Proceedings of the 1982 DPF summer study on elementary particle physics and future facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaldson, R.; Gustafson, R.; Paige, F.
1982-01-01
This book presents the papers given at a conference on high energy physics. Topics considered at the conference included synchrotron radiation, testing the standard model, beyond the standard model, exploring the limits of accelerator technology, novel detector ideas, lepton-lepton colliders, lepton-hadron colliders, hadron-hadron colliders, fixed-target accelerators, non-accelerator physics, and sociology.
Accelerator physics and technology challenges of very high energy hadron colliders
NASA Astrophysics Data System (ADS)
Shiltsev, Vladimir D.
2015-08-01
High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.
Accelerator physics and technology challenges of very high energy hadron colliders
Shiltsev, Vladimir D.
2015-08-20
High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.
A New Era of Symmetries in the Hadronic Interaction
NASA Astrophysics Data System (ADS)
Crawford, Christopher
2016-09-01
The search for a weak component of the nuclear force began in 1957, shortly after the proposal of parity violation. While it has been observed in compound nuclei with large nuclear enhancements, a systematic characterization of the hadronic weak interaction is still forthcoming almost sixty years later. New experimental facilities and technology have rejuvenated efforts to map out this ``complexity frontier'' within the Standard Model, and we will soon have precision data from multiple few-body experiments. In parallel, modern effective field theories have provided a systematic model independent description of the hadronic interaction with estimates of higher-order effects. The characterization of discrete symmetries in hadronic systems has recently become important for the design and analysis of other precision symmetries measurements, for example, electron PV scattering and time-reversal violation experiments. These new developments in experiment, theory, and application have ushered in a new era in hadronic parity violation. We acknowledge support from DOE-NP under Contract DE-SC0008107.
A beam monitor based on MPGD detectors for hadron therapy
NASA Astrophysics Data System (ADS)
Altieri, P. R.; Di Benedetto, D.; Galetta, G.; Intonti, R. A.; Mercadante, A.; Nuzzo, S.; Verwilligen, P.
2018-02-01
Remarkable scientific and technological progress during the last years has led to the construction of accelerator based facilities dedicated to hadron therapy. This kind of technology requires precise and continuous control of position, intensity and shape of the ions or protons used to irradiate cancers. Patient safety, accelerator operation and dose delivery should be optimized by a real time monitoring of beam intensity and profile during the treatment, by using non-destructive, high spatial resolution detectors. In the framework of AMIDERHA (AMIDERHA - Enhanced Radiotherapy with HAdron) project funded by the Ministero dell'Istruzione, dell'Università e della Ricerca (Italian Ministry of Education and Research) the authors are studying and developing an innovative beam monitor based on Micro Pattern Gaseous Detectors (MPDGs) characterized by a high spatial resolution and rate capability. The Monte Carlo simulation of the beam monitor prototype was carried out to optimize the geometrical set up and to predict the behavior of the detector. A first prototype has been constructed and successfully tested using 55Fe, 90Sr and also an X-ray tube. Preliminary results on both simulations and tests will be presented.
Future HEP Accelerators: The US Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, Pushpalatha; Shiltsev, Vladimir
2015-11-02
Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN throughmore » its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.« less
Hadron Physics with Antiprotons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedner, Ulrich
2005-10-26
The new FAIR facility which comes into operation at GSI in the upcoming years has a dedicated program of utilizing antiprotons for hadron physics. In particular, the planned PANDA experiment belongs to the group of core experiments at the new FAIR facility in Darmstadt/Germany. PANDA will be a universal detector to study the strong interaction by utilizing the annihilation process of antiprotons with protons and nuclear matter. The current paper gives an introduction into the hadron physics with antiprotons and part of the planned physics program with PANDA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Hyun, J.; Mihalcea, D.
A photocathode, immersed in solenoidal magnetic field, can produce canonical-angular-momentum (CAM) dominated or “magnetized” electron beams. Such beams have an application in electron cooling of hadron beams and can also be uncoupled to yield asymmetric-emittance (“flat”) beams. In the present paper we explore the possibilities of the flat beam generation at Fermilab’s Accelerator Science and Technology (FAST) facility. We present optimization of the beam flatness and four-dimensional transverse emittance and investigate the mapping and its limitations of the produced eigen-emittances to conventional emittances using a skew-quadrupole channel. Possible application of flat beams at the FAST facility are also discussed.
Hadron Physics with PANDA at FAIR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedner, Ulrich
2011-10-21
The recently established FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The PANDA experiment, which is integrated in the HESR storage ring for antiprotons is at the center of the hadron physics program. It includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics and electromagnetic processes.
Accelerator boom hones China's engineering expertise
NASA Astrophysics Data System (ADS)
Normile, Dennis
2018-02-01
In raising the curtain on the China Spallation Neutron Source, China has joined just four other nations in having mastered the technology of accelerating and controlling beams of protons. The $277 million facility, set to open to users this spring in Dongguan, is expected to yield big dividends in materials science, chemistry, and biology. More world class machines are on the way, as China this year starts construction on four other major accelerator facilities. The building boom is prompting a scramble to find enough engineers and technicians to finish the projects. But if they all come off as planned, the facilities would position China to tackle the next global megaproject: a giant accelerator that would pick up where Europe's Large Hadron Collider leaves off.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedner, Ulrich
2011-10-24
The new FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The hadron physics program centers around the the high-energy storage ring HESR for antiprotons and the PANDA experiment that is integrated in it. The physics program includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics, electromagnetic processes and charm in nuclei.
A facility for investigation of multiple hadrons at cosmic-ray energies
NASA Technical Reports Server (NTRS)
Valtonen, E.; Torsti, J. J.; Arvela, H.; Lumme, M.; Nieminen, M.; Peltonen, J.; Vainikka, E.
1985-01-01
An experimental arrangement for studying multiple hadrons produced in high-energy hadron-nucleus interactions is under construction at the university of Turku. The method of investigation is based on the detection of hadrons arriving simultaneously at sea level over an area of a few square meters. The apparatus consists of a hadron spectrometer with position-sensitive detectors in connection with a small air shower array. The position resolution using streamer tube detectors will be about 10 mm. Energy spectra of hadrons or groups of simultaneous hadrons produced at primary energies below 10 to the 16th power eV can be measured in the energy range 1 to 2000 GeV.
NA61/SHINE facility at the CERN SPS: beams and detector system
NASA Astrophysics Data System (ADS)
Abgrall, N.; Andreeva, O.; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bogusz, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Christakoglou, P.; Cirkovic, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Diakonos, F.; Di Luise, S.; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Efthymiopoulos, I.; Ereditato, A.; Fabich, A.; Feofilov, G. A.; Fodor, Z.; Fulop, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hierholzer, M.; Idczak, R.; Igolkin, S.; Ivashkin, A.; Jokovic, D.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kielczewska, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Koversarski, P.; Kowalski, S.; Krasnoperov, A.; Kurepin, A.; Larsen, D.; Laszlo, A.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A. I.; Maletic, D.; Manglunki, D.; Manic, D.; Marchionni, A.; Marcinek, A.; Marin, V.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messina, M.; Mrówczyński, St.; Murphy, S.; Nakadaira, T.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A. D.; Paul, T.; Peryt, W.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Pluta, J.; Popov, B. A.; Posiadala, M.; Puławski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Rossi, B.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczyński, M.; Sadovsky, A.; Sakashita, K.; Savic, M.; Schmidt, K.; Sekiguchi, T.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Sipos, R.; Skrzypczak, E.; Słodkowski, M.; Sosin, Z.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Stroebele, H.; Susa, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarz, A.; Wyszyński, O.; Zambelli, L.; Zipper, W.
2014-06-01
NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility — the beams and the detector system — before the CERN Long Shutdown I, which started in March 2013.
Physics opportunities with meson beams
Briscoe, William J.; Doring, Michael; Haberzettl, Helmut; ...
2015-10-20
Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledgemore » in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. Furthermore, the present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.« less
Physics opportunities with meson beams
NASA Astrophysics Data System (ADS)
Briscoe, William J.; Döring, Michael; Haberzettl, Helmut; Manley, D. Mark; Naruki, Megumi; Strakovsky, Igor I.; Swanson, Eric S.
2015-10-01
Over the past two decades, meson photo- and electroproduction data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even non-existent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state-of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.
The GEANT4 toolkit capability in the hadron therapy field: simulation of a transport beam line
NASA Astrophysics Data System (ADS)
Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Raffaele, L.; Russo, G.; Guatelli, S.; Pia, M. G.
2006-01-01
At Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare of Catania (Sicily, Italy), the first Italian hadron therapy facility named CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been realized. Inside CATANA 62 MeV proton beams, accelerated by a superconducting cyclotron, are used for the radiotherapeutic treatments of some types of ocular tumours. Therapy with hadron beams still represents a pioneer technique, and only a few centers worldwide can provide this advanced specialized cancer treatment. On the basis of the experience so far gained, and considering the future hadron-therapy facilities to be developed (Rinecker, Munich Germany, Heidelberg/GSI, Darmstadt, Germany, PSI Villigen, Switzerland, CNAO, Pavia, Italy, Centro di Adroterapia, Catania, Italy) we decided to develop a Monte Carlo application based on the GEANT4 toolkit, for the design, the realization and the optimization of a proton-therapy beam line. Another feature of our project is to provide a general tool able to study the interactions of hadrons with the human tissue and to test the analytical-based treatment planning systems actually used in the routine practice. All the typical elements of a hadron-therapy line, such as diffusers, range shifters, collimators and detectors were modelled. In particular, we simulated the Markus type ionization chamber and a Gaf Chromic film as dosimeters to reconstruct the depth (Bragg peak and Spread Out Bragg Peak) and lateral dose distributions, respectively. We validated our simulated detectors comparing the results with the experimental data available in our facility.
PREFACE: 5th DAE-BRNS Workshop on Hadron Physics (Hadron 2011)
NASA Astrophysics Data System (ADS)
Jyoti Roy, Bidyut; Chatterjee, A.; Kailas, S.
2012-07-01
The 5th DAE-BRNS Workshop on Hadron Physics was held at the Bhabha Atomic Research Centre (BARC), Mumbai from 31 October to 4 November 2011. This workshop series, supported by the Board of Research in Nuclear Sciences, Department of Atomic Energy (BRNS, DAE), Govt. of India, began ten years ago with the first one being held at BARC, Mumbai in October 2002. The second one was held at Puri in 2005, organized jointly by Institute of Physics, Bhubneswar and Saha Institute of Nuclear Physics, Kolkata. The 3rd and 4th ones took place, respectively, at Shantineketan in 2006, organized by Visva Bharati University, and at Aligarh in 2008, organized by Aligarh Muslim University, Aligarh. The aim of the present workshop was to bring together the experts and young researchers in the field of hadron physics (both experiment and theory) and to have in-depth discussions on the current research activities in this field. The format of the workshop was: a series of review lectures by various experts from India and abroad, the presentation of advanced research results by researchers in the field, and a review of major experimental programs being planned and pursued in major laboratories in the field of hadron physics, with the aim of providing a platform for the young participants for interaction with their peers. The upcoming international FAIR facility at GSI is a unique future facility for studies of hadron physics in the charm sector and hyper nuclear physics. The Indian hadron physics community is involved in this mega science project and is working with the PANDA collaboration on the development of detectors, simulation and software tools for the hadron physics programme with antiprotons at FAIR. A one-day discussion session was held at this workshop to discuss India-PANDA activities, the current collaboration status and the work plan. This volume presents the workshop proceedings consisting of lectures and seminars which were delivered during the workshop. We are thankful to the authors for giving us the manuscripts in good time. The workshop was financially supported by BRNS, DAE, GoI. We also received partial funding support from the India-FAIR coordination centre, Kolkata, for the organization of the India-PANDA discussion meeting. We acknowledge the financial support received from BRNS and DST (Department of Science and Technology). The assistance from various departments of BARC and the Homi Bhabha Centre for Science Education (HBCSE), TIFR is gratefully acknowledged. We also thank the members of the advisory committee and organizing committee and colleagues from NPD and Physics Group, BARC for their contributions. May 2012, Mumbai Bidyut Jyoti Roy A Chatterjee S Kailas Bhabha Atomic Research Centre Hadron 2011 photograph The PDF also contains a list of the workshop's committees and sponsors, photographs from the workshop and the programme of events.
NASA Astrophysics Data System (ADS)
Burkart, F.; Schmidt, R.; Raginel, V.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.
2015-08-01
In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam-matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical simulations are presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schadmand, Susan
2010-12-28
The WASA detector facility is an internal experiment at the COoler SYnchrotron COSY in Juelich, Germany. The COSY accelerator provides proton and deuteron beams with momenta up to 3.7 GeV/c giving access to hadron physics including the strange quark sector. The WASA-at-COSY physics program focuses on light meson decays where rare decays are used to scrutinize symmetries and symmetry breaking. The structure of hadrons is probed with transition form factors and hadron spectroscopy while hadron dynamics is studied via reaction dynamics and few body reactions. Goals and status are reported with special emphasis on the meson Dalitz decays.
Very large hadron collider (VLHC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future ofmore » US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.« less
Strong Interaction Studies with PANDA at FAIR
NASA Astrophysics Data System (ADS)
Schönning, Karin
2016-10-01
The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme.
Orecchia, Roberto; Fossati, Piero; Rossi, Sandro
2009-01-01
Hadron therapy is an advanced radiotherapy technique that employs charged particle beams. Several particles (pions, oxygen, neon and helium ions) have been investigated in the past, but at present only protons and carbon ions are used in clinical practice. Hadron therapy has been used for more than 50 years, more than 50,000 patients have been treated worldwide, and many new facilities are being built. Indications are still a matter of debate. The Italian National Center for Oncological Hadron Therapy (CNAO) is under construction in Pavia and will begin to treat patients in the near future. The CNAO will be a center capable of using both protons and carbon ions. In the first phase, three rooms with vertical and horizontal fixed beams will be available, subsequently the center will be upgraded with two more rooms equipped with a rotating gantry. The facility will use active scanning delivery systems and state-of-the-art immobilization and setup verification devices. One additional room will be devoted to physical and radiobiological research. The CNAO will be a high-patient-throughput facility capable of treating more than 3,000 patients per year. Seven areas of interest have been identified: lung cancer, liver cancer, head and neck malignancies, pediatric solid cancers, eye tumors, sarcoma and central nervous system cancers. A disease-specific working group has been created for each area and has defined selection criteria and protocols to be used at the CNAO. Two more working groups are being set up on gynecological and digestive (pancreas, biliary tract and rectum) tumors. All the patients will participate in clinical trials to establish with sound evidence the real indications for hadron therapy. National and international cooperation networks are being set up to facilitate patient referral and follow-up. A medical service is already operative to assist patients and in selected case to refer them abroad. The CNAO will be the only carbon ion facility in Italy and will have an international basin. Close cooperation with existing oncological centers is of paramount importance to fully exploit its potential.
Test of Hadronic Interaction Models with the KASCADE Hadron Calorimeter
NASA Astrophysics Data System (ADS)
Milke, J.; KASCADE Collaboration
The interpretation of extensive air shower (EAS) measurements often requires the comparison with EAS simulations based on high-energy hadronic interaction models. These interaction models have to extrapolate into kinematical regions and energy ranges beyond the limit of present accelerators. Therefore, it is necessary to test whether these models are able to describe the EAS development in a consistent way. By measuring simultaneously the hadronic, electromagnetic, and muonic part of an EAS the experiment KASCADE offers best facilities for checking the models. For the EAS simulations the program CORSIKA with several hadronic event generators implemented is used. Different hadronic observables, e.g. hadron number, energy spectrum, lateral distribution, are investigated, as well as their correlations with the electromagnetic and muonic shower size. By comparing measurements and simulations the consistency of the description of the EAS development is checked. First results with the new interaction model NEXUS and the version II.5 of the model DPMJET, recently included in CORSIKA, are presented and compared with QGSJET simulations.
Thomas Jefferson National Accelerator Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh
The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. Themore » technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.« less
Physics Program at COSY-Juelich with Polarized Hadronic Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kacharava, Andro
2009-08-04
Hadron physics aims at a fundamental understanding of all particles and their interactions that are subject to the strong force. Experiments using hadronic probes could contribute to shed light on open questions on the structure of hadrons and their interaction as well as the symmetries of nature. The COoler SYnchrotron COSY at the Forschungszentrum Juelich accelerates protons and deuterons with momenta up to 3.7 GeV/c. The availability of both an electron cooler as well as a stochastic beam cooling system allows for precision measurements, using polarized proton and deuteron beams in combination with polarized Hydrogen or Deuterium targets.This contribution summarizesmore » the ongoing physics program at the COSY facility using ANKE, WASA and TOF detector systems with polarized hadronic probes, highlighting recent results and outlining the new developments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkart, F.; Schmidt, R.; Wollmann, D.
2015-08-07
In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam–matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existencemore » of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical simulations are presented in this paper.« less
Research and Development of Wires and Cables for High-Field Accelerator Magnets
Barzi, Emanuela; Zlobin, Alexander V.
2016-02-18
The latest strategic plans for High Energy Physics endorse steadfast superconducting magnet technology R&D for future Energy Frontier Facilities. This includes 10 to 16 T Nb3Sn accelerator magnets for the luminosity upgrades of the Large Hadron Collider and eventually for a future 100 TeV scale proton-protonmore » $(pp)$ collider. This paper describes the multi-decade R&D investment in the $$Nb_3Sn$$ superconductor technology, which was crucial to produce the first reproducible 10 to 12 T accelerator-quality dipoles and quadrupoles, as well as their scale-up. We also indicate prospective research areas in superconducting $$Nb_3Sn$$ wires and cables to achieve the next goals for superconducting accelerator magnets. Emphasis is on increasing performance and decreasing costs while pushing the $$Nb_3Sn$$ technology to its limits for future $pp$ colliders.« less
Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryne, Robert D.
2006-08-10
Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less
NASA Astrophysics Data System (ADS)
Ryne, Robert D.
2006-09-01
Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.
Jefferson Lab Science: Present and Future
McKeown, Robert D.
2015-02-12
The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.
The Science and Experimental Equipment for the 12 GeV Upgrade of CEBAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arrington, John; Bernstein, Aron; Brooks, William
2005-01-10
This Conceptual Design Report (CDR) presents the compelling scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab to 12 GeV. Such a facility will make profound contributions to the study of hadronic matter.
NASA Astrophysics Data System (ADS)
Kolomeitsev, E. E.; Toneev, V. D.; Voronyuk, V.
2018-06-01
We study the formation of fluid vorticity and the hyperon polarization in heavy-ion collisions at energies available at the JINR Nuclotron-based Ion Collider fAcility in the framework of the parton-hadron-string dynamic model, taking into account both hadronic and quark-gluonic (partonic) degrees of freedom. The vorticity properties in peripheral Au+Au collisions at √{sN N}=7.7 GeV are demonstrated and confronted with other models. The obtained result for the Λ polarization is in agreement with the experimental data by the STAR Collaboration, whereas the model is not able to explain the observed high values of the antihyperon Λ ¯ polarization.
OPENMED: A facility for biomedical experiments based on the CERN Low Energy Ion Ring (LEIR)
NASA Astrophysics Data System (ADS)
Carli, Christian
At present protons and carbon ions are in clinical use for hadron therapy at a growing number of treatment centers all over the world. Nevertheless, only limited direct clinical evidence of their superiority over other forms of radiotherapy is available [1]. Furthermore fundamental studies on biological effects of hadron beams have been carried out at different times (some a long time ago) in different laboratories and under different conditions. Despite an increased availability of ion beams for hadron therapy, beam time for preclinical studies is expected to remain insufficient as the priority for therapy centers is to treat the maximum number of patients. Most of the remaining beam time is expected to be required for setting up and measurements to guarantee appropriate good quality beams for treatments. The proposed facility for biomedical research [2] in support of hadron therapy centers would provide ion beams for interested research groups and allow them to carry out basic studies under well defined conditions. Typical studies would include radiobiological phenomena like relative biological effectiveness with different energies, ion species, and intensities. Furthermore possible studies include the development of advanced dosimetry in heterogeneous materials that resemble the human body, imaging techniques and, at a later stage, when the maximum energy with the LEIR magnets can be reached, fragmentation.
NASA Astrophysics Data System (ADS)
Bilki, Burak
2018-03-01
The Particle Flow Algorithms attempt to measure each particle in a hadronic jet individually, using the detector providing the best energy/momentum resolution. Therefore, the spatial segmentation of the calorimeter plays a crucial role. In this context, the CALICE Collaboration developed the Digital Hadron Calorimeter. The Digital Hadron Calorimeter uses Resistive Plate Chambers as active media and has a 1-bit resolution (digital) readout of 1 × 1 cm2 pads. The calorimeter was tested with steel and tungsten absorber structures, as well as with no absorber structure, at the Fermilab and CERN test beam facilities over several years. In addition to conventional calorimetric measurements, the Digital Hadron Calorimeter offers detailed measurements of event shapes, rigorous tests of simulation models and various tools for improved performance due to its very high spatial granularity. Here we report on the results from the analysis of pion and positron events. Results of comparisons with the Monte Carlo simulations are also discussed. The analysis demonstrates the unique utilization of detailed event topologies.
NASA Astrophysics Data System (ADS)
Belyaev, N.; Cherry, M. L.; Doronin, S. A.; Filippov, K.; Fusco, P.; Konovalov, S.; Krasnopevtsev, D.; Kramarenko, V.; Loparco, F.; Mazziotta, M. N.; Ponomarenko, D.; Pyatiizbyantseva, D.; Radomskii, R.; Rembser, C.; Romaniouk, A.; Savchenko, A.; Shulga, E.; Smirnov, S.; Smirnov, Yu; Sosnovtsev, V.; Spinelli, P.; Teterin, P.; Tikhomirov, V.; Vorobev, K.; Zhukov, K.
2017-12-01
Measurements of hadron production in the TeV energy range are one of the tasks of the future studies at the Large Hadron Collider (LHC). The main goal of these experiments is a study of the fundamental QCD processes at this energy range, which is very important not only for probing of the Standard Model but also for ultrahigh-energy cosmic particle physics. One of the key elements of these experiments measurements are hadron identification. The only detector technology which has a potential ability to separate hadrons in this energy range is Transition Radiation Detector (TRD) technology. TRD prototype based on straw proportional chambers combined with a specially assembled radiator has been tested at the CERN SPS accelerator beam. The test beam results and comparison with detailed Monte Carlo simulations are presented here.
About Separation of Hadron and Electromagnetic Cascades in the Pamela Calorimeter
NASA Astrophysics Data System (ADS)
Stozhkov, Yuri I.; Basili, A.; Bencardino, R.; Casolino, M.; de Pascale, M. P.; Furano, G.; Menicucci, A.; Minori, M.; Morselli, A.; Picozza, P.; Sparvoli, R.; Wischnewski, R.; Bakaldin, A.; Galper, A. M.; Koldashov, S. V.; Korotkov, M. G.; Mikhailov, V. V.; Voronov, S. A.; Yurkin, Y. T.; Adriani, O.; Bonechi, L.; Bongi, M.; Papini, P.; Ricciarini, S. B.; Spillantini, P.; Straulino, S.; Taccetti, F.; Vannuccini, E.; Castellini, G.; Boezio, M.; Bonvicini, M.; Mocchiutti, E.; Schiavon, P.; Vacchi, A.; Zampa, G.; Zampa, N.; Carlson, P.; Lund, J.; Lundquist, J.; Orsi, S.; Pearce, M.; Barbarino, G. C.; Campana, D.; Osteria, G.; Rossi, G.; Russo, S.; Boscherini, M.; Mennh, W.; Simonh, M.; Bongiorno, L.; Ricci, M.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Mirizzi, N.; Romita, M.; Spinelli, P.; Bogomolov, E.; Krutkov, S.; Vasiljev, G.; Bazilevskaya, G. A.; Kvashnin, A. N.; Logachev, V. I.; Makhmutov, V. S.; Maksumov, O. S.; Stozhkov, Yu. I.; Mitchell, J. W.; Streitmatter, R. E.; Stochaj, S. J.
Results of calibration of the PAMELA instrument at the CERN facilities are discussed. In September, 2003, the calibration of the Neutron Detector together with the Calorimeter was performed with the CERN beams of electrons and protons with energies of 20 - 180 GeV. The implementation of the Neutron Detector increases a rejection factor of hadrons from electrons about ten times. The results of calibration are in agreement with calculations.
NASA Astrophysics Data System (ADS)
Abazov, Victor; Alexeev, Gennady; Alexeev, Maxim; Frolov, Vladimir; Golovanov, Georgy; Kutuzov, Sergey; Piskun, Alexei; Samartsev, Alexander; Tokmenin, Valeri; Verkheev, Alexander; Vertogradov, Leonid; Zhuravlev, Nikolai
2018-04-01
The
Accelerators for Cancer Therapy
DOE R&D Accomplishments Database
Lennox, Arlene J.
2000-05-30
The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.
NASA Astrophysics Data System (ADS)
Batyuk, P.; Blaschke, D.; Bleicher, M.; Ivanov, Yu. B.; Karpenko, Iu.; Merts, S.; Nahrgang, M.; Petersen, H.; Rogachevsky, O.
2016-10-01
We present an event generator based on the three-fluid hydrodynamics approach for the early stage of the collision, followed by a particlization at the hydrodynamic decoupling surface to join to a microscopic transport model, ultrarelativistic quantum molecular dynamics, to account for hadronic final-state interactions. We present first results for nuclear collisions of the Facility for Antiproton and Ion Research-Nuclotron-based Ion Collider Facility energy scan program (Au+Au collisions, √{sN N}=4 -11 GeV ). We address the directed flow of protons and pions as well as the proton rapidity distribution for two model equations of state, one with a first-order phase transition and the other with a crossover-type softening at high densities. The new simulation program has the unique feature that it can describe a hadron-to-quark matter transition which proceeds in the baryon stopping regime that is not accessible to previous simulation programs designed for higher energies.
FAIR - Cosmic Matter in the Laboratory
NASA Astrophysics Data System (ADS)
Stöcker, Horst; Stöhlker, Thomas; Sturm, Christian
2015-06-01
To explore cosmic matter in the laboratory - this fascinating research prospect becomes available at the Facility for Antiproton and Ion Research, FAIR. The new facility is being constructed within the next five years adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt/Germany, expanding the research goals and technical possibilities substantially. This includes new insights into the dynamics of supernovae depending on the properties of short-lived neutron-rich nuclei which will be investigated with intense rare isotope beams. New insights will be provided into the interior of stars by exploring dense plasmas with intense heavy-ion beams combined with a high-performance laser - or into neutron star cores by probing the highest baryon densities in relativistic nucleus-nucleus collisions at unprecedented collision rates. To the latter, the properties of hadrons play an important part which will be systematically studied by high precision hadron spectroscopy with antiproton beams at unmatched intensities. The worldwide unique accelerator and experimental facilities of FAIR will open the way for a broad spectrum of unprecedented fore-front research supplying a large variety of experiments in hadron, nuclear, atomic and plasma physics as well as biomedical and material science which will be briefly described in this article. This article is based on the FAIR Green Paper [4] and gives an update of former publications [5] - [12].
Design and performance studies of a hadronic calorimeter for a FCC-hh experiment
NASA Astrophysics Data System (ADS)
Faltova, J.
2018-03-01
The hadron-hadron Future Circular Collider (FCC-hh) project studies the physics reach of a proton-proton machine with a centre-of-mass-energy of 100 TeV and five times greater peak luminosities than at the High-Luminosity LHC (HL-LHC). The high-energy regime of the FCC-hh opens new opportunities for the discovery of physics beyond the standard model. At 100 TeV a large fraction of the W, Z, H bosons and top quarks are produced with a significant boost. It implies an efficient reconstruction of very high energetic objects decaying hadronically. The reconstruction of those boosted objects sets the calorimeter performance requirements in terms of energy resolution, containment of highly energetic hadron showers, and high transverse granularity. We present the current baseline technologies for the calorimeter system in the barrel region of the FCC-hh reference detector: a liquid argon electromagnetic and a scintillator-steel hadronic calorimeters. The focus of this paper is on the hadronic calorimeter and the performance studies for hadrons. The reconstruction of single particles and the achieved energy resolution for the combined system of the electromagnetic and hadronic calorimeters are discussed.
Latest results and perspectives of the KASCADE-Grande EAS Facility
NASA Astrophysics Data System (ADS)
Haungs, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2012-01-01
KASCADE-Grande is a multi-detector experiment at KIT (Karlsruhe Institute of Technology) in Germany for measuring extensive air showers in the primary energy range of 100 TeV to 1 EeV. This paper does not provide a synopsis of all results of the KASCADE-Grande experiment. Rather it is focused on three aspects of current interests illustrating the advantages of a multi-detector facility. Results on the analysis of individual energy spectra of primary mass groups around the knee obtained by unfolding the shower size measurements of KASCADE with the help of the new hadronic interaction model EPOS and the all-particle energy spectrum at higher energies obtained by Grande measurements will be discussed. As KASCADE-Grande serves also as host of the LOPES radio detection experiment where both experiments measure the same showers, special emphasis will be given in comparing the characteristics and feasibility of both techniques in estimating the main parameters of high-energy primary cosmic rays: energy, composition, and arrival direction.
NASA Astrophysics Data System (ADS)
Muto, Ryotaro; Agari, Keizo; Aoki, Kazuya; Bessho, Kotaro; Hagiwara, Masayuki; Hirose, Erina; Ieiri, Masaharu; Iwasaki, Ruri; Katoh, Yohji; Kitagawa, Jun-ichi; Minakawa, Michifumi; Morino, Yuhei; Saito, Kiwamu; Sato, Yoshinori; Sawada, Shin'ya; Shirakabe, Yoshihisa; Suzuki, Yoshihiro; Takahashi, Hitoshi; Tanaka, Kazuhiro; Toyoda, Akihisa; Watanabe, Hiroaki; Yamanoi, Yutaka
2017-09-01
At the Hadron Experimental Facility in J-PARC, we inject a 30-GeV proton beam into a gold target to produce secondary particle beams required for various particle and nuclear physics experiments. The gold target is placed in a hermetic chamber, and helium gas is circulated in the chamber to monitor the soundness of the target. The radioactivity in helium gas is continuously monitored by gamma-ray detectors such as a germanium detector and a NaI(Tl) detector. Beam operations with those target-monitoring systems were successfully performed from April to June and October to December 2015, and from May to June 2016. In this paper, the details of the helium gas circulation system and gamma-ray detectors and the analysis results of the obtained gamma-ray spectra are reported.
Status of hadron therapy in Europe and the role of ENLIGHT
NASA Astrophysics Data System (ADS)
Dosanjh, Manjit; Hoffmann, Hans Falk; Magrin, Giulio
2007-02-01
Cancer is a major social problem, and it is the main cause of death between the ages 45-65 years. In the treatment of cancer, radio therapy (RT) plays an essential role. RT with hadrons (protons and light ions), due to their unique physical and radiobiological properties, offers several advantages over photons. In particular, they penetrate the patient with minimal diffusion, they deposit maximum energy at the end of their range, and they can be shaped as narrow focused and scanned pencil beams of variable penetration depth. Hadron beams allow highly conformal treatment (where the beam conforms to the shape of the tumour) of deep-seated tumours with great accuracy, while delivering minimal doses to surrounding tissues. Hadron therapy, thus, has great prospects for being used in early stages of tumour disease not amenable to surgery. It is likely that, besides its more impressive effect on radio-resistant tumours, post-treatment morbidity will be lower in patients treated with hadrons due to the lower dose and toxicity to normal tissues. Visionary physicist and founder of Fermilab, Robert Wilson first proposed the use of hadrons for cancer treatment in 1946. This idea was first put into practise at the Lawrence Berkeley Laboratory (LBL) where 30 patients were treated with protons between 1954 and 1957. Since then the total number of patients treated with hadrons in the world now exceeds 50,000, of which 5000 new patients were treated last year. Several dedicated hospital-based centres with significant capacity for treating patients are now taking the place of the first R&D facilities hosted by the Physics Research Laboratories (e.g. LBL, GSI). Europe is playing a key role in the advancement of light ion therapy facilities with five financed centres using actively scanned carbon ions (of which two are already under construction in Heidelberg and Pavia) and several proton therapy centres which will become operational soon. In the US, three proton therapy centres are running and four more are under construction. In Japan two carbon ion and four proton centres are running and, in the Far East, also Korea and China are investing in hospital-based hadron therapy centres. The European Network for Research in Light-ion Hadron Therapy (ENLIGHT) was established in 2002 to co-ordinate European efforts in radiation therapy using light-ion beams. ENLIGHT has been instrumental in bringing together different European centres to promote hadron therapy, in particular with carbon ions. ENLIGHT created a multidisciplinary platform, uniting traditionally separate communities so that clinicians, physicists, biologists and engineers with experience in ions work together. The success of the network has encouraged the scientific community to promote more inclusive collaboration between the researchers and regional activities and to enlarge the collaboration to include the proton community. Hence, ENLIGHT++ continues the vision started by ENLIGHT.
NASA Astrophysics Data System (ADS)
Pinsky, Lawrence; Stoffle, Nicholas; Jakubek, Jan; Pospisil, Stanislav; Leroy, Claude; Gutierrez, Andrea; Kitamura, Hisashi; Yasuda, Nakahiro; Uchihori, Yulio
2011-02-01
The Medipix2 Collaboration, based at CERN, has developed the TimePix version of the Medipix pixel readout chip, which has the ability to provide either an ADC or TDC capability separately in each of its 256×256 pixels. When coupled to a Si detector layer, the device is an excellent candidate for application as an active dosimeter for use in space radiation environments. In order to facilitate such a development, data have been taken with heavy ions at the HIMAC facility in Chiba, Japan. In particular, the problem of determining the resolution of such a detector system with respect to heavy ions of differing charges and energies, but with similar d E/d x values has been explored for several ions. The ultimate problem is to parse the information in the pixel "footprint" images from the drift of the charge cloud produced in the detector layer. In addition, with the use of convertor materials, the detector can be used as a neutron detector, and it has been used both as a charged particle and neutron detector to evaluate the detailed properties of the radiation fields produced by hadron therapy beams. New versions of the basic chip design are ongoing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syphers, M. J.; Chattopadhyay, S.
An overview is provided of the currently envisaged landscape of charged particle accelerators at the energy and intensity frontiers to explore particle physics beyond the standard model via 1-100 TeV-scale lepton and hadron colliders and multi-Megawatt proton accelerators for short- and long- baseline neutrino experiments. The particle beam physics, associated technological challenges and progress to date for these accelerator facilities (LHC, HL-LHC, future 100 TeV p-p colliders, Tev-scale linear and circular electron-positron colliders, high intensity proton accelerator complex PIP-II for DUNE and future upgrade to PIP-III) are outlined. Potential and prospects for advanced “nonlinear dynamic techniques” at the multi-MW levelmore » intensity frontier and advanced “plasma- wakefield-based techniques” at the TeV-scale energy frontier and are also described.« less
The PANDA DIRC detectors at FAIR
NASA Astrophysics Data System (ADS)
Schwarz, C.; Ali, A.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kreutzfeld, K.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Wasem, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.; Allison, L.; Hyde, C.
2017-07-01
The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. An excellent hadronic particle identification (PID) will be accomplished by two DIRC (Detection of Internally Reflected Cherenkov light) counters in the target spectrometer. The design for the barrel region covering polar angles between 22o to 140o is based on the successful BABAR DIRC with several key improvements, such as fast photon timing and a compact imaging region. The novel Endcap Disc DIRC will cover the smaller forward angles between 5o (10o) to 22o in the vertical (horizontal) direction. Both DIRC counters will use lifetime-enhanced microchannel plate PMTs for photon detection in combination with fast readout electronics. Geant4 simulations and tests with several prototypes at various beam facilities have been used to evaluate the designs and validate the expected PID performance of both PANDA DIRC counters.
Design study for a staged Very Large Hadron Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter J. Limon et al.
Advancing accelerator designs and technology to achieve the highest energies has enabled remarkable discoveries in particle physics. This report presents the results of a design study for a new collider at Fermilab that will create exceptional opportunities for particle physics--a two-stage very large hadron collider. In its first stage, the machine provides a facility for energy-frontier particle physics research, at an affordable cost and on a reasonable time scale. In a second-stage upgrade in the same tunnel, the VLHC offers the possibility of reaching 100 times the collision energy of the Tevatron. The existing Fermilab accelerator complex serves as themore » injector, and the collision halls are on the Fermilab site. The Stage-1 VLHC reaches a collision energy of 40 TeV and a luminosity comparable to that of the LHC, using robust superferric magnets of elegant simplicity housed in a large-circumference tunnel. The Stage-2 VLHC, constructed after the scientific potential of the first stage has been fully realized, reaches a collision energy of at least 175 TeV with the installation of high-field magnets in the same tunnel. It makes optimal use of the infrastructure developed for the Stage-1 machine, using the Stage-1 accelerator itself as the injector. The goals of this study, commissioned by the Fermilab Director in November 2000, are: to create reasonable designs for the Stage-1 and Stage-2 VLHC in the same tunnel; to discover the technical challenges and potential impediments to building such a facility at Fermilab; to determine the approximate costs of the major elements of the Stage-1 VLHC; and to identify areas requiring significant R and D to establish the basis for the design.« less
Energy reconstruction of hadrons in highly granular combined ECAL and HCAL systems
NASA Astrophysics Data System (ADS)
Israeli, Y.
2018-05-01
This paper discusses the hadronic energy reconstruction of two combined electromagnetic and hadronic calorimeter systems using physics prototypes of the CALICE collaboration: the silicon-tungsten electromagnetic calorimeter (Si-W ECAL) and the scintillator-SiPM based analog hadron calorimeter (AHCAL); and the scintillator-tungsten electromagnetic calorimeter (ScECAL) and the AHCAL. These systems were operated in hadron beams at CERN and FNAL, permitting the study of the performance in combined ECAL and HCAL systems. Two techniques for the energy reconstruction are used, a standard reconstruction based on calibrated sub-detector energy sums, and one based on a software compensation algorithm making use of the local energy density information provided by the high granularity of the detectors. The software compensation-based algorithm improves the hadronic energy resolution by up to 30% compared to the standard reconstruction. The combined system data show comparable energy resolutions to the one achieved for data with showers starting only in the AHCAL and therefore demonstrate the success of the inter-calibration of the different sub-systems, despite of their different geometries and different readout technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugh, H.G.
