretical uncertainty of this observable due to unknown higher order corrections is about 3% at the LHC and 2.2% at the Tevatron. We observe a good agreement between the standard model predictions and the available experimental measurements. The very high theoretical precision of this observable allows a new level of scrutiny in parton distribution functions and new physics searches.

  19. Small-x Physics: From HERA to LHC and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonid Frankfurt; Mark Strikman; Christian Weiss

    2005-07-01

    We summarize the lessons learned from studies of hard scattering processes in high-energy electron-proton collisions at HERA and antiproton-proton collisions at the Tevatron, with the aim of predicting new strong interaction phenomena observable in next-generation experiments at the Large Hadron Collider (LHC). Processes reviewed include inclusive deep-inelastic scattering (DIS) at small x exclusive and diffractive processes in DIS and hadron-hadron scattering, as well as color transparency and nuclear shadowing effects. A unified treatment of these processes is outlined, based on factorization theorems of quantum chromodynamics, and using the correspondence between the ''parton'' picture in the infinite-momentum frame and the 'dipole''more » picture of high-energy processes in the target rest frame. The crucial role of the three-dimensional quark and gluon structure of the nucleon is emphasized. A new dynamical effect predicted at high energies is the unitarity, or black disk, limit (BDL) in the interaction of small dipoles with hadronic matter, due to the increase of the gluon density at small x. This effect is marginally visible in diffractive DIS at HERA and will lead to the complete disappearance of Bjorken scaling at higher energies. In hadron-hadron scattering at LHC energies and beyond (cosmic ray physics), the BDL will be a standard feature of the dynamics, with implications for (a) hadron production at forward and central rapidities in central proton-proton and proton-nucleus collisions, in particular events with heavy particle production (Higgs), (b) proton-proton elastic scattering, (c) heavy-ion collisions. We also outline the possibilities for studies of diffractive processes and photon-induced reactions (ultraperipheral collisions) at LHC, as well as possible measurements with a future electron-ion collider.« less

  20. Design study for a staged Very Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter J. Limon et al.

    Advancing accelerator designs and technology to achieve the highest energies has enabled remarkable discoveries in particle physics. This report presents the results of a design study for a new collider at Fermilab that will create exceptional opportunities for particle physics--a two-stage very large hadron collider. In its first stage, the machine provides a facility for energy-frontier particle physics research, at an affordable cost and on a reasonable time scale. In a second-stage upgrade in the same tunnel, the VLHC offers the possibility of reaching 100 times the collision energy of the Tevatron. The existing Fermilab accelerator complex serves as themore » injector, and the collision halls are on the Fermilab site. The Stage-1 VLHC reaches a collision energy of 40 TeV and a luminosity comparable to that of the LHC, using robust superferric magnets of elegant simplicity housed in a large-circumference tunnel. The Stage-2 VLHC, constructed after the scientific potential of the first stage has been fully realized, reaches a collision energy of at least 175 TeV with the installation of high-field magnets in the same tunnel. It makes optimal use of the infrastructure developed for the Stage-1 machine, using the Stage-1 accelerator itself as the injector. The goals of this study, commissioned by the Fermilab Director in November 2000, are: to create reasonable designs for the Stage-1 and Stage-2 VLHC in the same tunnel; to discover the technical challenges and potential impediments to building such a facility at Fermilab; to determine the approximate costs of the major elements of the Stage-1 VLHC; and to identify areas requiring significant R and D to establish the basis for the design.« less

  1. Probing triple-Higgs productions via 4 b 2 γ decay channel at a 100 TeV hadron collider

    DOE PAGES

    Chen, Chien-Yi; Yan, Qi-Shu; Zhao, Xiaoran; ...

    2016-01-11

    We report that the quartic self-coupling of the Standard Model Higgs boson can only be measured by observing the triple-Higgs production process, but it is challenging for the LHC Run 2 or International Linear Collider (ILC) at a few TeV because of its extremely small production rate. In this paper, we present a detailed Monte Carlo simulation study of the triple-Higgs production through gluon fusion at a 100 TeV hadron collider and explore the feasibility of observing this production mode. We focus on the decay channel HHH →more » $$b\\bar{b}$$$b\\bar{b}$$γγ, investigating detector effects and optimizing the kinematic cuts to discriminate the signal from the backgrounds. Our study shows that, in order to observe the Standard Model triple-Higgs signal, the integrated luminosity of a 100 TeV hadron collider should be greater than 1.8×10 4 ab ₋1. We also explore the dependence of the cross section upon the trilinear (λ 3) and quartic (λ 4) self-couplings of the Higgs. Ultimately, we find that, through a search in the triple-Higgs production, the parameters λ 3 and λ 4 can be restricted to the ranges [₋1,5] and [₋20,30], respectively. We also examine how new physics can change the production rate of triple-Higgs events. For example, in the singlet extension of the Standard Model, we find that the triple-Higgs production rate can be increased by a factor of O(10).« less

  2. Suppression of high-pT hadrons in Pb+Pb collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Fang; Hirano, Tetsufumi; Wang, Enke; Wang, Xin-Nian; Zhang, Hanzhong

    2011-09-01

    The nuclear modification factor RAA(pT) for large transverse momentum pion spectra in Pb+Pb collisions at s=2.76 TeV is predicted within the next-to-leading order perturbative QCD parton model. The effect of jet quenching is incorporated through medium-modified fragmentation functions within the higher-twist approach. The jet transport parameter that controls medium modification is proportional to the initial parton density, and the coefficient is fixed by data on the suppression of large-pT hadron spectra obtained at the BNL Relativistic Heavy Ion Collider. Data on charged hadron multiplicity dNch/dη=1584±80 in central Pb+Pb collisions from the ALICE experiment at the CERN Large Hadron Collider are used to constrain the initial parton density both for determining the jet transport parameter and the 3 + 1 dimensional (3 + 1D) ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of RPbPb(pT) for neutral pions.

  3. Kinetic freeze-out conditions for the production of resonances, hadronic molecules, and light nuclei

    NASA Astrophysics Data System (ADS)

    Cho, Sungtae; Song, Taesoo; Lee, Su Houng

    2018-02-01

    We investigate the freeze-out conditions of a particle in an expanding system of interacting particles in order to understand the productions of resonances, hadronic molecules, and light nuclei in heavy-ion collisions. Applying the kinetic freeze-out condition with explicit hydrodynamic calculations for the expanding hadronic phase to the daughter particles of K* mesons, we find that the larger suppression of the yield ratio of K*/K at the Large Hadron Collider (LHC) than at the Relativisitic Heavy Ion Collider (RHIC) compared to the expectations from the statistical hadronization model based on chemical freeze-out parameters reflects the lower kinetic freeze-out temperature at LHC than at RHIC. Furthermore, we point out that for the light nuclei or hadronic molecules that are bound, the freeze-out condition should be applied to the respective particle in the hadronic matter. It is then shown through the rate equation that when the nucleon and pion numbers are kept constant at the chemical freeze-out value during the hadronic phase, the deuteron number quickly approaches an asymptotic value that is close to the statistical model prediction at the chemical freeze-out point. We argue that the reduction seen in K* numbers is a typical result for a particle that has a large natural decay width decaying into daughter particles, while that for deuteron is typical for a stable hadronic bound state.

  4. Design of FPGA-based radiation tolerant quench detectors for LHC

    NASA Astrophysics Data System (ADS)

    Steckert, J.; Skoczen, A.

    2017-04-01

    The Large Hadron Collider (LHC) comprises many superconducting circuits. Most elements of these circuits require active protection. The functionality of the quench detectors was initially implemented as microcontroller based equipment. After the initial stage of the LHC operation with beams the introduction of a new type of quench detector began. This article presents briefly the main ideas and architectures applied to the design and the validation of FPGA-based quench detectors.

  5. LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ABE,T.; DAWSON,S.; HEINEMEYER,S.

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.« less

  6. Linear Collider Physics Resource Book for Snowmass 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peskin, Michael E

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide.« less

  7. Status of the Future Circular Collider Study

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael

    2016-03-01

    Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute, to design an energy frontier hadron collider (FCC-hh) in a new 80-100 km tunnel with a centre-of-mass energy of about 100 TeV, an order of magnitude beyond the LHC's, as a long-term goal. The FCC study also includes the design of a 90-350 GeV high-luminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines will be assessed and concepts for experiments will be developed in time for the next update of the European Strategy for Particle Physics by the end of 2018. The presentation will summarize the status of machine designs and parameters and discuss the essential technical components to be developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets with a field of 16 T for the hadron collider and high-power, high-efficiency RF systems for the lepton collider. In addition the unprecedented beam power presents special challenges for the hadron collider for all aspects of beam handling and machine protection. First conclusions of geological investigations and implementation studies will be presented. The status of the FCC collaboration and the further planning for the study will be outlined.

  8. High Luminosity LHC: Challenges and plans

    DOE PAGES

    Arduini, G.; Barranco, J.; Bertarelli, A.; ...

    2016-12-28

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), willmore » rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb 3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.« less

  9. Processing LHC data in the UK

    PubMed Central

    Colling, D.; Britton, D.; Gordon, J.; Lloyd, S.; Doyle, A.; Gronbech, P.; Coles, J.; Sansum, A.; Patrick, G.; Jones, R.; Middleton, R.; Kelsey, D.; Cass, A.; Geddes, N.; Clark, P.; Barnby, L.

    2013-01-01

    The Large Hadron Collider (LHC) is one of the greatest scientific endeavours to date. The construction of the collider itself and the experiments that collect data from it represent a huge investment, both financially and in terms of human effort, in our hope to understand the way the Universe works at a deeper level. Yet the volumes of data produced are so large that they cannot be analysed at any single computing centre. Instead, the experiments have all adopted distributed computing models based on the LHC Computing Grid. Without the correct functioning of this grid infrastructure the experiments would not be able to understand the data that they have collected. Within the UK, the Grid infrastructure needed by the experiments is provided by the GridPP project. We report on the operations, performance and contributions made to the experiments by the GridPP project during the years of 2010 and 2011—the first two significant years of the running of the LHC. PMID:23230163

  10. Hadron collider searches for diboson resonances

    NASA Astrophysics Data System (ADS)

    Dorigo, Tommaso

    2018-05-01

    This review covers results of searches for new elementary particles that decay into boson pairs (dibosons), performed at the CERN Large Hadron Collider in proton-proton collision data collected by the ATLAS and CMS experiments at 7-, 8-, and 13-TeV center-of-mass energy until the year 2017. The available experimental results of the analysis of final states including most of the possible two-object combinations of W and Z bosons, photons, Higgs bosons, and gluons place stringent constraints on a variety of theoretical ideas that extend the standard model, pushing into the multi-TeV region the scale of allowed new physics phenomena.

  11. Challenges of Particle Flow reconstruction in the CMS High-Granularity Calorimeter at the High-Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Chlebana, Frank; CMS Collaboration

    2017-11-01

    The challenges of the High-Luminosity LHC (HL-LHC) are driven by the large number of overlapping proton-proton collisions (pileup) in each bunch-crossing and the extreme radiation dose to detectors at high pseudorapidity. To overcome this challenge CMS is developing an endcap electromagnetic+hadronic sampling calorimeter employing silicon sensors in the electromagnetic and front hadronic sections, comprising over 6 million channels, and highly-segmented plastic scintillators in the rear part of the hadronic section. This High- Granularity Calorimeter (HGCAL) will be the first of its kind used in a colliding beam experiment. Clustering deposits of energy over many cells and layers is a complex and challenging computational task, particularly in the high-pileup environment of HL-LHC. Baseline detector performance results are presented for electromagnetic and hadronic objects, and studies demonstrating the advantages of fine longitudinal and transverse segmentation are explored.

  12. CERN and LHC - Their Place in Global Science

    ScienceCinema

    None

    2018-01-09

    The Large Hadron Collider (LHC) is the largest scientific instrument in the world. It brings into collision intense beams of protons and ions to explore the structure of matter and investigate the forces of nature at an unprecedented energy scale, thus serving a community of some 7,000 particle physicists from all over the world.

  13. Evidence for x -dependent proton color fluctuations in p A collisions at the CERN Large Hadron Collider

    DOE PAGES

    Alvioli, M.; Cole, B. A.; Frankfurt, L.; ...

    2016-01-21

    The centrality dependence of forward jet production in pA collisions at the Large Hadron Collider (LHC) has been found to grossly violate the Glauber model prediction in a way that depends on the x in the proton. In this paper, we argue that this modification pattern provides the first experimental evidence for x-dependent proton color fluctuation effects. On average, parton configurations in the projectile proton containing a parton with large x interact with a nuclear target with a significantly smaller than average cross section and have smaller than average size. We implement the effects of fluctuations of the interaction strengthmore » and, using the ATLAS analysis of how hadron production at backward rapidities depends on the number of wounded nucleons, make quantitative predictions for the centrality dependence of the jet production rate as a function of the x-dependent interaction strength σ(x). We find that σ(x) ~ 0.6(σ) gives a good description of the data at x = 0.6. Finally, these findings support an explanation of the European Muon Collaboration effect as arising from the suppression of small-size nucleon configurations in the nucleus.« less

  14. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    NASA Astrophysics Data System (ADS)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.

    2015-02-01

    The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  15. Using single top rapidity to measure V{sub td}, V{sub ts}, V{sub tb} at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar-Saavedra, J. A.; Onofre, A.; Departamento de Fisica, Universidade do Minho, P-4710-057 Braga

    2011-04-01

    Single top production processes are usually regarded as the ones in which V{sub tb} can be directly measured at hadron colliders. We show that the analysis of the single top rapidity distribution in t-channel and tW production can also set direct limits on V{sub td}. At LHC with 10 fb{sup -1} at 14 TeV, the combined limits on V{sub td} may be reduced by almost a factor of 2 when the top rapidity distribution is used. This also implies that the limits on V{sub tb} can also be reduced by 15%, since both parameters, as well as V{sub ts}, mustmore » be simultaneously obtained from a global fit to data. At Tevatron, the exploitation of this distribution would require very high statistics.« less

  16. Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation

    NASA Astrophysics Data System (ADS)

    Cacciari, Matteo; Czakon, Michał; Mangano, Michelangelo; Mitov, Alexander; Nason, Paolo

    2012-04-01

    Incorporating all recent theoretical advances, we resum soft-gluon corrections to the total ttbar cross-section at hadron colliders at the next-to-next-to-leading logarithmic (NNLL) order. We perform the resummation in the well established framework of Mellin N-space resummation. We exhaustively study the sources of systematic uncertainty like renormalization and factorization scale variation, power suppressed effects and missing two- and higher-loop corrections. The inclusion of soft-gluon resummation at NNLL brings only a minor decrease in the perturbative uncertainty with respect to the NLL approximation, and a small shift in the central value, consistent with the quoted uncertainties. These numerical predictions agree with the currently available measurements from the Tevatron and LHC and have uncertainty of similar size. We conclude that significant improvements in the ttbar cross-sections can potentially be expected only upon inclusion of the complete NNLO corrections.

  17. The High Luminosity LHC Project

    NASA Astrophysics Data System (ADS)

    Rossi, Lucio

    The High Luminosity LHC is one of the major scientific project of the next decade. It aims at increasing the luminosity reach of LHC by a factor five for peak luminosity and a factor ten in integrated luminosity. The project, now fully approved and funded, will be finished in ten years and will prolong the life of LHC until 2035-2040. It implies deep modifications of the LHC for about 1.2 km around the high luminosity insertions of ATLAS and CMS and relies on new cutting edge technologies. We are developing new advanced superconducting magnets capable of reaching 12 T field; superconducting RF crab cavities capable to rotate the beams with great accuracy; 100 kA and hundred meter long superconducting links for removing the power converter out of the tunnel; new collimator concepts, etc... Beside the important physics goals, the High Luminosity LHC project is an ideal test bed for new technologies for the next hadron collider for the post-LHC era.

  18. High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Gallardo, J. C.

    INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION

  19. New Physics Undercover at the LHC

    NASA Astrophysics Data System (ADS)

    Lou, Hou Keong

    With the completion of 7 TeV and 8 TeV data taking at the Large Hadron Collider (LHC), the physics community witnessed one of the great triumphs of modern physics: the completion of the Standard Model (SM) as an effective theory. The final missing particle, the Higgs boson, was observed and its mass was measured. However, many theoretical questions remain unanswered. What is the source of electroweak symmetry breaking? What is the nature of dark matter? How does gravity fit into the picture? With no definitive hints of new physics at the LHC, we must consider the possibility that our search strategies need to be expanded. Conventional LHC searches focus on theoretically motivated scenarios, such as the Minimal Supersymmetric Standard Models and Little Higgs Theories. However, it is possible that new physics may be entirely different from what we might expect. In this thesis, we examine a variety of scenarios that lead to new physics undercover at the LHC. First we look at potential new physics hiding in Quantum Chromo-Dynamics backgrounds, which may be uncovered using jet substructure techniques in a data-driven way. Then we turn to new long-lived particles hiding in Higgs decay, which may lead to displaced vertices. Such a signal can be unearthed through a data-driven analysis. Then we turn to new physics with ``semi-visible jets'', which lead to missing momentum aligned with jet momentum. These events are vetoed in traditional searches and we demonstrate ways to uncover these signals. Lastly, we explore performance of future colliders in two case studies: Stops and Higgs Portal searches. We show that a 100 TeV collider will lead to significant improvements over 14 TeV LHC runs. Indeed, new physics may lie undercover at the LHC and future colliders, waiting to be discovered.

  20. Linear Collider Physics Resource Book Snowmass 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronan

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be

  1. Very large hadron collider (VLHC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future ofmore » US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.« less

  2. Toward particle-level filtering of individual collision events at the Large Hadron Collider and beyond

    NASA Astrophysics Data System (ADS)

    Colecchia, Federico

    2014-03-01

    Low-energy strong interactions are a major source of background at hadron colliders, and methods of subtracting the associated energy flow are well established in the field. Traditional approaches treat the contamination as diffuse, and estimate background energy levels either by averaging over large data sets or by restricting to given kinematic regions inside individual collision events. On the other hand, more recent techniques take into account the discrete nature of background, most notably by exploiting the presence of substructure inside hard jets, i.e. inside collections of particles originating from scattered hard quarks and gluons. However, none of the existing methods subtract background at the level of individual particles inside events. We illustrate the use of an algorithm that will allow particle-by-particle background discrimination at the Large Hadron Collider, and we envisage this as the basis for a novel event filtering procedure upstream of the official reconstruction chains. Our hope is that this new technique will improve physics analysis when used in combination with state-of-the-art algorithms in high-luminosity hadron collider environments.

  3. A search for technicolor at the large hadron collider

    NASA Astrophysics Data System (ADS)

    Love, Jeremy R.

    The Standard Model of particle physics provides an accurate description of all experimental data to date. The only unobserved piece of the Standard Model is the Higgs boson, a consequence of the spontaneous breaking of electroweak symmetry by the Higgs mechanism. An alternative to the Higgs mechanism is proposed by Technicolor theories which break electroweak symmetry dynamically through a new force. Technicolor predicts many new particles, called Technihadrons, that could be observed by experiments at hadron colliders. This thesis presents a search for two of the lightest Technihadrons, the rhoT and oT. The Low-Scale Technicolor model predicts the phenomenology of these new states. The rhoT and oT are produced through qq annihilation and couple to Standard Model fermions through the Drell-Yan process, which can result in the dimuon final state. The rhoT and oT preferentially decay to the piT and a Standard Model gauge boson if kinematically allowed. Changing the mass of the piT relative to that of the rhoT and o T affects the cross section times branching fraction to dimuons. The rhoT and oT are expected to have masses below about 1 TeV. The Large Hadron Collider (LHC) at CERN outside of Geneva, Switzerland, produces proton-proton collisions with a center of mass energy of 7 TeV. A general purpose high energy physics detector ATLAS has been used in this analysis to search for Technihadrons decaying to two muons. We use the ATLAS detector to reconstruct the tracks of muons with high transverse momentum coming from these proton-proton collisions. The dimuon invariant mass spectrum is analyzed above 130 GeV to test the consistency of the observed data with the Standard Model prediction. We observe excellent agreement between our data and the background only hypothesis, and proceed to set limits on the cross section times branching ratio of the rhoT and oT as a function of their mass using the Low-Scale Technicolor model. We combine the dielectron and dimuon channels

  4. Polarization and Resummation in Slepton Production at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Klasen, M.

    2006-10-01

    In R-parity conserving supersymmetric (SUSY) models, sleptons are produced in pairs at hadron colliders through neutral and charged electroweak currents. We demonstrate that the polarization of the initial hadron beams allows for a direct extraction of the slepton mixing angle and thus for a determination of the underlying SUSY-breaking mechanism. We also perform a first precision calculation of the transverse-momentum ( q T) spectrum of the slepton pairs by resumming soft multiple-gluon emission at next-to-leading logarithmic order. The results show a relevant contribution of resummation both in the small and intermediate q T-regions, which strongly influences the extraction of the missing transverse-momentum signal and the subsequent slepton mass-determination, and little dependence on unphysical scales and non-perturbative contributions.

  5. Physics and Analysis at a Hadron Collider - Searching for New Physics (2/3)

    ScienceCinema

    None

    2017-12-09

    This is the second lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. The lectures are aimed at graduate students.

  6. The fate of long-lived superparticles with hadronic decays after LHC Run 1

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Tweedie, Brock

    2015-06-01

    Supersymmetry searches at the LHC are both highly varied and highly constraining, but the vast majority are focused on cases where the final-stage visible decays are prompt. Scenarios featuring superparticles with detector-scale lifetimes have therefore remained a tantalizing possibility for sub-TeV SUSY, since explicit limits are relatively sparse. Nonetheless, the extremely low backgrounds of the few existing searches for collider-stable and displaced new particles facilitates recastings into powerful long-lived superparticle searches, even for models for which those searches are highly non-optimized. In this paper, we assess the status of such models in the context of baryonic R-parity violation, gauge mediation, and mini-split SUSY. We explore a number of common simplified spectra where hadronic decays can be important, employing recasts of LHC searches that utilize different detector systems and final-state objects. The LSP/NLSP possibilities considered here include generic colored superparticles such as the gluino and light-flavor squarks, as well as the lighter stop and the quasi-degenerate Higgsino multiplet motivated by naturalness. We find that complementary coverage over large swaths of mass and lifetime is achievable by superimposing limits, particularly from CMS's tracker-based displaced dijet search and heavy stable charged particle searches. Adding in prompt searches, we find many cases where a range of sparticle masses is now excluded from zero lifetime to infinite lifetime with no gaps. In other cases, the displaced searches furnish the only extant limits at any lifetime.

  7. Induced activation studies for the LHC upgrade to High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Adorisio, C.; Roesler, S.

    2018-06-01

    The Large Hadron Collider (LHC) will be upgraded in 2019/2020 to increase its luminosity (rate of collisions) by a factor of five beyond its design value and the integrated luminosity by a factor ten, in order to maintain scientific progress and exploit its full capacity. The novel machine configuration, called High Luminosity LHC (HL-LHC), will increase consequently the level of activation of its components. The evaluation of the radiological impact of the HL-LHC operation in the Long Straight Sections of the Insertion Region 1 (ATLAS) and Insertion Region 5 (CMS) is presented. Using the Monte Carlo code FLUKA, ambient dose equivalent rate estimations have been performed on the basis of two announced operating scenarios and using the latest available machine layout. The HL-LHC project requires new technical infrastructure with caverns and 300 m long tunnels along the Insertion Regions 1 and 5. The new underground service galleries will be accessible during the operation of the accelerator machine. The radiological risk assessment for the Civil Engineering work foreseen to start excavating the new galleries in the next LHC Long Shutdown and the radiological impact of the machine operation will be discussed.

  8. Quartified leptonic color, bound states, and future electron–positron collider

    DOE PAGES

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; ...

    2017-04-04

    The [SU(3)] 4 quartification model of Babu, Ma, and Willenbrock (BMW), proposed in 2003, predicts a confining leptonic color SU(2)gauge symmetry, which becomes strong at the keV scale. Also, it predicts the existence of three families of half-charged leptons (hemions) below the TeV scale. These hemions are confined to form bound states which are not so easy to discover at the Large Hadron Collider (LHC). But, just as J/ψand Υ appeared as sharp resonances in e -e +colliders of the 20th century, the corresponding ‘hemionium’ states are expected at a future e -e +collider of the 21st century.

  9. Collider Signal II:. Missing ET Signatures and Dark Matter Connection

    NASA Astrophysics Data System (ADS)

    Baer, Howard

    2010-08-01

    These lectures give an overview of aspects of missing ET signatures from new physics at the LHC, along with their important connection to dark matter physics. Mostly, I will concentrate on supersymmetric (SUSY) sources of ɆT, but will also mention Little Higgs models with T-parity (LHT) and universal extra dimensions (UED) models with KK-parity. Lecture 1 covers SUSY basics, model building and spectra computation. Lecture 2 addresses sparticle production and decay mechanisms at hadron colliders and event generation. Lecture 3 covers SUSY signatures at LHC, along with LHT and UED signatures for comparison. In Lecture 4, I address the dark matter connection, and how direct and indirect dark matter searches, along with LHC collider searches, may allow us to both discover and characterize dark matter in the next several years. Finally, the interesting scenario of Yukawa-unified SUSY is examined; this case works best if the dark matter turns out to be a mixture of axion/axino states, rather than neutralinos.

  10. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun

    Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  11. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Ryu, Sangwook; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2018-03-01

    We describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. We further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  12. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    DOE PAGES

    Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun; ...

    2018-03-15

    Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  13. Qualification of Sub-Atmospheric Pressure Sensors for the Cryomagnet Bayonet Heat Exchangers of the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Bager, T.; Casas-Cubillos, J.; Jeanmonod, N.

    2006-04-01

    The superconducting magnets of the Large Hadron Collider (LHC) will be cooled at 1.9 K by distributed cooling loops working with saturated two-phase superfluid helium flowing in 107 m long bayonet heat exchangers located in each magnet cold-mass cell. The temperature of the magnets could be difficult to control because of the large dynamic heat load variations. Therefore, it is foreseen to measure the heat exchangers pressure to feed the regulation loops with the corresponding saturation temperature. The required uncertainty of the sub-atmospheric saturation pressure measurement shall be of the same order of the one associated to the magnet thermometers, in pressure it translates as ±5 Pa at 1.6 kPa. The transducers shall be radiation hard as they will endure, in the worst case, doses up to 10 kGy and 1015 neutronsṡcm-2 over 10 years. The sensors under evaluation were installed underground in the dump section of the SPS accelerator with a radiation environment close to the one expected for the LHC. The monitoring equipment was installed in a remote radiation protected area. This paper presents the results of the radiation qualification campaign with emphasis on the reliability and accuracy of the pressure sensors under the test conditions.

  14. Catching Collisions in the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fruguiele, Claudia; Hirschauer, Jim

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  15. Catching Collisions in the LHC

    ScienceCinema

    Fruguiele, Claudia; Hirschauer, Jim

    2018-01-16

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  16. Design and performance studies of a hadronic calorimeter for a FCC-hh experiment

    NASA Astrophysics Data System (ADS)

    Faltova, J.

    2018-03-01

    The hadron-hadron Future Circular Collider (FCC-hh) project studies the physics reach of a proton-proton machine with a centre-of-mass-energy of 100 TeV and five times greater peak luminosities than at the High-Luminosity LHC (HL-LHC). The high-energy regime of the FCC-hh opens new opportunities for the discovery of physics beyond the standard model. At 100 TeV a large fraction of the W, Z, H bosons and top quarks are produced with a significant boost. It implies an efficient reconstruction of very high energetic objects decaying hadronically. The reconstruction of those boosted objects sets the calorimeter performance requirements in terms of energy resolution, containment of highly energetic hadron showers, and high transverse granularity. We present the current baseline technologies for the calorimeter system in the barrel region of the FCC-hh reference detector: a liquid argon electromagnetic and a scintillator-steel hadronic calorimeters. The focus of this paper is on the hadronic calorimeter and the performance studies for hadrons. The reconstruction of single particles and the achieved energy resolution for the combined system of the electromagnetic and hadronic calorimeters are discussed.

  17. Signal for a light singlet scalar at the LHC

    NASA Astrophysics Data System (ADS)

    Chang, We-Fu; Modak, Tanmoy; Ng, John N.

    2018-03-01

    In the general Higgs portal-like models, the extra neutral scalar, S , can mix with the Standard Model (SM) Higgs boson, H . We perform an exploratory study focusing on the direct search for such a light singlet S at the Large Hadron Collider (LHC). After careful study of the SM background, we find the process p p →t t ¯ S followed by S →b b ¯ can be used to investigate S with mass in the 20 LHC. The signal significance becomes meaningful with a luminosity around a few ab-1. Also, we study the prospects of finding the light scalar at the future 100 TeV p p collider, the Z and Higgs factories. With similar luminosity, the current Large Electron-Positron Collider (LEP) limits on the mixing between S and H can be improved by at least one or two order of magnitudes.

  18. Large Hadron Collider at CERN: Beams generating high-energy-density matter.

    PubMed

    Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-04-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has

  19. Effects of Resonant and Random Excitations on the Proton Beam in the Large Hadron Collider, with Applications to the Design of Pulsed Hollow Electron Lenses for Active Halo Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitterer, Miriam; Stancari, Giulio; Valishev, Alexander

    We present the results of numerical simulations and experimental studies about the effects of resonant and random excitations on proton losses, emittances, and beam distributions in the Large Hadron Collider (LHC). In addition to shedding light on complex nonlinear effects, these studies are applied to the design of hollow electron lenses (HEL) for active beam halo control. In the High-Luminosity Large Hadron Collider (HL-LHC), a considerable amount of energy will be stored in the beam tails. To control and clean the beam halo, the installation of two hollow electron lenses, one per beam, is being considered. In standard electron-lens operation,more » a proton bunch sees the same electron current at every revolution. Pulsed electron beam operation (i.e., different currents for different turns) is also considered, because it can widen the range of achievable halo removal rates. For an axially symmetric electron beam, only protons in the halo are excited. If a residual field is present at the location of the beam core, these particles are exposed to time-dependent transverse kicks and to noise. We discuss the numerical simulations and the experiments conducted in 2016 and 2017 at injection energy in the LHC. The excitation patterns were generated by the transverse feedback and damping system, which acted as a flexible source of dipole kicks. Proton beam losses, emittances, and transverse distributions were recorded as a function of excitation patterns and strengths. The resonant excitations induced rich dynamical effects and nontrivial changes of the beam distributions, which, to our knowledge, have not previously been observed and studied in this detail. We conclude with a discussion of the tolerable and achievable residual fields and proposals for further studies.« less

  20. Diffractive Higgs boson production at the Fermilab Tevatron and the CERN Large Hadron Collider.

    PubMed

    Enberg, R; Ingelman, G; Kissavos, A; Tîmneanu, N

    2002-08-19

    Improved possibilities to find the Higgs boson in diffractive events, having less hadronic activity, depend on whether the cross section is large enough. Based on the soft color interaction models that successfully describe diffractive hard scattering at DESY HERA and the Fermilab Tevatron, we find that only a few diffractive Higgs events may be produced at the Tevatron, but we predict a substantial rate at the CERN Large Hadron Collider.

  1. Results of searches for extra spatial dimensions in the CMS experiment at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shmatov, S. V., E-mail: Sergei.Shmatov@cern.ch

    2016-03-15

    An overview of basic results of the CMS experiment that concern searches for signals from extra spatial dimensions in the course of the first run of the Large Hadron Collider (LHC) at the c.m. proton–proton collision energies of 00000 and 8 TeV is given.

  2. What hadron collider is required to discover or falsify natural supersymmetry?

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Barger, Vernon; Gainer, James S.; Huang, Peisi; Savoy, Michael; Serce, Hasan; Tata, Xerxes

    2017-11-01

    Weak scale supersymmetry (SUSY) remains a compelling extension of the Standard Model because it stabilizes the quantum corrections to the Higgs and W , Z boson masses. In natural SUSY models these corrections are, by definition, never much larger than the corresponding masses. Natural SUSY models all have an upper limit on the gluino mass, too high to lead to observable signals even at the high luminosity LHC. However, in models with gaugino mass unification, the wino is sufficiently light that supersymmetry discovery is possible in other channels over the entire natural SUSY parameter space with no worse than 3% fine-tuning. Here, we examine the SUSY reach in more general models with and without gaugino mass unification (specifically, natural generalized mirage mediation), and show that the high energy LHC (HE-LHC), a pp collider with √{ s } = 33 TeV, will be able to detect the SUSY signal over the entire allowed mass range. Thus, HE-LHC would either discover or conclusively falsify natural SUSY with better than 3% fine-tuning using a conservative measure that allows for correlations among the model parameters.

  3. Probing top-Z dipole moments at the LHC and ILC

    DOE PAGES

    Röntsch, Raoul; Schulze, Markus

    2015-08-11

    We investigate the weak electric and magnetic dipole moments of top quark-Z boson interactions at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). Their vanishingly small magnitude in the Standard Model makes these couplings ideal for probing New Physics interactions and for exploring the role of top quarks in electroweak symmetry breaking. In our analysis, we consider the production of two top quarks in association with a Z boson at the LHC, and top quark pairs mediated by neutral gauge bosons at the ILC. These processes yield direct sensitivity to top quark-Z boson interactions and complement indirectmore » constraints from electroweak precision data. Our computation is accurate to next-to-leading order in QCD, we include the full decay chain of top quarks and the Z boson, and account for theoretical uncertainties in our constraints. Furthermore, we find that LHC experiments will soon be able to probe weak dipole moments for the first time.« less

  4. Extracting muon momentum scale corrections for hadron collider experiments

    NASA Astrophysics Data System (ADS)

    Bodek, A.; van Dyne, A.; Han, J. Y.; Sakumoto, W.; Strelnikov, A.

    2012-10-01

    We present a simple method for the extraction of corrections for bias in the measurement of the momentum of muons in hadron collider experiments. Such bias can originate from a variety of sources such as detector misalignment, software reconstruction bias, and uncertainties in the magnetic field. The two step method uses the mean <1/p^{μ}T rangle for muons from Z→ μμ decays to determine the momentum scale corrections in bins of charge, η and ϕ. In the second step, the corrections are tuned by using the average invariant mass < MZ_{μμ }rangle of Z→ μμ events in the same bins of charge η and ϕ. The forward-backward asymmetry of Z/ γ ∗→ μμ pairs as a function of μ + μ - mass, and the ϕ distribution of Z bosons in the Collins-Soper frame are used to ascertain that the corrections remove the bias in the momentum measurements for positive versus negatively charged muons. By taking the sum and difference of the momentum scale corrections for positive and negative muons, we isolate additive corrections to 1/p^{μ}T that may originate from misalignments and multiplicative corrections that may originate from mis-modeling of the magnetic field (∫ Bṡ d L). This method has recently been used in the CDF experiment at Fermilab and in the CMS experiment at the Large Hadron Collider at CERN.

  5. Hadron collider tests of neutrino mass-generating mechanisms

    NASA Astrophysics Data System (ADS)

    Ruiz, Richard Efrain

    The Standard Model of particle physics (SM) is presently the best description of nature at small distances and high energies. However, with tiny but nonzero neutrino masses, a Higgs boson mass unstable under radiative corrections, and little guidance on understanding the hierarchy of fermion masses, the SM remains an unsatisfactory description of nature. Well-motivated scenarios that resolve these issues exist but also predict extended gauge (e.g., Left-Right Symmetric Models), scalar (e.g., Supersymmetry), and/or fermion sectors (e.g., Seesaw Models). Hence, discovering such new states would have far-reaching implications. After reviewing basic tenets of the SM and collider physics, several beyond the SM (BSM) scenarios that alleviate these shortcomings are investigated. Emphasis is placed on the production of a heavy Majorana neutrinos at hadron colliders in the context of low-energy, effective theories that simultaneously explain the origin of neutrino masses and their smallness compared to other elementary fermions, the so-called Seesaw Mechanisms. As probes of new physics, rare top quark decays to Higgs bosons in the context of the SM, the Types I and II Two Higgs Doublet Model (2HDM), and the semi-model independent framework of Effective Field Theory (EFT) have also been investigated. Observation prospects and discovery potentials of these models at current and future collider experiments are quantified.

  6. Recent theoretical progress in top quark pair production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander

    2013-05-01

    This is a writeup of a plenary talk given at the conference HCP 2012 held November 2012 in Kyoto, Japan. This writeup reviews recent theoretical developments in the following areas of top quark physics at hadron colliders: (a) the forward-backward asymmetry anomaly at the Tevatron, (b) precision top mass determination, (c) state of the art NLO calculations and (d) progress in NNLO calculations.

  7. Particle production at RHIC and LHC energies

    NASA Astrophysics Data System (ADS)

    Tawfik, A.; Gamal, E.; Shalaby, A. G.

    2015-07-01

    The production of pion, kaon and proton was measured in Pb-Pb collisions at nucleus-nucleus center-of-mass energy sNN = 2.76TeV by the ALICE experiment at Large Hadron Collider (LHC). The particle ratios of these species compared to the RHIC measurements are confronted to the hadron resonance gas (HRG) model and to simulations based on the event generators PYTHIA 6.4.21 and HIJING 1.36. It is found that the homogeneous particle-antiparticle ratios (same species) are fully reproducible by means of HRG and partly by PYTHIA 6.4.21 and HIJING 1.36. The mixed kaon-pion and proton-pion ratios measured at RHIC and LHC energies seem to be reproducible by the HRG model. On the other hand, the strange abundances are underestimated in both event generators. This might be originated to strangeness suppression in the event generators and/or possible strangeness enhancement in the experimental data. It is apparent that the values of kaon-pion ratios are not sensitive to the huge increase of sNN from 200 (RHIC) to 2760 GeV (LHC). We conclude that the ratios of produced particle at LHC seem not depending on the system size.

  8. Top Quark and Higgs Boson Physics at LHC-ATLAS

    NASA Astrophysics Data System (ADS)

    Tomoto, M.

    2013-03-01

    One of the main goal of the Large Hadron Collider (LHC) experiments at CERN in Switzerland is to aim to solve the "origin of the mass" by discovering the Higgs boson and understanding the interaction of the Higgs boson with the elementary particles. The ATLAS, which is one of the LHC experiments has taken about 5 fb-1 of physics quality data and published several results with regard to the "origin of the mass" since March 2010. This presentation focuses on the latest results of the heaviest elementary particle, namely, top quark physics and the Higgs boson searches from ATLAS.

  9. Physics and Analysis at a Hadron Collider - Making Measurements (3/3)

    ScienceCinema

    Glenzinski, Douglas

    2018-02-26

    This is the third lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This third lecture discusses techniques important for analyses making a measurement (e.g. determining a cross section or a particle property such as its mass or lifetime) using some CDF top-quark analyses as specific examples. The lectures are aimed at graduate students.

  10. Hadronic production of Bs(*) at the Tevatron and LHC

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Wei; Fang, Zhen-Yun; Chang, Chao-Hsi; Wu, Xing-Gang; Zhong, Tao; Yu, Yao

    2009-06-01

    We study the hadronic production of Bs and Bs* mesons within the fixed-flavor-number scheme, in which the dominant gluon-gluon fusion mechanism is dealt with by using the complete αs4 approach. Main theoretical uncertainties for Bs and Bs* production at the Tevatron and LHC are presented. It is found that when ms increases by steps of 0.1 GeV, the integrated cross section of Bs(*) decreases by 80%-100%. When mb increases by steps of 0.1 GeV, it changes by ˜10%, while the uncertainties caused by the parton distribution function and the factorization scale vary within the region of (1)/(5) to (1)/(3). Considering a possible kinematic cut on the transverse momentum and the rapidity cut for the detectors at the Tevatron and LHC, we also make estimations on the Bs and Bs* production with various kinematic cuts.

  11. Al-Qaeda arrest casts shadow over the LHC

    NASA Astrophysics Data System (ADS)

    Dacey, James

    2009-11-01

    CERN remains on course for the imminent switch-on of the Large Hadron Collider (LHC) despite the media frenzy following the recent arrest of a physicist who had been working at the facility. The researcher in question is a 32-year-old man of Algerian descent who is expected to face trial in France - the country in which he was arrested. His name is yet to be formally identified under French judicial rules.

  12. Strategies for probing nonminimal dark sectors at colliders: The interplay between cuts and kinematic distributions

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.; Su, Shufang; Thomas, Brooks

    2015-03-01

    In this paper, we examine the strategies and prospects for distinguishing between traditional dark-matter models and models with nonminimal dark sectors—including models of Dynamical Dark Matter—at hadron colliders. For concreteness, we focus on events with two hadronic jets and large missing transverse energy at the Large Hadron Collider (LHC). As we discuss, simple "bump-hunting" searches are not sufficient; probing nonminimal dark sectors typically requires an analysis of the actual shapes of the distributions of relevant kinematic variables. We therefore begin by identifying those kinematic variables whose distributions are particularly suited to this task. However, as we demonstrate, this then leads to a number of additional subtleties, since cuts imposed on the data for the purpose of background reduction can at the same time have the unintended consequence of distorting these distributions in unexpected ways, thereby obscuring signals of new physics. We therefore proceed to study the correlations between several of the most popular relevant kinematic variables currently on the market, and investigate how imposing cuts on one or more of these variables can impact the distributions of others. Finally, we combine our results in order to assess the prospects for distinguishing nonminimal dark sectors in this channel at the upgraded LHC.

  13. Top-philic Z ' forces at the LHC

    NASA Astrophysics Data System (ADS)

    Fox, Patrick J.; Low, Ian; Zhang, Yue

    2018-03-01

    Despite extensive searches for an additional neutral massive gauge boson at the LHC, a Z ' at the weak scale could still be present if its couplings to the first two generations of quarks are suppressed, in which case the production in hadron colliders relies on tree-level processes in association with heavy flavors or one-loop processes in association with a jet. We consider the low-energy effective theory of a top-philic Z ' and present possible UV completions. We clarify theoretical subtleties in evaluating the production of a top-philic Z ' at the LHC and examine carefully the treatment of ananomalous Z ' current in the low-energy effective theory. Recipes for properly computing the production rate in the Z ' + j channel are given. We discuss constraints from colliders and low-energy probes of new physics. As an application, we apply these considerations to models that use a weak-scale Z ' to explain possible violations of lepton universality in B meson decays, and show that the future running of a high luminosity LHC can potentially cover much of the remaining parameter space favored by this particular interpretation of the B physics anomaly.

  14. Thermal Photon Radiation in High Multiplicity p + Pb Collisions at the Large Hadron Collider

    DOE PAGES

    Shen, Chun; Paquet, Jean-François; Denicol, Gabriel S.; ...

    2016-02-18

    We observed the collective behavior of hadronic particles in high multiplicity proton-lead collisions at the Large Hadron Collider, as well as in deuteron-gold collisions at the Relativistic Heavy-Ion Collider. In our work we present the first calculation, in the hydrodynamic framework, of thermal photon radiation from such small collision systems. Owing to their compact size, these systems can reach temperatures comparable to those in central nucleus-nucleus collisions. Moreover, the thermal photons can thus shine over the prompt background, and increase the low p T direct photon spectrum by a factor of 2–3 in 0%–1% p+Pb collisions at 5.02 TeV. Thismore » thermal photon enhancement can therefore serve as a signature of the existence of a hot quark-gluon plasma during the evolution of these small collision systems, as well as validate hydrodynamic behavior in small systems.« less

  15. Pena to review LHC agreement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, A.

    The US government plans to review its tentative agreement with Europe to help build the Large Hadron Collider (LHC), to make sure it is a good deal for this country. The review, announced last week by Energy Secretary Federico Pena, comes at the urging of Representative James Sensenbrenner (RWI), who chairs the House Science Committee. Agency officials say they are confident that most of the lawmaker`s concerns can be met with only minor changes to the proposed partnership, while European managers insist that the current agreement already addresses most of Sensenbrenner`s worries.

  16. Searches for Physics Beyond the Standard Model and Triggering on Proton-Proton Collisions at 14 TEV LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittich, Peter

    2011-10-14

    This document describes the work achieved under the OJI award received May 2008 by Peter Wittich as Principal Investigator. The proposal covers experimental particle physics project searching for physics beyond the standard model at the Large Hadron Collider (LHC) at the European Organization for Nuclear Research.

  17. Impact of 7-TeV/c large hadron collider proton beam on a copper target

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Goddard, B.; Kain, V.; Schmidt, R.; Shutov, A.; Lomonosov, I. V.; Piriz, A. R.; Temporal, M.; Hoffmann, D. H. H.; Fortov, V. E.

    2005-04-01

    The large hadron collider (LHC) will allow for collision between two 7TeV/c proton beams, each comprising 2808 bunches with 1.1×1011 protons per bunch, traveling in opposite direction. The bunch length is 0.5ns and two neighboring bunches are separated by 25ns so that the duration of the entire beam is about 89μs. The beam power profile in the transverse direction is a Gaussian with a standard deviation of 0.2mm. The energy stored in each beam is about 350MJ that is sufficient to melt 500kg of copper. In case of a failure in the machine protection systems, the entire beam could impact directly onto an accelerator equipment. A first estimate of the scale of damage resulting from such a failure has been assessed for a solid copper target hit by the beam by carrying out three-dimensional energy deposition calculations and two-dimensional numerical simulations of the hydrodynamic and thermodynamic response of the target. This work has shown that the penetration depth of the LHC protons will be between 10 and 40m in solid copper. These calculations show that material conditions obtained in the target are similar to those planned for beam impact at dedicated accelerators designed to study the physics of high-energy-density states of matter, for example, the Facility for Antiprotons and Ion Research at the Gesellschaft für Schwerionenforschung, Darmstadt [W. F. Henning, Nucl. Instrum Methods Phys. Res. B 214, 211 (2004)].

  18. Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.

    2017-12-01

    Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.

  19. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitterer, M.; Stancari, G.; Valishev, A.

    2017-06-13

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  20. Heavy color-octet particles at the LHC

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Yi; Freitas, Ayres; Han, Tao; Lee, Keith S. M.

    2015-05-01

    Many new-physics models, especially those with a color-triplet top-quark partner, contain a heavy color-octet state. The "naturalness" argument for a light Higgs boson requires that the color-octet state be not much heavier than a TeV, and thus it can be pair-produced with large cross sections at high-energy hadron colliders. It may decay preferentially to a top quark plus a top partner, which subsequently decays to a top quark plus a color-singlet state. This singlet can serve as a WIMP dark-matter candidate. Such decay chains lead to a spectacular signal of four top quarks plus missing energy. We pursue a general categorization of the color-octet states and their decay products according to their spin and gauge quantum numbers. We review the current bounds on the new states at the LHC and study the expected discovery reach at the 8-TeV and 14-TeV runs. We also present the production rates at a future 100-TeV hadron collider, where the cross sections will be many orders of magnitude greater than at the 14-TeV LHC. Furthermore, we explore the extent to which one can determine the color octet's mass, spin, and chiral couplings. Finally, we propose a test to determine whether the fermionic color octet is a Majorana particle.

  1. Heavy color-octet particles at the LHC

    DOE PAGES

    Chen, Chien-Yi; Freitas, Ayres; Han, Tao; ...

    2015-05-26

    Many new-physics models, especially those with a color-triplet top-quark partner, contain a heavy color-octet state. The “naturalness” argument for a light Higgs boson requires that the color-octet state be not much heavier than a TeV, and thus it can be pair-produced with large cross sections at high-energy hadron colliders. It may decay preferentially to a top quark plus a top partner, which subsequently decays to a top quark plus a color-singlet state. This singlet can serve as a WIMP dark-matter candidate. Such decay chains lead to a spectacular signal of four top quarks plus missing energy. We pursue a generalmore » categorization of the color-octet states and their decay products according to their spin and gauge quantum numbers. Here, we review the current bounds on the new states at the LHC and study the expected discovery reach at the 8-TeV and 14-TeV runs. We also present the production rates at a future 100-TeV hadron collider, where the cross sections will be many orders of magnitude greater than at the 14-TeV LHC. Furthermore, we explore the extent to which one can determine the color octet’s mass, spin, and chiral couplings. Finally, we propose a test to determine whether the fermionic color octet is a Majorana particle.« less

  2. Analog VS Digital Hadron Calorimetry at a Future Electron-Positron Linear Collider

    NASA Astrophysics Data System (ADS)

    Magill, Stephen R.

    2005-02-01

    Precision jet measurements at a future e+e- linear collider may only be possible using so-called Particle Flow Algorithms (PFAs). While there are many possible implementations of P-flow techniques, they all have in common separation of induced calorimeter showers from charged and neutral hadrons (as well as photons) within a jet. Shower reconstruction in the calorimeter becomes more important than energy measurement of hadrons. The calorimeter cells must be highly granular both transverse to the particle trajectory and in longitudinal segmentation. It is probable that as the cell size decreases, it will be harder to get an energy measure from each cell (analog calorimetry). Using only the hit information (digital calorimetry) may be the best way to measure the neutral hadron energy contribution to jets. In this paper, comparisons of analog and digital methods of measuring the contributions of neutral hadrons to jets are made in simulation and in the context of a particular PFA, indicating that the digital method is at least equal to the analog case in jet energy resolution.