1984-07-01
This paper presents current ideas from Berkeley concerning a possible new facility for studying the phase transition from hadronic matter to quark matter. The physics ideas have evolved over a period of more than five years, the VENUS concept for a 25 GeV/nucleon colliding beam facility having been presented in 1979. The concept for the Minicollider has been, like that of VENUS, the work of Hermann Grunder and Christoph Leemann.
Resonance Production in Heavy-Ion Collisions
NASA Astrophysics Data System (ADS)
Knospe, Anders G.
2018-02-01
Hadronic resonances are unique probes that allow the properties of heavyion collisions to be studied. Topics that can be studied include modification of spectral shapes, in-medium energy loss of parsons, vector-meson spin alignment, hydrodynamic flow, recombination, strangeness production, and the properties of the hadronic phase. Measurements of resonances in p+p, p+A, and d+A collisions serve as baselines for heavy-ion studies and also permit searches for possible collective effects in these smaller systems. These proceedings present a selection of results related to these topics from experiments at RHIC, LHC, and other facilities, as well as comparisons to theoretical models.
Highlights in light-baryon spectroscopy and searches for gluonic excitations
NASA Astrophysics Data System (ADS)
Crede, Volker
2016-01-01
The spectrum of excited hadrons - mesons and baryons - serves as an excellent probe of quantum chromodynamics (QCD), the fundamental theory of the strong interaction. The strong coupling however makes QCD challenging. It confines quarks and breaks chiral symmetry, thus providing us with the world of light hadrons. Highly-excited hadronic states are sensitive to the details of quark confinement, which is only poorly understood within QCD. This is the regime of non-perturbative QCD and it is one of the key issues in hadronic physics to identify the corresponding internal degrees of freedom and how they relate to strong coupling QCD. The quark model suggests mesons are made of a constituent quark and an antiquark and baryons consist of three such quarks. QCD predicts other forms of matter. What is the role of glue? Resonances with large gluonic components are predicted as bound states by QCD. The lightest hybrid mesons with exotic quantum numbers are estimated to have masses in the range from 1 to 2 GeV/c2 and are well in reach of current experimental programs. At Jefferson Laboratory (JLab) and other facilities worldwide, the high-energy electron and photon beams present a remarkably clean probe of hadronic matter, providing an excellent microscope for examining atomic nuclei and the strong nuclear force.
Towards future circular colliders
NASA Astrophysics Data System (ADS)
Benedikt, Michael; Zimmermann, Frank
2016-09-01
The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.
The large-area hybrid-optics RICH detector for the CLAS12 spectrometer
Mirazita, M.; Angelini, G.; Balossino, I.; ...
2017-01-16
A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forwardmore » tracks) or after two mirror reflections (large angle tracks). Finally, the preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here.« less
Proceedings of the workshop on B physics at hadron accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, P.; Mishra, C.S.
1993-12-31
This report contains papers on the following topics: Measurement of Angle {alpha}; Measurement of Angle {beta}; Measurement of Angle {gamma}; Other B Physics; Theory of Heavy Flavors; Charged Particle Tracking and Vertexing; e and {gamma} Detection; Muon Detection; Hadron ID; Electronics, DAQ, and Computing; and Machine Detector Interface. Selected papers have been indexed separately for inclusion the in Energy Science and Technology Database.
The bar{P}ANDA Experiment at FAIR — Subatomic Physics with Antiprotons
NASA Astrophysics Data System (ADS)
Messchendorp, Johan
The non-perturbative nature of the strong interaction leads to spectacular phenomena, such as the formation of hadronic matter, color confinement, and the generation of the mass of visible matter. To get deeper insight into the underlying mechanisms remains one of the most challenging tasks within the field of subatomic physics. The antiProton ANnihilations at DArmstadt (bar{P}ANDA) collaboration has the ambition to address key questions in this field by exploiting a cooled beam of antiprotons at the High Energy Storage Ring (HESR) at the future Facility for Antiproton and Ion Research (FAIR) combined with a state-of-the-art and versatile detector. This contribution will address some of the unique features of bar{P}ANDA that give rise to a promising physics program together with state-of-the-art technological developments.
Medical Applications at CERN and the ENLIGHT Network
Dosanjh, Manjit; Cirilli, Manuela; Myers, Steve; Navin, Sparsh
2016-01-01
State-of-the-art techniques derived from particle accelerators, detectors, and physics computing are routinely used in clinical practice and medical research centers: from imaging technologies to dedicated accelerators for cancer therapy and nuclear medicine, simulations, and data analytics. Principles of particle physics themselves are the foundation of a cutting edge radiotherapy technique for cancer treatment: hadron therapy. This article is an overview of the involvement of CERN, the European Organization for Nuclear Research, in medical applications, with specific focus on hadron therapy. It also presents the history, achievements, and future scientific goals of the European Network for Light Ion Hadron Therapy, whose co-ordination office is at CERN. PMID:26835422
Medical Applications at CERN and the ENLIGHT Network.
Dosanjh, Manjit; Cirilli, Manuela; Myers, Steve; Navin, Sparsh
2016-01-01
State-of-the-art techniques derived from particle accelerators, detectors, and physics computing are routinely used in clinical practice and medical research centers: from imaging technologies to dedicated accelerators for cancer therapy and nuclear medicine, simulations, and data analytics. Principles of particle physics themselves are the foundation of a cutting edge radiotherapy technique for cancer treatment: hadron therapy. This article is an overview of the involvement of CERN, the European Organization for Nuclear Research, in medical applications, with specific focus on hadron therapy. It also presents the history, achievements, and future scientific goals of the European Network for Light Ion Hadron Therapy, whose co-ordination office is at CERN.
Vanderstraeten, Barbara; Verstraete, Jan; De Croock, Roger; De Neve, Wilfried; Lievens, Yolande
2014-05-01
To determine the treatment cost and required reimbursement for a new hadron therapy facility, considering different technical solutions and financing methods. The 3 technical solutions analyzed are a carbon only (COC), proton only (POC), and combined (CC) center, each operating 2 treatment rooms and assumed to function at full capacity. A business model defines the required reimbursement and analyzes the financial implications of setting up a facility over time; activity-based costing (ABC) calculates the treatment costs per type of patient for a center in a steady state of operation. Both models compare a private, full-cost approach with public sponsoring, only taking into account operational costs. Yearly operational costs range between €10.0M (M = million) for a publicly sponsored POC to €24.8M for a CC with private financing. Disregarding inflation, the average treatment cost calculated with ABC (COC: €29,450; POC: €46,342; CC: €46,443 for private financing; respectively €16,059, €28,296, and €23,956 for public sponsoring) is slightly lower than the required reimbursement based on the business model (between €51,200 in a privately funded POC and €18,400 in COC with public sponsoring). Reimbursement for privately financed centers is very sensitive to a delay in commissioning and to the interest rate. Higher throughput and hypofractionation have a positive impact on the treatment costs. Both calculation methods are valid and complementary. The financially most attractive option of a publicly sponsored COC should be balanced to the clinical necessities and the sociopolitical context. Copyright © 2014 Elsevier Inc. All rights reserved.
Particle identification for a future EIC detector
NASA Astrophysics Data System (ADS)
Ilieva, Y.; Allison, L.; Barber, C.; Cao, T.; Del Dotto, A.; Gleason, C.; He, X.; Kalicy, G.; McKisson, J.; Nadel-Turonski, P.; Park, K.; Rapoport, J.; Schwarz, C.; Schwiening, J.; Wong, C. P.; Zhao, Zh.; Zorn, C.
2018-03-01
In its latest Long Range Plan for Nuclear Science Research in the U.S., the Nuclear Science Advisory Committee to the Department of Energy recommended that in regards to new nuclear-physics facilities, the construction of an Electron Ion Collider (EIC) be of the highest priority after the completion of the Facility for Rare Isotope Beams. In order to carry out key aspects of the scientific program of the EIC, the EIC central detector must be capable of hadron particle identification (PID) over a broad momentum range of up to 50 GeV/c. The goal of the EIC-PID consortium is to develop an integrated program for PID at EIC, which employs several different technologies for imaging Cherenkov detectors. Here we discuss the conceptual designs and the expected PID performance of two of these detectors, as well as the newest results of gain evaluation studies of photon sensors that are good candidates to read out these detectors. Development of a gas-aerogel dual-radiator Ring Imaging Cherenkov (dRICH) detector with outward focusing mirrors is being pursued for the hadron endcap. Simulations demonstrate that the dRICH can provide a continuous >= 3σ π /K/p separation from 2.5 GeV/c to 50 GeV/c. A modular aerogel Ring Imaging Cherenkov (mRICH) detector with a Fresnel lens as a focusing element is being pursued for the electron endcap. The design provides for hadron identification over a momentum range of 3 GeV/c-10 GeV/c. The working principle of the mRICH design has been proven in a beam test with a first prototype. The location of the sensor readout planes of the Cherenkov detectors in the magnetic field of the central-detector solenoid, which is expected to be within 1.5 T-3 T, makes is necessary to evaluate the limit of the acceptable performance of commercially available photosensors, such as microchannel-plate photomultipliers (MCP PMTs). Here we present the results of gain evaluation of multi-anode MCP PMTs with a pore size of 10 μm. Overall, our preliminary results suggest that the 10-μm pore-size sensors can be operated in a magnetic field with magnitude up to Bmax of 2 T. The value of Bmax depends on the relative orientation between the sensor and the field.
MICROROC: MICRO-mesh gaseous structure Read-Out Chip
NASA Astrophysics Data System (ADS)
Adloff, C.; Blaha, J.; Chefdeville, M.; Dalmaz, A.; Drancourt, C.; Dulucq, F.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Jacquemier, J.; Karyotakis, Y.; Martin-Chassard, G.; Prast, J.; Seguin-Moreau, N.; de La Taille, Ch; Vouters, G.
2012-01-01
MICRO MEsh GAseous Structure (MICROMEGAS) and Gas Electron Multipliers (GEM) detectors are two candidates for the active medium of a Digital Hadronic CALorimeter (DHCAL) as part of a high energy physics experiment at a future linear collider (ILC/CLIC). Physics requirements lead to a highly granular hadronic calorimeter with up to thirty million channels with probably only hit information (digital readout calorimeter). To validate the concept of digital hadronic calorimetry with such small cell size, the construction and test of a cubic meter technological prototype, made of 40 planes of one square meter each, is necessary. This technological prototype would contain about 400 000 electronic channels, thus requiring the development of front-end ASIC. Based on the experience gained with previous ASIC that were mounted on detectors and tested in particle beams, a new ASIC called MICROROC has been developped. This paper summarizes the caracterisation campaign that was conducted on this new chip as well as its integration into a large area Micromegas chamber of one square meter.
Future hadron colliders: From physics perspectives to technology R&D
NASA Astrophysics Data System (ADS)
Barletta, William; Battaglia, Marco; Klute, Markus; Mangano, Michelangelo; Prestemon, Soren; Rossi, Lucio; Skands, Peter
2014-11-01
High energy hadron colliders have been instrumental to discoveries in particle physics at the energy frontier and their role as discovery machines will remain unchallenged for the foreseeable future. The full exploitation of the LHC is now the highest priority of the energy frontier collider program. This includes the high luminosity LHC project which is made possible by a successful technology-readiness program for Nb3Sn superconductor and magnet engineering based on long-term high-field magnet R&D programs. These programs open the path towards collisions with luminosity of 5×1034 cm-2 s-1 and represents the foundation to consider future proton colliders of higher energies. This paper discusses physics requirements, experimental conditions, technological aspects and design challenges for the development towards proton colliders of increasing energy and luminosity.
NASA Astrophysics Data System (ADS)
Balossino, Ilaria; Barion, L.; Contalbrigo, M.; Lenisa, P.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Movsisyan, A.; Squerzanti, S.; Turisini, M.
2017-12-01
A large area ring-imaging Cherenkov detector will be operated for hadron identification in the 3 GeV / c to 8 GeV / c momentum range at the CLAS12 experiment at the upgraded continuous electron beam accelerator facility of Jefferson Lab. The detector, consisting of aerogel radiator, composite mirrors and photon counters, will be built with a hybrid optics design to allow the detection of Cherenkov light for both forward and large angle hadron tracks. The active area has to be densely packed and highly segmented, covering about 1m2 with pixels of 6mm2 , and to allow a time resolution of 1 ns. A technology that can offer a cost-effective solution and low material budget could be Silicon Photomultipliers (SiPM) thanks to their high gain at low bias voltage, fast timing, good single-photoelectron resolution and insensitivity to magnetic fields. An investigation is ongoing on samples of 3 × 3mm2 SiPM of different micro-cell size to assess the single photon detection capability in the presence of high dark count rate due to thermal generation effects, after-pulses or optical cross-talk and to study the response to the moderate radiation damage expected at CLAS12. In this work, a brief review of the latest and most interesting results from these studies will be shown.
Electron Accelerators for Research at the Frontiers of Nuclear Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartline, Beverly; Grunder, Hermann
1986-10-01
Electron accelerators for the frontiers of nuclear physics must provide high duty factor (gte 80) for coincidence measurements; few-hundred-MeV through few-GeV energy for work in the nucleonic, hadronic, and confinement regimes; energy resolution of ~ 10 -4; and high current (gte 100 zA). To fulfill these requirements new machines and upgrades of existing ones are being planned or constructed. Representative microtron-based facilities are the upgrade of MAMI at the University of Mainz (West Germany), the proposed two-stage cascade microtron at the University of Illinois (U.S.A.), and the three-stage Troitsk ``polytron'' (USSR). Representative projects to add pulse stretcher rings to existingmore » linacs are the upgrades at MIT-Bates (U.S.A.) and at NIKHEF-K (Netherlands). Recent advances in superconducting rf technology, especially in cavity design and fabrication, have made large superconducting cw linacs become feasible. Recirculating superconducting cw linacs are under construc« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; /SLAC
The NICA collider project at the Joint Institute for Nuclear Research in Dubna will have the capability of colliding protons, polarized deuterons, and nuclei at an effective nucleon-nucleon center-of mass energy in the range {radical}s{sub NN} = 4 to 11 GeV. I briefly survey a number of novel hadron physics processes which can be investigated at the NICA collider. The topics include the formation of exotic heavy quark resonances near the charm and bottom thresholds, intrinsic strangeness, charm, and bottom phenomena, hidden-color degrees of freedom in nuclei, color transparency, single-spin asymmetries, the RHIC baryon anomaly, and non-universal antishadowing.
Nuclear-bound quarkonia and heavy-flavor hadrons
NASA Astrophysics Data System (ADS)
Krein, G.; Thomas, A. W.; Tsushima, K.
2018-05-01
In our quest to win a deeper understanding of how QCD actually works, the study of the binding of heavy quarkonia and heavy-flavor hadrons to atomic nuclei offers enormous promise. Modern experimental facilities such as FAIR, Jefferson Lab at 12 GeV and J-PARC offer exciting new experimental opportunities to study such systems. These experimental advances are complemented by new theoretical approaches and predictions, which will both guide these experimental efforts and be informed and improved by them. This review will outline the main theoretical approaches, beginning with QCD itself, summarize recent theoretical predictions and relate them both to past experiments and those from which we may expect results in the near future.
Recent Results from Experiments at COSY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldenbaum, Frank
2010-08-05
In hadron physics, experiments using hadronic probes may shed light on open questions on the structure of hadrons, their interactions that are subject to the strong force and on the symmetries of nature. Therefore a major focus of the physics program studied at the COoler SYnchrotron COSY of the Forschungszentrum Juelich is the production of mesons and hyperons in hadron- hadron scattering with the aim to investigate relevant production processes, interactions of the participating particles as well as symmetries and symmetry breaking. The COoler SYnchrotron COSY at Juelich accelerates protons and deuterons with momenta up to 3.7 GeV/c covering hadronmore » physics in the light quark sector. The availability of the beam cooling systems allow precision measurements, using polarized proton and deuteron beams in combination with polarized Hydrogen or Deuterium targets. Due to the excellent experimental conditions at COSY single- and double-polarization measurements can be performed with high reaction rates. With the operation of the recently installed WASA-at-COSY apparatus, high-statistics studies aiming at rare decays of {eta} and {eta}{sup '} are effectively turning COSY into a meson factory. This contribution summarizes the ongoing physics program at the COSY facility, using the detector systems ANKE, WASA and COSY-TOF highlighting a few selective recent results and outlining future developments. The research at COSY also provides a step towards the realization of FAIR with studies on spin manipulation and polarization build-up of protons in polarized targets.« less
Symmetry energy effects on the mixed hadron-quark phase at high baryon density
NASA Astrophysics Data System (ADS)
di Toro, M.; Liu, B.; Greco, V.; Baran, V.; Colonna, M.; Plumari, S.
2011-01-01
The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Relativistic mean-field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Due to the different symmetry term in the two phases, isospin effects appear to be rather significant. With increasing isospin asymmetry the binodal transition line of the (T,ρB) diagram is lowered to a region accessible through heavy-ion collisions in the energy range of the new planned facilities (e.g., the FAIR/NICA projects). Some observable effects are suggested, in particular an isospin distillation mechanism with a more isospin asymmetric quark phase, to be seen in charged meson yield ratios, and an onset of quark number scaling of the meson-baryon elliptic flows. The presented isospin effects on the mixed phase appear to be robust with respect to even large variations of the poorly known symmetry term at high baryon density in the hadron phase. The dependence of the results on a suitable treatment of isospin contributions in effective QCD Lagrangian approaches, at the level of explicit isovector parts and/or quark condensates, is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, J.; DePorcel, L.; Dixon, L.
1997-06-01
This conference explored the role of the strong interaction in the physics of hadrons and partons. The Institute attracted 239 physicists from 16 countries to hear lectures on the underlying theory of Quantum Chromodynamics, modern theoretical calculational techniques, and experimental investigation of the strong interaction as it appears in various phenomena. Different regimes in which one can calculate reliably in QCD were addressed in series of lectures on perturbation theory, lattice gauge theories, and heavy quark expansions. Studies of QCD in hadron-hadron collisions, electron-positron annihilation, and electron-proton collisions all give differing perspectives on the strong interaction--from low-x to high-Q{sup 2}.more » Experimental understanding of the production and decay of heavy quarks as well as the lighter meson states has continued to evolve over the past years, and these topics were also covered at the School. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
The Beginning of the Physics of Leptons
NASA Astrophysics Data System (ADS)
Ting, Samuel C. C.
Over the last 30 years the study of lepton pairs from both hadron and electron accelerators and colliders has led to the discovery of J, ϒ, Z and W particles. The study of acoplanar eμ pairs + missing energy has led to the discovery of the heavy lepton, now called τ lepton. Indeed, the study of lepton pairs with and without missing energy has become the main method in high energy colliders for searching new particles. This paper presents some of the important contributions made by Antonino Zichichi over a 10 year period at CERN and Frascati in opening this new field of physics. This includes the development of instrumentation to distinguish leptons from hadrons, the first experiment on lepton pair production from hadron machines, the precision tests of electrodynamics at very small distances, the production of hadrons from e+e- collisions and most importantly his invention of a new method e+e- → eμ + missing momenta, experimentally proving that, thanks to his new electron and muon detection technology, these signals have very little background.
Gas Filled RF Resonator Hadron Beam Monitor for Intense Neutrino Beam Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonehara, Katsuya; Abrams, Robert; Dinkel, Holly
MW-class beam facilities are being considered all over the world to produce an intense neutrino beam for fundamental particle physics experiments. A radiation-robust beam monitor system is required to diagnose the primary and secondary beam qualities in high-radiation environments. We have proposed a novel gas-filled RF-resonator hadron beam monitor in which charged particles passing through the resonator produce ionized plasma that changes the permittivity of the gas. The sensitivity of the monitor has been evaluated in numerical simulation. A signal manipulation algorithm has been designed. A prototype system will be constructed and tested by using a proton beam at themore » MuCool Test Area at Fermilab.« less
High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apollinari, G.; Béjar Alonso, I.; Brüning, O.
2015-12-17
The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHCmore » is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.« less
Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudek, Jozef; Essig, Rouven; Kumar, Krishna
2012-08-01
We are at the dawn of a new era in the study of hadronic nuclear physics. The non-Abelian nature of Quantum Chromodynamics (QCD) and the resulting strong coupling at low energies represent a significant challenge to nuclear and particle physicists. The last decade has seen the development of new theoretical and experimental tools to quantitatively study the nature of confinement and the structure of hadrons comprised of light quarks and gluons. Together these will allow both the spectrum and the structure of hadrons to be elucidated in unprecedented detail. Exotic mesons that result from excitation of the gluon field willmore » be explored. Multidimensional images of hadrons with great promise to reveal the dynamics of the key underlying degrees of freedom will be produced. In particular, these multidimensional distributions open a new window on the elusive spin content of the nucleon through observables that are directly related to the orbital angular momenta of quarks and gluons. Moreover, computational techniques in Lattice QCD now promise to provide insightful and quantitative predictions that can be meaningfully confronted with, and elucidated by, forthcoming experimental data. In addition, the development of extremely high intensity, highly polarized and extraordinarily stable beams of electrons provides innovative opportunities for probing (and extending) the Standard Model, both through parity violation studies and searches for new particles. Thus the 12 GeV upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab will enable a new experimental program with substantial discovery potential to address these and other important topics in nuclear, hadronic and electroweak physics.« less
Design and Beam Test Results for the sPHENIX Electromagnetic and Hadronic Calorimeter Prototypes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aidala, C.A.; et al.
The sPHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) will perform high precision measurements of jets and heavy flavor observables for a wide selection of nuclear collision systems, elucidating the microscopic nature of strongly interacting matter ranging from nucleons to the strongly coupled quark-gluon plasma. A prototype of the sPHENIX calorimeter system was tested at the Fermilab Test Beam Facility as experiment T-1044 in the spring of 2016. The electromagnetic calorimeter (EMCal) prototype is composed of scintillating fibers embedded in a mixture of tungsten powder and epoxy. The hadronic calorimeter (HCal) prototype is composed of tilted steel plates alternating with plastic scintillator. Results of the test beam reveal the energy resolution for electrons in the EMCal ismore » $$2.8\\%\\oplus~15.5\\%/\\sqrt{E}$$ and the energy resolution for hadrons in the combined EMCal plus HCal system is $$13.5\\%\\oplus 64.9\\%/\\sqrt{E}$$. These results demonstrate that the performance of the proposed calorimeter system is consistent with \\geant simulations and satisfies the sPHENIX specifications.« less
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.
2016-12-01
Experiments have been done at the CERN HiRadMat (High Radiation to Materials) facility in which large cylindrical copper targets were irradiated with 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). The primary purpose of these experiments was to confirm the existence of hydrodynamic tunneling of ultra-relativistic protons and their hadronic shower in solid materials, that was predicted by previous numerical simulations. The experimental measurements have shown very good agreement with the simulation results. This provides confidence in our simulations of the interaction of the 7 TeV LHC (Large Hadron Collider) protons and the 50 TeV Future Circular Collider (FCC) protons with solid materials, respectively. This work is important from the machine protection point of view. The numerical simulations have also shown that in the HiRadMat experiments, a significant part of thetarget material is be converted into different phases of High Energy Density (HED) matter, including two-phase solid-liquid mixture, expanded as well as compressed hot liquid phases, two-phase liquid-gas mixture and gaseous state. The HiRadMat facility is therefore a unique ion beam facility worldwide that is currently available for studying the thermophysical properties of HED matter. In the present paper we discuss the numerical simulation results and present a comparison with the experimental measurements.
Analysis Tools for Next-Generation Hadron Spectroscopy Experiments
NASA Astrophysics Data System (ADS)
Battaglieri, M.; Briscoe, B. J.; Celentano, A.; Chung, S.-U.; D'Angelo, A.; De Vita, R.; Döring, M.; Dudek, J.; Eidelman, S.; Fegan, S.; Ferretti, J.; Filippi, A.; Fox, G.; Galata, G.; García-Tecocoatzi, H.; Glazier, D. I.; Grube, B.; Hanhart, C.; Hoferichter, M.; Hughes, S. M.; Ireland, D. G.; Ketzer, B.; Klein, F. J.; Kubis, B.; Liu, B.; Masjuan, P.; Mathieu, V.; McKinnon, B.; Mitchel, R.; Nerling, F.; Paul, S.; Peláez, J. R.; Rademacker, J.; Rizzo, A.; Salgado, C.; Santopinto, E.; Sarantsev, A. V.; Sato, T.; Schlüter, T.; [Silva]da Silva, M. L. L.; Stankovic, I.; Strakovsky, I.; Szczepaniak, A.; Vassallo, A.; Walford, N. K.; Watts, D. P.; Zana, L.
The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. The workshops focus on the development of amplitude analysis tools for meson and baryon spectroscopy, and complement other programs in hadron spectroscopy organized in the recent past including the INT-JLab Workshop on Hadron Spectroscopy in Seattle in 2009, the International Workshop on Amplitude Analysis in Hadron Spectroscopy at the ECT*-Trento in 2011, the School on Amplitude Analysis in Modern Physics in Bad Honnef in 2011, the Jefferson Lab Advanced Study Institute Summer School in 2012, and the School on Concepts of Modern Amplitude Analysis Techniques in Flecken-Zechlin near Berlin in September 2013. The aim of this document is to summarize the discussions that took place at the ATHOS 2012 and ATHOS 2013 meetings. We do not attempt a comprehensive review of the field of amplitude analysis, but offer a collection of thoughts that we hope may lay the ground for such a document.
Analysis Tools for Next-Generation Hadron Spectroscopy Experiments
Battaglieri, Marco; Briscoe, William; Celentano, Andrea; ...
2015-01-01
The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. The workshops focus on the development of amplitude analysis tools for meson and baryon spectroscopy, and complement other programs in hadron spectroscopy organized in the recent past including the INT-JLab Workshop on Hadron Spectroscopymore » in Seattle in 2009, the International Workshop on Amplitude Analysis in Hadron Spectroscopy at the ECT*-Trento in 2011, the School on Amplitude Analysis in Modern Physics in Bad Honnef in 2011, the Jefferson Lab Advanced Study Institute Summer School in 2012, and the School on Concepts of Modern Amplitude Analysis Techniques in Flecken-Zechlin near Berlin in September 2013. The aim of this document is to summarize the discussions that took place at the ATHOS 2012 and ATHOS 2013 meetings. We do not attempt a comprehensive review of the field of amplitude analysis, but offer a collection of thoughts that we hope may lay the ground for such a document.« less
High energy physics at UC Riverside
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-07-01
This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theorymore » Group are briefly discussed and a list of completed or published papers for this period is given.« less
The response of a bonner sphere spectrometer to charged hadrons.
Agosteo, S; Dimovasili, E; Fassò, A; Silari, M
2004-01-01
Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n,xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semi-thick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors were found to have a significant response to the charged hadron component accompanying the neutrons emitted from the target. Conventional polyethylene moderators show a similar behaviour but less pronounced. These secondary hadrons interact with the moderator and generate neutrons, which are in turn detected by the counter. To investigate this effect and determine a correction factor to be applied to the unfolding procedure, a series of Monte Carlo simulations were performed with the FLUKA code. These simulations aimed at determining the response of the BSS to charged hadrons under the specific experimental situation. Following these results, a complete response matrix of the extended BSS to charged pions and protons was calculated with FLUKA. An experimental verification was carried out with a 120 GeV per c hadron beam at the CERF facility at CERN.
NASA Astrophysics Data System (ADS)
Foster, Brian
2008-09-01
It is impossible to think about the problems in the UK over the last 10 months arising from the £80m shortfall in the budget of the Science and Technology Facilities Council (STFC) without recalling Marx's famous aphorism: "History repeats itself, first as tragedy, then as farce." Certainly the repetition of a funding crisis in UK particle physics and astronomy is hardly unexpected; they seem to occur every decade or so with unwelcome regularity. The consequent loss of morale, jobs and opportunities in the UK for the brightest young people to pursue their dreams in what is widely acknowledged to be world-class science is a tragedy. What perhaps marks the uniqueness of the funding crisis this time round is the level of farce. The sums that did not add up; the consultations without interlocutors; and the truculent and damaging statements about withdrawal from the Gemini telescopes based in Hawaii and Chile, and the International Linear Collider (ILC) - the next big particle-physics project after the Large Hadron Collider (LHC) at CERN.
NASA Astrophysics Data System (ADS)
Rosner, Guenther
2007-05-01
The Facility for Antiproton and Ion Research, FAIR, is a new particle accelerator facility to be built at the GSI site in Germany. The research at FAIR will cover a wide range of topics in nuclear and hadron physics, high density plasma and atomic physics, and applications in condensed matter physics and biology. A 1.1 km circumference double ring of rapidly cycling 100 and 300 Tm synchrotrons, will be FAIR's central accelerator system. It will be used to produce, inter alia, high intensity secondary beams of antiprotons and short-lived radioactive nuclei. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experiments are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations.
PERLE. Powerful energy recovery linac for experiments. Conceptual design report
NASA Astrophysics Data System (ADS)
Angal-Kalinin, D.; Arduini, G.; Auchmann, B.; Bernauer, J.; Bogacz, A.; Bordry, F.; Bousson, S.; Bracco, C.; Brüning, O.; Calaga, R.; Cassou, K.; Chetvertkova, V.; Cormier, E.; Daly, E.; Douglas, D.; Dupraz, K.; Goddard, B.; Henry, J.; Hutton, A.; Jensen, E.; Kaabi, W.; Klein, M.; Kostka, P.; Lasheras, N.; Levichev, E.; Marhauser, F.; Martens, A.; Milanese, A.; Militsyn, B.; Peinaud, Y.; Pellegrini, D.; Pietralla, N.; Pupkov, Y.; Rimmer, R.; Schirm, K.; Schulte, D.; Smith, S.; Stocchi, A.; Valloni, A.; Welsch, C.; Willering, G.; Wollmann, D.; Zimmermann, F.; Zomer, F.
2018-06-01
A conceptual design is presented of a novel energy-recovering linac (ERL) facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the powerful energy recovery linac experiment facility (PERLE) are derived from the design of the Large Hadron electron Collider, an electron beam upgrade under study for the LHC, for which it would be the key demonstrator. PERLE is thus projected as a facility to investigate efficient, high current (HC) (>10 mA) ERL operation with three re-circulation passages through newly designed SCRF cavities, at 801.58 MHz frequency, and following deceleration over another three re-circulations. In its fully equipped configuration, PERLE provides an electron beam of approximately 1 GeV energy. A physics programme possibly associated with PERLE is sketched, consisting of high precision elastic electron–proton scattering experiments, as well as photo-nuclear reactions of unprecedented intensities with up to 30 MeV photon beam energy as may be obtained using Fabry–Perot cavities. The facility has further applications as a general technology test bed that can investigate and validate novel superconducting magnets (beam induced quench tests) and superconducting RF structures (structure tests with HC beams, beam loading and transients). Besides a chapter on operation aspects, the report contains detailed considerations on the choices for the SCRF structure, optics and lattice design, solutions for arc magnets, source and injector and on further essential components. A suitable configuration derived from the here presented design concept may next be moved forward to a technical design and possibly be built by an international collaboration which is being established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakao, N.; /SLAC; Taniguchi, S.
Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (a mixture of mainly protons and pions) on a cylindrical copper target (7-cm diameter by 50-cm long). An NE213 organic liquid scintillator (12.7-cm diameter by 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. The measurement locations cover an angular range with respect to the beam axis between 13 and 133{sup o}. Neutron energy spectra in the energy range between 32 MeVmore » and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been verified in the neutron energy range up to 380 MeV in separate experiments. Since the source term and experimental geometry in this experiment are well characterized and simple and results are given in the form of energy spectra, these experimental results are very useful as benchmark data to check the accuracies of simulation codes and nuclear data. Monte Carlo simulations of the experimental set up were performed with the FLUKA, MARS and PHITS codes. Simulated spectra for the 80-cm thick concrete often agree within the experimental uncertainties. On the other hand, for the 160-cm thick concrete and iron shield differences are generally larger than the experimental uncertainties, yet within a factor of 2. Based on source term simulations, observed discrepancies among simulations of spectra outside the shield can be partially explained by differences in the high-energy hadron production in the copper target.« less
Optimization of Energy Resolution in the Digital Hadron Calorimeter using Longitudinal Weights
NASA Astrophysics Data System (ADS)
Smith, J. R.; Bilki, B.; Francis, K.; Repond, J.; Schlereth, J.; Xia, L.
2013-04-01
Physics at a future lepton collider requires unprecedented jet energy and dijet mass resolutions. Particle Flow Algorithms (PFAs) have been proposed to achieve these. PFAs measure particles in a jet individually with the detector subsystem providing the best resolution. For this to work a calorimeter system with very high granularity is required. A prototype Digital Hadron Calorimeter (the DHCAL) based on the Resistive Plate Chamber (RPC) technology with a record count of readout channels has been developed, constructed, and exposed to particle beams. In this context, we report on a technique to improve the single hadron energy resolution by applying a set of calibration weights to the individual layers of the calorimeter. This weighting procedure was applied to approximately 1 million events in the energy range up to 60 GeV and shows an improvement in the pion energy resolution. Simulated data is used to verify particle identification techniques and to compare with the data.
Strange baryonic resonances and resonances coupling to strange hadrons at SIS energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabbietti, L.
2016-01-22
The role played by baryonic resonances in the production of final states containing strangeness for proton-proton reactions at 3.5 GeV measured by HADES is discussed by means of several very different measurements. First the associate production of Δ resonances accompanying final states with strange hadrons is presented, then the role of interferences among N{sup *} resonances, as measured by HADES for the first time, is summarised. Last but not least the role played by heavy resonances, with a mass larger than 2 GeV/c{sup 2} in the production of strange and non-strange hadrons is discussed. Experimental evidence for the presence ofmore » a Δ(2000){sup ++} are presented and hypotheses are discussed employing the contribution of similar objects to populate the excesses measured by HADES for the Ξ in A+A and p+A collisions and in the dilepton sector for A+A collisions. This extensive set of results helps to better understand the dynamic underlaying particle production in elementary reactions and sets a more solid basis for the understanding of heavy ion collisions at the same energies and even higher as planned at the FAIR facility.« less
Isoscalar-vector interaction and hybrid quark core in massive neutron stars
NASA Astrophysics Data System (ADS)
Shao, G. Y.; Colonna, M.; Di Toro, M.; Liu, Y. X.; Liu, B.
2013-05-01
The hadron-quark phase transition in the core of massive neutron stars is studied with a newly constructed two-phase model. For nuclear matter, a nonlinear Walecka type model with general nucleon-meson and meson-meson couplings, recently calibrated by Steiner, Hemper and Fischer, is taken. For quark matter, a modified Polyakov-Nambu—Jona-Lasinio model, which gives consistent results with lattice QCD data, is used. Most importantly, we introduce an isoscalar-vector interaction in the description of quark matter, and we study its influence on the hadron-quark phase transition in the interior of massive neutron stars. With the constraints of neutron star observations, our calculation shows that the isoscalar-vector interaction between quarks is indispensable if massive hybrids star exist in the universe, and its strength determines the onset density of quark matter, as well as the mass-radius relations of hybrid stars. Furthermore, as a connection with heavy-ion-collision experiments we give some discussions about the strength of isoscalar-vector interaction and its effect on the signals of hadron-quark phase transition in heavy-ion collisions, in the energy range of the NICA at JINR-Dubna and FAIR at GSI-Darmstadt facilities.
Transverse momentum at work in high-energy scattering experiments
NASA Astrophysics Data System (ADS)
Signori, Andrea
2017-01-01
I will review some aspects of the definition and the phenomenology of Transverse-Momentum-Dependent distributions (TMDs) which are potentially interesting for the physics program at several current and future experimental facilities. First of all, I will review the definition of quark, gluon and Wilson loop TMDs based on gauge invariant hadronic matrix elements. Looking at the phenomenology of quarks, I will address the flavor dependence of the intrinsic transverse momentum in unpolarized TMDs, focusing on its extraction from Semi-Inclusive Deep-Inelastic Scattering. I will also present an estimate of its impact on the transverse momentum spectrum of W and Z bosons produced in unpolarized hadronic collisions and on the determination of the W boson mass. Moreover, the combined effect of the flavor dependence and the evolution of TMDs with the energy scale will be discussed for electron-positron annihilation. Concerning gluons, I will present from an effective theory point of view the TMD factorization theorem for the transverse momentum spectrum of pseudoscalar quarkonium produced in hadronic collisions. Relying on this, I will discuss the possibility of extracting precise information on (un)polarized gluon TMDs at a future Fixed Target Experiment at the LHC (AFTER@LHC).
Flow performance in MPD at NICA
NASA Astrophysics Data System (ADS)
Svintsov, I. A.; Parfenov, P. E.; Selyuzhenkov, I. V.; Taranenko, A. V.
2017-01-01
The Nuclotron-based Ion Collider facility (NICA) in Dubna, Russia is currently under construction at the Joint Institute for Nuclear Research (JINR). A Multi Purpose Detector (MPD) at NICA is designed to study properties of baryonic dense matter in the range of center of mass collision energy from 4 to 11 GeV. We present a performance study for anisotropic transverse flow measurement in Au+Au collisions using the UrQMD event generator and Geant4 simulation of the MPD response. The collision symmetry plane is estimated from event-by-event transverse energy distribution in Forward Hadron Calorimeters (FHCal’s). Performance of the MPD for a measurement of the directed (v 1) and elliptic (v 2) flow of identified charged hadrons is evaluated based on comparison between reconstructed v 1 and v 2 values and the input one from the UrQMD model.
Transition between nuclear and quark-gluon descriptions of hadrons and light nuclei
NASA Astrophysics Data System (ADS)
Holt, R. J.; Gilman, R.
2012-08-01
We provide a perspective on studies aimed at observing the transition between hadronic and quark-gluonic descriptions of reactions involving light nuclei. We begin by summarizing the results for relatively simple reactions such as the pion form factor and the neutral pion transition form factor as well as that for the nucleon and end with exclusive photoreactions in our simplest nuclei. A particular focus will be on reactions involving the deuteron. It is noted that a firm understanding of these issues is essential for unravelling important structure information from processes such as deeply virtual Compton scattering as well as deeply virtual meson production. The connection to exotic phenomena such as color transparency will be discussed. A number of outstanding challenges will require new experiments at modern facilities on the horizon as well as further theoretical developments.
A review of the Fermilab fixed-target program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rameika, R.
1994-12-01
All eyes are now on the Fermilab collider program as the intense search for the top quark continues. Nevertheless, Fermilab`s long tradition of operating a strong, diverse physics program depends not only on collider physics but also on effective use of the facilities the Laboratory was founded on, the fixed-target beamlines. In this talk the author presents highlights of the Fermilab fixed-target program from its (not too distant) past, (soon to be) present, and (hopefully, not too distant) future program. The author concentrates on those experiments which are unique to the fixed-target program, in particular hadron structure measurements which usemore » the varied beams and targets available in this mode and the physics results from kaon, hyperon and high statistics charm experiments which are not easily accessible in high p{sub T} hadron collider detectors.« less
PREFACE: The first meeting of the APS Topical Group on Hadronic Physics
NASA Astrophysics Data System (ADS)
Barnes, Ted; Godfrey, Steve; Petrov, Alexey A.; Swanson, Eric
2005-01-01
The first meeting of the APS Topical Group on Hadronic Physics (`GHP') took place on 24-26 October 2004, at Fermilab. Two factors contributed to the decision to hold this meeting. First, the Topical Group on Hadronic Physics had recently been established, and there was general agreement that a conference devoted to the physics of hadrons was an important group activity. Second, many exciting new experimental results on hadron spectroscopy had been announced recently, and there was intense interest in these new developments. The meeting was very well attended, with over 120 scientists participating; this was triple our original estimate of the likely audience for this meeting. The plenary sessions covered a broad range of topics, as we considered it important to promote communication between the communities pursuing research in different areas of hadron physics. The topics discussed included new results from RHIC on the QGP, the status of experiments on the flavour-exotic pentaquark and other new baryons, the new open-charm Ds and hidden-charm X states, conventional light quark resonances, glueballs and hybrids, and new facilities. Finally, a `town meeting' was held to discuss funding prospects for hadronic physics and related issues, which included a panel discussion with representatives from DOE, NSF and JLab. These plenary sessions were supplemented by 14 parallel sessions, giving a total of approximately 80 presentations. To make the conference more accessible to younger researchers, as well as to simiplify administration, there was no conference fee for this meeting. This was possible as a result of the generous financial support of our hosts at Fermilab, for which we are very appreciative. We are also grateful to Larry Cardman for arranging Jlab assistance in producing and distributing the conference poster, to Gerald Ragghianti for designing the poster and proceedings cover, and to Lali Chatterjee and the Institute of Physics for arranging publication of the proceedings at no cost to the topical group. The efforts of the session organizers and chairs, which were crucial for the smooth operation of the conference, are also gratefully acknowledged. Finally, we were extremely fortunate to have the local assistance of Cynthia Sazama and Suzanne Weber at Fermilab, who dealt with the many details of conference organization with good cheer, exemplary competence and unstinting loyalty, even to the extent of sacrificing their weekends. We hope that this first GHP conference has been a useful contribution to the field of hadron physics, and that it may encourage the organization of subsequent APS conferences on this diverse, challenging and fascinating field.
ENLIGHT: European network for Light ion hadron therapy.
Dosanjh, Manjit; Amaldi, Ugo; Mayer, Ramona; Poetter, Richard
2018-04-03
The European Network for Light Ion Hadron Therapy (ENLIGHT) was established in 2002 following various European particle therapy network initiatives during the 1980s and 1990s (e.g. EORTC task group, EULIMA/PIMMS accelerator design). ENLIGHT started its work on major topics related to hadron therapy (HT), such as patient selection, clinical trials, technology, radiobiology, imaging and health economics. It was initiated through CERN and ESTRO and dealt with various disciplines such as (medical) physics and engineering, radiation biology and radiation oncology. ENLIGHT was funded until 2005 through the EC FP5 programme. A regular annual meeting structure was started in 2002 and continues until today bringing together the various disciplines and projects and institutions in the field of HT at different European places for regular exchange of information on best practices and research and development. Starting in 2006 ENLIGHT coordination was continued through CERN in collaboration with ESTRO and other partners involved in HT. Major projects within the EC FP7 programme (2008-2014) were launched for R&D and transnational access (ULICE, ENVISION) and education and training networks (Marie Curie ITNs: PARTNER, ENTERVISION). These projects were instrumental for the strengthening of the field of hadron therapy. With the start of 4 European carbon ion and proton centres and the upcoming numerous European proton therapy centres, the future scope of ENLIGHT will focus on strengthening current and developing European particle therapy research, multidisciplinary education and training and general R&D in technology and biology with annual meetings and a continuously strong CERN support. Collaboration with the European Particle Therapy Network (EPTN) and other similar networks will be pursued. Copyright © 2018 CERN. Published by Elsevier B.V. All rights reserved.
Technology to Establish a Factory for High QE Alkali Antimonide Photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultheiss, Thomas
2015-11-16
Intense electron beams are key to a large number of scientific endeavors, including electron cooling of hadron beams, electron-positron colliders, secondary-particle beams such as photons and positrons, sub-picosecond ultrafast electron diffraction (UED), and new high gradient accelerators that use electron-driven plasmas. The last decade has seen a considerable interest in pursuit and realization of novel light sources such as Free Electron Lasers [1] and Energy Recovery Linacs [2] that promise to deliver unprecedented quality x-ray beams. Many applications for high-intensity electron beams have arisen in recent years in high-energy physics, nuclear physics and energy sciences, such as recent designs formore » an electron-hadron collider at CERN (LHeC) [3], and beam coolers for hadron beams at LHC and eRHIC [4,5]. Photoinjectors are used at the majority of high-brightness electron linacs today, due to their efficiency, timing structure flexibility and ability to produce high power, high brightness beams. The performance of light source machines is strongly related to the brightness of the electron beam used for generating the x-rays. The brightness of the electron beam itself is mainly limited by the physical processes by which electrons are generated. For laser based photoemission sources this limit is ultimately related to the properties of photocathodes [6]. Most facilities are required to expend significant manpower and money to achieve a workable, albeit often non-ideal, compromise photocathode solution. If entirely fabricated in-house, the photocathode growth process itself is laborious and not always reproducible: it involves the human element while requiring close adherence to recipes and extremely strict control of deposition parameters. Lack of growth reliability and as a consequence, slow adoption of viable photoemitter types, can be partly attributed to the absence of any centralized facility or commercial entity to routinely provide high peak current capable, low emittance, visible-light sensitive photocathodes to the myriad of source systems in use and under development. Successful adoption of photocathodes requires strict adherence to proper fabrication, operation, and maintenance methodologies, necessitating specialized knowledge and skills. Key issues include the choice of photoemitter material, development of a more streamlined growth process to minimize human operator uncertainties, accommodation of varying photoemitter substrate materials and geometries, efficient transport and insertion mechanisms preserving the photo-yield, and properly conveyed photoemitter operational and maintenance methodologies. AES, in collaboration with Cornell University in a Phase I STTR, developed an on-demand industrialized growth and centralized delivery system for high-brightness photocathodes focused upon the alkali antimonide photoemitters. To the end user, future photoemitter sourcing will become as simple as other readily available consumables, rather than a research project requiring large investments in time and personnel.« less
How Data Becomes Physics: Inside the RACF
Ernst, Michael; Rind, Ofer; Rajagopalan, Srini; Lauret, Jerome; Pinkenburg, Chris
2018-06-22
The RHIC & ATLAS Computing Facility (RACF) at the U.S. Department of Energyâs (DOE) Brookhaven National Laboratory sits at the center of a global computing network. It connects more than 2,500 researchers around the world with the data generated by millions of particle collisions taking place each second at Brookhaven Lab's Relativistic Heavy Ion Collider (RHIC, a DOE Office of Science User Facility for nuclear physics research), and the ATLAS experiment at the Large Hadron Collider in Europe. Watch this video to learn how the people and computing resources of the RACF serve these scientists to turn petabytes of raw data into physics discoveries.
Facility for Antiproton and Ion Research, FAIR, at the GSI site
NASA Astrophysics Data System (ADS)
Rosner, Guenther
2006-11-01
FAIR is a new large-scale particle accelerator facility to be built at the GSI site in Germany. The research pursued at FAIR will cover a wide range of topics in nuclear and hadron physics, as well as high density plasma physics, atomic and antimatter physics, and applications in condensed matter physics and biology. The working horse of FAIR will be a 1.1km circumference double ring of rapidly cycling 100 and 300Tm synchrotrons, which will be used to produce high intensity secondary beams of short-lived radioactive ions or antiprotons. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experimental facilities are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations.
3D-FBK Pixel Sensors: Recent Beam Tests Results with Irradiated Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micelli, A.; /INFN, Trieste /Udine U.; Helle, K.
2012-04-30
The Pixel Detector is the innermost part of the ATLAS experiment tracking device at the Large Hadron Collider, and plays a key role in the reconstruction of the primary vertices from the collisions and secondary vertices produced by short-lived particles. To cope with the high level of radiation produced during the collider operation, it is planned to add to the present three layers of silicon pixel sensors which constitute the Pixel Detector, an additional layer (Insertable B-Layer, or IBL) of sensors. 3D silicon sensors are one of the technologies which are under study for the IBL. 3D silicon technology ismore » an innovative combination of very-large-scale integration and Micro-Electro-Mechanical-Systems where electrodes are fabricated inside the silicon bulk instead of being implanted on the wafer surfaces. 3D sensors, with electrodes fully or partially penetrating the silicon substrate, are currently fabricated at different processing facilities in Europe and USA. This paper reports on the 2010 June beam test results for irradiated 3D devices produced at FBK (Trento, Italy). The performance of these devices, all bump-bonded with the ATLAS pixel FE-I3 read-out chip, is compared to that observed before irradiation in a previous beam test.« less
Big Bang Day: Engineering Solutions
None
2017-12-09
CERN's Large Hadron Collider is the most complicated scientific apparatus ever built. Many of the technologies it uses hadn't even been invented when scientists started building it. Adam Hart-Davis discovers what it takes to build the world's most intricate discovery machine.
Recent measurements for hadrontherapy and space radiation: nuclear physics
NASA Technical Reports Server (NTRS)
Miller, J.
2001-01-01
The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.
RICH upgrade in LHCb experiment
NASA Astrophysics Data System (ADS)
Pistone, A.; LHCb RICH Collaboration
2017-01-01
The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The second long shutdown of the LHC is currently scheduled to begin in 2019. During this period the LHCb experiment with all its sub-detectors will be upgraded in order to run at an instantaneous luminosity of 2 × 10^{33} cm ^{-2} s ^{-1} , about a factor 5 higher than the current luminosity, and to read out data at a rate of 40MHz into a flexible software-based trigger. The Ring Imaging CHerenkov (RICH) system will require new photon detectors and modifications to the optics of the upstream detector. Tests of the prototype of the smallest constituent of the new RICH system have been performed during testbeam sessions at the North Area test beam facility at CERN in the last years.
Working Group Report: Higgs Boson
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Sally; Gritsan, Andrei; Logan, Heather
2013-10-30
This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities frommore » detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).« less
Review of medical radiography and tomography with proton beams
NASA Astrophysics Data System (ADS)
Johnson, Robert P.
2018-01-01
The use of hadron beams, especially proton beams, in cancer radiotherapy has expanded rapidly in the past two decades. To fully realize the advantages of hadron therapy over traditional x-ray and gamma-ray therapy requires accurate positioning of the Bragg peak throughout the tumor being treated. A half century ago, suggestions had already been made to use protons themselves to develop images of tumors and surrounding tissue, to be used for treatment planning. The recent global expansion of hadron therapy, coupled with modern advances in computation and particle detection, has led several collaborations around the world to develop prototype detector systems and associated reconstruction codes for proton computed tomography (pCT), as well as more simple proton radiography, with the ultimate intent to use such systems in clinical treatment planning and verification. Recent imaging results of phantoms in hospital proton beams are encouraging, but many technical and programmatic challenges remain to be overcome before pCT scanners will be introduced into clinics. This review introduces hadron therapy and the perceived advantages of pCT and proton radiography for treatment planning, reviews its historical development, and discusses the physics related to proton imaging, the associated experimental and computation issues, the technologies used to attack the problem, contemporary efforts in detector and computational development, and the current status and outlook.
Facility for Antiproton and Ion Research, FAIR, at the GSI site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosner, Guenther
FAIR is a new large-scale particle accelerator facility to be built at the GSI site in Germany. The research pursued at FAIR will cover a wide range of topics in nuclear and hadron physics, as well as high density plasma physics, atomic and antimatter physics, and applications in condensed matter physics and biology. The working horse of FAIR will be a 1.1km circumference double ring of rapidly cycling 100 and 300Tm synchrotrons, which will be used to produce high intensity secondary beams of short-lived radioactive ions or antiprotons. A subsequent suite of cooler and storage rings will deliver heavy ionmore » and antiproton beams of unprecedented quality. Large experimental facilities are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations.« less
Production of black holes in TeV-scale gravity
NASA Astrophysics Data System (ADS)
Ringwald, A.
2003-07-01
Copious production of microscopic black holes is one of the least model-dependent predictions of TeV-scale gravity scenarios. We review the arguments behind this assertion and discuss opportunities to track the striking associated signatures in the near future. These include searches at neutrino telescopes, such as AMANDA and RICE, at cosmic ray air shower facilities, such as the Pierre Auger Observatory, and at colliders, such as the Large Hadron Collider.
Al-Qaeda arrest casts shadow over the LHC
NASA Astrophysics Data System (ADS)
Dacey, James
2009-11-01
CERN remains on course for the imminent switch-on of the Large Hadron Collider (LHC) despite the media frenzy following the recent arrest of a physicist who had been working at the facility. The researcher in question is a 32-year-old man of Algerian descent who is expected to face trial in France - the country in which he was arrested. His name is yet to be formally identified under French judicial rules.
Cryogenic Design of the New High Field Magnet Test Facility at CERN
NASA Astrophysics Data System (ADS)
Benda, V.; Pirotte, O.; De Rijk, G.; Bajko, M.; Craen, A. Vande; Perret, Ph.; Hanzelka, P.
In the framework of the R&D program related to the Large Hadron Collider (LHC) upgrades, a new High Field Magnet (HFM) vertical test bench is required. This facility located in the SM18 cryogenic test hall shall allow testing of up to 15 tons superconducting magnets with energy up to 10 MJ in a temperature range between 1.9 K and 4.5 K. The article describes the cryogenic architecture to be inserted in the general infrastructure of SM18 including the process and instrumentation diagram, the different operating phases including strategy for magnet cool down and warm up at controlled speed and quench management as well as the design of the main components.
Orthos, an alarm system for the ALICE DAQ operations
NASA Astrophysics Data System (ADS)
Chapeland, Sylvain; Carena, Franco; Carena, Wisla; Chibante Barroso, Vasco; Costa, Filippo; Denes, Ervin; Divia, Roberto; Fuchs, Ulrich; Grigore, Alexandru; Simonetti, Giuseppe; Soos, Csaba; Telesca, Adriana; Vande Vyvre, Pierre; von Haller, Barthelemy
2012-12-01
ALICE (A Large Ion Collider Experiment) is the heavy-ion detector studying the physics of strongly interacting matter and the quark-gluon plasma at the CERN LHC (Large Hadron Collider). The DAQ (Data Acquisition System) facilities handle the data flow from the detectors electronics up to the mass storage. The DAQ system is based on a large farm of commodity hardware consisting of more than 600 devices (Linux PCs, storage, network switches), and controls hundreds of distributed hardware and software components interacting together. This paper presents Orthos, the alarm system used to detect, log, report, and follow-up abnormal situations on the DAQ machines at the experimental area. The main objective of this package is to integrate alarm detection and notification mechanisms with a full-featured issues tracker, in order to prioritize, assign, and fix system failures optimally. This tool relies on a database repository with a logic engine, SQL interfaces to inject or query metrics, and dynamic web pages for user interaction. We describe the system architecture, the technologies used for the implementation, and the integration with existing monitoring tools.
Big Science and the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Giudice, Gian Francesco
2012-03-01
The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development of science and technology. I then compare the methodologies of Small and Big Science, emphasizing their mutual linkage. Finally, after examining the cost of Big Science projects, I highlight several general aspects of their beneficial implications for society.
High Luminosity LHC: challenges and plans
NASA Astrophysics Data System (ADS)
Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Brüning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, M.; Iadarola, G.; Li, K.; Lechner, A.; Medina Medrano, L.; Métral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomás, R.; Valishev, S.; Van der Veken, F. F.
2016-12-01
The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. The dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.
A large hadron electron collider at CERN
Abelleira Fernandez, J. L.
2015-04-06
This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and eletron-ion physics. The LHeC is designed to run synchronously withmore » the LHC in the twenties and to achieve an integrated luminosity of O(100)fb –1. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.« less
Quo vadis radiotherapy? Technological advances and the rising problems in cancer management.
Allen, Barry J; Bezak, Eva; Marcu, Loredana G
2013-01-01
Despite the latest technological advances in radiotherapy, cancer control is still challenging for several tumour sites. The survival rates for the most deadly cancers, such as ovarian and pancreatic, have not changed over the last decades. The solution to the problem lies in the change of focus: from local treatment to systemic therapy. The aim of this paper is to present the current status as well as the gaps in radiotherapy and, at the same time, to look into potential solutions to improve cancer control and survival. The currently available advanced radiotherapy treatment techniques have been analysed and their cost-effectiveness discussed. The problem of systemic disease management was specifically targeted. Clinical studies show limited benefit in cancer control from hadron therapy. However, targeted therapies together with molecular imaging could improve treatment outcome for several tumour sites while controlling the systemic disease. The advances in photon therapy continue to be competitive with the much more expensive hadron therapy. To justify the cost effectiveness of proton/heavy ion therapy, there is a need for phase III randomised clinical trials. Furthermore, the success of systemic disease management lies in the fusion between radiation oncology technology and microbiology.
NASA Astrophysics Data System (ADS)
De Lellis, Giovanni
2016-04-01
Searches for new physics with accelerators are being performed at the LHC, looking for high massive particles coupled to matter with ordinary strength. A new experimental facility meant to search for very weakly coupled particles in the few GeV mass domain has been recently proposed. The existence of such particles, foreseen in different theoretical models beyond the Standard Model, is largely unexplored from the experimental point of view. A beam dump facility, built at CERN in the north area, using 400 GeV protons is a copious factory of charmed hadrons and could be used to probe the existence of such particles. The beam dump is also an ideal source of tau neutrinos, the less known particle in the Standard Model. In particular, tau anti-neutrinos have not been directly observed so far. We report the physics potential of such an experiment and outline the performances of a detector operating at the same facility for the search for the τ → μμμ decay.
Determination of the number of ψ(3686) events at BESIII
NASA Astrophysics Data System (ADS)
Ablikim, M.; Achasov, M. N.; Ai, X. C.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, J. V.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, Y.; Fava, L.; Feldbauer, F.; Feng, C. Q.; Fu, C. D.; Gao, Q.; Gao, Y.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, Y. P.; Han, Y. L.; Harris, F. A.; He, K. L.; He, M.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, T.; Huang, G. S.; Huang, J. S.; Huang, L.; Huang, X. T.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Kloss, B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Kang; Li, Ke; Li, Lei; Li, P. R.; Li, Q. J.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang.; Liu, Feng.; Liu, H. B.; Liu, H. M.; Liu, Huihui.; Liu, J.; Liu, J. P.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang.; Liu, Zhiqing.; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, H. L.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Sarantsev, A.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Toth, D.; Uman, I.; Varner, G. S.; Wang, B.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, W.; Wang, X. F.; Wang(Yadi, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Zafar, A. A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, R.; Zhang, S. H.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y. H.; Zhang, Yao.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling.; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; BESIII Collaboration
2018-02-01
The numbers of ψ(3686) events accumulated by the BESIII detector for the data taken during 2009 and 2012 are determined to be (107.0+/- 0.8)× {10}6 and (341.1+/- 2.1)× {10}6, respectively, by counting inclusive hadronic events, where the uncertainties are systematic and the statistical uncertainties are negligible. The number of events for the sample taken in 2009 is consistent with that of the previous measurement. The total number of ψ(3686) events for the two data taking periods is (448.1+/- 2.9)× {10}6. Supported by the Ministry of Science and Technology of China (2009CB825200), National Natural Science Foundation of China (NSFC) (11235011, 11322544, 11335008, 11425524, 11475207), the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, the Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (11179014), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (11179007, U1232201, U1532257, U1532258), Joint Funds of the National Natural Science Foundation of China (11079008), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, German Research Foundation DFG (Collaborative Research Center CRC 1044), Istituto Nazionale di Fisica Nucleare, Italy, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03), Ministry of Development of Turkey (DPT2006K-120470), National Natural Science Foundation of China (11205082), The Swedish Research Council, U. S. Department of Energy (DE-FG02-05ER41374, DE-SC-0010118, DE-SC-0010504), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).
Progress towards next generation hadron colliders: FCC-hh, HE-LHC, and SPPC
NASA Astrophysics Data System (ADS)
Zimmermann, Frank; EuCARD-2 Extreme Beams Collaboration; Future Circular Collider (FCC) Study Collaboration
2017-01-01
A higher-energy circular proton collider is generally considered to be the only path available in this century for exploring energy scales well beyond the reach of the Large Hadron Collider (LHC) presently in operation at CERN. In response to the 2013 Update of the European Strategy for Particle Physics and aligned with the 2014 US ``P5'' recommendations, the international Future Circular Collider (FCC) study, hosted by CERN, is designing such future frontier hadron collider. This so-called FCC-hh will provide proton-proton collisions at a centre-of-mass energy of 100 TeV, with unprecedented luminosity. The FCC-hh energy goal is reached by combining higher-field, 16 T magnets, based on Nb3Sn superconductor, and a new 100 km tunnel connected to the LHC complex. In addition to the FCC-hh proper, the FCC study is also exploring the possibility of a High-Energy LHC (HE-LHC), with a centre-of-mass energy of 25-27 TeV, as could be achieved in the existing 27 km LHC tunnel using the FCC-hh magnet technology. A separate design effort centred at IHEP Beijing aims at developing and constructing a similar collider in China, with a smaller circumference of about 54 km, called SPPC. Assuming even higher-field 20 T magnets, by relying on high-temperature superconductor, the SPPC could reach a c.m. energy of about 70 TeV. This presentation will report the motivation and the present status of the R&D for future hadron colliders, a comparison of the three designs under consideration, the major challenges, R&D topics, the international technology programs, and the emerging global collaboration. Work supported by the European Commission under Capacities 7th Framework Programme project EuCARD-2, Grant Agreement 312453, and the HORIZON 2020 project EuroCirCol, Grant Agreement 654305.
NASA Astrophysics Data System (ADS)
Bedogni, R.; Amgarou, K.; Domingo, C.; Russo, S.; Cirrone, G. A. P.; Pelliccioni, M.; Esposito, A.; Pola, A.; Introini, M. V.; Gentile, A.
2012-07-01
Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. The ERBSSs of UAB (Universidad Autónoma de Barcelona-Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.
NASA Astrophysics Data System (ADS)
Friedman, J. I.
2001-01-01
In the period following World War II, there was a rapid development of particle physics. With the construction of synchrotrons and the development of detector technology, many new particles were discovered and the systematics of their interactions investigated. The invention of the bubble chamber played an especially important role in uncovering the rich array of hadrons that were discovered in this period.In 1961 Murray Gell-Mann [1] and Yuval Ne'eman [2] independently introduced a classification scheme, based on SU(3) symmetry, which placed hadrons into families on the basis of spin and parity. Like the periodic table for the elements, this scheme was predictive as well as descriptive, and various hadrons, such as the - , were predicted within this framework and were later discovered.In 1964 Gell-Mann [3] and George Zweig [4] independently proposed quarks as the building blocks of hadrons as a way of generating the SU(3) classification scheme. When the quark model was first proposed, it postulated three types of quarks: up (u), down (d), and strange (s), with charges 2/3, - 1/3, and - 1/3 respectively. Each of these was hypothesized to be a spin1/2 particle. In this model the nucleon (and all other baryons) is made up of three quarks, and each meson consists of a quark and an antiquark. For example, as the proton and neutron both have ero strangeness, they are (u,u,d) and (d,d,u) systems respectively.
Benaglia, Andrea; Auffray, Etiennette; Lecoq, Paul; ...
2016-04-20
The performance of hadronic calorimeters will be a key parameter at the next generation of High Energy Physics accelerators. A detector combining fine granularity with excellent timing information would prove beneficial for the reconstruction of both jets and electromagnetic particles with high energy resolution. In this work, the space and time structure of high energy showers is studied by means of a Geant4-based simulation toolkit. In particular, the relevant time scales of the different physics phenomena contributing to the energy loss are investigated. A correlation between the fluctuations of the energy deposition of high energy hadrons and the time developmentmore » of the showers is observed, which allows for an event-by-event correction to be computed to improve the energy resolution of the calorimeter. Lastly, these studies are intended to set the basic requirements for the development of a new-concept, total absorption time-imaging calorimeter, which seems now within reach thanks to major technological advancements in the production of fast scintillating materials and compact photodetectors.« less
Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.
2013-06-27
The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions,more » lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.« less
10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...
10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...
10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...
10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...
10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...
The future of the Large Hadron Collider and CERN.
Heuer, Rolf-Dieter
2012-02-28
This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.
Test of the CLAS12 RICH large-scale prototype in the direct proximity focusing configuration
Anefalos Pereira, S.; Baltzell, N.; Barion, L.; ...
2016-02-11
A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c up to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Laboratory. The adopted solution foresees a novel hybrid optics design based on aerogel radiator, composite mirrors and high-packed and high-segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). We report here the results of the tests of a large scale prototype of the RICH detector performed withmore » the hadron beam of the CERN T9 experimental hall for the direct detection configuration. As a result, the tests demonstrated that the proposed design provides the required pion-to-kaon rejection factor of 1:500 in the whole momentum range.« less
Nuclear reactions from lattice QCD
Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.
2015-01-13
In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less
HERAFitter: Open source QCD fit project
Alekhin, S.; Behnke, O.; Belov, P.; ...
2015-07-01
HERAFitter is an open-source package that provides a framework for the determination of the parton distribution functions (PDFs) of the proton and for many different kinds of analyses in Quantum Chromodynamics (QCD). It encodes results from a wide range of experimental measurements in lepton-proton deep inelastic scattering and proton-proton (proton-antiproton) collisions at hadron colliders. These are complemented with a variety of theoretical options for calculating PDF-dependent cross section predictions corresponding to the measurements. The framework covers a large number of the existing methods and schemes used for PDF determination. The data and theoretical predictions are brought together through numerous methodologicalmore » options for carrying out PDF fits and plotting tools to help visualise the results. While primarily based on the approach of collinear factorisation, HERAFitter also provides facilities for fits of dipole models and transverse-momentum dependent PDFs. The package can be used to study the impact of new precise measurements from hadron colliders. This paper describes the general structure of HERAFitter and its wide choice of options.« less
28 CFR 115.218 - Upgrades to facilities and technologies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Upgrades to facilities and technologies....218 Upgrades to facilities and technologies. (a) When designing or acquiring any new facility and in... surveillance system, or other monitoring technology, the agency shall consider how such technology may enhance...
28 CFR 115.318 - Upgrades to facilities and technologies.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Upgrades to facilities and technologies... facilities and technologies. (a) When designing or acquiring any new facility and in planning any substantial... monitoring technology, the agency shall consider how such technology may enhance the agency's ability to...
28 CFR 115.218 - Upgrades to facilities and technologies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Upgrades to facilities and technologies....218 Upgrades to facilities and technologies. (a) When designing or acquiring any new facility and in... surveillance system, or other monitoring technology, the agency shall consider how such technology may enhance...
28 CFR 115.218 - Upgrades to facilities and technologies.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Upgrades to facilities and technologies....218 Upgrades to facilities and technologies. (a) When designing or acquiring any new facility and in... surveillance system, or other monitoring technology, the agency shall consider how such technology may enhance...
28 CFR 115.318 - Upgrades to facilities and technologies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Upgrades to facilities and technologies... facilities and technologies. (a) When designing or acquiring any new facility and in planning any substantial... monitoring technology, the agency shall consider how such technology may enhance the agency's ability to...
28 CFR 115.318 - Upgrades to facilities and technologies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Upgrades to facilities and technologies... facilities and technologies. (a) When designing or acquiring any new facility and in planning any substantial... monitoring technology, the agency shall consider how such technology may enhance the agency's ability to...
High Luminosity LHC: Challenges and plans
Arduini, G.; Barranco, J.; Bertarelli, A.; ...
2016-12-28
The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), willmore » rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb 3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.« less
NASA Astrophysics Data System (ADS)
Webster, Jordan
2017-01-01
Dense track environments in pp collisions at the Large Hadron Collider (LHC) motivate the use of triggers with dedicated hardware for fast track reconstruction. The ATLAS Collaboration is in the process of implementing a Fast Tracker (FTK) trigger upgrade, in which Content Addressable Memories (CAMs) will be used to rapidly match hit patterns with large banks of simulated tracks. The FTK CAMs are produced primarily at the University of Pisa. However, commercial CAM technology is rapidly developing due to applications in computer networking devices. This poster presents new studies comparing FTK CAMs to cutting-edge ternary CAMs developed by Cavium. The comparison is intended to guide the design of future track-based trigger systems for the next Phase at the LHC.
The data acquisition and reduction challenge at the Large Hadron Collider.
Cittolin, Sergio
2012-02-28
The Large Hadron Collider detectors are technological marvels-which resemble, in functionality, three-dimensional digital cameras with 100 Mpixels-capable of observing proton-proton (pp) collisions at the crossing rate of 40 MHz. Data handling limitations at the recording end imply the selection of only one pp event out of each 10(5). The readout and processing of this huge amount of information, along with the selection of the best approximately 200 events every second, is carried out by a trigger and data acquisition system, supplemented by a sophisticated control and monitor system. This paper presents an overview of the challenges that the development of these systems has presented over the past 15 years. It concludes with a short historical perspective, some lessons learnt and a few thoughts on the future.
Overview of recent trends and developments for BPM systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, M.; /Fermilab
2011-08-01
Beam position monitoring (BPM) systems are the workhorse of beam diagnostics for almost any kind of charged particle accelerator: linear, circular or transport-lines, operating with leptons, hadrons or heavy ions. BPMs are essential for beam commissioning, accelerator fault analysis and trouble shooting, machine optics, as well as lattice measurements, and finally, for accelerator optimization, in order to achieve the ultimate beam quality. This presentation summarizes the efforts of the beam instrumentation community on recent developments and advances on BPM technologies, i.e. BPM pickup monitors and front-end electronics (analog and digital). Principles, examples, and state-of-the-art status on various BPM techniques, servingmore » hadron and heavy ion machines, sync light synchrotron's, as well as electron linacs for FEL or HEP applications are outlined.« less
Construction of a technological semi-digital hadronic calorimeter using GRPC
NASA Astrophysics Data System (ADS)
Laktineh, I.
2011-04-01
A high-granularity semi-digital Hadronic calorimeter using GRPC as sensitive medium is one of the two HCAL options considered by the ILD collaboration to be proposed for the detector of the future International Linear Collider project. A prototype of 1m3 has been conceived within the CALICE collaboration in order to validate this option. The prototype intends to be as close as possible to the one proposed in the ILD Letter Of Intent. Few units made of 1m2 GRPC fully equipped with semi-digital readout electronics and new gas distribution design were produced and successfully tested. In 2010 we intend to produce 40 similar units to be inserted in a self-supporting mechanical structure. The prototype will then be exposed to TestBeams at CERN for final validation.
NASA Astrophysics Data System (ADS)
Giardina, Giorgio; Sandorfi, Andrew; Pedroni, Paolo
2013-03-01
The International Seminar 'Strong and Electromagnetic Interaction in High Energy Collisions' was held in the Conference Hall 'Ettore Majorana' of the Department of Physics in Messina, Italy on October 12, 2012. The Seminar was organized by the University of Messina and 'Fondazione Bonino-Pulejo', with the aim of presenting and discussing the results of the current experiments and also new plans involving research at INFN-LNF (Italy), JLAB (USA), LHC-CERN, ELSA (Bonn), MAMI (Mainz). The main purpose of this Seminar was to deal with aspects of electromagnetic and strong forces by meson photoproduction and the electron-positron collider, and to search for dark energy. The recent results on hadron contributions to the muon anomalous magnetic moment and kaon interferometry at the DAFNE facility were also discussed. Editors: Giorgio Giardina (University of Messina), Andrew M Sandorfi (Thomas Jefferson National Accelerator Facility, Newport News, USA), Paolo Pedroni (INFN 'Sezione di Pavia') Organizing Committee: Chairman: G Giardina (Messina - Italy) Co-Chairman: A M Sandorfi (Newport News, USA) Co-Chairman: P Pedroni (Pavia - Italy) Scientific Secretary: G Mandaglio (University of Messina - Italy) Organizing Institutions: University of Messina Fondazione Bonino-Pulejo (Messina) Topics: Meson photoproduction and baryon resonances Muon anomaly (g-2) Recent results in experiments at the Large Hadron Collider Kaon interferometry Local Organizing Committee: F Curciarello, V De Leo, G Fazio, G Giardina, G Mandaglio, M Romaniuk Sponsored by: University of Messina, Fondazione Bonino-Pulejo (Messina), INFN Sezione di Catania Web-Site: http://newcleo.unime.it/IntSem2012
Feasibility study of a cyclotron complex for hadron therapy
NASA Astrophysics Data System (ADS)
Smirnov, V.; Vorozhtsov, S.
2018-04-01
An accelerator complex for hadron therapy based on a chain of cyclotrons is under development at JINR (Dubna, Russia), and the corresponding conceptual design is under preparation. The complex mainly consists of two superconducting cyclotrons. The first accelerator is a compact cyclotron used as an injector to the main accelerator, which is a six-fold separated sector machine. The facility is intended for generation of protons and carbon beams. The H2+ and 12C6+ ions from the corresponding ECR ion sources are accelerated in the injector-cyclotron up to the output energy of 70 MeV/u. Then, the H2+ ions are extracted from the injector by a stripping foil, and the resulting proton beam with the energy of 70 MeV is used for medical purposes. After acceleration in the main cyclotron, the carbon beam can be either used directly for therapy or introduced to the main cyclotron for obtaining the final energy of 400 MeV/u. The basic requirements to the project are the following: compliance to medical requirements, compact size, feasible design, and high reliability of all systems of the complex. The advantages of the dual cyclotron design can help reaching these goals. The initial calculations show that this design is technically feasible with acceptable beam dynamics. The accelerator complex with a relatively compact size can be a good solution for medical applications. The basic parameters of the facility and detailed investigation of the magnetic system and beam dynamics are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
campbell, myron
To create a research and study abroad program that would allow U.S. undergraduate students access to the world-leading research facilities at the European Organization for Nuclear Research (CERN), the World Health Organization, various operations of the United Nations and other international organizations based in Geneva.The proposal is based on the unique opportunities currently existing in Geneva. The Large Hadron Collider (LHC) is now operational at CERN, data are being collected, and research results are already beginning to emerge. At the same time, a related reduction of activity at U.S. facilities devoted to particle physics is expected. In addition, the U.S.more » higher-education community has an ever-increasing focus on international organizations dealing with world health pandemics, arms control and human rights, a nexus also centered in Geneva.« less
Design and performance of an electromagnetic calorimeter for a FCC-hh experiment
NASA Astrophysics Data System (ADS)
Zaborowska, A.
2018-03-01
The physics reach and feasibility of the Future Circular Collider are currently under investigation. The goal is to collide protons with centre-of-mass energies up to 100 TeV, extending the research carried out at the current HEP facilities. The detectors designed for the FCC experiments need to tackle harsh conditions of the unprecedented collision energy and luminosity. The baseline technology for the calorimeter system of the FCC-hh detector is described. The electromagnetic calorimeter in the barrel, as well as the electromagnetic and hadronic calorimeters in the endcaps and the forward regions, are based on the liquid argon as active material. The detector layout in the barrel region combines the concept of a high granularity calorimeter with precise energy measurements. The calorimeters have to meet the requirements of high radiation hardness and must be able to deal with a very high number of collisions per bunch crossings (pile-up). A very good energy and angular resolution for a wide range of electrons' and photons' momentum is needed in order to meet the demands based on the physics benchmarks. First results of the performance studies with the new liquid argon calorimeter are presented, meeting the energy resolution goal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, Dr. Peter S.; Ball, Robert; Chapman, J. Wehrley
2010-01-01
A new radiation sensor derived from plasma panel display technology is introduced. It has the capability to detect ionizing and non-ionizing radiation over a wide energy range and the potential for use in many applications. The principle of operation is described and some early results presented.
Nucleon-gold collisions at 200 A GeV using tagged d + Au interactions in the PHOBOS detector
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.; Phobos Collaboration
2015-09-01
Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d +Au , p +Au , and n +Au collisions at √{sN N}=200 GeV . The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p +Au and n +Au collisions in the data. A weighted combination of the yield of p +Au and n +Au is constructed to build a reference for Au +Au collisions that better matches the isospin composition of the gold nucleus. The pT and centrality dependence of the yield of this improved reference system is found to match that of d +Au . The shape of the charged-particle transverse momentum distribution is observed to extrapolate smoothly from p +p ¯ to central d +Au as a function of the charged-particle pseudorapidity density. The asymmetry of positively and negatively charged hadron production in p +Au is compared to that of n +Au . No significant asymmetry is observed at midrapidity. These studies augment recent results from experiments at the CERN Large Hadron Collider and BNL Relativistic Heavy Ion Collider facilities to give a more complete description of particle production in p +A and d +A collisions, essential for the understanding the medium produced in high-energy nucleus-nucleus collisions.
Nucleon-gold collisions at 200A GeV using tagged d + Au interactions in the PHOBOS detector
Back, B. B.; Nouicer, R.; Baker, M. D.; ...
2015-09-23
Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d+Au, p+Au, and n+Au collisions at √s NN =200GeV. The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p+Au and n+Au collisions in the data. A weighted combination of the yield of p+Au and n+Au is constructed to build a reference for Au+Au collisions that better matches the isospin composition of the gold nucleus. The p T and centralitymore » dependence of the yield of this improved reference system is found to match that of d+Au. The shape of the charged-particle transverse momentum distribution is observed to extrapolate smoothly from p+p¯ to central d+Au as a function of the charged-particle pseudorapidity density. The asymmetry of positively and negatively charged hadron production in p+Au is compared to that of n+Au. No significant asymmetry is observed at midrapidity. In conclusion, these studies augment recent results from experiments at the CERN Large Hadron Collider and BNL Relativistic Heavy Ion Collider facilities to give a more complete description of particle production in p+A and d+A collisions, essential for the understanding the medium produced in high-energy nucleus-nucleus collisions.« less
Nucleon-gold collisions at 200 A GeV using tagged d + Au interactions in the PHOBOS detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Back, B. B.; Baker, M. D.; Ballintijn, M.