  3. The Quirky Collider Signals of Folded Supersymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdman, Gustavo; Chacko, Z.; Goh, Hock-Seng

    2008-08-01

    We investigate the collider signals associated with scalar quirks ('squirks') in folded supersymmetric models. As opposed to regular superpartners in supersymmetric models these particles are uncolored, but are instead charged under a new confining group, leading to radically different collider signals. Due to the new strong dynamics, squirks that are pair produced do not hadronize separately, but rather form a highly excited bound state. The excited 'squirkonium' loses energy to radiation before annihilating back into Standard Model particles. We calculate the branching fractions into various channels for this process, which is prompt on collider time-scales. The most promising annihilation channelmore » for discovery is W+photon which dominates for squirkonium near its ground state. We demonstrate the feasibility of the LHC search, showing that the mass peak is visible above the SM continuum background and estimate the discovery reach.« less

  4. Particle Physics after the Higgs-Boson Discovery: Opportunities for the Large Hadron Collider

    DOE PAGES

    Quigg, Chris

    2015-08-24

    The first run of the Large Hadron Collider at CERN brought the discovery of the Higgs boson, an apparently elementary scalar particle with a mass of 125 GeV, the avatar of the mechanism that hides the electroweak symmetry. Then, a new round of experimentation is beginning, with the energy of the proton–proton colliding beams raised to 6.5 TeV per beam, from 4 TeV at the end of the first run. I summarize what we have learned about the Higgs boson, and calls attention to some issues that will be among our central concerns in the near future.

  5. NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels

    NASA Astrophysics Data System (ADS)

    Czakon, Michal; Mitov, Alexander

    2012-12-01

    This is a second paper in our ongoing calculation of the next-to-next-to-leading order (NNLO) QCD correction to the total inclusive top-pair production cross-section at hadron colliders. In this paper we calculate the reaction qoverline{q}to toverline{t}+qoverline{q} which was not considered in our previous work on qoverline{q}to toverline{t}+X [1] due to its phenomenologically negligible size. We also calculate all remaining fermion-pair-initiated partonic channels q{q^' }} , q{{overline{q}}^' }} and qq that contribute to top-pair production starting from NNLO. The contributions of these reactions to the total cross-section for top-pair production at the Tevatron and LHC are small, at the permil level. The most interesting feature of these reactions is their characteristic logarithmic rise in the high energy limit. We compute the constant term in the leading power behavior in this limit, and achieve precision that is an order of magnitude better than the precision of a recent theoretical prediction for this constant. All four partonic reactions computed in this paper are included in our numerical program Top++. The calculation of the NNLO corrections to the two remaining partonic reactions, qgto toverline{t}+X and ggto toverline{t}+X , is ongoing.

  6. Determining the structure of Higgs couplings at the CERN LargeHadron Collider.

    PubMed

    Plehn, Tilman; Rainwater, David; Zeppenfeld, Dieter

    2002-02-04

    Higgs boson production via weak boson fusion at the CERN Large Hadron Collider has the capability to determine the dominant CP nature of a Higgs boson, via the tensor structure of its coupling to weak bosons. This information is contained in the azimuthal angle distribution of the two outgoing forward tagging jets. The technique is independent of both the Higgs boson mass and the observed decay channel.

  7. Introduction to the HL-LHC Project

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Brüning, O.

    The Large Hadron Collider (LHC) is one of largest scientific instruments ever built. It has been exploring the new energy frontier since 2010, gathering a global user community of 7,000 scientists. To extend its discovery potential, the LHC will need a major upgrade in the 2020s to increase its luminosity (rate of collisions) by a factor of five beyond its design value and the integrated luminosity by a factor of ten. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about ten years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 11-12 tesla superconducting magnets, very compact superconducting cavities for beam rotation with ultra-precise phase control, new technology for beam collimation and 300-meter-long high-power superconducting links with negligible energy dissipation. HL-LHC federates efforts and R&D of a large community in Europe, in the US and in Japan, which will facilitate the implementation of the construction phase as a global project.

  8. The PDF4LHC report on PDFs and LHC data: Results from Run I and preparation for Run II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojo, Juan; Accardi, Alberto; Ball, Richard D.

    2015-09-16

    The accurate determination of Parton Distribution Functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterization and precision Standard Model measurements to New Physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. In this report we summarize the information that PDF-sensitive measurements at the LHC have provided somore » far, and review the prospects for further constraining PDFs with data from the recently started Run II. As a result, this document aims to provide useful input to the LHC collaborations to prioritize their PDF-sensitive measurements at Run II, as well as a comprehensive reference for the PDF-fitting collaborations.« less

  9. Probing dark matter at the LHC using vector boson fusion processes.

    PubMed

    Delannoy, Andres G; Dutta, Bhaskar; Gurrola, Alfredo; Johns, Will; Kamon, Teruki; Luiggi, Eduardo; Melo, Andrew; Sheldon, Paul; Sinha, Kuver; Wang, Kechen; Wu, Sean

    2013-08-09

    Vector boson fusion processes at the Large Hadron Collider (LHC) provide a unique opportunity to search for new physics with electroweak couplings. A feasibility study for the search of supersymmetric dark matter in the final state of two vector boson fusion jets and large missing transverse energy is presented at 14 TeV. Prospects for determining the dark matter relic density are studied for the cases of wino and bino-Higgsino dark matter. The LHC could probe wino dark matter with mass up to approximately 600 GeV with a luminosity of 1000  fb(-1).

  10. Run II of the LHC: The Accelerator Science

    NASA Astrophysics Data System (ADS)

    Redaelli, Stefano

    2015-04-01

    In 2015 the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) starts its Run II operation. After the successful Run I at 3.5 TeV and 4 TeV in the 2010-2013 period, a first long shutdown (LS1) was mainly dedicated to the consolidation of the LHC magnet interconnections, to allow the LHC to operate at its design beam energy of 7 TeV. Other key accelerator systems have also been improved to optimize the performance reach at higher beam energies. After a review of the LS1 activities, the status of the LHC start-up progress is reported, addressing in particular the status of the LHC hardware commissioning and of the training campaign of superconducting magnets that will determine the operation beam energy in 2015. Then, the plans for the Run II operation are reviewed in detail, covering choice of initial machine parameters and strategy to improve the Run II performance. Future prospects of the LHC and its upgrade plans are also presented.

  11. Collider effects of unparticle interactions in multiphoton signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliev, T. M.; Frank, Mariana; Turan, Ismail

    2009-12-01

    A new model of physics, with a hidden conformal sector which manifests itself as an unparticle coupling to standard model particles effectively through higher dimensional operators, predicts strong collider signals due to unparticle self-interactions. We perform a complete analysis of the most spectacular of these signals at the hadron collider, pp(p){yields}{gamma}{gamma}{gamma}{gamma} and {gamma}{gamma}gg. These processes can go through the three-point unparticle self-interactions as well as through some s and t channel diagrams with one and/or two unparticle exchanges. We study the contributions of individual diagrams classified with respect to the number of unparticle exchanges and discuss their effect on themore » cross sections at the Tevatron and the LHC. We also restrict the Tevatron bound on the unknown coefficient of the three-point unparticle correlator. With the availability of data from the Tevatron, and the advent of the data emerging from the LHC, these interactions can provide a clear and strong indication of unparticle physics and distinguish this model from other beyond the standard model scenarios.« less

  12. Dihadron production at the LHC: full next-to-leading BFKL calculation

    NASA Astrophysics Data System (ADS)

    Celiberto, Francesco G.; Ivanov, Dmitry Yu.; Murdaca, Beatrice; Papa, Alessandro

    2017-06-01

    The study of the inclusive production of a pair of charged light hadrons (a "dihadron" system) featuring high transverse momenta and well separated in rapidity represents a clear channel for the test of the BFKL dynamics at the Large Hadron Collider (LHC). This process has much in common with the well-known Mueller-Navelet jet production; however, hadrons can be detected at much smaller values of the transverse momentum than jets, thus allowing to explore an additional kinematic range, supplementary to the one studied with Mueller-Navelet jets. Furthermore, it makes it possible to constrain not only the parton densities (PDFs) for the initial proton, but also the parton fragmentation functions (FFs) describing the detected hadron in the final state. Here, we present the first full NLA BFKL analysis for cross sections and azimuthal angle correlations for dihadrons produced in the LHC kinematic ranges. We make use of the Brodsky-Lapage-Mackenzie optimization method to set the values of the renormalization scale and study the effect of choosing different values for the factorization scale. We also gauge the uncertainty coming from the use of different PDF and FF parametrizations.

  13. Prospects for colliders and collider physics to the 1 PeV energy scale

    NASA Astrophysics Data System (ADS)

    King, Bruce J.

    2000-08-01

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing our progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC—one each of e+e- and hadron colliders and three μ+μ- colliders — and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R&D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  14. LHC Status and Upgrade Challenges

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey

    2009-11-01

    The Large Hadron Collider has had a trying start-up and a challenging operational future lays ahead. Critical to the machine's performance is controlling a beam of particles whose stored energy is equivalent to 80 kg of TNT. Unavoidable beam losses result in energy deposition throughout the machine and without adequate protection this power would result in quenching of the superconducting magnets. A brief overview of the machine layout and principles of operation will be reviewed including a summary of the September 2008 accident. The current status of the LHC, startup schedule and upgrade options to achieve the target luminosity will be presented.

  15. Multiplicity fluctuations and collective flow in small colliding systems

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Koji; Murase, Koichi; Hirano, Tetsufumi

    2017-11-01

    Recent observation of collective-flow-like behaviours in small colliding systems attracts significant theoretical and experimental interests. In large colliding systems, large collective flow has been interpreted as manifestation of almost-perfect fluidity of the quark gluon plasma (QGP). So it is quite intriguing to explore how small the QGP can be as a fluid. Multiplicity fluctuations play a crucial role in centrality definition of the events in small colliding systems since the fluctuations are, in general, more important as the system size is getting smaller. To consider the correct multiplicity fluctuations, we employ PYTHIA which naturally describes multiplicity distribution in p+p collisions. We superpose p+p collisions by taking into account the number of participants and that of binary collisions from Monte-Carlo version of Glauber model and evaluate initial entropy density distributions which contain not only multiplicity fluctuations but also fluctuations of longitudinal profiles. Solving hydrodynamic equations followed by the hadronic afterburner, we calculate transverse momentum spectra, elliptic and triangular flow parameters in p+Au, d+Au and 3He+Au collisions at the RHIC energy and p+Pb collisions at the LHC energy. Although a large fraction of final anisotropic flow parameters comes from the fluid-dynamical stage, the effects of hadronic rescatterings turn out to be also important as well in understanding of the flow data in small colliding systems.

  16. Illuminating new electroweak states at hadron colliders

    DOE PAGES

    Ismail, Ahmed; Izaguirre, Eder; Shuve, Brian

    2016-07-01

    In this paper, we propose a novel powerful strategy to perform searches for new electroweak states. Uncolored electroweak states appear in generic extensions of the Standard Model (SM) and yet are challenging to discover at hadron colliders. This problem is particularly acute when the lightest state in the electroweak multiplet is neutral and all multiplet components are approximately degenerate. In this scenario, production of the charged fields of the multiplet is followed by decay into nearly invisible states; if this decay occurs promptly, the only way to infer the presence of the reaction is through its missing energy signature. Ourmore » proposal relies on emission of photon radiation from the new charged states as a means of discriminating the signal from SM backgrounds. Lastly, we demonstrate its broad applicability by studying two examples: a pure Higgsino doublet and an electroweak quintuplet field.« less

  17. Illuminating new electroweak states at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Ahmed; Izaguirre, Eder; Shuve, Brian

    In this paper, we propose a novel powerful strategy to perform searches for new electroweak states. Uncolored electroweak states appear in generic extensions of the Standard Model (SM) and yet are challenging to discover at hadron colliders. This problem is particularly acute when the lightest state in the electroweak multiplet is neutral and all multiplet components are approximately degenerate. In this scenario, production of the charged fields of the multiplet is followed by decay into nearly invisible states; if this decay occurs promptly, the only way to infer the presence of the reaction is through its missing energy signature. Ourmore » proposal relies on emission of photon radiation from the new charged states as a means of discriminating the signal from SM backgrounds. Lastly, we demonstrate its broad applicability by studying two examples: a pure Higgsino doublet and an electroweak quintuplet field.« less

  18. Top-philic Z' forces at the LHC

    DOE PAGES

    Fox, Patrick J.; Low, Ian; Northwestern Univ., Evanston, IL; ...

    2018-03-13

    Despite extensive searches for an additional neutral massive gauge boson at the LHC, amore » $$Z^\\prime$$ at the weak scale could still be present if its couplings to the first two generations of quarks are suppressed, in which case the production in hadron colliders relies on tree-level processes in association with heavy flavors or one-loop processes in association with a jet. Here, we consider the low-energy effective theory of a top-philic $Z'$ and present possible UV completions. We clarify theoretical subtleties in evaluating the production of a top-philic $Z'$ at the LHC and examine carefully the treatment of an anomalous $Z'$ current in the low-energy effective theory. Recipes for properly computing the production rate in the $Z'+j$ channel are given. We discuss constraints from colliders and low-energy probes of new physics. As an application, we apply these considerations to models that use a weak-scale $Z'$ to explain possible violations of lepton universality in $B$ meson decays, and show that the future running of a high luminosity LHC can potentially cover much of the remaining parameter space favored by this particular interpretation of the $B$ physics anomaly.« less

  19. Creating the Primordial Quark-Gluon Plasma at the LHC

    NASA Astrophysics Data System (ADS)

    Harris, John W.

    2013-04-01

    Ultra-relativistic collisions of heavy ions at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) create an extremely hot system at temperatures (T) expected only within the first microseconds after the Big Bang. At these temperatures (T ˜ 2 x 10^12 K), a few hundred thousand times hotter than the sun's core, the known ``elementary'' particles cannot exist and matter ``melts'' to form a ``soup'' of quarks and gluons, called the quark-gluon plasma (QGP). This ``soup'' flows easily, with extremely low viscosity, suggesting a nearly perfect hot liquid of quarks and gluons. Furthermore, the liquid is dense, highly interacting and opaque to energetic probes (fast quarks or gluons). RHIC has been in operation for twelve years and has established an impressive set of findings. Recent results from heavy ion collisions at the LHC extend the study of the QGP to higher temperatures and harder probes, such as jets (energetic clusters of particles), particles with extremely large transverse momenta and those containing heavy quarks. I will present a motivation for physics in the field and an overview of the new LHC heavy ion results in relation to results from RHIC.

  20. Intercontinental Multi-Domain Monitoring for LHC with perfSONAR

    NASA Astrophysics Data System (ADS)

    Vicinanza, D.

    2012-12-01

    The Large Hadron Collider (LHC) is currently running at CERN in Geneva, Switzerland. Physicists are using LHC to recreate the conditions just after the Big Bang, by colliding two beams of particles and heavy ions head-on at very high energy. The project is generating more than 15 TB of raw data per year, plus 10 TB of “event summary data”. This data is sent out from CERN to eleven Tier 1 research centres in Europe, Asia, and North America using a multi-gigabits Optical Private Network (OPN), the LHCOPN. Tier 1 sites are then connected to 100+ academic and research institutions in the world (the Tier 2s) through a Multipoint to Multipoint network, the LHC Open Network Environment (LHCONE). Network monitoring on such complex network architecture to ensure robust and reliable operation is of crucial importance. The chosen approach for monitoring the OPN and ONE is based on the perfSONAR framework, which is designed for multi-domain monitoring environments. perfSONAR (www.perfsonar.net) is an infrastructure for performance monitoring data exchange between networks, making it easier to solve performance problems occurring between network measurement points interconnected through several network domains.

  1. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  2. The upgrade of the CMS hadron calorimeter with silicon photomultipliers

    DOE PAGES

    Strobbe, N.

    2017-01-26

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. Here, this paper discusses the motivation for the upgrade and provides a description 17 of the new system, including the SiPMs with associated controlmore » electronics and the front-end readout cards.« less

  3. LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN

    NASA Astrophysics Data System (ADS)

    Barranco, Javier; Cai, Yunhai; Cameron, David; Crouch, Matthew; Maria, Riccardo De; Field, Laurence; Giovannozzi, Massimo; Hermes, Pascal; Høimyr, Nils; Kaltchev, Dobrin; Karastathis, Nikos; Luzzi, Cinzia; Maclean, Ewen; McIntosh, Eric; Mereghetti, Alessio; Molson, James; Nosochkov, Yuri; Pieloni, Tatiana; Reid, Ivan D.; Rivkin, Lenny; Segal, Ben; Sjobak, Kyrre; Skands, Peter; Tambasco, Claudia; Veken, Frederik Van der; Zacharov, Igor

    2017-12-01

    The LHC@Home BOINC project has provided computing capacity for numerical simulations to researchers at CERN since 2004, and has since 2011 been expanded with a wider range of applications. The traditional CERN accelerator physics simulation code SixTrack enjoys continuing volunteers support, and thanks to virtualisation a number of applications from the LHC experiment collaborations and particle theory groups have joined the consolidated LHC@Home BOINC project. This paper addresses the challenges related to traditional and virtualized applications in the BOINC environment, and how volunteer computing has been integrated into the overall computing strategy of the laboratory through the consolidated LHC@Home service. Thanks to the computing power provided by volunteers joining LHC@Home, numerous accelerator beam physics studies have been carried out, yielding an improved understanding of charged particle dynamics in the CERN Large Hadron Collider (LHC) and its future upgrades. The main results are highlighted in this paper.

  4. Higgs radiation off top quarks at the Tevatron and the LHC.

    PubMed

    Beenakker, W; Dittmaier, S; Krämer, M; Plümper, B; Spira, M; Zerwas, P M

    2001-11-12

    Higgs bosons can be searched for in the channels pp macro/pp-->tt macro H + X at the Fermilab Tevatron and the Cern Large Hadron Collider (LHC). We have calculated the QCD corrections to these processes in the standard model at next-to-leading order. The higher-order corrections reduce the renormalization and factorization scale dependence considerably and stabilize the theoretical predictions for the cross sections. At the central scale mu = (2m(t)+M(H))/2 the properly defined K factors are slightly below unity for the Tevatron (K approximately 0.8) and slightly above unity for the LHC (K approximately 1.2).

  5. The structure of the proton in the LHC precision era

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Harland-Lang, Lucian; Rojo, Juan

    2018-05-01

    We review recent progress in the determination of the parton distribution functions (PDFs) of the proton, with emphasis on the applications for precision phenomenology at the Large Hadron Collider (LHC). First of all, we introduce the general theoretical framework underlying the global QCD analysis of the quark and gluon internal structure of protons. We then present a detailed overview of the hard-scattering measurements, and the corresponding theory predictions, that are used in state-of-the-art PDF fits. We emphasize here the role that higher-order QCD and electroweak corrections play in the description of recent high-precision collider data. We present the methodology used to extract PDFs in global analyses, including the PDF parametrization strategy and the definition and propagation of PDF uncertainties. Then we review and compare the most recent releases from the various PDF fitting collaborations, highlighting their differences and similarities. We discuss the role that QED corrections and photon-initiated contributions play in modern PDF analysis. We provide representative examples of the implications of PDF fits for high-precision LHC phenomenological applications, such as Higgs coupling measurements and searches for high-mass New Physics resonances. We conclude this report by discussing some selected topics relevant for the future of PDF determinations, including the treatment of theoretical uncertainties, the connection with lattice QCD calculations, and the role of PDFs at future high-energy colliders beyond the LHC.

  6. Exclusive photoproduction of vector mesons in proton-lead ultraperipheral collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Xie, Ya-Ping; Chen, Xurong

    2018-02-01

    Rapidity distributions of vector mesons are computed in dipole model proton-lead ultraperipheral collisions (UPCs) at the CERN Larger Hadron Collider (LHC). The dipole model framework is implemented in the calculations of cross sections in the photon-hadron interaction. The bCGC model and Boosted Gaussian wave functions are employed in the scattering amplitude. We obtain predictions of rapidity distributions of J / ψ meson proton-lead ultraperipheral collisions. The predictions give a good description to the experimental data of ALICE. The rapidity distributions of ϕ, ω and ψ (2 s) mesons in proton-lead ultraperipheral collisions are also presented in this paper.

  7. The performance of the CASTOR calorimeter during LHC Run 2

    NASA Astrophysics Data System (ADS)

    van de Klundert, Merijn H. F.; CMS Collaboration

    2017-11-01

    CASTOR is an electromagnetic and hadronic tungsten-quartz sampling Cerenkov calorimeter located at the Compact Muon Solenoid experiment at the Large Hadron Collider. The detector has pseudorapidity borders at -5.2 and -6.6. An overview is presented on the various aspects of CASTOR’s performance and their relations during LHC Run 2. The equalisation of CASTOR’s channels is performed using beam-halo muons. Thereafter, CASTOR’s pedestal spectrum is studied. It is shown that noise estimates which are extracted using a fit, give on average a 10% lower threshold than statistical estimates. Gain correction factors, which are needed for the intercalibration, are obtained using a statistical, in-situ applicable method. The results of this method are shown to be reasonably consistent with laboratory measurements. Penultimately the absolute calibration is discussed, with emphasis on the relation between the scale uncertainty and CASTOR’s alignment. It is shown that the alignment’s contribution to the systematic uncertainty is decreased by over 50% in LHC Run 2 w.r.t. LHC Run 1. Finally generalisations of the conclusions to other subsystems and future improvements are discussed.

  8. Adapting the serial Alpgen parton-interaction generator to simulate LHC collisions on millions of parallel threads

    NASA Astrophysics Data System (ADS)

    Childers, J. T.; Uram, T. D.; LeCompte, T. J.; Papka, M. E.; Benjamin, D. P.

    2017-01-01

    As the LHC moves to higher energies and luminosity, the demand for computing resources increases accordingly and will soon outpace the growth of the Worldwide LHC Computing Grid. To meet this greater demand, event generation Monte Carlo was targeted for adaptation to run on Mira, the supercomputer at the Argonne Leadership Computing Facility. Alpgen is a Monte Carlo event generation application that is used by LHC experiments in the simulation of collisions that take place in the Large Hadron Collider. This paper details the process by which Alpgen was adapted from a single-processor serial-application to a large-scale parallel-application and the performance that was achieved.

  9. High Energy Colliders and Hidden Sectors

    NASA Astrophysics Data System (ADS)

    Dror, Asaf Jeff

    This thesis explores two dominant frontiers of theoretical physics, high energy colliders and hidden sectors. The Large Hadron Collider (LHC) is just starting to reach its maximum operational capabilities. However, already with the current data, large classes of models are being put under significant pressure. It is crucial to understand whether the (thus far) null results are a consequence of a lack of solution to the hierarchy problem around the weak scale or requires expanding the search strategy employed at the LHC. It is the duty of the current generation of physicists to design new searches to ensure that no stone is left unturned. To this end, we study the sensitivity of the LHC to the couplings in the Standard Model top sector. We find it can significantly improve the measurements on ZtRtR coupling by a novel search strategy, making use of an implied unitarity violation in such models. Analogously, we show that other couplings in the top sector can also be measured with the same technique. Furthermore, we critically analyze a set of anomalies in the LHC data and how they may appear from consistent UV completions. We also propose a technique to measure lifetimes of new colored particles with non-trivial spin. While the high energy frontier will continue to take data, it is likely the only collider of its kind for the next couple decades. On the other hand, low-energy experiments have a promising future with many new proposed experiments to probe the existence of particles well below the weak scale but with small couplings to the Standard Model. In this work we survey the different possibilities, focusingon the constraints as well as possible new hidden sector dynamics. In particular, we show that vector portals which couple to an anomalous current, e.g., baryon number, are significantly constrained from flavor changing meson decays and rare Z decays. Furthermore, we present a new mechanism for dark matter freezeout which depletes the dark sector through an

  10. Proceedings of the 2005 International Linear Collider Workshop (LCWS05)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, JoAnne,; /SLAC

    2006-12-18

    Exploration of physics at the TeV scale holds the promise of addressing some of our most basic questions about the nature of matter, space, time, and energy. Discoveries of the Electroweak Symmetry Breaking mechanism, Supersymmetry, Extra Dimensions of space, Dark Matter particles, and new forces of nature are all possible. We have been waiting and planning for this exploration for over 20 years. In 2007 the Large Hadron Collider at CERN will begin its operation and will break into this new energy frontier. A new era of understanding will emerge as the LHC data maps out the Terascale. With themore » LHC discoveries, new compelling questions will arise. Responding to these questions will call for a new tool with greater sensitivity--the International Linear Collider. Historically, the most striking progress in the exploration of new energy frontiers has been made from combining results from hadron and electron-positron colliders. The precision measurements possible at the ILC will reveal the underlying theory which gave rise to the particles discovered at the LHC and will open the window to even higher energies. The world High Energy Physics community has reached an accord that an e+e- linear collider operating at 0.5-1.0 TeV would provide both unique and essential scientific opportunities; the community has endorsed with highest priority the construction of such a machine. A major milestone toward this goal was reached in August 2004 when the International Committee on Future Accelerators approved a recommendation for the technology of the future International Linear Collider. A global research and design effort is now underway to construct a global design report for the ILC. This endeavor is directed by Barry Barrish of the California Institute of Technology. The offer, made by Jonathan Dorfan on the behalf of ICFA, and acceptance of this directorship took place during the opening plenary session of this workshop. The 2005 International Linear Collider Workshop

  11. Strong Electroweak Symmetry Breaking in the Large Hadron Collider Era

    NASA Astrophysics Data System (ADS)

    Evans, Jared Andrew

    2011-12-01

    With the Large Hadron Collider collecting data, both the pursuit of novel detection techniques and the exploration of new ideas are more important than ever. Novel detection techniques are essential in order for the community to garner the most worth from the machine. New ideas are needed both to expand the boundaries of what could be observed and to foster the creative mindset of the community that moves particle physics into fascinating, and often unexpected, directions. Discovering whether electroweak symmetry is broken strongly or weakly is one of the most pressing questions to be answered. Exploring the possibility of strong electroweak symmetry breaking is the topic of this work. The first of two major sectors in this work concerns the theory of conformal technicolor. We present the low energy minimal model for conformal technicolor and verify that it can satisfy current constraints from experiment. We will also provide a UV completion for this model, which realistically extends the sector with high-energy supersymmetry. Two complete models of flavor are presented. This is the first example of a complete, consistent model of strong electroweak symmetry breaking. The second of the two sectors discusses experimental signatures arising in a large class of general technicolor models at the Large Hadron Collider. The possible existence of narrow scalar states that can be produced via gluon-gluon fusion is first discussed. These states can decay into exotic final states of multiple electroweak gauge bosons, third generation particles and even light composite Higgs particles. A two Higgs doublet model is proposed as an effective way to model these exciting states. Lastly, we discuss the array of possible final states and their possible discovery.

  12. Multiboson interactions at the LHC

    DOE PAGES

    Green, D. R.; Meade, P.; Pleier, M. -A.

    2017-09-20

    This paper covers results on the production of all possible electroweak boson pairs and 2-to-1 vector boson fusion at the CERN Large Hadron Collider (LHC) in proton-proton collisions at a center of mass energy of 7 and 8 TeV. The data were taken between 2010 and 2012. Limits on anomalous triple gauge couplings (aTGCs) then follow. In addition, data on electroweak triple gauge boson production and 2-to-2 vector boson scattering yield limits on anomalous quartic gauge boson couplings (aQGCs). The LHC hosts two general purpose experiments, ATLAS and CMS, which have both reported limits on aTGCs and aQGCs which aremore » herein summarized. Finally, the interpretation of these limits in terms of an effective field theory is reviewed, and recommendations are made for testing other types of new physics using multigauge boson production.« less

  13. On the Feasibility of a Pulsed 14 TeV C.M.E. Muon Collider in the LHC Tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir; Neuffer, D.

    We discuss the technical feasibility, key machine pa-rameters and major challenges of a 14 TeV c.m.e. muon-muon collider in the LHC tunnel [1]. The luminosity of the collider is evaluated for three alternative muon sources – the PS synchrotron, one of a type developed by the US Muon Accelerator Program (MAP) and a low-emittance option based on resonant μ-pair production.

  14. The LHCf experiment at the LHC: Physics Goals and Status

    NASA Astrophysics Data System (ADS)

    Tricomi, A.; Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Faus, A.; Fukui, K.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Macina, D.; Mase, T.; Masuda, K.; Matsubara, Y.; Menjo, H.; Mizuishi, M.; Muraki, Y.; Papini, P.; Perrot, A. L.; Ricciarini, S.; Sako, T.; Shimizu, Y.; Taki, K.; Tamura, T.; Torii, S.; Turner, W. C.; Velasco, J.; Viciani, A.; Yoshida, K.

    2009-12-01

    The LHCf experiment is the smallest of the six experiments installed at the Large Hadron Collider (LHC). While the general purpose detectors have been mainly designed to answer the open questions of Elementary Particle Physics, LHCf has been designed as a fully devoted Astroparticle experiment at the LHC. Indeed, thanks to the excellent performances of its double arm calorimeters, LHCf will be able to measure the flux of neutral particles produced in p-p collisions at LHC in the very forward region, thus providing an invaluable help in the calibration of air-shower Monte Carlo codes currently used for modeling cosmic rays interactions in the Earth atmosphere. Depending on the LHC machine schedule, LHCf will take data in an energy range from 900 GeV up to 14 TeV in the centre of mass system (equivalent to 10 eV in the laboratory frame), thus covering one of the most interesting and debated region of the Cosmic Ray spectrum, the region around and beyond the "knee".

  15. One-side forward-backward asymmetry in top quark pair production at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Youkai; Xiao Bo; Zhu Shouhua

    2010-11-01

    Both D0 and CDF at Tevatron reported the measurements of forward-backward asymmetry in top pair production, which showed possible deviation from the standard model QCD prediction. In this paper, we explore how to examine the same higher-order QCD effects at the more powerful Large Hadron Collider.

  16. Testing beam-induced quench levels of LHC superconducting magnets

    NASA Astrophysics Data System (ADS)

    Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  17. Higgs and Z assisted stop searches at hadron colliders

    NASA Astrophysics Data System (ADS)

    Su, Shufang; Zhang, Huanian

    2018-05-01

    Current searches for the light top squark (stop) mostly focus on the decay channels of \\tilde{t}\\to t{χ}_1^0 or \\tilde{t}\\to b{χ}_1^{±}\\to bW{χ}_1^0 , leading to [InlineMediaObject not available: see fulltext.] final states for stop pair productions at the LHC. However, in supersymmetric scenarios with light neutralinos and charginos other than the neutralino lightest supersymmetric particle (LSP), more than one decay mode of the stop could be dominant. While those new decay modes could significantly weaken the current stop search limits at the LHC, they also offer alternative discovery channels for stop searches. In this paper, we studied the scenario with light Higgsino next-to-LSPs (NLSPs) and Bino LSP. The light stop decays primarily via {\\tilde{t}}_1\\to t{χ}_2^0/{χ}_3^0 , with the neutralinos subsequent decaying to a Z boson or a Higgs boson: χ 2 0 / χ 3 0 → χ 1 0 h/ Z. Pair production of light stops at the LHC leads to final states of [InlineMediaObject not available: see fulltext.] or [InlineMediaObject not available: see fulltext.] . We consider three signal regions: one charged lepton (1 ℓ), two opposite sign charged leptons (2 OS ℓ) and at least three charged leptons (≥3 ℓ). We found that the 1 ℓ signal region of channel [InlineMediaObject not available: see fulltext.] has the best reach sensitivity for light stop searches. For 14 TeV LHC with 300 fb-1 integrated luminosity, a stop mass up to 900 GeV can be discovered at 5 σ significance, or up to 1050 GeV can be excluded at 95% C.L. Combining all three decay channels for 1 ℓ signal region extends the reach for about 100-150 GeV. We also studied the stop reach at the 100 TeV pp collider with 3 ab-1 luminosity, with discovery and exclusion reach being 6 TeV and 7 TeV, respectively.

  18. Federated software defined network operations for LHC experiments

    NASA Astrophysics Data System (ADS)

    Kim, Dongkyun; Byeon, Okhwan; Cho, Kihyeon

    2013-09-01

    The most well-known high-energy physics collaboration, the Large Hadron Collider (LHC), which is based on e-Science, has been facing several challenges presented by its extraordinary instruments in terms of the generation, distribution, and analysis of large amounts of scientific data. Currently, data distribution issues are being resolved by adopting an advanced Internet technology called software defined networking (SDN). Stability of the SDN operations and management is demanded to keep the federated LHC data distribution networks reliable. Therefore, in this paper, an SDN operation architecture based on the distributed virtual network operations center (DvNOC) is proposed to enable LHC researchers to assume full control of their own global end-to-end data dissemination. This may achieve an enhanced data delivery performance based on data traffic offloading with delay variation. The evaluation results indicate that the overall end-to-end data delivery performance can be improved over multi-domain SDN environments based on the proposed federated SDN/DvNOC operation framework.

  19. Performance of the Prototype Readout System for the CMS Endcap Hadron Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Chaverin, Nate; Dittmann, Jay; Hatakeyama, Kenichi; Pastika, Nathaniel; CMS Collaboration

    2016-03-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will upgrade the photodetectors and readout systems of the endcap hadron calorimeter during the technical stop scheduled for late 2016 and early 2017. A major milestone for this project was a highly successful testbeam run at CERN in August 2015. The testbeam run served as a full integration test of the electronics, allowing a study of the response of the preproduction electronics to the true detector light profile, as well as a test of the light yield of various new plastic scintillator materials. We present implications for the performance of the hadron calorimeter front-end electronics based on testbeam data, and we report on the production status of various components of the system in preparation for the upgrade.

  20. Diffusion-model analysis of pPb and PbPb collisions at LHC energies

    NASA Astrophysics Data System (ADS)

    Schulz, P.; Wolschin, G.

    2018-06-01

    We present an analysis of centrality-dependent pseudorapidity distributions of produced charged hadrons in pPb and PbPb collisions at the Large Hadron Collider (LHC) energy of s NN = 5.02 TeV, and of minimum-bias pPb collisions at 8.16 TeV within the non-equilibrium-statistical relativistic diffusion model (RDM). In a three-source approach, the role of the fragmentation sources is emphasized. Together with the Jacobian transformation from rapidity to pseudorapidity and the limiting fragmentation conjecture, these are essential for modeling the centrality dependence. For central PbPb collisions, a prediction at the projected FCC energy of s NN = 39 TeV is made.

  1. Adapting the serial Alpgen parton-interaction generator to simulate LHC collisions on millions of parallel threads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, J. T.; Uram, T. D.; LeCompte, T. J.

    As the LHC moves to higher energies and luminosity, the demand for computing resources increases accordingly and will soon outpace the growth of the World- wide LHC Computing Grid. To meet this greater demand, event generation Monte Carlo was targeted for adaptation to run on Mira, the supercomputer at the Argonne Leadership Computing Facility. Alpgen is a Monte Carlo event generation application that is used by LHC experiments in the simulation of collisions that take place in the Large Hadron Collider. This paper details the process by which Alpgen was adapted from a single-processor serial-application to a large-scale parallel-application andmore » the performance that was achieved.« less

  2. Adapting the serial Alpgen parton-interaction generator to simulate LHC collisions on millions of parallel threads

    DOE PAGES

    Childers, J. T.; Uram, T. D.; LeCompte, T. J.; ...

    2016-09-29

    As the LHC moves to higher energies and luminosity, the demand for computing resources increases accordingly and will soon outpace the growth of the Worldwide LHC Computing Grid. To meet this greater demand, event generation Monte Carlo was targeted for adaptation to run on Mira, the supercomputer at the Argonne Leadership Computing Facility. Alpgen is a Monte Carlo event generation application that is used by LHC experiments in the simulation of collisions that take place in the Large Hadron Collider. Finally, this paper details the process by which Alpgen was adapted from a single-processor serial-application to a large-scale parallel-application andmore » the performance that was achieved.« less

  3. Adapting the serial Alpgen parton-interaction generator to simulate LHC collisions on millions of parallel threads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, J. T.; Uram, T. D.; LeCompte, T. J.

    As the LHC moves to higher energies and luminosity, the demand for computing resources increases accordingly and will soon outpace the growth of the Worldwide LHC Computing Grid. To meet this greater demand, event generation Monte Carlo was targeted for adaptation to run on Mira, the supercomputer at the Argonne Leadership Computing Facility. Alpgen is a Monte Carlo event generation application that is used by LHC experiments in the simulation of collisions that take place in the Large Hadron Collider. Finally, this paper details the process by which Alpgen was adapted from a single-processor serial-application to a large-scale parallel-application andmore » the performance that was achieved.« less

  4. Modelling exclusive meson pair production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Harland-Lang, L. A.; Khoze, V. A.; Ryskin, M. G.

    2014-04-01

    We present a study of the central exclusive production of light meson pairs, concentrating on the region of lower invariant masses of the central system and/or meson transverse momentum, where perturbative QCD cannot be reliably applied. We describe in detail a phenomenological model, using the tools of Regge theory, that may be applied with some success in this regime, and we present the new, publicly available, Dime Monte Carlo (MC) implementation of this for , and production. The MC implementation includes a fully differential treatment of the survival factor, which in general depends on all kinematic variables, as well as allows for the so far reasonably unconstrained model parameters to be set by the user. We present predictions for the Tevatron and LHC, discuss and estimate the size of the proton-dissociative background, and show how future measurements may further test this Regge-based approach, as well as the soft hadronic model required to calculate the survival factor, in particular in the presence of tagged protons.

  5. Baryonic Higgs at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duerr, Michael; Perez, Pavel Fileviez; Smirnov, Juri

    We investigate the possible collider signatures of a new Higgs in simple extensions of the Standard Model where baryon number is a local symmetry spontaneously broken at the low scale. Here, we refer to this new Higgs as “Baryonic Higgs”. This Higgs has peculiar properties since it can decay into all Standard Model particles, the leptophobic gauge boson, and the vector-like quarks present in these theories to ensure anomaly cancellation. We investigate in detail the constraints from the γγ, Zγ, ZZ, and W W searches at the Large Hadron Collider, needed to find a lower bound on the scale atmore » which baryon number is spontaneously broken. The di-photon channel turns out to be a very sensitive probe in the case of small scalar mixing and can severely constrain the baryonic scale. Finally, we also study the properties of the leptophobic gauge boson in order to understand the testability of these theories at the LHC.« less

  6. Baryonic Higgs at the LHC

    DOE PAGES

    Duerr, Michael; Perez, Pavel Fileviez; Smirnov, Juri

    2017-09-20

    We investigate the possible collider signatures of a new Higgs in simple extensions of the Standard Model where baryon number is a local symmetry spontaneously broken at the low scale. Here, we refer to this new Higgs as “Baryonic Higgs”. This Higgs has peculiar properties since it can decay into all Standard Model particles, the leptophobic gauge boson, and the vector-like quarks present in these theories to ensure anomaly cancellation. We investigate in detail the constraints from the γγ, Zγ, ZZ, and W W searches at the Large Hadron Collider, needed to find a lower bound on the scale atmore » which baryon number is spontaneously broken. The di-photon channel turns out to be a very sensitive probe in the case of small scalar mixing and can severely constrain the baryonic scale. Finally, we also study the properties of the leptophobic gauge boson in order to understand the testability of these theories at the LHC.« less

  7. W production at large transverse momentum at the CERN Large Hadron Collider.

    PubMed

    Gonsalves, Richard J; Kidonakis, Nikolaos; Sabio Vera, Agustín

    2005-11-25

    We study the production of W bosons at large transverse momentum in pp collisions at the CERN Large Hadron Collider. We calculate the complete next-to-leading order (NLO) corrections to the differential cross section. We find that the NLO corrections provide a large increase to the cross section but, surprisingly, do not reduce the scale dependence relative to leading order (LO). We also calculate next-to-next-to-leading-order (NNLO) soft-gluon corrections and find that, although they are small, they significantly reduce the scale dependence thus providing a more stable result.

  8. Lower limit on dark matter production at the CERN Large Hadron Collider.

    PubMed

    Feng, Jonathan L; Su, Shufang; Takayama, Fumihiro

    2006-04-21

    We evaluate the prospects for finding evidence of dark matter production at the CERN Large Hadron Collider. We consider weakly interacting massive particles (WIMPs) and superWIMPs and characterize their properties through model-independent parametrizations. The observed relic density then implies lower bounds on dark matter production rates as functions of a few parameters. For WIMPs, the resulting signal is indistinguishable from background. For superWIMPs, however, this analysis implies significant production of metastable charged particles. For natural parameters, these rates may far exceed Drell-Yan cross sections and yield spectacular signals.

  9. FLUKA Monte Carlo simulations and benchmark measurements for the LHC beam loss monitors

    NASA Astrophysics Data System (ADS)

    Sarchiapone, L.; Brugger, M.; Dehning, B.; Kramer, D.; Stockner, M.; Vlachoudis, V.

    2007-10-01

    One of the crucial elements in terms of machine protection for CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. On-line loss measurements must prevent the superconducting magnets from quenching and protect the machine components from damages due to unforeseen critical beam losses. In order to ensure the BLM's design quality, in the final design phase of the LHC detailed FLUKA Monte Carlo simulations were performed for the betatron collimation insertion. In addition, benchmark measurements were carried out with LHC type BLMs installed at the CERN-EU high-energy Reference Field facility (CERF). This paper presents results of FLUKA calculations performed for BLMs installed in the collimation region, compares the results of the CERF measurement with FLUKA simulations and evaluates related uncertainties. This, together with the fact that the CERF source spectra at the respective BLM locations are comparable with those at the LHC, allows assessing the sensitivity of the performed LHC design studies.

  10. Search for the right-handed W R boson and a heavy neutrino at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Krasnikov, N. V.; Matveev, V. A.

    2014-12-01

    We present a brief review of the SU c ( 3)⊗SU L ( 2)⊗SU R ( 2)⊗U( 1) left-right symmetric gauge model. We discuss a possibility of detecting the right-handed W R boson and a heavy neutrino in pp collisions at the Large Hadron Collider. We present restrictions on the masses of the W R boson and the heavy neutrino obtained using the analysis of experimental data from the CMS and ATLAS detectors with a total energy of colliding protons of 7-8 TeV.

  11. Final Technical Report for ``Paths to Discovery at the LHC : Dark Matter and Track Triggering"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Kristian

    Particle Dark Matter (DM) is perhaps the most compelling and experimentally well-motivated new physics scenario anticipated at the Large Hadron Collider (LHC). The DE-SC0014073 award allowed the PI to define and pursue a path to the discovery of Dark Matter in Run-2 of the LHC with the Compact Muon Solenoid (CMS) experiment. CMS can probe regions of Dark Matter phase-space that direct and indirect detection experiments are unable to constrain. The PI’s team initiated the exploration of these regions, searching specifically for the associated production of Dark Matter with top quarks. The effort focuses on the high-yield, hadronic decays ofmore » W bosons produced in top decay, which provides the highest sensitivity to DM produced via through low-mass spin-0 mediators. The group developed identification algorithms that achieve high efficiency and purity in the selection of hadronic top decays, and analysis techniques that provide powerful signal discrimination in Run-2. The ultimate reach of new physics searches with CMS will be established at the high-luminosity LHC (HL-LHC). To fully realize the sensitivity the HL-LHC promises, CMS must minimize the impact of soft, inelastic (“pileup”) interactions on the real-time “trigger” system the experiment uses for data refinement. Charged particle trajectory information (“tracking”) will be essential for pileup mitigation at the HL-LHC. The award allowed the PI’s team to develop firmware-based data delivery and track fitting algorithms for an unprecedented, real-time tracking trigger to sustain the experiment’s sensitivity to new physics in the next decade.« less

  12. Exotic decays of the 125 GeV Higgs boson at future e +e – colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhen; Wang, Lian -Tao; Zhang, Hao

    Discovery of unexpected properties of the Higgs boson offers an intriguing opportunity of shedding light on some of the most profound puzzles in particle physics. The Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance the sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at futuremore » $e^+e^-$ lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, $$O(10^{-3}\\sim10^{-5})$$ limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator $Z$ boson in the associated production mode $$e^+e^-\\rightarrow Z H$$. We further discuss the interplay between the detector performance and Higgs exotic decay, and other possibilities of exotic decays. Finally, our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key ingredient of Higgs physics that deserves further investigation.« less

  13. Exotic decays of the 125 GeV Higgs boson at future e +e – colliders

    DOE PAGES

    Liu, Zhen; Wang, Lian -Tao; Zhang, Hao

    2017-06-01

    Discovery of unexpected properties of the Higgs boson offers an intriguing opportunity of shedding light on some of the most profound puzzles in particle physics. The Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance the sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at futuremore » $e^+e^-$ lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, $$O(10^{-3}\\sim10^{-5})$$ limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator $Z$ boson in the associated production mode $$e^+e^-\\rightarrow Z H$$. We further discuss the interplay between the detector performance and Higgs exotic decay, and other possibilities of exotic decays. Finally, our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key ingredient of Higgs physics that deserves further investigation.« less

  14. Associated production of a Higgs boson decaying into bottom quarks at the LHC in full NNLO QCD

    NASA Astrophysics Data System (ADS)

    Ferrera, Giancarlo; Somogyi, Gábor; Tramontano, Francesco

    2018-05-01

    We consider the production of a Standard Model Higgs boson decaying to bottom quarks in association with a vector boson W± / Z in hadron collisions. We present a fully exclusive calculation of QCD radiative corrections both for the production cross section and for the Higgs boson decay rate up to next-to-next-to-leading order (NNLO) accuracy. Our calculation also includes the leptonic decay of the vector boson with finite-width effects and spin correlations. We consider typical kinematical cuts applied in the experimental analyses at the Large Hadron Collider (LHC) and we find that the full NNLO QCD corrections significantly decrease the accepted cross section and have a substantial impact on the shape of distributions. We point out that these additional effects are essential to obtain precise theoretical predictions to be compared with the LHC data.

  15. Probing New Physics with Jets at the LHC

    ScienceCinema

    Harris, Robert

    2017-12-09

    The Large Hadron Collider at CERN has the potential to make a major discovery as early as 2008 from simple measurements of events with two high energy jets. This talk will present the jet trigger and analysis plans of the CMS collaboration, which were produced at the LHC Physics Center at Fermilab. Plans to search the two jet channel for generic signals of new particles and forces will be discussed. I will present the anticipated sensitivity of the CMS experiment to a variety of models of new physics, including quark compositeness, technicolor, superstrings, extra dimensions and grand unification.

  16. Top++: A program for the calculation of the top-pair cross-section at hadron colliders

    NASA Astrophysics Data System (ADS)

    Czakon, Michał; Mitov, Alexander

    2014-11-01

    We present the program Top++ for the numerical evaluation of the total inclusive cross-section for producing top quark pairs at hadron colliders. The program calculates the cross-section in (a) fixed order approach with exact next-to-next-to leading order (NNLO) accuracy and (b) by including soft-gluon resummation for the hadronic cross-section in Mellin space with full next-to-next-to-leading logarithmic (NNLL) accuracy. The program offers the user significant flexibility through the large number (29) of available options. Top++ is written in C++. It has a very simple to use interface that is intuitive and directly reflects the physics. The running of the program requires no programming experience from the user.

  17. A experimental research program on chirality at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markert, Christina

    Heavy-ion collisions provide a unique opportunity to investigate the fundamental laws of physics of the strong force. The extreme conditions created by the collisions within a finite volume are akin to the properties of the deconfined partonic state which existed very shortly after the Big Bang and just prior to visible matter formation in the Universe. In this state massless quarks and gluons (partons) are ``quasi free" particles, the so-called Quark Gluon Plasma (QGP). By following the expansion and cooling of this state, we will map out the process of nucleonic matter formation, which occurs during the phase transition. Themore » fundamental properties of this early partonic phase of matter are not well understood, but they are essential for confirming QCD (Quantum Chromo-Dynamics) and the Standard Model. The specific topic, chiral symmetry restoration, has been called ``the remaining puzzle of QCD.'' This puzzle can only be studied in the dense partonic medium generated in heavy-ion collisions. The research objectives of this proposal are the development and application of new analysis strategies to study chirality and the properties of the medium above the QGP phase transition using hadronic resonances detected with the ALICE experiment at the Large Hadron Collider (LHC) at the CERN research laboratory in Switzerland. This grant funded a new effort at the University of Texas at Austin (UT Austin) to investigate the Quark Gluon Plasma (QGP) at the highest possible energy of 2.76 TeV per nucleon at the Large Hadron Collider (LHC) at CERN via the ALICE experiment. The findings added to our knowledge of the dynamical evolution and the properties of the hot, dense matter produced in heavy-ion collisions, and provided a deeper understanding of multi-hadron interactions in these extreme nuclear matter systems. Our group contributed as well to the hardware and software for the ALICE USA-funded Calorimeter Detector (EMCal). The LHC research program and its connection

  18. Non-resonant collider signatures of a singlet-driven electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Yi; Kozaczuk, Jonathan; Lewis, Ian M.

    2017-08-01

    We analyze the collider signatures of the real singlet extension of the Standard Model in regions consistent with a strong first-order electroweak phase transition and a singlet-like scalar heavier than the Standard Model-like Higgs. A definitive correlation exists between the strength of the phase transition and the trilinear coupling of the Higgs to two singlet-like scalars, and hence between the phase transition and non-resonant scalar pair production involving the singlet at colliders. We study the prospects for observing these processes at the LHC and a future 100 TeV pp collider, focusing particularly on double singlet production. We also discuss correlations between the strength of the electroweak phase transition and other observables at hadron and future lepton colliders. Searches for non-resonant singlet-like scalar pair production at 100 TeV would provide a sensitive probe of the electroweak phase transition in this model, complementing resonant di-Higgs searches and precision measurements. Our study illustrates a strategy for systematically exploring the phenomenologically viable parameter space of this model, which we hope will be useful for future work.