2015-09-01
Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d + Au, p + Au, and n + Au collisions at root s(NN) = 200 GeV. The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p + Au and n + Au collisions in the data. A weighted combination of the yield of p + Au and n + Au is constructed to build a reference for Aumore » + Au collisions that better matches the isospin composition of the gold nucleus. The p(T) and centrality dependence of the yield of this improved reference system is found to match that of d + Au. The shape of the charged-particle transverse momentum distribution is observed to extrapolate smoothly from p + (p) over bar to central d + Au as a function of the charged-particle pseudorapidity density. The asymmetry of positively and negatively charged hadron production in p + Au is compared to that of n + Au. No significant asymmetry is observed at midrapidity. These studies augment recent results from experiments at the CERN Large Hadron Collider and BNL Relativistic Heavy Ion Collider facilities to give a more complete description of particle production in p + A and d + A collisions, essential for the understanding the medium produced in high-energy nucleus-nucleus collisions.« less
NASA Astrophysics Data System (ADS)
Schmidt, R.; Blanco Sancho, J.; Burkart, F.; Grenier, D.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.
2014-08-01
A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.
NASA Astrophysics Data System (ADS)
Jawalkar, Sucheta Shrikant
Measurements in the late 1980s at CERN revealed that quark spins account for a small fraction of the proton's spin. This so-called spin crisis spurred a number of new experiments to identify the proton's silent spin contributors, namely, the spin of the gluons, which hold the quarks together, and the orbital angular momentum of both quarks and gluons. One such experiment was eg1-dvcs at the Thomas Jefferson National Accelerator Facility in Newport News, Va., which ran in 2009 and collected approximately 19 billion electron triggers for hydrogen. I will present new measurements of the single and double-spin asymmetries ALU, AUL and ALL for pi+, pi - and pi0, measured as a function of Bjorken xB, squared momentum transfer Q2, hadron energy fraction z, and hadron transverse momentum Ph ⊥. These asymmetries, which are convolutions of transverse-momentum-dependent parton distributions and fragmentation functions, correlate with the transverse momentum, and therefore with the orbital motion, of the struck quark.
Physics perspectives at JLab with a polarized positron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voutier, Eric J.-M.
2014-06-01
Polarized positron beams are in some respect mandatory complements to polarized electron beams. The advent of the PEPPo concept for polarized positron production opens the possibility for the developement at the Jefferson Laboratory of a continuous polarized positron beam. The benefits of such a beam for hadronic structure studies are discussed, together with the technical and technological challenges to face.
Using Data from the Large Hadron Collider in the Classroom
NASA Astrophysics Data System (ADS)
Smith, Jeremy
2017-01-01
Now is an exciting time for physics students, because they have access to technology and experiments all over the world that were unthinkable a generation ago. Therefore, now is also the ideal time to bring these experiments into the classroom, so students can see what cutting edge science looks like, both in terms of the underlying physics and in terms of the technology used to gather data. With the continued running of the Large Hadron Collider at CERN, and the lab's continued dedication to providing open, worldwide access to their data, there is a unique opportunity for students to use these data in a manner very similar to how it's done in the particle physics community. In this session, we will explore ways for students to analyze real data from the CMS experiment at the LHC, plot these data to discover patterns and signals, and use these plots to determine quantities such as the invariant masses of the W, Z and Higgs bosons. Furthermore, we will show how such activities already fit well into standard introductory physics classes, and can in fact enhance already-existing lessons in the topics of momentum, kinematics, energy and electromagnetism.
New developments of 11C post-accelerated beams for hadron therapy and imaging
NASA Astrophysics Data System (ADS)
Augusto, R. S.; Mendonca, T. M.; Wenander, F.; Penescu, L.; Orecchia, R.; Parodi, K.; Ferrari, A.; Stora, T.
2016-06-01
Hadron therapy was first proposed in 1946 and is by now widespread throughout the world, as witnessed with the design and construction of the CNAO, HIT, PROSCAN and MedAustron treatment centres, among others. The clinical interest in hadron therapy lies in the fact that it delivers precision treatment of tumours, exploiting the characteristic shape (the Bragg peak) of the energy deposition in the tissues for charged hadrons. In particular, carbon ion therapy is found to be biologically more effective, with respect to protons, on certain types of tumours. Following an approach tested at NIRS in Japan [1], carbon ion therapy treatments based on 12C could be combined or fully replaced with 11C PET radioactive ions post-accelerated to the same energy. This approach allows providing a beam for treatment and, at the same time, to collect information on the 3D distributions of the implanted ions by PET imaging. The production of 11C ion beams can be performed using two methods. A first one is based on the production using compact PET cyclotrons with 10-20 MeV protons via 14N(p,α)11C reactions following an approach developed at the Lawrence Berkeley National Laboratory [2]. A second route exploits spallation reactions 19F(p,X)11C and 23Na(p,X)11C on a molten fluoride salt target using the ISOL (isotope separation on-line) technique [3]. This approach can be seriously envisaged at CERN-ISOLDE following recent progresses made on 11C+ production [4] and proven post-acceleration of pure 10C3/6+ beams in the REX-ISOLDE linac [5]. Part of the required components is operational in radioactive ion beam facilities or commercial medical PET cyclotrons. The driver could be a 70 MeV, 1.2 mA proton commercial cyclotron, which would lead to 8.1 × 10711C6+ per spill. This intensity is appropriate using 11C ions alone for both imaging and treatment. Here we report on the ongoing feasibility studies of such approach, using the Monte Carlo particle transport code FLUKA [6,7] to simulate pristine Bragg Peaks of 11C, in order to compare its performance with 12C, in the context of hadron therapy.
Review on DTU-parton model for hadron-hadron and hadron-nucleus collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, C.B.
1980-08-01
The parton picture of color separation of dual string and its subsequent breakup is used to motivate the DTU-parton model for high energy small p/sub T/ multiparticle productions in hadron-hadron and hadron-nucleus collisions. A brief survey on phenomenological applications of the model: such as the inclusive spectra for various hh processes and central plateau heights predicted, hA inclusive spectra and the approximate anti v-universalities is presented.
Hard Diffraction in Lepton--Hadron and Hadron--Hadron Collisions
NASA Astrophysics Data System (ADS)
Bialas, A.
2002-09-01
It is argued that the breakdown of factorization observed recently in the diffractive dijet production in deep inelastic lepton induced and hadron induced processes is naturally explained in the Good--Walker picture of diffraction dissociation. An explicit formula for the hadronic cross-section is given and successfully compared with the existing data.
Mitaroff, A; Cern, M Silari
2002-01-01
A reference facility for the calibration and intercomparison of active and passive detectors in broad neutron fields has been available at CERN since 1992. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction traverse a shield, at 90 degrees with respect to the direction of the incoming beam. made of either 80 to 160 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the 80 cm concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. This paper describes the facility, reports on the latest neutron spectral measurements, gives an overview of the most important experiments performed by the various collaborating institutions over recent years and briefly addresses the possible application of the facility to measurements related to the space programme.
47 CFR 59.2 - Terms and conditions of infrastructure sharing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... infrastructure, technology, information, or telecommunications facilities, or functions made available to a... infrastructure, technology, information, and telecommunications facilities, or functions available to a... infrastructure, technology, information and telecommunications facilities and functions pursuant to this part. ...
Gamma-hadron families and scaling violation
NASA Technical Reports Server (NTRS)
Gaisser, T. K.; Stanev, T.; Wrotniak, J. A.
1985-01-01
For three different interaction models we have simulated gamma-hadron families, including the detector (Pamir emulsion chamber) response. Rates of gamma families, hadrons, and hadron-gamma ratios were compared with experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geiger, K.; Longacre, R.; Srivastava, D.K.
VNI is a general-purpose Monte-Carlo event-generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme, as well as the development of hadron cascades after hadronization. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time-development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position-space, momentum-space and color-space. The parton-evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi)hard interactions inmore » QCD, involving 2 {r_arrow} 2 parton collisions, 2 {r_arrow} 1 parton fusion processes, and 1 {r_arrow} 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. Finally, the cascading of produced prehadronic clusters and of hadrons includes a multitude of 2 {r_arrow} n processes, and is modeled in parallel to the parton cascade description. This paper gives a brief review of the physics underlying VNI, as well as a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including simple examples), annotates input and control parameters, and discusses output data provided by it.« less
Rope Hadronization and Strange Particle Production
NASA Astrophysics Data System (ADS)
Bierlich, Christian
2018-02-01
Rope Hadronization is a model extending the Lund string hadronization model to describe environments with many overlapping strings, such as high multiplicity pp collisions or AA collisions. Including effects of Rope Hadronization drastically improves description of strange/non-strange hadron ratios as function of event multiplicity in all systems from e+e- to AA. Implementation of Rope Hadronization in the MC event generators Dipsy and PYTHIA8 is discussed, as well as future prospects for jet studies and studies of small systems.
Modeling the emission processes in blazars
NASA Astrophysics Data System (ADS)
Böttcher, Markus
2007-06-01
Blazars are the most violent steady/recurrent sources of high-energy gamma-ray emission in the known Universe. They are prominent emitters of electromagnetic radiation throughout the entire electromagnetic spectrum. The observable radiation most likely originates in a relativistic jet oriented at a small angle with respect to the line of sight. This review starts out with a general overview of the phenomenology of blazars, including results from a recent multiwavelength observing campaign on 3C279. Subsequently, issues of modeling broadband spectra will be discussed. Spectral information alone is not sufficient to distinguish between competing models and to constrain essential parameters, in particular related to the primary particle acceleration and radiation mechanisms in the jet. Short-term spectral variability information may help to break such model degeneracies, which will require snap-shot spectral information on intraday time scales, which may soon be achievable for many blazars even in the gamma-ray regime with the upcoming GLAST mission and current advances in Atmospheric Cherenkov Telescope technology. In addition to pure leptonic and hadronic models of gamma-ray emission from blazars, leptonic/hadronic hybrid models are reviewed, and the recently developed hadronic synchrotron mirror model for TeV γ-ray flares which are not accompanied by simultaneous X-ray flares (“orphan TeV flares”) is revisited.
Martínez-Rovira, Immaculada; Boisgard, Raphaël; Pottier, Géraldine; Kuhnast, Bertrand; Jan, Sébastien
2016-01-01
The development of a reliable dose monitoring system in hadron therapy is essential in order to control the treatment plan delivery. Positron Emission Tomography (PET) is the only method used in clinics nowadays for quality assurance. However, the accuracy of this method is limited by the loss of signal due to the biological washout processes. Up to the moment, very few studies measured the washout processes and there is no database of washout data as a function of the tissue and radioisotope. One of the main difficulties is related to the complexity of such measurements, along with the limited time slots available in hadron therapy facilities. Thus, in this work, we proposed an alternative in vivo methodology for the measurement and modeling of the biological washout parameters without any radiative devices. It consists in the implementation of a point-like radioisotope source by direct injection on the tissues of interest and its measurement by means of high-resolution preclinical PET systems. In particular, the washout of 11C carbonate radioisotopes was assessed, considering that 11C is is the most abundant β+ emitter produced by carbon beams. 11C washout measurements were performed in several tissues of interest (brain, muscle and 9L tumor xenograf) in rodents (Wistar rat). Results show that the methodology presented is sensitive to the washout variations depending on the selected tissue. Finally, a first qualitative correlation between 11C tumor washout properties and tumor metabolism (via 18F-FDG tracer uptake) was found.
NASA Astrophysics Data System (ADS)
Linden-Levy, Loren Alexander
2008-10-01
We present an analysis using the world's largest data set of semi-inclusive deep inelastic scattering (SIDIS) in the kinematic range 0.1 < x < 0.6 at an average Q2 of 2.5 GeV2. This data was collected at the HERMES experiment located in the east hall of the HERA accelerator between the years 2000 and 2006. The hadron multiplicity from these scattering events is extracted for identified charged pions, kaons and protons from two different gaseous targets (H & D). For the hydrogen (deuterium) target 12.5 (16.68) million events were recorded. Using these hadron multiplicities an attempt is made to extract unpolarized information about the parton momentum distribution functions (PDFs) inside the nucleon via the flavor tagging technique within the quark-parton model. In particular, one can exploit certain factorization assumptions and fragmentation symmetries to extract the valence quark ratio dv/ uv and the light sea asymmetry d -- u/(u -- d) from the measured pion multiplicities on hydrogen and deuterium targets. The excellent particle identification available in the HERMES spectrometer coupled with the overwhelming statistics that are available from the high density end-of-fill running (especially in 2002 and 2004) make the HERMES data invaluable for reinforcing the E866/NuSea Drell-Yan result on d/ u at a different and from an entirely different physical process. These PDF extractions are also an important test of many typical assumptions made in SIDIS analyses and must be taken into consideration in light of the future facilities that propose to use this technique.
Status of Heavy-lepton Searches
DOE R&D Accomplishments Database
Perl, M. L.
1981-06-01
Searches for heavy leptons using e{sup +}e{sup -} annihilation, lepton-hadron collisions, photon-hadron collisions, hadron-hadron collisions, and studies of macroscopic matter are reviewed. The present experimental status and future possibilities are summarized.
Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M
2014-08-15
We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. We show that the thermodynamic presence of these additional states gets imprinted in the yields of the ground-state strange hadrons leading to a systematic 5-8 MeV decrease of the chemical freeze-out temperatures of ground-state strange baryons.
The ERL-based Design of Electron-Hadron Collider eRHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ptitsyn, Vadim
2016-06-01
Recent developments of the ERL-based design of future high-luminosity electron-hadron collider eRHIC focused on balancing technological risks present in the design versus the design cost. As a result a lower risk design has been adopted at moderate cost increase. The modifications include a change of the main linac RF frequency, reduced number of SRF cavity types and modified electron spin transport using a spin rotator. A luminosity-staged approach is being explored with a Nominal design (more » $$L \\sim 10^{33} {\\rm cm}^2 {\\rm s}^{-1}$$) that employs reduced electron current and could possibly be based on classical electron cooling, and then with the Ultimate design ($$L \\gt 10^{34} {\\rm cm}^{-2} {\\rm s}^{-1}$$) that uses higher electron current and an innovative cooling technique (CeC). The paper describes the recent design modifications, and presents the full status of the eRHIC ERL-based design.« less
Study of QCD-dynamics in η and η' production and decays
NASA Astrophysics Data System (ADS)
Beck, Reinhard; Wiedner, Ulrich
2017-01-01
One aim of this project lies in studying QCD dynamics using photoproduction of η and η' mesons with the CBELSA/TAPS experiment at the accelerator facility ELSA. Hadronic decay modes of η and η' are analyzed that allow the study of symmetry breaking effects in QCD. Furthermore, excited η-states produced with a photon beam are studied within the scope of this project. Of special interest is hereby the nature of the η(1405). The high data samples for η- and η'-photoproduction off the proton allow in addition the determination of polarization observables.
Theoretical study of EAS hadronic structure
NASA Technical Reports Server (NTRS)
Popova, L.
1985-01-01
The structure of extensive air showers (EAS) is determined mainly by the energetic hadrons. They are strongly collimated in the core of the shower and essential difficulties are encountered for resolution of individual hadrons. The properties for resolution are different from the variety of hadron detectors used in EAS experiments. This is the main difficulty in obtaining a general agreement between actually registered data with different detectors. The most plausible source for disagreement is the uncertainty in determination of the energy of individual hadrons. This research demonstrates that a better agreement can be obtained with the average tendency of hadronic measurements if one assumes a larger coefficient of inelasticity and stronger energy increase of the total inelastic cross section in high energy pion interactions. EAS data above 10 to the 5th power GeV are revealing a faster development of hadronic cascades in the air then can be expected by extrapolating the parameters of hadron interactions obtained in accelerator measurements.
Search for Hidden Particles (SHiP): a new experiment proposal
NASA Astrophysics Data System (ADS)
De Lellis, G.
2015-06-01
Searches for new physics with accelerators are being performed at the LHC, looking for high massive particles coupled to matter with ordinary strength. We propose a new experimental facility meant to search for very weakly coupled particles in the few GeV mass domain. The existence of such particles, foreseen in different theoretical models beyond the Standard Model, is largely unexplored from the experimental point of view. A beam dump facility, built at CERN in the north area, using 400 GeV protons is a copious factory of charmed hadrons and could be used to probe the existence of such particles. The beam dump is also an ideal source of tau neutrinos, the less known particle in the Standard Model. In particular, tau anti-neutrinos have not been observed so far. We therefore propose an experiment to search for hidden particles and study tau neutrino physics at the same time.
NASA Astrophysics Data System (ADS)
Cauchi, Marija; Aberle, O.; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cornelis, K.; Dallocchio, A.; Deboy, D.; Lari, L.; Redaelli, S.; Rossi, A.; Salvachua, B.; Mollicone, P.; Sammut, N.
2014-02-01
The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC). The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat) facility, involved 440 GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, R.; Grenier, D.; Wollmann, D.
2014-08-15
A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like themore » Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.« less
Di-hadron production at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anefalos Pereira, Sergio; et. al.,
Semi-inclusive deep inelastic scattering (SIDIS) has been used extensively in recent years as an important testing ground for QCD. Studies so far have concentrated on better determination of parton distribution functions, distinguishing between the quark and antiquark contributions, and understanding the fragmentation of quarks into hadrons. Hadron pair (di-hadron) SIDIS provides information on the nucleon structure and hadronization dynamics that complement single hadron SIDIS. Di-hadrons allow the study of low- and high-twist distribution functions and Dihadron Fragmentation Functions (DiFF). Together with the twist-2 PDFs ( f1, g1, h1), the Higher Twist (HT) e and hL functions are very interesting becausemore » they offer insights into the physics of the largely unexplored quark-gluon correlations, which provide access into the dynamics inside hadrons. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected data using the CEBAF 6 GeV longitudinally polarized electron beam on longitudinally polarized solid NH3 targets. Preliminary results on di-hadron beam-, target- and double-spin asymmetries will be presented.« less
Detector development for Jefferson Lab's 12GeV Upgrade
Qiang, Yi
2015-05-01
Jefferson Lab will soon finish its highly anticipated 12 GeV Upgrade. With doubled maximum energy, Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) will enable a new experimental program with substantial discovery potential, addressing important topics in nuclear, hadronic and electroweak physics. In order to take full advantage of the high energy, high luminosity beam, new detectors are being developed, designed and constructed to fit the needs of different physics topics. The paper will give an overview of various new detector technologies to be used for 12 GeV experiments. It will then focus on the development of two solenoid-based spectrometers,more » the GlueX and SoLID spectrometers. The GlueX experiment in Hall D will study the complex properties of gluons through exotic hybrid meson spectroscopy. The GlueX spectrometer, a hermetic detector package designed for spectroscopy and the associated partial wave analysis, is currently in the final stage of construction. Hall A, on the other hand, is developing the SoLID spectrometer to capture the 3D image of the nucleon from semi-inclusive processes and to study the intrinsic properties of quarks through mirror symmetry breaking. Such a spectrometer will have the capability to handle very high event rates while still maintaining a large acceptance in the forward region.« less
The Emergence of Hadrons from QCD Color
NASA Astrophysics Data System (ADS)
Brooks, William; Color Dynamics in Cold Matter (CDCM) Collaboration
2015-10-01
The formation of hadrons from energetic quarks, the dynamical enforcement of QCD confinement, is not well understood at a fundamental level. In Deep Inelastic Scattering, modifications of the distributions of identified hadrons emerging from nuclei of different sizes reveal a rich variety of spatial and temporal characteristics of the hadronization process, including its dependence on spin, flavor, energy, and hadron mass and structure. The EIC will feature a wide range of kinematics, allowing a complete investigation of medium-induced gluon bremsstrahlung by the propagating quarks, leading to partonic energy loss. This fundamental process, which is also at the heart of jet quenching in heavy ion collisions, can be studied for light and heavy quarks at the EIC through observables quantifying hadron ``attenuation'' for a variety of hadron species. Transverse momentum broadening of hadrons, which is sensitive to the nuclear gluonic field, will also be accessible, and can be used to test our understanding from pQCD of how this quantity evolves with pathlength, as well as its connection to partonic energy loss. The evolution of the forming hadrons in the medium will shed new light on the dynamical origins of the forces between hadrons, and thus ultimately on the nuclear force. Supported by the Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) of Chile.
Creating Standards-Based Technology Education Facilities
ERIC Educational Resources Information Center
Daugherty, Michael K.; Klenke, Andrew M.; Neden, Michael
2008-01-01
One of the most intimidating tasks faced by new or practicing technology education teachers is the challenge of creating new facilities or renovating current facilities for a new purpose. While the fourth program standard in "Advancing Excellence in Technological Literacy: Student Assessment, Professional Development, and Program Standards (AETL)"…
charged tracks or associated with photons or neutral hadrons. Hardware effort: A Digital Hadron fine segmentation, the energy resolution for single hadrons is preserved with a simple digital readout Physics Division Digital Hadron Calorimeter with RPCs (US effort) CALICE Collaboration American Linear
Scattering and stopping of hadrons in nuclear matter
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
It was observed, in the 180 litre xenon bubble chamber, that when hadrons with kinetic energy higher than the pion production threshold fall on a layer of nuclear matter - on an atomic nucleus in other words - in many cases they can pass through it without causing particles production but they are deflected through some deflection angles; if the energy is lower than a few GeV and the nuclear matter layer is thick enough, the hadrons can be stopped in it. The amount of the deflection at a given incident hadron energy varies with the way the hadron strikes the atomic nucleus; the probability of the occurrence of stopping depends on the incident hadron identity and energy, and on the way the hadron passed through the nucleus, as well.
ERIC Educational Resources Information Center
Teicholz, Eric
1997-01-01
Reports research on trends in computer-aided facilities management using the Internet and geographic information system (GIS) technology for space utilization research. Proposes that facility assessment software holds promise for supporting facility management decision making, and outlines four areas for its use: inventory; evaluation; reporting;…
Confinement and hadron-hadron interactions by general relativistic methods
NASA Astrophysics Data System (ADS)
Recami, Erasmo
By postulating covariance of physical laws under global dilations, one can describe gravitational and strong interactions in a unified way. Namely, in terms of the new discrete dilational degree of freedom, our cosmos and hadrons can be regarded as finite, similar systems. And a discrete hierarchy of finite ``universes'' may be defined, which are governed by fields with strengths inversally proportional to their radii; in each universe an Equivalence Principle holds, so that the relevant field can be there geometrized. Scaled-down Einstein equations -with cosmological term- are assumed to hold inside hadrons (= strong micro-cosmoses); and they yield in a natural way classical confinement, as well as ``asymptotic freedom'', of the hadron constituents. In other words, the association of strong micro-universes of Friedmann type with hadrons (i.e., applying the methods of General Relativity to subnuclear particle physics) allows avoiding recourse to phenomenological models such as the Bag Model. Inside hadrons we have to deal with a tensorial field (= strong gravity), and hadron constituents are supposed to exchange spin-2 ``gluons''. Our approach allows us also to write down a tensorial, bi-scale field theory of hadron-hadron interactions, based on modified Einstein-type equations here proposed for strong interactions in our space. We obtain in particular: (i) the correct Yukawa behaviour of the strong scalar potential at the static limit and for r>~l fm; (ii) the value of hadron radii. As a byproduct, we derive a whole ``numerology'', connecting our gravitational cosmos with the strong micro-cosmoses (hadrons), such that it does imply no variation of G with the epoch. Finally, since a structute of the ``micro-universe'' type seems to be characteristic even of leptons, a hope for the future is including also weak interactions in our classical unification of the fundamental forces.
Science and Technology Facility | Photovoltaic Research | NREL
- and back-contact schemes for advanced thin-film PV solar cells. Contact materials include metals Science and Technology Facility Science and Technology Facility Solar cell, thin-film, and Development Laboratory Research in thin-film PV is accomplished in this lab with techniques used for
Guidelines and Standards for the Technology Infrastructure of 21st Century Educational Facilities.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Office of Facilities Planning.
New York State Regents directed that new guidelines and "standards" be developed for technology infrastructures in educational facilities in order to assist administrators and educators in planning technology integration during retrofits, renovations, or new construction of educational facilities. This document provides the first draft…
Jet-induced medium excitation in γ-hadron correlation at RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei; Cao, Shanshan; Luo, Tan
Both jet transport and jet-induced medium excitation are investigated simultaneously within the coupled Linear Boltzmann Transport and hydro (CoLBT-hydro) model. In this coupled approach, energy-momentum deposition from propagating jet shower partons in the elastic and radiation processes is taken as a source term in hydrodynamics and the hydro background for LBT simulation is updated for next time step. We use CoLBT-hydro model to simulate γ-jet events of Au+Au collisions at RHIC. Hadron spectra from both the hadronization of jet shower partons and jet-induced medium excitation are calculated and compared to experimental data. Parton energy loss of jet shower partons leadsmore » to the suppression of hadron yields at large z T = p h T/p γ T while medium excitations leads to enhancement of hadron yields at small z T. Meanwhile, a significant broadening of low p T hadron yields and the depletion of soft hadrons in the γ direction are observed in the calculation of γ-hadron angular correlation.« less
Jet-induced medium excitation in γ-hadron correlation at RHIC
Chen, Wei; Cao, Shanshan; Luo, Tan; ...
2017-09-25
Both jet transport and jet-induced medium excitation are investigated simultaneously within the coupled Linear Boltzmann Transport and hydro (CoLBT-hydro) model. In this coupled approach, energy-momentum deposition from propagating jet shower partons in the elastic and radiation processes is taken as a source term in hydrodynamics and the hydro background for LBT simulation is updated for next time step. We use CoLBT-hydro model to simulate γ-jet events of Au+Au collisions at RHIC. Hadron spectra from both the hadronization of jet shower partons and jet-induced medium excitation are calculated and compared to experimental data. Parton energy loss of jet shower partons leadsmore » to the suppression of hadron yields at large z T = p h T/p γ T while medium excitations leads to enhancement of hadron yields at small z T. Meanwhile, a significant broadening of low p T hadron yields and the depletion of soft hadrons in the γ direction are observed in the calculation of γ-hadron angular correlation.« less
Di-hadron production at Jefferson Laboratory
NASA Astrophysics Data System (ADS)
Anefalos Pereira, Sergio; CLAS Collaboration
2015-04-01
Semi-inclusive deep inelastic scattering (SIDIS) has been used extensively in recent years as an important testing ground for QCD. Studies so far have concentrated on better determination of parton distribution functions, distinguishing between the quark and antiquark contributions, and understanding the fragmentation of quarks into hadrons. Pair of hadrons (di-hadron) SIDIS provides information on the nucleon structure and hadronization dynamics that complements single-hadron SIDIS. The study of di-hadrons allow us to study higher twist distribution functions and Dihadron Fragmentation Functions (DiFF). Together with the twist-2 PDFs (f 1, g 1, h 1), the Higher Twist (HT) e and hL functions are very interesting because they offer insights into the physics of the largely unexplored quark-gluon correlations which provide direct and unique insights into the dynamics inside hadrons. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected data using the CEBAF 6 GeV longitudinally polarized electron beam on longitudinally polarized solid NH3 targets. Preliminary results on beam-, target- and double-spin asymmetries will be presented.
NASA Astrophysics Data System (ADS)
Schwiening, J.; Ali, A.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Traxler, M.; Böhm, M.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kreutzfeld, K.; Merle, O.; Rieke, J.; Schmidt, M.; Wasem, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.
2018-03-01
The PANDA experiment at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) near GSI, Darmstadt, Germany will address fundamental questions of hadron physics. Excellent Particle Identification (PID) over a large range of solid angles and particle momenta will be essential to meet the objectives of the rich physics program. Charged PID for the barrel region of the PANDA target spectrometer will be provided by a DIRC (Detection of Internally Reflected Cherenkov light) detector. The Barrel DIRC will cover the polar angle range of 22o-140o and cleanly separate charged pions from kaons for momenta between 0.5 GeV/c and 3.5 GeV/c with a separation power of at least 3 standard deviations. The design is based on the successful BABAR DIRC and the SuperB FDIRC R&D with several important improvements to optimize the performance for PANDA, such as a focusing lens system, fast timing, a compact fused silica prism as expansion region, and lifetime-enhanced Microchannel-Plate PMTs for photon detection. This article describes the technical design of the PANDA Barrel DIRC and the result of the design validation using a "vertical slice" prototype in hadronic particle beams at the CERN PS.
High-tech rural clinics and hospitals in Japan: a comparison to the Japanese average.
Matsumoto, Masatoshi; Okayama, Masanobu; Inoue, Kazuo; Kajii, Eiji
2004-10-01
Japanese medical facilities are noted for being heavily equipped with high-tech equipment compared to other industrialised countries. Rural facilities are anecdotally said to be better equipped than facilities in other areas due to egalitarian health resource diffusion policies by public sectors whose goal is to secure fair access to modern medical technologies among the entire population. To show the technology status of rural practice and compare it to the national level. Nationwide postal survey. Questionnaires were sent to the directors of 1362 public hospitals and clinics (of the 1723 municipalities defined as 'rural' by four national laws). Information was collected about the technologies they possessed. The data were compared with figures from a national census of all hospitals and clinics. A total of 766 facilities responded (an effective response rate of 56%). Rural facilities showed higher possession rates in most comparable technologies than the national level. It is noted that almost all rural hospitals had gastroscopes and colonoscopes and their possession rates of bronchoscopes and dialysis equipment were twice as high as the national level. The discrepancy in possession rates between rural and national was even more remarkable in clinics than in hospitals. Rural clinics owned twice as many abdominal ultrasonographs, and three times as many gastroscopes, colonoscopes, defibrillators and computed tomography scanners as the national level. Rural facilities are equipped with more technology than urban ones. Government-led, tax based, technology diffusion in the entire country seems to have attained its goal. What is already known on this subject: As a general tendency in both developing and developed countries, rural medical facilities are technologically less equipped than their urban counterparts. What does this paper add?: In Japan, rural medical facilities are technologically better equipped than urban facilities.
A possible biomedical facility at the European Organization for Nuclear Research (CERN).
Dosanjh, M; Jones, B; Myers, S
2013-05-01
A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.
A possible biomedical facility at the European Organization for Nuclear Research (CERN)
Dosanjh, M; Myers, S
2013-01-01
A well-attended meeting, called “Brainstorming discussion for a possible biomedical facility at CERN”, was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams. PMID:23549990
Theory of hard diffraction and rapidity gaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Duca, V.
1996-02-01
In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). {copyright} {ital 1996 American Institute of Physics.}
Multiplicity moments at low and high energy in hadron--hadron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antich, P.; Calligarich, E.; Cecchet, G.
1974-01-19
A phenomenological investigation is made of the relation obtained by Weingarten for the multiplicity moments in hadron -hadron interactions. The predictions are compared with moments computed from the experimental data, over a wide energy range, of the reactions pp, pp, pi /sup approximately /p, and K/sup approximately /p. (LBS)
28 CFR 115.118 - Upgrades to facilities and technologies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Upgrades to facilities and technologies... and technologies. (a) When designing or acquiring any new lockup and in planning any substantial... monitoring technology, the agency shall consider how such technology may enhance the agency's ability to...
28 CFR 115.118 - Upgrades to facilities and technologies.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Upgrades to facilities and technologies... and technologies. (a) When designing or acquiring any new lockup and in planning any substantial... monitoring technology, the agency shall consider how such technology may enhance the agency's ability to...
28 CFR 115.118 - Upgrades to facilities and technologies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Upgrades to facilities and technologies... and technologies. (a) When designing or acquiring any new lockup and in planning any substantial... monitoring technology, the agency shall consider how such technology may enhance the agency's ability to...
NASA Astrophysics Data System (ADS)
Narison, Stephan
2004-05-01
About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.
NASA Astrophysics Data System (ADS)
Narison, Stephan
2007-07-01
About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andre, J.M.; et al.
The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of to the high-level trigger farm. The DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gbit/s Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gbit/s Infiniband FDR Clos network has been chosen for the event builder. This paper presents the implementation and performancemore » of the event-building system.« less
A NEW, SMALL DRYING FACILITY FOR WET RADIOACTIVE WASTE AND LIQUIDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldiges, Olaf; Blenski, Hans-Juergen
2003-02-27
Due to the reason, that in Germany every Waste, that is foreseen to be stored in a final disposal facility or in a long time interim storage facility, it is necessary to treat a lot of waste using different drying technologies. In Germany two different drying facilities are in operation. The GNS Company prefers a vacuum-drying-technology and has built and designed PETRA-Drying-Facilities. In a lot of smaller locations, it is not possible to install such a facility because inside the working areas of that location, the available space to install the PETRA-Drying-Facility is too small. For that reason, GNS decidedmore » to design a new, small Drying-Facility using industrial standard components, applying the vacuum-drying-technology. The new, small Drying-Facility for wet radioactive waste and liquids is presented in this paper. The results of some tests with a prototype facility are shown in chapter 4. The main components of that new facility are described in chapter 3.« less
Evolution of user analysis on the grid in ATLAS
NASA Astrophysics Data System (ADS)
Dewhurst, A.; Legger, F.; ATLAS Collaboration
2017-10-01
More than one thousand physicists analyse data collected by the ATLAS experiment at the Large Hadron Collider (LHC) at CERN through 150 computing facilities around the world. Efficient distributed analysis requires optimal resource usage and the interplay of several factors: robust grid and software infrastructures, and system capability to adapt to different workloads. The continuous automatic validation of grid sites and the user support provided by a dedicated team of expert shifters have been proven to provide a solid distributed analysis system for ATLAS users. Typical user workflows on the grid, and their associated metrics, are discussed. Measurements of user job performance and typical requirements are also shown.
COTS Silicon diodes as radiation detectors in proton and heavy charged particle radiotherapy 1.
Kaiser, Franz-Joachim; Bassler, Niels; Jäkel, Oliver
2010-08-01
Modern radiotherapy facilities for cancer treatment such as the Heavy Ion Therapy Center (HIT) in Heidelberg, Germany, allow for sub-millimeter precision in dose deposition. For measurement of such dose distributions and characterization of the particle beams, detectors with high spatial resolution are necessary. Here, a detector based on the commercially available COTS photodiode (BPW-34) is presented. When applied in hadronic beams of protons and carbon ions, the detector reproduces dose distribution well, but its response decreases rapidly by radiation damage. However, for MeV photon beams, the detector exhibits a similar behavior as found in diode detectors usually applied in radiotherapy.
Hadron-nucleus interactions at high energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, C.B.; He, Z.; Tow, D.M.
1982-06-01
A simple space-time description of high-energy hadron-nucleus interactions is presented. The model is based on the DTU (dual topologial unitarization)-parton-model description of soft multiparticle production in hadron-hadron interactions. The essentially parameter-free model agrees well with the general features of high-energy data for hadron-nucleus interactions; in particular, this DTU-parton model has a natural explanation for an approximate nu-bar universality. The expansion to high-energy nucleus-nucleus interactions is presented. We also compare and contrast this model with several previously proposed models.
Hadron-nucleus interactions at high energies
NASA Astrophysics Data System (ADS)
Chiu, Charles B.; He, Zuoxiu; Tow, Don M.
1982-06-01
A simple space-time description of high-energy hadron-nucleus interactions is presented. The model is based on the DTU (dual topological unitarization) -parton-model description of soft multiparticle production in hadron-hadron interactions. The essentially parameter-free model agrees well with the general features of high-energy data for hadron-nucleus interactions; in particular, this DTU-parton model has a natural explanation for an approximate ν¯ universality. The extension to high-energy nucleus-nucleus interactions is presented. We also compare and contrast this model with several previously proposed models.
Investigation of charged-hadron production in proton–nucleus interactions at the energy of 50 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordanovskii, A. Yu.; Volkov, A. A.; Elumahov, D. K.
2016-07-15
Cross sections for the production of high-transverse-momentum charged hadrons in proton–nucleus interactions at the incident-proton energy of 50 GeV were measured with the aid of the FODS double-arm spectrometer. Single hadrons (charged pions and protons) emitted at a c.m. angle of about 90° and high-effective-mass pairs of hadrons flying apart at a c.m. angle of 180° were detected simultaneously. Results on the production of single hadrons are presented.
Hadronic Resonance production in ALICE
NASA Astrophysics Data System (ADS)
Markert, Christina; ALICE Collaboration
2017-07-01
In heavy ion collisions a fireball of hot and dense matter is created. Short lived hadronic resonances are sensitive to the medium properties, in particular to the temperature, density and system size. Resonance yields and momentum distributions are used to gain insight into the hadronic phase, its expansion velocity and time duration. The multiplicity dependent hadronic resonance production in p-p, p-Pb and Pb-Pb collisions will be discussed within the context of the possible extended hadronic and partonic phase. The experimental results will be compared to EPOS+UrQMD model calculations to discuss the system size dependent interactions of the hadronic medium on various resonances. Small systems such as p-p and p-Pb collisions will be discussed with respect to resonance and strange particle measurements.
Exclusive processes and the fundamental structure of hadrons
Brodsky, Stanley J.
2015-01-20
I review the historical development of QCD predictions for exclusive hadronic processes, beginning with constituent counting rules and the quark interchange mechanism, phenomena which gave early validation for the quark structure of hadrons. The subsequent development of pQCD factorization theorems for hard exclusive amplitudes and the development of evolution equations for the hadron distribution amplitudes provided a rigorous framework for calculating hadronic form factors and hard scattering exclusive scattering processes at high momentum transfer. I also give a brief introduction to the field of "light-front holography" and the insights it brings to quark confinement, the behavior of the QCD couplingmore » in the nonperturbative domain, as well as hadron spectroscopy and the dynamics of exclusive processes.« less
Exclusive processes and the fundamental structure of hadrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
I review the historical development of QCD predictions for exclusive hadronic processes, beginning with constituent counting rules and the quark interchange mechanism, phenomena which gave early validation for the quark structure of hadrons. The subsequent development of pQCD factorization theorems for hard exclusive amplitudes and the development of evolution equations for the hadron distribution amplitudes provided a rigorous framework for calculating hadronic form factors and hard scattering exclusive scattering processes at high momentum transfer. I also give a brief introduction to the field of "light-front holography" and the insights it brings to quark confinement, the behavior of the QCD couplingmore » in the nonperturbative domain, as well as hadron spectroscopy and the dynamics of exclusive processes.« less
Design of carbon therapy facility based on 10 years experience at HIMAC
NASA Astrophysics Data System (ADS)
Noda, K.; Furukawa, T.; Iwata, Y.; Kanai, T.; Kanazawa, M.; Kanematsu, N.; Kitagawa, A.; Komori, M.; Minohara, S.; Murakami, T.; Muramatsu, M.; Sato, S.; Sato, Y.; Shibuya, S.; Torikoshi, M.; Yamada, S.
2006-06-01
Since 1994, the clinical trial for cancer therapy with HIMAC has successfully progressed, and more than 2100 cancer patients have been treated with a carbon beam. Based on the development of the accelerator and irradiation technologies for 10 years, we have designed a new carbon-therapy facility for widespread use in Japan, and key technologies for the new facility have been developed. We describe the conceptual design of the new facility and the status of development for the key technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chekanov, S. V.; Beydler, M.; Kotwal, A. V.
This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed GEANT4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments is described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. The reconstruction of hadronic jets hasmore » also been studied in the transverse momentum range from 50 GeV to 26 TeV. The granularity requirements for calorimetry are investigated using the two-particle spatial resolution achieved for hadron showers.« less
Kinetic freeze-out conditions for the production of resonances, hadronic molecules, and light nuclei
NASA Astrophysics Data System (ADS)
Cho, Sungtae; Song, Taesoo; Lee, Su Houng
2018-02-01
We investigate the freeze-out conditions of a particle in an expanding system of interacting particles in order to understand the productions of resonances, hadronic molecules, and light nuclei in heavy-ion collisions. Applying the kinetic freeze-out condition with explicit hydrodynamic calculations for the expanding hadronic phase to the daughter particles of K* mesons, we find that the larger suppression of the yield ratio of K*/K at the Large Hadron Collider (LHC) than at the Relativisitic Heavy Ion Collider (RHIC) compared to the expectations from the statistical hadronization model based on chemical freeze-out parameters reflects the lower kinetic freeze-out temperature at LHC than at RHIC. Furthermore, we point out that for the light nuclei or hadronic molecules that are bound, the freeze-out condition should be applied to the respective particle in the hadronic matter. It is then shown through the rate equation that when the nucleon and pion numbers are kept constant at the chemical freeze-out value during the hadronic phase, the deuteron number quickly approaches an asymptotic value that is close to the statistical model prediction at the chemical freeze-out point. We argue that the reduction seen in K* numbers is a typical result for a particle that has a large natural decay width decaying into daughter particles, while that for deuteron is typical for a stable hadronic bound state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David Wilkins
2012-03-20
This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of {radical}s = 7 TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLASmore » physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include the jet mass and sub-jet multiplicity as well as those concerned with multi-body hadronic decays and color flow within jets. Finally, the first boosted hadronic object observed at the LHC - the decay of the top quark to a single jet - is presented.« less
Collective Perspective on Advances in Dyson—Schwinger Equation QCD
NASA Astrophysics Data System (ADS)
Adnan, Bashir; Chang, Lei; Ian, C. Cloët; Bruno, El-Bennich; Liu, Yu-Xin; Craig, D. Roberts; Peter, C. Tandy
2012-07-01
We survey contemporary studies of hadrons and strongly interacting quarks using QCD's Dyson—Schwinger equations, addressing the following aspects: confinement and dynamical chiral symmetry breaking; the hadron spectrum; hadron elastic and transition form factors, from small- to large-Q2; parton distribution functions; the physics of hadrons containing one or more heavy quarks; and properties of the quark gluon plasma.
An estimate of the bulk viscosity of the hadronic medium
NASA Astrophysics Data System (ADS)
Sarwar, Golam; Chatterjee, Sandeep; Alam, Jane
2017-05-01
The bulk viscosity (ζ) of the hadronic medium has been estimated within the ambit of the Hadron Resonance Gas (HRG) model including the Hagedorn density of states. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the ζ of the hadronic matter up to a relaxation time. We study the influence of the hadronic spectrum on ζ and find its correlation with the conformal symmetry breaking measure, ε -3P. We estimate ζ along the contours with constant, S/{N}B (total entropy/net baryon number) in the T-μ plane (temperature-baryonic chemical potential) for S/{N}B=30,45 and 300. We also assess the value of ζ on the chemical freeze-out curve for various centers of mass energy (\\sqrt{{s}{NN}}) and find that the bulk viscosity to entropy density ratio, \\zeta /s is larger in the energy range of the beam energy scan program of RHIC, low energy SPS run, AGS, NICA and FAIR, than LHC energies.
Fast Dynamical Evolution of Hadron Resonance Gas via Hagedorn States
NASA Astrophysics Data System (ADS)
Beitel, M.; Gallmeister, K.; Greiner, C.
2017-01-01
Hagedorn states (HS) are a tool to model the hadronization process which occurs in the phase transition region between the quark gluon plasma (QGP) and the hadron resonance gas (HRG). These states are believed to appear near the Hagedorn temperature TH which in our understanding equals the critical temperature Tc . A covariantly formulated bootstrap equation is solved to generate the zoo of these particles characterized baryon number B, strangeness S and electric charge Q. These hadron-like resonances are characterized by being very massive and by not being limited to quantum numbers of known hadrons. All hadronic properties like masses, spectral functions etc. are taken from the hadronic transport model Ultra Relativistic Quantum Molecular Dynamics (UrQMD). Decay chains of single Hagedorn states provide a well description of experimentally observed multiplicity ratios of strange and multi-strange particles as the Ξ0- and the Ω--baryon. In addition, the final energy spectra of resulting hadrons show a thermal-like distribution with the characteristic Hagedorn temperature TH . Box calculations including these Hagedorn states are performed. Indeed, the time scales leading to equilibration of the system are drastically reduced down to 2. . . 5 fm/c.
Peculiarities of biological action of hadrons of space radiation.
Akoev, I G; Yurov, S S
1975-01-01
Biological investigations in space enable one to make a significant contribution on high-energy hadrons to biological effects under the influence of factors of space flights. Physical and molecular principles of the action of high-energy hadrons are analysed. Genetic and somatic hadron effects produced by the secondary radiation from 70 GeV protons have been studied experimentally. The high biological effectiveness of hadrons, great variability in biological effects, and specifically of their action, are associated with strong interactions of high-energy hadrons. These are the probability of nuclear interaction with any atom nucleus, generation of a great number of secondary particles (among them, probably, highly effective multicharged and heavy nuclei, antiprotons, pi(-)-mesons), and the spatial distribution of secondary particles as a narrow cone with extremely high density of particles in its first part. The secondary radiation generated by high- and superhigh-energy hadrons upon their interaction with the spaceship is likely to be the greatest hazard of radiation to the crew during space flights.
Multiplicities of secondary hadrons produced in vp and overlinevp charged current interactions
NASA Astrophysics Data System (ADS)
Grässler, H.; Lanske, D.; Schulte, R.; Jones, G. T.; Middleton, R. P.; O'Neale, S. W.; Böckmann, K.; Gebel, W.; Geich-Gimbel, C.; Nellen, B.; Grant, A.; Klein, H.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Chima, J. S.; Mobayyen, M. M.; Talebzadeh, M.; Villalobos-Baillie, O.; Aderholz, M.; Deck, L.; Schmitz, N.; Settles, R.; Wernhard, K. L.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicić, D.; Saitta, B.; Wells, J.; Aachen-Birmingham-Bonn-CERN-Imperial College-München (MPI)-Oxford Collaboration
1983-08-01
In an experiment with the hydrogen bubble chamber BEBC at CERN multiplicities of hadrons produced in νp and overlinevp interactions have been investigated. Results are presented on the multiplicities of charged hadrons and neutral pions, forward and backward multiplicities of charged hadrons and correlations between forward and backward multiplicities. Comparisons are made with hadronic reactions and e +e - annihilation. In the framework of the quark-parton model the data imply similar charged multiplicities for the fragments of a u- and a d-quark, and a larger multiplicities for the fragments of a uu- than for a ud-diquark. The correlation data suggest independent fragmentation of the quark and diquark for hadronic masses above ˜ 7 GeV and local charge compensation within an event.
A conservation law, entropy principle and quantization of fractal dimensions in hadron interactions
NASA Astrophysics Data System (ADS)
Zborovský, I.
2018-04-01
Fractal self-similarity of hadron interactions demonstrated by the z-scaling of inclusive spectra is studied. The scaling regularity reflects fractal structure of the colliding hadrons (or nuclei) and takes into account general features of fragmentation processes expressed by fractal dimensions. The self-similarity variable z is a function of the momentum fractions x1 and x2 of the colliding objects carried by the interacting hadron constituents and depends on the momentum fractions ya and yb of the scattered and recoil constituents carried by the inclusive particle and its recoil counterpart, respectively. Based on entropy principle, new properties of the z-scaling concept are found. They are conservation of fractal cumulativity in hadron interactions and quantization of fractal dimensions characterizing hadron structure and fragmentation processes at a constituent level.
NASA Astrophysics Data System (ADS)
Guo, Feng-Kun; Hanhart, Christoph; Meißner, Ulf-G.; Wang, Qian; Zhao, Qiang; Zou, Bing-Song
2018-01-01
A large number of experimental discoveries especially in the heavy quarkonium sector that did not meet the expectations of the until then very successful quark model led to a renaissance of hadron spectroscopy. Among various explanations of the internal structure of these excitations, hadronic molecules, being analogs of light nuclei, play a unique role since for those predictions can be made with controlled uncertainty. Experimental evidence of various candidates of hadronic molecules and methods of identifying such structures are reviewed. Nonrelativistic effective field theories are the suitable framework for studying hadronic molecules and are discussed in both the continuum and finite volumes. Also pertinent lattice QCD results are presented. Further, the production mechanisms and decays of hadronic molecules are discussed and comments are given on the reliability of certain assertions often made in the literature.
Code of Federal Regulations, 2013 CFR
2013-10-01
... access to unclassified facilities, Information Technology resources, and sensitive information. 3004.470... Technology resources, and sensitive information. ... ACQUISITION REGULATION (HSAR) GENERAL ADMINISTRATIVE MATTERS Safeguarding Classified and Sensitive Information...
Code of Federal Regulations, 2010 CFR
2010-10-01
... access to unclassified facilities, Information Technology resources, and sensitive information. 3004.470... Technology resources, and sensitive information. ... ACQUISITION REGULATION (HSAR) GENERAL ADMINISTRATIVE MATTERS Safeguarding Classified and Sensitive Information...
Code of Federal Regulations, 2014 CFR
2014-10-01
... access to unclassified facilities, Information Technology resources, and sensitive information. 3004.470... Technology resources, and sensitive information. ... ACQUISITION REGULATION (HSAR) GENERAL ADMINISTRATIVE MATTERS Safeguarding Classified and Sensitive Information...
Code of Federal Regulations, 2011 CFR
2011-10-01
... access to unclassified facilities, Information Technology resources, and sensitive information. 3004.470... Technology resources, and sensitive information. ... ACQUISITION REGULATION (HSAR) GENERAL ADMINISTRATIVE MATTERS Safeguarding Classified and Sensitive Information...
Code of Federal Regulations, 2012 CFR
2012-10-01
... access to unclassified facilities, Information Technology resources, and sensitive information. 3004.470... Technology resources, and sensitive information. ... ACQUISITION REGULATION (HSAR) GENERAL ADMINISTRATIVE MATTERS Safeguarding Classified and Sensitive Information...
2012-08-01
Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology Innovation In fo...is unlimited. ERDC/ITL TR-12-2 August 2012 Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology...and to enhance the quality of projects through the design, construction, and handover phases. Building Information Modeling ( BIM ) is a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altsybeev, Igor
2016-01-22
In the present work, Monte-Carlo toy model with repulsing quark-gluon strings in hadron-hadron collisions is described. String repulsion creates transverse boosts for the string decay products, giving modifications of observables. As an example, long-range correlations between mean transverse momenta of particles in two observation windows are studied in MC toy simulation of the heavy-ion collisions.
On-orbit technology experiment facility definition
NASA Technical Reports Server (NTRS)
Russell, Richard A.; Buchan, Robert W.; Gates, Richard M.
1988-01-01
A study was conducted to identify on-orbit integrated facility needs to support in-space technology experiments on the Space Station and associated free flyers. In particular, the first task was to examine the proposed technology development missions (TDMX's) from the model mission set and other proposed experimental facilities, both individually and by theme, to determine how and if the experiments might be combined, what equipment might be shared, what equipment might be used as generic equipment for continued experimentation, and what experiments will conflict with the conduct of other experiments or Space Station operations. Then using these results, to determine on-orbit facility needs to optimize the implementation of technology payloads. Finally, to develop one or more scenarios, design concepts, and outfitting requirements for implementation of onboard technology experiments.
Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.
ATRF Houses the Latest DNA Sequencing Technologies | Poster
By Ashley DeVine, Staff Writer By the end of October, the Advanced Technology Research Facility (ATRF) will be one of the few facilities in the world to house all of the latest DNA sequencing technologies.
Facilities & Technology: The Transformation of "Campus." APPA Thought Leaders Series 2015
ERIC Educational Resources Information Center
APPA: Association of Higher Education Facilities Officers, 2015
2015-01-01
The 2015 Thought Leaders symposium focused on the topic of "Facilities & Technology: The Transformation of 'Campus.'" Educational institutions that master new technologies will have an edge in the increasingly competitive higher education landscape. This report discusses the factors related to integrating technology and the campus…
Performance of a Quintuple-GEM Based RICHDetector Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blatnik, Marie; Dehmelt, Klaus; Deshpande, Abhay
2015-12-17
Cerenkov technology is often the optimal choice for particle identification in high energy particle collision applications. Typically, the most challenging regime is at high pseudorapidity (forward) where particle identification must perform well at high laboratory momenta. For the upcoming electron ion collider (EIC), the physics goals require hadron (π, K, p) identification up to ~50 GeV/c. In this region Cerenkov ring-imaging (RICH) is the most viable solution. The speed of light in a radiator medium is inversely proportional to the refractive index. Hence, for particle identification (PID) reaching out to high momenta a small index of refraction is required. Unfortunately,more » the lowest indices of refraction also result in the lowest light yield ([(dNγ)/dx] ∝ sin2(θC)) driving up the radiator length and thereby the overall detector cost. In this paper we report on a successful test of a compact RICH detector (1 meter radiator) capable of delivering in excess of 10 photoelectrons per ring with a low index radiator gas (CF4). The detector concept is a natural extension of the PHENIX hadron-blind detector (HBD) achieved by adding focusing capability at low wavelength and adequate gain for high efficiency detection of single-electron induced avalanches. Our results indicate that this technology is indeed a viable choice in the forward direction of the EIC. The setup and results are described within.« less
NASA AETC Test Technology Subproject
NASA Technical Reports Server (NTRS)
Bell, James
2017-01-01
Funds directed to improve measurement capabilities (pressure, force, flow, and temperature), test techniques and processes, and develop technologies critical to meeting NASA research needs and applicable to a multitude of facilities. Primarily works by funding small ($40K - $400K) tasks which result in a demonstration or initial capability of a new technology in an AETC facility.TT research and development tasks are generally TRL 3-6; they should be things which work in small scale or lab environments but need further development for use in production facilities.TT differs from CA in its focus on smaller-scale tasks and on instrumentation. Technologies developed by TT may become CA projects in order be fully realized within a facility.
Capsule review of the DOE research and development and field facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-09-01
A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses,more » and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)« less
NASA Astrophysics Data System (ADS)
Borg, M.; Bertarelli, A.; Carra, F.; Gradassi, P.; Guardia-Valenzuela, J.; Guinchard, M.; Izquierdo, G. Arnau; Mollicone, P.; Sacristan-de-Frutos, O.; Sammut, N.
2018-03-01
The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.
Space technology test facilities at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Rodrigues, Annette T.
1990-01-01
The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.
The optical potential on the lattice
Agadjanov, Dimitri; Doring, Michael; Mai, Maxim; ...
2016-06-08
The extraction of hadron-hadron scattering parameters from lattice data by using the Luscher approach becomes increasingly complicated in the presence of inelastic channels. We propose a method for the direct extraction of the complex hadron-hadron optical potential on the lattice, which does not require the use of the multi-channel Luscher formalism. Furthermore, this method is applicable without modifications if some inelastic channels contain three or more particles.
Effects of jet-induced medium excitation in γ-hadron correlation in A+A collisions
NASA Astrophysics Data System (ADS)
Chen, Wei; Cao, Shanshan; Luo, Tan; Pang, Long-Gang; Wang, Xin-Nian
2018-02-01
Coupled Linear Boltzmann Transport and hydrodynamics (CoLBT-hydro) is developed for co-current and event-by-event simulations of jet transport and jet-induced medium excitation (j.i.m.e.) in high-energy heavy-ion collisions. This is made possible by a GPU parallelized (3 + 1)D hydrodynamics that has a source term from the energy-momentum deposition by propagating jet shower partons and provides real time update of the bulk medium evolution for subsequent jet transport. Hadron spectra in γ-jet events of A+A collisions at RHIC and LHC are calculated for the first time that include hadrons from both the modified jet and j.i.m.e. CoLBT-hydro describes well experimental data at RHIC on the suppression of leading hadrons due to parton energy loss. It also predicts the enhancement of soft hadrons from j.i.m.e. The onset of soft hadron enhancement occurs at a constant transverse momentum due to the thermal nature of soft hadrons from j.i.m.e. which also have a significantly broadened azimuthal distribution relative to the jet direction. Soft hadrons in the γ direction are, on the other hand, depleted due to a diffusion wake behind the jet.
Effects of jet-induced medium excitation in γ-hadron correlation in A+A collisions
Chen, Wei; Cao, Shanshan; Luo, Tan; ...
2017-12-07
Coupled Linear Boltzmann Transport and hydrodynamics (CoLBT-hydro) is developed for co-current and event-by-event simulations of jet transport and jet-induced medium excitation (j.i.m.e.) in high-energy heavy-ion collisions. This is made possible by a GPU parallelized (3+1)D hydrodynamics that has a source term from the energy-momentum deposition by propagating jet shower partons and provides real time update of the bulk medium evolution for subsequent jet transport. Hadron spectra in γ-jet events of A+A collisions at RHIC and LHC are calculated for the first time that include hadrons from both the modified jet and j.i.m.e. CoLBT-hydro describes well experimental data at RHIC onmore » the suppression of leading hadrons due to parton energy loss. It also predicts the enhancement of soft hadrons from j.i.m.e. The onset of soft hadron enhancement occurs at a constant transverse momentum due to the thermal nature of soft hadrons from j.i.m.e. which also have a significantly broadened azimuthal distribution relative to the jet direction. Soft hadrons in the γ direction are, on the other hand, depleted due to a diffusion wake behind the jet.« less
NASA Astrophysics Data System (ADS)
Giordano, M.; Meggiolaro, E.; Silva, P. V. R. G.
2017-08-01
In the present investigation we study the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data. The parametrization used for the hadron-hadron total cross sections at high energy is inspired by recent results obtained by Giordano and Meggiolaro [J. High Energy Phys. 03 (2014) 002, 10.1007/JHEP03(2014)002] using a nonperturbative approach in the framework of QCD, and it reads σtot˜B ln2s +C ln s ln ln s . We critically investigate if B and C can be obtained by means of best-fits to data for proton-proton and antiproton-proton scattering, including recent data obtained at the LHC, and also to data for other meson-baryon and baryon-baryon scattering processes. In particular, following the above-mentioned nonperturbative QCD approach, we also consider fits where the parameters B and C are set to B =κ Bth and C =κ Cth, where Bth and Cth are universal quantities related to the QCD stable spectrum, while κ (treated as an extra free parameter) is related to the asymptotic value of the ratio σel/σtot. Different possible scenarios are then considered and compared.
Effects of jet-induced medium excitation in γ-hadron correlation in A+A collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei; Cao, Shanshan; Luo, Tan
Coupled Linear Boltzmann Transport and hydrodynamics (CoLBT-hydro) is developed for co-current and event-by-event simulations of jet transport and jet-induced medium excitation (j.i.m.e.) in high-energy heavy-ion collisions. This is made possible by a GPU parallelized (3+1)D hydrodynamics that has a source term from the energy-momentum deposition by propagating jet shower partons and provides real time update of the bulk medium evolution for subsequent jet transport. Hadron spectra in γ-jet events of A+A collisions at RHIC and LHC are calculated for the first time that include hadrons from both the modified jet and j.i.m.e. CoLBT-hydro describes well experimental data at RHIC onmore » the suppression of leading hadrons due to parton energy loss. It also predicts the enhancement of soft hadrons from j.i.m.e. The onset of soft hadron enhancement occurs at a constant transverse momentum due to the thermal nature of soft hadrons from j.i.m.e. which also have a significantly broadened azimuthal distribution relative to the jet direction. Soft hadrons in the γ direction are, on the other hand, depleted due to a diffusion wake behind the jet.« less
Propagation of heavy baryons in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Das, Santosh K.; Torres-Rincon, Juan M.; Tolos, Laura; Minissale, Vincenzo; Scardina, Francesco; Greco, Vincenzo
2016-12-01
The drag and diffusion coefficients of heavy baryons (Λc and Λb ) in the hadronic phase created in the latter stage of the heavy-ion collisions at RHIC and LHC energies have been evaluated recently. In this work we compute some experimental observables, such as the nuclear suppression factor RA A and the elliptic flow v2 of heavy baryons at RHIC and LHC energies, highlighting the role of the hadronic phase contribution to these observables, which are going to be measured at Run 3 of LHC. For the time evolution of the heavy quarks in the quark and gluon plasma (QGP) and heavy baryons in the hadronic phase, we use the Langevin dynamics. For the hadronization of the heavy quarks to heavy baryons we employ Peterson fragmentation functions. We observe a strong suppression of both the Λc and Λb . We find that the hadronic medium has a sizable impact on the heavy-baryon elliptic flow whereas the impact of hadronic medium rescattering is almost unnoticeable on the nuclear suppression factor. We evaluate the Λc/D ratio at RHIC and LHC. We find that the Λc/D ratio remains unaffected due to the hadronic phase rescattering which enables it as a nobel probe of QGP phase dynamics along with its hadronization.
NASA Astrophysics Data System (ADS)
Longo, S.; Roney, J. M.
2018-03-01
Pulse shape discrimination using CsI(Tl) scintillators to perform neutral hadron particle identification is explored with emphasis towards application at high energy electron-positron collider experiments. Through the analysis of the pulse shape differences between scintillation pulses from photon and hadronic energy deposits using neutron and proton data collected at TRIUMF, it is shown that the pulse shape variations observed for hadrons can be modelled using a third scintillation component for CsI(Tl), in addition to the standard fast and slow components. Techniques for computing the hadronic pulse amplitudes and shape variations are developed and it is shown that the intensity of the additional scintillation component can be computed from the ionization energy loss of the interacting particles. These pulse modelling and simulation methods are integrated with GEANT4 simulation libraries and the predicted pulse shape for CsI(Tl) crystals in a 5 × 5 array of 5 × 5 × 30 cm3 crystals is studied for hadronic showers from 0.5 and 1 GeV/c KL0 and neutron particles. Using a crystal level and cluster level approach for photon vs. hadron cluster separation we demonstrate proof-of-concept for neutral hadron detection using CsI(Tl) pulse shape discrimination in high energy electron-positron collider experiments.
ERIC Educational Resources Information Center
Kennedy, Mike
2001-01-01
Discusses technology's impact on educational facilities and operations. Technology's influence on a school's ability to streamline their business operations and manage their facilities more efficiency is examined, and how Baylor University (Waco, TX) used technology to cut energy costs is highlighted. (GR)
Energy-range relations for hadrons in nuclear matter
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.
Application of a Solvent Emulsion Technology for PCB Removal from Older Structures on DoD Facilities
2011-11-01
Solvent Emulsion Technology for PCB Removal from Older Structures on DoD Facilities November 2011 Report Documentation Page Form ApprovedOMB No. 0704...to 00-00-2011 4. TITLE AND SUBTITLE Application of a Solvent Emulsion Technology for PCB Removal from Older Structures on DoD Facilities 5a...EASE OF IMPLEMENTATION .......................................................................... 13 3.4 REDUCTION IN PCB CONCENTRATIONS IN TREATED
Hard Diffraction in Hadron--Hadron Collisions
NASA Astrophysics Data System (ADS)
Bialas, A.
2002-11-01
Breakdown of factorization observed recently in the diffractive dijet production in deep inelastic lepton induced and hadron induced processes is explained using the Good-Walker picture of diffraction dissociation. Numerical estimates agree with the recent data.
A new approach to characterize very-low-level radioactive waste produced at hadron accelerators.
Zaffora, Biagio; Magistris, Matteo; Chevalier, Jean-Pierre; Luccioni, Catherine; Saporta, Gilbert; Ulrici, Luisa
2017-04-01
Radioactive waste is produced as a consequence of preventive and corrective maintenance during the operation of high-energy particle accelerators or associated dismantling campaigns. Their radiological characterization must be performed to ensure an appropriate disposal in the disposal facilities. The radiological characterization of waste includes the establishment of the list of produced radionuclides, called "radionuclide inventory", and the estimation of their activity. The present paper describes the process adopted at CERN to characterize very-low-level radioactive waste with a focus on activated metals. The characterization method consists of measuring and estimating the activity of produced radionuclides either by experimental methods or statistical and numerical approaches. We adapted the so-called Scaling Factor (SF) and Correlation Factor (CF) techniques to the needs of hadron accelerators, and applied them to very-low-level metallic waste produced at CERN. For each type of metal we calculated the radionuclide inventory and identified the radionuclides that most contribute to hazard factors. The methodology proposed is of general validity, can be extended to other activated materials and can be used for the characterization of waste produced in particle accelerators and research centres, where the activation mechanisms are comparable to the ones occurring at CERN. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Toneev, V. D.; Voronyuk, V.; Kolomeitsev, E. E.; Cassing, W.
2017-03-01
It is proposed to identify a strong electric field—created during relativistic collisions of asymmetric nuclei—via the observation of pseudorapidity and transverse momentum distributions of hadrons with the same mass but opposite charge. The results of detailed calculations within the parton-hadron string dynamics (PHSD) approach for the charge-dependent directed flow v1 are presented for semicentral Cu+Au collision at √{sN N}=200 GeV incorporating the inverse Landau-Pomeranchuk-Migdal (iLPM) effect, which accounts for a delay in the electromagnetic interaction with the charged degrees of freedom. By including the iLPM effect, we achieve a reasonable agreement of the PHSD results for the charge splitting in v1(pT) in line with the recent measurements by the STAR Collaboration for Cu+Au collisions at √{sN N}=200 GeV while an instant appearance and coupling of electric charges at the hard collision vertex overestimates the splitting by about a factor of 10. We predict that the iLPM effect should practically disappear at energies of √{sN N}≈ 9 GeV, which should lead to a significantly larger charge splitting of v1 at the future FAIR/NICA facilities.
Study of radially excited Ds(21 S 0) and Ds(3P)
NASA Astrophysics Data System (ADS)
Tian, Yu; Zhao, Ze; Zhang, Ai-Lin
2017-08-01
The unobserved JP = 0- radial excitation Ds(21 S 0) is anticipated to have mass 2650 MeV (denoted as Ds(2650)). Study of hadronic production is an important way to identify highly excited states. We study hadronic production of Ds(2650) from higher excited resonances in a 3 P 0 model. Relevant hadronic partial decay widths are found to be very small, which implies it is difficult to observe Ds(2650) in hadronic decays of higher excited resonances. Hadronic decay widths of radially excited Ds(3P) have also been estimated. The total decay widths of four Ds(3P) are large, but the branching ratios in the Ds(2650)η channel are very small, which implies that it seems impossible to observe Ds(2650) in hadronic decays of Ds(3P). The dominant decay channels of the four Ds(3P) have been pointed out, and D1(2420), D1(2430), , D(2550), D(2600), (11D2)D(2750) and are possible to observe in hadronic production from Ds(3P). Supported by National Natural Science Foundation of China (11475111)
Suppression of back-to-back hadron pairs at forward rapidity in d+Au collisions at √s(NN)=200 GeV.
Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Angerami, A; Aoki, K; Apadula, N; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa del Valle, Z; Connors, M; Csanád, M; Csörgo, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E J; Kim, Y-J; Kinney, E; Kiss, Á; Kistenev, E; Kochenda, L; Komkov, B; Konno, M; Koster, J; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rukoyatkin, P; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhou, S; Zolin, L
2011-10-21
Back-to-back hadron pair yields in d+Au and p+p collisions at √s(NN)=200 GeV were measured with the PHENIX detector at the Relativistic Heavy Ion Collider. Rapidity separated hadron pairs were detected with the trigger hadron at pseudorapidity |η|<0.35 and the associated hadron at forward rapidity (deuteron direction, 3.0<η<3.8). Pairs were also detected with both hadrons measured at forward rapidity; in this case, the yield of back-to-back hadron pairs in d+Au collisions with small impact parameters is observed to be suppressed by a factor of 10 relative to p+p collisions. The kinematics of these pairs is expected to probe partons in the Au nucleus with a low fraction x of the nucleon momenta, where the gluon densities rise sharply. The observed suppression as a function of nuclear thickness, p(T), and η points to cold nuclear matter effects arising at high parton densities. © 2011 American Physical Society
NASA Astrophysics Data System (ADS)
Song, Li-Hua; Xin, Shang-Fei; Liu, Na
2018-02-01
Semi-inclusive deep inelastic lepton-nucleus scattering provides a good opportunity to investigate the cold nuclear effects on quark propagation and hadronization. Considering the nuclear modification of the quark energy loss and nuclear absorption effects in final state, the leading-order computations on hadron multiplicity ratios for both hadronization occurring outside and inside the medium are performed with the nuclear geometry effect of the path length L of the struck quark in the medium. By fitting the HERMES two-dimensional data on the multiplicity ratios for positively and negatively charged pions and kaons produced on neon, the hadron-nucleon inelastic cross section {σ }h for different identified hadrons is determined, respectively. It is found that our predictions obtained with the analytic parameterizations of quenching weights based on BDMPS formalism and the nuclear absorption factor {N}A(z,ν ) are in good agreement with the experimental measurements. This indicates that the energy loss and nuclear absorption are the main nuclear effects inducing a reduction of the hadron yield for quark hadronization occurring outside and inside the nucleus, respectively.
[Heavy particle radiation therapy].
Lozares, S; Mañeru, F; Pellejero, S
2009-01-01
The characteristics of radiation formed by heavy particles make it a highly useful tool for therapeutic use. Protons, helium nuclei or carbon ions are being successfully employed in radiotherapy installations throughout the world. This article sets out the physical and technological foundations that make these radiation particles suitable for attacking white volume, as well as the different ways of administering treatment. Next, the main clinical applications are described, which show the therapeutic advantages in some of the pathologies most widely employed in proton and hadron therapy centres at present. Under continuous study, the clinical use of heavy particles appears to be an enormously promising path of advance in comparison with classical technologies, both in tumour coverage and in reducing dosages in surrounding tissue.
Performance of the CMS Event Builder
NASA Astrophysics Data System (ADS)
Andre, J.-M.; Behrens, U.; Branson, J.; Brummer, P.; Chaze, O.; Cittolin, S.; Contescu, C.; Craigs, B. G.; Darlea, G.-L.; Deldicque, C.; Demiragli, Z.; Dobson, M.; Doualot, N.; Erhan, S.; Fulcher, J. F.; Gigi, D.; Gładki, M.; Glege, F.; Gomez-Ceballos, G.; Hegeman, J.; Holzner, A.; Janulis, M.; Jimenez-Estupiñán, R.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; Morovic, S.; O'Dell, V.; Orsini, L.; Paus, C.; Petrova, P.; Pieri, M.; Racz, A.; Reis, T.; Sakulin, H.; Schwick, C.; Simelevicius, D.; Zejdl, P.
2017-10-01
The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of {\\mathscr{O}}(100 {{GB}}/{{s}}) to the high-level trigger farm. The DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gbit/s Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gbit/s Infiniband FDR Clos network has been chosen for the event builder. This paper presents the implementation and performance of the event-building system.
Present challenges in hadrontherapy techniques
NASA Astrophysics Data System (ADS)
Amaldi, U.; Braccini, S.
2011-07-01
Hadrontherapy is a high-precision technique in cancer radiation therapy, which allows obtaining a superior conformal treatment with respect to photons used in conventional radiation therapy. To reach this ambitious goal without reducing the patient throughput needed in a hospital-based environment, the physical and radiobiological properties of charged hadrons, protons and carbon ions in particular, have to be exploited at best, making use of the most modern technologies issued from research in nuclear and particle physics. In the present days, we are assisting to a continuous technological challenge, leading to the conception and to the development of innovative methods and instruments. In this paper, the most relevant challenges in dose delivery systems, gantries, imaging, quality assurance and particle accelerators are reviewed.
NASA Astrophysics Data System (ADS)
Guiquan, Xi; Lin, Cong; Xuehui, Jin
2018-05-01
As an important platform for scientific and technological development, large -scale scientific facilities are the cornerstone of technological innovation and a guarantee for economic and social development. Researching management of large-scale scientific facilities can play a key role in scientific research, sociology and key national strategy. This paper reviews the characteristics of large-scale scientific facilities, and summarizes development status of China's large-scale scientific facilities. At last, the construction, management, operation and evaluation of large-scale scientific facilities is analyzed from the perspective of sustainable development.
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, T.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, W.; Li, Z. M.; Li, Y.; Li, C.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Ma, R.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, F.; Wang, H.; Wang, G.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Wu; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, H.; Xu, Z.; Xu, Q. H.; Xu, Y. F.; Xu, N.; Yang, S.; Yang, Y.; Yang, Q.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Y.; Zhang, Z.; Zhang, J. B.; Zhang, J.; Zhang, X. P.; Zhang, S.; Zhang, J.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.
2015-12-01
The STAR Collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au + Au and minimum-bias d + Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au + Au data with respect to the d + Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the ridge region, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.
Adamczyk, L.
2015-10-23
The STAR Collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au + Au and minimum-bias d + Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au + Au data with respect to the d + Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the ridge region, is found to be significantly higher formore » leading non-pions than pions. As a result, the consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.« less
Reduction of the K* meson abundance in heavy ion collisions
NASA Astrophysics Data System (ADS)
Cho, Sungtae; Lee, Su Houng
2018-03-01
We study the K* meson reduction in heavy-ion collisions by focusing on the hadronic effects on the K* meson abundance. We evaluate the absorption cross sections of the K* and K meson by light mesons in the hadronic matter, and further investigate the variation in the meson abundances for both particles during the hadronic stage of heavy-ion collisions. We show how the interplay between the interaction of the K* meson and kaon with light mesons in the hadronic medium determines the final yield difference of the statistical hadronization model to the experimental measurements. For the central Au+Au collision at √{sN N}=200 GeV, we find that the K*/K yield ratio at chemical freeze-out decreases by 37 % during the expansion of the hadronic matter, resulting in the final ratio comparable to STAR measurements of 0.23 ±0.05 .
NIST Automated Manufacturing Research Facility (AMRF): March 1987
NASA Technical Reports Server (NTRS)
Herbert, Judith E. (Editor); Kane, Richard (Editor)
1987-01-01
The completion and advances to the NIST Automated Manufacturing Research Facility (AMRF) is described in this video. The six work stations: (1) horizontal machining; (2) vertical machining; (3) turning machinery; (4) cleaning and deburring; (5) materials handling; and (6) inspection are shown and uses for each workstation are cited. Visiting researchers and scientists within NIST describe the advantages of each of the workstations, what the facility is used for, future applications for the technological advancements from the AMRF, including examples of how AMRF technology is being transferred to the U.S. Navy industry and discuss future technological goals for the facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acosta, D.; Adelman, J.; Affolder, T.
We present a new measurement of the inclusive and differential production cross sections of J/{psi} mesons and b-hadrons in proton-antiproton collisions at {radical}s = 1960 GeV. The data correspond to an integrated luminosity of 39.7 pb{sup -1} collected by the CDF Run II detector. We find the integrated cross section for inclusive J/{psi} production for all transverse momenta from 0 to 20 GeV/c in the rapidity range |y| < 0.6 to be 4.08 {+-} 0.02(stat){sub -0.33}{sup +0.36}(syst) {mu}b. We separate the fraction of J/{psi} events from the decay of the long-lived b-hadrons using the lifetime distribution in all events withmore » p{sub T} (J/{psi}) > 1.25 GeV/c. We find the total cross section for b-hadrons, including both hadrons and anti-hadrons, decaying to J/{psi} with transverse momenta greater than 1.25 GeV/c in the rapidity range |y(J/{psi})| < 0.6, is 0.330 {+-} 0.005(stat){sub -0.033}{sup +0.036}(syst) {mu}b. Using a Monte Carlo simulation of the decay kinematics of b-hadrons to all final states containing a J/{psi}, we extract the first measurement of the total single b-hadron cross section down to zero transverse momentum at {radical}s = 1960 GeV. We find the total single b-hadron cross section integrated over all transverse momenta for b-hadrons in the rapidity range |y| < 0.6 to be 17.6 {+-} 0.4(stat){sub -2.3}{sup +2.5}(syst) {mu}b.« less
NASA Astrophysics Data System (ADS)
Deden, H.; Fritze, P.; Grässler, H.; Hasert, F. J.; Morfin, J.; Schulte, R.; Böckmann, K.; Geich-Gimbel, C.; Kokott, T. P.; Nellen, B.; Pech, R.; Saarikko, H.; Bosetti, P. C.; Cundy, D. C.; Grant, A. L.; Hulth, P. O.; Pape, L.; Scott, W. G.; Skjeggestad, O.; Mermikides, M.; Simopoulou, E.; Vayaki, A.; Barnham, K. W. J.; Butterworth, I.; Chima, J. S.; Clayton, E. F.; Miller, D. B.; Mobayyen, M.; Penfold, C.; Powell, K. J.; Batley, J. R.; Giles, R.; Grossmann, P.; Lloyd, J. L.; Myatt, G.; Perkins, D. H.; Radojicic, D.; Renton, P.; Saitta, B.; Bloch, M.; Bolognese, T.; Tallini, B.; Velasco, J.; Vignaud, D.; Aachen-Bonn-CERN-Demokritos Athens-I. C. London-Oxford-Saclay Collaboration
1981-04-01
The average transverse momentum squared, < p⊥2>, of hadrons is studied as a function of W2 and of Q2 for ν and overlineν interactions on an isoscalar target. An increase of < p⊥2> with W2 is observed for the hadrons emitted forward in the hadronic c.m.s. The p⊥ dependence of the fragmentation function is found to factorise from the structure function at fixed W, but does not factorise at fixed Q2. Unlike the case of forward-going particles, the < p⊥2> of hadrons going backward in the c.m.s. shows no strong dependence on W2.