  19. The MoEDAL Experiment at the LHC

    NASA Astrophysics Data System (ADS)

    Pinfold, James L.

    2014-04-01

    In 2010 the CERN (European Centre for Particle Physics Research) Research Board unanimously approved MoEDAL, the 7th international experiment at the Large Hadron Collider (LHC), which is designed to search for avatars of new physics signified by highly ionizing particles. The MoEDAL detector is like a giant camera ready to reveal "photographic" evidence for new physics and also to actually trap long-lived new particles for further study. The MoEDAL experiment will significantly expand the horizon for discovery at the LHC, in a complementary way. A MoEDAL discovery would have revolutionary implications for our understanding of the microcosm, providing insights into such fundamental questions as: do magnetic monopoles exist, are there extra dimensions or new symmetries of nature; what is the mechanism for the generation of mass; what is the nature of dark matter and how did the big-bang unfurl at the earliest times.

  20. Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Garcia, J. A. Benitez; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; Garberson, F.; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, L.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Quiles, A. Irles; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ponce, J. M. Iturbe; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Dortz, O. Le; Guirriec, E. Le; Menedeu, E. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Garcia, B. R. Mellado; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Hanninger, G. Nunes; Nunnemann, T.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Barrera, C. Oropeza; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Codina, E. Perez; García-Estañ, M. T. Pérez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Saleem, M.; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zurzolo, G.; Zwalinski, L.

    2017-07-01

    The reconstruction of the signal from hadrons and jets emerging from the proton-proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.

  1. Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Garcia, J A Benitez; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelli, A; Gimenez, V Castillo; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fulsom, B G; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; Garberson, F; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, L; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henkelmann, S; Henrichs, A; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Quiles, A Irles; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ponce, J M Iturbe; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Rozas, A Juste; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Dortz, O Le; Guirriec, E Le; Menedeu, E Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Garcia, B R Mellado; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monini, C; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Hanninger, G Nunes; Nunnemann, T; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Barrera, C Oropeza; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Aranda, C Padilla; Pagáčová, M; Griso, S Pagan; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Codina, E Perez; García-Estañ, M T Pérez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pin, A W J; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Ryzhov, A; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Saleem, M; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Martinez, V Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schmitz, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Spearman, W R; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, F E; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Vallecorsa, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zurzolo, G; Zwalinski, L

    2017-01-01

    The reconstruction of the signal from hadrons and jets emerging from the proton-proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.

  2. Jet energy calibration at the LHC

    DOE PAGES

    Schwartzman, Ariel

    2015-11-10

    In this study, jets are one of the most prominent physics signatures of high energy proton–proton (p–p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiplemore » p–p interactions ( pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo.« less

  3. Analysis of the Laser Calibration System for the CMS HCAL at CERN's Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Lebolo, Luis

    2005-11-01

    The European Organization for Nuclear Physics' (CERN) Large Hadron Collider uses the Compact Muon Solenoid (CMS) detector to measure collision products from proton-proton interactions. CMS uses a hadron calorimeter (HCAL) to measure the energy and position of quarks and gluons by reconstructing their hadronic decay products. An essential component of the detector is the calibration system, which was evaluated in terms of its misalignment, linearity, and resolution. In order to analyze the data, the authors created scripts in ROOT 5.02/00 and C++. The authors also used Mathematica 5.1 to perform complex mathematics and AutoCAD 2006 to produce optical ray traces. The misalignment of the optical components was found to be satisfactory; the Hybrid Photodiodes (HPDs) were confirmed to be linear; the constant, noise and stochastic contributions to its resolution were analyzed; and the quantum efficiency of most HPDs was determined to be approximately 40%. With a better understanding of the laser calibration system, one can further understand and improve the HCAL.

  4. The CMS High Granularity Calorimeter for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Sauvan, J.-B.

    2018-02-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5-1 cm2 cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities of the silicon sensors will add an extra dimension to event reconstruction, especially in terms of pileup rejection.

  5. Flavorful Z‧ signatures at LHC and ILC

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Long; Okada, Nobuchika

    2008-10-01

    There are lots of new physics models which predict an extra neutral gauge boson, referred as Z‧-boson. In a certain class of these new physics models, the Z‧-boson has flavor-dependent couplings with the fermions in the Standard Model (SM). Based on a simple model in which couplings of the SM fermions in the third generation with the Z‧-boson are different from those of the corresponding fermions in the first two generations, we study the signatures of Z‧-boson at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). We show that at the LHC, the Z‧-boson with mass around 1 TeV can be produced through the Drell-Yan processes and its dilepton decay modes provide us clean signatures not only for the resonant production of Z‧-boson but also for flavor-dependences of the production cross sections. We also study fermion pair productions at the ILC involving the virtual Z‧-boson exchange. Even though the center-of-energy of the ILC is much lower than a Z‧-boson mass, the angular distributions and the forward-backward asymmetries of fermion pair productions show not only sizable deviations from the SM predictions but also significant flavor-dependences.

  6. The long journey to the Higgs boson and beyond at the LHC: Emphasis on ATLAS

    NASA Astrophysics Data System (ADS)

    Jenni, Peter

    2016-09-01

    The journey in search for the Higgs boson with the ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN started more than two decades ago. But the first discussions motivating the LHC project dream date back even further into the 1980s. This article will recall some of these early historical considerations, mention some of the LHC machine milestones and achievements, focus as an example of a technological challenge on the unique ATLAS superconducting magnet system, and then give an account of the physics results so far, leading to, and featuring particularly, the Higgs boson results, and sketching finally prospects for the future. With its emphasis on the ATLAS experiment it is complementary to the preceding article by Tejinder S. Virdee which focused on the CMS experiment.

  7. Calibration and performance of the ATLAS Tile Calorimeter during the LHC Run 2

    NASA Astrophysics Data System (ADS)

    Cerda Alberich, L.

    2018-02-01

    The Tile Calorimeter (TileCal) is the hadronic sampling calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal uses iron absorbers and scintillators as active material and it covers the central region | η| < 1.7. Jointly with the other sub-detectors it is designed for measurements of hadrons, jets, tau-particles and missing transverse energy. It also assists in muon identification. TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source, a laser light system to check the PMT response, and a charge injection system (CIS) to check the front-end electronics. These calibration systems, in conjunction with data collected during proton-proton collisions, Minimum Bias (MB) events, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions and compared to Monte Carlo (MC) simulations. The response of high momentum isolated muons is also used to study the energy response at the electromagnetic scale, isolated hadrons are used as a probe of the hadronic response. The calorimeter time resolution is studied with multijet events. A description of the different TileCal calibration systems and the results on the calorimeter performance during the LHC Run 2 are presented. The results on the pile-up noise and response uniformity studies are also discussed.

  8. Study of Higgs effective couplings at electron-proton colliders

    NASA Astrophysics Data System (ADS)

    Hesari, Hoda; Khanpour, Hamzeh; Najafabadi, Mojtaba Mohammadi

    2018-05-01

    We perform a search for beyond-the-Standard-Model (BSM) dimension-six operators relevant to the Higgs boson at the Large Hadron Electron Collider (LHeC) and the Future Circular Hadron Electron Collider (FCC-he). With a large amount of data (few ab-1 ) and collisions at the TeV scale, both LHeC and FCC-he provide excellent opportunities to search for the BSM effects. The study is done through the process e-p →h j νe , where the Higgs boson decays into a pair of b b ¯, and we consider the main sources of background processes, including a realistic simulation of detector effects. For the FCC-he case, in some signal scenarios, to obtain an efficient event reconstruction and to have a good background rejection, jet substructure techniques are employed to reconstruct the boosted Higgs boson in the final state. In order to assess the sensitivity to the dimension-six operators, a shape analysis on the differential cross sections is performed. Stringent bounds are found on the Wilson coefficients of dimension-six operators with the integrated luminosities of 1 ab-1 and 10 ab-1 , which in some cases show improvements with respect to the high-luminosity LHC results.

  9. The LHC magnet system and its status of development

    NASA Technical Reports Server (NTRS)

    Bona, Maurizio; Perin, Romeo; Vlogaert, Jos

    1995-01-01

    CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.

  10. Note on X(3872) production at hadron colliders and its molecular structure

    NASA Astrophysics Data System (ADS)

    Albaladejo, Miguel; Guo, Feng-Kun; Hanhart, Christoph; Meißner, Ulf-G.; Nieves, Juan; Nogga, Andreas; Yang, Zhi

    2017-12-01

    The production of the X(3872) as a hadronic molecule in hadron colliders is clarified. We show that the conclusion of Bignamini et al., Phys. Rev. Lett. 103 (2009) 162001, that the production of the X(3872) at high p T implies a non-molecular structure, does not hold. In particular, using the well understood properties of the deuteron wave function as an example, we identify the relevant scales in the production process. Supported by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC (11621131001), DFG (TRR110)), by NSFC (11647601), by the CAS Key Research Program of Frontier Sciences (QYZDB-SSW-SYS013), by the Thousand Talents Plan for Young Professionals, by the CAS President’s International Fellowship Initiative (PIFI) (2017VMA0025), and by Spanish Ministerio de Economía y Competitividad and European FEDER under contracts FIS2014-51948-C2-1-P and SEV-2014-0398. Part of the computations have been performed on JUQUEEN and JURECA of the JSC, Jülich, Germany

  11. Modeling of beam-induced damage of the LHC tertiary collimators

    NASA Astrophysics Data System (ADS)

    Quaranta, E.; Bertarelli, A.; Bruce, R.; Carra, F.; Cerutti, F.; Lechner, A.; Redaelli, S.; Skordis, E.; Gradassi, P.

    2017-09-01

    Modern hadron machines with high beam intensity may suffer from material damage in the case of large beam losses and even beam-intercepting devices, such as collimators, can be harmed. A systematic method to evaluate thresholds of damage owing to the impact of high energy particles is therefore crucial for safe operation and for predicting possible limitations in the overall machine performance. For this, a three-step simulation approach is presented, based on tracking simulations followed by calculations of energy deposited in the impacted material and hydrodynamic simulations to predict the thermomechanical effect of the impact. This approach is applied to metallic collimators at the CERN Large Hadron Collider (LHC), which in standard operation intercept halo protons, but risk to be damaged in the case of extraction kicker malfunction. In particular, tertiary collimators protect the aperture bottlenecks, their settings constrain the reach in β* and hence the achievable luminosity at the LHC experiments. Our calculated damage levels provide a very important input on how close to the beam these collimators can be operated without risk of damage. The results of this approach have been used already to push further the performance of the present machine. The risk of damage is even higher in the upgraded high-luminosity LHC with higher beam intensity, for which we quantify existing margins before equipment damage for the proposed baseline settings.

  12. (Multi-)strange hadron and light (anti-)nuclei production with ALICE at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lea, Ramona

    Thanks to its excellent tracking performance and particle identification capabilities, the ALICE detector allows for the identification of light (anti-)(hyper)nuclei and for the measurement of (multi-)strange particles over a wide range of transverse momentum. Deuterons, {sup 3}He and {sup 4}He and their corresponding anti-nuclei are identified via their specific energy loss in the Time Projection Chamber and the velocity measurement provided by the Time-Of-Flight detector. Strange and multi-strange baryons and mesons as well as (anti-)hypertritons are reconstructed via their topological decays. Detailed measurements of (multi-)strange hadron production in pp, p–Pb and Pb–Pb collision and of light (anti-)nuclei and (anti-)hypertritons inmore » Pb–Pb collisions with ALICE at the LHC are presented. The experimental results will be compared with the predictions of both statistical hadronization and coalescence models.« less

  13. The CMS experiment at the CERN LHC

    NASA Astrophysics Data System (ADS)

    CMS Collaboration; Chatrchyan, S.; Hmayakyan, G.; Khachatryan, V.; Sirunyan, A. M.; Adam, W.; Bauer, T.; Bergauer, T.; Bergauer, H.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Glaser, P.; Hartl, C.; Hoermann, N.; Hrubec, J.; Hänsel, S.; Jeitler, M.; Kastner, K.; Krammer, M.; Magrans de Abril, I.; Markytan, M.; Mikulec, I.; Neuherz, B.; Nöbauer, T.; Oberegger, M.; Padrta, M.; Pernicka, M.; Porth, P.; Rohringer, H.; Schmid, S.; Schreiner, T.; Stark, R.; Steininger, H.; Strauss, J.; Taurok, A.; Uhl, D.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Petrov, V.; Prosolovich, V.; Chekhovsky, V.; Dvornikov, O.; Emeliantchik, I.; Litomin, A.; Makarenko, V.; Marfin, I.; Mossolov, V.; Shumeiko, N.; Solin, A.; Stefanovitch, R.; Suarez Gonzalez, J.; Tikhonov, A.; Fedorov, A.; Korzhik, M.; Missevitch, O.; Zuyeuski, R.; Beaumont, W.; Cardaci, M.; DeLanghe, E.; DeWolf, E. A.; Delmeire, E.; Ochesanu, S.; Tasevsky, M.; Van Mechelen, P.; D'Hondt, J.; DeWeirdt, S.; Devroede, O.; Goorens, R.; Hannaert, S.; Heyninck, J.; Maes, J.; Mozer, M. U.; Tavernier, S.; Van Doninck, W.; Van Lancker, L.; Van Mulders, P.; Villella, I.; Wastiels, C.; Yu, C.; Bouhali, O.; Charaf, O.; Clerbaux, B.; DeHarenne, P.; DeLentdecker, G.; Dewulf, J. P.; Elgammal, S.; Gindroz, R.; Hammad, G. H.; Mahmoud, T.; Neukermans, L.; Pins, M.; Pins, R.; Rugovac, S.; Stefanescu, J.; Sundararajan, V.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Tytgat, M.; Assouak, S.; Bonnet, J. L.; Bruno, G.; Caudron, J.; DeCallatay, B.; DeFavereau DeJeneret, J.; DeVisscher, S.; Demin, P.; Favart, D.; Felix, C.; Florins, B.; Forton, E.; Giammanco, A.; Grégoire, G.; Jonckman, M.; Kcira, D.; Keutgen, T.; Lemaitre, V.; Michotte, D.; Militaru, O.; Ovyn, S.; Pierzchala, T.; Piotrzkowski, K.; Roberfroid, V.; Rouby, X.; Schul, N.; Van der Aa, O.; Beliy, N.; Daubie, E.; Herquet, P.; Alves, G.; Pol, M. E.; Souza, M. H. G.; Vaz, M.; DeJesus Damiao, D.; Oguri, V.; Santoro, A.; Sznajder, A.; DeMoraes Gregores, E.; Iope, R. L.; Novaes, S. F.; Tomei, T.; Anguelov, T.; Antchev, G.; Atanasov, I.; Damgov, J.; Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Stoykova, S.; Sultanov, G.; Trayanov, R.; Vankov, I.; Cheshkov, C.; Dimitrov, A.; Dyulendarova, M.; Glushkov, I.; Kozhuharov, V.; Litov, L.; Makariev, M.; Marinova, E.; Markov, S.; Mateev, M.; Nasteva, I.; Pavlov, B.; Petev, P.; Petkov, P.; Spassov, V.; Toteva, Z.; Velev, V.; Verguilov, V.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Jiang, C. H.; Liu, B.; Shen, X. Y.; Sun, H. S.; Tao, J.; Wang, J.; Yang, M.; Zhang, Z.; Zhao, W. R.; Zhuang, H. L.; Ban, Y.; Cai, J.; Ge, Y. C.; Liu, S.; Liu, H. T.; Liu, L.; Qian, S. J.; Wang, Q.; Xue, Z. H.; Yang, Z. C.; Ye, Y. L.; Ying, J.; Li, P. J.; Liao, J.; Xue, Z. L.; Yan, D. S.; Yuan, H.; Carrillo Montoya, C. A.; Sanabria, J. C.; Godinovic, N.; Puljak, I.; Soric, I.; Antunovic, Z.; Dzelalija, M.; Marasovic, K.; Brigljevic, V.; Kadija, K.; Morovic, S.; Fereos, R.; Nicolaou, C.; Papadakis, A.; Ptochos, F.; Razis, P. A.; Tsiakkouri, D.; Zinonos, Z.; Hektor, A.; Kadastik, M.; Kannike, K.; Lippmaa, E.; Müntel, M.; Raidal, M.; Rebane, L.; Aarnio, P. A.; Anttila, E.; Banzuzi, K.; Bulteau, P.; Czellar, S.; Eiden, N.; Eklund, C.; Engstrom, P.; Heikkinen, A.; Honkanen, A.; Härkönen, J.; Karimäki, V.; Katajisto, H. M.; Kinnunen, R.; Klem, J.; Kortesmaa, J.; Kotamäki, M.; Kuronen, A.; Lampén, T.; Lassila-Perini, K.; Lefébure, V.; Lehti, S.; Lindén, T.; Luukka, P. R.; Michal, S.; Moura Brigido, F.; Mäenpää, T.; Nyman, T.; Nystén, J.; Pietarinen, E.; Skog, K.; Tammi, K.; Tuominen, E.; Tuominiemi, J.; Ungaro, D.; Vanhala, T. P.; Wendland, L.; Williams, C.; Iskanius, M.; Korpela, A.; Polese, G.; Tuuva, T.; Bassompierre, G.; Bazan, A.; David, P. Y.; Ditta, J.; Drobychev, G.; Fouque, N.; Guillaud, J. P.; Hermel, V.; Karneyeu, A.; LeFlour, T.; Lieunard, S.; Maire, M.; Mendiburu, P.; Nedelec, P.; Peigneux, J. P.; Schneegans, M.; Sillou, D.; Vialle, J. P.; Anfreville, M.; Bard, J. P.; Besson, P.; Bougamont, E.; Boyer, M.; Bredy, P.; Chipaux, R.; Dejardin, M.; Denegri, D.; Descamps, J.; Fabbro, B.; Faure, J. L.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Jeanney, C.; Kircher, F.; Lemaire, M. C.; Lemoigne, Y.; Levesy, B.; Locci, E.; Lottin, J. P.; Mandjavidze, I.; Mur, M.; Pansart, J. P.; Payn, A.; Rander, J.; Reymond, J. M.; Rolquin, J.; Rondeaux, F.; Rosowsky, A.; Rousse, J. Y. A.; Sun, Z. H.; Tartas, J.; Van Lysebetten, A.; Venault, P.; Verrecchia, P.; Anduze, M.; Badier, J.; Baffioni, S.; Bercher, M.; Bernet, C.; Berthon, U.; Bourotte, J.; Busata, A.; Busson, P.; Cerutti, M.; Chamont, D.; Charlot, C.; Collard, C.; Debraine, A.; Decotigny, D.; Dobrzynski, L.; Ferreira, O.; Geerebaert, Y.; Gilly, J.; Gregory, C.; Guevara Riveros, L.; Haguenauer, M.; Karar, A.; Koblitz, B.; Lecouturier, D.; Mathieu, A.; Milleret, G.; Miné, P.; Paganini, P.; Poilleux, P.; Pukhaeva, N.; Regnault, N.; Romanteau, T.; Semeniouk, I.; Sirois, Y.; Thiebaux, C.; Vanel, J. C.; Zabi, A.; Agram, J. L.; Albert, A.; Anckenmann, L.; Andrea, J.; Anstotz, F.; Bergdolt, A. M.; Berst, J. D.; Blaes, R.; Bloch, D.; Brom, J. M.; Cailleret, J.; Charles, F.; Christophel, E.; Claus, G.; Coffin, J.; Colledani, C.; Croix, J.; Dangelser, E.; Dick, N.; Didierjean, F.; Drouhin, F.; Dulinski, W.; Ernenwein, J. P.; Fang, R.; Fontaine, J. C.; Gaudiot, G.; Geist, W.; Gelé, D.; Goeltzenlichter, T.; Goerlach, U.; Graehling, P.; Gross, L.; Hu, C. Guo; Helleboid, J. M.; Henkes, T.; Hoffer, M.; Hoffmann, C.; Hosselet, J.; Houchu, L.; Hu, Y.; Huss, D.; Illinger, C.; Jeanneau, F.; Juillot, P.; Kachelhoffer, T.; Kapp, M. R.; Kettunen, H.; Lakehal Ayat, L.; LeBihan, A. C.; Lounis, A.; Maazouzi, C.; Mack, V.; Majewski, P.; Mangeol, D.; Michel, J.; Moreau, S.; Olivetto, C.; Pallarès, A.; Patois, Y.; Pralavorio, P.; Racca, C.; Riahi, Y.; Ripp-Baudot, I.; Schmitt, P.; Schunck, J. P.; Schuster, G.; Schwaller, B.; Sigward, M. H.; Sohler, J. L.; Speck, J.; Strub, R.; Todorov, T.; Turchetta, R.; Van Hove, P.; Vintache, D.; Zghiche, A.; Ageron, M.; Augustin, J. E.; Baty, C.; Baulieu, G.; Bedjidian, M.; Blaha, J.; Bonnevaux, A.; Boudoul, G.; Brunet, P.; Chabanat, E.; Chabert, E. C.; Chierici, R.; Chorowicz, V.; Combaret, C.; Contardo, D.; Della Negra, R.; Depasse, P.; Drapier, O.; Dupanloup, M.; Dupasquier, T.; El Mamouni, H.; Estre, N.; Fay, J.; Gascon, S.; Giraud, N.; Girerd, C.; Guillot, G.; Haroutunian, R.; Ille, B.; Lethuillier, M.; Lumb, N.; Martin, C.; Mathez, H.; Maurelli, G.; Muanza, S.; Pangaud, P.; Perries, S.; Ravat, O.; Schibler, E.; Schirra, F.; Smadja, G.; Tissot, S.; Trocme, B.; Vanzetto, S.; Walder, J. P.; Bagaturia, Y.; Mjavia, D.; Mzhavia, A.; Tsamalaidze, Z.; Roinishvili, V.; Adolphi, R.; Anagnostou, G.; Brauer, R.; Braunschweig, W.; Esser, H.; Feld, L.; Karpinski, W.; Khomich, A.; Klein, K.; Kukulies, C.; Lübelsmeyer, K.; Olzem, J.; Ostaptchouk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Siedling, R.; Thomas, M.; Weber, M.; Wittmer, B.; Wlochal, M.; Adamczyk, F.; Adolf, A.; Altenhöfer, G.; Bechstein, S.; Bethke, S.; Biallass, P.; Biebel, O.; Bontenackels, M.; Bosseler, K.; Böhm, A.; Erdmann, M.; Faissner, H.; Fehr, B.; Fesefeldt, H.; Fetchenhauer, G.; Frangenheim, J.; Frohn, J. H.; Grooten, J.; Hebbeker, T.; Hermann, S.; Hermens, E.; Hilgers, G.; Hoepfner, K.; Hof, C.; Jacobi, E.; Kappler, S.; Kirsch, M.; Kreuzer, P.; Kupper, R.; Lampe, H. R.; Lanske, D.; Mameghani, R.; Meyer, A.; Meyer, S.; Moers, T.; Müller, E.; Pahlke, R.; Philipps, B.; Rein, D.; Reithler, H.; Reuter, W.; Rütten, P.; Schulz, S.; Schwarthoff, H.; Sobek, W.; Sowa, M.; Stapelberg, T.; Szczesny, H.; Teykal, H.; Teyssier, D.; Tomme, H.; Tomme, W.; Tonutti, M.; Tsigenov, O.; Tutas, J.; Vandenhirtz, J.; Wagner, H.; Wegner, M.; Zeidler, C.; Beissel, F.; Davids, M.; Duda, M.; Flügge, G.; Giffels, M.; Hermanns, T.; Heydhausen, D.; Kalinin, S.; Kasselmann, S.; Kaussen, G.; Kress, T.; Linn, A.; Nowack, A.; Perchalla, L.; Poettgens, M.; Pooth, O.; Sauerland, P.; Stahl, A.; Tornier, D.; Zoeller, M. H.; Behrens, U.; Borras, K.; Flossdorf, A.; Hatton, D.; Hegner, B.; Kasemann, M.; Mankel, R.; Meyer, A.; Mnich, J.; Rosemann, C.; Youngman, C.; Zeuner, W. D.; Bechtel, F.; Buhmann, P.; Butz, E.; Flucke, G.; Hamdorf, R. H.; Holm, U.; Klanner, R.; Pein, U.; Schirm, N.; Schleper, P.; Steinbrück, G.; Van Staa, R.; Wolf, R.; Atz, B.; Barvich, T.; Blüm, P.; Boegelspacher, F.; Bol, H.; Chen, Z. Y.; Chowdhury, S.; DeBoer, W.; Dehm, P.; Dirkes, G.; Fahrer, M.; Felzmann, U.; Frey, M.; Furgeri, A.; Gregoriev, E.; Hartmann, F.; Hauler, F.; Heier, S.; Kärcher, K.; Ledermann, B.; Mueller, S.; Müller, Th; Neuberger, D.; Piasecki, C.; Quast, G.; Rabbertz, K.; Sabellek, A.; Scheurer, A.; Schilling, F. P.; Simonis, H. J.; Skiba, A.; Steck, P.; Theel, A.; Thümmel, W. H.; Trunov, A.; Vest, A.; Weiler, T.; Weiser, C.; Weseler, S.; Zhukov, V.; Barone, M.; Daskalakis, G.; Dimitriou, N.; Fanourakis, G.; Filippidis, C.; Geralis, T.; Kalfas, C.; Karafasoulis, K.; Koimas, A.; Kyriakis, A.; Kyriazopoulou, S.; Loukas, D.; Markou, A.; Markou, C.; Mastroyiannopoulos, N.; Mavrommatis, C.; Mousa, J.; Papadakis, I.; Petrakou, E.; Siotis, I.; Theofilatos, K.; Tzamarias, S.; Vayaki, A.; Vermisoglou, G.; Zachariadou, A.; Gouskos, L.; Karapostoli, G.; Katsas, P.; Panagiotou, A.; Papadimitropoulos, C.; Aslanoglou, X.; Evangelou, I.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Triantis, F. A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Kovesarki, P.; Laszlo, A.; Odor, G.; Patay, G.; Sikler, F.; Veres, G.; Vesztergombi, G.; Zalan, P.; Fenyvesi, A.; Imrek, J.; Molnar, J.; Novak, D.; Palinkas, J.; Szekely, G.; Beni, N.; Kapusi, A.; Marian, G.; Radics, B.; Raics, P.; Szabo, Z.; Szillasi, Z.; Trocsanyi, Z. L.; Zilizi, G.; Bawa, H. S.; Beri, S. B.; Bhandari, V.; Bhatnagar, V.; Kaur, M.; Kohli, J. M.; Kumar, A.; Singh, B.; Singh, J. B.; Arora, S.; Bhattacharya, S.; Chatterji, S.; Chauhan, S.; Choudhary, B. C.; Gupta, P.; Jha, M.; Ranjan, K.; Shivpuri, R. K.; Srivastava, A. K.; Choudhury, R. K.; Dutta, D.; Ghodgaonkar, M.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, Sunanda; Bose, S.; Chendvankar, S.; Deshpande, P. V.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Nayak, A.; Patil, M. R.; Sharma, S.; Sudhakar, K.; Acharya, B. S.; Banerjee, Sudeshna; Bheesette, S.; Dugad, S.; Kalmani, S. D.; Lakkireddi, V. R.; Mondal, N. K.; Panyam, N.; Verma, P.; Arfaei, H.; Hashemi, M.; Najafabadi, M. Mohammadi; Moshaii, A.; Paktinat Mehdiabadi, S.; Felcini, M.; Grunewald, M.; Abadjiev, K.; Abbrescia, M.; Barbone, L.; Cariola, P.; Chiumarulo, F.; Clemente, A.; Colaleo, A.; Creanza, D.; DeFilippis, N.; DePalma, M.; DeRobertis, G.; Donvito, G.; Ferorelli, R.; Fiore, L.; Franco, M.; Giordano, D.; Guida, R.; Iaselli, G.; Lacalamita, N.; Loddo, F.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; Mennea, M. S.; My, S.; Natali, S.; Nuzzo, S.; Papagni, G.; Pinto, C.; Pompili, A.; Pugliese, G.; Ranieri, A.; Romano, F.; Roselli, G.; Sala, G.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Trentadue, R.; Tupputi, S.; Zito, G.; Abbiendi, G.; Bacchi, W.; Battilana, C.; Benvenuti, A. C.; Boldini, M.; Bonacorsi, D.; Braibant-Giacomelli, S.; Cafaro, V. D.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Ciocca, C.; Codispoti, G.; Cuffiani, M.; D'Antone, I.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Finelli, S.; Giacomelli, P.; Giordano, V.; Giunta, M.; Grandi, C.; Guerzoni, M.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Odorici, F.; Paolucci, A.; Pellegrini, G.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Torromeo, G.; Travaglini, R.; Veronese, G. P.; Albergo, S.; Chiorboli, M.; Costa, S.; Galanti, M.; Gatto Rotondo, G.; Giudice, N.; Guardone, N.; Noto, F.; Potenza, R.; Saizu, M. A.; Salemi, G.; Sutera, C.; Tricomi, A.; Tuve, C.; Bellucci, L.; Brianzi, M.; Broccolo, G.; Catacchini, E.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Landi, G.; Lenzi, P.; Macchiolo, A.; Maletta, F.; Manolescu, F.; Marchettini, C.; Masetti, L.; Mersi, S.; Meschini, M.; Minelli, C.; Paoletti, S.; Parrini, G.; Scarlini, E.; Sguazzoni, G.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M.; Colonna, D.; Daniello, L.; Fabbri, F.; Felli, F.; Giardoni, M.; La Monaca, A.; Ortenzi, B.; Pallotta, M.; Paolozzi, A.; Paris, C.; Passamonti, L.; Pierluigi, D.; Ponzio, B.; Pucci, C.; Russo, A.; Saviano, G.; Fabbricatore, P.; Farinon, S.; Greco, M.; Musenich, R.; Badoer, S.; Berti, L.; Biasotto, M.; Fantinel, S.; Frizziero, E.; Gastaldi, U.; Gulmini, M.; Lelli, F.; Maron, G.; Squizzato, S.; Toniolo, N.; Traldi, S.; Banfi, S.; Bertoni, R.; Bonesini, M.; Carbone, L.; Cerati, G. B.; Chignoli, F.; D'Angelo, P.; DeMin, A.; Dini, P.; Farina, F. M.; Ferri, F.; Govoni, P.; Magni, S.; Malberti, M.; Malvezzi, S.; Mazza, R.; Menasce, D.; Miccio, V.; Moroni, L.; Negri, P.; Paganoni, M.; Pedrini, D.; Pullia, A.; Ragazzi, S.; Redaelli, N.; Rovere, M.; Sala, L.; Sala, S.; Salerno, R.; Tabarelli de Fatis, T.; Tancini, V.; Taroni, S.; Boiano, A.; Cassese, F.; Cassese, C.; Cimmino, A.; D'Aquino, B.; Lista, L.; Lomidze, D.; Noli, P.; Paolucci, P.; Passeggio, G.; Piccolo, D.; Roscilli, L.; Sciacca, C.; Vanzanella, A.; Azzi, P.; Bacchetta, N.; Barcellan, L.; Bellato, M.; Benettoni, M.; Bisello, D.; Borsato, E.; Candelori, A.; Carlin, R.; Castellani, L.; Checchia, P.; Ciano, L.; Colombo, A.; Conti, E.; Da Rold, M.; Dal Corso, F.; DeGiorgi, M.; DeMattia, M.; Dorigo, T.; Dosselli, U.; Fanin, C.; Galet, G.; Gasparini, F.; Gasparini, U.; Giraldo, A.; Giubilato, P.; Gonella, F.; Gresele, A.; Griggio, A.; Guaita, P.; Kaminskiy, A.; Karaevskii, S.; Khomenkov, V.; Kostylev, D.; Lacaprara, S.; Lazzizzera, I.; Lippi, I.; Loreti, M.; Margoni, M.; Martinelli, R.; Mattiazzo, S.; Mazzucato, M.; Meneguzzo, A. T.; Modenese, L.; Montecassiano, F.; Neviani, A.; Nigro, M.; Paccagnella, A.; Pantano, D.; Parenti, A.; Passaseo, M.; Pedrotta, R.; Pegoraro, M.; Rampazzo, G.; Reznikov, S.; Ronchese, P.; Sancho Daponte, A.; Sartori, P.; Stavitskiy, I.; Tessaro, M.; Torassa, E.; Triossi, A.; Vanini, S.; Ventura, S.; Ventura, L.; Verlato, M.; Zago, M.; Zatti, F.; Zotto, P.; Zumerle, G.; Baesso, P.; Belli, G.; Berzano, U.; Bricola, S.; Grelli, A.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vicini, A.; Vitulo, P.; Viviani, C.; Aisa, D.; Aisa, S.; Ambroglini, F.; Angarano, M. M.; Babucci, E.; Benedetti, D.; Biasini, M.; Bilei, G. M.; Bizzaglia, S.; Brunetti, M. T.; Caponeri, B.; Checcucci, B.; Covarelli, R.; Dinu, N.; Fanò, L.; Farnesini, L.; Giorgi, M.; Lariccia, P.; Mantovani, G.; Moscatelli, F.; Passeri, D.; Piluso, A.; Placidi, P.; Postolache, V.; Santinelli, R.; Santocchia, A.; Servoli, L.; Spiga, D.; Azzurri, P.; Bagliesi, G.; Balestri, G.; Basti, A.; Bellazzini, R.; Benucci, L.; Bernardini, J.; Berretta, L.; Bianucci, S.; Boccali, T.; Bocci, A.; Borrello, L.; Bosi, F.; Bracci, F.; Brez, A.; Calzolari, F.; Castaldi, R.; Cazzola, U.; Ceccanti, M.; Cecchi, R.; Cerri, C.; Cucoanes, A. S.; Dell'Orso, R.; Dobur, D.; Dutta, S.; Fiori, F.; Foà, L.; Gaggelli, A.; Gennai, S.; Giassi, A.; Giusti, S.; Kartashov, D.; Kraan, A.; Latronico, L.; Ligabue, F.; Linari, S.; Lomtadze, T.; Lungu, G. A.; Magazzu, G.; Mammini, P.; Mariani, F.; Martinelli, G.; Massa, M.; Messineo, A.; Moggi, A.; Palla, F.; Palmonari, F.; Petragnani, G.; Petrucciani, G.; Profeti, A.; Raffaelli, F.; Rizzi, D.; Sanguinetti, G.; Sarkar, S.; Segneri, G.; Sentenac, D.; Serban, A. T.; Slav, A.; Spagnolo, P.; Spandre, G.; Tenchini, R.; Tolaini, S.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vos, M.; Zaccarelli, L.; Baccaro, S.; Barone, L.; Bartoloni, A.; Borgia, B.; Capradossi, G.; Cavallari, F.; Cecilia, A.; D'Angelo, D.; Dafinei, I.; DelRe, D.; Di Marco, E.; Diemoz, M.; Ferrara, G.; Gargiulo, C.; Guerra, S.; Iannone, M.; Longo, E.; Montecchi, M.; Nuccetelli, M.; Organtini, G.; Palma, A.; Paramatti, R.; Pellegrino, F.; Rahatlou, S.; Rovelli, C.; Safai Tehrani, F.; Zullo, A.; Alampi, G.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Benotto, F.; Biino, C.; Bolognesi, S.; Borgia, M. A.; Botta, C.; Brasolin, A.; Cartiglia, N.; Castello, R.; Cerminara, G.; Cirio, R.; Cordero, M.; Costa, M.; Dattola, D.; Daudo, F.; Dellacasa, G.; Demaria, N.; Dughera, G.; Dumitrache, F.; Farano, R.; Ferrero, G.; Filoni, E.; Kostyleva, G.; Larsen, H. E.; Mariotti, C.; Marone, M.; Maselli, S.; Menichetti, E.; Mereu, P.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Nervo, M.; Obertino, M. M.; Panero, R.; Parussa, A.; Pastrone, N.; Peroni, C.; Petrillo, G.; Romero, A.; Ruspa, M.; Sacchi, R.; Scalise, M.; Solano, A.; Staiano, A.; Trapani, P. P.; Trocino, D.; Vaniev, V.; Vilela Pereira, A.; Zampieri, A.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Kavka, C.; Penzo, A.; Kim, Y. E.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, J. C.; Kong, D. J.; Ro, S. R.; Son, D. C.; Park, S. Y.; Kim, Y. J.; Kim, J. Y.; Lim, I. T.; Pac, M. Y.; Lee, S. J.; Jung, S. Y.; Rhee, J. T.; Ahn, S. H.; Hong, B. S.; Jeng, Y. K.; Kang, M. H.; Kim, H. C.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Lim, J. K.; Moon, D. H.; Park, I. C.; Park, S. K.; Ryu, M. S.; Sim, K.-S.; Son, K. J.; Hong, S. J.; Choi, Y. I.; Castilla Valdez, H.; Sanchez Hernandez, A.; Carrillo Moreno, S.; Morelos Pineda, A.; Aerts, A.; Van der Stok, P.; Weffers, H.; Allfrey, P.; Gray, R. N. C.; Hashimoto, M.; Krofcheck, D.; Bell, A. J.; Bernardino Rodrigues, N.; Butler, P. H.; Churchwell, S.; Knegjens, R.; Whitehead, S.; Williams, J. C.; Aftab, Z.; Ahmad, U.; Ahmed, I.; Ahmed, W.; Asghar, M. I.; Asghar, S.; Dad, G.; Hafeez, M.; Hoorani, H. R.; Hussain, I.; Hussain, N.; Iftikhar, M.; Khan, M. S.; Mehmood, K.; Osman, A.; Shahzad, H.; Zafar, A. R.; Ali, A.; Bashir, A.; Jan, A. M.; Kamal, A.; Khan, F.; Saeed, M.; Tanwir, S.; Zafar, M. A.; Blocki, J.; Cyz, A.; Gladysz-Dziadus, E.; Mikocki, S.; Rybczynski, M.; Turnau, J.; Wlodarczyk, Z.; Zychowski, P.; Bunkowski, K.; Cwiok, M.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Doroba, K.; Kalinowski, A.; Kierzkowski, K.; Konecki, M.; Krolikowski, J.; Kudla, I. M.; Pietrusinski, M.; Pozniak, K.; Zabolotny, W.; Zych, P.; Gokieli, R.; Goscilo, L.; Górski, M.; Nawrocki, K.; Traczyk, P.; Wrochna, G.; Zalewski, P.; Pozniak, K. T.; Romaniuk, R.; Zabolotny, W. M.; Alemany-Fernandez, R.; Almeida, C.; Almeida, N.; Araujo Vila Verde, A. S.; Barata Monteiro, T.; Bluj, M.; Da Mota Silva, S.; Tinoco Mendes, A. David; Freitas Ferreira, M.; Gallinaro, M.; Husejko, M.; Jain, A.; Kazana, M.; Musella, P.; Nobrega, R.; Rasteiro Da Silva, J.; Ribeiro, P. Q.; Santos, M.; Silva, P.; Silva, S.; Teixeira, I.; Teixeira, J. P.; Varela, J.; Varner, G.; Vaz Cardoso, N.; Altsybeev, I.; Babich, K.; Belkov, A.; Belotelov, I.; Bunin, P.; Chesnevskaya, S.; Elsha, V.; Ershov, Y.; Filozova, I.; Finger, M.; Finger, M., Jr.; Golunov, A.; Golutvin, I.; Gorbounov, N.; Gramenitski, I.; Kalagin, V.; Kamenev, A.; Karjavin, V.; Khabarov, S.; Khabarov, V.; Kiryushin, Y.; Konoplyanikov, V.; Korenkov, V.; Kozlov, G.; Kurenkov, A.; Lanev, A.; Lysiakov, V.; Malakhov, A.; Melnitchenko, I.; Mitsyn, V. V.; Moisenz, K.; Moisenz, P.; Movchan, S.; Nikonov, E.; Oleynik, D.; Palichik, V.; Perelygin, V.; Petrosyan, A.; Rogalev, E.; Samsonov, V.; Savina, M.; Semenov, R.; Sergeev, S.; Shmatov, S.; Shulha, S.; Smirnov, V.; Smolin, D.; Tcheremoukhine, A.; Teryaev, O.; Tikhonenko, E.; Urkinbaev, A.; Vasil'ev, S.; Vishnevskiy, A.; Volodko, A.; Zamiatin, N.; Zarubin, A.; Zarubin, P.; Zubarev, E.; Bondar, N.; Gavrikov, Y.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kozlov, V.; Lebedev, V.; Makarenkov, G.; Moroz, F.; Neustroev, P.; Obrant, G.; Orishchin, E.; Petrunin, A.; Shcheglov, Y.; Shchetkovskiy, A.; Sknar, V.; Skorobogatov, V.; Smirnov, I.; Sulimov, V.; Tarakanov, V.; Uvarov, L.; Vavilov, S.; Velichko, G.; Volkov, S.; Vorobyev, A.; Chmelev, D.; Druzhkin, D.; Ivanov, A.; Kudinov, V.; Logatchev, O.; Onishchenko, S.; Orlov, A.; Sakharov, V.; Smetannikov, V.; Tikhomirov, A.; Zavodthikov, S.; Andreev, Yu; Anisimov, A.; Duk, V.; Gninenko, S.; Golubev, N.; Gorbunov, D.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Pastsyak, A.; Postoev, V. E.; Sadovski, A.; Skassyrskaia, A.; Solovey, Alexander; Solovey, Anatoly; Soloviev, D.; Toropin, A.; Troitsky, S.; Alekhin, A.; Baldov, A.; Epshteyn, V.; Gavrilov, V.; Ilina, N.; Kaftanov, V.; Karpishin, V.; Kiselevich, I.; Kolosov, V.; Kossov, M.; Krokhotin, A.; Kuleshov, S.; Oulianov, A.; Pozdnyakov, A.; Safronov, G.; Semenov, S.; Stepanov, N.; Stolin, V.; Vlasov, E.; Zaytsev, V.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Eyyubova, G.; Gribushin, A.; Ilyin, V.; Klyukhin, V.; Kodolova, O.; Kruglov, N. A.; Kryukov, A.; Lokhtin, I.; Malinina, L.; Mikhaylin, V.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Shamardin, L.; Sherstnev, A.; Snigirev, A.; Teplov, K.; Vardanyan, I.; Fomenko, A. M.; Konovalova, N.; Kozlov, V.; Lebedev, A. I.; Lvova, N.; Rusakov, S. V.; Terkulov, A.; Abramov, V.; Akimenko, S.; Artamonov, A.; Ashimova, A.; Azhgirey, I.; Bitioukov, S.; Chikilev, O.; Datsko, K.; Filine, A.; Godizov, A.; Goncharov, P.; Grishin, V.; Inyakin, A.; Kachanov, V.; Kalinin, A.; Khmelnikov, A.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Krinitsyn, A.; Levine, A.; Lobov, I.; Lukanin, V.; Mel'nik, Y.; Molchanov, V.; Petrov, V.; Petukhov, V.; Pikalov, V.; Ryazanov, A.; Ryutin, R.; Shelikhov, V.; Skvortsov, V.; Slabospitsky, S.; Sobol, A.; Sytine, A.; Talov, V.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Zelepoukine, S.; Lukyanov, V.; Mamaeva, G.; Prilutskaya, Z.; Rumyantsev, I.; Sokha, S.; Tataurschikov, S.; Vasilyev, I.; Adzic, P.; Anicin, I.; Djordjevic, M.; Jovanovic, D.; Maletic, D.; Puzovic, J.; Smiljkovic, N.; Aguayo Navarrete, E.; Aguilar-Benitez, M.; Ahijado Munoz, J.; Alarcon Vega, J. M.; Alberdi, J.; Alcaraz Maestre, J.; Aldaya Martin, M.; Arce, P.; Barcala, J. M.; Berdugo, J.; Blanco Ramos, C. L.; Burgos Lazaro, C.; Caballero Bejar, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Chercoles Catalán, J. J.; Colino, N.; Daniel, M.; DeLa Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Ferrando, A.; Fouz, M. C.; Francia Ferrero, D.; Garcia Romero, J.; Garcia-Abia, P.; Gonzalez Lopez, O.; Hernandez, J. M.; Josa, M. I.; Marin, J.; Merino, G.; Molinero, A.; Navarrete, J. J.; Oller, J. C.; Puerta Pelayo, J.; Puras Sanchez, J. C.; Ramirez, J.; Romero, L.; Villanueva Munoz, C.; Willmott, C.; Yuste, C.; Albajar, C.; de Trocóniz, J. F.; Jimenez, I.; Macias, R.; Teixeira, R. F.; Cuevas, J.; Fernández Menéndez, J.; Gonzalez Caballero, I.; Lopez-Garcia, J.; Naves Sordo, H.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Cano Fernandez, D.; Diaz Merino, I.; Duarte Campderros, J.; Fernandez, M.; Fernandez Menendez, J.; Figueroa, C.; Garcia Moral, L. A.; Gomez, G.; Gomez Casademunt, F.; Gonzalez Sanchez, J.; Gonzalez Suarez, R.; Jorda, C.; Lobelle Pardo, P.; Lopez Garcia, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Orviz Fernandez, P.; Patino Revuelta, A.; Rodrigo, T.; Rodriguez Gonzalez, D.; Ruiz Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Barbero, M.; Goldin, D.; Henrich, B.; Tauscher, L.; Vlachos, S.; Wadhwa, M.; Abbaneo, D.; Abbas, S. M.; Ahmed, I.; Akhtar, S.; Akhtar, M. I.; Albert, E.; Alidra, M.; Ashby, S.; Aspell, P.; Auffray, E.; Baillon, P.; Ball, A.; Bally, S. L.; Bangert, N.; Barillère, R.; Barney, D.; Beauceron, S.; Beaudette, F.; Benelli, G.; Benetta, R.; Benichou, J. L.; Bialas, W.; Bjorkebo, A.; Blechschmidt, D.; Bloch, C.; Bloch, P.; Bonacini, S.; Bos, J.; Bosteels, M.; Boyer, V.; Branson, A.; Breuker, H.; Bruneliere, R.; Buchmuller, O.; Campi, D.; Camporesi, T.; Caner, A.; Cano, E.; Carrone, E.; Cattai, A.; Chatelain, J. P.; Chauvey, M.; Christiansen, T.; Ciganek, M.; Cittolin, S.; Cogan, J.; Conde Garcia, A.; Cornet, H.; Corrin, E.; Corvo, M.; Cucciarelli, S.; Curé, B.; D'Enterria, D.; DeRoeck, A.; de Visser, T.; Delaere, C.; Delattre, M.; Deldicque, C.; Delikaris, D.; Deyrail, D.; Di Vincenzo, S.; Domeniconi, A.; Dos Santos, S.; Duthion, G.; Edera, L. M.; Elliott-Peisert, A.; Eppard, M.; Fanzago, F.; Favre, M.; Foeth, H.; Folch, R.; Frank, N.; Fratianni, S.; Freire, M. A.; Frey, A.; Fucci, A.; Funk, W.; Gaddi, A.; Gagliardi, F.; Gastal, M.; Gateau, M.; Gayde, J. C.; Gerwig, H.; Ghezzi, A.; Gigi, D.; Gill, K.; Giolo-Nicollerat, A. S.; Girod, J. P.; Glege, F.; Glessing, W.; Gomez-Reino Garrido, R.; Goudard, R.; Grabit, R.; Grillet, J. P.; Gutierrez Llamas, P.; Gutierrez Mlot, E.; Gutleber, J.; Hall-wilton, R.; Hammarstrom, R.; Hansen, M.; Harvey, J.; Hervé, A.; Hill, J.; Hoffmann, H. F.; Holzner, A.; Honma, A.; Hufnagel, D.; Huhtinen, M.; Ilie, S. D.; Innocente, V.; Jank, W.; Janot, P.; Jarron, P.; Jeanrenaud, M.; Jouvel, P.; Kerkach, R.; Kloukinas, K.; Kottelat, L. J.; Labbé, J. C.; Lacroix, D.; Lagrue, X.; Lasseur, C.; Laure, E.; Laurens, J. F.; Lazeyras, P.; LeGoff, J. M.; Lebeau, M.; Lecoq, P.; Lemeilleur, F.; Lenzi, M.; Leonardo, N.; Leonidopoulos, C.; Letheren, M.; Liendl, M.; Limia-Conde, F.; Linssen, L.; Ljuslin, C.; Lofstedt, B.; Loos, R.; Lopez Perez, J. A.; Lourenco, C.; Lyonnet, A.; Machard, A.; Mackenzie, R.; Magini, N.; Maire, G.; Malgeri, L.; Malina, R.; Mannelli, M.; Marchioro, A.; Martin, J.; Meijers, F.; Meridiani, P.; Meschi, E.; Meyer, T.; Meynet Cordonnier, A.; Michaud, J. F.; Mirabito, L.; Moser, R.; Mossiere, F.; Muffat-Joly, J.; Mulders, M.; Mulon, J.; Murer, E.; Mättig, P.; Oh, A.; Onnela, A.; Oriunno, M.; Orsini, L.; Osborne, J. A.; Paillard, C.; Pal, I.; Papotti, G.; Passardi, G.; Patino-Revuelta, A.; Patras, V.; Perea Solano, B.; Perez, E.; Perinic, G.; Pernot, J. F.; Petagna, P.; Petiot, P.; Petit, P.; Petrilli, A.; Pfeiffer, A.; Piccut, C.; Pimiä, M.; Pintus, R.; Pioppi, M.; Placci, A.; Pollet, L.; Postema, H.; Price, M. J.; Principe, R.; Racz, A.; Radermacher, E.; Ranieri, R.; Raymond, G.; Rebecchi, P.; Rehn, J.; Reynaud, S.; Rezvani Naraghi, H.; Ricci, D.; Ridel, M.; Risoldi, M.; Rodrigues Simoes Moreira, P.; Rohlev, A.; Roiron, G.; Rolandi, G.; Rumerio, P.; Runolfsson, O.; Ryjov, V.; Sakulin, H.; Samyn, D.; Santos Amaral, L. C.; Sauce, H.; Sbrissa, E.; Scharff-Hansen, P.; Schieferdecker, P.; Schlatter, W. D.; Schmitt, B.; Schmuecker, H. G.; Schröder, M.; Schwick, C.; Schäfer, C.; Segoni, I.; Sempere Roldán, P.; Sgobba, S.; Sharma, A.; Siegrist, P.; Sigaud, C.; Sinanis, N.; Sobrier, T.; Sphicas, P.; Spiropulu, M.; Stefanini, G.; Strandlie, A.; Szoncsó, F.; Taylor, B. G.; Teller, O.; Thea, A.; Tournefier, E.; Treille, D.; Tropea, P.; Troska, J.; Tsesmelis, E.; Tsirou, A.; Valls, J.; Van Vulpen, I.; Vander Donckt, M.; Vasey, F.; Vazquez Acosta, M.; Veillet, L.; Vichoudis, P.; Waurick, G.; Wellisch, J. P.; Wertelaers, P.; Wilhelmsson, M.; Willers, I. M.; Winkler, M.; Zanetti, M.; Bertl, W.; Deiters, K.; Dick, P.; Erdmann, W.; Feichtinger, D.; Gabathuler, K.; Hochman, Z.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; König, S.; Poerschke, P.; Renker, D.; Rohe, T.; Sakhelashvili, T.; Starodumov, A.; Aleksandrov, V.; Behner, F.; Beniozef, I.; Betev, B.; Blau, B.; Brett, A. M.; Caminada, L.; Chen, Z.; Chivarov, N.; Da Silva Di Calafiori, D.; Dambach, S.; Davatz, G.; Delachenal, V.; Della Marina, R.; Dimov, H.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Dröge, M.; Eggel, C.; Ehlers, J.; Eichler, R.; Elmiger, M.; Faber, G.; Freudenreich, K.; Fuchs, J. F.; Georgiev, G. M.; Grab, C.; Haller, C.; Herrmann, J.; Hilgers, M.; Hintz, W.; Hofer, Hans; Hofer, Heinz; Horisberger, U.; Horvath, I.; Hristov, A.; Humbertclaude, C.; Iliev, B.; Kastli, W.; Kruse, A.; Kuipers, J.; Langenegger, U.; Lecomte, P.; Lejeune, E.; Leshev, G.; Lesmond, C.; List, B.; Luckey, P. D.; Lustermann, W.; Maillefaud, J. D.; Marchica, C.; Maurisset, A.; Meier, B.; Milenovic, P.; Milesi, M.; Moortgat, F.; Nanov, I.; Nardulli, A.; Nessi-Tedaldi, F.; Panev, B.; Pape, L.; Pauss, F.; Petrov, E.; Petrov, G.; Peynekov, M. M.; Pitzl, D.; Punz, T.; Riboni, P.; Riedlberger, J.; Rizzi, A.; Ronga, F. J.; Roykov, P. A.; Röser, U.; Schinzel, D.; Schöning, A.; Sourkov, A.; Stanishev, K.; Stoenchev, S.; Stöckli, F.; Suter, H.; Trüb, P.; Udriot, S.; Uzunova, D. G.; Veltchev, I.; Viertel, G.; von Gunten, H. P.; Waldmeier-Wicki, S.; Weber, R.; Weber, M.; Weng, J.; Wensveen, M.; Wittgenstein, F.; Zagoursky, K.; Alagoz, E.; Amsler, C.; Chiochia, V.; Hoermann, C.; Regenfus, C.; Robmann, P.; Rommerskirchen, T.; Schmidt, A.; Steiner, S.; Tsirigkas, D.; Wilke, L.; Blyth, S.; Chang, Y. H.; Chen, E. A.; Go, A.; Hung, C. C.; Kuo, C. M.; Li, S. W.; Lin, W.; Chang, P.; Chao, Y.; Chen, K. F.; Gao, Z.; Hou, G. W. S.; Hsiung, Y. B.; Lei, Y. J.; Lin, S. W.; Lu, R. S.; Shiu, J. G.; Tzeng, Y. M.; Ueno, K.; Velikzhanin, Y.; Wang, C. C.; Wang, M.-Z.; Aydin, S.; Azman, A.; Bakirci, M. N.; Basegmez, S.; Cerci, S.; Dumanoglu, I.; Erturk, S.; Eskut, E.; Kayis Topaksu, A.; Kisoglu, H.; Kurt, P.; Ozdemir, K.; Ozdes Koca, N.; Ozkurt, H.; Ozturk, S.; Polatöz, A.; Sogut, K.; Topakli, H.; Vergili, M.; Önengüt, G.; Gamsizkan, H.; Sekmen, S.; Serin-Zeyrek, M.; Sever, R.; Zeyrek, M.; Deliomeroglu, M.; Gülmez, E.; Isiksal, E.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Grinev, B.; Lyubynskiy, V.; Senchyshyn, V.; Levchuk, L.; Lukyanenko, S.; Soroka, D.; Sorokin, P.; Zub, S.; Anjum, A.; Baker, N.; Hauer, T.; McClatchey, R.; Odeh, M.; Rogulin, D.; Solomonides, A.; Brooke, J. J.; Croft, R.; Cussans, D.; Evans, D.; Frazier, R.; Grant, N.; Hansen, M.; Head, R. D.; Heath, G. P.; Heath, H. F.; Hill, C.; Huckvale, B.; Jackson, J.; Lynch, C.; Mackay, C. K.; Metson, S.; Nash, S. J.; Newbold, D. M.; Presland, A. D.; Probert, M. G.; Reid, E. C.; Smith, V. J.; Tapper, R. J.; Walton, R.; Bateman, E.; Bell, K. W.; Brown, R. M.; Camanzi, B.; Church, I. T.; Cockerill, D. J. A.; Cole, J. E.; Connolly, J. F.; Coughlan, J. A.; Flower, P. S.; Ford, P.; Francis, V. B.; French, M. J.; Galagedera, S. B.; Gannon, W.; Gay, A. P. R.; Geddes, N. I.; Greenhalgh, R. J. S.; Halsall, R. N. J.; Haynes, W. J.; Hill, J. A.; Jacob, F. R.; Jeffreys, P. W.; Jones, L. L.; Kennedy, B. W.; Lintern, A. L.; Lodge, A. B.; Maddox, A. J.; Morrissey, Q. R.; Murray, P.; Patrick, G. N.; Pattison, C. A. X.; Pearson, M. R.; Quinton, S. P. H.; Rogers, G. J.; Salisbury, J. G.; Shah, A. A.; Shepherd-Themistocleous, C. H.; Smith, B. J.; Sproston, M.; Stephenson, R.; Taghavi, S.; Tomalin, I. R.; Torbet, M. J.; Williams, J. H.; Womersley, W. J.; Worm, S. D.; Xing, F.; Apollonio, M.; Arteche, F.; Bainbridge, R.; Barber, G.; Barrillon, P.; Batten, J.; Beuselinck, R.; Brambilla Hall, P. M.; Britton, D.; Cameron, W.; Clark, D. E.; Clark, I. W.; Colling, D.; Cripps, N.; Davies, G.; Della Negra, M.; Dewhirst, G.; Dris, S.; Foudas, C.; Fulcher, J.; Futyan, D.; Graham, D. J.; Greder, S.; Greenwood, S.; Hall, G.; Hassard, J. F.; Hays, J.; Iles, G.; Kasey, V.; Khaleeq, M.; Leaver, J.; Lewis, P.; MacEvoy, B. C.; Maroney, O.; McLeod, E. M.; Miller, D. G.; Nash, J.; Nikitenko, A.; Noah Messomo, E.; Noy, M.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Price, D. R.; Qu, X.; Raymond, D. M.; Rose, A.; Rutherford, S.; Ryan, M. J.; Sciacca, F.; Seez, C.; Sharp, P.; Sidiropoulos, G.; Stettler, M.; Stoye, M.; Striebig, J.; Takahashi, M.; Tallini, H.; Tapper, A.; Timlin, C.; Toudup, L.; Virdee, T.; Wakefield, S.; Walsham, P.; Wardrope, D.; Wingham, M.; Zhang, Y.; Zorba, O.; Da Via, C.; Goitom, I.; Hobson, P. R.; Imrie, D. C.; Reid, I.; Selby, C.; Sharif, O.; Teodorescu, L.; Watts, S. J.; Yaselli, I.; Hazen, E.; Heering, A.; Heister, A.; Lawlor, C.; Lazic, D.; Machado, E.; Rohlf, J.; Sulak, L.; Varela Rodriguez, F.; Wu, S. X.; Avetisyan, A.; Bose, T.; Christofek, L.; Cutts, D.; Esen, S.; Hooper, R.; Landsberg, G.; Narain, M.; Nguyen, D.; Speer, T.; Tsang, K. V.; Breedon, R.; Case, M.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Fisyak, Y.; Friis, E.; Grim, G.; Holbrook, B.; Ko, W.; Kopecky, A.; Lander, R.; Lin, F. C.; Lister, A.; Maruyama, S.; Pellett, D.; Rowe, J.; Searle, M.; Smith, J.; Soha, A.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Veelken, C.; Andreev, V.; Arisaka, K.; Bonushkin, Y.; Chandramouly, S.; Cline, D.; Cousins, R.; Erhan, S.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Lisowski, B.; Matthey, C.; Mohr, B.; Mumford, J.; Otwinowski, S.; Pischalnikov, Y.; Rakness, G.; Schlein, P.; Shi, Y.; Tannenbaum, B.; Tucker, J.; Valuev, V.; Wallny, R.; Wang, H. G.; Yang, X.; Zheng, Y.; Andreeva, J.; Babb, J.; Campana, S.; Chrisman, D.; Clare, R.; Ellison, J.; Fortin, D.; Gary, J. W.; Gorn, W.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Layter, J. G.; Liu, F.; Liu, H.; Luthra, A.; Pasztor, G.; Rick, H.; Satpathy, A.; Shen, B. C.; Stringer, R.; Sytnik, V.; Tran, P.; Villa, S.; Wilken, R.; Wimpenny, S.; Zer-Zion, D.; Branson, J. G.; Coarasa Perez, J. A.; Dusinberre, E.; Kelley, R.; Lebourgeois, M.; Letts, J.; Lipeles, E.; Mangano, B.; Martin, T.; Mojaver, M.; Muelmenstaedt, J.; Norman, M.; Paar, H. P.; Petrucci, A.; Pi, H.; Pieri, M.; Rana, A.; Sani, M.; Sharma, V.; Simon, S.; White, A.; Würthwein, F.; Yagil, A.; Affolder, A.; Allen, A.; Campagnari, C.; D'Alfonso, M.; Dierlamm, A.; Garberson, J.; Hale, D.; Incandela, J.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Kyre, S.; Lamb, J.; Lowette, S.; Nikolic, M.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Shah, Y. S.; Stuart, D.; Swain, S.; Vlimant, J. R.; White, D.; Witherell, M.; Bornheim, A.; Bunn, J.; Chen, J.; Denis, G.; Galvez, P.; Gataullin, M.; Legrand, I.; Litvine, V.; Ma, Y.; Mao, R.; Nae, D.; Narsky, I.; Newman, H. B.; Orimoto, T.; Rogan, C.; Shevchenko, S.; Steenberg, C.; Su, X.; Thomas, M.; Timciuc, V.; van Lingen, F.; Veverka, J.; Voicu, B. R.; Weinstein, A.; Wilkinson, R.; Xia, Y.; Yang, Y.; Zhang, L. Y.; Zhu, K.; Zhu, R. Y.; Ferguson, T.; Jang, D. W.; Jun, S. Y.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.; Bunce, M.; Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Ford, W. T.; Givens, K.; Heyburn, B.; Johnson, D.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Agostino, L.; Alexander, J.; Blekman, F.; Cassel, D.; Das, S.; Duboscq, J. E.; Gibbons, L. K.; Heltsley, B.; Jones, C. D.; Kuznetsov, V.; Patterson, J. R.; Riley, D.; Ryd, A.; Stroiney, S.; Sun, W.; Thom, J.; Vaughan, J.; Wittich, P.; Beetz, C. P.; Cirino, G.; Podrasky, V.; Sanzeni, C.; Winn, D.; Abdullin, S.; Afaq, M. A.; Albrow, M.; Amundson, J.; Apollinari, G.; Atac, M.; Badgett, W.; Bakken, J. A.; Baldin, B.; Banicz, K.; Bauerdick, L. A. T.; Baumbaugh, A.; Berryhill, J.; Bhat, P. C.; Binkley, M.; Bloch, I.; Borcherding, F.; Boubekeur, A.; Bowden, M.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chevenier, G.; Chlebana, F.; Churin, I.; Cihangir, S.; Dagenhart, W.; Demarteau, M.; Dykstra, D.; Eartly, D. P.; Elias, J. E.; Elvira, V. D.; Evans, D.; Fisk, I.; Freeman, J.; Gaines, I.; Gartung, P.; Geurts, F. J. M.; Giacchetti, L.; Glenzinski, D. A.; Gottschalk, E.; Grassi, T.; Green, D.; Grimm, C.; Guo, Y.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; Hesselroth, T.; Holm, S.; Holzman, B.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Klima, B.; Kossiakov, S.; Kousouris, K.; Kowalkowski, J.; Kramer, T.; Kwan, S.; Lei, C. M.; Leininger, M.; Los, S.; Lueking, L.; Lukhanin, G.; Lusin, S.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; Miao, T.; Moccia, S.; Mokhov, N.; Mrenna, S.; Murray, S. J.; Newman-Holmes, C.; Noeding, C.; O'Dell, V.; Paterno, M.; Petravick, D.; Pordes, R.; Prokofyev, O.; Ratnikova, N.; Ronzhin, A.; Sekhri, V.; Sexton-Kennedy, E.; Sfiligoi, I.; Shaw, T. M.; Skup, E.; Smith, R. P.; Spalding, W. J.; Spiegel, L.; Stavrianakou, M.; Stiehr, G.; Stone, A. L.; Suzuki, I.; Tan, P.; Tanenbaum, W.; Temple, L. E.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Wands, R.; Wenzel, H.; Whitmore, J.; Wicklund, E.; Wu, W. M.; Wu, Y.; Yarba, J.; Yarba, V.; Yumiceva, F.; Yun, J. C.; Zimmerman, T.; Acosta, D.; Avery, P.; Barashko, V.; Bartalini, P.; Bourilkov, D.; Cavanaugh, R.; Dolinsky, S.; Drozdetskiy, A.; Field, R. D.; Fu, Y.; Furic, I. K.; Gorn, L.; Holmes, D.; Kim, B. J.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kotov, K.; Levchenko, P.; Madorsky, A.; Matchev, K.; Mitselmakher, G.; Pakhotin, Y.; Prescott, C.; Ramond, L.; Ramond, P.; Schmitt, M.; Scurlock, B.; Stasko, J.; Stoeck, H.; Wang, D.; Yelton, J.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Atramentov, O.; Bertoldi, M.; Dharmaratna, W. G. D.; Gershtein, Y.; Gleyzer, S. V.; Hagopian, S.; Hagopian, V.; Jenkins, C. J.; Johnson, K. F.; Prosper, H.; Simek, D.; Thomaston, J.; Baarmand, M.; Baksay, L.; Guragain, S.; Hohlmann, M.; Mermerkaya, H.; Ralich, R.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Barannikova, O.; Bazterra, V. E.; Betts, R. R.; Dragoiu, C.; Garcia-Solis, E. J.; Gerber, C. E.; Hofman, D. J.; Hollis, R.; Iordanova, A.; Khalatian, S.; Mironov, C.; Shabalina, E.; Smoron, A.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Ayan, A. S.; Briggs, R.; Cankocak, K.; Clarida, W.; Cooper, A.; Debbins, P.; Duru, F.; Fountain, M.; McCliment, E.; Merlo, J. P.; Mestvirishvili, A.; Miller, M. J.; Moeller, A.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Perera, L.; Schmidt, I.; Wang, S.; Yetkin, T.; Anderson, E. W.; Chakir, H.; Hauptman, J. M.; Lamsa, J.; Barnett, B. A.; Blumenfeld, B.; Chien, C. Y.; Giurgiu, G.; Gritsan, A.; Kim, D. W.; Lae, C. K.; Maksimovic, P.; Swartz, M.; Tran, N.; Baringer, P.; Bean, A.; Chen, J.; Coppage, D.; Grachov, O.; Murray, M.; Radicci, V.; Wood, J. S.; Zhukova, V.; Bandurin, D.; Bolton, T.; Kaadze, K.; Kahl, W. E.; Maravin, Y.; Onoprienko, D.; Sidwell, R.; Wan, Z.; Dahmes, B.; Gronberg, J.; Hollar, J.; Lange, D.; Wright, D.; Wuest, C. R.; Baden, D.; Bard, R.; Eno, S. C.; Ferencek, D.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kunori, S.; Lockner, E.; Ratnikov, F.; Santanastasio, F.; Skuja, A.; Toole, T.; Wang, L.; Wetstein, M.; Alver, B.; Ballintijn, M.; Bauer, G.; Busza, W.; Gomez Ceballos, G.; Hahn, K. A.; Harris, P.; Klute, M.; Kravchenko, I.; Li, W.; Loizides, C.; Ma, T.; Nahn, S.; Paus, C.; Pavlon, S.; Piedra Gomez, J.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G.; Sumorok, K.; Vaurynovich, S.; Wenger, E. A.; Wyslouch, B.; Bailleux, D.; Cooper, S.; Cushman, P.; DeBenedetti, A.; Dolgopolov, A.; Dudero, P. R.; Egeland, R.; Franzoni, G.; Gilbert, W. J.; Gong, D.; Grahl, J.; Haupt, J.; Klapoetke, K.; Kronkvist, I.; Kubota, Y.; Mans, J.; Rusack, R.; Sengupta, S.; Sherwood, B.; Singovsky, A.; Vikas, P.; Zhang, J.; Booke, M.; Cremaldi, L. M.; Godang, R.; Kroeger, R.; Reep, M.; Reidy, J.; Sanders, D. A.; Sonnek, P.; Summers, D.; Watkins, S.; Bloom, K.; Bockelman, B.; Claes, D. R.; Dominguez, A.; Eads, M.; Furukawa, M.; Keller, J.; Kelly, T.; Lundstedt, C.; Malik, S.; Snow, G. R.; Swanson, D.; Ecklund, K. M.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M.; Alverson, G.; Barberis, E.; Boeriu, O.; Eulisse, G.; McCauley, T.; Musienko, Y.; Muzaffar, S.; Osborne, I.; Reucroft, S.; Swain, J.; Taylor, L.; Tuura, L.; Gobbi, B.; Kubantsev, M.; Kubik, A.; Ofierzynski, R. A.; Schmitt, M.; Spencer, E.; Stoynev, S.; Szleper, M.; Velasco, M.; Won, S.; Andert, K.; Baumbaugh, B.; Beiersdorf, B. A.; Castle, L.; Chorny, J.; Goussiou, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolberg, T.; Marchant, J.; Marinelli, N.; McKenna, M.; Ruchti, R.; Vigneault, M.; Wayne, M.; Wiand, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Gu, J.; Killewald, P.; Ling, T. Y.; Rush, C. J.; Sehgal, V.; Williams, G.; Adam, N.; Chidzik, S.; Denes, P.; Elmer, P.; Garmash, A.; Gerbaudo, D.; Halyo, V.; Jones, J.; Marlow, D.; Olsen, J.; Piroué, P.; Stickland, D.; Tully, C.; Werner, J. S.; Wildish, T.; Wynhoff, S.; Xie, Z.; Huang, X. T.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Zatserklyaniy, A.; Apresyan, A.; Arndt, K.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Bujak, A.; Everett, A.; Fahling, M.; Garfinkel, A. F.; Gutay, L.; Ippolito, N.; Kozhevnikov, Y.; Laasanen, A. T.; Liu, C.; Maroussov, V.; Medved, S.; Merkel, P.; Miller, D. H.; Miyamoto, J.; Neumeister, N.; Pompos, A.; Roy, A.; Sedov, A.; Shipsey, I.; Cuplov, V.; Parashar, N.; Bargassa, P.; Lee, S. J.; Liu, J. H.; Maronde, D.; Matveev, M.; Nussbaum, T.; Padley, B. P.; Roberts, J.; Tumanov, A.; Bodek, A.; Budd, H.; Cammin, J.; Chung, Y. S.; DeBarbaro, P.; Demina, R.; Ginther, G.; Gotra, Y.; Korjenevski, S.; Miner, D. C.; Sakumoto, W.; Slattery, P.; Zielinski, M.; Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Bartz, E.; Chuang, S. H.; Doroshenko, J.; Halkiadakis, E.; Jacques, P. F.; Khits, D.; Lath, A.; Macpherson, A.; Plano, R.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Watts, T. L.; Cerizza, G.; Hollingsworth, M.; Lazoflores, J.; Ragghianti, G.; Spanier, S.; York, A.; Aurisano, A.; Golyash, A.; Kamon, T.; Nguyen, C. N.; Pivarski, J.; Safonov, A.; Toback, D.; Weinberger, M.; Akchurin, N.; Berntzon, L.; Carrell, K. W.; Gumus, K.; Jeong, C.; Kim, H.; Lee, S. W.; McGonagill, B. G.; Roh, Y.; Sill, A.; Spezziga, M.; Thomas, R.; Volobouev, I.; Washington, E.; Wigmans, R.; Yazgan, E.; Bapty, T.; Engh, D.; Florez, C.; Johns, W.; Keskinpala, T.; Luiggi Lopez, E.; Neema, S.; Nordstrom, S.; Pathak, S.; Sheldon, P.; Andelin, D.; Arenton, M. W.; Balazs, M.; Buehler, M.; Conetti, S.; Cox, B.; Hirosky, R.; Humphrey, M.; Imlay, R.; Ledovskoy, A.; Phillips, D., II; Powell, H.; Ronquest, M.; Yohay, R.; Anderson, M.; Baek, Y. W.; Bellinger, J. N.; Bradley, D.; Cannarsa, P.; Carlsmith, D.; Crotty, I.; Dasu, S.; Feyzi, F.; Gorski, T.; Gray, L.; Grogg, K. S.; Grothe, M.; Jaworski, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Magrans de Abril, M.; Mohapatra, A.; Ott, G.; Smith, W. H.; Weinberg, M.; Wenman, D.; Atoian, G. S.; Dhawan, S.; Issakov, V.; Neal, H.; Poblaguev, A.; Zeller, M. E.; Abdullaeva, G.; Avezov, A.; Fazylov, M. I.; Gasanov, E. M.; Khugaev, A.; Koblik, Y. N.; Nishonov, M.; Olimov, K.; Umaraliev, A.; Yuldashev, B. S.