Novel method for detecting the hadronic component of extensive air showers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gromushkin, D. M., E-mail: DMGromushkin@mephi.ru; Volchenko, V. I.; Petrukhin, A. A.
2015-05-15
A novel method for studying the hadronic component of extensive air showers (EAS) is proposed. The method is based on recording thermal neutrons accompanying EAS with en-detectors that are sensitive to two EAS components: an electromagnetic (e) component and a hadron component in the form of neutrons (n). In contrast to hadron calorimeters used in some arrays, the proposed method makes it possible to record the hadronic component over the whole area of the array. The efficiency of a prototype array that consists of 32 en-detectors was tested for a long time, and some parameters of the neutron EAS componentmore » were determined.« less
Aerogel mass production for the CLAS12 RICH: Novel characterization methods and optical performance
NASA Astrophysics Data System (ADS)
Contalbrigo, M.; Balossino, I.; Barion, L.; Barnyakov, A. Yu.; Battaglia, G.; Danilyuk, A. F.; Katcin, A. A.; Kravchenko, E. A.; Mirazita, M.; Movsisyan, A.; Orecchini, D.; Pappalardo, L. L.; Squerzanti, S.; Tomassini, S.; Turisini, M.
2017-12-01
A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capabilities in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the Jefferson Lab upgraded 12 GeV continuous electron beam accelerator facility. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely-packed and highly-segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The status of the aerogel mass-production and the assessment studies of the aerogel optical performance are here reported.
NASA Astrophysics Data System (ADS)
Childers, J. T.; Uram, T. D.; LeCompte, T. J.; Papka, M. E.; Benjamin, D. P.
2017-01-01
As the LHC moves to higher energies and luminosity, the demand for computing resources increases accordingly and will soon outpace the growth of the Worldwide LHC Computing Grid. To meet this greater demand, event generation Monte Carlo was targeted for adaptation to run on Mira, the supercomputer at the Argonne Leadership Computing Facility. Alpgen is a Monte Carlo event generation application that is used by LHC experiments in the simulation of collisions that take place in the Large Hadron Collider. This paper details the process by which Alpgen was adapted from a single-processor serial-application to a large-scale parallel-application and the performance that was achieved.
Five meter magnetic spectrometer based on a streamer chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohm, G.; Vertogradov, L.S.; Grishkevich, Ya.V.
1972-01-01
In streamer chamber technology. Development of a five-meter magnetic spectrometer, based on a streamer chamber with a liquid hydrogen target is outlined. The spectrometer is called RISK (Relativistic Ionization Streamer Chamber (Kamera)) because it is proposed to measure the velocity of relativistic particles by means of their ionization energy loss as an aid in their identification. The spectrometer will be used for the study of high-energy hadron interactions at the Serpukhov Synchrotron. The status of the project is summarized. (WHK)
Gerhard, Robert Steven; Patil, Dattatraya; Liu, Yuan; Ogan, Kenneth; Alemozaffar, Mehrdad; Jani, Ashesh B; Kucuk, Omer N; Master, Viraj A; Gillespie, Theresa W; Filson, Christopher P
2017-05-01
We characterized factors related to nondefinitive management (NDM) of patients with high-risk prostate cancer and assessed impact from race, insurance status, and facility-level volume of technologically advanced prostate cancer treatments (i.e., intensity-modulated radiation therapy, robotic-assisted laparoscopic radical prostatectomy) on this outcome. We identified men with high-risk localized prostate cancer (based on D׳Amico criteria) in the National Cancer Database (2010-2012). Primary outcome was NDM (i.e., delayed/no treatment with prostatectomy/radiation therapy or androgen-deprivation monotherapy). Treating facilities were classified by quartiles of proportions of patients treated with advanced technology. Multivariable regression estimated odds of primary outcome based on race, insurance status, and facility-level technology use, and evaluated for interactions between these covariates. Among 60,300 patients, 9,265 (15.4%) received NDM. This was more common among non-White men (P<0.001), Medicaid/uninsured patients (P<0.001), and those managed at facilities in the lowest quartile of technology use (25.1% vs. 11.0% highest, P<0.001). Though NDM was common among non-White men with Medicaid/no insurance treated at low-technology centers (43% vs. 10% White, private/Medicare, high-tech facility; adjusted odds ratios = 7.18, P<0.001), this was less likely if this group was managed at a high-tech hospital (22% vs. 43% low-tech, P<0.001). Technology use at a facility correlates with high-quality prostate cancer care and is associated with diminished disparities based on insurance status and patient race. More research is required to characterize other facility-level factors explaining these findings. Published by Elsevier Inc.
Gerhard, R. Steven; Patil, Dattatraya; Liu, Yuan; Ogan, Kenneth; Alemozaffar, Mehrdad; Jani, Ashesh B.; Kucuk, Omer N.; Master, Viraj A.; Gillespie, Theresa W.; Filson, Christopher P.
2017-01-01
PURPOSE We characterized factors related to non-definitive management of high-risk prostate cancer patients, and assessed impact from race, insurance status, and facility-level volume of technologically-advanced prostate cancer treatments (i.e. intensity-modulated radiation therapy, robotic-assisted laparoscopic radical prostatectomy) on this outcome. METHODS We identified men with high-risk localized prostate cancer (based on D’Amico criteria) in the National Cancer Data Base (2010–2012). Primary outcome was non-definitive management (i.e., delayed/no treatment with prostatectomy/radiation therapy or androgen deprivation therapy monotherapy). Treating facilities were classified by quartiles of proportions of patients treated with advanced technology. Multivariable regression estimated odds of primary outcome based on race, insurance status, and facility-level technology use, and evaluated for interactions between these covariates. RESULTS Among 60,300 patients, 9265 (15.4%) received non-definitive management. This was more common among non-White men (p<0.001), Medicaid/uninsured patients (p<0.001), and those managed at facilities in the lowest quartile of technology use (25.1% vs 11.0% highest, p<0.001). Though non-definitive management was common among non-White men with Medicaid/no insurance treated at low-technology centers (43% vs 10% White, private/Medicare, high-tech facility; adjusted OR 7.18, p<0.001), this was less likely if this group was managed at a high-tech hospital (22% vs 43% low-tech, p<0.001). CONCLUSIONS Technology-use at a facility correlates with high-quality prostate cancer care, and is associated with diminished disparities based on insurance status and patient race. More research is required to characterize other facility-level factors explaining these findings. PMID:28089387
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-12
... Status Materials Science Technology, Inc. (Specialty Elastomers and Fire Retardant Chemicals) Conroe... specialty elastomer manufacturing and distribution facility of Materials Science Technology, Inc., located... and distribution of specialty elastomers and fire retardant chemicals at the facility of Materials...
Shock-wave facility at Tokyo Institute of Technology
NASA Astrophysics Data System (ADS)
Sawaoka, A.; Kondo, K.
1982-04-01
The shock-wave facility at the Tokyo Institute of Technology is described. Two double-stage light-gas guns are used to studying material science and technology. Recently construction has begun for a new type of rail gun combined with a double-stage light-gas gun.
Dorsten, Aimee-Marie; Sifford, K Susan; Bharucha, Ashok; Mecca, Laurel Person; Wactlar, Howard
2009-03-01
ASSISTIVE TECHNOLOGIES ARE RELATIVELY novel tools for research and daily care in long-term care (LTC) facilities that are faced with the burgeoning of the older adult population and dwindling staffing resources. The degree to which stakeholders in LTC facilities are receptive to the use of these technologies is poorly understood. Eighteen semi-structured focus groups and one interview were conducted with relevant groups of stakeholders at seven LTC facilities in southwestern Pennsylvania. Common themes identified across all focus groups centered on concerns for privacy, autonomy, cost, and safety associated with implementation of novel technologies. The relative importance of each theme varied by stakeholder group as well as the perceived severity of cognitive and/or physical disability. Our findings suggest that ethical issues are critical to acceptance of novel technologies by their end users, and that stakeholder groups are interdependent and require shared communication about the acceptance of these emerging technologies.
NASA Astrophysics Data System (ADS)
Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; DELPHI Collaboration
2010-06-01
An analysis of the direct soft photon production rate as a function of the parent jet characteristics is presented, based on hadronic events collected by the DELPHI experiment at LEP1. The dependences of the photon rates on the jet kinematic characteristics (momentum, mass, etc.) and on the jet charged, neutral and total hadron multiplicities are reported. Up to a scale factor of about four, which characterizes the overall value of the soft photon excess, a similarity of the observed soft photon behavior to that of the inner hadronic bremsstrahlung predictions is found for the momentum, mass, and jet charged multiplicity dependences. However for the dependence of the soft photon rate on the jet neutral and total hadron multiplicities a prominent difference is found for the observed soft photon signal as compared to the expected bremsstrahlung from final state hadrons. The observed linear increase of the soft photon production rate with the jet total hadron multiplicity and its strong dependence on the jet neutral multiplicity suggest that the rate is proportional to the number of quark pairs produced in the fragmentation process, with the neutral pairs being more effectively radiating than the charged ones.
Modern hadron spectroscopy: a bridge between nuclear and particle physics.
NASA Astrophysics Data System (ADS)
Szczepaniak, A. P.
2018-05-01
In this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.
Modern hadron spectroscopy: a bridge between nuclear and particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szczepaniak, Adam P.
Here, in this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.
Modern hadron spectroscopy: a bridge between nuclear and particle physics
Szczepaniak, Adam P.
2018-05-01
Here, in this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.
Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab
NASA Astrophysics Data System (ADS)
Matsumura, H.; Matsuda, N.; Kasugai, Y.; Toyoda, A.; Yashima, H.; Sekimoto, S.; Iwase, H.; Oishi, K.; Sakamoto, Y.; Nakashima, H.; Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K.
2014-06-01
In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.
Averages of $b$-hadron, $c$-hadron, and $$\\tau$$-lepton properties as of summer 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amhis, Y.; et al.
2014-12-23
This article reports world averages of measurements ofmore » $b$-hadron, $c$-hadron, and $$\\tau$$-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through summer 2014. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, $CP$ violation parameters, parameters of semileptonic decays and CKM matrix elements.« less
Bremsstrahlung from colour charges as a source of soft particle production in hadronic collisions
NASA Astrophysics Data System (ADS)
Bialas, A.; Jezabek, M.
2004-06-01
It is proposed that soft particle production in hadronic collisions is dominated by multiple gluon exchanges between partons from the colliding hadrons, followed by radiation of hadronic clusters from the coloured partons distributed uniformly in rapidity. This explains naturally two dominant features of the data: (a) the linear increase of rapidity spectra in the regions of limiting fragmentation and, (b) the proportionality between the increasing width of the limiting fragmentation region and the height of the central plateau.
Quark Hadron Duality - Recent Jefferson Lab Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niculescu, Maria Ioana
2016-08-01
The duality between the partonic and hadronic descriptions of electron--nucleon scattering is a remarkable feature of nuclear interactions. When averaged over appropriate energy intervals the cross section at low energy which is dominated by nucleon resonances resembles the smooth behavior expected from perturbative QCD. Recent Jefferson Lab results indicate that quark-hadron duality is present in a variety of observables, not just the proton F2 structure function. An overview of recent results, especially local quark-hadron duality on the neutron, are presented here.
The aerospace technology laboratory (a perspective, then and now)
NASA Technical Reports Server (NTRS)
Connors, J. F.; Hoffman, R. G.
1982-01-01
The physical changes that have taken place in aerospace facilities since the Wright brothers' accomplishment 78 years ago are highlighted. For illustrative purposes some of the technical facilities and operations of the NASA Lewis Research Center are described. These simulation facilities were designed to support research and technology studies in aerospace propulsion.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-11
... Angeles County are two large lead-acid battery recycling facilities, Exide Technologies located in the... two large lead-acid battery-recycling facilities--Exide Technologies in Vernon (``Exide'') and... battery recycling facilities (i.e., Exide and Quemetco) as the only sources of lead in the Los Angeles...
From cold to hot nuclear matter
NASA Astrophysics Data System (ADS)
Bratkovskaya, E. L.; Cassing, W.; Konchakovski, V. P.; Toneev, V. D.
2015-11-01
The dynamics of partons and hadrons in relativistic nucleus-nucleus collisions is analyzed within the Parton-Hadron-String Dynamics (PHSD) transport approach which is based on a dynamical quasiparticle model for the partonic phase (DQPM) including a dynamical hadronization scheme with covariant transition rates. The PHSD approach is applied to nucleus-nucleus collisions from FAIR/NICA to LHC energies. The traces of partonic interactions are found in particular in the directed and elliptic flow of hadrons and in their transverse mass spectra. Whereas at RHIC and LHC energies the dynamics is dominated by partonic degrees-of-freedom in the hot QGP, we find at FAIR/NICA energies a moderately hot but dense matter where chiral symmetry restoration and hadronic potentials appear to play a major role.
Muon–hadron detector of the carpet-2 array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzhappuev, D. D.; Kudzhaev, A. U., E-mail: kudjaev@mail.ru; Klimenko, N. F.
The 1-GeV muon–hadron detector of the Carpet-2 multipurpose shower array at the Baksan Neutrino Observatory, Institute for Nuclear Research, Russian Academy of Sciences (INR, Moscow, Russia) is able to record simultaneously muons and hadrons. The procedure developed for this device makes it possible to separate the muon and hadron components to a high degree of precision. The spatial and energy features of the muon and hadron extensive-air-shower components are presented. Experimental data from the Carpet-2 array are contrasted against data from the EAS-TOP and KASCADE arrays and against the results of the calculations based on the CORSIKA (GHEISHA + QGSJET01)more » code package and performed for primary protons and iron nuclei.« less
NASA Astrophysics Data System (ADS)
Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hamacher, K.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Korzen, B.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Malecki, P.; Maire, M.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Schneider, A.; Sholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.
1985-12-01
Measurements are presented of the variation with Q2 (scaling violation) of the hadron multiplicity in deep inelastic muon-proton scattering. An increase in the average multiplicity of both the charged hadrons and K0 mesons is observed with increasing Q2 or xBj for fixed centre-of-mass energy W. The study of the shape of the effective fragmentation function Dh (z, W, Q2) shows that the increase of the particle yield with Q2 takes place for low z particles. The variation of the hadron distributions with Q2 is also studied in the current fragmentation region where a decrease in multiplicity is observed. Such effects are expected from QCD.
Potančok, Martin; Voříšek, Jiří
2016-09-01
Healthcare facilities use a number of information system/information and communication technologies. Each healthcare facility faces a need to choose sourcing strategies most suitable to ensure provision of information system/information and communication technology services, processes and resources. Currently, it is possible to observe an expansion of sourcing possibilities in healthcare informatics, which creates new requirements for sourcing strategies. Thus, the aim of this article is to identify factors influencing information system/information and communication technology sourcing strategies in healthcare facilities. The identification was based on qualitative research, namely, a case study. This study provides a set of internal and external factors with their impact levels. The findings also show that not enough attention is paid to these factors during decision-making. © The Author(s) 2015.
Evaluation and Selection of Renewable Energy Technologies for Highway Maintenance Facilities
NASA Astrophysics Data System (ADS)
Andrews, Taylor
The interest in renewable energy has been increasing in recent years as attempts to reduce energy costs as well the consumption of fossil fuels are becoming more common. Companies and organizations are recognizing the increasing reliance on limited fossil fuels' resources, and as competition and costs for these resources grow, alternative solutions are becoming more appealing. Many federally run buildings and associations also have the added pressure of meeting the mandates of federal energy policies that dictate specific savings or reductions. Federal highway maintenance facilities run by the Department of Transportation fall into this category. To help meet energy saving goals, an investigation into potential renewable energy technologies was completed for the Ohio Department of Transportation. This research examined several types of renewable energy technologies and the major factors that affect their performance and evaluated their potential for implementation at highway maintenance facilities. Facilities energy usage data were provided, and a facility survey and site visits were completed to enhance the evaluation of technologies and the suitability for specific projects. Findings and technology recommendations were presented in the form of selection matrices, which were designed to help make selections in future projects. The benefits of utilization of other tools such as analysis software and life cycle assessments were also highlighted. These selection tools were designed to be helpful guides when beginning the pursuit of a renewable energy technology for highway maintenance facilities, and can be applied to other similar building types and projects. This document further discusses the research strategies and findings as well as the recommendations that were made to the personnel overseeing Ohio's highway maintenance facilities.
Integrating PV in Distributed Grids: Solutions and Technologies Workshop |
Energy Systems Integration Facility | NREL Integrating PV in Distributed Grids: Solutions and Technologies Workshop Integrating PV in Distributed Grids: Solutions and Technologies Workshop In October 2015 (PV) onto the grid. The workshop was held at the Energy Systems Integration Facility. Presenters from
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-08
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-020; NRC-2010-0313] Massachusetts Institute of Technology Reactor Notice of Issuance of Renewed Facility Operating; License No. R-37 The U.S. Nuclear... Institute of Technology (the licensee), which authorizes continued operation of the Massachusetts Institute...
Test of a chromomagnetic model for hadron mass differences
NASA Astrophysics Data System (ADS)
Lichtenberg, D. B.; Roncaglia, R.
1993-05-01
An oversimplified model consisting of the QCD color-magnetic interaction has been used previously by Silvestre-Brac and others to compare the masses of exotic and normal hadrons. We show that the model can give qualitatively wrong answers when applied to systems of normal hadrons.
Meson Production and Decays with WASA at COSY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schadmand, Susan
2011-10-21
The WASA-at-COSY physics program focuses on light meson decays where rare decays are used to scrutinize symmetries and symmetry breaking. The structure of hadrons is probed with transition form factors and hadron spectroscopy while hadron dynamics is studied via reaction dynamics and few body reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, G.P.; /Fermilab
Studies of requirements and specifications of crystals are necessary to develop a new generation of crystals for dual readout crystal hadron or total absorption calorimeter. This is a short and basic study of the characteristics and hadron energy measurement of PbWO4 and BGO crystals for scintillation and Cerenkov Dual Readout hadron calorimeter.
NASA Astrophysics Data System (ADS)
Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Korzen, B.; Landgraf, U.; Leenen, M.; Maire, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Schneider, A.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.
1986-03-01
The hadronic distributions in Q 2, y, z, p T and ϕ in deep inelastic muon proton scattering have been studied to search for higher twist effects in the hadronic final state. The expected effects are not observed.
Advancing Sensor Technology for Aerospace Propulsion
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Mercer, Carolyn R.
2002-01-01
NASA's Stennis Space Center (SSC) and Glenn Research Center (GRC) participate in the development of technologies for propulsion testing and propulsion applications in air and space transportation. Future transportation systems and the test facilities needed to develop and sustain them are becoming increasingly complex. Sensor technology is a fundamental pillar that makes possible development of complex systems that must operate in automatic mode (closed loop systems), or even in assisted-autonomous mode (highly self-sufficient systems such as planetary exploration spacecraft). Hence, a great deal of effort is dedicated to develop new sensors and related technologies to be used in research facilities, test facilities, and in vehicles and equipment. This paper describes sensor technologies being developed and in use at SSC and GRC, including new technologies in integrated health management involving sensors, components, processes, and vehicles.
The Hadron Blind Ring Imaging Cherenkov Detector
NASA Astrophysics Data System (ADS)
Blatnik, Marie; Zajac, Stephanie; Hemmick, Tom
2013-10-01
Heavy Ion Collisions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab have hinted at the existence of a new form of matter at high gluon density, the Color Glass Condensate. High energy electron scattering off of nuclei, focusing on the low-x components of the nuclear wave function, will definitively measure this state of matter. However, when a nucleus contributes a low x parton, the reaction products are highly focused in the electron-going direction and have large momentum in the lab system. High-momentum particle identification is particularly challenging. A particle is identifiable by its mass, but tracking algorithms only yield a particle's momentum based on its track's curvature. The particle's velocity is needed to identify the particle. A ring-imaging Cerenkov detector is being developed for the forward angle particle identification from the technological advancements of PHENIX's Hadron-Blind Detector (HBD), which uses Gas Electron Multipliers (GEMs) and pixelated pad planes to detect Cerenkov photons. The new HBD will focus the Cerenkov photons into a ring to determine the parent particle's velocity. Results from the pad plane simulations, construction tests, and test beam run will be presented.
Evaluating the Radiation Damage to Quartz Rods in the ATLAS Zero Degree Calorimeter
NASA Astrophysics Data System (ADS)
Goodale, Kathryn
2017-09-01
At the Large Hadron Collider, the ATLAS experiment studies particle collisions to explore the fundamental particles of nature. A key instrumentation technology used by the ATLAS experiment are calorimeters for particle energy measurements. UIUC is developing a new Zero-Degree Calorimeter; a hadronic calorimeter located at zero-degrees from the collision axis. It consists of alternating layers of tungsten and oil; passive and active layers, respectively. The passive layers cause intense showers of secondary particles. These particles then produce Cherenkov radiation in the active layer. The oil in the active layer is replaced at a constant rate allowing for very high radiation doses in the detector without deteriorating the radiator material. The active layer includes wavelength shifters that absorb and re-emit isotropically the Cherenkov radiation. In this way, some of the photons arrive at two, hollow quartz rods which are filled by a second stage wavelength shifter. Here the light is absorbed and re-directed to a Silicon Photomultiplier for detection. In this paper, the impact of ionizing radiation on quartz rods will be discussed and the results from attenuation measurements will be presented.
Evaluation of commercial ADC radiation tolerance for accelerator experiments
Chen, K.; Chen, H.; Kierstead, J.; ...
2015-08-17
Electronic components used in high energy physics experiments are subjected to a radiation background composed of high energy hadrons, mesons and photons. These particles can induce permanent and transient effects that affect the normal device operation. Ionizing dose and displacement damage can cause chronic damage which disable the device permanently. Transient effects or single event effects are in general recoverable with time intervals that depend on the nature of the failure. The magnitude of these effects is technology dependent with feature size being one of the key parameters. Analog to digital converters are components that are frequently used in detectormore » front end electronics, generally placed as close as possible to the sensing elements to maximize signal fidelity. We report on radiation effects tests conducted on 17 commercially available analog to digital converters and extensive single event effect measurements on specific twelve and fourteen bit ADCs that presented high tolerance to ionizing dose. We discuss mitigation strategies for single event effects (SEE) for their use in the large hadron collider environment.« less
NASA Astrophysics Data System (ADS)
Arteaga-Velázquez, J. C.; Apel, W. D.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2015-08-01
KASCADE-Grande was an air-shower experiment designed to study cosmic rays between 1016 and 1018 eV. The instrument was located at the site of the Karlsruhe Institute of Technology, Germany at an altitude of 110 m a.s.l. and covered an area of 0.5 km2. KASCADE-Grande consisted of several detector systems dedicated to measure different components of the EAS generated by the primary cosmic rays, i.e., the muon and the electron contents of the air-shower. With such a number of EAS observables and the precision of the measurements, the KASCADE-Grande data can be used to not only study in detail the properties of cosmic rays but also to test the predictions of hadronic-interaction models. In this work, in particular, the attenuation lengths of the muon number and the charged number of particles of EAS in the atmosphere were extracted from the KASCADE-Grande data and the results were compared with the predictions of the new EPOS-LHC hadronic-interaction model.
Commercial involvement in the development of space-based plant growing technology
NASA Astrophysics Data System (ADS)
Bula, R. J.; Tibbitts, T. W.; Morrow, R. C.; Dinauer, W. R.
1992-07-01
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.
Commercial involvement in the development of space-based plant growing technology.
Bula, R J; Tibbitts, T W; Morrow, R C; Dinauer, W R
1992-01-01
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.
The space shuttle payload planning working groups. Volume 10: Space technology
NASA Technical Reports Server (NTRS)
1973-01-01
The findings and recommendations of the Space Technology group of the space shuttle payload planning activity are presented. The elements of the space technology program are: (1) long duration exposure facility, (2) advanced technology laboratory, (3) physics and chemistry laboratory, (4) contamination experiments, and (5) laser information/data transmission technology. The space technology mission model is presented in tabular form. The proposed experiments to be conducted by each test facility are described. Recommended approaches for user community interfacing are included.
Urban Rail Supporting Technology Program Fiscal Year 1974 Year End Summary
DOT National Transportation Integrated Search
1975-03-01
Major areas include program management, technical support and application engineering, facilities development, test and evaluation, and technology development. Specific technical discussion includes track measurement systems; UMTA facilities developm...
Status and Prospects for Hadron Production Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeter, Raphaeel
2010-03-30
The latest results from the HARP, MIPP and NA61 Hadron Production Experiments are reviewed and their implications for neutrinos physics experiments are discussed. We emphasize three neutrino sources: accelerator-based neutrino beams, advanced neutrino sources and atmospheric neutrinos. Finally, prospects from additional forthcoming hadron production measurements are presented.
Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016
Amhis, Y.; Banerjee, Sw.; Ben-Haim, E.; ...
2017-12-21
Here, this article reports world averages of measurements of b-hadron, c-hadron, and τ-lepton properties obtained by the Heavy Flavor Averaging Group using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters,more » $$C\\!P$$ violation parameters, parameters of semileptonic decays, and Cabbibo–Kobayashi–Maskawa matrix elements.« less
Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amhis, Y.; Banerjee, Sw.; Ben-Haim, E.
Here, this article reports world averages of measurements of b-hadron, c-hadron, and τ-lepton properties obtained by the Heavy Flavor Averaging Group using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters,more » $$C\\!P$$ violation parameters, parameters of semileptonic decays, and Cabbibo–Kobayashi–Maskawa matrix elements.« less
Perfomance of a compensating lead-scintillator hadronic calorimeter
NASA Astrophysics Data System (ADS)
Bernardi, E.; Drews, G.; Garcia, M. A.; Klanner, R.; Kötz, U.; Levman, G.; Lomperski, M.; Lüke, D.; Ros, E.; Selonke, F.; Tiecke, H.; Tsirou, M.; Vogel, W.
1987-12-01
We have built a sandwich calorimeter consisting of 10 mm thick lead plates and 2.5 mm thick scintillator sheets. The thickness ratio between lead and scintillator was optimized to achieve a good energy resolution for hadrons. We have exposed this calorimeter to electrons, hadrons and muons in the energy range between 3 and 75 GeV, obtaining an average energy resolution of {23%}/{E} for electrons and {44%}/{E} for hadrons. For energies above 10 GeV and after leakage corrections, the ratio of electron response to hardron response is 1.05.
Geant4 hadronic physics validation with ATLAS Tile Calorimeter test-beam data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexa, C.; Constantinescu, S.; Dita, S.
We present comparison studies between Geant4 shower packages and ATLAS Tile Calorimeter test-beam data collected at CERN in H8 beam line at the SPS. Emphasis is put on hadronic physics lists and data concerning differences between Tilecal response to pions and protons of same energy. The ratio between the pure hadronic fraction of pion and the pure hadronic fraction of proton F{sub h}{sup {pi}}/F{sub h}{sup p} was estimated with Tilecal test-beam data and compared with Geant4 simulations.
Study of ordered hadron chains with the ATLAS detector
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Mateos, D.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McNamara, P. C.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, Dms; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration
2017-11-01
The analysis of the momentum difference between charged hadrons in high-energy proton-proton collisions is performed in order to study coherent particle production. The observed correlation pattern agrees with a model of a helical QCD string fragmenting into a chain of ground-state hadrons. A threshold momentum difference in the production of adjacent pairs of charged hadrons is observed, in agreement with model predictions. The presence of low-mass hadron chains also explains the emergence of charge-combination-dependent two-particle correlations commonly attributed to Bose-Einstein interference. The data sample consists of 190 μ b-1 of minimum-bias events collected with proton-proton collisions at a center-of-mass energy √{s }=7 TeV in the early low-luminosity data taking with the ATLAS detector at the LHC.
Contribution of a kaon component in the viscosity and conductivity of a hadronic medium
NASA Astrophysics Data System (ADS)
Rahaman, Mahfuzur; Ghosh, Snigdha; Ghosh, Sabyasachi; Sarkar, Sourav; Alam, Jan-e.
2018-03-01
With the help of effective Lagrangian densities of strange hadrons, we calculated the kaon relaxation time from several loop and scattering diagrams at tree level, which basically represent contributions from 1 ↔2 and 2 ↔2 types of collisions. Using the total relaxation time of a kaon, the shear viscosity and electrical conductivity of this kaon component have been estimated. The high temperature, close to transition temperature, where the kaon relaxation time is lower than the lifetime of Relativistic Heavy Ion Collider or Large Hadron Collider matter may be the only relevant domain for this component to contribute in hadronic dissipation. Our results suggest that the kaon can play an important role in the enhancement of shear viscosity and electrical conductivity of hadronic matter near the transition temperature.
Sum rules for quasifree scattering of hadrons
NASA Astrophysics Data System (ADS)
Peterson, R. J.
2018-02-01
The areas d σ /d Ω of fitted quasifree scattering peaks from bound nucleons for continuum hadron-nucleus spectra measuring d2σ /d Ω d ω are converted to sum rules akin to the Coulomb sums familiar from continuum electron scattering spectra from nuclear charge. Hadronic spectra with or without charge exchange of the beam are considered. These sums are compared to the simple expectations of a nonrelativistic Fermi gas, including a Pauli blocking factor. For scattering without charge exchange, the hadronic sums are below this expectation, as also observed with Coulomb sums. For charge exchange spectra, the sums are near or above the simple expectation, with larger uncertainties. The strong role of hadron-nucleon in-medium total cross sections is noted from use of the Glauber model.
Characterization of equipment for shaping and imaging hadron minibeams
NASA Astrophysics Data System (ADS)
Pugatch, V.; Brons, S.; Campbell, M.; Kovalchuk, O.; Llopart, X.; Martínez-Rovira, I.; Momot, Ie.; Okhrimenko, O.; Prezado, Y.; Sorokin, Yu.
2017-11-01
For the feasibility studies of spatially fractionated hadron therapy prototypes of the equipment for hadron minibeams shaping and monitoring have been designed, built and tested. The collimators design was based on Monte Carlo simulations (Gate v.6.2). Slit and matrix collimators were used for minibeams shaping. Gafchromic films, micropixel detectors Timepix in a hybrid as well as metal mode were tested for measuring hadrons intensity distribution in minibeams. An overall beam profile was measured by the metal microstrip detector. The performance of a mini-beams shaping and monitoring equipment was characterized exploring low energy protons at the KINR Tandem generator as well as high energy carbon and oxygen ion beams at HIT (Heidelberg). The results demonstrate reliable performance of the tested equipment for shaping and imaging hadron mini-beam structures.
Constraints on the I = 1 hadronic τ decay and e+e- →hadrons data sets and implications for (g - 2) μ
NASA Astrophysics Data System (ADS)
Maltman, Kim
2006-02-01
Sum rule tests are performed on the spectral data for (i) flavor ud vector-current-induced hadronic τ decays and (ii) e+e- hadroproduction, in the region below s ∼ 3- 4 GeV2, where discrepancies exist between the isospin-breaking-corrected charged and neutral current I = 1 spectral functions. The τ data is found to be compatible with expectations based on high-scale αs (MZ) determinations, while the electroproduction data displays two problems. The results favor determinations of the leading order hadronic contribution to (g - 2) μ which incorporate hadronic τ decay data over those employing electroproduction data only, and hence a reduced discrepancy between experiment and the Standard Model prediction for (g - 2) μ.
Unstable Hadrons in Hot Hadron Gas in Laboratory and in the Early Universe
NASA Astrophysics Data System (ADS)
Kuznetsova, Inga; Rafelski, Johann
2011-04-01
We study kinetic master equations for reactions involving the formation and the natural decay of unstable particles in a thermal expanding hadronic gas in the laboratory and in the early Universe. We consider here for the first time the role of the decay channel of one (hadron resonance) into two daughter particles, and also by token of detailed balance the inverse process, fusion of two (thermal) particles into one. We obtain the thermal invariant reaction rate using as an input the free space (vacuum) decay time and show the medium quantum effects on π+π<->ρ reaction relaxation time. As another laboratory example we describe the K+K<->φ process in thermal expanding hadronic gas in heavy ions collisions. A particularly interesting application of our formalism is the 0̂<->γ+γ process in the early Universe. We also explore the fate of charged pions and the muon freeze-out in the Universe. Another interesting field of application of our formalism is the study of short lived hadronic resonances, which are in general not able to reach yield equilibrium. We study the evolution of hadron resonances in small drops of QGP and use the insight gained to generalize the dynamics to QED effects as well.
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Dortz, O. Le; Guirriec, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Griso, S. Pagan; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda, A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zwalinski, L.
2017-01-01
A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb^{-1} of proton-proton collision data at √{s}=7 TeV from 2010 and 0.1 nb^{-1} of data at √{s}=8 TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2-5% for jets with transverse momenta above 2 TeV, where this method provides the jet energy scale uncertainty for ATLAS.
Measurement of q ˆ in Relativistic Heavy Ion Collisions using di-hadron correlations
Tannenbaum, M. J.
2017-06-06
The propagation of partons from hard scattering through the Quark Gluon Plasma produced in A+A collisions at RHIC and the LHC is represented in theoretical analyses by the transport coefficientmore » $$\\hat{q}$$ and predicted to cause both energy loss of the outgoing partons, observed as suppression of particles or jets with large transverse momentum p T, and broadening of the azimuthal correlations of the outgoing di-jets or di-hadrons from the outgoing parton-pair, which has not been observed. The widths of azimuthal correlations of di-hadrons with the same trigger particle p Tt and associated p Ta transverse momenta in p+p and Au+Au are so-far statistically indistinguishable as shown in recent as well as older di-hadron measurements and also with jet-hadron and hadron-jet measurements. The azimuthal width of the di-hadron correlations in p+p collisions, beyond the fragmentation transverse momentum, j T, is dominated by k T, the so-called intrinsic transverse momentum of a parton in a nucleon, which can be measured. The broadening should produce a larger k T in A+A than in p+p collisions. The present work introduces the observation that the k T measured in p+p collisions for di-hadrons with p Tt and p Ta must be reduced to compensate for the energy loss of both the trigger and away parent partons when comparing to the k T measured with the same di-hadron p Tt and p Ta in Au+Au collisions. This idea is applied to a recent STAR di-hadron measurement, with result <$$\\hat{q}$$L>=2.1±0.6 GeV 2. This is more precise but in agreement with a theoretical calculation of <$$\\hat{q}$$L>=14$$+42\\atop{-14}$$ GeV 2 using the same data. Assuming a length ≈7 fm for central Au+Au collisions the present result gives $$\\hat{q}$$≈0.30±0.09 GeV 2/fm, in fair agreement with the JET collaboration result from single hadron suppression of $$\\hat{q}$$≈1.2±0.3 GeV 2/fm at an initial time τ 0=0.6 fm/c in Au+Au collisions at √sNN=200 GeV.« less
Measurement of q ˆ in Relativistic Heavy Ion Collisions using di-hadron correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tannenbaum, M. J.
The propagation of partons from hard scattering through the Quark Gluon Plasma produced in A+A collisions at RHIC and the LHC is represented in theoretical analyses by the transport coefficientmore » $$\\hat{q}$$ and predicted to cause both energy loss of the outgoing partons, observed as suppression of particles or jets with large transverse momentum p T, and broadening of the azimuthal correlations of the outgoing di-jets or di-hadrons from the outgoing parton-pair, which has not been observed. The widths of azimuthal correlations of di-hadrons with the same trigger particle p Tt and associated p Ta transverse momenta in p+p and Au+Au are so-far statistically indistinguishable as shown in recent as well as older di-hadron measurements and also with jet-hadron and hadron-jet measurements. The azimuthal width of the di-hadron correlations in p+p collisions, beyond the fragmentation transverse momentum, j T, is dominated by k T, the so-called intrinsic transverse momentum of a parton in a nucleon, which can be measured. The broadening should produce a larger k T in A+A than in p+p collisions. The present work introduces the observation that the k T measured in p+p collisions for di-hadrons with p Tt and p Ta must be reduced to compensate for the energy loss of both the trigger and away parent partons when comparing to the k T measured with the same di-hadron p Tt and p Ta in Au+Au collisions. This idea is applied to a recent STAR di-hadron measurement, with result <$$\\hat{q}$$L>=2.1±0.6 GeV 2. This is more precise but in agreement with a theoretical calculation of <$$\\hat{q}$$L>=14$$+42\\atop{-14}$$ GeV 2 using the same data. Assuming a length ≈7 fm for central Au+Au collisions the present result gives $$\\hat{q}$$≈0.30±0.09 GeV 2/fm, in fair agreement with the JET collaboration result from single hadron suppression of $$\\hat{q}$$≈1.2±0.3 GeV 2/fm at an initial time τ 0=0.6 fm/c in Au+Au collisions at √sNN=200 GeV.« less
Fact Sheet for Friction Materials Manufacturing Facilities Residual Risk and Technology Review
proposed amendments to the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Friction Materials Manufacturing Facilities to address the results of the residual risk and technology review
Technology for subsystems of space-based plant growth facilities
NASA Technical Reports Server (NTRS)
Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.; Corey, R. B.
1990-01-01
Technologies for different subsystems of space-based plant growth facilities are being developed at the Wisconsin Center for Space Automation and Robotics, a NASA Center for the Commercial Development of Space. The technologies include concepts for water and nutrient delivery, for nutrient composition control, and for irradiation. Effort is being concentrated on these subsystems because available technologies cannot be effectively utilized for space applications.
Direction of rational use of water at livestock facilities
NASA Astrophysics Data System (ADS)
Potseluev, A. A.; Nazarov, I. V.
2017-05-01
The article notes the world water shortage problem. Against this background, Russia’s agricultural production is considered, in particular the livestock sector as the main consumer of water resources. The structure of the main technological processes at livestock facilities is given and possible technological damage is indicated in case of the lack of technological processes for servicing animals and poultry with water. The direction of rational use of water based on the introduction of new technical and technological solutions of water supply systems and means is substantiated. Constructive solutions of systems and facilities that help to reduce water consumption are presented, and as well a possible positive effect.
Modeling and Analysis of Ultrarelativistic Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
McCormack, William; Pratt, Scott
2014-09-01
High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition from the QGP stage to hadronization. Balance functions were constructed as the sum of these two charge production components, and four parameters were manipulated to match the model's output with experimental data taken from the STAR Collaboration at RHIC. Results show that the chemical composition of the super-hadronic matter are consistent with that of a thermally equilibrated QGP. High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition from the QGP stage to hadronization. Balance functions were constructed as the sum of these two charge production components, and four parameters were manipulated to match the model's output with experimental data taken from the STAR Collaboration at RHIC. Results show that the chemical composition of the super-hadronic matter are consistent with that of a thermally equilibrated QGP. An MSU REU Project.
The report gives results of an environmental characterization of refuse-derived, semi-suspension burning technology at a facility in Hartford, CT, that represents state-of-the-art technology, including a spray dryer/fabric filter flue gas cleaning (FGC) system for each unit. The ...
Asakura, Hiroshi; Matsuto, Toshihiko; Inoue, Yuzo
2010-08-01
In Japan, as the construction of new landfill facilities has become extremely difficult and the number of sites procured for landfill construction has decreased due to the 'not in my back yard' (NIMBY) syndrome, it has been assumed that the adoption of new technologies has increased. As the performance of new technologies exceeds that of conventional technologies, it is also assumed that residents would prefer the use of these new technologies and therefore any construction plans should be devised to ensure their use to ensure residents' satisfaction. In the present study, the technologies adopted for municipal solid waste landfill facilities constructed in recent years (2000 to 2004) in Japan and the bases for their adoption were investigated by means of a questionnaire survey. One of the main bases for the adoption of new technologies was the request by residents for new technology for roofing, rather than the other for new technologies for barrier systems, leachate treatment, and monitoring. In addition, it is possible that the municipalities did not recognize the difference between conventional and new technologies as defined in this study. The roof-type landfill that isolates waste from the surrounding environment was one of the requirements for the construction of new landfill facilities identified in the present investigation, and in this regard waste isolation should be required in all circumstances.
Hadronic interactions in the MINOS detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kordosky, Michael Alan
2004-08-01
MINOS, the Main Injector Neutrino Oscillation Search, will study neutrino flavor transformations using a Near detector at the Fermi National Accelerator Laboratory and a Far detector located in the Soudan Underground Laboratory in northern Minnesota. The MINOS collaboration also constructed the CalDet (calibration detector), a smaller version of the Near and Far detectors, to determine the topological and signal response to hadrons, electrons and muons. The detector was exposed to test-beams in the CERN Proton Synchrotron East Hall during 2001-2003, where it collected events at momentum settings between 200 MeV/c and 10 GeV/c. In this dissertation we present results ofmore » the CalDet experiment, focusing on the topological and signal response to hadrons. We briefly describe the MINOS experiment and its iron-scintillator tracking-sampling calorimters as a motivation for the CalDet experiment. We discuss the operation of the CalDet in the beamlines as well as the trigger and particle identification systems used to isolate the hadron sample. The method used to calibrate the MINOS detector is described and validated with test-beam data. The test-beams were simulated to model the muon flux, energy loss upstream of the detector and the kaon background. We describe the procedure used to discriminate between pions and muons on the basis of the event topology. The hadron samples were used to benchmark the existing GEANT3 based hadronic shower codes and determine the detector response and resolution for pions and protons. We conclude with comments on the response to single hadrons and to neutrino induced hadronic showers.« less
Space Missions for Automation and Robotics Technologies (SMART) Program
NASA Technical Reports Server (NTRS)
Cliffone, D. L.; Lum, H., Jr.
1985-01-01
NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.
Analyzing the threat of unmanned aerial vehicles (UAV) to nuclear facilities
Solodov, Alexander; Williams, Adam; Al Hanaei, Sara; ...
2017-04-18
Unmanned aerial vehicles (UAV) are among the major growing technologies that have many beneficial applications, yet they can also pose a significant threat. Recently, several incidents occurred with UAVs violating privacy of the public and security of sensitive facilities, including several nuclear power plants in France. The threat of UAVs to the security of nuclear facilities is of great importance and is the focus of this work. This paper presents an overview of UAV technology and classification, as well as its applications and potential threats. We show several examples of recent security incidents involving UAVs in France, USA, and Unitedmore » Arab Emirates. Further, the potential threats to nuclear facilities and measures to prevent them are evaluated. The importance of measures for detection, delay, and response (neutralization) of UAVs at nuclear facilities are discussed. An overview of existing technologies along with their strength and weaknesses are shown. Finally, the results of a gap analysis in existing approaches and technologies is presented in the form of potential technological and procedural areas for research and development. Furthermore based on this analysis, directions for future work in the field can be devised and prioritized.« less
EPA Policy for Innovative Environmental Technologies at Federal Facilities
This is a memo from the EPA Administrator, regarding the unique opportunities for the development and application of innovative technologies and approaches to pollution prevention, source control, site investigation, and remediation at Federal facilities.
Missouri Smelting Technology, Inc.
The EPA is providing notice of a proposed Administrative Penalty Assessment against Missouri Smelting Technology, Inc. (MOST), for alleged violations at a facility located at 50 Cherry Blossom Way, Troy, Missouri 63379 (“facility”). The facility is a secon
Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.
Hill, R N; Nutt, W M; Laidler, J J
2011-01-01
The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society
Basics of QCD perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soper, D.E.
1997-06-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.
Hadron intensity and energy spectrum at 4380 m above level
NASA Technical Reports Server (NTRS)
Cananov, S. D.; Chadranyan, E. K.; Khizanishvili, L. A.; Ladaria, N. K.; Roinishvili, N. N.
1985-01-01
The flux value of hadrons with E (sup gamma) h or = 5 TeV, where E (sup gamma) h or = is the energy transferred into electromagnetic component is presented. It is shown that the energy spectrum slope beta of hadrons with E h or = 20 TeV is equal to 1.9.
Hadron masses in a gauge theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Rujula, A.; Georgi, H.; Glashow, S.L.
1975-07-01
We explore the implications for hadron spectroscopy of the ''standard'' gauge model of weak, electromagnetic, and strong interactions. The model involves four types of fractionally charged quarks, each in three colors, coupling to massless gauge gluons. The quarks are confined within colorless hadrons by a long-range spin-independent force realizing infrared slavery. We use the asymptotic freedom of the model to argue that for the calculation of hadron masses, the short-range quark-quark interaction may be taken to be Coulomb- like. We rederive many successful quark-model mass relations for the low-lying hadrons. Because a specific interaction and symmetry-breaking mechanism are forced onmore » us by the underlying renormalizable gauge field theory, we also obtain new mass relations. They are well satisfied. We develop a qualitative understanding of many features of the hadron mass spectrum, such as the origin and sign of the $Sigma$-$lambda$ mass splitting. Interpreting the newly discovered narrow boson resonances as states of charmonium, we use the model to predict the masses of charmed mesons and baryons.« less
Effects of strong laser fields on hadronic helium atoms
NASA Astrophysics Data System (ADS)
Lee, Han-Chieh; Jiang, Tsin-Fu
2015-12-01
The metastable hadronic helium atoms in microseconds lifetime are available in laboratory, and two-photon spectroscopy was reported recently. This exotic helium atom has an electron in the ground state and a negative hadron rotating around the helium nucleus. We theoretically study the excitation on hadronic helium by femtosecond pulse and elucidate the influence of moleculelike structure and rotation behavior on the photoelectron spectra and high-order harmonic generation. Because of the moleculelike structure, the electronic ground state consists of several angular orbitals. These angular orbitals can enhance photoelectron spectra at high energies, and also influence the harmonic generation spectra considerably. In particular, the harmonic spectra can occur at even harmonic orders because of the transition between these angular orbitals and continuum states. On the other side, the rotation behavior of hadron can induce a frequency shift in the harmonic spectra. The magnitude of the frequency shift depends on the orbiting speed of the hadron, which is considerable because the rotation period is in a few femtoseconds, a time scale that is comparable to that of infrared laser and is feasible in current laser experiments.
NASA Astrophysics Data System (ADS)
Radhakrishnan, Sooraj
2018-02-01
Heavy flavor quarks, owing to their large masses, are predominantly produced through initial hard parton scatterings in heavy-ion collisions, and thus are excellent probes to study properties of the strongly coupled Quark Gluon Plasma (sQGP) medium produced in these collisions. Measurements of anisotropic flow harmonics of heavy flavor hadrons can provide information on the properties of the medium, including the heavy flavor transport coefficient. Charm quark hadronization mechanism in the sQGP medium can be studied through measurements of yields of different charm hadrons. In these proceedings we report on the measurements of elliptic and triangular flow harmonics of D0 mesons as well as the yield ratios of D±s/D0 and Λ±c/D0 in Au+Au collisions at = 200 GeV at RHIC with the STAR detector. These measurements use the STAR Heavy Flavor Tracker (HFT) to reconstruct charm hadrons via their hadronic decay channels. Results are compared to model calculations and the implications on the understanding of charm quark dynamics in the medium are discussed.
Universal effective hadron dynamics from superconformal algebra
Brodsky, Stanley J.; de Teramond, Guy F.; Dosch, Hans Gunter; ...
2016-05-25
An effective supersymmetric QCD light-front Hamiltonian for hadrons composed of light quarks, which includes a spin–spin interaction between the hadronic constituents, is constructed by embedding superconformal quantum mechanics into AdS space. A specific breaking of conformal symmetry inside the graded algebra determines a unique effective quark-confining potential for light hadrons, as well as remarkable connections between the meson and baryon spectra. The results are consistent with the empirical features of the light-quark hadron spectra, including a universal mass scale for the slopes of the meson and baryon Regge trajectories and a zero-mass pion in the limit of massless quarks. Ourmore » analysis is consistently applied to the excitation spectra of the π , ρ , K , K* and Φ meson families as well as to the N , Δ, Λ, Σ, Σ* , Ξ and Ξ* in the baryon sector. Here, we also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. The mass of light hadrons is expressed in a universal and frame-independent decomposition in the semiclassical approximation described here.« less
The F-18 systems research aircraft facility
NASA Technical Reports Server (NTRS)
Sitz, Joel R.
1992-01-01
To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.
Hadron-rich cosmic-ray families detected by emulsion chamber.
NASA Astrophysics Data System (ADS)
Navia, C. E.; Augusto, C. R. K.; Pinto, F. A.; Shibuya, H.
1995-11-01
Observed hadrons in excess, larger-than-expected charged mesons (pions) in cosmic-ray families detected in emulsion chamber experiment at mountain altitude and produced in a cosmic-ray hadronic interaction not far from the PeV energy region are studied. The hypothesis that these extra hadrons could be a bundle of surviving nuclear fragments (nucleons) is verified through a simulation method using a hybrid code composed of a superposition model to describe the number of interacting nucleon-nucleon pairs in a nucleus-nucleus collision. Together with the UA5 algorithm to describe a nucleon-nucleon collision, atmospheric propagation structure is also considered. A comparison between simulation output with experimental data shows that the surviving-nuclear-fragments hypothesis is not enough to explain the non-pionic hadron excess, even if a heavy dominance composition in the primary flux is considered.
Supersymmetry across the light and heavy-light hadronic spectrum. II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dosch, Hans Gunter; de Téramond, Guy F.; Brodsky, Stanley J.
We extend our analysis of the implications of hadronic supersymmetry for heavy-light hadrons in light-front holographic QCD. Although conformal symmetry is strongly broken by the heavy quark mass, supersymmetry and the holographic embedding of semiclassical light-front dynamics derived from five-dimensional anti-de Sitter space nevertheless determine the form of the confining potential in the light-front Hamiltonian to be harmonic. The resulting light-front bound-state equations lead to a heavy-light Regge-like spectrum for both mesons and baryons. The confinement hadron mass scale and their Regge slopes depend, however, on the mass of the heavy quark in the meson or baryon as expected frommore » heavy quark effective theory. Furthermore, this procedure reproduces the observed spectra of heavy-light hadrons with good precision and makes predictions for yet unobserved states.« less
Supersymmetry across the light and heavy-light hadronic spectrum. II.
Dosch, Hans Gunter; de Téramond, Guy F.; Brodsky, Stanley J.
2017-02-15
We extend our analysis of the implications of hadronic supersymmetry for heavy-light hadrons in light-front holographic QCD. Although conformal symmetry is strongly broken by the heavy quark mass, supersymmetry and the holographic embedding of semiclassical light-front dynamics derived from five-dimensional anti-de Sitter space nevertheless determine the form of the confining potential in the light-front Hamiltonian to be harmonic. The resulting light-front bound-state equations lead to a heavy-light Regge-like spectrum for both mesons and baryons. The confinement hadron mass scale and their Regge slopes depend, however, on the mass of the heavy quark in the meson or baryon as expected frommore » heavy quark effective theory. Furthermore, this procedure reproduces the observed spectra of heavy-light hadrons with good precision and makes predictions for yet unobserved states.« less
New method to measure the attenuation of hadrons in extensive air showers
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hildebrand, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2009-07-01
Extensive air showers are generated through interactions of high-energy cosmic rays impinging the Earth’s atmosphere. A new method is described to infer the attenuation of hadrons in air showers. The numbers of electrons and muons, registered with the scintillator array of the KASCADE experiment, are used to estimate the energy of the shower inducing primary particle. A large hadron calorimeter is used to measure the hadronic energy reaching observation level. The ratio of energy reaching ground level to the energy of the primary particle is used to derive an attenuation length of hadrons in air showers. In the energy range from 106 to 3×107GeV the attenuation length obtained increases from 170 to 210g/cm2. The experimental results are compared to predictions of simulations based on contemporary high-energy interaction models.
Study of ordered hadron chains with the ATLAS detector
Aaboud, M.; Aad, G.; Abbott, B.; ...
2017-11-29
The analysis of the momentum difference between charged hadrons in high-energy proton-proton collisions is performed in order to study coherent particle production. The observed correlation pattern agrees with a model of a helical QCD string fragmenting into a chain of ground-state hadrons. A threshold momentum difference in the production of adjacent pairs of charged hadrons is observed, in agreement with model predictions. The presence of low-mass hadron chains also explains the emergence of charge-combination-dependent two-particle correlations commonly attributed to Bose-Einstein interference. Here, the data sample consists of 190 μb –1 of minimum-bias events collected with proton-proton collisions at a center-of-massmore » energy √s=7 TeV in the early low-luminosity data taking with the ATLAS detector at the LHC.« less
PREFACE: Second Meeting of the APS Topical Group on Hadronic Physics
NASA Astrophysics Data System (ADS)
Ernst, David; de Jager, Kees; Roberts, Craig; Sheldon, Paul; Swanson, Eric
2007-06-01
The Second Meeting of the APS Topical Group on Hadronic Physics was held on 22-24 October 2006 at the Opryland Resort in Nashville, Tennessee. Keeping with tradition, the meeting was held in conjunction with the Fall meeting of the APS Division of Nuclear Physics. Approximately 90 physicists participated in the meeting, presenting 25 talks in seven plenary sessions and 48 talks in 11 parallel sessions. These sessions covered a wide range of topics related to strongly interacting matter. Among these were charm spectroscopy, gluonic exotics, nucleon resonance physics, RHIC physics, electroweak and spin physics, lattice QCD initiatives, and new facilities. Brad Tippens and Brad Keister provided perspective from the funding agencies. The organisers are extremely grateful to the following institutions for financial and logistical support: the American Physical Society, Jefferson Lab, Brookhaven National Laboratory, and Vanderbilt University. We thank the following persons for assisting in organising the parallel sessions: Ted Barnes, Jian-Ping Chen, Ed Kinney, Krishna Kumar, Harry Lee, Mike Leitch, Kam Seth, and Dennis Weygand. We also thank Gerald Ragghianti for designing the conference poster, Will Johns for managing the audio-visual equipment and for placing the talks on the web, Sandy Childress for administrative expertise, and Vanderbilt graduate students Eduardo Luiggi and Jesus Escamillad for their assistance. David Ernst, Kees de Jager, Craig Roberts (Chair), Paul Sheldon and Eric Swanson Editors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokosawa, A.
Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) themore » source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, [pi]-nucleon physics looked attractive, since the determination of spin and parity of possible [pi]p resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy.« less
Application and Removal of Strippable Coatings via Remote Platform - 13133
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoffner, P.; Lagos, L.; Maggio, S.
2013-07-01
Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and technology demonstrations of selected technologies and working with technology vendors to optimize the design of their current technologies to accomplish dangerous and demanding tasks during D and D operations.more » To meet one identified technology gap challenge for a technology to remotely apply strippable coatings, fixatives and decontamination gels, FIU identified and performed an initial demonstration of an innovative remote fixative sprayer platform from International Climbing Machines (ICM). The selected technology was demonstrated spraying fixative products at the hot cell mockup facility at the Applied Research Center at FIU in November 2008 under cold (non-radioactive) conditions. The remotely controlled platform was remotely operated and entered the facility and sprayed a fixative onto horizontal and vertical surfaces. Based on the initial FIU demonstration and the specific technical requirements identified at the DOE facilities, a follow-up demonstration was expanded to include strippable coatings and a decontamination gel, which was demonstrated in June 2010 at the ICM facility in Ithaca, NY. This second technology evaluation documented the ability of the remote system to spray the selected products on vertical stainless steel and concrete surfaces to a height of 3 meters (10 feet) and to achieve sufficient coverage and product thickness to promote the ability to peel/remove the strippable coatings and decontamination gel. The next challenge was to determine if a remote platform could be used to remove the strippable coatings and decontamination gels. In 2012, FIU worked with the technology provider, ICM, to conduct feasibility and trade studies to identify the requirements for the remote removal of strippable coatings or decontamination gels using the existing remote controlled platform. (authors)« less
Sikkema, Joel K; Alleman, James E; Ong, Say Kee; Wheelock, Thomas D
2011-09-15
The USEPA's 2010 mercury rule, which would reduce emissions from non-hazardous waste burning cement manufacturing facilities by an estimated 94%, represents a substantial regulatory challenge for the industry. These regulations, based on the performance of facilities that benefit from low concentrations of mercury in their feedstock and fuel inputs (e.g., limestone concentration was less than 25 ppb at each facility), will require non-compliant facilities to develop innovative controls. Control development is difficult because each facility's emissions must be assessed and simple correlation to mercury concentrations in limestone or an assumption of 'typically observed' mercury concentrations in inputs are unsupported by available data. Furthermore, atmospheric emissions are highly variable due to an internal control mechanism that captures and loops mercury between the high-temperature kiln and low-temperature raw materials mill. Two models have been reported to predict emissions; however, they have not been benchmarked against data from the internal components that capture mercury and do not distinguish between mercury species, which have different sorption and desorption properties. Control strategies include technologies applied from other industries and technologies developed specifically for cement facilities. Reported technologies, listed from highest to lowest anticipated mercury removal, include purge of collected dust or raw meal, changes in feedstocks and fuels, wet scrubbing, cleaning of mercury enriched dust, dry sorbent injection, and dry and semi-dry scrubbing. The effectiveness of these technologies is limited by an inadequate understanding of sorption, desorption, and mercury species involved in internal loop mercury control. To comply with the mercury rule and to improve current mercury control technologies and practices, research is needed to advance fundamental knowledge regarding mercury species sorption and desorption dynamics on materials within cement facilities. Copyright © 2011 Elsevier B.V. All rights reserved.
Searching for the rules that govern hadron construction
Shepherd, Matthew R.; Dudek, Jozef J.; Mitchell, Ryan E.
2016-06-22
Just as quantum electrodynamics describes how electrons are bound in atoms by the electromagnetic force, mediated by the exchange of photons, quantum chromodynamics (QCD) describes how quarks are bound inside hadrons by the strong force, mediated by the exchange of gluons. QCD seems to allow hadrons constructed from increasingly many quarks to exist, just as atoms with increasing numbers of electrons exist, yet such complex constructions seemed, until recently, not to be present in nature. In this paper, we describe advances in the spectroscopy of mesons that are refining our understanding of the rules for predicting hadron structure from QCD.
A search for mini-clusters in Japan-USSR Joint Experiment at Pamir
NASA Technical Reports Server (NTRS)
1985-01-01
A search for mini-clusters, very collimated shower clusters of hadrons and electromagnetic particles, is made for the hadron and gamma families observed by Japan-USSR joint carbon chamber at Pamir. The existence of anomalous correlation between hadrons and electromagnetic particles is found. The decascading method is applied to the families and it is found that 11 clusters which include hadrons as members have smaller spread, Er 3.5 GeV.m and larger lateral spread, E'R' 100 GeV.m, from the family center. In the simulated events, such clusters were found to be very rare.
Hadron mass spectrum from lattice QCD.
Majumder, Abhijit; Müller, Berndt
2010-12-17
Finite temperature lattice simulations of quantum chromodynamics (QCD) are sensitive to the hadronic mass spectrum for temperatures below the "critical" temperature T(c) ≈ 160 MeV. We show that a recent precision determination of the QCD trace anomaly shows evidence for the existence of a large number of hadron states beyond those known from experiment. The lattice results are well represented by an exponentially growing mass spectrum up to a temperature T=155 MeV. Using simple parametrizations of the hadron mass spectrum we show how one may estimate the total spectral weight in these yet undermined states.
XVII International Conference on Hadron Spectroscopy and Structure
NASA Astrophysics Data System (ADS)
2017-09-01
The Hadron 2017 Conference is the seventeenth of a series of biennial conferences started in 1985 at Maryland, USA. Its official name, XVII International Conference on Hadron Spectroscopy and Structure, includes for the first time the term structure to emphasize the importance that this issue has acquired in recent editions of the series. The aim of the conference is to provide an overview of the present status and progress in hadron structure and dynamics, as well as a preview of the forthcoming investigations. It will cover lectures on both experimental and theoretical aspects, including in particular the presentation of new results.
Averages of B-Hadron, C-Hadron, and tau-lepton properties as of early 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amhis, Y.; et al.
2012-07-01
This article reports world averages of measurements of b-hadron, c-hadron, and tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through the end of 2011. In some cases results available in the early part of 2012 are included. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CP violation parameters, parameters of semileptonic decays and CKM matrix elements.
Two-photon production of leptons at hadron colliders in semielastic and elastic cases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manko, A. Yu., E-mail: andrej.j.manko@gmail.com; Shulyakovsky, R. G., E-mail: shul@ifanbel.bas-net.by, E-mail: shulyakovsky@iaph.bas-net.by
The mechanism of two-photon dilepton production is studied in the equivalent-photon (Weizsäcker–Williams) approximation. This approximation is shown to describe well experimental data from hadron accelerators. The respective total and differential cross sections were obtained for the LHC and for the Tevatron collider at various energies of colliding hadrons. The differential cross sections were studied versus the dilepton invariant mass, transverse momentum, and emission angle in the reference frame comoving with the center of mass of colliding hadrons. The cases of semielastic and inelastic collisions were examined.
DOE R&D Accomplishments Database
Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.
1974-07-15
In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.
Operation of Negative Ion Sources at the Cooler Synchrotron COSY/Juelich
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebel, R.; Felden, O.; Maier, R.
2011-09-26
The Institute for Nuclear Physics at the Forschungszentrum Juelich is dedicated to fundamental research in the field of hadron, particle and nuclear physics. Main activities are the development of the High Energy Storage Ring for the Facility for Antiproton and Ion Research at Darmstadt and the operation and improvement of the cooler synchrotron COSY at Juelich. The injector, a cyclotron with polarized and unpolarized H{sup -} and D{sup -} sources, has exceeded 7000 hours availability per year, averaged over the last decade. Work in progress is the investigation of production, extraction and transport of the low energy 4.5 keV/u ionmore » beams. A brief overview of the activities is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childers, J. T.; Uram, T. D.; LeCompte, T. J.
As the LHC moves to higher energies and luminosity, the demand for computing resources increases accordingly and will soon outpace the growth of the World- wide LHC Computing Grid. To meet this greater demand, event generation Monte Carlo was targeted for adaptation to run on Mira, the supercomputer at the Argonne Leadership Computing Facility. Alpgen is a Monte Carlo event generation application that is used by LHC experiments in the simulation of collisions that take place in the Large Hadron Collider. This paper details the process by which Alpgen was adapted from a single-processor serial-application to a large-scale parallel-application andmore » the performance that was achieved.« less
Childers, J. T.; Uram, T. D.; LeCompte, T. J.; ...
2016-09-29
As the LHC moves to higher energies and luminosity, the demand for computing resources increases accordingly and will soon outpace the growth of the Worldwide LHC Computing Grid. To meet this greater demand, event generation Monte Carlo was targeted for adaptation to run on Mira, the supercomputer at the Argonne Leadership Computing Facility. Alpgen is a Monte Carlo event generation application that is used by LHC experiments in the simulation of collisions that take place in the Large Hadron Collider. Finally, this paper details the process by which Alpgen was adapted from a single-processor serial-application to a large-scale parallel-application andmore » the performance that was achieved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childers, J. T.; Uram, T. D.; LeCompte, T. J.
As the LHC moves to higher energies and luminosity, the demand for computing resources increases accordingly and will soon outpace the growth of the Worldwide LHC Computing Grid. To meet this greater demand, event generation Monte Carlo was targeted for adaptation to run on Mira, the supercomputer at the Argonne Leadership Computing Facility. Alpgen is a Monte Carlo event generation application that is used by LHC experiments in the simulation of collisions that take place in the Large Hadron Collider. Finally, this paper details the process by which Alpgen was adapted from a single-processor serial-application to a large-scale parallel-application andmore » the performance that was achieved.« less
NASA Astrophysics Data System (ADS)
Matsumura, T.; Kamiji, I.; Nakagiri, K.; Nanjo, H.; Nomura, T.; Sasao, N.; Shinkawa, T.; Shiomi, K.
2018-03-01
We have developed a beam-profile monitor (BPM) system to align the collimators for the neutral beam-line at the Hadron Experimental Facility of J-PARC. The system is composed of a phosphor screen and a CCD camera coupled to an image intensifier mounted on a remote control X- Y stage. The design and detailed performance studies of the BPM are presented. The monitor has a spatial resolution of better than 0.6 mm and a deviation from linearity of less than 1%. These results indicate that the BPM system meets the requirements to define collimator-edge positions for the beam-line tuning. Confirmation using the neutral beam for the KOTO experiment is also presented.
Single π+ electroproduction on the proton in the first and second resonance regions at 0.25GeV2
NASA Astrophysics Data System (ADS)
Egiyan, H.; Aznauryan, I. G.; Burkert, V. D.; Griffioen, K. A.; Joo, K.; Minehart, R.; Smith, L. C.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Baltzel, N.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Cetina, C.; Chen, S.; Cole, P. L.; Coleman, A.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Desanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnely, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Eckhause, M.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Gaff, S. J.; Gai, M.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Goetz, G. T.; Gordon, C. I.; Gothe, R.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B.; Ito, M. M.; Jenkins, D.; Juengst, H. G.; Kelley, J. H.; Kellie, J. D.; Khandaker, M.; Kim, D. H.; Kim, K. Y.; Kim, K.; Kim, M. S.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kubarovsky, V.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, Ji; Livingston, K.; Longhi, A.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McKinnon, B.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Murphy, L. Y.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhang, J.; Zhao, J.; Zhou, Z.
2006-02-01
The ep→e'π+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV2
NASA Technical Reports Server (NTRS)
Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.
1977-01-01
The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larkoski, Andrew J.; Maltoni, Fabio; Selvaggi, Michele
The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directlymore » employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transverse boosts of 20 TeV. Lastly, our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.« less
Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Aben, R; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Billoud, T R V; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Lopez, S Calvente; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, G; Gonella, L; Gongadze, A; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Hadef, A; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Javurkova, M; Jeanneau, F; Jeanty, L; Jeng, G-Y; Jennens, D; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Dortz, O Le; Guirriec, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Outschoorn, V I Martinez; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Garcia, B R Mellado; Melo, M; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Manh, T Nguyen; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Rodriguez, L Pacheco; Aranda, C Padilla; Griso, S Pagan; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sánchez, J; Martinez, V Sanchez; Pineda, A Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Stark, S H; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tan, K G; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Turvey, A J; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, W; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wolf, T M H; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zwalinski, L
2017-01-01
A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb[Formula: see text] of proton-proton collision data at [Formula: see text] [Formula: see text] from 2010 and 0.1 nb[Formula: see text] of data at [Formula: see text] [Formula: see text] from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2-5% for jets with transverse momenta above 2 [Formula: see text], where this method provides the jet energy scale uncertainty for ATLAS.
Scattering processes and resonances from lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briceno, Raul A.; Dudek, Jozef J.; Young, Ross D.
The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lightermore » hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This paper reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. Finally, the challenges which currently limit the field are discussed along with the steps being taken to resolve them.« less
Scattering processes and resonances from lattice QCD
NASA Astrophysics Data System (ADS)
Briceño, Raúl A.; Dudek, Jozef J.; Young, Ross D.
2018-04-01
The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This article reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. The challenges which currently limit the field are discussed along with the steps being taken to resolve them.
Scattering processes and resonances from lattice QCD
Briceno, Raul A.; Dudek, Jozef J.; Young, Ross D.
2018-04-18
The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lightermore » hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This paper reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. Finally, the challenges which currently limit the field are discussed along with the steps being taken to resolve them.« less
Aaboud, M.; Aad, G.; Abbott, B.; ...
2017-01-13
A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb –1 of proton–proton collision data at √s = 7 TeV from 2010 and 0.1 nb –1 of data at √s = 8 TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimetermore » region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2–5% for jets with transverse momenta above 2 TeV, where this method provides the jet energy scale uncertainty for ATLAS.« less
Coherent J /ψ photoproduction in hadronic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Zha, W.; Klein, S. R.; Ma, R.; Ruan, L.; Todoroki, T.; Tang, Z.; Xu, Z.; Yang, C.; Yang, Q.; Yang, S.
2018-04-01
Significant excesses of J /ψ yield at very low transverse momentum (pT<0.3 GeV/c ) were observed by the ALICE and STAR collaborations in peripheral hadronic A +A collisions. This is a sign of coherent photoproduction of J /ψ in violent hadronic interactions. Theoretically, the photoproduction of J /ψ in hadronic collisions raises questions about how spectator and nonspectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs to be included. This paper presents calculations of J /ψ production from coherent photon-nucleus (γ +A →J /ψ +A ) interactions in hadronic A +A collisions at BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J /ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle, and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. These predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.
NASA Astrophysics Data System (ADS)
Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; Hayashi, S.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Ogilvie, C. A.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Voas, B.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration
2016-03-01
The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in minimum bias Au +Au collisions at √{sN N}=200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au +Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p +p collisions at √{sN N}=200 GeV and find the fractions to be similar within the large uncertainties on both measurements for pT>4 GeV/c . We use the bottom electron fractions in Au +Au and p +p along with the previously measured heavy flavor electron RA A to calculate the RA A for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3
Tracking down hyper-boosted top quarks
Larkoski, Andrew J.; Maltoni, Fabio; Selvaggi, Michele
2015-06-05
The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directlymore » employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transverse boosts of 20 TeV. Lastly, our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.« less
NASA Technical Reports Server (NTRS)
Aydelott, J. C.; Rudland, R. S.
1985-01-01
The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.
Facility Planning for 21st Century. Technology, Industry, and Education.
ERIC Educational Resources Information Center
Hill, Franklin
When the Orange County School Board (Orlando, Florida) decided to build a new high school, they recognized Central Florida's high technology emphasis as a special challenge. The new facility needed to meet present instructional demands while being flexible enough to incorporate 21st century technologies. The final result is a new $30 million high…
Specht, Hanno M; Neff, Teresa; Reuschel, Waltraud; Wagner, Franz M; Kampfer, Severin; Wilkens, Jan J; Petry, Winfried; Combs, Stephanie E
2015-01-01
While neutron therapy was a highly topical subject in the 70s and 80s, today there are only a few remaining facilities offering fast neutron therapy (FNT). Nevertheless, up to today more than 30,000 patients were treated with neutron therapy. For some indications like salivary gland tumors and malignant melanoma, there is clinical evidence that the addition of FNT leads to superior local control compared to photon treatment alone. FNT was available in Munich from 1985 until 2000 at the Reactor Neutron Therapy (RENT) facility. Patient treatment continued at the new research reactor FRM II in 2007 under improved treatment conditions, and today it can still be offered to selected patients as an individual treatment option. As there is a growing interest in high-linear energy transfer (LET) therapy with new hadron therapy centers emerging around the globe, the clinical data generated by neutron therapy might help to develop biologically driven treatment planning algorithms. Also FNT might experience its resurgence as a combinational partner of modern immunotherapies.
Specht, Hanno M.; Neff, Teresa; Reuschel, Waltraud; Wagner, Franz M.; Kampfer, Severin; Wilkens, Jan J.; Petry, Winfried; Combs, Stephanie E.
2015-01-01
While neutron therapy was a highly topical subject in the 70s and 80s, today there are only a few remaining facilities offering fast neutron therapy (FNT). Nevertheless, up to today more than 30,000 patients were treated with neutron therapy. For some indications like salivary gland tumors and malignant melanoma, there is clinical evidence that the addition of FNT leads to superior local control compared to photon treatment alone. FNT was available in Munich from 1985 until 2000 at the Reactor Neutron Therapy (RENT) facility. Patient treatment continued at the new research reactor FRM II in 2007 under improved treatment conditions, and today it can still be offered to selected patients as an individual treatment option. As there is a growing interest in high-linear energy transfer (LET) therapy with new hadron therapy centers emerging around the globe, the clinical data generated by neutron therapy might help to develop biologically driven treatment planning algorithms. Also FNT might experience its resurgence as a combinational partner of modern immunotherapies. PMID:26640777
Autonomous rendezvous and capture development infrastructure
NASA Technical Reports Server (NTRS)
Bryan, Thomas C.; Roe, Fred; Coker, Cindy; Nelson, Pam; Johnson, B.
1991-01-01
In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the ultimate test facility, using a Shuttle-based reusable free-flying testbed to perform a Technology Demonstration Test Flight which can be structured to include a variety of additional sensors, control schemes, and operational approaches. This conceptual testbed and flight demonstration will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.
High energy hadrons in air shower cores at mountain altitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Staa, R.; Aschenbach, B.; Boehm, E.
1974-01-01
At the Pic du Midi (730 g cm/sup -2/) in France an air shower array has been operated to study high-energy hadrons in air shower cores. The array consists of 13 scintillation counters of 0.25 mi each and a 14 mi high energy hadron detector. 2050 showers please delete the above abstract no 21733====
Physics and Analysis at a Hadron Collider - An Introduction (1/3)
None
2018-05-11
This is the first lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This first lecture provides a brief introduction to hadron collider physics and collider detector experiments as well as offers some analysis guidelines. The lectures are aimed at graduate students.
Estimate of neutrons event-by-event in DREAM
NASA Astrophysics Data System (ADS)
Hauptman, John; DREAM Collaboration
2009-04-01
We have measured the contribution of neutrons to hadronic showers in the DREAM module event-by-event as a means to estimate the event-by-event fluctuations in binding energy losses by hadrons as they break up nuclei of the Cu absorber. We make a preliminary assessment of the consequences for hadronic energy resolution in dual-readout calorimeters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamel, T.M.
1997-12-31
A steroids processing plant located in northeastern Puerto Rico emits a combined average of 342 lb/hr of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from various process operations. The approach that this facility used to implement maximum achievable control technology (MACT) may assist others who must contend with MACT for pharmaceutical or related manufacturing facilities. Federal air regulations define MACT standards for stationary sources emitting any of 189 HAPs. The MACT standards detailed in the NESHAPs are characterized by industry and type of emission control system or technology. It is anticipated that the standard will require HAP reductionsmore » of approximately 95%. The steroid plant`s emissions include the following pollutant loadings: VOC/HAP Emission Rate (lb/hr): Methanol 92.0; Acetone 35.0; Methylene chloride 126.0; Chloroform 25.0; Ethyl acetate 56.0; Tetrahydrofuran 5.00; and 1,4-Dioxane 3.00. The facility`s existing carbon adsorption control system was nearing the end of its useful life, and the operators sought to install an air pollution control system capable of meeting MACT requirements for the pharmaceutical industry. Several stand-alone and hybrid control technologies were considered for replacement of the carbon adsorption system at the facility. This paper examines the following technologies: carbon adsorption, membrane separation, thermal oxidation, membrane separation-carbon adsorption, and condensation-carbon adsorption. Each control technology is described; the advantages and disadvantages of utilizing each technology for the steroid processing plant are examined; and capital and operating costs associated with the implementation of each technology are presented. The rationale for the technology ultimately chosen to control VOC and HAP emissions is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brueziere, J.; Chauvin, E.; Piroux, J.C.
2013-07-01
AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process wasmore » implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.« less
NCI support for particle therapy: past, present, future.
Deye, James A
2012-11-01
In light of the rising worldwide interest in particle therapy, and proton therapy specifically in the United States, the National Cancer Institute (NCI) is being asked more often about funding for such research and facilities. Many of the questions imply that NCI is naive to the exciting possibilities inherent in particle therapies, and thus they wish to encourage NCI to initiate and underwrite such programs. In fact, NCI has a long track record of support for the translation of hadrons from the physics laboratory to the therapy clinic by way of technology development and scientific investigations of physical and biological processes as well as clinical outcomes. Early work has included continuous funding since 1961 of proton treatments for more than 15,000 patients and facility construction at the Harvard/Massachusetts General Hospital (MGH) site; treatment of 227 patients with the pi-meson facility at Los Alamos between 1974 and 1981; funding of more than $69M for seven neutron therapy centers between 1971 and 1989; many funded projects in boron neutron capture radiation therapy through the present time; and numerous radiobiology projects over the past 50 y. NCI continues to play an active role in the incorporation of protons into randomized clinical trials through the Children's Oncology Group, Radiation Therapy Oncology Group, and the Program Project Grant (P01), which is co-directed by the MGH and MD Anderson Cancer Center. This has required funding development and implementation of guidelines that enable intercomparison of dosimetry and treatment between facilities. NCI has also funded recent efforts to develop new physical processes for the production of particles such as protons. With regard to the future, while it is true that there are no specific funding opportunity announcements directed to particle therapy research, it is also true that NCI remains open to reviewing any research that is compatible with an established mechanism. However, given the very substantial resources that these facilities currently require along with the highly competitive economic environment that now exists, it is clear that scientific review of such grant applications will look to leverage the scientific pursuits that are the NCI mandate with the reality of the clinical practices, just as is the case for photon radiation research. Such leveraging should be enhanced by the growing opportunities and need for international collaborations. On the other hand, these collaborations are complicated by the fact that these particle therapies are now fully reimbursable modalities, which makes it difficult to separate research (the NCI mission) from clinical practice development. This paper seeks to illuminate these new realities in order to encourage the pursuit and funding of the scientific underpinnings of physical methods, radiobiology, and clinical practice with particle therapy.
NASA Astrophysics Data System (ADS)
Mishev, A. L.; Velinov, P. I. Y.