    2008-08-01

    The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 1034 cm-2 s-1 (1027 cm-2 s-1). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4π solid angle. Forward sampling calorimeters extend the pseudorapidity coverage to high values (|η| <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

  14. Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abbott, B.; Abdallah, J.

    The reconstruction of the signal from hadrons and jets emerging from the proton–proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections dependingmore » on the nature of the cluster. Lastly, topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.« less

  15. Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2017-07-24

    The reconstruction of the signal from hadrons and jets emerging from the proton–proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections dependingmore » on the nature of the cluster. Lastly, topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.« less

  16. Strange and heavy hadrons production from coalescence plus fragmentation in AA collisions at RHIC and LHC

    NASA Astrophysics Data System (ADS)

    Plumari, Salvatore; Minissale, Vincenzo; Das, Santosh K.; Scardina, Francesco; Greco, Vincenzo

    2018-02-01

    In a coalescence plus fragmentation approach we study the pT spectra of charmed hadrons D0, Ds up to about 10 GeV and the Λ+c /D0 ratio from RHIC to LHC energies. In this study we have included the contribution from decays of heavy hadron resonances and also that due to fragmentation of heavy quarks that are left in the system after coalescence. The pT dependence of the heavy baryon/meson ratios is found to be sensitive to the heavy quark mass. In particular we found that the Λc/D0 is much flatter than the one for light baryon/meson ratio like p/π and Λ/K.

  17. Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC)

    DOE PAGES

    Kikoła, Daniel; Echevarria, Miguel García; Hadjidakis, Cynthia; ...

    2017-05-17

    Measurement of Single Transverse-Spin Asymmetrymore » $$A_N$$ for various quarkonia states and Drell-Yan lepton pairs can shed light on the orbital angular momentum of quarks and gluons, a fundamental ingredient of the spin puzzle of the proton. The AFTER@LHC experiment combines a unique kinematic coverage and large luminosities of the Large Hadron Collider beams to deliver precise measurements, complementary to the knowledge provided by collider experiments such as RHIC. Here, we report on sensitivity studies for $$J/\\Psi$$, $$\\Upsilon$$ and Drell-Yan $$A_N$$ done using the performance of a LHCb-like and ALICE-like detectors, combined with a polarised hydrogen and $^3$He target. Particularly, such research will provide new insights and knowledge about transverse-momentum-dependent parton distribution functions for quarks and gluons and on twist-3 collinear matrix elements in a proton and a neutron.« less

  18. Conceptual Design of the Cryogenic System for the High-luminosity Upgrade of the Large Hadron Collider (LHC)

    NASA Astrophysics Data System (ADS)

    Brodzinski, K.; Claudet, S.; Ferlin, G.; Tavian, L.; Wagner, U.; Van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This paper will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  19. The Long Journey to the Higgs Boson and Beyond at the LHC Part II: Emphasis on ATLAS

    NASA Astrophysics Data System (ADS)

    Jenni, Peter

    The journey in search for the Higgs boson with the ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN started more than two decades ago. But the first discussions motivating the LHC project dream date back even further into the 1980s. This article will recall some of these early historical considerations, mention some of the LHC machine milestones and achievements, focus as an example of a technological challenge on the unique ATLAS superconducting magnet system, and then give an account of the physics results so far, leading to, and featuring particularly, the Higgs boson results, and sketching finally prospects for the future. With its emphasis on the ATLAS experiment it is complementary to the preceding article by Tejinder S. Virdee which focused on the CMS experiment.

  20. Exotic decays of the 125 GeV Higgs boson at future e+e- colliders

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Wang, Lian-Tao; Zhang, Hao

    2017-06-01

    The discovery of unexpected properties of the Higgs boson would offer an intriguing opportunity to shed light on some of the most profound puzzles in particle physics. Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at future e+e- lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, (10-3-10-5) limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator Z boson in the associated production mode e+e-→ ZH. We further discuss the interplay between detector performance and Higgs exotic decays, and other possibilities of exotic decays. Our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key area of Higgs physics that deserves further investigation. Supported by Fermi Research Alliance, LLC (DE-AC02-07CH11359) with the U.S. Department of Energy, DOE (DE-SC0013642), IHEP(Y6515580U1), and IHEP Innovation (Y4545171Y2)

  1. Non-resonant collider signatures of a singlet-driven electroweak phase transition

    DOE PAGES

    Chen, Chien-Yi; Kozaczuk, Jonathan; Lewis, Ian M.

    2017-08-22

    We analyze the collider signatures of the real singlet extension of the Standard Model in regions consistent with a strong first-order electroweak phase transition and a singlet-like scalar heavier than the Standard Model-like Higgs. A definitive correlation exists between the strength of the phase transition and the trilinear coupling of the Higgs to two singlet-like scalars, and hence between the phase transition and non-resonant scalar pair production involving the singlet at colliders. We study the prospects for observing these processes at the LHC and a future 100 TeV pp collider, focusing particularly on double singlet production. We also discuss correlationsmore » between the strength of the electroweak phase transition and other observables at hadron and future lepton colliders. Searches for non-resonant singlet-like scalar pair production at 100 TeV would provide a sensitive probe of the electroweak phase transition in this model, complementing resonant di-Higgs searches and precision measurements. Our study illustrates a strategy for systematically exploring the phenomenologically viable parameter space of this model, which we hope will be useful for future work.« less

  2. Impact of detector simulation in particle physics collider experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elvira, V. Daniel

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  3. Impact of detector simulation in particle physics collider experiments

    DOE PAGES

    Elvira, V. Daniel

    2017-06-01

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  4. LHC magnet quench protection system

    NASA Astrophysics Data System (ADS)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-07-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called 'cold diode' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements - so called 'cold diodes'. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a 'natural' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages.

  5. Multi-Boson Interactions at the Run 1 LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Daniel R.; Meade, Patrick; Pleier, Marc-Andre

    2016-10-24

    This review article covers results on the production of all possible electroweak boson pairs and 2-to-1 vector boson fusion (VBF) at the CERN Large Hadron Collider (LHC) in proton-proton collisions at a center-of-mass energy of 7 TeV and 8 TeV. The data was taken between 2010 and 2012. Limits on anomalous triple gauge couplings (aTGCs) then follow. In addition, data on electroweak triple gauge boson production and 2-to-2 vector boson scattering (VBS) yield limits on anomalous quartic gauge boson couplings (aQGCs). The LHC hosts two general purpose experiments, ATLAS and CMS, which both have reported limits on aTGCs and aQGCsmore » which are herein summarized. The interpretation of these limits in terms of an effective field theory (EFT) is reviewed, and recommendations are made for testing other types of new physics using multi-gauge boson production.« less

  6. The data acquisition and reduction challenge at the Large Hadron Collider.

    PubMed

    Cittolin, Sergio

    2012-02-28

    The Large Hadron Collider detectors are technological marvels-which resemble, in functionality, three-dimensional digital cameras with 100 Mpixels-capable of observing proton-proton (pp) collisions at the crossing rate of 40 MHz. Data handling limitations at the recording end imply the selection of only one pp event out of each 10(5). The readout and processing of this huge amount of information, along with the selection of the best approximately 200 events every second, is carried out by a trigger and data acquisition system, supplemented by a sophisticated control and monitor system. This paper presents an overview of the challenges that the development of these systems has presented over the past 15 years. It concludes with a short historical perspective, some lessons learnt and a few thoughts on the future.

  7. Improved Monte Carlo Glauber predictions at present and future nuclear colliders

    NASA Astrophysics Data System (ADS)

    Loizides, Constantin; Kamin, Jason; d'Enterria, David

    2018-05-01

    We present the results of an improved Monte Carlo Glauber (MCG) model of relevance for collisions involving nuclei at center-of-mass energies of the BNL Relativistic Heavy Ion Collider (√{sNN}=0.2 TeV), CERN Large Hadron Collider (LHC) (√{sNN}=2.76 -8.8 TeV ), and proposed future hadron colliders (√{sNN}≈10 -63 TeV). The inelastic p p cross sections as a function of √{sNN} are obtained from a precise data-driven parametrization that exploits the many available measurements at LHC collision energies. We describe the nuclear density of a lead nucleus with two separated two-parameter Fermi distributions for protons and neutrons to account for their different densities close to the nuclear periphery. Furthermore, we model the nucleon degrees of freedom inside the nucleus through a lattice with a minimum nodal separation, combined with a "recentering and reweighting" procedure, that overcomes some limitations of previous MCG approaches. The nuclear overlap function, number of participant nucleons and binary nucleon-nucleon collisions, participant eccentricity and triangularity, overlap area, and average path length are presented in intervals of percentile centrality for lead-lead (PbPb) and proton-lead (p Pb ) collisions at all collision energies. We demonstrate for collisions at √{sNN}=5.02 TeV that the central values of the Glauber quantities change by up to 7% in a few bins of reaction centrality, due to the improvements implemented, though typically they remain within the previously assigned systematic uncertainties, while their new associated uncertainties are generally smaller (mostly below 5%) at all centralities than for earlier calculations. Tables for all quantities versus centrality at present and foreseen collision energies involving Pb nuclei, as well as for collisions of XeXe at √{sNN}=5.44 TeV , and AuAu and CuCu at √{sNN}=0.2 TeV , are provided. The source code for the improved Monte Carlo Glauber model is made publicly available.

  8. LHC interaction region quadrupole cryostat design

    NASA Astrophysics Data System (ADS)

    Nicol, T. H.; Darve, Ch.; Huang, Y.; Page, T. M.

    2002-05-01

    The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multi-layer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating lifetime. This paper describes the current LHC IR inner triplet quadrupole magnet cryostats being designed and manufactured at Fermilab as part of the US-LHC collaboration, and includes discussions on the structural and thermal considerations involved in the development of each of the major systems.

  9. Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment

    NASA Astrophysics Data System (ADS)

    Valentino, Gianluca; Nosych, Andriy A.; Bruce, Roderik; Gasior, Marek; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Wollmann, Daniel

    2014-02-01

    Collimators with embedded beam position monitor (BPM) button electrodes will be installed in the Large Hadron Collider (LHC) during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.

  10. Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders

    NASA Astrophysics Data System (ADS)

    Azatov, Aleksandr; Galloway, Jamison

    2013-01-01

    In this review, we discuss methods of parsing direct information from collider experiments regarding the Higgs boson and describe simple ways in which experimental likelihoods can be consistently reconstructed and interfaced with model predictions in pertinent parameter spaces. We review prevalent scenarios for extending the electroweak symmetry breaking sector and emphasize their predictions for nonstandard Higgs phenomenology that could be observed in large hadron collider (LHC) data if naturalness is realized in particular ways. Specifically we identify how measurements of Higgs couplings can be used to imply the existence of new physics at particular scales within various contexts. The most dominant production and decay modes of the Higgs-like state observed in the early data sets have proven to be consistent with predictions of the Higgs boson of the Standard Model, though interesting directions in subdominant channels still exist and will require our careful attention in further experimental tests. Slightly anomalous rates in certain channels at the early LHC have spurred effort in model building and spectra analyses of particular theories, and we discuss these developments in some detail. Finally, we highlight some parameter spaces of interest in order to give examples of how the data surrounding the new state can most effectively be used to constrain specific models of weak scale physics.

  11. Semivisible Jets: Dark Matter Undercover at the LHC.

    PubMed

    Cohen, Timothy; Lisanti, Mariangela; Lou, Hou Keong

    2015-10-23

    Dark matter may be a composite particle that is accessible via a weakly coupled portal. If these hidden-sector states are produced at the Large Hadron Collider (LHC), they would undergo a QCD-like shower. This would result in a spray of stable invisible dark matter along with unstable states that decay back to the standard model. Such "semivisible" jets arise, for example, when their production and decay are driven by a leptophobic Z' resonance; the resulting signature is characterized by significant missing energy aligned along the direction of one of the jets. These events are vetoed by the current suite of searches employed by the LHC, resulting in low acceptance. This Letter will demonstrate that the transverse mass-computed using the final-state jets and the missing energy-provides a powerful discriminator between the signal and the QCD background. Assuming that the Z' couples to the standard model quarks with the same strength as the Z(0), the proposed search can discover (exclude) Z' masses up to 2.5 TeV (3.5 TeV) with 100  fb(-1) of 14 TeV data at the LHC.

  12. Extra Higgs boson and Z ' as portals to signatures of heavy neutrinos at the LHC

    NASA Astrophysics Data System (ADS)

    Accomando, Elena; Rose, Luigi Delle; Moretti, Stefano; Olaiya, Emmanuel; Shepherd-Themistocleous, Claire H.

    2018-02-01

    In this paper, we discuss the potential of observing heavy neutrino ( ν h ) signatures of a U(1) B- L enlarged Standard Model (SM) encompassing three heavy Majorana neutrinos alongside the known light neutrino states at the Large Hadron Collider (LHC). We exploit the theoretical decay via a heavy (non-SM-like) Higgs boson and Z ' production followed by ν h → l ± W ∓(∗) and ν h → ν l Z (∗) decays, ultimately yielding a 3 l + 2 j + E T miss signature and, depending upon how boosted the final state objects are, we define different possible selections aimed at improving the signal to background ratio in LHC Run 2 data for a wide range of heavy neutrino masses.

  13. KASCADE-Grande: Composition studies in the view of the post-LHC hadronic interaction models

    NASA Astrophysics Data System (ADS)

    Haungs, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Pierro, F. Di; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Heck, D.; Hörandel, J. R.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2017-06-01

    The KASCADE-Grande experiment has significantly contributed to the current knowledge about the energy spectrum and composition of cosmic rays for energies between the knee and the ankle. Meanwhile, post-LHC versions of the hadronic interaction models are available and used to interpret the entire data set of KASCADE-Grande. In addition, a new, combined analysis of both arrays, KASCADE and Grande, was developed significantly increasing the accuracy of the shower observables. First results of the new analysis with the entire data set of the KASCADE-Grande experiment will be the focus of this contribution.

  14. Proton enhancement at large pT at the CERN large hadron collider without structure in associated-particle distribution.

    PubMed

    Hwa, Rudolph C; Yang, C B

    2006-07-28

    The production of pions and protons in the pT range between 10 and 20 GeV/c for Pb+Pb collisions at CERN LHC is studied in the recombination model. It is shown that the dominant mechanism for hadronization is the recombination of shower partons from neighboring jets when the jet density is high. Protons are more copiously produced than pions in that pT range because the coalescing partons can have lower momentum fractions, but no thermal partons are involved. The proton-to-pion ratio can be as high as 20. When such high pT hadrons are used as trigger particles, there will not be any associated particles that are not in the background.

  15. Associated Higgs-W-boson production at hadron colliders: a fully exclusive QCD calculation at NNLO.

    PubMed

    Ferrera, Giancarlo; Grazzini, Massimiliano; Tramontano, Francesco

    2011-10-07

    We consider QCD radiative corrections to standard model Higgs-boson production in association with a W boson in hadron collisions. We present a fully exclusive calculation up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. To perform this NNLO computation, we use a recently proposed version of the subtraction formalism. Our calculation includes finite-width effects, the leptonic decay of the W boson with its spin correlations, and the decay of the Higgs boson into a bb pair. We present selected numerical results at the Tevatron and the LHC.

  16. Consistent simulation of direct-photon production in hadron collisions including associated two-jet production

    NASA Astrophysics Data System (ADS)

    Odaka, Shigeru; Kurihara, Yoshimasa

    2016-05-01

    We have developed an event generator for direct-photon production in hadron collisions, including associated 2-jet production in the framework of the GR@PPA event generator. The event generator consistently combines γ + 2-jet production processes with the lowest-order γ + jet and photon-radiation (fragmentation) processes from quantum chromodynamics (QCD) 2-jet production using a subtraction method. The generated events can be fed to general-purpose event generators to facilitate the addition of hadronization and decay simulations. Using the obtained event information, we can simulate photon isolation and hadron-jet reconstruction at the particle (hadron) level. The simulation reasonably reproduces measurement data obtained at the large hadron collider (LHC) concerning not only the inclusive photon spectrum, but also the correlation between the photon and jet. The simulation implies that the contribution of the γ + 2-jet is very large, especially in low photon-pT ( ≲ 50 GeV) regions. Discrepancies observed at low pT, although marginal, may indicate the necessity for the consideration of further higher-order processes. Unambiguous particle-level definition of the photon-isolation condition for the signal events is desired to be given explicitly in future measurements.

  17. Production of stoponium at the LHC

    NASA Astrophysics Data System (ADS)

    Kim, Chul; Idilbi, Ahmad; Mehen, Thomas; Yoon, Yeo Woong

    2014-04-01

    Although the Large Hadron Collider (LHC) has not observed supersymmetric (SUSY) partners of the Standard Model particles, their existence is not ruled out yet. One recently explored scenario in which there are light SUSY partners that have evaded current bounds from the LHC is that of a light long-lived stop quark. In this paper we consider light stop pair production at the LHC when the stop mass is between 200 and 400 GeV. If the stops are long-lived they can form a bound state, stoponium, which then undergoes two-body decays to Standard Model particles. By considering the near-threshold production of such a pair through the gluon-gluon fusion process and taking into account the strong Coulombic interactions responsible for the formation of this bound state, we obtain factorization theorems for the stop pair inclusive and differential production cross sections. We also perform a resummation of large threshold logarithms up to next-to-next-to-leading logarithmic accuracy using well-established renormalization group equations in an effective field theory methodology. These results are used to calculate the invariant mass distributions of two photons or two Z bosons coming from the decay of the stoponium at the LHC. For our choices of SUSY model parameters, the stoponium is not detectable above Standard Model backgrounds in γγ or ZZ at 8 TeV, but will be visible with 400 fb-1 of accumulated data if its mass is below 500 GeV when the LHC runs at 14 TeV.

  18. Mass hierarchy and energy scaling of the Tsallis - Pareto parameters in hadron productions at RHIC and LHC energies

    NASA Astrophysics Data System (ADS)

    Bíró, Gábor; Barnaföldi, Gergely Gábor; Biró, Tamás Sándor; Shen, Keming

    2018-02-01

    The latest, high-accuracy identified hadron spectra measurements in highenergy nuclear collisions led us to the investigation of the strongly interacting particles and collective effects in small systems. Since microscopical processes result in a statistical Tsallis - Pareto distribution, the fit parameters q and T are well suited for identifying system size scalings and initial conditions. Moreover, parameter values provide information on the deviation from the extensive, Boltzmann - Gibbs statistics in finite-volumes. We apply here the fit procedure developed in our earlier study for proton-proton collisions [1, 2]. The observed mass and center-of-mass energy trends in the hadron production are compared to RHIC dAu and LHC pPb data in different centrality/multiplicity classes. Here we present new results on mass hierarchy in pp and pA from light to heavy hadrons.

  19. Incoherent vector mesons production in PbPb ultraperipheral collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Xie, Ya-Ping; Chen, Xurong

    2017-03-01

    The incoherent rapidity distributions of vector mesons are computed in dipole model in PbPb ultraperipheral collisions at the CERN Large Hadron Collider (LHC). The IIM model fitted from newer data is employed in the dipole amplitude. The Boosted Gaussian and Gaus-LC wave functions for vector mesons are implemented in the calculations as well. Predictions for the J / ψ, ψ (2 s), ρ and ϕ incoherent rapidity distributions are evaluated and compared with experimental data and other theoretical predictions in this paper. We obtain closer predictions of the incoherent rapidity distributions for J / ψ than previous calculations in the IIM model.

  20. Prospects for a precision timing upgrade of the CMS PbWO crystal electromagnetic calorimeter for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Massironi, A.

    2018-04-01

    The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies focused on the timing properties of PbWO4 crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies intended to measure the timing performance of the PbWO4 crystals with different photosensors and readout electronics will be shown.

  1. Magnetic Frequency Response of HL-LHC Beam Screens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrone, M.; Martino, M.; De Maria, R.

    Magnetic fields used to control particle beams in accelerators are usually controlled by regulating the electrical current of the power converters. In order to minimize lifetime degradation and ultimately luminosity loss in circular colliders, current-noise is a highly critical figure of merit of power converters, in particular for magnets located in areas with high beta-function, like the High Luminosity Large Hadron Collider (HL-LHC) insertions. However, what is directly acting upon the beam is the magnetic field and not the current of the power converter, which undergoes several frequency-dependent transformations until the desired magnetic field, seen by the beam, is obtained.more » Beam screens are very rarely considered when assessing or specifying the noise figure of merit, but their magnetic frequency response is such that they realize relatively effective low pass filtering of the magnetic field produced by the system magnet-power converter. This work aims at filling this gap by quantifying the expected impact of different beam screen layouts for the most relevant HL-LHC insertion magnets. A welldefined post-processing technique is used to derive the frequency response of the different multipoles from multi-physics Finite Element Method (FEM) simulation results. In addition, a well approximated analytical formula for the low-frequency range of multi-layered beam screens is presented.« less

  2. ηc Hadroproduction at Large Hadron Collider Challenges NRQCD Factorization

    NASA Astrophysics Data System (ADS)

    Butenschoen, Mathias; He, Zhi-Guo; Kniehl, Bernd A.

    2017-03-01

    We report on our analysis [1] of prompt ηc meson production, measured by the LHCb Collaboration at the Large Hadron Collider, within the framework of non-relativistic QCD (NRQCD) factorization up to the sub-leading order in both the QCD coupling constant αs and the relative velocity v of the bound heavy quarks. We thereby convert various sets of J/ψ and χc,J long-distance matrix elements (LDMEs), determined by different groups in J/ψ and χc,J yield and polarization fits, to ηc and hc production LDMEs making use of the NRQCD heavy quark spin symmetry. The resulting predictions for ηc hadroproduction in all cases greatly overshoot the LHCb data, while the color-singlet model contributions alone would indeed be sufficient. We investigate the consequences for the universality of the LDMEs, and show how the observed tensions remain in follow-up works by other groups.

  3. The ERL-based Design of Electron-Hadron Collider eRHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ptitsyn, Vadim

    2016-06-01

    Recent developments of the ERL-based design of future high-luminosity electron-hadron collider eRHIC focused on balancing technological risks present in the design versus the design cost. As a result a lower risk design has been adopted at moderate cost increase. The modifications include a change of the main linac RF frequency, reduced number of SRF cavity types and modified electron spin transport using a spin rotator. A luminosity-staged approach is being explored with a Nominal design (more » $$L \\sim 10^{33} {\\rm cm}^2 {\\rm s}^{-1}$$) that employs reduced electron current and could possibly be based on classical electron cooling, and then with the Ultimate design ($$L \\gt 10^{34} {\\rm cm}^{-2} {\\rm s}^{-1}$$) that uses higher electron current and an innovative cooling technique (CeC). The paper describes the recent design modifications, and presents the full status of the eRHIC ERL-based design.« less

  4. Correlations of heavy quarks produced at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Younus, Mohammed; Jamil, Umme; Srivastava, Dinesh K.

    2012-02-01

    We study the correlations of heavy quarks produced in relativistic heavy-ion collisions and find them to be quite sensitive to the effects of the medium and the production mechanisms. In order to put this on a quantitative footing, as a first step, we analyze the azimuthal, transverse momentum, and rapidity correlations of heavy quark-antiquark (Q\\overline{Q}) pairs in pp collisions at {O}(α3s). This sets the stage for the identification and study of medium modification of similar correlations in the relativistic collision of heavy nuclei at the Large Hadron Collider. Next we study the additional production of charm quarks in heavy ion collisions due to multiple scatterings, namely jet-jet collisions, jet-thermal collisions, and thermal interactions. We find that these give rise to azimuthal correlations which are quite different from those arising from the prompt initial production at leading order and at next to leading order. Communicated by Professor Steffen Bass.

  5. Higgs self-coupling measurements at a 100 TeV hadron collider

    DOE PAGES

    Barr, Alan J.; Dolan, Matthew J.; Englert, Christoph; ...

    2015-02-03

    An important physics goal of a possible next-generation high-energy hadron collider will be precision characterisation of the Higgs sector and electroweak symmetry breaking. A crucial part of understanding the nature of electroweak symmetry breaking is measuring the Higgs self-interactions. We study dihiggs production in proton-proton collisions at 100 TeV centre of mass energy in order to estimate the sensitivity such a machine would have to variations in the trilinear Higgs coupling around the Standard Model expectation. We focus on the bb¯γγ final state, including possible enhancements in sensitivity by exploiting dihiggs recoils against a hard jet. In conclusion, we findmore » that it should be possible to measure the trilinear self-coupling with 40% accuracy given 3/ab and 12% with 30/ab of data.« less

  6. Integrated analysis of particle interactions at hadron colliders Report of research activities in 2010-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadolsky, Pavel M.

    2015-08-31

    The report summarizes research activities of the project ”Integrated analysis of particle interactions” at Southern Methodist University, funded by 2010 DOE Early Career Research Award DE-SC0003870. The goal of the project is to provide state-of-the-art predictions in quantum chromodynamics in order to achieve objectives of the LHC program for studies of electroweak symmetry breaking and new physics searches. We published 19 journal papers focusing on in-depth studies of proton structure and integration of advanced calculations from different areas of particle phenomenology: multi-loop calculations, accurate long-distance hadronic functions, and precise numerical programs. Methods for factorization of QCD cross sections were advancedmore » in order to develop new generations of CTEQ parton distribution functions (PDFs), CT10 and CT14. These distributions provide the core theoretical input for multi-loop perturbative calculations by LHC experimental collaborations. A novel ”PDF meta-analysis” technique was invented to streamline applications of PDFs in numerous LHC simulations and to combine PDFs from various groups using multivariate stochastic sampling of PDF parameters. The meta-analysis will help to bring the LHC perturbative calculations to the new level of accuracy, while reducing computational efforts. The work on parton distributions was complemented by development of advanced perturbative techniques to predict observables dependent on several momentum scales, including production of massive quarks and transverse momentum resummation at the next-to-next-to-leading order in QCD.« less

  7. Particle multiplicities in lead-lead collisions at the CERN large hadron collider from nonlinear evolution with running coupling corrections.

    PubMed

    Albacete, Javier L

    2007-12-31

    We present predictions for the pseudorapidity density of charged particles produced in central Pb-Pb collisions at the LHC. Particle production in such collisions is calculated in the framework of k(t) factorization. The nuclear unintegrated gluon distributions at LHC energies are determined from numerical solutions of the Balitsky-Kovchegov equation including recently calculated running coupling corrections. The initial conditions for the evolution are fixed by fitting Relativistic Heavy Ion Collider data at collision energies square root[sNN]=130 and 200 GeV per nucleon. We obtain dNch(Pb-Pb)/deta(square root[sNN]=5.5 TeV)/eta=0 approximately 1290-1480.

  8. Jet substructure shedding light on heavy Majorana neutrinos at the LHC

    NASA Astrophysics Data System (ADS)

    Das, Arindam; Konar, Partha; Thalapillil, Arun

    2018-02-01

    The existence of tiny neutrino masses and flavor mixings can be explained naturally in various seesaw models, many of which typically having additional Majorana type SM gauge singlet right handed neutrinos ( N). If they are at around the electroweak scale and furnished with sizable mixings with light active neutrinos, they can be produced at high energy colliders, such as the Large Hadron Collider (LHC). A characteristic signature would be same sign lepton pairs, violating lepton number, together with light jets — pp → Nℓ ± , N → ℓ ± W ∓ , W ∓ → jj. We propose a new search strategy utilising jet substructure techniques, observing that for a heavy right handed neutrino mass M N much above M W ±, the two jets coming out of the boosted W ± may be interpreted as a single fat-jet ( J). Hence, the distinguishing signal topology will be ℓ ± ℓ ± J . Performing a comprehensive study of the different signal regions along with complete background analysis, in tandem with detector level simulations, we compute statistical significance limits. We find that heavy neutrinos can be explored effectively for mass ranges 300 GeV ≤ M N ≤ 800 GeV and different light-heavy neutrino mixing | V μN |2. At the 13 TeV LHC with 3000 fb-1 integrated luminosity one can competently explore mixing angles much below present LHC limits, and moreover exceed bounds from electroweak precision data.

  9. Search for heavy right-handed neutrinos at the LHC and beyond in the same-sign same-flavor leptons final state

    NASA Astrophysics Data System (ADS)

    Ng, John N.; de la Puente, Alejandro; Pan, Bob Wei-Ping

    2015-12-01

    In this study we explore the LHC's Run II potential to the discovery of heavy Majorana neutrinos, with luminosities between 30 and 3000 fb-1 in the l ± l ± j j final state. Given that there exist many models for neutrino mass generation, even within the Type I seesaw framework, we use a simplified model approach and study two simple extensions to the Standard Model, one with a single heavy Majorana neutrino, singlet under the Standard Model gauge group, and a limiting case of the left-right symmetric model. We then extend the analysis to a future hadron collider running at 100 TeV center of mass energies. This extrapolation in energy allows us to study the relative importance of the resonant production versus gauge boson fusion processes in the study of Majorana neutrinos at hadron colliders. We analyze and propose different search strategies designed to maximize the discovery potential in either the resonant production or the gauge boson fusion modes.

  10. Impact of detector simulation in particle physics collider experiments

    NASA Astrophysics Data System (ADS)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  11. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  12. Air Liquides Contribution to the CERN Lhc Refrigeration System

    NASA Astrophysics Data System (ADS)

    Dauguet, P.; Gistau-Baguer, G. M.; Briend, P.; Hilbert, B.; Monneret, E.; Villard, J. C.; Marot, G.; Delcayre, F.; Mantileri, C.; Hamber, F.; Courty, J. C.; Hirel, P.; Cohu, A.; Moussavi, H.

    2008-03-01

    The Large Hadron Collider (LHC) is the largest particle accelerator in the world. It is a superconducting machine over 27 km in circumference. Its magnets and cavities require helium refrigeration and liquefaction over the temperature range of 1.8 K to 300 K. This is the largest cryogenic system in the world with respect to the needed cryogenic power: 144-kW equivalent power at 4.5 K. The LHC cryogenic system is composed of 8×18 kW at 4.5 K refrigerators, 8×2.4 kW at 1.8 K systems, 5 main valve boxes, more than 27 km of helium transfer lines and around 300 service modules connecting the transfer line to the magnet and cavity strings. More than half of these components have been designed, manufactured, installed and commissioned by Air Liquide. Due to the huge size of the project, the engineering, construction and commissioning of the equipment has lasted for 8 years, from the first order of equipment in 1998 to final commissioning in 2006. Specifications, architecture and the Air Liquide design of major components of the LHC Refrigeration System are presented in this paper.

  13. MonALISA, an agent-based monitoring and control system for the LHC experiments

    NASA Astrophysics Data System (ADS)

    Balcas, J.; Kcira, D.; Mughal, A.; Newman, H.; Spiropulu, M.; Vlimant, J. R.

    2017-10-01

    MonALISA, which stands for Monitoring Agents using a Large Integrated Services Architecture, has been developed over the last fifteen years by California Insitute of Technology (Caltech) and its partners with the support of the software and computing program of the CMS and ALICE experiments at the Large Hadron Collider (LHC). The framework is based on Dynamic Distributed Service Architecture and is able to provide complete system monitoring, performance metrics of applications, Jobs or services, system control and global optimization services for complex systems. A short overview and status of MonALISA is given in this paper.

  14. Neutrino Mass Generation at TeV Scale and New Physics Signatures from Charged Higgs at the LHC for Photon Initiated Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Kirtiman; Homi Bhabha National Institute, Mumbai; Jana, Sudip

    We consider the collider phenomenology of a simple extension of the Standard Model (SM), which consists of an EW isospinmore » $3/2$ scalar, $$\\Delta$$ and a pair of EW isospin $1$ vector like fermions, $$\\Sigma$$ and $$\\bar{\\Sigma}$$, responsible for generating tiny neutrino mass via the effective dimension seven operator. This scalar quadruplet with hypercharge Y = 3 has a plethora of implications at the collider experiments. Its signatures at TeV scale colliders are expected to be seen, if the quadruplet masses are not too far above the electroweak symmetry breaking scale. In this article, we study the phenomenology of multi-charged quadruplet scalars. In particular, we study the multi-lepton signatures at the Large Hadron Collider (LHC) experiment, arising from the production and decays of triply and doubly charged scalars. We studied Drell-Yan (DY) pair production as well as pair production of the charged scalars via photon-photon fusion. For doubly and triply charged scalars, photon fusion contributes significantly for large scalar masses. We also studied LHC constraints on the masses of doubly charged scalars in this model. We derive a lower mass limit of 725 GeV on doubly charged quadruplet scalar.« less

  15. Neutrino Mass Generation at TeV Scale and New Physics Signatures from Charged Higgs at the LHC for Photon Initiated Processes

    DOE PAGES

    Ghosh, Kirtiman; Homi Bhabha National Institute, Mumbai; Jana, Sudip; ...

    2018-03-29

    We consider the collider phenomenology of a simple extension of the Standard Model (SM), which consists of an EW isospinmore » $3/2$ scalar, $$\\Delta$$ and a pair of EW isospin $1$ vector like fermions, $$\\Sigma$$ and $$\\bar{\\Sigma}$$, responsible for generating tiny neutrino mass via the effective dimension seven operator. This scalar quadruplet with hypercharge Y = 3 has a plethora of implications at the collider experiments. Its signatures at TeV scale colliders are expected to be seen, if the quadruplet masses are not too far above the electroweak symmetry breaking scale. In this article, we study the phenomenology of multi-charged quadruplet scalars. In particular, we study the multi-lepton signatures at the Large Hadron Collider (LHC) experiment, arising from the production and decays of triply and doubly charged scalars. We studied Drell-Yan (DY) pair production as well as pair production of the charged scalars via photon-photon fusion. For doubly and triply charged scalars, photon fusion contributes significantly for large scalar masses. We also studied LHC constraints on the masses of doubly charged scalars in this model. We derive a lower mass limit of 725 GeV on doubly charged quadruplet scalar.« less

  16. Magnetic analysis of the Nb$$_3$$Sn low-beta quadrupole for the high luminosity LHC

    DOE PAGES

    Bermudez, Susana Izquierdo; Ambrosio, G.; Chlachidze, G.; ...

    2017-01-10

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build 150 mm aperture Nb 3Sn quadrupoles for the LHC interaction regions. A first series of 1.5 m long coils were fabricated, assembled and tested in the first short model. This paper presents the magnetic analysis, comparing magnetic field measurements with the expectations and the field quality requirements. The analysis is focused on the geometrical harmonics, iron saturation effect and cold-warm correlation. Three dimensional effects such as the variability of the field harmonics along the magnet axismore » and the contribution of the coil ends are also discussed. Furthemore, we present the influence of the conductor magnetization and the dynamic effects.« less

  17. Performance of the ATLAS Transition Radiation Tracker in Run 1 of the LHC: tracker properties

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-05-03

    The tracking performance parameters of the ATLAS Transition Radiation Tracker (TRT) as part of the ATLAS inner detector are described in this paper for different data-taking conditions in proton-proton, proton-lead and lead-lead collisions at the Large Hadron Collider (LHC). The performance is studied using data collected during the first period of LHC operation (Run 1) and is compared with Monte Carlo simulations. The performance of the TRT, operating with two different gas mixtures (xenon-based and argon-based) and its dependence on the TRT occupancy is presented. Furthermore, these studies show that the tracking performance of the TRT is similar for themore » two gas mixtures and that a significant contribution to the particle momentum resolution is made by the TRT up to high particle densities.« less

  18. Dark Matter and Super Symmetry: Exploring and Explaining the Universe with Simulations at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutsche, Oliver

    The Large Hadron Collider (LHC) at CERN in Geneva, Switzerland, is one of the largest machines on this planet. It is built to smash protons into each other at unprecedented energies to reveal the fundamental constituents of our universe. The 4 detectors at the LHC record multi-petabyte datasets every year. The scientific analysis of this data requires equally large simulation datasets of the collisions based on the theory of particle physics, the Standard Model. The goal is to verify the validity of the Standard Model or of theories that extend the Model like the concepts of Supersymmetry and an explanationmore » of Dark Matter. I will give an overview of the nature of simulations needed to discover new particles like the Higgs boson in 2012, and review the different areas where simulations are indispensable: from the actual recording of the collisions to the extraction of scientific results to the conceptual design of improvements to the LHC and its experiments.« less

  19. Electron efficiency measurements with the ATLAS detector using 2012 LHC proton–proton collision data

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-03-27

    This paper describes the algorithms for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC). These algorithms were used for all ATLAS results with electrons in the final state that are based on the 2012 pp collision data produced by the LHC at s = 8 TeV. The efficiency of these algorithms, together with the charge misidentification rate, is measured in data and evaluated in simulated samples using electrons from Z→ ee, Z→ eeγ and J/ ψ→ ee decays. For these efficiency measurements, the full recorded data set, corresponding tomore » an integrated luminosity of 20.3 fb - 1 , is used. Based on a new reconstruction algorithm used in 2012, the electron reconstruction efficiency is 97% for electrons with E T = 15 GeV and 99% at E T = 50 GeV. Combining this with the efficiency of additional selection criteria to reject electrons from background processes or misidentified hadrons, the efficiency to reconstruct and identify electrons at the ATLAS experiment varies from 65 to 95%, depending on the transverse momentum of the electron and background rejection.« less

  20. Electron efficiency measurements with the ATLAS detector using 2012 LHC proton-proton collision data.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adachi, S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, A A; Alstaty, M; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, D J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Bajic, M; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Barranco Navarro, L; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethani, A; Bethke, S; Bevan, A J; Bianchi, R M; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Billoud, T R V; Bilokon, H; Bindi, M; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blazek, T; Bloch, I; Blocker, C; Blue, A; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Bossio Sola, J D; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burger, A M; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Calvente Lopez, S; Calvet, D; Calvet, S; Calvet, T P; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carlson, B T; Carminati, L; Carney, R M D; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Castillo Gimenez, V; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerda Alberich, L; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Chavez Barajas, C A; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; El Moursli, R Cherkaoui; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, F; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Petrillo, K F; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Díez Cornell, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Duncan, A K; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Flierl, B M; Flores Castillo, L R; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Ganguly, S; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gascon Bravo, A; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gellerstedt, K; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Da Costa, J Goncalves Pinto Firmino; Gonella, G; Gonella, L; Gongadze, A; de la Hoz, S González; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Gui, B; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, W; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Hadef, A; Hageböck, S; Hagihara, M; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Han, S; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Herde, H; Herget, V; Hernández Jiménez, Y; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hladik, O; Hoad, X; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Honda, S; Honda, T; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hoya, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, P J; Hsu, S-C; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Issever, C; Istin, S; Ito, F; Iturbe Ponce, J M; Iuppa, R; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansky, R; Janssen, J; Janus, M; Janus, P A; Jarlskog, G; Javadov, N; Javůrek, T; Javurkova, M; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiang, Z; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, C A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Juste Rozas, A; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Kharlamova, T; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Koulouris, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kuprash, O; Kurashige, H; Kurchaninov, L L; Kurochkin, Y A; Kurth, M G; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; Rosa Navarro, J L La; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Le Dortz, O; Le Guirriec, E; Le Quilleuc, E P; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Lester, C M; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyton, M; Li, B; Li, C; Li, H; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E M; Loch, P; Loebinger, F K; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopez, J A; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lopez Solis, A; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, L; Mandić, I; Maneira, J; de Andrade Filho, L Manhaes; Manjarres Ramos, J; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martinez Outschoorn, V I; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Maznas, I; Mazza, S M; Mc Fadden, N C; Goldrick, G Mc; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Mellado Garcia, B R; Melo, M; Meloni, F; Menary, S B; Meng, L; Meng, X T; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Minegishi, Y; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mizukami, A; Mjörnmark, J U; Mlynarikova, M; Moa, T; Mochizuki, K; Mogg, P; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moschovakos, P; Mosidze, M; Moss, H J; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Munoz Sanchez, F J; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nguyen Manh, T; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Oleiro Seabra, L F; Olivares Pino, S A; Oliveira Damazio, D; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Pacheco Rodriguez, L; Padilla Aranda, C; Pagan Griso, S; Paganini, M; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Panagoulias, I; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Perez Codina, E; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pozo Astigarraga, M E; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauch, D M; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reed, R G; Reeves, K; Rehnisch, L; Reichert, J; Reiss, A; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Resseguie, E D; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Roberts, R T; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Rodriguez Perez, A; Rodriguez, D; Roe, S; Rogan, C S; Røhne, O; Roloff, J; Romaniouk, A; Romano, M; Saez, S M Romano; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Salazar Loyola, J E; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sánchez, J; Sanchez Martinez, V; Pineda, A Sanchez; Sandaker, H; Sandbach, R L; Sandhoff, M; Sandoval, C; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sato, K; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schouwenberg, J F P; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shirabe, S; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shope, D R; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sideras Haddad, E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Siral, I; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, J W; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, I M; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Solans Sanchez, C A; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Stark, S H; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Suster, C J E; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Swift, S P; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tanioka, R; Tannenwald, B B; Tapia Araya, S; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Tornambe, P; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tulbure, T T; Tuna, A N; Tupputi, S A; Turchikhin, S; Turgeman, D; Turk Cakir, I; Turra, R; Tuts, P M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usui, J; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valdes Santurio, E; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vasquez, G A; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, W; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Weber, S A; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wolf, T M H; Wolff, R; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xi, Z; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zacharis, G; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, L; Zhang, M; Zhang, R; Zhang, R; Zhang, X; Zhang, Y; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zwalinski, L

    2017-01-01

    This paper describes the algorithms for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC). These algorithms were used for all ATLAS results with electrons in the final state that are based on the 2012 pp collision data produced by the LHC at [Formula: see text] = 8 [Formula: see text]. The efficiency of these algorithms, together with the charge misidentification rate, is measured in data and evaluated in simulated samples using electrons from [Formula: see text], [Formula: see text] and [Formula: see text] decays. For these efficiency measurements, the full recorded data set, corresponding to an integrated luminosity of 20.3 fb[Formula: see text], is used. Based on a new reconstruction algorithm used in 2012, the electron reconstruction efficiency is 97% for electrons with [Formula: see text] [Formula: see text] and 99% at [Formula: see text] [Formula: see text]. Combining this with the efficiency of additional selection criteria to reject electrons from background processes or misidentified hadrons, the efficiency to reconstruct and identify electrons at the ATLAS experiment varies from 65 to 95%, depending on the transverse momentum of the electron and background rejection.

  1. Beyond the bump-hunt: A game plan for discovering dynamical dark matter at the LHC

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.; Su, Shufang; Thomas, Brooks

    2016-06-01

    Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which an ensemble of individual constituent fields with a spectrum of masses, lifetimes, and cosmological abundances collectively constitute the dark-matter candidate, and in which the traditional notion of dark-matter stability is replaced by a balancing between lifetimes and abundances across the ensemble. In this talk, we discuss the prospects for distinguishing between DDM ensembles and traditional dark-matter candidates at hadron colliders - and in particular, at the upgraded LHC - via the analysis of event-shape distributions of kine-matic variables. We also examine the correlations between these kinematic variables and other relevant collider variables in order to assess how imposing cuts on these additional variables may distort - for better or worse - their event-shape distributions.

  2. Preliminary design of CERN Future Circular Collider tunnel: first evaluation of the radiation environment in critical areas for electronics

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Alía, Rubén García; Besana, Maria Ilaria; Brugger, Markus; Cerutti, Francesco

    2017-09-01

    As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, called Future Circular Collider (FCC-hh), running at center-of-mass energies of up to 100 TeV in a new 100 km tunnel. The study includes a 90-350 GeV lepton collider (FCC-ee) as well as a lepton-hadron option (FCC-he). In this work, FLUKA Monte Carlo simulation was extensively used to perform a first evaluation of the radiation environment in critical areas for electronics in the FCC-hh tunnel. The model of the tunnel was created based on the original civil engineering studies already performed and further integrated in the existing FLUKA models of the beam line. The radiation levels in critical areas, such as the racks for electronics and cables, power converters, service areas, local tunnel extensions was evaluated.

  3. Particle identification with the ALICE Time-Of-Flight detector at the LHC

    NASA Astrophysics Data System (ADS)

    Alici, A.

    2014-12-01

    High performance Particle Identification system (PID) is a distinguishing characteristic of the ALICE experiment at the CERN Large Hadron Collider (LHC). Charged particles in the intermediate momentum range are identified in ALICE by the Time-Of-Flight (TOF) detector. The TOF exploits the Multi-gap Resistive Plate Chamber (MRPC) technology, capable of an intrinsic time resolution at the level of few tens of ps with an overall efficiency close to 100% and a large operation plateau. The full system is made of 1593 MRPC chambers with a total area of 141 m2, covering the pseudorapidity interval [-0.9,+0.9] and the full azimuthal angle. The ALICE TOF system has shown very stable operation during the first 3 years of collisions at the LHC. In this paper a summary of the system performance as well as main results with data from collisions will be reported.

  4. High energy beam impact tests on a LHC tertiary collimator at the CERN high-radiation to materials facility

    NASA Astrophysics Data System (ADS)

    Cauchi, Marija; Aberle, O.; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cornelis, K.; Dallocchio, A.; Deboy, D.; Lari, L.; Redaelli, S.; Rossi, A.; Salvachua, B.; Mollicone, P.; Sammut, N.

    2014-02-01

    The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC). The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat) facility, involved 440 GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.

  5. Search strategy using LHC pileup interactions as a zero bias sample

    NASA Astrophysics Data System (ADS)

    Nachman, Benjamin; Rubbo, Francesco

    2018-05-01

    Due to a limited bandwidth and a large proton-proton interaction cross section relative to the rate of interesting physics processes, most events produced at the Large Hadron Collider (LHC) are discarded in real time. A sophisticated trigger system must quickly decide which events should be kept and is very efficient for a broad range of processes. However, there are many processes that cannot be accommodated by this trigger system. Furthermore, there may be models of physics beyond the standard model (BSM) constructed after data taking that could have been triggered, but no trigger was implemented at run time. Both of these cases can be covered by exploiting pileup interactions as an effective zero bias sample. At the end of high-luminosity LHC operations, this zero bias dataset will have accumulated about 1 fb-1 of data from which a bottom line cross section limit of O (1 ) fb can be set for BSM models already in the literature and those yet to come.

  6. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    NASA Astrophysics Data System (ADS)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  7. Progress with high-field superconducting magnets for high-energy colliders

    DOE PAGES

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nbmore » $$_3$$Sn superconductors. Nb$$_3$$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$$_3$$Sn accelerator magnet research and development and work toward 20-T magnets.« less

  8. Soviet Hadron Collider

    NASA Astrophysics Data System (ADS)

    Kotchetkov, Dmitri

    2017-01-01

    Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.

  9. Experiential learning in high energy physics: a survey of students at the LHC

    NASA Astrophysics Data System (ADS)

    Camporesi, Tiziano; Catalano, Gelsomina; Florio, Massimo; Giffoni, Francesco

    2017-03-01

    More than 36 000 students and post-docs will be involved until 2025 in research at the Large Hadron Collider (LHC) mainly through international collaborations. To what extent they value the skills acquired? Do students expect that their learning experience will have an impact on their professional future? By drawing from earlier literature on experiential learning, we have designed a survey of current and former students at LHC. To quantitatively measure the students’ perceptions, we compare the salary expectations of current students with the assessment of those now employed in different jobs. Survey data are analysed by ordered logistic regression models, which allow multivariate statistical analyses with limited dependent variables. Results suggest that experiential learning at LHC positively correlates with both current and former students’ salary expectations. Those already employed clearly confirm the expectations of current students. At least two not mutually exclusive explanations underlie the results. First, the training at LHC is perceived to provide students valuable skills, which in turn affect the salary expectations; secondly, the LHC research experience per se may act as signal in the labour market. Respondents put a price tag on their learning experience, a ‘LHC salary premium’ ranging from 5% to 12% compared with what they would have expected for their career without such an experience at CERN.

  10. First Operation of the Abort Gap Monitor for LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefevre, Thibaut; /CERN; Bart Pedersen, Stephane

    2012-07-06

    The Large Hadron Collider (LHC) beam-dump system relies on extraction kickers that need 3 microseconds to rise to their nominal field. Since particles transiting the kickers during the rise will not be dumped properly, the proton population in this interval must always remain below quench and damage limits. A specific monitor to measure the particle population of this gap has been designed based on the detection of synchrotron radiation using a gated photomultiplier. Since the quench and damage limits change with the beam energy, the acceptable population in the abort gap and the settings of the monitor must adapt accordingly.more » This paper presents the design of the monitor, the calibration procedure and the detector performance with beam.« less

  11. The MoEDAL Experiment at the Lhc -- a New Light on the High Energy Frontier

    NASA Astrophysics Data System (ADS)

    Pinfold, James L.

    2014-04-01

    In 2010, the CERN (European Centre for Particle Physics Research) Research Board unanimously approved MoEDAL, the seventh international experiment at the Large Hadron Collider (LHC), which is designed to search for avatars of new physics signified by highly ionizing particles. A MoEDAL discovery would have revolutionary implications for our understanding of the microcosm, providing insights into such fundamental questions as: do magnetic monopoles exist, are there extra dimensions or new symmetries of nature; what is the mechanism for the generation of mass; what is the nature of dark matter and how did the big bang unfurl at the earliest times.

  12. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toivanen, V., E-mail: ville.aleksi.toivanen@cern.ch; Bellodi, G.; Dimov, V.

    2016-02-15

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT)more » section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.« less

  13. Preliminary Mechanical Design Study of the Hollow Electron Lens for HL-LHC

    NASA Astrophysics Data System (ADS)

    Zanoni, Carlo; Gobbi, Giorgia; Perini, Diego; Stancari, Giulio

    2017-07-01

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a hollow beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field. The first step of the design is the definition of the magnetic field that drives the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB tool is presented. The influence of the main geometrical and electrical parameters is analyzed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the feasibility study of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar devices.

  14. The MoEDAL Experiment at the Lhc — a New Light on the High Energy Frontier

    NASA Astrophysics Data System (ADS)

    Pinfold, James L.

    2014-01-01

    In 2010, the CERN (European Centre for Particle Physics Research) Research Board unanimously approved MoEDAL, the seventh international experiment at the Large Hadron Collider (LHC), which is designed to search for avatars of new physics signified by highly ionizing particles. A MoEDAL discovery would have revolutionary implications for our understanding of the microcosm, providing insights into such fundamental questions as: do magnetic monopoles exist, are there extra dimensions or new symmetries of nature; what is the mechanism for the generation of mass; what is the nature of dark matter and how did the big bang unfurl at the earliest times.

  15. Open issues in hadronic interactions for air showers

    NASA Astrophysics Data System (ADS)

    Pierog, Tanguy

    2017-06-01

    In detailed air shower simulations, the uncertainty in the prediction of shower observables for different primary particles and energies is currently dominated by differences between hadronic interaction models. With the results of the first run of the LHC, the difference between post-LHC model predictions has been reduced to the same level as experimental uncertainties of cosmic ray experiments. At the same time new types of air shower observables, like the muon production depth, have been measured, adding new constraints on hadronic models. Currently no model is able to consistently reproduce all mass composition measurements possible within the Pierre Auger Observatory for instance. Comparing the different models, and with LHC and cosmic ray data, we will show that the remaining open issues in hadronic interactions in air shower development are now in the pion-air interactions and in nuclear effects.

  16. The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking

    DOE PAGES

    Farrell, Steven; Anderson, Dustin; Calafiura, Paolo; ...

    2017-08-08

    Particle track reconstruction in dense environments such as the detectors of the High Luminosity Large Hadron Collider (HL-LHC) is a challenging pattern recognition problem. Traditional tracking algorithms such as the combinatorial Kalman Filter have been used with great success in LHC experiments for years. However, these state-of-the-art techniques are inherently sequential and scale poorly with the expected increases in detector occupancy in the HL-LHC conditions. The HEP.TrkX project is a pilot project with the aim to identify and develop cross-experiment solutions based on machine learning algorithms for track reconstruction. Machine learning algorithms bring a lot of potential to this problemmore » thanks to their capability to model complex non-linear data dependencies, to learn effective representations of high-dimensional data through training, and to parallelize easily on high-throughput architectures such as GPUs. This contribution will describe our initial explorations into this relatively unexplored idea space. Furthermore, we will discuss the use of recurrent (LSTM) and convolutional neural networks to find and fit tracks in toy detector data.« less

  17. The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, Steven; Anderson, Dustin; Calafiura, Paolo

    Particle track reconstruction in dense environments such as the detectors of the High Luminosity Large Hadron Collider (HL-LHC) is a challenging pattern recognition problem. Traditional tracking algorithms such as the combinatorial Kalman Filter have been used with great success in LHC experiments for years. However, these state-of-the-art techniques are inherently sequential and scale poorly with the expected increases in detector occupancy in the HL-LHC conditions. The HEP.TrkX project is a pilot project with the aim to identify and develop cross-experiment solutions based on machine learning algorithms for track reconstruction. Machine learning algorithms bring a lot of potential to this problemmore » thanks to their capability to model complex non-linear data dependencies, to learn effective representations of high-dimensional data through training, and to parallelize easily on high-throughput architectures such as GPUs. This contribution will describe our initial explorations into this relatively unexplored idea space. Furthermore, we will discuss the use of recurrent (LSTM) and convolutional neural networks to find and fit tracks in toy detector data.« less

  18. The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking

    NASA Astrophysics Data System (ADS)

    Farrell, Steven; Anderson, Dustin; Calafiura, Paolo; Cerati, Giuseppe; Gray, Lindsey; Kowalkowski, Jim; Mudigonda, Mayur; Prabhat; Spentzouris, Panagiotis; Spiropoulou, Maria; Tsaris, Aristeidis; Vlimant, Jean-Roch; Zheng, Stephan

    2017-08-01

    Particle track reconstruction in dense environments such as the detectors of the High Luminosity Large Hadron Collider (HL-LHC) is a challenging pattern recognition problem. Traditional tracking algorithms such as the combinatorial Kalman Filter have been used with great success in LHC experiments for years. However, these state-of-the-art techniques are inherently sequential and scale poorly with the expected increases in detector occupancy in the HL-LHC conditions. The HEP.TrkX project is a pilot project with the aim to identify and develop cross-experiment solutions based on machine learning algorithms for track reconstruction. Machine learning algorithms bring a lot of potential to this problem thanks to their capability to model complex non-linear data dependencies, to learn effective representations of high-dimensional data through training, and to parallelize easily on high-throughput architectures such as GPUs. This contribution will describe our initial explorations into this relatively unexplored idea space. We will discuss the use of recurrent (LSTM) and convolutional neural networks to find and fit tracks in toy detector data.

  19. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-11-01

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration.

  20. Searches for Kaluza-Klein graviton excitations and microscopic black holes with the aid of the CMS detector at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savina, M. V., E-mail: savina@cern.ch

    2015-06-15

    A survey of the results of the Compact Muon Solenoid (CMS) experiment that concern searches for massive Kaluza-Klein graviton excitations and microscopic black holes, quantum black holes, and string balls within models of low-energy multidimensional gravity is presented on behalf of the CMS Collaboration. The analysis in question is performed on the basis of a complete sample of data accumulated for proton-proton collisions at the c.m. energies of 7 and 8 TeV at the Large Hadron Collider (LHC) over the period spanning 2010 and 2012.

  1. The HL-LHC Accelerator Physics Challenges

    NASA Astrophysics Data System (ADS)

    Fartoukh, S.; Zimmermann, F.

    The conceptual baseline of the HL-LHC project is reviewed, putting into perspective the main beam physics challenges of this new collider in comparison with the existing LHC, and the series of solutions and possible mitigation measures presently envisaged.

  2. Soft functions for generic jet algorithms and observables at hadron colliders

    DOE PAGES

    Bertolini, Daniele; Kolodrubetz, Daniel; Neill, Duff Austin; ...

    2017-07-20

    Here, we introduce a method to compute one-loop soft functions for exclusive N - jet processes at hadron colliders, allowing for different definitions of the algorithm that determines the jet regions and of the measurements in those regions. In particular, we generalize the N -jettiness hemisphere decomposition of ref. [1] in a manner that separates the dependence on the jet boundary from the observables measured inside the jet and beam regions. Results are given for several factorizable jet definitions, including anti- kT , XCone, and other geometric partitionings. We calculate explicitly the soft functions for angularity measurements, including jet massmore » and jet broadening, in pp → L + 1 jet and explore the differences for various jet vetoes and algorithms. This includes a consistent treatment of rapidity divergences when applicable. We also compute analytic results for these soft functions in an expansion for a small jet radius R. We find that the small- R results, including corrections up to O(R 2), accurately capture the full behavior over a large range of R.« less

  3. Soft functions for generic jet algorithms and observables at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolini, Daniele; Kolodrubetz, Daniel; Neill, Duff Austin

    Here, we introduce a method to compute one-loop soft functions for exclusive N - jet processes at hadron colliders, allowing for different definitions of the algorithm that determines the jet regions and of the measurements in those regions. In particular, we generalize the N -jettiness hemisphere decomposition of ref. [1] in a manner that separates the dependence on the jet boundary from the observables measured inside the jet and beam regions. Results are given for several factorizable jet definitions, including anti- kT , XCone, and other geometric partitionings. We calculate explicitly the soft functions for angularity measurements, including jet massmore » and jet broadening, in pp → L + 1 jet and explore the differences for various jet vetoes and algorithms. This includes a consistent treatment of rapidity divergences when applicable. We also compute analytic results for these soft functions in an expansion for a small jet radius R. We find that the small- R results, including corrections up to O(R 2), accurately capture the full behavior over a large range of R.« less

  4. Upgrade plans for the ATLAS Forward Calorimeter at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Rutherfoord, John; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    Although data-taking at CERN's Large Hadron Collider (LHC) is expected to continue for a number of years, plans are already being developed for operation of the LHC and associated detectors at an increased instantaneous luminosity about 5 times the original design value of 1034 cm-2 s-1. The increased particle flux at this high luminosity (HL) will have an impact on many sub-systems of the ATLAS detector. In particular, in the liquid argon forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities creates a number of problems which can degrade its performance. These include space-charge effects in the liquid argon gaps, excessive drop in potential across the gaps due to large HV supply currents through the protection resistors, and an increase in temperature which may cause the liquid argon to boil. One solution, which would require opening both End-Cap cryostats, is the construction and installation of new FCals with narrower liquid argon gaps, lowering the values of the protection resistors, and the addition of cooling loops. A second proposed solution, which does not require opening the cryostat cold volume, is the addition of a small, warm calorimeter in front of each existing FCal, resulting in a reduction of the particle flux to levels at which the existing FCal can operate normally.

  5. Upgrade of Tile Calorimeter of the ATLAS Detector for the High Luminosity LHC.

    NASA Astrophysics Data System (ADS)

    Valdes Santurio, Eduardo; Tile Calorimeter System, ATLAS

    2017-11-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5 × 1034 cm -2 s -1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC in 2026. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. Field Programmable Gate Arrays (FPGAs) are extensively used for the logic functions of the off- and on-detector electronics. One hybrid demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, may be inserted in ATLAS at the end of 2016.

  6. Implementation of an object oriented track reconstruction model into multiple LHC experiments*

    NASA Astrophysics Data System (ADS)

    Gaines, Irwin; Gonzalez, Saul; Qian, Sijin

    2001-10-01

    An Object Oriented (OO) model (Gaines et al., 1996; 1997; Gaines and Qian, 1998; 1999) for track reconstruction by the Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. The model has been coded in the C++ programming language and has been successfully implemented into the OO computing environments of both the CMS (1994) and ATLAS (1994) experiments at the future Large Hadron Collider (LHC) at CERN. We shall report: how the OO model was adapted, with largely the same code, to different scenarios and serves the different reconstruction aims in different experiments (i.e. the level-2 trigger software for ATLAS and the offline software for CMS); how the OO model has been incorporated into different OO environments with a similar integration structure (demonstrating the ease of re-use of OO program); what are the OO model's performance, including execution time, memory usage, track finding efficiency and ghost rate, etc.; and additional physics performance based on use of the OO tracking model. We shall also mention the experience and lessons learned from the implementation of the OO model into the general OO software framework of the experiments. In summary, our practice shows that the OO technology really makes the software development and the integration issues straightforward and convenient; this may be particularly beneficial for the general non-computer-professional physicists.

  7. Dark-matter production through loop-induced processes at the LHC: the s-channel mediator case.

    PubMed

    Mattelaer, Olivier; Vryonidou, Eleni

    We show how studies relevant for mono-X searches at the LHC in simplified models featuring a dark-matter candidate and an s -channel mediator can be performed within the MadGraph5_aMC@NLO framework. We focus on gluon-initiated loop-induced processes, mostly relevant to the case where the mediator couples preferentially to third generation quarks and in particular to the top quark. Our implementation allows us to study signatures at hadron colliders involving missing transverse energy plus jets or plus neutral bosons ([Formula: see text]), possibly including the effects of extra radiation by multi-parton merging and matching to the parton shower.

  8. CERN Collider, France-Switzerland

    NASA Image and Video Library

    2013-08-23

    This image, acquired by NASA Terra spacecraft, is of the CERN Large Hadron Collider, the world largest and highest-energy particle accelerator laying beneath the French-Swiss border northwest of Geneva yellow circle.

  9. Spin determination at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Yavin, Itay

    The quantum field theory describing the Electroweak sector demands some new physics at the TeV scale in order to unitarize the scattering of longitudinal W bosons. If this new physics takes the form of a scalar Higgs boson then it is hard to understand the huge hierarchy of scales between the Electroweak scale ˜ TeV and the Planck scale ˜ 1019 GeV. This is known as the Naturalness problem. Normally, in order to solve this problem, new particles, in addition to the Higgs boson, are required to be present in the spectrum below a few TeV. If such particles are indeed discovered at the Large Hadron Collider it will become important to determine their spin. Several classes of models for physics beyond the Electroweak scale exist. Determining the spin of any such newly discovered particle could prove to be the only means of distinguishing between these different models. In the first part of this thesis; we present a thorough discussion regarding such a measurement. We survey the different potentially useful channels for spin determination and a detailed analysis of the most promising channel is performed. The Littlest Higgs model offers a way to solve the Hierarchy problem by introduring heavy partners to Standard Model particles with the same spin and quantum numbers. However, this model is only good up to ˜ 10 TeV. In the second part of this thesis we present an extension of this model into a strongly coupled theory above ˜ 10 TeV. We use the celebrated AdS/CFT correspondence to calculate properties of the low-energy physics in terms of high-energy parameters. We comment on some of the tensions inherent to such a construction involving a large-N CFT (or equivalently, an AdS space).

  10. Mechanical studies towards a silicon micro-strip super module for the ATLAS inner detector upgrade at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Barbier, G.; Cadoux, F.; Clark, A.; Endo, M.; Favre, Y.; Ferrere, D.; Gonzalez-Sevilla, S.; Hanagaki, K.; Hara, K.; Iacobucci, G.; Ikegami, Y.; Jinnouchi, O.; La Marra, D.; Nakamura, K.; Nishimura, R.; Perrin, E.; Seez, W.; Takubo, Y.; Takashima, R.; Terada, S.; Todome, K.; Unno, Y.; Weber, M.

    2014-04-01

    It is expected that after several years of data-taking, the Large Hadron Collider (LHC) physics programme will be extended to the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 1034 cm-2 s-1. For the general-purpose ATLAS experiment at the LHC, a complete replacement of its internal tracking detector will be necessary, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module (SM) is an integration concept proposed for the barrel strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules (DSM) are assembled into a low-mass local support (LS) structure. Mechanical aspects of the proposed LS structure are described.

  11. New Physics at the LHC: A Les Houches Report. Physics at Tev Colliders 2007 - New Physics Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooijmans, Gustaaf H.; /Columbia U.; Delgado, A.

    2011-12-05

    We present a collection of signatures for physics beyond the standard model that need to be explored at the LHC. The signatures are organized according to the experimental objects that appear in the final state, and in particular the number of high p{sub T} leptons. Our report, which includes brief experimental and theoretical reviews as well as original results, summarizes the activities of the 'New Physics' working group for the 'Physics at TeV Colliders' workshop (Les Houches, France, 11-29 June, 2007).

  12. Accelerating hydrodynamic description of pseudorapidity density and the initial energy density in p +p , Cu + Cu, Au + Au, and Pb + Pb collisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Ze-Fang, Jiang; Chun-Bin, Yang; Csanád, Máté; Csörgő, Tamás

    2018-06-01

    A known class of analytic, exact, accelerating solutions of prefect relativistic hydrodynamics with longitudinal acceleration is utilized to describe results on the pseudorapidity distributions for different collision systems. These results include d N /d η measured in p +p , Cu+Cu, Au+Au, and Pb+Pb collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider, in a broad centrality range. Going beyond the traditional Bjorken model, from the accelerating hydrodynamic description we determine the initial energy density and other thermodynamic quantities in those collisions.

  13. 5-year operation experience with the 1.8 K refrigeration units of the LHC cryogenic system

    NASA Astrophysics Data System (ADS)

    Ferlin, G.; Tavian, L.; Claudet, S.; Pezzetti, M.

    2015-12-01

    Since 2009, the Large Hadron Collider (LHC) is in operation at CERN. The LHC superconducting magnets distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. The nominal operating temperature of 1.9 K is produced by eight 1.8-K refrigeration units based on centrifugal cold compressors (3 or 4 stages depending to the vendor) combined with warm volumetric screw compressors with sub-atmospheric suction. After about 5 years of continuous operation, we will present the results concerning the availability for the final user of these refrigeration units and the impact of the design choice on the recovery time after a system trip. We will also present the individual results for each rotating machinery in terms of failure origin and of Mean Time between Failure (MTBF), as well as the consolidations and upgrades applied to these refrigeration units.

  14. SPS Beam Steering for LHC Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianfelice-Wendt, Eliana; Bartosik, Hannes; Cornelis, Karel

    2014-07-01

    The CERN Super Proton Synchrotron accelerates beams for the Large Hadron Collider to 450 GeV. In addition it produces beams for fixed target facilities which adds complexity to the SPS operation. During the run 2012-2013 drifts of the extracted beam trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses in the LHC. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. While extensive studies are going on to understand, and possibly suppress, the source of such SPS orbit drifts the feasibility of an automatic beam steering towardsmore » a “golden” orbit at the extraction septa, by means of the interlocked correctors, is also being investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed.« less

  15. Developments in the ATLAS Tracking Software ahead of LHC Run 2

    NASA Astrophysics Data System (ADS)

    Styles, Nicholas; Bellomo, Massimiliano; Salzburger, Andreas; ATLAS Collaboration

    2015-05-01

    After a hugely successful first run, the Large Hadron Collider (LHC) is currently in a shut-down period, during which essential maintenance and upgrades are being performed on the accelerator. The ATLAS experiment, one of the four large LHC experiments has also used this period for consolidation and further developments of the detector and of its software framework, ahead of the new challenges that will be brought by the increased centre-of-mass energy and instantaneous luminosity in the next run period. This is of particular relevance for the ATLAS Tracking software, responsible for reconstructing the trajectory of charged particles through the detector, which faces a steep increase in CPU consumption due to the additional combinatorics of the high-multiplicity environment. The steps taken to mitigate this increase and stay within the available computing resources while maintaining the excellent performance of the tracking software in terms of the information provided to the physics analyses will be presented. Particular focus will be given to changes to the Event Data Model, replacement of the maths library, and adoption of a new persistent output format. The resulting CPU profiling results will be discussed, as well as the performance of the algorithms for physics processes under the expected conditions for the next LHC run.

  16. Current Lead Design for the Accelerator Project for Upgrade of LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Jeffrey S.; Cheban, Sergey; Feher, Sandor

    2010-01-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. In collaboration with Brookhaven National Laboratory, Fermilab is developing sub-systems for an upgrade of the LHC final focus magnet systems. A concept of main and auxiliary helium flow was developed that allows the superconductor to remain cold while the lead body warms up to prevent upper section frosting. The auxiliary flow will subsequently cool the thermal shields of the feed box and the transmission line cryostats. A thermal analysis of the current lead central heat exchangemore » section was performed using analytic and FEA techniques. A method of remote soldering was developed that allows the current leads to be field replaceable. The remote solder joint was designed to be made without flux or additional solder, and able to be remade up to ten full cycles. A method of upper section attachment was developed that allows high pressure sealing of the helium volume. Test fixtures for both remote soldering and upper section attachment for the 13 kA lead were produced. The cooling concept, thermal analyses, and test results from both remote soldering and upper section attachment fixtures are presented.« less

  17. Production of extra quarks decaying to dark matter beyond the narrow width approximation at the LHC

    NASA Astrophysics Data System (ADS)

    Moretti, Stefano; O'Brien, Dermot; Panizzi, Luca; Prager, Hugo

    2017-08-01

    This paper explores the effects of finite width in processes of pair production of an extra heavy quark with charge 2 /3 (top partner) and its subsequent decay into a bosonic dark matter (DM) candidate—either scalar or vector—and SM up-type quarks at the Large Hadron Collider (LHC). This dynamics has been ignored so far in standard experimental searches of heavy quarks decaying to DM and we assess herein the regions of validity of current approaches, based on the assumption that the extra quarks have a narrow width. Further, we discuss the configurations of masses, widths and couplings where the latter breaks down.

  18. Automated next-to-leading order predictions for new physics at the LHC: The case of colored scalar pair production

    DOE PAGES

    Degrande, Céline; Fuks, Benjamin; Hirschi, Valentin; ...

    2015-05-05

    We present for the first time the full automation of collider predictions matched with parton showers at the next-to-leading accuracy in QCD within nontrivial extensions of the standard model. The sole inputs required from the user are the model Lagrangian and the process of interest. As an application of the above, we explore scenarios beyond the standard model where new colored scalar particles can be pair produced in hadron collisions. Using simplified models to describe the new field interactions with the standard model, we present precision predictions for the LHC within the MadGraph5_aMC@NLO framework.

  19. Design and Vertical Tests of SPS-series Double-Quarter Wave (DQW) Cavity Prototypes for the HL-LHC Crab Cavity System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdú-Andrés, S.; et al.

    Crab crossing is essential for high-luminosity colliders. The High Luminosity Large Hadron Collider (HL-LHC) will equip one of its Interaction Points (IP1) with Double-Quarter Wave (DQW) crab cavities. A DQW cavity is a new generation of deflecting RF cavities that stands out for its compactness and broad frequency separation between fundamental and first high-order modes. The deflecting kick is provided by its fundamental mode. Each HL-LHC DQW cavity shall provide a nominal deflecting voltage of 3.4 MV, although up to 5.0 MV may be required. A Proof-of-Principle (PoP) DQW cavity was limited by quench at 4.6 MV. This paper describesmore » a new, highly optimized cavity, designated DQW SPS-series, which satisfies dimensional, cryogenic, manufacturing and impedance requirements for beam tests at SPS and operation in LHC. Two prototypes of this DQW SPS-series were fabricated by US industry and cold tested after following conventional SRF surface treatment. Both units outperformed the PoP cavity, reaching a deflecting voltage of 5.3-5.9 MV. This voltage - the highest reached by a DQW cavity - is well beyond the nominal voltage of 3.4 MV and may even operate at the ultimate voltage of 5.0MVwith sufficient margin. This paper covers fabrication, surface preparation and cryogenic RF test results and implications.« less

  20. ATLAS jet trigger update for the LHC run II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, A. T.

    The CERN Large Hadron Collider is the biggest and most powerful particle collider ever built. It produces up to 40 million proton-proton collisions per second at unprecedented energies to explore the fundamental laws and properties of Nature. The ATLAS experiment is one of the detectors that analyses and records these collisions. It generates dozens of GB/s of data that has to be reduced before it can be permanently stored, the event selection is made by the ATLAS trigger system, which reduces the data volume by a factor of 105. The trigger system has to be highly configurable in order tomore » adapt to changing running conditions and maximize the physics output whilst keeping the output rate under control. A particularly interesting pattern generated during collisions consists of a collimated spray of particles, known as a hadronic jet. To retain the interesting jets and efficiently reject the overwhelming background, optimal jet energy resolution is needed. Therefore the Jet trigger software requires CPU-intensive reconstruction algorithms. In order to reduce the resources needed for the reconstruction step, a partial detector readout scheme was developed, which effectively suppresses the low activity regions of the calorimeter. In this paper we describe the overall ATLAS trigger software, and the jet trigger in particular, along with the improvements made on the system. We then focus on detailed studies of the algorithm timing and the performance impact of the full and partial calorimeter readout schemes. We conclude with an outlook of the jet trigger plans for the next LHC data-taking period. (authors)« less

  1. Strongly interacting dynamics and the search for new physics at the LHC

    DOE PAGES

    Appelquist, T.; Brower, R. C.; Fleming, G. T.; ...

    2016-06-21

    We present results for the spectrum of a strongly interacting SU(3) gauge theory with N f = 8 light fermions in the fundamental representation. Carrying out nonperturbative lattice calculations at the lightest masses and largest volumes considered to date, we confirm the existence of a remarkably light singlet scalar particle. We explore the rich resonance spectrum of the 8-flavor theory in the context of the search for new physics beyond the standard model at the Large Hadron Collider (LHC). Lastly, connecting our results to models of dynamical electroweak symmetry breaking, we estimate the vector resonance mass to be about 2more » TeV with a width of roughly 450 GeV, and predict additional resonances with masses below ~3 TeV.« less

  2. Model independent particle mass measurements in missing energy events at hadron colliders

    NASA Astrophysics Data System (ADS)

    Park, Myeonghun

    2011-12-01

    This dissertation describes several new kinematic methods to measure the masses of new particles in events with missing transverse energy at hadron colliders. Each method relies on the measurement of some feature (a peak or an endpoint) in the distribution of a suitable kinematic variable. The first method makes use of the "Gator" variable s min , whose peak provides a global and fully inclusive measure of the production scale of the new particles. In the early stage of the LHC, this variable can be used both as an estimator and a discriminator for new physics over the standard model backgrounds. The next method studies the invariant mass distributions of the visible decay products from a cascade decay chain and the shapes and endpoints of those distributions. Given a sufficient number of endpoint measurements, one could in principle attempt to invert and solve for the mass spectrum. However, the non-linear character of the relevant coupled quadratic equations often leads to multiple solutions. In addition, there is a combinatorial ambiguity related to the ordering of the decay products from the cascade decay chain. We propose a new set of invariant mass variables which are less sensitive to these problems. We demonstrate how the new particle mass spectrum can be extracted from the measurement of their kinematic endpoints. The remaining methods described in the dissertation are based on "transverse" invariant mass variables like the "Cambridge" transverse mass MT2, the "Sheffield" contrasverse mass MCT and their corresponding one-dimensional projections MT2⊥, M T2||, MCT⊥ , and MCT|| with respect to the upstream transverse momentum U⃗T . The main advantage of all those methods is that they can be applied to very short (single-stage) decay topologies, as well as to a subsystem of the observed event. The methods can also be generalized to the case of non-identical missing particles, as demonstrated in Chapter 7. A complete set of analytical results for the

  3. Landscape of supersymmetric particle mass hierarchies and their signature space at the CERN Large Hadron Collider.

    PubMed

    Feldman, Daniel; Liu, Zuowei; Nath, Pran

    2007-12-21

    The minimal supersymmetric standard model with soft breaking has a large landscape of supersymmetric particle mass hierarchies. This number is reduced significantly in well-motivated scenarios such as minimal supergravity and alternatives. We carry out an analysis of the landscape for the first four lightest particles and identify at least 16 mass patterns, and provide benchmarks for each. We study the signature space for the patterns at the CERN Large Hadron Collider by analyzing the lepton+ (jet> or =2) + missing P{T} signals with 0, 1, 2, and 3 leptons. Correlations in missing P{T} are also analyzed. It is found that even with 10 fb{-1} of data a significant discrimination among patterns emerges.

  4. Drell-Yan process as an avenue to test a noncommutative standard model at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    J, Selvaganapathy; Das, Prasanta Kumar; Konar, Partha

    2016-06-01

    We study the Drell-Yan process at the Large Hadron Collider in the presence of the noncommutative extension of the standard model. Using the Seiberg-Witten map, we calculate the production cross section to first order in the noncommutative parameter Θμ ν . Although this idea has been evolving for a long time, only a limited amount of phenomenological analysis has been completed, and this was mostly in the context of the linear collider. An outstanding feature from this nonminimal noncommutative standard model not only modifies the couplings over the SM production channel but also allows additional nonstandard vertices which can play a significant role. Hence, in the Drell-Yan process, as studied in the present analysis, one also needs to account for the gluon fusion process at the tree level. Some of the characteristic signatures, such as oscillatory azimuthal distributions, are an outcome of the momentum-dependent effective couplings. We explore the noncommutative scale ΛNC≥0.4 TeV , considering different machine energy ranging from 7 to 13 TeV.

  5. Preliminary Mechanical Design Study of the Hollow Electron Lens for HL-LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanoni, Carlo; Gobbi, Giorgia; Perini, Diego

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a hollow beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field. The first step of the design is the definition of the magnetic field that drives the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB tool is presented. The influencemore » of the main geometrical and electrical parameters is analyzed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the feasibility study of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar devices.« less

  6. The ALICE experiment at the CERN LHC

    NASA Astrophysics Data System (ADS)

    ALICE Collaboration; Aamodt, K.; Abrahantes Quintana, A.; Achenbach, R.; Acounis, S.; Adamová, D.; Adler, C.; Aggarwal, M.; Agnese, F.; Aglieri Rinella, G.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Aleksandrov, D.; Alessandro, B.; Alfaro, R.; Alfarone, G.; Alici, A.; Alme, J.; Alt, T.; Altinpinar, S.; Amend, W.; Andrei, C.; Andres, Y.; Andronic, A.; Anelli, G.; Anfreville, M.; Angelov, V.; Anzo, A.; Anson, C.; Anticić, T.; Antonenko, V.; Antonczyk, D.; Antinori, F.; Antinori, S.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Aprodu, V.; Arba, M.; Arcelli, S.; Argentieri, A.; Armesto, N.; Arnaldi, R.; Arefiev, A.; Arsene, I.; Asryan, A.; Augustinus, A.; Awes, T. C.; Äysto, J.; Danish Azmi, M.; Bablock, S.; Badalà, A.; Badyal, S. K.; Baechler, J.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Bán, J.; Barbera, R.; Barberis, P.-L.; Barbet, J. M.; Barnäfoldi, G.; Barret, V.; Bartke, J.; Bartos, D.; Basile, M.; Basmanov, V.; Bastid, N.; Batigne, G.; Batyunya, B.; Baudot, J.; Baumann, C.; Bearden, I.; Becker, B.; Belikov, J.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Belyaev, S.; Benato, A.; Beney, J. L.; Benhabib, L.; Benotto, F.; Beolé, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Bernard, C.; Berny, R.; Berst, J. D.; Bertelsen, H.; Betev, L.; Bhasin, A.; Baskar, P.; Bhati, A.; Bianchi, N.; Bielčik, J.; Bielčiková, J.; Bimbot, L.; Blanchard, G.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Blyth, S.; Boccioli, M.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Bonnet, D.; Bonvicini, V.; Borel, H.; Borotto, F.; Borshchov, V.; Bortoli, Y.; Borysov, O.; Bose, S.; Bosisio, L.; Botje, M.; Böttger, S.; Bourdaud, G.; Bourrion, O.; Bouvier, S.; Braem, A.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Bruckner, G.; Brun, R.; Bruna, E.; Brunasso, O.; Bruno, G. E.; Bucher, D.; Budilov, V.; Budnikov, D.; Buesching, H.; Buncic, P.; Burns, M.; Burachas, S.; Busch, O.; Bushop, J.; Cai, X.; Caines, H.; Calaon, F.; Caldogno, M.; Cali, I.; Camerini, P.; Campagnolo, R.; Campbell, M.; Cao, X.; Capitani, G. P.; Romeo, G. Cara; Cardenas-Montes, M.; Carduner, H.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casado, J.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Castor, J.; Catanescu, V.; Cattaruzza, E.; Cavazza, D.; Cerello, P.; Ceresa, S.; Černý, V.; Chambert, V.; Chapeland, S.; Charpy, A.; Charrier, D.; Chartoire, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chepurnov, V.; Chernenko, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chochula, P.; Chiavassa, E.; Chibante Barroso, V.; Choi, J.; Christakoglou, P.; Christiansen, P.; Christensen, C.; Chykalov, O. A.; Cicalo, C.; Cifarelli-Strolin, L.; Ciobanu, M.; Cindolo, F.; Cirstoiu, C.; Clausse, O.; Cleymans, J.; Cobanoglu, O.; Coffin, J.-P.; Coli, S.; Colla, A.; Colledani, C.; Combaret, C.; Combet, M.; Comets, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Contin, G.; Contreras, J.; Cormier, T.; Corsi, F.; Cortese, P.; Costa, F.; Crescio, E.; Crochet, P.; Cuautle, E.; Cussonneau, J.; Dahlinger, M.; Dainese, A.; Dalsgaard, H. H.; Daniel, L.; Das, I.; Das, T.; Dash, A.; Da Silva, R.; Davenport, M.; Daues, H.; DeCaro, A.; de Cataldo, G.; DeCuveland, J.; DeFalco, A.; de Gaspari, M.; de Girolamo, P.; de Groot, J.; DeGruttola, D.; DeHaas, A.; DeMarco, N.; DePasquale, S.; DeRemigis, P.; de Vaux, D.; Decock, G.; Delagrange, H.; DelFranco, M.; Dellacasa, G.; Dell'Olio, C.; Dell'Olio, D.; Deloff, A.; Demanov, V.; Dénes, E.; D'Erasmo, G.; Derkach, D.; Devaux, A.; Di Bari, D.; Di Bartelomen, A.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dialinas, M.; Diaz, L.; Díaz Valdes, R.; Dietel, T.; Dima, R.; Ding, H.; Dinca, C.; Divià, R.; Dobretsov, V.; Dobrin, A.; Doenigus, B.; Dobrowolski, T.; Domínguez, I.; Dorn, M.; Drouet, S.; Dubey, A. E.; Ducroux, L.; Dumitrache, F.; Dumonteil, E.; Dupieux, P.; Duta, V.; Dutta Majumdar, A.; Dutta Majumdar, M.; Dyhre, Th; Efimov, L.; Efremov, A.; Elia, D.; Emschermann, D.; Engster, C.; Enokizono, A.; Espagnon, B.; Estienne, M.; Evangelista, A.; Evans, D.; Evrard, S.; Fabjan, C. W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Farano, R.; Fearick, R.; Fedorov, O.; Fekete, V.; Felea, D.; Feofilov, G.; Férnandez Téllez, A.; Ferretti, A.; Fichera, F.; Filchagin, S.; Filoni, E.; Finck, C.; Fini, R.; Fiore, E. M.; Flierl, D.; Floris, M.; Fodor, Z.; Foka, Y.; Fokin, S.; Force, P.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Fraissard, D.; Franco, A.; Franco, M.; Frankenfeld, U.; Fratino, U.; Fresneau, S.; Frolov, A.; Fuchs, U.; Fujita, J.; Furget, C.; Furini, M.; Fusco Girard, M.; Gaardhøje, J.-J.; Gabrielli, A.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gaido, L.; Gallas Torreira, A.; Gallio, M.; Gandolfi, E.; Ganoti, P.; Ganti, M.; Garabatos, J.; Garcia Lopez, A.; Garizzo, L.; Gaudichet, L.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giolu, G.; Giraudo, G.; Giubellino, P.; Glasow, R.; Glässel, P.; Ferreiro, E. G.; Gonzalez Gutierrez, C.; Gonzales-Trueba, L. H.; Gorbunov, S.; Gorbunov, Y.; Gos, H.; Gosset, J.; Gotovac, S.; Gottschlag, H.; Gottschalk, D.; Grabski, V.; Grassi, T.; Gray, H.; Grebenyuk, O.; Grebieszkow, K.; Gregory, C.; Grigoras, C.; Grion, N.; Grigoriev, V.; Grigoryan, A.; Grigoryan, C.; Grigoryan, S.; Grishuk, Y.; Gros, P.; Grosse-Oetringhaus, J.; Grossiord, J.-Y.; Grosso, R.; Grynyov, B.; Guarnaccia, C.; Guber, F.; Guerin, F.; Guernane, R.; Guerzoni, M.; Guichard, A.; Guida, M.; Guilloux, G.; Gulkanyan, H.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, V.; Gustafsson, H.-A.; Gutbrod, H.; Hadjidakis, C.; Haiduc, M.; Hamar, G.; Hamagaki, H.; Hamblen, J.; Hansen, J. C.; Hardy, P.; Hatzifotiadou, D.; Harris, J. W.; Hartig, M.; Harutyunyan, A.; Hayrapetyan, A.; Hasch, D.; Hasegan, D.; Hehner, J.; Heine, N.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Herlant, S.; Herrera Corral, G.; Herrmann, N.; Hetland, K.; Hille, P.; Hinke, H.; Hippolyte, B.; Hoch, M.; Hoebbel, H.; Hoedlmoser, H.; Horaguchi, T.; Horner, M.; Hristov, P.; Hřivnáčová, I.; Hu, S.; Guo, C. Hu; Humanic, T.; Hurtado, A.; Hwang, D. S.; Ianigro, J. C.; Idzik, M.; Igolkin, S.; Ilkaev, R.; Ilkiv, I.; Imhoff, M.; Innocenti, P. G.; Ionescu, E.; Ippolitov, M.; Irfan, M.; Insa, C.; Inuzuka, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Jacobs, P.; Jacholkowski, A.; Jančurová, L.; Janik, R.; Jasper, M.; Jena, C.; Jirden, L.; Johnson, D. P.; Jones, G. T.; Jorgensen, C.; Jouve, F.; Jovanović, P.; Junique, A.; Jusko, A.; Jung, H.; Jung, W.; Kadija, K.; Kamal, A.; Kamermans, R.; Kapusta, S.; Kaidalov, A.; Kakoyan, V.; Kalcher, S.; Kang, E.; Kapitan, J.; Kaplin, V.; Karadzhev, K.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Karpio, K.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Mohsin Khan, M.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J. S.; Kim, S.; Kinson, J. B.; Kiprich, S. K.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, T.; Kiworra, V.; Klay, J.; Klein Bösing, C.; Kliemant, M.; Klimov, A.; Klovning, A.; Kluge, A.; Kluit, R.; Kniege, S.; Kolevatov, R.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kornas, E.; Koshurnikov, E.; Kotov, I.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Králik, I.; Kramer, F.; Kraus, I.; Kravčáková, A.; Krawutschke, T.; Krivda, M.; Kryshen, E.; Kucheriaev, Y.; Kugler, A.; Kuhn, C.; Kuijer, P.; Kumar, L.; Kumar, N.; Kumpumaeki, P.; Kurepin, A.; Kurepin, A. N.; Kushpil, S.; Kushpil, V.; Kutovsky, M.; Kvaerno, H.; Kweon, M.; Labbé, J.-C.; Lackner, F.; Ladron de Guevara, P.; Lafage, V.; La Rocca, P.; Lamont, M.; Lara, C.; Larsen, D. T.; Laurenti, G.; Lazzeroni, C.; LeBornec, Y.; LeBris, N.; LeGailliard, C.; Lebedev, V.; Lecoq, J.; Lee, K. S.; Lee, S. C.; Lefévre, F.; Legrand, I.; Lehmann, T.; Leistam, L.; Lenoir, P.; Lenti, V.; Leon, H.; Monzon, I. Leon; Lévai, P.; Li, Q.; Li, X.; Librizzi, F.; Lietava, R.; Lindegaard, N.; Lindenstruth, V.; Lippmann, C.; Lisa, M.; Listratenko, O. M.; Littel, F.; Liu, Y.; Lo, J.; Lobanov, V.; Loginov, V.; López Noriega, M.; López-Ramírez, R.; López Torres, E.; Lorenzo, P. M.; Løvhøiden, G.; Lu, S.; Ludolphs, W.; Lunardon, M.; Luquin, L.; Lusso, S.; Lutz, J.-R.; Luvisetto, M.; Lyapin, V.; Maevskaya, A.; Magureanu, C.; Mahajan, A.; Majahan, S.; Mahmoud, T.; Mairani, A.; Mahapatra, D.; Makarov, A.; Makhlyueva, I.; Malek, M.; Malkiewicz, T.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manea, C.; Mangotra, L. K.; Maniero, D.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marcel, A.; Marchini, S.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marin, A.; Marin, J.-C.; Marras, D.; Martinengo, P.; Martínez, M. I.; Martinez-Davalos, A.; Martínez Garcia, G.; Martini, S.; Marzari Chiesa, A.; Marzocca, C.; Masciocchi, S.; Masera, M.; Masetti, M.; Maslov, N. I.; Masoni, A.; Massera, F.; Mast, M.; Mastroserio, A.; Matthews, Z. L.; Mayer, B.; Mazza, G.; Mazzaro, M. D.; Mazzoni, A.; Meddi, F.; Meleshko, E.; Menchaca-Rocha, A.; Meneghini, S.; Meoni, M.; Mercado Perez, J.; Mereu, P.; Meunier, O.; Miake, Y.; Michalon, A.; Michinelli, R.; Miftakhov, N.; Mignone, M.; Mikhailov, K.; Milosevic, J.; Minaev, Y.; Minafra, F.; Mischke, A.; Miśkowiec, D.; Mitsyn, V.; Mitu, C.; Mohanty, B.; Moisa, D.; Molnar, L.; Mondal, M.; Mondal, N.; Montaño Zetina, L.; Monteno, M.; Morando, M.; Morel, M.; Moretto, S.; Morhardt, Th; Morsch, A.; Moukhanova, T.; Mucchi, M.; Muccifora, V.; Mudnic, E.; Müller, H.; Müller, W.; Munoz, J.; Mura, D.; Musa, L.; Muraz, J. F.; Musso, A.; Nania, R.; Nandi, B.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T.; Nazarenko, S.; Nazarov, G.; Nellen, L.; Nendaz, F.; Nianine, A.; Nicassio, M.; Nielsen, B. S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.; Nitti, M.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noto, F.; Nouais, D.; Nyiri, A.; Nystrand, J.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Oldenburg, M.; Oleks, I.; Olsen, E. K.; Onuchin, V.; Oppedisano, C.; Orsini, F.; Ortiz-Velázquez, A.; Oskamp, C.; Oskarsson, A.; Osmic, F.; Österman, L.; Otterlund, I.; Ovrebekk, G.; Oyama, K.; Pachr, M.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S.; Pal, S.; Pálla, G.; Palmeri, A.; Pancaldi, G.; Panse, R.; Pantaleo, A.; Pappalardo, G. S.; Pastirčák, B.; Pastore, C.; Patarakin, O.; Paticchio, V.; Patimo, G.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pénichot, Y.; Pepato, A.; Pereira, H.; Peresunko, D.; Perez, C.; Perez Griffo, J.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A. J.; Petráček, V.; Petridis, A.; Petris, M.; Petrov, V.; Petrov, V.; Petrovici, M.; Peyré, J.; Piano, S.; Piccotti, A.; Pichot, P.; Piemonte, C.; Pikna, M.; Pilastrini, R.; Pillot, P.; Pinazza, O.; Pini, B.; Pinsky, L.; Pinto Morais, V.; Pismennaya, V.; Piuz, F.; Platt, R.; Ploskon, M.; Plumeri, S.; Pluta, J.; Pocheptsov, T.; Podesta, P.; Poggio, F.; Poghosyan, M.; Poghosyan, T.; Polák, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pompei, F.; Pop, A.; Popescu, S.; Posa, F.; Pospíšil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S.; Preghenella, R.; Prino, F.; Prodan, L.; Prono, G.; Protsenko, M. A.; Pruneau, C. A.; Przybyla, A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putschke, J.; Quartieri, J.; Quercigh, E.; Rachevskaya, I.; Rachevski, A.; Rademakers, A.; Radomski, S.; Radu, A.; Rak, J.; Ramello, L.; Raniwala, R.; Raniwala, S.; Rasmussen, O. B.; Rasson, J.; Razin, V.; Read, K.; Real, J.; Redlich, K.; Reichling, C.; Renard, C.; Renault, G.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R. A.; Richter, M.; Riedler, P.; Rigalleau, L. M.; Riggi, F.; Riegler, W.; Rindel, E.; Riso, J.; Rivetti, A.; Rizzi, M.; Rizzi, V.; Rodriguez Cahuantzi, M.; Røed, K.; Röhrich, D.; Román-López, S.; Romanato, M.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Rostchin, V.; Rotondo, F.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, D.; Roy, P.; Royer, L.; Rubin, G.; Rubio, A.; Rui, R.; Rusanov, I.; Russo, G.; Ruuskanen, V.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Saini, J.; Saiz, P.; Salur, S.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sann, H.; Santiard, J.-C.; Santo, R.; Santoro, R.; Sargsyan, G.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Schackert, B.; Schiaua, C.; Schicker, R.; Schioler, T.; Schippers, J. D.; Schmidt, C.; Schmidt, H.; Schneider, R.; Schossmaier, K.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Schyns, E.; Scioli, G.; Scomparin, E.; Snow, H.; Sedykh, S.; Segato, G.; Sellitto, S.; Semeria, F.; Senyukov, S.; Seppänen, H.; Serci, S.; Serkin, L.; Serra, S.; Sesselmann, T.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, E.; Sharma, S.; Shigaki, K.; Shileev, K.; Shukla, P.; Shurygin, A.; Shurygina, M.; Sibiriak, Y.; Siddi, E.; Siemiarczuk, T.; Sigward, M. H.; Silenzi, A.; Silvermyr, D.; Silvestri, R.; Simili, E.; Simion, V.; Simon, R.; Simonetti, L.; Singaraju, R.; Singhal, V.; Sinha, B.; Sinha, T.; Siska, M.; Sitár, B.; Sitta, M.; Skaali, B.; Skowronski, P.; Slodkowski, M.; Smirnov, N.; Smykov, L.; Snellings, R.; Snoeys, W.; Soegaard, C.; Soerensen, J.; Sokolov, O.; Soldatov, A.; Soloviev, A.; Soltveit, H.; Soltz, R.; Sommer, W.; Soos, C.; Soramel, F.; Sorensen, S.; Soyk, D.; Spyropoulou-Stassinaki, M.; Stachel, J.; Staley, F.; Stan, I.; Stavinskiy, A.; Steckert, J.; Stefanini, G.; Stefanek, G.; Steinbeck, T.; Stelzer, H.; Stenlund, E.; Stocco, D.; Stockmeier, M.; Stoicea, G.; Stolpovsky, P.; Strmeň, P.; Stutzmann, J. S.; Su, G.; Sugitate, T.; Šumbera, M.; Suire, C.; Susa, T.; Sushil Kumar, K.; Swoboda, D.; Symons, J.; Szarka, I.; Szostak, A.; Szuba, M.; Szymanski, P.; Tadel, M.; Tagridis, C.; Tan, L.; Tapia Takaki, D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Thäder, J.; Tieulent, R.; Timmer, P.; Tolyhy, T.; Topilskaya, N.; Torcato de Matos, C.; Torii, H.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tröger, G.; Tromeur, W.; Truesdale, D.; Trzaska, W.; Tsiledakis, G.; Tsilis, E.; Tsvetkov, A.; Turcato, M.; Turrisi, R.; Tuveri, M.; Tveter, T.; Tydesjo, H.; Tykarski, L.; Tywoniuk, K.; Ugolini, E.; Ullaland, K.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Usseglio, M.; Vacchi, A.; Vala, M.; Valiev, F.; Vande Vyvre, P.; Van Den Brink, A.; Van Eijndhoven, N.; Van Der Kolk, N.; van Leeuwen, M.; Vannucci, L.; Vanzetto, S.; Vanuxem, J.-P.; Vargas, M. A.; Varma, R.; Vascotto, A.; Vasiliev, A.; Vassiliou, M.; Vasta, P.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Verhoeven, W.; Veronese, F.; Vetlitskiy, I.; Vernet, R.; Victorov, V.; Vidak, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.; Vodopianov, A.; Volpe, G.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wabnitz, C.; Wagner, V.; Wallet, L.; Wan, R.; Wang, Y.; Wang, Y.; Wheadon, R.; Weis, R.; Wen, Q.; Wessels, J.; Westergaard, J.; Wiechula, J.; Wiesenaecker, A.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, C.; Willis, N.; Windelband, B.; Witt, R.; Woehri, H.; Wyllie, K.; Xu, C.; Yang, C.; Yang, H.; Yermia, F.; Yin, Z.; Yin, Z.; Ky, B. Yun; Yushmanov, I.; Yuting, B.; Zabrodin, E.; Zagato, S.; Zagreev, B.; Zaharia, P.; Zalite, A.; Zampa, G.; Zampolli, C.; Zanevskiy, Y.; Zarochentsev, A.; Zaudtke, O.; Závada, P.; Zbroszczyk, H.; Zepeda, A.; Zeter, V.; Zgura, I.; Zhalov, M.; Zhou, D.; Zhou, S.; Zhu, G.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zubarev, A.; Zucchini, A.; Zuffa, M.

    2008-08-01

    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 16 × 16 × 26 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This

  7. Upgrade of the LHC magnet interconnections thermal shielding

    NASA Astrophysics Data System (ADS)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  8. Searches for vector-like quarks at future colliders and implications for composite Higgs models with dark matter

    NASA Astrophysics Data System (ADS)

    Chala, Mikael; Gröber, Ramona; Spannowsky, Michael

    2018-03-01

    Many composite Higgs models predict the existence of vector-like quarks with masses outside the reach of the LHC, e.g. m Q ≳ 2 TeV, in particular if these models contain a dark matter candidate. In such models the mass of the new resonances is bounded from above to satisfy the constraint from the observed relic density. We therefore develop new strategies to search for vector-like quarks at a future 100 TeV collider and evaluate what masses and interactions can be probed. We find that masses as large as ˜ 6.4 (˜9) TeV can be tested if the fermionic resonances decay into Standard Model (dark matter) particles. We also discuss the complementarity of dark matter searches, showing that most of the parameter space can be closed. On balance, this study motivates further the consideration of a higher-energy hadron collider for a next generation of facilities.

  9. Dark matter with flavor symmetry and its collider signature

    DOE PAGES

    Ma, Ernest; Natale, Alexander

    2014-11-20

    The notion that dark matter and standard-model matter are connected through flavor implies a generic collider signature of the type . We discuss the theoretical basis of this proposal and its verifiability at the Large Hadron Collider.

  10. Development of MQXF: The Nb 3Sn low-β quadrupole for the HiLumi LHC

    DOE PAGES

    Ferracin, P.; G. Ambrosio; Anerella, M.; ...

    2015-12-18

    The High Luminosity (HiLumi) Large Hadron Collider (LHC) project has, as the main objective, to increase the LHC peak luminosity by a factor five and the integrated luminosity by a factor ten. This goal will be achieved mainly with a new interaction region layout, which will allow a stronger focusing of the colliding beams. The target will be to reduce the beam size in the interaction points by a factor of two, which requires doubling the aperture of the low-β (or inner triplet) quadrupole magnets. The use of Nb3Sn superconducting material and, as a result, the possibility of operating atmore » magnetic field levels in the windings higher than 11 T will limit the increase in length of these quadrupoles, called MQXF, to acceptable levels. After the initial design phase, where the key parameters were chosen and the magnet's conceptual design finalized, the MQXF project, a joint effort between the U.S. LHC Accelerator Research Program and the Conseil Europeen pour la Recherche Nucleaire (CERN), has now entered the construction and test phase of the short models. Concurrently, the preparation for the development of the full-length prototypes has been initiated. Lastly, this paper will provide an overview of the project status, describing and reporting on the performance of the superconducting material, the lessons learnt during the fabrication of superconducting coils and support structure, and the fine tuning of the magnet design in view of the start of the prototyping phase.« less

  11. Air liquide 1.8 K refrigeration units for CERN LHC project

    NASA Astrophysics Data System (ADS)

    Hilbert, Benoît; Gistau-Baguer, Guy M.; Caillaud, Aurélie

    2002-05-01

    The Large Hadron Collider (LHC) will be CERN's next research instrument for high energy physics. This 27 km long circular accelerator will make intensive use of superconducting magnets, operated below 2.0 K. It will thus require high capacity refrigeration below 2.0 K [1, 2]. Coupled to a refrigerator providing 18 kW equivalent at 4.5 K [3], these systems will be able to absorb a cryogenic power of 2.4 kW at 1.8 K in nominal conditions. Air Liquide has designed one Cold Compressor System (CCS) pre-series for CERN-preceding 3 more of them (among 8 in total located around the machine). These systems, making use of cryogenic centrifugal compressors in a series arrangement coupled to room temperature screw compressors, are presented. Key components characteristics will be given.

  12. Z0-tagged jet event asymmetry in heavy-ion collisions at the CERN large hadron collider.

    PubMed

    Neufeld, R B; Vitev, I

    2012-06-15

    Tagged jet measurements provide a promising experimental channel to quantify the similarities and differences in the mechanisms of jet production in proton-proton and nucleus-nucleus collisions. We present the first calculation of the transverse momentum asymmetry of Z0/γ*-tagged jet events in sqrt[s]=2.76  TeV reactions at the LHC. Our results combine the O(G(F)α(s)2) perturbative cross sections with the radiative and collisional processes that modify parton showers in the presence of dense strongly interacting matter. We find that a strong asymmetry is generated in central lead-lead reactions that has little sensitivity to the fluctuations of the underlying soft hadronic background. We present theoretical model predictions for its shape and magnitude.

  13. PREFACE: Focus section on Hadronic Physics Focus section on Hadronic Physics

    NASA Astrophysics Data System (ADS)

    Roberts, Craig; Swanson, Eric

    2007-07-01

    Hadronic physics is the study of strongly interacting matter and its underlying theory, Quantum Chromodynamics (QCD). The field had its beginnings after World War Two, when hadrons were discovered in ever increasing numbers. Today, it encompasses topics like the quark-gluon structure of hadrons at varying scales, the quark-gluon plasma and hadronic matter at extreme temperature and density; it also underpins nuclear physics and has significant impact on particle physics, astrophysics, and cosmology. Among the goals of hadronic physics are to determine the parameters of QCD, understand the origin and characteristics of confinement, understand the dynamics and consequences of dynamical chiral symmetry breaking, explore the role of quarks and gluons in nuclei and in matter under extreme conditions and understand the quark and gluon structure of hadrons. In general, the process is one of discerning the relevant degrees of freedom and relating these to the fundamental fields of QCD. The emphasis is on understanding QCD, rather than testing it. The papers gathered in this special focus section of Journal of Physics G: Nuclear and Particle Physics attempt to cover this broad range of subjects. Alkofer and Greensite examine the issue of quark and gluon confinement with the focus on models of the QCD vacuum, lattice gauge theory investigations, and the relationship to the AdS/CFT correspondence postulate. Arrington et al. review nucleon form factors and their role in determining quark orbital momentum, the strangeness content of the nucleon, meson cloud effects, and the transition from nonperturbative to perturbative QCD dynamics. The physics associated with hadronic matter at high temperature and density and at low Bjorken-x at the Relativistic Heavy Ion Collider (RHIC), the SPS at CERN, and at the future LHC is summarized by d'Enterria. The article of Lee and Smith examines experiment and theory associated with electromagnetic meson production from nucleons and

  14. The 11 T dipole for HL-LHC: Status and plan

    DOE PAGES

    Savary, F.; Barzi, E.; Bordini, B.; ...

    2016-06-01

    The upgrade of the Large Hadron Collider (LHC) collimation system includes additional collimators in the LHC lattice. The longitudinal space for these collimators will be created by replacing some of the LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. The project plan comprises the construction of two cryoassemblies containing each of the two 11-T dipoles of 5.5-m length for possible installation on either side of interaction point 2 of LHC in the years 2018-2019 for ion operation, and the installation of two cryoassemblies on either side of interaction point 7 of LHCmore » in the years 2023-2024 for proton operation. The development program conducted in conjunction between the Fermilab and CERN magnet groups is progressing well. The development activities carried out on the side of Fermilab were concluded in the middle of 2015 with the fabrication and test of a 1-m-long two-in-one model and those on the CERN side are ramping up with the construction of 2-m-long models and the preparation of the tooling for the fabrication of the first full-length prototype. The engineering design of the cryomagnet is well advanced, including the definition of the various interfaces, e.g., with the collimator, powering, protection, and vacuum systems. Several practice coils of 5.5-m length have been already fabricated. This paper describes the overall progress of the project, the final design of the cryomagnet, and the performance of the most recent models. Furthermore, the overall plan toward the fabrication of the series magnets for the two phases of the upgrade of the LHC collimation system is also presented.« less

  15. Track reconstruction at LHC as a collaborative data challenge use case with RAMP

    NASA Astrophysics Data System (ADS)

    Amrouche, Sabrina; Braun, Nils; Calafiura, Paolo; Farrell, Steven; Gemmler, Jochen; Germain, Cécile; Gligorov, Vladimir Vava; Golling, Tobias; Gray, Heather; Guyon, Isabelle; Hushchyn, Mikhail; Innocente, Vincenzo; Kégl, Balázs; Neuhaus, Sara; Rousseau, David; Salzburger, Andreas; Ustyuzhanin, Andrei; Vlimant, Jean-Roch; Wessel, Christian; Yilmaz, Yetkin

    2017-08-01

    Charged particle track reconstruction is a major component of data-processing in high-energy physics experiments such as those at the Large Hadron Collider (LHC), and is foreseen to become more and more challenging with higher collision rates. A simplified two-dimensional version of the track reconstruction problem is set up on a collaborative platform, RAMP, in order for the developers to prototype and test new ideas. A small-scale competition was held during the Connecting The Dots / Intelligent Trackers 2017 (CTDWIT 2017) workshop. Despite the short time scale, a number of different approaches have been developed and compared along a single score metric, which was kept generic enough to accommodate a summarized performance in terms of both efficiency and fake rates.

  16. Polycrystalline CdTe detectors: A luminosity monitor for the LHC

    NASA Astrophysics Data System (ADS)

    Gschwendtner, E.; Placidia, M.; Schmicklera, H.

    2003-09-01

    The luminosity at the four interaction points of the Large Hadron Collider must be continuously monitored in order to provide an adequate tool for the control and optimization of the collision parameters and the beam optics. At both sides of the interaction points absorbers are installed to protect the super-conducting accelerator elements from quenches caused by the deposited energy of collision products. The luminosity detectors will be installed in the copper core of these absorbers to measure the electromagnetic and hadronic showers caused by neutral particles that are produced at the proton-proton collision in the interaction points. The detectors have to withstand extreme radiation levels (108 Gy/yr at the design luminosity) and their long-term operation has to be assured without requiring human intervention. In addition the demand for bunch-by-bunch luminosity measurements, i.e. 40 MHz detection speed, puts severe constraints on the detectors. Polycrystalline CdTe detectors have a high potential to fulfill the requirements and are considered as LHC luminosity monitors. In this paper the interaction region is shown and the characteristics of the CdTe detectors are presented.

  17. Comment on "Polarized window for left-right symmetry and a right-handed neutrino at the Large Hadron-Electron Collider"

    NASA Astrophysics Data System (ADS)

    Queiroz, Farinaldo S.

    2016-06-01

    Reference [1 S. Mondal and S. K. Rai, Phys. Rev. D 93, 011702 (2016).] recently argued that the projected Large Hadron Electron Collider (LHeC) presents a unique opportunity to discover a left-right symmetry since the LHeC has availability for polarized electrons. In particular, the authors apply some basic pT cuts on the jets and claim that the on-shell production of right-handed neutrinos at the LHeC, which violates lepton number in two units, has practically no standard model background and, therefore, that the right-handed nature of WR interactions that are intrinsic to left-right symmetric models can be confirmed by using colliding beams consisting of an 80% polarized electron and a 7 TeV proton. In this Comment, we show that their findings, as presented, have vastly underestimated the SM background which prevents a Left-Right symmetry signal from being seen at the LHeC.

  18. Physics of leptoquarks in precision experiments and at particle colliders

    NASA Astrophysics Data System (ADS)

    Doršner, I.; Fajfer, S.; Greljo, A.; Kamenik, J. F.; Košnik, N.

    2016-06-01

    We present a comprehensive review of physics effects generated by leptoquarks (LQs), i.e., hypothetical particles that can turn quarks into leptons and vice versa, of either scalar or vector nature. These considerations include discussion of possible completions of the Standard Model that contain LQ fields. The main focus of the review is on those LQ scenarios that are not problematic with regard to proton stability. We accordingly concentrate on the phenomenology of light leptoquarks that is relevant for precision experiments and particle colliders. Important constraints on LQ interactions with matter are derived from precision low-energy observables such as electric dipole moments, (g - 2) of charged leptons, atomic parity violation, neutral meson mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of indirect constraints on the strength of LQ interactions with the quarks and leptons to make statements that are as model independent as possible. We address complementary constraints that originate from electroweak precision measurements, top, and Higgs physics. The Higgs physics analysis we present covers not only the most recent but also expected results from the Large Hadron Collider (LHC). We finally discuss direct LQ searches. Current experimental situation is summarized and self-consistency of assumptions that go into existing accelerator-based searches is discussed. A progress in making next-to-leading order predictions for both pair and single LQ productions at colliders is also outlined.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkoski, Andrew J.; Maltoni, Fabio; Selvaggi, Michele

    The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directlymore » employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transverse boosts of 20 TeV. Lastly, our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.« less

  20. Tracking down hyper-boosted top quarks

    DOE PAGES

    Larkoski, Andrew J.; Maltoni, Fabio; Selvaggi, Michele

    2015-06-05

    The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directlymore » employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transverse boosts of 20 TeV. Lastly, our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.« less

  1. Revised LHC deal quiets congress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, A.

    The roughest part of the ride may be over for U.S. physicists who want to participate in the Large Hadron Collider (LHC), the $5 billion accelerator planned for CERN in Geneva. They have found themselves on a political roller coaster for the past few months. This week, U.S. and European negotiators were putting the final touches on a revamped agreement that should pave the way for the United States to help pay for construction of the accelerator and its two main detectors, and guarantee U.S. scientists a role in research on the machine. The trouble began in March, when Representativemore » Joe Barton (R-TX) declared war on a proposed $530 million U.S. contribution to the new facility, slated for completion in 2005. Barton and many other members of Congress were still smarting from what they said was a lack of European support for the canceled Superconducting Super Collider that was being built in Barton`s backyard. Representative James Sensenbrenner (R-WI), who chairs the House Science Committee, led the charge to alter a draft agreement initialed this winter by Department of Energy (DOE) and CERN officials that spelled out the details of U.S. participation. After hurried negotiations, both sides have sharpened the agreement to address the lawmakers` concerns. The new deal, says Energy Secretary Federico Pena, {open_quotes}has made that project even better.{close_quotes}« less

  2. Second-generation coil design of the Nb 3Sn low-β quadrupole for the high luminosity LHC

    DOE PAGES

    Bermudez, S. Izquierdo; Ambrosio, G.; Ballarino, A.; ...

    2016-01-18

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build a 150 mm aperture Nb 3Sn quadrupole for the LHC interaction regions. A first series of 1.5 m long coils were fabricated and assembled in a first short model. A detailed visual inspection of the coils was carried out to investigate cable dimensional changes during heat treatment and the position of the windings in the coil straight section and in the end region. The analyses allow identifying a set of design changes which, combined with amore » fine tune of the cable geometry and a field quality optimization, were implemented in a new, second-generation, coil design. In this study, we review the main characteristics of the first generation coils, describe the modification in coil lay-out, and discuss their impact on parts design and magnet analysis.« less

  3. Study of performance of the ATLAS transition radiation tracker in run 1 of the LHC: Tracking characteristics

    NASA Astrophysics Data System (ADS)

    Belyaev, N.; Krasnopevtsev, D.; Smirnov, N.

    2018-01-01

    The ATLAS Transition Radiation Tracker (TRT) contains more than 350000 large straw tubes and it is the outermost of the three subsystems of the ATLAS Inner Detector (ID). The TRT contributes substantially to the ATLAS ID resolution for the tracks of high-energy particles, providing excellent particle identification capabilities and electron-pion separation. Basic performance parameters of the TRT related to its tracking function are described in this paper. The data used in this study were collected during the first period of the Large Hadron Collider (LHC) operation in 2012 with a proton collision energy of 8 TeV. The tracking performance of the TRT has been studied in the case of operating with a Xe-based gas mixture and as a function of the straw occupancy. Special attention was paid to investigation of tracking parameters inside hadronic jets. The experimental data and simulation are in reasonable agreement, even within the dense cores of the most energetic jets.

  4. Strange hadron production in pp, pPb, and PbPb collisions at LHC energies

    NASA Astrophysics Data System (ADS)

    Ni, Hong

    2018-02-01

    Identified particle spectra provide an important tool for understanding the particle production mechanism and the dynamical evolution of the medium created in relativistic heavy ion collisions. Studies involving strange and multi-strange hadrons, such as K0S, Λ, and Ξ-, carry additional information since there is no net strangeness content in the initial colliding system. Strangeness enhancement in AA collisions with respect to pp and pA collisions has long been considered as one of the signatures for quark-gluon plasma (QGP) formation. Recent observations of collective effects in high-multiplicity pp and pA collisions raise the question of whether QGP can also be formed in the smaller systems. Systematic studies of strange particle abundance, particle ratios, and nuclear modification factors can shed light on this issue. The CMS experiment has excellent strange-particle reconstruction capabilities over a broad kinematic range, and dedicated high-multiplicity triggers in pp and pPb collisions. The spectra of K0S, Λ, and Ξ- hadrons have been measured in various multiplicity and rapidity regions as a function of pT in pp, pPb, and PbPb collisions for several collision energies. The spectral shapes and particle ratios are compared in the different collision systems for events that have the same multiplicity and interpreted in the context of hydrodynamics models.

  5. WW Physics at Future e{sup +}e{sup -} Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Timothy L

    Measurements of triple gauge boson couplings and strong electroweak symmetry breaking effects at future e{sup +}e{sup -} linear colliders are reviewed. The results expected from a future e{sup +}e{sup -} linear collider are compared with LHC expectations.

  6. Characterisation of ionisation chambers for a mixed radiation field and investigation of their suitability as radiation monitors for the LHC.

    PubMed

    Theis, C; Forkel-Wirth, D; Perrin, D; Roesler, S; Vincke, H

    2005-01-01

    Monitoring of the radiation environment is one of the key tasks in operating a high-energy accelerator such as the Large Hadron Collider (LHC). The radiation fields consist of neutrons, charged hadrons as well as photons and electrons with energy spectra extending from those of thermal neutrons up to several hundreds of GeV. The requirements for measuring the dose equivalent in such a field are different from standard uses and it is thus necessary to investigate the response of monitoring devices thoroughly before the implementation of a monitoring system can be conducted. For the LHC, it is currently foreseen to install argon- and hydrogen-filled high-pressure ionisation chambers as radiation monitors of mixed fields. So far their response to these fields was poorly understood and, therefore, further investigation was necessary to prove that they can serve their function well enough. In this study, ionisation chambers of type IG5 (Centronic Ltd) were characterised by simulating their response functions by means of detailed FLUKA calculations as well as by calibration measurements for photons and neutrons at fixed energies. The latter results were used to obtain a better understanding and validation of the FLUKA simulations. Tests were also conducted at the CERF facility at CERN in order to compare the results with simulations of the response in a mixed radiation field. It is demonstrated that these detectors can be characterised sufficiently enough to serve their function as radiation monitors for the LHC.

  7. Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets

    NASA Astrophysics Data System (ADS)

    Wielgosz, Maciej; Skoczeń, Andrzej; Mertik, Matej

    2017-09-01

    The superconducting LHC magnets are coupled with an electronic monitoring system which records and analyzes voltage time series reflecting their performance. A currently used system is based on a range of preprogrammed triggers which launches protection procedures when a misbehavior of the magnets is detected. All the procedures used in the protection equipment were designed and implemented according to known working scenarios of the system and are updated and monitored by human operators. This paper proposes a novel approach to monitoring and fault protection of the Large Hadron Collider (LHC) superconducting magnets which employs state-of-the-art Deep Learning algorithms. Consequently, the authors of the paper decided to examine the performance of LSTM recurrent neural networks for modeling of voltage time series of the magnets. In order to address this challenging task different network architectures and hyper-parameters were used to achieve the best possible performance of the solution. The regression results were measured in terms of RMSE for different number of future steps and history length taken into account for the prediction. The best result of RMSE = 0 . 00104 was obtained for a network of 128 LSTM cells within the internal layer and 16 steps history buffer.

  8. Quench simulations for superconducting elements in the LHC accelerator

    NASA Astrophysics Data System (ADS)

    Sonnemann, F.; Schmidt, R.

    2000-08-01

    The design of the protection system for the superconducting elements in an accelerator such as the large Hadron collider (LHC), now under construction at CERN, requires a detailed understanding of the thermo-hydraulic and electrodynamic processes during a quench. A numerical program (SPQR - simulation program for quench research) has been developed to evaluate temperature and voltage distributions during a quench as a function of space and time. The quench process is simulated by approximating the heat balance equation with the finite difference method in presence of variable cooling and powering conditions. The simulation predicts quench propagation along a superconducting cable, forced quenching with heaters, impact of eddy currents induced by a magnetic field change, and heat transfer through an insulation layer into helium, an adjacent conductor or other material. The simulation studies allowed a better understanding of experimental quench data and were used for determining the adequate dimensioning and protection of the highly stabilised superconducting cables for connecting magnets (busbars), optimising the quench heater strip layout for the main magnets, and studying quench back by induced eddy currents in the superconductor. After the introduction of the theoretical approach, some applications of the simulation model for the LHC dipole and corrector magnets are presented and the outcome of the studies is compared with experimental data.

  9. Design of a High Luminosity 100 TeV Proton-Antiproton Collider

    NASA Astrophysics Data System (ADS)

    Oliveros Tautiva, Sandra Jimena

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10 34 cm-2 s-1 luminosity 100 TeV proton-antiproton collider is explored with 7x the energy of the LHC. The dipoles are 4.5 T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in pp than pp collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller beta* for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  10. Design of a High Luminosity 100 TeV Proton Antiproton Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveros Tuativa, Sandra Jimena

    2017-04-01

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10more » $$^{\\,34}$$ cm$$^{-2}$$ s$$^{-1}$$ luminosity 100 TeV proton-antiproton collider is explored with 7$$\\times$$ the energy of the LHC. The dipoles are 4.5\\,T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in $$p\\bar{p}$$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $$\\beta^{*}$$ for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters

  11. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures.

    NASA Astrophysics Data System (ADS)

    Garion, C.; Dufay-Chanat, L.; Koettig, T.; Machiocha, W.; Morrone, M.

    2015-12-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb-1). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the supporting system that has to minimise the heat inleak into the cold mass. The behaviour during a magnet quench is also presented.

  12. Usage of machine learning for the separation of electroweak and strong Zγ production at the LHC experiments

    NASA Astrophysics Data System (ADS)

    Petukhov, A. M.; Soldatov, E. Yu

    2017-12-01

    Separation of electroweak component from strong component of associated Zγ production on hadron colliders is a very challenging task due to identical final states of such processes. The only difference is the origin of two leading jets in these two processes. Rectangular cuts on jet kinematic variables from ATLAS/CMS 8 TeV Zγ experimental analyses were improved using machine learning techniques. New selection variables were also tested. The expected significance of separation for LHC experiments conditions at the second datataking period (Run2) and 120 fb-1 amount of data reaches more than 5σ. Future experimental observation of electroweak Zγ production can also lead to the observation physics beyond Standard Model.

  13. Methods for the evaluation of quench temperature profiles and their application for LHC superconducting short dipole magnets

    NASA Astrophysics Data System (ADS)

    Sanfilippo, S.; Siemko, A.

    2000-08-01

    This paper presents a study of the thermal effects on quench performance for several large Hadron collider (LHC) single aperture short dipole models. The analysis is based on the temperature profile in a superconducting magnet evaluated after a quench. Peak temperatures and temperature gradients in the magnet coil are estimated for different thicknesses of insulation layer between the quench heaters and the coil and different powering and protection parameters. The results show clear correlation between the thermo-mechanical response of the magnet and quench performance. They also display that the optimisation of the position of quench heaters can reduce the decrease of training performance caused by the coexistence of a mechanical weak region and of a local temperature rise.

  14. Luminosity determination in pp collisions at $$\\sqrt{s} = 7$$ TeV using the ATLAS detector at the LHC

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-04-27

    Measurements of luminosity obtained using the ATLAS detector during early running of the Large Hadron Collider (LHC) at √s = 7 TeV are presented. The luminosity is independently determined using several detectors and multiple algorithms, each having different acceptances, systematic uncertainties and sensitivity to background. The ratios of the luminosities obtained from these methods are monitored as a function of time and of μ, the average number of inelastic interactions per bunch crossing. Residual time- and μ-dependence between the methods is less than 2% for 0 < μ < 2.5. Absolute luminosity calibrations, performed using beam separation scans, have amore » common systematic uncertainty of ±11%, dominated by the measurement of the LHC beam currents. After calibration, the luminosities obtained from the different methods differ by at most ±2%. The visible cross sections measured using the beam scans are compared to predictions obtained with the PYTHIA and PHOJET event generators and the ATLAS detector simulation.« less

  15. Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)

    NASA Astrophysics Data System (ADS)

    Doebert, Steffen; Sicking, Eva

    2018-02-01

    The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.

  16. MEKS: A program for computation of inclusive jet cross sections at hadron colliders

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Liang, Zhihua; Soper, Davison E.; Lai, Hung-Liang; Nadolsky, Pavel M.; Yuan, C.-P.

    2013-06-01

    EKS is a numerical program that predicts differential cross sections for production of single-inclusive hadronic jets and jet pairs at next-to-leading order (NLO) accuracy in a perturbative QCD calculation. We describe MEKS 1.0, an upgraded EKS program with increased numerical precision, suitable for comparisons to the latest experimental data from the Large Hadron Collider and Tevatron. The program integrates the regularized patron-level matrix elements over the kinematical phase space for production of two and three partons using the VEGAS algorithm. It stores the generated weighted events in finely binned two-dimensional histograms for fast offline analysis. A user interface allows one to customize computation of inclusive jet observables. Results of a benchmark comparison of the MEKS program and the commonly used FastNLO program are also documented. Program SummaryProgram title: MEKS 1.0 Catalogue identifier: AEOX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9234 No. of bytes in distributed program, including test data, etc.: 51997 Distribution format: tar.gz Programming language: Fortran (main program), C (CUBA library and analysis program). Computer: All. Operating system: Any UNIX-like system. RAM: ˜300 MB Classification: 11.1. External routines: LHAPDF (https://lhapdf.hepforge.org/) Nature of problem: Computation of differential cross sections for inclusive production of single hadronic jets and jet pairs at next-to-leading order accuracy in perturbative quantum chromodynamics. Solution method: Upon subtraction of infrared singularities, the hard-scattering matrix elements are integrated over available phase space using an optimized VEGAS algorithm. Weighted events are generated and filled

  17. Signatures of doubly-charged Higgsinos at colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, D. A.; Deutsches Elektronen-Synchrotron, DESY, D-22603 Hamburg; Frank, M.

    2008-11-23

    Several supersymmetric models with extended gauge structures predict light doubly-charged Higgsinos. Their distinctive signature at the large hadron collider is highlighted by studying its production and decay characteristics.

  18. Exploration of a High Luminosity 100 TeV Proton Antiproton Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveros, Sandra J.; Summers, Don; Cremaldi, Lucien

    New physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. We explore a 10more » $$^{\\,34}$$ cm$$^{-2}$$ s$$^{-1}$$ luminosity, 100 TeV $$p\\bar{p}$$ collider with 7$$\\times$$ the energy of the LHC but only 2$$\\times$$ as much NbTi superconductor, motivating the choice of 4.5 T single bore dipoles. The cross section for many high mass states is 10 times higher in $$p\\bar{p}$$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per beam crossing, because lower beam currents can produce the same rare event rates. Events are more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $$\\beta^{*}$$ for higher luminosity. A Fermilab-like $$\\bar p$$ source would disperse the beam into 12 momentum channels to capture more antiprotons. Because stochastic cooling time scales as the number of particles, 12 cooling ring sets would be used. Each set would include phase rotation to lower momentum spreads, equalize all momentum channels, and stochastically cool. One electron cooling ring would follow the stochastic cooling rings. Finally antiprotons would be recycled during runs without leaving the collider ring by joining them to new bunches with synchrotron damping.« less

  19. Photoproduction of dileptons and photons in p -p collisions at the Large Hadron Collider energies

    NASA Astrophysics Data System (ADS)

    Ma, Zhi-Lei; Zhu, Jia-Qing

    2018-03-01

    The production of large pT dileptons and photons originating from photoproduction processes in p-p collisions at Large Hadron Collider energies is calculated. The comparisons between the exact treatment results and the ones of the equivalent photon approximation approach are expressed as the Q2 (the virtuality of photon) and pT distributions. The method developed by Martin and Ryskin is used for avoiding double counting when the coherent and incoherent contributions are considered simultaneously. The numerical results indicate that the equivalent photon approximation is only effective in small Q2 region and can be used for coherent photoproduction processes with proper choice of Qmax2 (the choices Qmax2˜s ^ or ∞ will cause obvious errors), but cannot be used for incoherent photoproduction processes. The exact treatment is needed to deal accurately with the photoproduction of large pT dileptons and photons.

  20. A conservation law, entropy principle and quantization of fractal dimensions in hadron interactions

    NASA Astrophysics Data System (ADS)

    Zborovský, I.

    2018-04-01

    Fractal self-similarity of hadron interactions demonstrated by the z-scaling of inclusive spectra is studied. The scaling regularity reflects fractal structure of the colliding hadrons (or nuclei) and takes into account general features of fragmentation processes expressed by fractal dimensions. The self-similarity variable z is a function of the momentum fractions x1 and x2 of the colliding objects carried by the interacting hadron constituents and depends on the momentum fractions ya and yb of the scattered and recoil constituents carried by the inclusive particle and its recoil counterpart, respectively. Based on entropy principle, new properties of the z-scaling concept are found. They are conservation of fractal cumulativity in hadron interactions and quantization of fractal dimensions characterizing hadron structure and fragmentation processes at a constituent level.

  1. Top-quark pairs at high invariant mass: a model-independent discriminator of new physics at the Large Hadron Collider.

    PubMed

    Barger, Vernon; Han, Tao; Walker, Devin G E

    2008-01-25

    We study top-quark pair production to probe new physics at the CERN Large Hadron Collider. We propose reconstruction methods for tt[over] semileptonic events and use them to reconstruct the tt[over] invariant mass. The angular distribution of top quarks in their c.m. frame can determine the spin and production subprocess for each new physics resonance. Forward-backward asymmetry and CP-odd variables can be constructed to further delineate the nature of new physics. We parametrize the new resonances with a few generic parameters and show high invariant mass top pair production may provide an early indicator for new physics beyond the standard model.

  2. Conductor Specification and Validation for High-Luminosity LHC Quadrupole Magnets

    DOE PAGES

    Cooley, L. D.; Ghosh, A. K.; Dietderich, D. R.; ...

    2017-06-01

    The High Luminosity Upgrade of the Large Hadron Collider (HL-LHC) at CERN will replace the main ring inner triplet quadrupoles, identified by the acronym MQXF, adjacent to the main ring intersection regions. For the past decade, the U.S. LHC Accelerator R&D Program, LARP, has been evaluating conductors for the MQXFA prototypes, which are the outer magnets of the triplet. Recently, the requirements for MQXF magnets and cables have been published in P. Ferracin et al., IEEE Trans. Appl. Supercond., vol. 26, no. 4, 2016, Art. no.4000207, along with the final specification for Ti-alloyed Nb3Sn conductor determined jointly by CERN andmore » LARP. This paper describes the rationale beneath the 0.85 mm diameter strand’s chief parameters, which are 108 or more sub-elements, a copper fraction not less than 52.4%, strand critical current at 4.22 K not less than 631 A at 12 T and 331 A at 15 T, and residual resistance ratio of not less than 150. This paper also compares the performance for ~100 km production lots of the five most recent LARP conductors to the first 163 km of strand made according to the HL-LHC specification. Two factors emerge as significant for optimizing performance and minimizing risk: a modest increase of the sub-element diameter from 50 to 55 μm, and a Nb:Sn molar ratio of 3.6 instead of 3.4. Furthermore, the statistics acquired so far give confidence that the present conductor can balance competing demands in production for the HL-LHC project.« less

  3. Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balazs, Csaba; Conrad, Jan; Farmer, Ben

    Imaging atmospheric Cherenkov telescopes (IACTs) that are sensitive to potential γ-ray signals from dark matter (DM) annihilation above ~50 GeV will soon be superseded by the Cherenkov Telescope Array (CTA). CTA will have a point source sensitivity an order of magnitude better than currently operating IACTs and will cover a broad energy range between 20 GeV and 300 TeV. Using effective field theory and simplified models to calculate γ-ray spectra resulting from DM annihilation, we compare the prospects to constrain such models with CTA observations of the Galactic center with current and near-future measurements at the Large Hadron Collider (LHC)more » and direct detection experiments. Here, for DM annihilations via vector or pseudoscalar couplings, CTA observations will be able to probe DM models out of reach of the LHC, and, if DM is coupled to standard fermions by a pseudoscalar particle, beyond the limits of current direct detection experiments.« less

  4. Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments

    DOE PAGES

    Balazs, Csaba; Conrad, Jan; Farmer, Ben; ...

    2017-10-04

    Imaging atmospheric Cherenkov telescopes (IACTs) that are sensitive to potential γ-ray signals from dark matter (DM) annihilation above ~50 GeV will soon be superseded by the Cherenkov Telescope Array (CTA). CTA will have a point source sensitivity an order of magnitude better than currently operating IACTs and will cover a broad energy range between 20 GeV and 300 TeV. Using effective field theory and simplified models to calculate γ-ray spectra resulting from DM annihilation, we compare the prospects to constrain such models with CTA observations of the Galactic center with current and near-future measurements at the Large Hadron Collider (LHC)more » and direct detection experiments. Here, for DM annihilations via vector or pseudoscalar couplings, CTA observations will be able to probe DM models out of reach of the LHC, and, if DM is coupled to standard fermions by a pseudoscalar particle, beyond the limits of current direct detection experiments.« less

  5. Searches for Dark Matter via Mono-W Production in Inert Doublet Model at the LHC

    NASA Astrophysics Data System (ADS)

    Wan, Neng; Li, Niu; Zhang, Bo; Yang, Huan; Zhao, Min-Fu; Song, Mao; Li, Gang; Guo, Jian-You

    2018-05-01

    The Inert Doublet Model (IDM) is one of the many beyond Standard Model scenarios with an extended scalar sector, which provide a suitable dark matter particle candidate. Dark matter associated visible particle production at high energy colliders provides a unique way to determine the microscopic properties of the dark matter particle. In this paper, we investigate that the mono-W + missing transverse energy production at the Large Hadron Collider (LHC), where W boson decay to a lepton and a neutrino. We perform the analysis for the signal of mono-W production in the IDM and the Standard Model (SM) backgrounds, and the optimized criteria employing suitable cuts are chosen in kinematic variables to maximize signal significance. We also investigate the discovery potential in several benchmark scenarios at the 14 TeV LHC. When the light Z2 odd scalar higgs of mass is about 65 GeV, charged Higgs is in the mass range from 120 GeV to 250 GeV, it provides the best possibility with a signal significance of about 3σ at an integrated luminosity of about 3000 fb‑1. Supported by the National Natural Science Foundation of China under Grant Nos. 11205003, 11305001, 11575002, the Key Research Foundation of Education Ministry of Anhui Province of China under Grant Nos. KJ2017A032, KJ2016A749, KJ2013A260, and Natural Science Foundation of West Anhui University under Grant No. WXZR201614

  6. Illuminating dark photons with high-energy colliders

    NASA Astrophysics Data System (ADS)

    Curtin, David; Essig, Rouven; Gori, Stefania; Shelton, Jessie

    2015-02-01

    High-energy colliders offer a unique sensitivity to dark photons, the mediators of a broken dark U(1) gauge theory that kinetically mixes with the Standard Model (SM) hypercharge. Dark photons can be detected in the exotic decay of the 125 GeV Higgs boson, h→ ZZ D →4 ℓ, and in Drell-Yan events, pp→ Z D → ℓℓ. If the dark U(1) is broken by a hidden-sector Higgs mechanism, then mixing between the dark and SM Higgs bosons also allows the exotic decay h → Z D Z D → 4 ℓ. We show that the 14 TeV LHC and a 100 TeV proton-proton collider provide powerful probes of both exotic Higgs decay channels. In the case of kinetic mixing alone, direct Drell-Yan production offers the best sensitivity to Z D , and can probe ɛ ≳ 9 × 10-4 (4 × 10-4) at the HL-LHC (100 TeV pp collider). The exotic Higgs decay h → ZZ D offers slightly weaker sensitivity, but both measurements are necessary to distinguish the kinetically mixed dark photon from other scenarios. If Higgs mixing is also present, then the decay h → Z D Z D can allow sensitivity to the Z D for ɛ ≳ 10-9 - 10-6 (10-10 - 10-7) for the mass range by searching for displaced dark photon decays. We also compare the Z D sensitivity at pp colliders to the indirect, but model-independent, sensitivity of global fits to electroweak precision observables. We perform a global electroweak fit of the dark photon model, substantially updating previous work in the literature. Electroweak precision measurements at LEP, Tevatron, and the LHC exclude ɛ as low as 3 × 10-2. Sensitivity can be improved by up to a factor of ˜ 2 with HL-LHC data, and an additional factor of ˜ 4 with ILC/GigaZ data.

  7. Probing superfast quarks in nuclei through dijet production at the LHC

    DOE PAGES

    Freese, Adam J.; Sargsian, Misak M.; Strikman, Mark I.

    2015-11-12

    We investigate dijet production from proton-nucleus collisions at the Large Hadron Collider (LHC) as a means for observing superfast quarks in nuclei with Bjorken x>1 . Kinematically, superfast quarks can be identified through directly measurable jet kinematics. Dynamically, their description requires understanding several elusive properties of nuclear QCD, such as nuclear forces at very short distances, as well as medium modification of parton distributions in nuclei. In the present work, we develop a model for nuclear parton distributions at large x in which the nuclear dynamics at short distance scales are described by two- and three-nucleon short range correlations (SRCs).more » Nuclear modifications are accounted for using the color screening model, and an improved description of the EMC effect is reached by using a structure function parametrization that includes higher-twist contributions. We apply QCD evolution at the leading order to obtain nuclear parton distributions in the kinematic regime of the LHC, and based on the obtained distributions calculate the cross section for dijet production. We find that the rates of the dijet production in pA collisions at kinematics accessible by ATLAS and CMS are sufficient not only to observe superfast quarks but also to get information about the practically unexplored three-nucleon SRCs in nuclei. Additionally, the LHC can extend our knowledge of the EMC effect to large Q 2 where higher-twist effects are negligible.« less

  8. Probing superfast quarks in nuclei through dijet production at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freese, Adam J.; Sargsian, Misak M.; Strikman, Mark I.

    2015-11-01

    We investigate dijet production from proton-nucleus collisions at the Large Hadron Collider (LHC) as a means for observing superfast quarks in nuclei with Bjorken x>1 . Kinematically, superfast quarks can be identified through directly measurable jet kinematics. Dynamically, their description requires understanding several elusive properties of nuclear QCD, such as nuclear forces at very short distances, as well as medium modification of parton distributions in nuclei. In the present work, we develop a model for nuclear parton distributions at large x in which the nuclear dynamics at short distance scales are described by two- and three-nucleon short range correlations (SRCs).more » Nuclear modifications are accounted for using the color screening model, and an improved description of the EMC effect is reached by using a structure function parametrization that includes higher-twist contributions. We apply QCD evolution at the leading order to obtain nuclear parton distributions in the kinematic regime of the LHC, and based on the obtained distributions calculate the cross section for dijet production. We find that the rates of the dijet production in pA collisions at kinematics accessible by ATLAS and CMS are sufficient not only to observe superfast quarks but also to get information about the practically unexplored three-nucleon SRCs in nuclei. Additionally, the LHC can extend our knowledge of the EMC effect to large Q2 where higher-twist effects are negligible.« less

  9. Remarkable events from X ray emulsion chambers and multiple production at LHC energy

    NASA Astrophysics Data System (ADS)

    Capdevielle, J. N.; Talai, M. C.; Attallah, R.

    The CORSIKA programme and specific Monte Carlo collision generators are employed in the interpretation of X-ray emulsion chambers data on super gamma ray families at mountain altitude (Chacaltaya, Kanbala, Pamir...) and in the stratosphere (Concorde, balloons). The consequences of measurement conditions(energy thresholds levels...) are detailed to extract common features for the neutral and charged secondaries. The vertex is approached by invariant mass method, geometry, pseudo rapidity distributions , and factors. Sorting the gamma's coupled in the maximum of invariant histograms, we evaluate the multiplicity , , inelasticity behavior up to LHC energy. Attention is given to the penetration power of EAS which levels off one energy decade around the knee and observations related with the fragmentation region (high energy hadron and gamma spectra in EAS, intensity of families with halo's). Hints of new physics are considered around the intriguing alignments registrated in the energy band between colliders and LHC. Several events (stratosphere and mountain) exhibit coplanar emission at similar visible energy, suggesting the valence diquark breaking. Such violent breaking suppressing the leading cluster recombination might come from the rupture of the string under very high tension between the two partners of the diquark.

  10. Thermo-electric analysis of the interconnection of the LHC main superconducting bus bars

    NASA Astrophysics Data System (ADS)

    Granieri, P. P.; Breschi, M.; Casali, M.; Bottura, L.; Siemko, A.

    2013-01-01

    Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A deep insight of the underlying mechanisms is required to ensure the protection of the accelerator against undesired effects of resistive transitions. This is especially important in case of defective interconnections which can jeopardize the operation of the whole LHC. In this paper we present a numerical model of the interconnections between the main dipole and quadrupole magnets, validated against experimental tests of an interconnection sample with a purposely built-in defect. We consider defective interconnections featuring a lack of bonding among the superconducting cables and the copper stabilizer components, such as those that could be present in the machine. We evaluate the critical defect length limiting the maximum allowable current for powering the magnets. We determine the dependence of the critical defect length on different parameters as the heat transfer towards the cooling helium bath, the quality of manufacturing, the operating conditions and the protection system parameters, and discuss the relevant mechanisms.

  11. Collider Interplay for Supersymmetry, Higgs and Dark Matter

    DOE PAGES

    Buchmueller, Oliver; Citron, M.; Ellis, J.; ...

    2015-10-01

    Here, we discuss the potential impacts on the CMSSM of future LHC runs and possible e +e – and higher-energy proton–proton colliders, considering searches for supersymmetry via /E T events, precision electroweak physics, Higgs measurements and dark matter searches. We validate and present estimates of the physics reach for exclusion or discovery of supersymmetry via /E T searches at the LHC, which should cover the low-mass regions of the CMSSM parameter space favoured in a recent global analysis. As we illustrate with a low-mass benchmark point, a discovery would make possible accurate LHC measurements of sparticle masses using the MT2more » variable, which could be combined with cross-section and other measurements to constrain the gluino, squark and stop masses and hence the soft supersymmetry-breaking parameters m 0,m 1/2 and A 0 of the CMSSM. Slepton measurements at CLIC would enable m 0 and m 1/2 to be determined with high precision. If supersymmetry is indeed discovered in the low-mass region, precision electroweak and Higgs measurements with a future circular e +e – collider (FCC-ee, also known as TLEP) combined with LHC measurements would provide tests of the CMSSM at the loop level. If supersymmetry is not discovered at the LHC, it is likely to lie somewhere along a focus-point, stop-coannihilation strip or direct-channel A / H resonance funnel. We discuss the prospects for discovering supersymmetry along these strips at a future circular proton–proton collider such as FCC-hh. Illustrative benchmark points on these strips indicate that also in this case FCC-ee could provide tests of the CMSSM at the loop level.« less

  12. Ultra-peripheral collisions and hadronic structure

    NASA Astrophysics Data System (ADS)

    Klein, Spencer R.

    2017-11-01

    Ultra-peripheral collisions are the energy frontier for photon-mediated interactions, reaching, at the Large Hadron Collider (LHC), γ - p center of mass energies five to ten times higher than at HERA and reaching γγ energies higher than at LEP. Photoproduction of heavy quarkonium and dijets in pp and pA collisions probes the gluon distribution in protons at Bjorken-x values down to 3 ×10-6, far smaller than can be otherwise studied. In AA collisions, these reactions probe the gluon distributions in heavy ions, down to x values of a few 10-5. Although more theoretical work is needed to nail down all of the uncertainties, inclusion of these data in current parton distribution function fits would greatly improve the accuracy of the gluon distributions at low Bjorken-x and low/moderate Q2. High-statistics ρ0 data probe the spatial distribution of the interaction sites; the site distribution is given by the Fourier transform of dσ / dt. After introducing UPCs, this review presents recent measurements of dilepton production and light-by-light scattering and recent data on proton and heavy nuclei structure, emphasizing results presented at Quark Matter 2017 (QM2017).

  13. A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Dortz, O. Le; Guirriec, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Griso, S. Pagan; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda, A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zwalinski, L.

    2017-01-01

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb^{-1} of proton-proton collision data at √{s}=7 TeV from 2010 and 0.1 nb^{-1} of data at √{s}=8 TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2-5% for jets with transverse momenta above 2 TeV, where this method provides the jet energy scale uncertainty for ATLAS.

  14. The surprisingly transparent sQGP at LHC

    NASA Astrophysics Data System (ADS)

    Horowitz, W. A.; Gyulassy, Miklos

    2011-12-01

    We present parameter-free predictions of the nuclear modification factor, RAAπ(p,s), of high p pions produced in Pb + Pb collisions at s=2.76 and 5.5 ATeV based on the WHDG/DGLV (radiative + elastic + geometric fluctuation) jet energy loss model. The initial quark gluon plasma (QGP) density at LHC is constrained from a rigorous statistical analysis of PHENIX/RHIC π quenching data at s=0.2 ATeV and the charged particle multiplicity at ALICE/LHC at 2.76 ATeV. Our perturbative QCD tomographic theory predicts significant differences between jet quenching at RHIC and LHC energies, which are qualitatively consistent with the p-dependence and normalization—within the large systematic uncertainty—of the first charged hadron nuclear modification factor, RAAch, data measured by ALICE. However, our constrained prediction of the central to peripheral pion modification, Rcpπ(p), for which large systematic uncertainties associated with unmeasured p + p reference data cancel, is found to be over-quenched relative to the charged hadron ALICE Rcpch data in the range 5LHC identified (h=π,K,p) hadron RAAh data (together with precise p + p, p + Pb, and Z boson and direct photon Pb + Pb control data) are needed to assess if the QGP produced at LHC is indeed less opaque to jets than predicted by constrained extrapolations from RHIC.

  15. R&D for the Future

    NASA Astrophysics Data System (ADS)

    Hübner, Kurt; Treille, Daniel; Schulte, Daniel

    The following sections are included: * The LHC and Beyond * Accelerator Magnets with Ever-Higher Fields * Teasing Performance from Superconductors Old and New * RF Power for CLIC: Acceleration by Deceleration * The Next Energy Frontier e+e- Collider: Innovation in Detectors * Hadron Collider Detectors: A Bright and Energetic Future * References

  16. Predictions for multiplicities and flow harmonics in 5.44 TeV Xe+Xe collisions at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Eskola, K. J.; Niemi, H.; Paatelainen, R.; Tuominen, K.

    2018-03-01

    We present the event-by-event next-to-leading-order perturbative-QCD + saturation + viscous hydrodynamics (EKRT) model predictions for the centrality dependence of the charged hadron multiplicity in the pseudorapidity interval |η |≤0.5 , and for the centrality dependence of the charged hadron flow harmonics vn{2 } obtained from two-particle cumulants, in √{sN N}=5.44 TeV Xe+Xe collisions at the CERN Large Hadron Collider. Our prediction for the 0-5 % central charged multiplicity is d Nch/d η =1218 ±46 . We also predict vn{2 } in Xe+Xe collisions to increase more slowly from central towards peripheral collisions than those in a Pb+Pb system. We find that at 10 ,⋯,50 % centralities v2{2 } is smaller and v3{2 } is larger than in the Pb+Pb system while v4{2 } is of the same magnitude in both systems. We also find that the ratio of flow harmonics in Xe+Xe collisions and in Pb+Pb collisions shows a slight sensitivity to the temperature dependence of the shear-viscosity-to-entropy ratio. As we discuss here, the new nuclear mass-number systematics especially in the flow harmonics serves as a welcome further constraint for describing the space-time evolution of a heavy-ion system and for determining the shear viscosity and other transport properties of strongly interacting matter.

  17. Space-charge limitations in a collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, A.; Heimerle, M.

    Design of several projects which envision hadron colliders operating at low energies such as NICA at JINR [1] and Electron-Nucleon Collider at FAIR [2] is under way. In Brookhaven National Laboratory (BNL), a new physics program requires operation of Relativistic Heavy Ion Collider (RHIC) with heavy ions at low energies at g=2.7-10 [3]. In a collider, maximum achievable luminosity is typically limited by beam-beam effects. For heavy ions significant luminosity degradation, driving bunch length and transverse emittance growth, comes from Intrabeam Scattering (IBS). At these low energies, IBS growth can be effectively counteracted, for example, with cooling techniques. If IBSmore » were the only limitation, one could achieve small hadron beam emittance and bunch length with the help of cooling, resulting in a dramatic luminosity increase. However, as a result of low energies, direct space-charge force from the beam itself is expected to become the dominant limitation. Also, the interplay of both beambeam and space-charge effects may impose an additional limitation on achievable maximum luminosity. Thus, understanding at what values of space-charge tune shift one can operate in the presence of beam-beam effects in a collider is of great interest for all of the above projects. Operation of RHIC for Low-Energy physics program started in 2010 which allowed us to have a look at combined impact of beam-beam and space-charge effects on beam lifetime experimentally. Here we briefly discuss expected limitation due to these effects with reference to recent RHIC experience.« less

  18. High precision predictions for exclusive VH production at the LHC

    DOE PAGES

    Li, Ye; Liu, Xiaohui

    2014-06-04

    We present a resummation-improved prediction for pp → VH + 0 jets at the Large Hadron Collider. We focus on highly-boosted final states in the presence of jet veto to suppress the tt¯ background. In this case, conventional fixed-order calculations are plagued by the existence of large Sudakov logarithms α n slog m(p veto T/Q) for Q ~ m V + m H which lead to unreliable predictions as well as large theoretical uncertainties, and thus limit the accuracy when comparing experimental measurements to the Standard Model. In this work, we show that the resummation of Sudakov logarithms beyond themore » next-to-next-to-leading-log accuracy, combined with the next-to-next-to-leading order calculation, reduces the scale uncertainty and stabilizes the perturbative expansion in the region where the vector bosons carry large transverse momentum. Thus, our result improves the precision with which Higgs properties can be determined from LHC measurements using boosted Higgs techniques.« less

  19. Higgsino dark matter or not: Role of disappearing track searches at the LHC and future colliders

    NASA Astrophysics Data System (ADS)

    Fukuda, Hajime; Nagata, Natsumi; Otono, Hidetoshi; Shirai, Satoshi

    2018-06-01

    Higgsino in supersymmetric standard models is known to be a promising candidate for dark matter in the Universe. Its phenomenological property is strongly affected by the gaugino fraction in the Higgsino-like state. If this is sizable, in other words, if gaugino masses are less than O (10) TeV, we may probe the Higgsino dark matter in future non-accelerator experiments such as dark matter direct searches and measurements of electric dipole moments. On the other hand, if gauginos are much heavier, then it is hard to search for Higgsino in these experiments. In this case, due to a lack of gaugino components, the mass difference between the neutral and charged Higgsinos is uniquely determined by electroweak interactions to be around 350 MeV, which makes the heavier charged state rather long-lived, with a decay length of about 1 cm. In this letter, we argue that a charged particle with a flight length of O (1) cm can be probed in disappearing-track searches if we require only two hits in the pixel detector. Even in this case, we can reduce background events with the help of the displaced-vertex reconstruction technique. We study the prospects of this search strategy at the LHC and future colliders for the Higgsino dark matter scenario. It is found that an almost pure Higgsino is indeed within the reach of the future 33 TeV collider experiments. We then discuss that the interplay among collider and non-accelerator experiments plays a crucial role in testing the Higgsino dark matter scenarios. Our strategy for disappearing-track searches can also enlarge the discovery potential of pure wino dark matter as well as other electroweak-charged dark matter candidates.

  20. ηc production in photon-induced interactions at the LHC

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Moreira, B. D.

    2018-05-01

    In this paper we investigate the ηc production by photon-photon and photon-hadron interactions in p p and p A collisions at the LHC energies. The inclusive and diffractive contributions for the ηc photoproduction are estimated using the nonrelativistic quantum chromodynamics (NRQCD) formalism. We estimate the rapidity and transverse momentum distributions for the ηc photoproduction in hadronic collisions at the LHC and present our estimate for the total cross sections at the Run 2 energies. A comparison with the predictions for the exclusive ηc photoproduction, which is a direct probe of the odderon, is also presented.

  1. Centralized Monitoring of the Microsoft Windows-based computers of the LHC Experiment Control Systems

    NASA Astrophysics Data System (ADS)

    Varela Rodriguez, F.

    2011-12-01

    The control system of each of the four major Experiments at the CERN Large Hadron Collider (LHC) is distributed over up to 160 computers running either Linux or Microsoft Windows. A quick response to abnormal situations of the computer infrastructure is crucial to maximize the physics usage. For this reason, a tool was developed to supervise, identify errors and troubleshoot such a large system. Although the monitoring of the performance of the Linux computers and their processes was available since the first versions of the tool, it is only recently that the software package has been extended to provide similar functionality for the nodes running Microsoft Windows as this platform is the most commonly used in the LHC detector control systems. In this paper, the architecture and the functionality of the Windows Management Instrumentation (WMI) client developed to provide centralized monitoring of the nodes running different flavour of the Microsoft platform, as well as the interface to the SCADA software of the control systems are presented. The tool is currently being commissioned by the Experiments and it has already proven to be very efficient optimize the running systems and to detect misbehaving processes or nodes.

  2. Non-abelian vector boson dark matter, its unified route and signatures at the LHC

    NASA Astrophysics Data System (ADS)

    Barman, Basabendu; Bhattacharya, Subhaditya; Patra, Sunando Kumar; Chakrabortty, Joydeep

    2017-12-01

    Vector boson dark matter (DM) appears in SU(2)N extension (N stands for neutral) of Standard Model (SM) where an additional global U(1)P symmetry is assumed and results in a generalized lepton number defined as: L=P+T3N. Breaking of U(1)P leads to the breaking of L to (‑1)L, thus stabilizing DM through modified R=(‑1)3B+L+2J. This model, already discussed in literature, offers several novel features to elaborate upon. For example, t-channel annihilation and dominant s-channel direct search, along with co-annihilation, helps the DM to evade stringent direct search bounds from LUX and XENON1T after satisfying relic density constraints. On the other hand, the exotic particles of the model can be produced at the Large Hadron Collider (LHC) yielding multilepton final states. Hadronically quiet four lepton signal with large missing energy, in specific, is shown to provide a smoking gun signature of such a framework. We study the details of E(6) → SM SU(2)N breaking patterns (through D-parity odd/even cases) which yield important phenomenological consequences.

  3. Drell-Yan production of multi Z '-bosons at the LHC within Non-Universal ED and 4D Composite Higgs Models

    NASA Astrophysics Data System (ADS)

    Accomando, Elena; Barducci, Daniele; De Curtis, Stefania; Fiaschi, Juri; Moretti, Stefano; Shepherd-Themistocleous, C. H.

    2016-07-01

    The Drell-Yan di-lepton production at hadron colliders is by far the preferred channel to search for new heavy spin-1 particles. Traditionally, such searches have exploited the Narrow Width Approximation (NWA) for the signal, thereby neglecting the effect of the interference between the additional Z '-bosons and the Standard Model Z and γ. Recently, it has been established that both finite width and interference effects can be dealt with in experimental searches while still retaining the model independent approach ensured by the NWA. This assessment has been made for the case of popular single Z '-boson models currently probed at the CERN Large Hadron Collider (LHC). In this paper, we test the scope of the CERN machine in relation to the above issues for some benchmark multi Z '-boson models. In particular, we consider Non-Universal Extra Dimensional (NUED) scenarios and the 4-Dimensional Composite Higgs Model (4DCHM), both predicting a multi- Z ' peaking structure. We conclude that in a variety of cases, specifically those in which the leptonic decays modes of one or more of the heavy neutral gauge bosons are suppressed and/or significant interference effects exist between these or with the background, especially present when their decay widths are significant, traditional search approaches based on the assumption of rather narrow and isolated objects might require suitable modifications to extract the underlying dynamics.

  4. Correlation femtoscopy study at energies available at the JINR Nuclotron-based Ion Collider fAcility and the BNL Relativistic Heavy Ion Collider within a viscous hydrodynamic plus cascade model

    NASA Astrophysics Data System (ADS)

    Batyuk, P.; Karpenko, Iu.; Lednicky, R.; Malinina, L.; Mikhaylov, K.; Rogachevsky, O.; Wielanek, D.

    2017-08-01

    Correlation femtoscopy allows one to measure the space-time characteristics of particle production in relativistic heavy-ion collisions due to the effects of quantum statistics (QS) and final state interactions (FSIs). The main features of the femtoscopy measurements at top RHIC and LHC energies are considered as a manifestation of strong collective flow and are well interpreted within hydrodynamic models employing equation of state (EoS) with a crossover type transition between quark-gluon plasma (QGP) and hadron gas phases. The femtoscopy at lower energies was intensively studied at AGS and SPS accelerators and is being studied now in the Beam Energy Scan program (BES) at the BNL Relativistic Heavy Ion Collider in the context of exploration of the QCD phase diagram. In this article we present femtoscopic observables calculated for Au-Au collisions at √{sN N}=7.7 -62.4 GeV in a viscous hydro + cascade model vHLLE+UrQMD and their dependence on the EoS of thermalized matter.

  5. 1.9 K Heat Inleak and Resistive Heating Measurements on Lhc Cryomagnets

    NASA Astrophysics Data System (ADS)

    Ferlin, G.; Claudet, S.; Tavian, L.; Wagner, U.

    2010-04-01

    The superconducting magnets of the Large Hadron Collider (LHC) distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. During the commissioning campaign of the sectors in 2008, cold standby periods at nominal operating temperature have allowed to measure the overall static heat inleaks reaching the magnet cold masses at 1.9 K by enthalpy balance in steady-state operation. In addition, during electrical powering of the different magnet circuits, helium II calorimetry based on precision thermometry has been implemented to assess with an accuracy of 100 mW/m the additional heat loads due to resistive heating and to detect possible abnormal heat dissipation during powering. This paper describes the method applied to perform these measurements, compares the results with the expected specified values and discusses the impact of the measured values on cryo-plant tuning and operational margins.

  6. Nuclear physics with a medium-energy Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Accardi, A.; Guzey, V.; Prokudin, A.; Weiss, C.

    2012-06-01

    A polarized ep/ eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy √ s ˜ 20-70 GeV and luminosity ˜1034 cm-2 s-1 would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.

  7. Assembly Tests of the First Nb 3 Sn Low-Beta Quadrupole Short Model for the Hi-Lumi LHC

    DOE PAGES

    Pan, H.; Felice, H.; Cheng, D. W.; ...

    2016-01-18

    In preparation for the high-luminosity upgrade of the Large Hadron Collider (LHC), the LHC Accelerator Research Program (LARP) in collaboration with CERN is pursuing the development of MQXF: a 150-mm-aperture high-field Nb3Sn quadrupole magnet. Moreover, the development phase starts with the fabrication and test of several short models (1.2-m magnetic length) and will continue with the development of several long prototypes. All of them are mechanically supported using a shell-based support structure, which has been extensively demonstrated on several R&D models within LARP. The first short model MQXFS-AT has been assembled at LBNL with coils fabricated by LARP and CERN.more » In our paper, we summarize the assembly process and show how it relies strongly on experience acquired during the LARP 120-mm-aperture HQ magnet series. We also present comparison between strain gauges data and finite-element model analysis. Finally, we present the implication of the MQXFS-AT experience on the design of the long prototype support structure.« less

  8. Coherent J /ψ photoproduction in hadronic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Zha, W.; Klein, S. R.; Ma, R.; Ruan, L.; Todoroki, T.; Tang, Z.; Xu, Z.; Yang, C.; Yang, Q.; Yang, S.

    2018-04-01

    Significant excesses of J /ψ yield at very low transverse momentum (pT<0.3 GeV/c ) were observed by the ALICE and STAR collaborations in peripheral hadronic A +A collisions. This is a sign of coherent photoproduction of J /ψ in violent hadronic interactions. Theoretically, the photoproduction of J /ψ in hadronic collisions raises questions about how spectator and nonspectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs to be included. This paper presents calculations of J /ψ production from coherent photon-nucleus (γ +A →J /ψ +A ) interactions in hadronic A +A collisions at BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J /ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle, and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. These predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.

  9. Validation and performance of the LHC cryogenic system through commissioning of the first sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serio, L.; Bouillot, A.; Casas-Cubillos, J.

    2007-12-01

    The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was establishedmore » and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.« less

  10. Energy-range relations for hadrons in nuclear matter

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.

  11. A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Aben, R; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Billoud, T R V; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Lopez, S Calvente; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, G; Gonella, L; Gongadze, A; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Hadef, A; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Javurkova, M; Jeanneau, F; Jeanty, L; Jeng, G-Y; Jennens, D; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Dortz, O Le; Guirriec, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Outschoorn, V I Martinez; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Garcia, B R Mellado; Melo, M; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Manh, T Nguyen; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Rodriguez, L Pacheco; Aranda, C Padilla; Griso, S Pagan; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sánchez, J; Martinez, V Sanchez; Pineda, A Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Stark, S H; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tan, K G; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Turvey, A J; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, W; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wolf, T M H; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zwalinski, L

    2017-01-01

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb[Formula: see text] of proton-proton collision data at [Formula: see text] [Formula: see text] from 2010 and 0.1 nb[Formula: see text] of data at [Formula: see text] [Formula: see text] from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2-5% for jets with transverse momenta above 2 [Formula: see text], where this method provides the jet energy scale uncertainty for ATLAS.

  12. A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-01-13

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb –1 of proton–proton collision data at √s = 7 TeV from 2010 and 0.1 nb –1 of data at √s = 8 TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimetermore » region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2–5% for jets with transverse momenta above 2 TeV, where this method provides the jet energy scale uncertainty for ATLAS.« less

  13. Muon Colliders: The Next Frontier

    ScienceCinema

    Tourun, Yagmur

    2017-12-22

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  14. PREFACE: International Workshop on Discovery Physics at the LHC (Kruger2014)

    NASA Astrophysics Data System (ADS)

    Cleymans, Jean

    2015-06-01

    The third biannual conference on 'Discovery Physics at the LHC' was held on December 1-6 2014 at the Kruger Gate Hotel in South Africa. Over 100 participants attended from Austria, Australia, Belgium, Brazil, Canada, China, the Czech Republic, France, Germany, Italy, the Netherlands, Norway, Poland, South Africa, Switzerland, the UK and the USA. The latest results from the Large Hadron Collider as well the latest theoretical insights were presented. With the majestic Kruger National Park in the background this led to a very stimulating conference with many exchanges taking place. The proceedings reflect the high level of the conference. The financial contributions from the SA-CERN programme, the UCT-CERN Research Centre, the University of Johannesburg, the University of the Witwatersrand and iThemba L.A.B.S. are gratefully acknowledged. Local Organizing Committee: Z. Buthelezi J. Cleymans (chair) S. H. Connell A. S. Cornell T. Dietel S. Förtsch N. Haasbroek A. Hamilton W. A. Horowitz B. Mellado Z. Z. Vilakazi S. Yacoob

  15. hhjj production at the LHC

    DOE PAGES

    Dolan, Matthew J.; Englert, Christoph; Greiner, Nicolas; ...

    2015-08-25

    The search for di-Higgs production at the LHC in order to set limits on the Higgs trilinear coupling and constraints on new physics is one of the main motivations for the LHC high-luminosity phase. Recent experimental analyses suggest that such analyses will only be successful if information from a range of channels is included. We therefore investigate di-Higgs production in association with two hadronic jets and give a detailed discussion of both the gluon- and the weak boson-fusion (WBF) contributions, with a particular emphasis on the phenomenology with modified Higgs trilinear and quartic gauge couplings. We perform a detailed investigationmore » of the full hadronic final state and find that hhjj production should add sensitivity to a di-Higgs search combination at the HL-LHC with 3 ab -1. Since the WBF and GF contributions are sensitive to different sources of physics beyond the Standard Model, we devise search strategies to disentangle and isolate these production modes. In addition, while gluon fusion remains non-negligible in WBF-type selections, sizeable new physics contributions to the latter can still be constrained. As an example of the latter point we investigate the sensitivity that can be obtained for a measurement of the quartic Higgs–gauge boson couplings.« less

  16. PREFACE: Focus section on Hadronic Physics

    NASA Astrophysics Data System (ADS)

    Roberts, Craig; Swanson, Eric

    2007-07-01

    Hadronic physics is the study of strongly interacting matter and its underlying theory, Quantum Chromodynamics (QCD). The field had its beginnings after World War Two, when hadrons were discovered in ever increasing numbers. Today, it encompasses topics like the quark-gluon structure of hadrons at varying scales, the quark-gluon plasma and hadronic matter at extreme temperature and density; it also underpins nuclear physics and has significant impact on particle physics, astrophysics, and cosmology. Among the goals of hadronic physics are to determine the parameters of QCD, understand the origin and characteristics of confinement, understand the dynamics and consequences of dynamical chiral symmetry breaking, explore the role of quarks and gluons in nuclei and in matter under extreme conditions and understand the quark and gluon structure of hadrons. In general, the process is one of discerning the relevant degrees of freedom and relating these to the fundamental fields of QCD. The emphasis is on understanding QCD, rather than testing it. The papers gathered in this special focus section of Journal of Physics G: Nuclear and Particle Physics attempt to cover this broad range of subjects. Alkofer and Greensite examine the issue of quark and gluon confinement with the focus on models of the QCD vacuum, lattice gauge theory investigations, and the relationship to the AdS/CFT correspondence postulate. Arrington et al. review nucleon form factors and their role in determining quark orbital momentum, the strangeness content of the nucleon, meson cloud effects, and the transition from nonperturbative to perturbative QCD dynamics. The physics associated with hadronic matter at high temperature and density and at low Bjorken-x at the Relativistic Heavy Ion Collider (RHIC), the SPS at CERN, and at the future LHC is summarized by d'Enterria. The article of Lee and Smith examines experiment and theory associated with electromagnetic meson production from nucleons and

  17. Higgs pair production in vector-boson fusion at the LHC and beyond.

    PubMed

    Bishara, Fady; Contino, Roberto; Rojo, Juan

    2017-01-01

    The production of pairs of Higgs bosons at hadron colliders provides unique information on the Higgs sector and on the mechanism underlying electroweak symmetry breaking (EWSB). Most studies have concentrated on the gluon-fusion production mode which has the largest cross section. However, despite its small production rate, the vector-boson fusion channel can also be relevant since even small modifications of the Higgs couplings to vector bosons induce a striking increase of the cross section as a function of the invariant mass of the Higgs boson pair. In this work we exploit this unique signature to propose a strategy to extract the hhVV quartic coupling and provide model-independent constraints on theories where EWSB is driven by new strong interactions. We take advantage of the higher signal yield of the [Formula: see text] final state and make extensive use of jet-substructure techniques to reconstruct signal events with a boosted topology, characteristic of large partonic energies, where each Higgs boson decays to a single collimated jet. Our results demonstrate that the hhVV coupling can be measured with 45% (20%) precision at the LHC for [Formula: see text] (3000) fb[Formula: see text], while a 1% precision can be achieved at a 100 TeV collider.

  18. The International Linear Collider

    NASA Astrophysics Data System (ADS)

    List, Benno

    2014-04-01

    The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  19. PanDA: Exascale Federation of Resources for the ATLAS Experiment at the LHC

    NASA Astrophysics Data System (ADS)

    Barreiro Megino, Fernando; Caballero Bejar, Jose; De, Kaushik; Hover, John; Klimentov, Alexei; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Padolski, Siarhei; Panitkin, Sergey; Petrosyan, Artem; Wenaus, Torre

    2016-02-01

    After a scheduled maintenance and upgrade period, the world's largest and most powerful machine - the Large Hadron Collider(LHC) - is about to enter its second run at unprecedented energies. In order to exploit the scientific potential of the machine, the experiments at the LHC face computational challenges with enormous data volumes that need to be analysed by thousand of physics users and compared to simulated data. Given diverse funding constraints, the computational resources for the LHC have been deployed in a worldwide mesh of data centres, connected to each other through Grid technologies. The PanDA (Production and Distributed Analysis) system was developed in 2005 for the ATLAS experiment on top of this heterogeneous infrastructure to seamlessly integrate the computational resources and give the users the feeling of a unique system. Since its origins, PanDA has evolved together with upcoming computing paradigms in and outside HEP, such as changes in the networking model, Cloud Computing and HPC. It is currently running steadily up to 200 thousand simultaneous cores (limited by the available resources for ATLAS), up to two million aggregated jobs per day and processes over an exabyte of data per year. The success of PanDA in ATLAS is triggering the widespread adoption and testing by other experiments. In this contribution we will give an overview of the PanDA components and focus on the new features and upcoming challenges that are relevant to the next decade of distributed computing workload management using PanDA.

  20. Contribution of a kaon component in the viscosity and conductivity of a hadronic medium

    NASA Astrophysics Data System (ADS)

    Rahaman, Mahfuzur; Ghosh, Snigdha; Ghosh, Sabyasachi; Sarkar, Sourav; Alam, Jan-e.

    2018-03-01

    With the help of effective Lagrangian densities of strange hadrons, we calculated the kaon relaxation time from several loop and scattering diagrams at tree level, which basically represent contributions from 1 ↔2 and 2 ↔2 types of collisions. Using the total relaxation time of a kaon, the shear viscosity and electrical conductivity of this kaon component have been estimated. The high temperature, close to transition temperature, where the kaon relaxation time is lower than the lifetime of Relativistic Heavy Ion Collider or Large Hadron Collider matter may be the only relevant domain for this component to contribute in hadronic dissipation. Our results suggest that the kaon can play an important role in the enhancement of shear viscosity and electrical conductivity of hadronic matter near the transition temperature.

  1. Collisional and thermal dissociation of J/ψ and Y states at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronson, Samuel; Borras, Evan; Odegard, Brunel

    We present new results for the suppression of high transverse momentum charmonium [J/ψ,ψ(2S)] and bottomonium [Υ(1S), Υ(2S), Υ(3S)] states in Pb+Pb collisions at the Large Hadron Collider. Our theoretical formalism combines the collisional dissociation of quarkonia, as they propagate in the quark–gluon plasma, with the thermal wavefunction effects due to the screening of themore » $$Q\\overline{Q}$$ attractive potential in the medium. We find that a good description of the relative suppression of the ground and higher excited quarkonium states, transverse momentum and centrality distributions is achieved, when comparison to measurements at a center-of-mass energy of 2.76 TeV is performed. Theoretical predictions for the highest Pb+Pb center-of-mass energy of 5.02 TeV at the LHC, where new experimental results are being finalized, are also presented.« less

  2. Collisional and thermal dissociation of J/ψ and ϒ states at the LHC

    NASA Astrophysics Data System (ADS)

    Aronson, Samuel; Borras, Evan; Odegard, Brunel; Sharma, Rishi; Vitev, Ivan

    2018-03-01

    We present new results for the suppression of high transverse momentum charmonium [ J / ψ , ψ (2 S)] and bottomonium [ ϒ (1 S) , ϒ (2 S) , ϒ (3 S)] states in Pb+Pb collisions at the Large Hadron Collider. Our theoretical formalism combines the collisional dissociation of quarkonia, as they propagate in the quark-gluon plasma, with the thermal wavefunction effects due to the screening of the Q Q bar attractive potential in the medium. We find that a good description of the relative suppression of the ground and higher excited quarkonium states, transverse momentum and centrality distributions is achieved, when comparison to measurements at a center-of-mass energy of 2.76 TeV is performed. Theoretical predictions for the highest Pb+Pb center-of-mass energy of 5.02 TeV at the LHC, where new experimental results are being finalized, are also presented.

  3. The management of large cabling campaigns during the Long Shutdown 1 of LHC

    NASA Astrophysics Data System (ADS)

    Meroli, S.; Machado, S.; Formenti, F.; Frans, M.; Guillaume, J. C.; Ricci, D.

    2014-03-01

    The Large Hadron Collider at CERN entered into its first 18 month-long shutdown period in February 2013. During this period the entire CERN accelerator complex will undergo major consolidation and upgrade works, preparing the machines for LHC operation at nominal energy (7 TeV/beam). One of the most challenging activities concerns the cabling infrastructure (copper and optical fibre cables) serving the CERN data acquisition, networking and control systems. About 1000 kilometres of cables, distributed in different machine areas, will be installed, representing an investment of about 15 MCHF. This implies an extraordinary challenge in terms of project management, including resource and activity planning, work execution and quality control. The preparation phase of this project started well before its implementation, by defining technical solutions and setting financial plans for staff recruitment and material supply. Enhanced task coordination was further implemented by deploying selected competences to form a central support team.

  4. Collisional and thermal dissociation of J/ψ and Y states at the LHC

    DOE PAGES

    Aronson, Samuel; Borras, Evan; Odegard, Brunel; ...

    2018-03-03

    We present new results for the suppression of high transverse momentum charmonium [J/ψ,ψ(2S)] and bottomonium [Υ(1S), Υ(2S), Υ(3S)] states in Pb+Pb collisions at the Large Hadron Collider. Our theoretical formalism combines the collisional dissociation of quarkonia, as they propagate in the quark–gluon plasma, with the thermal wavefunction effects due to the screening of themore » $$Q\\overline{Q}$$ attractive potential in the medium. We find that a good description of the relative suppression of the ground and higher excited quarkonium states, transverse momentum and centrality distributions is achieved, when comparison to measurements at a center-of-mass energy of 2.76 TeV is performed. Theoretical predictions for the highest Pb+Pb center-of-mass energy of 5.02 TeV at the LHC, where new experimental results are being finalized, are also presented.« less

  5. PARTICLE PHYSICS: CERN Gives Higgs Hunters Extra Month to Collect Data.

    PubMed

    Morton, O

    2000-09-22

    After 11 years of banging electrons and positrons together at higher energies than any other machine in the world, CERN, the European laboratory for particle physics, had decided to shut down the Large Electron-Positron collider (LEP) and install a new machine, the Large Hadron Collider (LHC), in its 27-kilometer tunnel. In 2005, the LHC will start bashing protons together at even higher energies. But tantalizing hints of a long-sought fundamental particle have forced CERN managers to grant LEP a month's reprieve.

  6. Monojet searches for MSSM simplified models

    DOE PAGES

    Arbey, Alexandre; Battaglia, Marco; Mahmoudi, Farvah

    2016-09-12

    We explore the implications of monojet searches at hadron colliders in the minimal supersymmetric extension of the Standard Model (MSSM). To quantify the impact of monojet searches, we consider simplified MSSM scenarios with neutralino dark matter. The monojet results of the LHC Run 1 are reinterpreted in the context of several MSSM simplified scenarios, and the complementarity with direct supersymmetry search results is highlighted. We also investigate the reach of monojet searches for the Run 2, as well as for future higher energy hadron colliders.

  7. Search for single production of vector-like top partners at the Large Hadron Electron Collider

    NASA Astrophysics Data System (ADS)

    Liu, Yao-Bei

    2017-10-01

    The new vector-like top partners with charge 2/3 are a typical feature of many new physics models beyond the Standard Model (SM). We propose a search strategy for single production of top partners T focusing on both the T → Wb and T → th decay channels at the Large Hadron Electron Collider (LHeC). Our analysis is based on a simplified model in which the top partner is an SU (2) singlet, with couplings only to the third generation of SM quarks. We study the observability of the single T through the processes e+ p → T (→ bW+)νbare → bℓ+ + E̸Tmiss and e+ p → T (→ th)νbare → t (→ jj‧ b) h (→ b b bar) E̸Tmiss at the LHeC with the proposed 140 GeV electron beam (with 80% polarization) and 7 TeV proton beam. For three typical T-quark masses (800, 900 and 1000 GeV), the 3σ exclusion limits on the TWb coupling are respectively presented for various values of the integrated luminosity.

  8. Connecting LHC signals with deep physics at the TeV scale and baryogenesis

    NASA Astrophysics Data System (ADS)

    Shu, Jing

    We address in this dissertation two primary questions aimed at deciphering collider signals at the Large Hadron Collider (LHC) to give a deep and concrete understanding of the TeV scale physics and to interpret the origin of baryon asymmetry in our universe. We are at a stage of exploring new physics at the terascale which is responsible for the electroweak symmetry breaking (EWSB) in the Standard Model (SM) of particle physics. The LHC, which begins its operation this year, will break us into such a new energy frontier and seek for the possible signals of new physics. Theorists have come up with many possible models beyond SM to explain the origin of EWSB. However, how we will determine the underlying physics from LHC data is still an open question. In the first part of this dissertation, we consider several examples to connect the expected LHC signals to the underlying physics in a completely model independent way. We first explore the Randall-Sundrum (RS) scenario, and use the collider signals of first Kaluza-Klein (KK) excitations of gluons to discriminate several commonly considered theories which attempt to render RS consistent with precision electroweak data. We then investigate top compositeness. We derive a bound for the energy scale of right handed top compositeness from top pair production at the Tevatron, and we find that the cross section to produce four tops will be greatly amplified by 3 orders of magnitude. We next consider the possibilities that the gauge symmetry in the underlying theory is violated in the incomplete theory that we can reconstruct from the LHC observables. We derive a model independent bound on the scale of new physics from unitarity of the S-matrix if we observe a new massive vector boson with nonzero axial couplings to fermions at LHC. Finally, we derive a generalized Landau-Yang theorem and apply it to the Z' decay into two Z bosons. We show that there is a phase shift in the azimuthal angle distribution in the normalized

  9. Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider.

    PubMed

    Bevilacqua, G; Hartanto, H B; Kraus, M; Worek, M

    2016-02-05

    We present a complete description of top quark pair production in association with a jet in the dilepton channel. Our calculation is accurate to next-to-leading order (NLO) in QCD and includes all nonresonant diagrams, interferences, and off-shell effects of the top quark. Moreover, nonresonant and off-shell effects due to the finite W gauge boson width are taken into account. This calculation constitutes the first fully realistic NLO computation for top quark pair production with a final state jet in hadronic collisions. Numerical results for differential distributions as well as total cross sections are presented for the Large Hadron Collider at 8 TeV. With our inclusive cuts, NLO predictions reduce the unphysical scale dependence by more than a factor of 3 and lower the total rate by about 13% compared to leading-order QCD predictions. In addition, the size of the top quark off-shell effects is estimated to be below 2%.

  10. Intelligent operations of the data acquisition system of the ATLAS experiment at LHC

    NASA Astrophysics Data System (ADS)

    Anders, G.; Avolio, G.; Lehmann Miotto, G.; Magnoni, L.

    2015-05-01

    The ATLAS experiment at the Large Hadron Collider at CERN relies on a complex and highly distributed Trigger and Data Acquisition (TDAQ) system to gather and select particle collision data obtained at unprecedented energy and rates. The Run Control (RC) system is the component steering the data acquisition by starting and stopping processes and by carrying all data-taking elements through well-defined states in a coherent way. Taking into account all the lessons learnt during LHC's Run 1, the RC has been completely re-designed and re-implemented during the LHC Long Shutdown 1 (LS1) phase. As a result of the new design, the RC is assisted by the Central Hint and Information Processor (CHIP) service that can be truly considered its “brain”. CHIP is an intelligent system able to supervise the ATLAS data taking, take operational decisions and handle abnormal conditions. In this paper, the design, implementation and performances of the RC/CHIP system will be described. A particular emphasis will be put on the way the RC and CHIP cooperate and on the huge benefits brought by the Complex Event Processing engine. Additionally, some error recovery scenarios will be analysed for which the intervention of human experts is now rendered unnecessary.

  11. Di-Higgs enhancement by neutral scalar as probe of new colored sector

    NASA Astrophysics Data System (ADS)

    Nakamura, Koji; Nishiwaki, Kenji; Oda, Kin-ya; Park, Seong Chan; Yamamoto, Yasuhiro

    2017-05-01

    We study a class of models in which the Higgs pair production is enhanced at hadron colliders by an extra neutral scalar. The scalar particle is produced by the gluon fusion via a loop of new colored particles, and decays into di-Higgs through its mixing with the Standard Model Higgs. Such a colored particle can be the top/bottom partner, such as in the dilaton model, or a colored scalar which can be triplet, sextet, octet, etc., called leptoquark, diquark, coloron, etc., respectively. We examine the experimental constraints from the latest Large Hadron Collider (LHC) data, and discuss the future prospects of the LHC and the Future Circular Collider up to 100 TeV. We also point out that the 2.4 σ excess in the b \\bar{b} γ γ final state reported by the ATLAS experiment can be interpreted as the resonance of the neutral scalar at 300 GeV.

  12. Parametric study on the thermal performance of beam screen samples of the High-Luminosity LHC upgrade

    NASA Astrophysics Data System (ADS)

    Borges de Sousa, P.; Morrone, M.; Hovenga, N.; Garion, C.; van Weelderen, R.; Koettig, T.; Bremer, J.

    2017-12-01

    The High-Luminosity upgrade of the Large Hadron Collider (HL-LHC) will increase the accelerator’s luminosity by a factor 10 beyond its original design value, giving rise to more collisions and generating an intense flow of debris. A new beam screen has been designed for the inner triplets that incorporates tungsten alloy blocks to shield the superconducting magnets and the 1.9 K superfluid helium bath from incoming radiation. These screens will operate between 60 K and 80 K and are designed to sustain a nominal head load of 15 Wm-1, over 10 times the nominal heat load for the original LHC design. Their overall new and more complex design requires them and their constituent parts to be characterised from a thermal performance standpoint. In this paper we describe the experimental parametric study carried out on two principal thermal components: a representative sample of the beam screen with a tungsten-based alloy block and thermal link and the supporting structure composed of an assembly of ceramic spheres and titanium springs. Results from both studies are shown and discussed regarding their impact on the baseline considerations for the thermal design of the beam screens.

  13. An analysis of the impact of LHC Run I proton-lead data on nuclear parton densities.

    PubMed

    Armesto, Néstor; Paukkunen, Hannu; Penín, José Manuel; Salgado, Carlos A; Zurita, Pía

    2016-01-01

    We report on an analysis of the impact of available experimental data on hard processes in proton-lead collisions during Run I at the large hadron collider on nuclear modifications of parton distribution functions. Our analysis is restricted to the EPS09 and DSSZ global fits. The measurements that we consider comprise production of massive gauge bosons, jets, charged hadrons and pions. This is the first time a study of nuclear PDFs includes this number of different observables. The goal of the paper is twofold: (i) checking the description of the data by nPDFs, as well as the relevance of these nuclear effects, in a quantitative manner; (ii) testing the constraining power of these data in eventual global fits, for which we use the Bayesian reweighting technique. We find an overall good, even too good, description of the data, indicating that more constraining power would require a better control over the systematic uncertainties and/or the proper proton-proton reference from LHC Run II. Some of the observables, however, show sizeable tension with specific choices of proton and nuclear PDFs. We also comment on the corresponding improvements as regards the theoretical treatment.

  14. Funding for LoopFest IV and RADCOR2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bern, Zvi

    This is a request for funds to help run two conferences: RADCOR2015 (the 12th International Symposium on Radiative Corrections) and LoopFest XIV (Radiative Corrections for the LHC and Future Colliders). These conferences will be jointly held June 15--19, 2015 at the Department of Physics and Astronomy at UCLA. These conferences are central to providing theoretical support to the experimental physics programs at particle colliders, including the Large Hadron Collider and possible future colliders.

  15. From RHIC to LHC: Lessons on the QGP

    NASA Astrophysics Data System (ADS)

    Heinz, Ulrich

    2011-10-01

    Recent data from heavy-ion collisions at RHIC and LHC, together with significant advances in theory, have allowed us to make significant first steps in proceeding from a qualitative understanding of high energy collision dynamics to a quantitative characterization of the transport properties of the hot and dense QCD matter created in these collisions. The almost perfectly liquid nature of the Quark-Gluon Plasma (QGP) created at RHIC has recently also been confirmed at the much higher LHC energies, and we can now constrain the specific QGP shear viscosity (η / s) QGP to within a factor of 2.5 of its conjectured lower quantum bound. Viscous hydrodynamics, coupled to a microscopic hadron cascade at late times, has proven to be an extremely successful and highly predictive model for the QGP evolution at RHIC and LHC. The experimental discovery of higher order harmonic flow coefficients and their theoretically predicted differential sensitivity to shear viscosity promises additional gains in precision by about a factor 5 in (η / s) QGP for the very near future. The observed modification of jets and suppression of high-pT hadrons confirms the picture of the QGP as a strongly coupled colored liquid, and recent LHC data yield strong constraints on parton energy loss models, putting significant strain on some theoretical approaches, tuned to RHIC data, that are based on leading-order perturbative QCD. Thermal photon radiation provides important cross-checks on the early stages of dynamical evolution models and constrains the initial QGP temperature, but the recently measured strong photon elliptic flow challenges our present understanding of photon emission rates in the hadronic phase. Recent progress in developing a complete theoretical model for all stages of the QGP fireball expansion, from strong fluctuating gluon fields at its beginning to final hadronic freeze-out, and remaining challenges will be discussed. Work supported by DOE (grants DE-SC0004286 and DE

  16. Supersymmetry Breaking, Gauge Mediation, and the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, David

    2015-04-14

    Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called "General Gauge Mediation" (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB atmore » the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.« less

  17. Study of top quark dipole interactions in t t \\xAF production associated with two heavy gauge bosons at the LHC

    NASA Astrophysics Data System (ADS)

    Etesami, Seyed Mohsen; Khatibi, Sara; Mohammadi Najafabadi, Mojtaba

    2018-04-01

    In this paper, we investigate the prospects of measuring the strong and weak dipole moments of the top quark at the Large Hadron Collider (LHC). Measurements of these couplings provide an excellent opportunity to probe new physics interactions as they have quite small magnitudes in the standard model. Our analyses are performed using the production cross sections of t t ¯W W and t t ¯Z Z processes in the same sign dilepton and four-lepton final states, respectively. The sensitivities to strong and weak top quark dipole interactions at the 95% confidence level for various integrated luminosity scenarios are derived and compared with other studies. To estimate the constraints, the main source of backgrounds and a realistic simulation of the detector response are considered.

  18. Loss Control and Collimation for the LHC

    NASA Astrophysics Data System (ADS)

    Burkhardt, H.

    2005-06-01

    The total energy stored in the LHC is expected to reach 360 Mega Joule, which is about two orders of magnitude higher than in HERA or the Tevatron. Damage and quench protection in the LHC require a highly efficient and at the same time very robust collimation system. The currently planned system, the status of the project and the expected performance of the collimation system from injection up to operation with colliding beams will be presented.

  19. What we can expect from the first year of the LHC

    NASA Astrophysics Data System (ADS)

    Trigger, Isabel

    2009-05-01

    The ATLAS and CMS experiments at the CERN Large Hadron Collider have been built and commissioned over more than a decade. They are the most complex experiments ever assembled, but were completed in time for the first beams in the LHC in September 2008. The accident which interrupted the LHC startup did not interrupt the commissioning of the detectors with cosmic ray events, and the small amount of single-beam data collected in September was invaluable for timing in the detector. ATLAS and CMS will therefore be unusually well calibrated and understood by the time collision data become available in Fall 2009. The first part of the talk will discuss the expected performance of the detectors (with some bias towards ATLAS). The rest of the talk will discuss physics analyses which should be possible with the first year's running at the LHC. Roughly 100-200 pb-1 at a 10 TeV centre-of-mass energy are needed to match the Tevatron's Standard Model Higgs sensitivity around 160 GeV - if all goes according to plan, the LHC may collect this by Fall 2010. About 100 pb-1 at 10 TeV would match the full Tevatron sample of top quarks; roughly twice as much data would be needed if the run were mainly at 8 TeV. Sensitivity to W' or Z' resonances would match the Tevatron's with less than 100 pb-1 at 8 TeV. Prospects for discovering supersymmetry are even more promising: in some models as little as 10 pb-1 at 8 TeV could yield a 5 σ discovery. The next year is expected to be a critical period in defining the future of high energy physics, as the actual performance of the LHC and its detectors is tested with collision data. Discoveries of physics beyond the Standard Model could potentially be made by the end of the first year's running, especially if the start-up progresses smoothly.

  20. Determination of the top quark mass circa 2013: methods, subtleties, perspectives

    NASA Astrophysics Data System (ADS)

    Juste, Aurelio; Mantry, Sonny; Mitov, Alexander; Penin, Alexander; Skands, Peter; Varnes, Erich; Vos, Marcel; Wimpenny, Stephen

    2014-10-01

    We present an up-to-date overview of the problem of top quark mass determination. We assess the need for precision in the top mass extraction in the LHC era together with the main theoretical and experimental issues arising in precision top mass determination. We collect and document existing results on top mass determination at hadron colliders and map the prospects for future precision top mass determination at e+e- colliders. We present a collection of estimates for the ultimate precision of various methods for top quark mass extraction at the LHC.

  1. Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)

    ScienceCinema

    Battaglia, Marco

    2018-01-12

    How is the anticipated physics program of a future e+e- collider shaping the R&D; for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.

  2. Multilepton collider signatures of heavy Dirac and Majorana neutrinos

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Yi; Dev, P. S. Bhupal

    2012-05-01

    We discuss the possibility of observing multi-lepton signals at the Large Hadron Collider (LHC) from the production and decay of heavy standard model (SM) singlet neutrinos added in extensions of SM to explain the observed light neutrino masses by seesaw mechanism. In particular, we analyze two “smoking gun” signals depending on the Dirac or Majorana nature of the heavy neutrino: (i) for Majorana case, the same-sign di-lepton signal which can be used as a probe of lepton-number violation, and (ii) for Dirac case, the tri-lepton signal which conserves lepton number but may violate lepton flavor. Within a minimal Left-Right symmetric framework in which these additional neutrino states arise naturally, we find that in both cases, the signals can be identified with virtually no background beyond a TeV, and the heavy gauge boson WR can be discovered in this process. This analysis also provides a direct way to probe the nature of seesaw physics involving the SM singlets at TeV-scale, and in particular, to distinguish type-I seesaw with purely Majorana heavy neutrinos from inverse seesaw with pseudo-Dirac counterparts.

  3. Geant4 models for simulation of hadron/ion nuclear interactions at moderate and low energies.

    NASA Astrophysics Data System (ADS)

    Ivantchenko, Anton; Ivanchenko, Vladimir; Quesada, Jose-Manuel; Wright, Dennis

    The Geant4 toolkit is intended for Monte Carlo simulation of particle transport in media. It was initially designed for High Energy Physics purposes such as experiments at the Large Hadron Collider (LHC) at CERN. The toolkit offers a set of models allowing effective simulation of cosmic ray interactions with different materials. For moderate and low energy hadron/ion interactions with nuclei there are a number of competitive models: Binary and Bertini intra-nuclear cascade models, quantum molecular dynamic model (QMD), INCL/ABLA cascade model, and Chiral Invariant Phase Space Decay model (CHIPS). We report the status of these models for the recent version of Geant4 (release 9.3, December 2009). The Bertini cascade in-ternal cross sections were upgraded. The native Geant4 precompound and deexcitation models were used in the Binary cascade and QMD. They were significantly improved including emis-sion of light fragments, the Fermi break-up model, the General Evaporation Model (GEM), the multi-fragmentation model, and the fission model. Comparisons between model predictions and data for thin target experiments for neutron, proton, light ions, and isotope production are presented and discussed. The focus of these validations is concentrated on target materials important for space missions.

  4. Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies

    NASA Astrophysics Data System (ADS)

    Profumo, Stefano; Ramsey-Musolf, Michael J.; Wainwright, Carroll L.; Winslow, Peter

    2015-02-01

    We update the phenomenology of gauge-singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. Considering the introduction of one real scalar singlet to the scalar potential, we analyze present constraints on the potential parameters from Higgs coupling measurements at the Large Hadron Collider (LHC) and electroweak precision observables for the kinematic regime in which no new scalar decay modes arise. We then show how future precision measurements of Higgs boson signal strengths and the Higgs self-coupling could probe the scalar potential parameter space associated with a strong first-order electroweak phase transition. We illustrate using benchmark precision for several future collider options, including the high-luminosity LHC, the International Linear Collider, Triple-Large Electron-Positron collider, the China Electron-Positron Collider, and a 100 TeV proton-proton collider, such as the Very High Energy LHC or the Super Proton-Proton Collider. For the regions of parameter space leading to a strong first-order electroweak phase transition, we find that there exists considerable potential for observable deviations from purely Standard Model Higgs properties at these prospective future colliders.

  5. General NMSSM signatures at the LHC

    NASA Astrophysics Data System (ADS)

    Dreiner, H. K.; Staub, F.; Vicente, A.

    2013-02-01

    We study the possible LHC collider signatures in the next-to-minimal supersymmetric standard model. The general next-to-minimal supersymmetric standard model consists of 29 supersymmetric particles which can be mass ordered in 29!≃9×1030 ways. To reduce the number of hierarchies to a more manageable amount we assume a degeneracy of the sfermions of the first two generations with the same quantum numbers. Further assumptions about the neutralino and chargino masses leave 15 unrelated parameters. We check all 15!≈1012 relevant mass orderings for the dominant decay chains and the corresponding collider signatures at the LHC. As preferred signatures, we consider charged leptons, missing transverse momentum, jets, and W, Z or Higgs bosons. We present the results for three different choices of the singlet to Higgs coupling λ: (a) small, O(λ)O(Ytop). We compare these three scenarios with the MSSM expectations as well as among each other. We also mention a possible mass hierarchy leading to seven jets plus one lepton signatures at the LHC and comment briefly on the consequence of possible R-parity violation.

  6. Update on J /ψ regeneration in a hadron gas

    NASA Astrophysics Data System (ADS)

    Abreu, L. M.; Khemchandani, K. P.; Torres, A. Martínez; Navarra, F. S.; Nielsen, M.

    2018-04-01

    In heavy-ion collisions, after the quark-gluon plasma there is a hadronic gas phase. Using effective Lagrangians, we study the interactions of charmed mesons which lead to J /ψ production and absorption in this gas. We update and extend previous calculations introducing strange meson interactions and also including the interactions mediated by the recently measured exotic charmonium resonances Z (3900 ) and Z (4025 ) . These resonances open new reaction channels for the J /ψ , which could potentially lead to changes in its multiplicity. We compute the J /ψ production cross section in processes such as D(s) (*)+D¯(*)→J /ψ +(π ,ρ ,K ,K*) and also the J /ψ absorption cross section in the corresponding inverse processes. Using the obtained cross sections as input to solve the appropriate rate equation, we conclude that the interactions in the hadron gas phase lead to a 20-24% reduction of the J /ψ abundance. Within the uncertainties of the calculation, this reduction is the same at the Relativistic Heavy Ion Collider and the large Hadron Collider.

  7. Conceptual study of the cryostats for the cold powering system for the triplets of the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Ballarino, A.; Giannelli, S.; Jacquemod, A.; Leclercq, Y.; Ortiz Ferrer, C.; Parma, V.

    2017-12-01

    The High Luminosity LHC (HL-LHC) is a project aiming to upgrade the Large Hadron Collider (LHC) after 2020-2025 in order to increase the integrated luminosity by about one order of magnitude and extend the operational capabilities until 2035. The upgrade of the focusing triplet insertions for the Atlas and CMS experiments foresees using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. The increased radiation levels from the particle debris produced by particle collisions in the experiments require that the power converters are placed in radiation shielded zones located in a service gallery adjacent to the main tunnel. The powering of the magnets from the gallery is achieved by means of MgB2 superconducting cables in a 100-m long flexible cryostat transfer line, actively cooled by 4.5 K to 20 K gaseous helium generated close to the magnets. At the highest temperature end, the helium flow cools the High Temperature Superconducting (HTS) current leads before being recovered at room temperature. At the magnet connection side, a dedicated connection box allows connection to the magnets and a controlled boil-off production of helium for the cooling needs of the powering system. This paper presents the overall concept of the cryostat system from the magnet connection boxes, through the flexible cryostat transfer line, to the connection box of the current leads.

  8. Impact of the resistive wall impedance on beam dynamics in the Future Circular e+e- Collider

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Belli, E.; Zobov, M.

    2018-04-01

    The Future Circular Collider study, which aims at designing post-LHC particle accelerator options, is entering in the final stage, which foresees a conceptual design report containing the basic requirements for a hadron and a lepton collider, as well as options for an electron-proton machine. Due to the high beam intensities of these accelerators, collective effects have to be carefully analyzed. Among them, the finite conductivity of the beam vacuum chamber represents a major source of impedance for the electron-positron collider. By using numerical and analytical tools, a parametric study of longitudinal and transverse instabilities caused by the resistive wall is performed in this paper for the case of the Future Circular Collider lepton machine, by taking into account also the effects of coating, used to fight the electron cloud build up. It will be proved that under certain assumptions the coupling impedance of a two layer system does not depend on the conductivity of the coating and this property represents an important characteristic for the choice of the material itself. The results and findings of this study have an impact on the machine design in several aspects. In particular the quite low threshold of single bunch instabilities with respect to the nominal beam current and the not negligible power losses due to the resistive wall are shown, together with the necessity of a new feedback system to counteract the fast transverse coupled bunch instability. The importance of a round vacuum chamber to avoid the quadrupolar tune shift is also discussed. Finally the crucial importance of the beam pipe material coating and thickness choice for the above results is underlined.

  9. An Experimental Review on Heavy-Flavor v 2 in Heavy-Ion Collision

    DOE PAGES

    Nasim, Md.; Esha, Roli; Huang, Huan Zhong

    2016-01-01

    For overmore » a decade now, the primary purpose of relativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) has been to study the properties of QCD matter under extreme conditions—high temperature and high density. The heavy-ion experiments at both RHIC and LHC have recorded a wealth of data in p+p, p+Pb, d+Au, Cu+Cu, Cu+Au, Au+Au, Pb+Pb, and U+U collisions at energies ranging from s N N = 7.7  GeV to 7 TeV. Heavy quarks are considered good probe to study the QCD matter created in relativistic collisions due to their very large mass and other unique properties. A precise measurement of various properties of heavy-flavor hadrons provides an insight into the fundamental properties of the hot and dense medium created in these nucleus-nucleus collisions, such as transport coefficient and thermalization and hadronization mechanisms. The main focus of this paper is to present a review on the measurements of azimuthal anisotropy of heavy-flavor hadrons and to outline the scientific opportunities in this sector due to future detector upgrade. We will mainly discuss the elliptic flow of open charmed meson ( D -meson), J / ψ , and leptons from heavy-flavor decay at RHIC and LHC energy.« less

  10. Top-quark pair plus large missing energy at the LHC

    NASA Astrophysics Data System (ADS)

    Han, Tao; Mahbubani, Rakhi; Walker, Devin G. E.; Wang, Lian-Tao

    2009-05-01

    We study methods of extracting new physics signals in final states with a top-quark pair plus large missing energy at the LHC. We consider two typical examples of such new physics: pair production of a fermionic top partner (a T' in Little Higgs models for example) and of a scalar top partner (a tilde t in SUSY). With a commonly-adopted discrete symmetry under which non Standard Model particles are odd, the top partner is assumed to decay predominantly to a top quark plus a massive neutral stable particle A0. We focus on the case in which one of the top quarks decays leptonically and the other decays hadronically, pp → tbar tA0A0X → bj1j2 bar bl-bar nu A0A0X + c.c., where the A0s escape detection. We identify a key parameter for the signal observation: the mass splitting between the top partner and the missing particle. We reconstruct a transverse mass for the lepton-missing transverse energy system to separate the real W background from the signal and propose a definition for the reconstructed top quark mass that allows it to take unphysical values as an indication of new physics. We perform a scan over the two masses to map out the discovery reach at the LHC in this channel. We also comment on the possibility of distinguishing between scalar and fermionic top partners using collider signatures.

  11. Constraints on the gluon PDF from top quark pair production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Czakon, Michal; Mangano, Michelangelo L.; Mitov, Alexander; Rojo, Juan

    2013-07-01

    Using the recently derived NNLO cross sections [1], we provide NNLO+NNLL theoretical predictions for top quark pair production based on all the available NNLO PDF sets, and compare them with the most precise LHC and Tevatron data. In this comparison we study in detail the PDF uncertainty and the scale, m t and α s dependence of the theoretical predictions for each PDF set. Next, we observe that top quark pair production provides a powerful direct constraint on the gluon PDF at large x, and include Tevatron and LHC top pair data consistently into a global NNLO PDF fit. We then explore the phenomenological consequences of the reduced gluon PDF uncertainties, by showing how they can improve predictions for Beyond the Standard Model processes at the LHC. Finally, we update to full NNLO+NNLL the theoretical predictions for the ratio of top quark cross sections between different LHC center of mass energies, as well as the cross sections for hypothetical heavy fourth-generation quark production at the LHC.

  12. Cornering pseudoscalar-mediated dark matter with the LHC and cosmology

    NASA Astrophysics Data System (ADS)

    Banerjee, Shankha; Barducci, Daniele; Bélanger, Geneviève; Fuks, Benjamin; Goudelis, Andreas; Zaldivar, Bryan

    2017-07-01

    Models in which dark matter particles communicate with the visible sector through a pseudoscalar mediator are well-motivated both from a theoretical and from a phenomenological standpoint. With direct detection bounds being typically subleading in such scenarios, the main constraints stem either from collider searches for dark matter, or from indirect detection experiments. However, LHC searches for the mediator particles themselves can not only compete with — or even supersede — the reach of direct collider dark matter probes, but they can also test scenarios in which traditional monojet searches become irrelevant, especially when the mediator cannot decay on-shell into dark matter particles or its decay is suppressed. In this work we perform a detailed analysis of a pseudoscalar-mediated dark matter simplified model, taking into account a large set of collider constraints and concentrating on the parameter space regions favoured by cos-mological and astrophysical data. We find that mediator masses above 100-200 GeV are essentially excluded by LHC searches in the case of large couplings to the top quark, while forthcoming collider and astrophysical measurements will further constrain the available parameter space.

  13. Investigation of the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data

    NASA Astrophysics Data System (ADS)

    Giordano, M.; Meggiolaro, E.; Silva, P. V. R. G.

    2017-08-01

    In the present investigation we study the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data. The parametrization used for the hadron-hadron total cross sections at high energy is inspired by recent results obtained by Giordano and Meggiolaro [J. High Energy Phys. 03 (2014) 002, 10.1007/JHEP03(2014)002] using a nonperturbative approach in the framework of QCD, and it reads σtot˜B ln2s +C ln s ln ln s . We critically investigate if B and C can be obtained by means of best-fits to data for proton-proton and antiproton-proton scattering, including recent data obtained at the LHC, and also to data for other meson-baryon and baryon-baryon scattering processes. In particular, following the above-mentioned nonperturbative QCD approach, we also consider fits where the parameters B and C are set to B =κ Bth and C =κ Cth, where Bth and Cth are universal quantities related to the QCD stable spectrum, while κ (treated as an extra free parameter) is related to the asymptotic value of the ratio σel/σtot. Different possible scenarios are then considered and compared.

  14. The Standard Model from LHC to future colliders.

    PubMed

    Forte, S; Nisati, A; Passarino, G; Tenchini, R; Calame, C M Carloni; Chiesa, M; Cobal, M; Corcella, G; Degrassi, G; Ferrera, G; Magnea, L; Maltoni, F; Montagna, G; Nason, P; Nicrosini, O; Oleari, C; Piccinini, F; Riva, F; Vicini, A

    This review summarizes the results of the activities which have taken place in 2014 within the Standard Model Working Group of the "What Next" Workshop organized by INFN, Italy. We present a framework, general questions, and some indications of possible answers on the main issue for Standard Model physics in the LHC era and in view of possible future accelerators.

  15. Jet Topics: Disentangling Quarks and Gluons at Colliders

    NASA Astrophysics Data System (ADS)

    Metodiev, Eric M.; Thaler, Jesse

    2018-06-01

    We introduce jet topics: a framework to identify underlying classes of jets from collider data. Because of a close mathematical relationship between distributions of observables in jets and emergent themes in sets of documents, we can apply recent techniques in "topic modeling" to extract jet topics from the data with minimal or no input from simulation or theory. As a proof of concept with parton shower samples, we apply jet topics to determine separate quark and gluon jet distributions for constituent multiplicity. We also determine separate quark and gluon rapidity spectra from a mixed Z -plus-jet sample. While jet topics are defined directly from hadron-level multidifferential cross sections, one can also predict jet topics from first-principles theoretical calculations, with potential implications for how to define quark and gluon jets beyond leading-logarithmic accuracy. These investigations suggest that jet topics will be useful for extracting underlying jet distributions and fractions in a wide range of contexts at the Large Hadron Collider.

  16. Impact of LSP character on Slepton reach at the LHC

    NASA Astrophysics Data System (ADS)

    Eckel, Jonathan; Ramsey-Musolf, Michael J.; Shepherd, William; Su, Shufang

    2014-11-01

    Searches for supersymmetry at the Large Hadron Collider (LHC) have significantly constrained the parameter space associated with colored superpartners, whereas the constraints on color-singlet superpartners are considerably less severe. In this study, we investigate the dependence of slepton decay branching fractions on the nature of the lightest supersymmetric particle (LSP). In particular, in the Higgsino-like LSP scenarios, both decay branching fractions of and depend strongly on the sign and value of M 1 /M 2, which has strong implications for the reach of dilepton plus [InlineMediaObject not available: see fulltext.] searches for slepton pair production. We extend the experimental results for same flavor, opposite sign dilepton plus [InlineMediaObject not available: see fulltext.] searches at the 8TeV LHC to various LSP scenarios. We find that the LHC bounds on sleptons are strongly enhanced for a non-Bino-like LSP: the 95% C.L. limit for extends from 300 GeV for a Bino-like LSP to about 370 GeV for a Wino-like LSP. The bound for with a Higgsino-like LSP is the strongest (˜ 490 GeV) for M 1 /M 2 ˜ - tan2 θ W and is the weakest (˜ 220 GeV) for M 1 /M 2 ˜ tan2 θ W . We also calculate prospective slepton search reaches at the 14 TeV LHC. With 100 fb-1 integrated luminosity, the projected 95% C.L. mass reach for the left-handed slepton varies from 550 (670) GeV for a Bino-like (Winolike) LSP to 900 (390) GeV for a Higgsino-like LSP under the most optimistic (pessimistic) scenario. The reach for the right-handed slepton is about 440 GeV. The corresponding 5 σ discovery sensitivity is about 100 GeV smaller. For 300 fb-1 integrated luminosity, the reach is about 50 - 100 GeV higher.

  17. Beam Thrust Cross Section for Drell-Yan Production at Next-to-Next-to-Leading-Logarithmic Order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.

    2011-01-21

    At the LHC and Tevatron strong initial-state radiation (ISR) plays an important role. It can significantly affect the partonic luminosity available to the hard interaction or contaminate a signal with additional jets and soft radiation. An ideal process to study ISR is isolated Drell-Yan production, pp{yields}Xl{sup +}l{sup -} without central jets, where the jet veto is provided by the hadronic event shape beam thrust {tau}{sub B}. Most hadron collider event shapes are designed to study central jets. In contrast, requiring {tau}{sub B}<<1 provides an inclusive veto of central jets and measures the spectrum of ISR. For {tau}{sub B}<<1 we carrymore » out a resummation of {alpha}{sub s}{sup n}ln{sup m{tau}}{sub B} corrections at next-to-next-to-leading-logarithmic order. This is the first resummation at this order for a hadron-hadron collider event shape. Measurements of {tau}{sub B} at the Tevatron and LHC can provide crucial tests of our understanding of ISR and of {tau}{sub B}'s utility as a central jet veto.« less

  18. GARLIC: GAmma Reconstruction at a LInear Collider experiment

    NASA Astrophysics Data System (ADS)

    Jeans, D.; Brient, J.-C.; Reinhard, M.

    2012-06-01

    The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuration of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.

  19. Higher moments of multiplicity fluctuations in a hadron-resonance gas with exact conservation laws

    NASA Astrophysics Data System (ADS)

    Fu, Jing-Hua

    2017-09-01

    Higher moments of multiplicity fluctuations of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the canonical ensemble. Exact conservation of three charges, baryon number, electric charge, and strangeness is enforced in the large volume limit. Moments up to the fourth order of various particles are calculated at CERN Super Proton Synchrotron, BNL Relativistic Heavy Ion Collider (RHIC), and CERN Large Hadron Collider energies. The asymptotic fluctuations within a simplified model with only one conserved charge in the canonical ensemble are discussed where simple analytical expressions for moments of multiplicity distributions can be obtained. Moments products of net-proton, net-kaon, and net-charge distributions in Au + Au collisions at RHIC energies are calculated. The pseudorapidity coverage dependence of net-charge fluctuation is discussed.

  20. Scalar neutrinos at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, Durmus A.; Frank, Mariana; Selbuz, Levent

    2011-05-01

    We study a softly broken supersymmetric model whose gauge symmetry is that of the standard model gauge group times an extra Abelian symmetry U(1){sup '}. We call this gauge-extended model the U(1){sup '} model, and we study a U(1){sup '} model with a secluded sector such that neutrinos acquire Dirac masses via higher-dimensional terms allowed by the U(1){sup '} invariance. In this model the {mu} term of the minimal supersymmetric model (MSSM) is dynamically induced by the vacuum expectation value of a singlet scalar. In addition, the model contains exotic particles necessary for anomaly cancellation, and extra singlet bosons formore » achieving correct Z{sup '}/Z mass hierarchy. The neutrinos are charged under U(1){sup '}, and thus, their production and decay channels differ from those in the MSSM in strength and topology. We implement the model into standard packages and perform a detailed analysis of sneutrino production and decay at the Large Hadron Collider, for various mass scenarios, concentrating on three types of signals: (1) 0l+MET, (2) 2l+MET, and (3) 4l+MET. We compare the results with those of the MSSM whenever possible, and analyze the standard model background for each signal. The sneutrino production and decays provide clear signatures enabling distinction of the U(1){sup '} model from the MSSM at the LHC.« less

  1. PREFACE: International Workshop on Discovery Physics at the LHC (Kruger2012)

    NASA Astrophysics Data System (ADS)

    Cleymans, Jean

    2013-08-01

    The second conference on 'Discovery Physics at the LHC' was held on 3-7 December 2012 at the Kruger Gate Hotel in South Africa. In total there were 110 participants from Armenia, Belgium, Brazil, Canada, Czech Republic, France, Germany, Greece, Israel, Italy, Norway, Poland, USA, Russia, Slovakia, Spain, Sweden, United Kingdom, Switzerland and South Africa. The latest results from the Large Hadron Collider, Brookhaven National Laboratory, Jefferson Laboratory and BABAR experiments, as well as the latest theoretical insights were presented. Set against the backdrop of the majestic Kruger National Park a very stimulating conference with many exchanges took place. The proceedings reflect the high standard of the conference. The financial contributions from the National Institute for Theoretical Physics (NITHeP), the SA-CERN programme, the UCT-CERN Research Centre, the University of Johannesburg, the University of the Witwatersrand and iThemba Labs—Laboratory for Accelerator Based Science are gratefully acknowledged. Jean Cleymans Chair of the Local Organizing Committee Local Organizing Committee Oana Boeriu Jean Cleymans Simon H Connell Alan S Cornell William A Horowitz Andre Peshier Trevor Vickey Zeblon Z Vilakazi Group picture

  2. Working Group Report: Higgs Boson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Sally; Gritsan, Andrei; Logan, Heather

    2013-10-30

    This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities frommore » detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).« less

  3. Turning the LHC ring into a new physics search machine

    NASA Astrophysics Data System (ADS)

    Orava, Risto

    2017-03-01

    The LHC Collider Ring is proposed to be turned into an ultimate automatic search engine for new physics in four consecutive phases: (1) Searches for heavy particles produced in Central Exclusive Process (CEP): pp → p + X + p based on the existing Beam Loss Monitoring (BLM) system of the LHC; (2) Feasibility study of using the LHC Ring as a gravitation wave antenna; (3) Extensions to the current BLM system to facilitate precise registration of the selected CEP proton exit points from the LHC beam vacuum chamber; (4) Integration of the BLM based event tagging system together with the trigger/data acquisition systems of the LHC experiments to facilitate an on-line automatic search machine for the physics of tomorrow.

  4. Single and double production of the Higgs boson at hadron and lepton colliders in minimal composite Higgs models

    NASA Astrophysics Data System (ADS)

    Kanemura, Shinya; Kaneta, Kunio; Machida, Naoki; Odori, Shinya; Shindou, Tetsuo

    2016-07-01

    In the composite Higgs models, originally proposed by Georgi and Kaplan, the Higgs boson is a pseudo Nambu-Goldstone boson (pNGB) of spontaneous breaking of a global symmetry. In the minimal version of such models, global SO(5) symmetry is spontaneously broken to SO(4), and the pNGBs form an isospin doublet field, which corresponds to the Higgs doublet in the Standard Model (SM). Predicted coupling constants of the Higgs boson can in general deviate from the SM predictions, depending on the compositeness parameter. The deviation pattern is determined also by the detail of the matter sector. We comprehensively study how the model can be tested via measuring single and double production processes of the Higgs boson at the LHC and future electron-positron colliders. The possibility to distinguish the matter sector among the minimal composite Higgs models is also discussed. In addition, we point out differences in the cross section of double Higgs boson production from the prediction in other new physics models.

  5. Observation of exclusive electron-positron production in hadron-hadron collisions.

    PubMed

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Caron, B; Carosi, R; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; Daronco, S; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; Cecco, S De; Deisher, A; Lentdecker, G De; Dell'orso, M; Paoli, F Delli; Demortier, L; Deng, J; Deninno, M; Pedis, D De; Derwent, P F; Giovanni, G P Di; Dionisi, C; Ruzza, B Di; Dittmann, J R; Dituro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pinfold, J; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-03-16

    We present the first observation of exclusive e(+)e(-) production in hadron-hadron collisions, using pp[over] collision data at (square root) s = 1.96 TeV taken by the run II Collider Detector at Fermilab, and corresponding to an integrated luminosity of 532 pb(-1). We require the absence of any particle signatures in the detector except for an electron and a positron candidate, each with transverse energy E(T) > 5 GeV and pseudorapidity |eta| < 2. With these criteria, 16 events are observed compared to a background expectation of 1.9+/-0.3 events. These events are consistent in cross section and properties with the QED process pp[over] --> p + e(+)e(-) + p[over] through two-photon exchange. The measured cross section is 1.6(-0.3)(+0.5)(stat) +/- 0.3(syst) pb. This agrees with the theoretical prediction of 1.71+/-0.01 pb.

  6. Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J. D.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J. C.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G. R.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gallo, F.; García, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pekala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pepe, I. M.; Pereira, L. A. S.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Strafella, F.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yelos, D.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration

    2016-11-01

    Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (ECM=110 - 170 TeV ), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33 ±0.16 (1.61 ±0.21 ) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

  7. Production of heavy Higgs bosons and decay into top quarks at the LHC

    NASA Astrophysics Data System (ADS)

    Bernreuther, W.; Galler, P.; Mellein, C.; Si, Z.-G.; Uwer, P.

    2016-02-01

    We investigate the production of heavy, neutral Higgs boson resonances and their decays to top-quark top-antiquark (t t ¯) pairs at the Large Hadron Collider (LHC) at next-to-leading order (NLO) in the strong coupling of quantum chromodynamics (QCD). The NLO corrections to heavy Higgs boson production and the Higgs-QCD interference are calculated in the large mt limit with an effective K-factor rescaling. The nonresonant t t ¯ background is taken into account at NLO QCD including weak-interaction corrections. In order to consistently determine the total decay widths of the heavy Higgs bosons, we consider for definiteness the type-II two-Higgs-doublet extension of the standard model and choose three parameter scenarios that entail two heavy neutral Higgs bosons with masses above the t t ¯ threshold and unsuppressed Yukawa couplings to top quarks. For these three scenarios we compute, for the LHC operating at 13 TeV, the t t ¯ cross section and the distributions of the t t ¯ invariant mass, of the transverse top-quark momentum and rapidity, and of the cosine of the Collins-Soper angle with and without the two heavy Higgs resonances. For selected Mt t ¯ bins we estimate the significances for detecting a heavy Higgs signal in the t t ¯ dileptonic and lepton plus jets decay channels.

  8. Future HEP Accelerators: The US Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Pushpalatha; Shiltsev, Vladimir

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN throughmore » its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.« less

  9. Reconciling charmonium production and polarization data in the midrapidity region at hadron colliders within the nonrelativistic QCD framework

    NASA Astrophysics Data System (ADS)

    Sun, Zhan; Zhang, Hong-Fei

    2018-04-01

    A thorough study reveals that the only key parameter for ψ (J/ψ, ψ‧) polarization at hadron colliders is the ratio < {O}\\psi {(}3{S}1[8])> /< {O}\\psi {(}3{P}0[8])> , if the velocity scaling rule holds. A slight variation of this parameter results in substantial change of the ψ polarization. We find that with equally good description of the yield data, this parameter can vary significantly. Fitting the yield data is therefore incapable of determining this parameter, and consequently, of determining the ψ polarization. We provide a universal approach to fixing the long-distance matrix elements (LDMEs) for J/ψ and ψ‧ production. Further, with the existing data, we implement this approach, obtain a favorable set of the LDMEs, and manage to reconcile the charmonia production and polarization experiments, except for two sets of CDF data on J/ψ polarization. Supported by National Natural Science Foundation of China (11405268, 11647113, 11705034)

  10. Hadronic vs. electromagnetic pulse shape discrimination in CsI(Tl) for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Longo, S.; Roney, J. M.

    2018-03-01

    Pulse shape discrimination using CsI(Tl) scintillators to perform neutral hadron particle identification is explored with emphasis towards application at high energy electron-positron collider experiments. Through the analysis of the pulse shape differences between scintillation pulses from photon and hadronic energy deposits using neutron and proton data collected at TRIUMF, it is shown that the pulse shape variations observed for hadrons can be modelled using a third scintillation component for CsI(Tl), in addition to the standard fast and slow components. Techniques for computing the hadronic pulse amplitudes and shape variations are developed and it is shown that the intensity of the additional scintillation component can be computed from the ionization energy loss of the interacting particles. These pulse modelling and simulation methods are integrated with GEANT4 simulation libraries and the predicted pulse shape for CsI(Tl) crystals in a 5 × 5 array of 5 × 5 × 30 cm3 crystals is studied for hadronic showers from 0.5 and 1 GeV/c KL0 and neutron particles. Using a crystal level and cluster level approach for photon vs. hadron cluster separation we demonstrate proof-of-concept for neutral hadron detection using CsI(Tl) pulse shape discrimination in high energy electron-positron collider experiments.

  11. Study of ordered hadron chains with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Mateos, D.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McNamara, P. C.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, Dms; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2017-11-01

    The analysis of the momentum difference between charged hadrons in high-energy proton-proton collisions is performed in order to study coherent particle production. The observed correlation pattern agrees with a model of a helical QCD string fragmenting into a chain of ground-state hadrons. A threshold momentum difference in the production of adjacent pairs of charged hadrons is observed, in agreement with model predictions. The presence of low-mass hadron chains also explains the emergence of charge-combination-dependent two-particle correlations commonly attributed to Bose-Einstein interference. The data sample consists of 190 μ b-1 of minimum-bias events collected with proton-proton collisions at a center-of-mass energy √{s }=7 TeV in the early low-luminosity data taking with the ATLAS detector at the LHC.

  12. Initial-State Quantum Fluctuations in the Little Bang

    DOE PAGES

    Gelis, François; Schenke, Björn

    2016-06-01

    In this work, we review recent developments in the ab initio theoretical description of the initial state in heavy-ion collisions. We emphasize the importance of fluctuations, both for the phenomenological description of experimental data from the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) and for the theoretical understanding of the nonequilibrium early-time dynamics and thermalization of the medium.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelis, François; Schenke, Björn

    In this work, we review recent developments in the ab initio theoretical description of the initial state in heavy-ion collisions. We emphasize the importance of fluctuations, both for the phenomenological description of experimental data from the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) and for the theoretical understanding of the nonequilibrium early-time dynamics and thermalization of the medium.

  14. Improved control of the betatron coupling in the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Persson, T.; Tomás, R.

    2014-05-01

    The control of the betatron coupling is of importance for safe beam operation in the LHC. In this article we show recent advancements in methods and algorithms to measure and correct coupling. The benefit of using a more precise formula relating the resonance driving term f1001 to the ΔQmin is presented. The quality of the coupling measurements is increased, with about a factor 3, by selecting beam position monitor (BPM) pairs with phase advances close to π/2 and through data cleaning using singular value decomposition with an optimal number of singular values. These improvements are beneficial for the implemented automatic coupling correction, which is based on injection oscillations, presented in the article. Furthermore, a proposed coupling feedback for the LHC is presented. The system will rely on the measurements from BPMs equipped with a new type of high resolution electronics, diode orbit and oscillation, which will be operational when the LHC restarts in 2015. The feedback will combine the coupling measurements from the available BPMs in order to calculate the best correction.

  15. Phenomenology of pure-gauge hidden valleys at hadron colliders

    NASA Astrophysics Data System (ADS)

    Juknevich, Jose E.

    Expectations for new physics at the LHC have been greatly influenced by the Hierarchy problem of electroweak symmetry breaking. However, there are reasons to believe that the LHC may still discover new physics, but not directly related to the resolution of the Hierarchy problem. To ensure that such a physics does not go undiscovered requires precise understanding of how new phenomena will reveal themselves in the current and future generation of particle-physics experiments. Given this fact it seems sensible to explore other approaches to this problem; we study three alternatives here. In this thesis I argue for the plausibility that the standard model is coupled, through new massive charged or colored particles, to a hidden sector whose low energy dynamics is controlled by a pure Yang-Mills theory, with no light matter. Such a sector would have numerous metastable "hidden glueballs" built from the hidden gluons. These states would decay to particles of the standard model. I consider the phenomenology of this scenario, and find formulas for the lifetimes and branching ratios of the most important of these states. The dominant decays are to two standard model gauge bosons or to fermion-antifermion pairs, or by radiative decays with photon or Higgs emission, leading to jet- and photon-rich signals, and some occasional leptons. The presence of effective operators of different mass dimensions, often competing with each other, together with a great diversity of states, leads to a great variability in the lifetimes and decay modes of the hidden glueballs. I find that most of the operators considered in this work are not heavily constrained by precision electroweak physics, therefore leaving plenty of room in the parameter space to be explored by the future experiments at the LHC. Finally, I discuss several issues on the phenomenology of the new massive particles as well as an outlook for experimental searches.

  16. The long journey to the Higgs boson and beyond at the LHC: Emphasis on CMS

    NASA Astrophysics Data System (ADS)

    Virdee, Tejinder Singh

    2016-11-01

    Since 2010 there has been a rich harvest of results on standard model physics by the ATLAS and CMS experiments operating on the Large Hadron Collider. In the summer of 2012, a spectacular discovery was made by these experiments of a new, heavy particle. All the subsequently analysed data point strongly to the properties of this particle as those expected for the Higgs boson associated with the Brout-Englert-Higgs mechanism postulated to explain the spontaneous symmetry breaking in the electroweak sector, thereby explaining how elementary particles acquire mass. This article focuses on the CMS experiment, the technological challenges encountered in its construction, describing some of the physics results obtained so far, including the discovery of the Higgs boson, and searches for the widely anticipated new physics beyond the standard model, and peer into the future involving the high-luminosity phase of the LHC. This article is complementary to the one by Peter Jenni4 that focuses on the ATLAS experiment.

  17. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    NASA Astrophysics Data System (ADS)

    Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; de Boer, Wim; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David

    2013-12-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors.

  18. New collider scheme at LBL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugh, H.G.

    1984-07-01

    This paper presents current ideas from Berkeley concerning a possible new facility for studying the phase transition from hadronic matter to quark matter. The physics ideas have evolved over a period of more than five years, the VENUS concept for a 25 GeV/nucleon colliding beam facility having been presented in 1979. The concept for the Minicollider has been, like that of VENUS, the work of Hermann Grunder and Christoph Leemann.

  19. Big data analytics for the Future Circular Collider reliability and availability studies

    NASA Astrophysics Data System (ADS)

    Begy, Volodimir; Apollonio, Andrea; Gutleber, Johannes; Martin-Marquez, Manuel; Niemi, Arto; Penttinen, Jussi-Pekka; Rogova, Elena; Romero-Marin, Antonio; Sollander, Peter

    2017-10-01

    Responding to the European Strategy for Particle Physics update 2013, the Future Circular Collider study explores scenarios of circular frontier colliders for the post-LHC era. One branch of the study assesses industrial approaches to model and simulate the reliability and availability of the entire particle collider complex based on the continuous monitoring of CERN’s accelerator complex operation. The modelling is based on an in-depth study of the CERN injector chain and LHC, and is carried out as a cooperative effort with the HL-LHC project. The work so far has revealed that a major challenge is obtaining accelerator monitoring and operational data with sufficient quality, to automate the data quality annotation and calculation of reliability distribution functions for systems, subsystems and components where needed. A flexible data management and analytics environment that permits integrating the heterogeneous data sources, the domain-specific data quality management algorithms and the reliability modelling and simulation suite is a key enabler to complete this accelerator operation study. This paper describes the Big Data infrastructure and analytics ecosystem that has been put in operation at CERN, serving as the foundation on which reliability and availability analysis and simulations can be built. This contribution focuses on data infrastructure and data management aspects and presents case studies chosen for its validation.

  20. Forward and small-x QCD physics results from CMS experiment at LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerci, Deniz Sunar, E-mail: deniz.sunar.cerci@cern.ch

    2016-03-25

    The Compact Muon Solenoid (CMS) is one of the two large, multi-purpose experiments at the Large Hadron Collider (LHC) at CERN. During the Run I Phase a large pp collision dataset has been collected and the CMS collaboration has explored measurements that shed light on a new era. Forward and small-x quantum chromodynamics (QCD) physics measurements with CMS experiment covers a wide range of physics subjects. Some of highlights in terms of testing the very low-x QCD, underlying event and multiple interaction characteristics, photon-mediated processes, jets with large rapidity separation at high pseudo-rapidities and the inelastic proton-proton cross section dominatedmore » by diffractive interactions are presented. Results are compared to Monte Carlo (MC) models with different parameter tunes for the description of the underlying event and to perturbative QCD calculations. The prominent role of multi-parton interactions has been confirmed in the semihard sector but no clear deviation from the standard Dglap parton evolution due to Bfkl has been observed. An outlook to the prospects at 13 TeV is given.« less