2014-12-01
In the last few years an essential progress in development of physical models for cosmic ray induced ionization in the atmosphere is achieved. The majority of these models are full target, i.e. based on Monte Carlo simulation of an electromagnetic-muon-nucleon cascade in the atmosphere. Basically, the contribution of proton nuclei is highlighted, i.e. the contribution of primary cosmic ray α-particles and heavy nuclei to the atmospheric ionization is neglected or scaled to protons. The development of cosmic ray induced atmospheric cascade is sensitive to the energy and mass of the primary cosmic ray particle. The largest uncertainties in Monte Carlo simulations of a cascade in the Earth atmosphere are due to assumed hadron interaction models, the so-called hadron generators. In the work presented here we compare the ionization yield functions Y for primary cosmic ray nuclei, such as α-particles, Oxygen and Iron nuclei, assuming different hadron interaction models. The computations are fulfilled with the CORSIKA 6.9 code using GHEISHA 2002, FLUKA 2011, UrQMD hadron generators for energy below 80 GeV/nucleon and QGSJET II for energy above 80 GeV/nucleon. The observed difference between hadron generators is widely discussed. The influence of different atmospheric parametrizations, namely US standard atmosphere, US standard atmosphere winter and summer profiles on ion production rate is studied. Assuming realistic primary cosmic ray mass composition, the ion production rate is obtained at several rigidity cut-offs - from 1 GV (high latitudes) to 15 GV (equatorial latitudes) using various hadron generators. The computations are compared with experimental data. A conclusion concerning the consistency of the hadron generators is stated.
; Sponsored Work Regional Economic Development Technology Opportunities User Facilities About Us Metrics In diverse economic development. With an integrated portfolio of R&D work, we leverage partnerships with Partnerships & Sponsored Work Regional Economic Development Technology Opportunities User Facilities
NASA Technical Reports Server (NTRS)
Carter, John; Kelly, John; Jones, Dan; Lee, James
2013-01-01
There is a national effort to expedite advanced space technologies on new space systems for both government and commercial applications. In order to lower risk, these technologies should be demonstrated in a relevant environment before being installed in new space systems. This presentation introduces several low cost, short schedule space technology demonstrations using airborne and range facilities available at the Dryden Flight Research Center.
Event-by-Event Study of Space-Time Dynamics in Flux-Tube Fragmentation
Wong, Cheuk-Yin
2017-05-25
In the semi-classical description of the flux-tube fragmentation process for hadron production and hadronization in high-energymore » $e^+e^-$ annihilations and $pp$ collisions, the rapidity-space-time ordering and the local conservation laws of charge, flavor, and momentum provide a set of powerful tools that may allow the reconstruction of the space-time dynamics of quarks and mesons in exclusive measurements of produced hadrons, on an event-by-event basis. We propose procedures to reconstruct the space-time dynamics from event-by-event exclusive hadron data to exhibit explicitly the ordered chain of hadrons produced in a flux tube fragmentation. As a supplementary tool, we infer the average space-time coordinates of the $q$-$$\\bar q$$ pair production vertices from the $$\\pi^-$$ rapidity distribution data obtained by the NA61/SHINE Collaboration in $pp$ collisions at $$\\sqrt{s}$$ = 6.3 to 17.3 GeV.« less
Calibration of the CMS hadron calorimeter in Run 2
NASA Astrophysics Data System (ADS)
Chadeeva, M.; Lychkovskaya, N.
2018-03-01
Various calibration techniques for the CMS Hadron calorimeter in Run 2 and the results of calibration using 2016 collision data are presented. The radiation damage corrections, intercalibration of different channels using the phi-symmetry technique for barrel, endcap and forward calorimeter regions are described, as well as the intercalibration with muons of the outer hadron calorimeter. The achieved intercalibration precision is within 3%. The in situ energy scale calibration is performed in the barrel and endcap regions using isolated charged hadrons and in the forward calorimeter using the Zarrow ee process. The impact of pileup and the developed technique of correction for pileup is also discussed. The achieved uncertainty of the response to hadrons is 3.4% in the barrel and 2.6% in the endcap region (at the pseudorapidity range |η|<2) and is dominated by the systematic uncertainty due to pileup contributions.
NASA Astrophysics Data System (ADS)
Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Goto, T.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Dauncey, P. D.; Magnan, A.-M.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Balagura, V.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Kiesling, C.; Pfau, S.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Sauer, J.; Weber, S.; Zeitnitz, C.
2012-09-01
The energy resolution of a highly granular 1 m3 analogue scintillator-steel hadronic calorimeter is studied using charged pions with energies from 10 GeV to 80 GeV at the CERN SPS. The energy resolution for single hadrons is determined to be approximately 58%/√E/GeV. This resolution is improved to approximately 45%/√E/GeV with software compensation techniques. These techniques take advantage of the event-by-event information about the substructure of hadronic showers which is provided by the imaging capabilities of the calorimeter. The energy reconstruction is improved either with corrections based on the local energy density or by applying a single correction factor to the event energy sum derived from a global measure of the shower energy density. The application of the compensation algorithms to geant4 simulations yield resolution improvements comparable to those observed for real data.
Measurements of hadron mean free path for the particle-producing collisions in nuclear matter
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
It is not obvious a priority that the cross-section for a process in hadron collisions with free nucleons is the same as that for the process in hadron collisions with nucleons inside a target nucleus. The question arises: what is the cross-section for a process in a hadron collision with nucleon on inside the atomic nucleus. The answer to it must be found in experiments. The mean free path for particle-producing collisions of pions in nuclear matter is determined experimentally using pion-xenon nucleus collisions at 3.5 GeV/c momentum. Relation between the mean free path in question lambda sub in nucleons fm squared and the cross-section in units of fm squared/nucleon for collisions of the hadron with free nucleon is: lambda sub i = k/cross section sub i, where k = 3.00 plus or minus 0.26.
Event-by-Event Study of Space-Time Dynamics in Flux-Tube Fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Cheuk-Yin
In the semi-classical description of the flux-tube fragmentation process for hadron production and hadronization in high-energymore » $e^+e^-$ annihilations and $pp$ collisions, the rapidity-space-time ordering and the local conservation laws of charge, flavor, and momentum provide a set of powerful tools that may allow the reconstruction of the space-time dynamics of quarks and mesons in exclusive measurements of produced hadrons, on an event-by-event basis. We propose procedures to reconstruct the space-time dynamics from event-by-event exclusive hadron data to exhibit explicitly the ordered chain of hadrons produced in a flux tube fragmentation. As a supplementary tool, we infer the average space-time coordinates of the $q$-$$\\bar q$$ pair production vertices from the $$\\pi^-$$ rapidity distribution data obtained by the NA61/SHINE Collaboration in $pp$ collisions at $$\\sqrt{s}$$ = 6.3 to 17.3 GeV.« less
NASA Astrophysics Data System (ADS)
Fiascaris, M.; Bruce, R.; Redaelli, S.
2018-06-01
We present the first conceptual solution for a collimation system for the hadron-hadron option of the Future Circular Collider (FCC-hh). The collimation layout is based on the scaling of the present Large Hadron Collider collimation system to the FCC-hh energy and it includes betatron and momentum cleaning, as well as dump protection collimators and collimators in the experimental insertions for protection of the final focus triplet magnets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at injection and collision energy taking into account mechanical and optics imperfections. The performance of the system is then assessed through the analysis of normalized halo distributions and complete loss maps for an ideal lattice. The performance limitations are discussed and a solution to improve the system performance with the addition of dispersion suppression collimators around the betatron cleaning insertion is presented.
Flavor-dependent eigenvolume interactions in a hadron resonance gas
NASA Astrophysics Data System (ADS)
Alba, P.; Vovchenko, V.; Gorenstein, M. I.; Stoecker, H.
2018-06-01
Eigenvolume effects in the hadron resonance gas (HRG) model are studied for experimental hadronic yields in nucleus-nucleus collisions. If particle eigenvolumes are different for different hadron species, the excluded volume HRG (EV-HRG) improves fits to multiplicity data. In particular, using different mass-volume relations for strange and non-strange hadrons we observe a remarkable improvement in the quality of the fits. This effect appears to be rather insensitive to other details in the schemes employed in the EV-HRG. We show that the parameters found from fitting the data of the ALICE Collaboration in central Pb+Pb collisions at the collision energy √{sNN } = 2.76 TeV entail the same improvement for all centralities at the same collision energy, and for the RHIC and SPS data at lower collision energies. Our findings are put in the context of recent fits of lattice QCD results.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.
1991-01-01
The development of new space communications technologies by NASA has included both commercial applications and space science requirements. At NASA's Lewis Research Center, methods and facilities have been developed for evaluating these new technologies in the laboratory. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware-based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. This paper describes the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present, and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.
Hydrazine Catalyst Production: Sustaining S-405 Technology
NASA Technical Reports Server (NTRS)
Wucherer, E. J.; Cook, Timothy; Stiefel, Mark; Humphries, Randy, Jr.; Parker, Janet
2003-01-01
The development of the iridium-based Shell 405 catalyst for spontaneous decomposition of hydrazine was one of the key enabling technologies for today's spacecraft and launch vehicles. To ensure that this crucial technology was not lost when Shell elected to exit the business, Aerojet, supported by NASA, has developed a dedicated catalyst production facility that will supply catalyst for future spacecraft and launch vehicle requirements. We have undertaken a program to transfer catalyst production from Shell Chemical USA (Houston, TX) to Aerojet's Redmond, WA location. This technology transition was aided by Aerojet's 30 years of catalyst manufacturing experience and NASA diligence and support in sustaining essential technologies. The facility has produced and tested S-405 catalyst to existing Shell 405 specifications and standards. Our presentation will describe the technology transition effort including development of the manufacturing facility, capture of the manufacturing process, test equipment validation, initial batch build and final testing.
Electron Source based on Superconducting RF
NASA Astrophysics Data System (ADS)
Xin, Tianmu
High-bunch-charge photoemission electron-sources operating in a Continuous Wave (CW) mode can provide high peak current as well as the high average current which are required for many advanced applications of accelerators facilities, for example, electron coolers for hadron beams, electron-ion colliders, and Free-Electron Lasers (FELs). Superconducting Radio Frequency (SRF) has many advantages over other electron-injector technologies, especially when it is working in CW mode as it offers higher repetition rate. An 112 MHz SRF electron photo-injector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for electron cooling experiments. The gun utilizes a Quarter-Wave Resonator (QWR) geometry for a compact structure and improved electron beam dynamics. The detailed RF design of the cavity, fundamental coupler and cathode stalk are presented in this work. A GPU accelerated code was written to improve the speed of simulation of multipacting, an important hurdle the SRF structure has to overcome in various locations. The injector utilizes high Quantum Efficiency (QE) multi-alkali photocathodes (K2CsSb) for generating electrons. The cathode fabrication system and procedure are also included in the thesis. Beam dynamic simulation of the injector was done with the code ASTRA. To find the optimized parameters of the cavities and beam optics, the author wrote a genetic algorithm Python script to search for the best solution in this high-dimensional parameter space. The gun was successfully commissioned and produced world record bunch charge and average current in an SRF photo-injector.
Ring, Haim; Keren, Ofer; Zwecker, Manuel; Dynia, Aida
2007-10-01
With the development of computer technology and the high-tech electronic industry over the past 30 years, the technological age is flourishing. New technologies are continually being introduced, and questions regarding the economic viability of these technologies need to be addressed. To identify the medical technologies currently in use in different rehabilitation medicine settings in Israel. The TECHNO-R 2005 survey was conducted in two phases. Beginning in 2004, the first survey used a questionnaire with open questions relating to the different technologies in clinical use, including questions on their purpose, who operates the device (technician, physiotherapist, occupational therapist, physician, etc.), and a description of the treated patients. This questionnaire was sent to 31 rehabilitation medicine facilities in Israel. Due to difficulties in comprehension of the term "technology," a second revised standardized questionnaire with closed-ended questions specifying diverse technologies was introduced in 2005. The responder had to mark from a list of 15 different medical technologies which were in use in his or her facility, as well as their purpose, who operates the device, and a description of the treated patients. Transcutaneous electrical nerve stimulation, the TILT bed, continuous passive movement, and therapeutic ultrasound were the most widely used technologies in rehabilitation medicine facilities. Monitoring of the sitting position in the wheelchair, at the bottom of the list, was found to be the least used technology (with 15.4% occurrence). Most of the technologies are used primarily for treatment purposes and to a lesser degree for diagnosis and research. Our study poses a fundamental semantic and conceptual question regarding what kind of technologies are or should be part of the standard equipment of any accredited rehabilitation medicine facility for assessment, treatment and/or research. For this purpose, additional data are needed.
Measurement of the total hadronic cross section in e+e- annihilation below 10.56GeV
NASA Astrophysics Data System (ADS)
Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Klein, T.; Kubota, Y.; Lang, B. W.; Poling, R.; Scott, A. W.; Smith, A.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Dytman, S. A.; Love, W.; Savinov, V.; Aquines, O.; Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Butt, J.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, K.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Berkelman, K.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Pivarski, J.; Riley, D.; Ryd, A.; Sadoff, A. J.; Schwarthoff, H.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Potlia, V.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.
2007-10-01
Using the CLEO III detector, we measure absolute cross sections for e+e-→hadrons at seven center-of-mass energies between 6.964 and 10.538 GeV. The values of R, the ratio of hadronic and muon pair production cross sections, are determined within 2% total root-mean-square uncertainty.
NASA Astrophysics Data System (ADS)
Palmer, R. B.; Gallardo, J. C.
INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
2016-12-01
A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb -1 of pp collisions at √ s = 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb –1 of pp collisions at √s = 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. Here, the data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter.
Study of hadron bundles observed in Chacaltaya two-story emulsion chamber
NASA Technical Reports Server (NTRS)
Aoki, H.
1985-01-01
The existence of hadron-rich families associated with few gamma-ray emission named Centauro and Mini-Centauro phemonena was reported. It was investigated whether these are produced by the special type of interaction different from the ordinary pion multiple production or not. The experimental results are compared with simulation calculation based on ordinary multiple pion production model. Both hadron multiplicity distribution, obtained from the present observation and the simulation calculation, show almost the same distribution which means that hadron bundles of such smaller multiplicities are considered to originate from successive interactions of surviving nucleon with the nature of multiple production during passage through the atmosphere.
Statistical hadronization and microcanonical ensemble
Becattini, F.; Ferroni, L.
2004-01-01
We present a Monte Carlo calculation of the microcanonical ensemble of the of the ideal hadron-resonance gas including all known states up to a mass of 1. 8 GeV, taking into account quantum statistics. The computing method is a development of a previous one based on a Metropolis Monte Carlo algorithm, with a the grand-canonical limit of the multi-species multiplicity distribution as proposal matrix. The microcanonical average multiplicities of the various hadron species are found to converge to the canonical ones for moderately low values of the total energy. This algorithm opens the way for event generators based for themore » statistical hadronization model.« less
Signatures for Black Hole Production from Hadronic Observables at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Humanic, Thomas J.; Koch, Benjamin; Stöcker, Horst
The concept of Large Extra Dimensions (LED) provides a way of solving the Hierarchy Problem which concerns the weakness of gravity compared with the strong and electro-weak forces. A consequence of LED is that miniature Black Holes (mini-BHs) may be produced at the Large Hadron Collider in p + p collisions. The present work uses the CHARYBDIS mini-BH generator code to simulate the hadronic signal which might be expected in a mid-rapidity particle tracking detector from the decay of these exotic objects if indeed they are produced. An estimate is also given for Pb+Pb collisions.
Aaboud, M.; Aad, G.; Abbott, B.; ...
2016-10-20
A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb –1 of pp collisions at √s = 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. Here, the data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter.
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koehler, N. M.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; López, J. A.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganini, M.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration
2016-12-01
A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb-1 of pp collisions at √{ s} = 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter.
NASA Astrophysics Data System (ADS)
Bastian, Niels-Uwe; Blaschke, David; Fischer, Tobias; Röpke, Gerd
2018-05-01
We outline an approach to a unified equation of state for quark-hadron matter on the basis of a $\\Phi-$derivable approach to the generalized Beth-Uhlenbeck equation of state for a cluster decomposition of thermodynamic quantities like the density. To this end we summarize the cluster virial expansion for nuclear matter and demonstrate the equivalence of the Green's function approach and the $\\Phi-$derivable formulation. For an example, the formation and dissociation of deuterons in nuclear matter is discussed. We formulate the cluster $\\Phi-$derivable approach to quark-hadron matter which allows to take into account the specifics of chiral symmetry restoration and deconfinement in triggering the Mott-dissociation of hadrons. This approach unifies the description of a strongly coupled quark-gluon plasma with that of a medium-modified hadron resonance gas description which are contained as limiting cases. The developed formalism shall replace the common two-phase approach to the description of the deconfinement and chiral phase transition that requires a phase transition construction between separately developed equations of state for hadronic and quark matter phases. Applications to the phenomenology of heavy-ion collisions and astrophysics are outlined.
NASA Astrophysics Data System (ADS)
Odaka, Shigeru; Kurihara, Yoshimasa
2016-05-01
We have developed an event generator for direct-photon production in hadron collisions, including associated 2-jet production in the framework of the GR@PPA event generator. The event generator consistently combines γ + 2-jet production processes with the lowest-order γ + jet and photon-radiation (fragmentation) processes from quantum chromodynamics (QCD) 2-jet production using a subtraction method. The generated events can be fed to general-purpose event generators to facilitate the addition of hadronization and decay simulations. Using the obtained event information, we can simulate photon isolation and hadron-jet reconstruction at the particle (hadron) level. The simulation reasonably reproduces measurement data obtained at the large hadron collider (LHC) concerning not only the inclusive photon spectrum, but also the correlation between the photon and jet. The simulation implies that the contribution of the γ + 2-jet is very large, especially in low photon-pT ( ≲ 50 GeV) regions. Discrepancies observed at low pT, although marginal, may indicate the necessity for the consideration of further higher-order processes. Unambiguous particle-level definition of the photon-isolation condition for the signal events is desired to be given explicitly in future measurements.
Lepton jets and low-mass sterile neutrinos at hadron colliders
NASA Astrophysics Data System (ADS)
Dube, Sourabh; Gadkari, Divya; Thalapillil, Arun M.
2017-09-01
Sterile neutrinos, if they exist, are potential harbingers for physics beyond the Standard Model. They have the capacity to shed light on our flavor sector, grand unification frameworks, dark matter sector and origins of baryon antibaryon asymmetry. There have been a few seminal studies that have broached the subject of sterile neutrinos with low, electroweak-scale masses (i.e. ΛQCD≪mNR≪mW± ) and investigated their reach at hadron colliders using lepton jets. These preliminary studies nevertheless assume background-free scenarios after certain selection criteria which are overly optimistic and untenable in realistic situations. These lead to incorrect projections. The unique signal topology and challenging hadronic environment also make this mass-scale regime ripe for a careful investigation. With the above motivations, we attempt to perform the first systematic study of low, electroweak-scale, right-handed neutrinos at hadron colliders, in this unique signal topology. There are currently no active searches at hadron colliders for sterile neutrino states in this mass range, and we frame the study in the context of the 13 TeV high-luminosity Large Hadron Collider and the proposed FCC-hh/SppC 100 TeV p p -collider.
Hadronic model for the non-thermal radiation from the binary system AR Scorpii
NASA Astrophysics Data System (ADS)
Bednarek, W.
2018-05-01
AR Scorpii is a close binary system containing a rotation powered white dwarf and a low-mass M type companion star. This system shows non-thermal emission extending up to the X-ray energy range. We consider hybrid (lepto-hadronic) and pure hadronic models for the high energy non-thermal processes in this binary system. Relativistic electrons and hadrons are assumed to be accelerated in a strongly magnetised, turbulent region formed in collision of a rotating white dwarf magnetosphere and a magnetosphere/dense atmosphere of the M-dwarf star. We propose that the non-thermal X-ray emission is produced either by the primary electrons or the secondary e± pairs from decay of charged pions created in collisions of hadrons with the companion star atmosphere. We show that the accompanying γ-ray emission from decay of neutral pions, which are produced by these same protons, is expected to be on the detectability level of the present and/or the future satellite and Cherenkov telescopes. The γ-ray observations of the binary system AR Sco should allow us to constrain the efficiency of hadron and electron acceleration and also the details of the radiation processes.
LEDs: DOE Programs Add Credibility to a Developing Technology
ERIC Educational Resources Information Center
Conbere, Susan
2009-01-01
LED (light-emitting diode) technology is moving fast, and with justification, some facility managers have viewed it with a wary eye. Some LEDs on the market do not perform as promised, and the technology is changing rapidly. But new developments from the U.S. Department of Energy (DOE) now make it easier for facility managers to find LEDs that…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... renewed Facility Operating License No. R-37, to be held by the Massachusetts Institute of Technology (MIT... Identification of the Proposed Action The proposed action would renew Facility Operating License No. R-37 for a... License No. R-37 to allow continued operation of the MITR for a period of twenty years at an increased...
Missouri Smelting Technology, Inc. - Clean Water Act Public Notice
The EPA is providing notice of a proposed Administrative Penalty Assessment against Missouri Smelting Technology, Inc. (MOST), for alleged violations at a facility located at 50 Cherry Blossom Way, Troy, Missouri 63379 (“facility”). The facility is a secon
Space station systems technology study (add-on task). Volume 3: Technology advancement program plan
NASA Technical Reports Server (NTRS)
1985-01-01
Program plans are given for an integrating controller for space station autonomy as well as for controls and displays. The technical approach, facility requirements and candidate facilities, development schedules, and resource requirements estimates are given.
NASA Astrophysics Data System (ADS)
Mihlan, G. J.; Ungers, L. J.; Smith, R. K.; Mitchell, R. I.; Jones, J. H.
1983-05-01
A preliminary control technology assessment survey was conducted at the facility which manufactures N-channel metal oxide semiconductor (NMOS) integrated circuits. The facility has industrial hygiene review procedures for evaluating all new and existing process equipment. Employees are trained in safety, use of personal protective equipment, and emergency response. Workers potentially exposed to arsenic are monitored for urinary arsenic levels. The facility should be considered a candidate for detailed study based on the diversity of process operations encountered and the use of state-of-the-art technology and process equipment.
Numerical aerodynamic simulation facility preliminary study, volume 1
NASA Technical Reports Server (NTRS)
1977-01-01
A technology forecast was established for the 1980-1985 time frame and the appropriateness of various logic and memory technologies for the design of the numerical aerodynamic simulation facility was assessed. Flow models and their characteristics were analyzed and matched against candidate processor architecture. Metrics were established for the total facility, and housing and support requirements of the facility were identified. An overview of the system is presented, with emphasis on the hardware of the Navier-Stokes solver, which is the key element of the system. Software elements of the system are also discussed.
PREFACE: 4th International Hadron Physics Conference (TROIA'14)
NASA Astrophysics Data System (ADS)
Dağ, Hüseyin; Erkol, Güray; Küçükarslan, Ayşe; Özpineci, Altuğ
2014-11-01
The 4th International Conference on Hadron Physics, TROIA'14, was held at Canakkale, Turkey on 1-5 July 2014. Ozyegin University, Middle East Technical University, Canakkale Onsekiz Mart University, Turkish Atomic Energy Authority and HadronPhysics2 Consortium sponsored the conference. It aimed at bringing together the experts and the young scientists working on experimental and theoretical hadron physics. About 50 participants from 10 countries attended the conference. The topics covered included: . Chiral Perturbation Theory . QCD Sum Rules . Effective Field Theory . Exotic Hadrons . Hadron Properties from Lattice QCD . Experimental Results and Future Perspectives . Hadronic Distribution Amplitudes The conference presentations were organized such that the morning sessions contained invited talks and afternoon sessions were devoted to contributed talks. The speakers of the invited talks were: C. Alexandrou, A. Gal, L. Tolos, J.R. Pelaez and M. Schindler. We had also guest speakers D. A. Demir and T. Senger. The conference venue was a resort hotel around Canakkale. As a social program, a guided full-day excursion to the excavation site of the ancient Troia town and Assos was organized. We believe that this conference provided a medium for young scientists and experts in the field to effectively communicate and share ideas. We would like to express our sincere thanks to supporting agencies and to all participants for their contributions and stimulating discussions. We are also grateful to the Scientific Secretary, Bora Işıldak, and all other members of the Organizing Committee for their patience and efforts. 30.10.2014 The Editors
Hadronic Contribution to Muon g-2 with Systematic Error Correlations
NASA Astrophysics Data System (ADS)
Brown, D. H.; Worstell, W. A.
1996-05-01
We have performed a new evaluation of the hadronic contribution to a_μ=(g-2)/2 of the muon with explicit correlations of systematic errors among the experimental data on σ( e^+e^- → hadrons ). Our result for the lowest order hadronic vacuum polarization contribution is a_μ^hvp = 701.7(7.6)(13.4) × 10-10 where the total systematic error contributions from below and above √s = 1.4 GeV are (12.5) × 10-10 and (4.8) × 10-10 respectively. Therefore new measurements on σ( e^+e^- → hadrons ) below 1.4 GeV in Novosibirsk, Russia can significantly reduce the total error on a_μ^hvp. This contrasts with a previous evaluation which indicated that the dominant error is due to the energy region above 1.4 GeV. The latter analysis correlated systematic errors at each energy point separately but not across energy ranges as we have done. Combination with higher order hadronic contributions is required for a new measurement of a_μ at Brookhaven National Laboratory to be sensitive to electroweak and possibly supergravity and muon substructure effects. Our analysis may also be applied to calculations of hadronic contributions to the running of α(s) at √s= M_Z, the hyperfine structure of muonium, and the running of sin^2 θW in Møller scattering. The analysis of the new Novosibirsk data will also be given.
Adare, A.; Aidala, C.; Ajitanand, N. N.; ...
2016-03-07
We measured open heavy flavor production in minimum bias Au + Au collisions at √s( NN) = 200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons, using the PHENIX Collaboration at the Relativistic Heavy Ion Collider. In the past, heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function ofmore » transverse momentum are measured in Au + Au collisions. Here, we compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p + p collisions at √s( NN) = 200 GeV and find the fractions to be similar within the large uncertainties on both measurements for p (T) > 4 GeV/c. We use the bottom electron fractions in Au + Au and p + p along with the previously measured heavy flavor electron R (AA) to calculate the R (AA) for electrons from charm and bottom hadron decays separately. Finally, we find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3 < p (T) < 4 GeV/c.« less
The Revolutionary Vertical Lift Technology (RVLT) Project
NASA Technical Reports Server (NTRS)
Yamauchi, Gloria K.
2018-01-01
The Revolutionary Vertical Lift Technology (RVLT) Project is one of six projects in the Advanced Air Vehicles Program (AAVP) of the NASA Aeronautics Research Mission Directorate. The overarching goal of the RVLT Project is to develop and validate tools, technologies, and concepts to overcome key barriers for vertical lift vehicles. The project vision is to enable the next generation of vertical lift vehicles with aggressive goals for efficiency, noise, and emissions, to expand current capabilities and develop new commercial markets. The RVLT Project invests in technologies that support conventional, non-conventional, and emerging vertical-lift aircraft in the very light to heavy vehicle classes. Research areas include acoustic, aeromechanics, drive systems, engines, icing, hybrid-electric systems, impact dynamics, experimental techniques, computational methods, and conceptual design. The project research is executed at NASA Ames, Glenn, and Langley Research Centers; the research extensively leverages partnerships with the US Army, the Federal Aviation Administration, industry, and academia. The primary facilities used by the project for testing of vertical-lift technologies include the 14- by 22-Ft Wind Tunnel, Icing Research Tunnel, National Full-Scale Aerodynamics Complex, 7- by 10-Ft Wind Tunnel, Rotor Test Cell, Landing and Impact Research facility, Compressor Test Facility, Drive System Test Facilities, Transonic Turbine Blade Cascade Facility, Vertical Motion Simulator, Mobile Acoustic Facility, Exterior Effects Synthesis and Simulation Lab, and the NASA Advanced Supercomputing Complex. To learn more about the RVLT Project, please stop by booth #1004 or visit their website at https://www.nasa.gov/aeroresearch/programs/aavp/rvlt.
Using space for technology development - Planning for the Space Station era
NASA Technical Reports Server (NTRS)
Ambrus, Judith H.; Couch, Lana M.; Rosen, Robert R.; Gartrell, Charles F.
1989-01-01
Experience with the Shuttle and free-flying satellites as technology test-beds has shown the feasibility and desirability of using space assets as a facility for technology development. Thus, by the time the Space Station era will have arrived, the technologist will be ready for an accessible engineering facility in space. As the 21st century is approached, it is expected that virtually every flight to the Space Station Freedom will be required to carry one or more research, technology, and engineering experiments. The experiments planned will utilize both the pressurized volume, and the external payload attachment facilities. A unique, but extremely important, class of experiments will use the Space Station itself as an experimental vehicle. Based upon recent examination of possible Space Station Freedom assembly sequences, technology payloads may well utilize 20-30 percent of available resources.
Autonomous rendezvous and capture development infrastructure
NASA Technical Reports Server (NTRS)
Bryan, Thomas C.
1991-01-01
In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This need involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the Low Earth Orbit test facility. Using a reusable free-flying testbed carried in the Shuttle, as a technology demonstration test flight, can be structured to include a variety of sensors, control schemes, and operational approaches. This testbed and flight demonstration concept will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.
High-Performance Computing User Facility | Computational Science | NREL
User Facility High-Performance Computing User Facility The High-Performance Computing User Facility technologies. Photo of the Peregrine supercomputer The High Performance Computing (HPC) User Facility provides Gyrfalcon Mass Storage System. Access Our HPC User Facility Learn more about these systems and how to access
Measurement of the hadronic final state in deep inelastic scattering at HERA
NASA Astrophysics Data System (ADS)
Ahmed, T.; Andreev, V.; Andrieu, B.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, G. A.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Berthon, U.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; Devel, M.; De Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Feng, Y.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flauger, W.; Fleischer, M.; Flower, P. S.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Gensch, U.; Genzel, H.; Gerhards, R.; Gillespie, D.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Haries, J.; Hartz, P.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Hedgecock, R.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Jabiol, M. A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jöhnsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurça, T.; Kurzhöfer, J.; Kuznik, B.; Lander, R.; London, M. P. J.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levin, D.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Morton, J. M.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newton, D.; Nguyen, H. K.; Niebergall, F.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prosi, R.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Ribarics, P.; Riech, V.; Riedlberger, J.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Ryseck, E.; Sacton, J.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schröder, V.; Schulz, M.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Seman, M.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stephens, K.; Stier, J.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Thompson, G.; Thompson, R. J.; Tichomirov, I.; Trenkel, C.; Truöl, P.; Tchernyshov, V.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Ząçek, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.; H1 Collaboration
1993-01-01
We report on the first experimental study of the hadronic final state in deep inelastic electron-proton scattering with the H1 detector at HERA. Energy flow and transverse momentum characteristics are measured and presented both in the laboratory and in the hadronic center of mass frames. Comparison is made with QCD models distinguished by their different treatment of parton emission.
DRoplet and hAdron generator for nuclear collisions: An update
NASA Astrophysics Data System (ADS)
Tomášik, Boris
2016-10-01
The Monte Carlo generator DRAGON simulates hadron production in ultrarelativistic nuclear collisions. The underlying theoretical description is provided by the blast-wave model. DRAGON includes second-order angular anisotropy in transverse shape and the amplitude of the transverse expansion velocity. It also allows to simulate hadron production from a fragmented fireball, e.g. as resulting from spinodal decomposition happening at the first-order phase transition.
Entropy production during hadronization of a quark-gluon plasma
NASA Astrophysics Data System (ADS)
Biró, Tamás S.; Schram, Zsolt; Jenkovszky, László
2018-02-01
We revisit some physical pictures for the hadronization of quark-gluon plasma, concentrating on the problem of entropy production during processes where the number of degrees of freedom is seemingly reduced due to color confinement. Based on observations on Regge trajectories we propose not having an infinite tower of hadronic resonances. We discuss possible entropy production mechanisms far from equilibrium in terms of stochastic dynamics.
NASA Astrophysics Data System (ADS)
Meyer, Harvey B.
2017-09-01
We present a Lorentz-covariant, Euclidean coordinate-space expression for the hadronic vacuum polarisation, the Adler function and the leading hadronic contribution to the anomalous magnetic moment of the muon. The representation offers a high degree of flexibility for an implementation in lattice QCD. We expect it to be particularly helpful for the quark-line disconnected contributions.
A test of the hadronic interaction model EPOS with air shower data
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Luczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2009-03-01
Predictions of the hadronic interaction model EPOS 1.61 as implemented in the air shower simulation program CORSIKA are compared to observations with the KASCADE experiment. The investigations reveal that the predictions of EPOS are not compatible with KASCADE measurements. The discrepancies seen are most likely due to use of a set of inelastic hadronic cross sections that are too high.
Test of the hadronic interaction model EPOS with KASCADE air shower data
NASA Astrophysics Data System (ADS)
Hörandel, J. R.; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; KASCADE-Grande Collaboration
2009-12-01
Predictions of the hadronic interaction model EPOS 1.61 as implemented in the air shower simulation program CORSIKA are compared to observations with the KASCADE experiment. The investigations reveal that the predictions of EPOS are not compatible with KASCADE measurements. The discrepancies seen are most likely due to use of a set of inelastic hadronic cross sections that are too high.
Charge structure of the hadronic final state in deep-inelastic muon-nucleon scattering
NASA Astrophysics Data System (ADS)
Arneodo, M.; Arvidson, A.; Aubert, J. J.; Bedełek, J.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Ftáčnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jachołkowska, A.; Janata, F.; Jancsó, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettinghale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Schneider, A.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.
1988-09-01
The general charge properties of the hadronic final state produced in μ + p and μ + d interactions at 280 GeV are investigated. Quark charge retention and local charge compensation is observed. The ratio F {2/ n }/ F {2/ p } of the neutron to proton structure function is derived from the measurement of the average hadronic charge in μ d interactions.
NASA Astrophysics Data System (ADS)
Brodsky, S. J.
2017-07-01
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses - such as m ρ/ m p - can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q\\overline{q} invariant mass squared. The same result, including spin terms, is obtained using light-front holography - the duality between light-front dynamics and AdS5, the space of isometries of the conformal group if one modifies the action of AdS5 by the dilaton {e}^{κ^2}{z}^2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter {Λ}_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s ( Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes also determines a scale Q0 which sets the interface between perturbative and nonperturbative hadron dynamics.
ERIC Educational Resources Information Center
Buchholz, Jesse
2017-01-01
Increasing a correctional offender's mindset, resilience, and self-efficacy can be accomplished through the efficient use of technology within correctional education. Correctional facilities that employ the use of technology have the capacity to provide offenders with a tool that will serve them while they are incarcerated and again when they are…
Heavy and light hadron production and D-hadron correlation in relativistic heavy-ion collisions
Cao, Shanshan; Luo, Tan; He, Yayun; ...
2017-09-25
We establish a linear Boltzmann transport (LBT) model coupled to hydrodynamical background to study hard parton evolution in heavy-ion collisions. Both elastic and inelastic scatterings are included in our calculations; and heavy and light flavor partons are treated on the same footing. Within this LBT model, we provide good descriptions of heavy and light hadron suppression and anisotropic flow in heavy-ion collisions. Angular correlation functions between heavy and light flavor hadrons are studied for the first time and shown able to quantify not only the amount of heavy quark energy loss, but also how the parton energy is re-distributed inmore » parton showers.« less
Chiral effective theory methods and their application to the structure of hadrons from lattice QCD
NASA Astrophysics Data System (ADS)
Shanahan, P. E.
2016-12-01
For many years chiral effective theory (ChEFT) has enabled and supported lattice QCD calculations of hadron observables by allowing systematic effects from unphysical lattice parameters to be controlled. In the modern era of precision lattice simulations approaching the physical point, ChEFT techniques remain valuable tools. In this review we discuss the modern uses of ChEFT applied to lattice studies of hadron structure in the context of recent determinations of important and topical quantities. We consider muon g-2, strangeness in the nucleon, the proton radius, nucleon polarizabilities, and sigma terms relevant to the prediction of dark-matter-hadron interaction cross-sections, among others.
Heavy and light hadron production and D-hadron correlation in relativistic heavy-ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Shanshan; Luo, Tan; He, Yayun
We establish a linear Boltzmann transport (LBT) model coupled to hydrodynamical background to study hard parton evolution in heavy-ion collisions. Both elastic and inelastic scatterings are included in our calculations; and heavy and light flavor partons are treated on the same footing. Within this LBT model, we provide good descriptions of heavy and light hadron suppression and anisotropic flow in heavy-ion collisions. Angular correlation functions between heavy and light flavor hadrons are studied for the first time and shown able to quantify not only the amount of heavy quark energy loss, but also how the parton energy is re-distributed inmore » parton showers.« less
Hagedorn states and thermalization
NASA Astrophysics Data System (ADS)
Noronha-Hostler, J.; Greiner, C.
2011-12-01
In recent years Hagedorn states have been used to explain the physics close to the critical temperature within a hadron gas. Because of their large decay widths these massive resonances lower η/ s to near the AdS/CFT limit within the hadron gas phase. A comparison of the Hagedorn model to recent lattice results is made and it is found that for both T c = 176 MeV and T c = 196 MeV, the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states. In this paper we also observe the effects of Hagedorn States on the K +/π+ horn seen at AGS, SPS, and RHIC.
Adler function and hadronic contribution to the muon g-2 in a nonlocal chiral quark model
NASA Astrophysics Data System (ADS)
Dorokhov, Alexander E.
2004-11-01
The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instantonlike quark-quark interaction. This function describes the transition between the high-energy asymptotically free region of almost massless current quarks to the low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from the hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, ahvp(1)μ, is estimated.
Hyperasymptotics and quark-hadron duality violations in QCD
NASA Astrophysics Data System (ADS)
Boito, Diogo; Caprini, Irinel; Golterman, Maarten; Maltman, Kim; Peris, Santiago
2018-03-01
We investigate the origin of the quark-hadron duality-violating terms in the expansion of the QCD two-point vector correlation function at large energies in the complex q2 plane. Starting from the dispersive representation for the associated polarization, the analytic continuation of the operator product expansion from the Euclidean to the Minkowski region is performed by means of a generalized Borel-Laplace transform, borrowing techniques from hyperasymptotics. We establish a connection between singularities in the Borel plane and quark-hadron duality-violating contributions. Starting with the assumption that for QCD at Nc=∞ the spectrum approaches a Regge trajectory at large energy, we obtain an expression for quark-hadron duality violations at large, but finite Nc.
Lattice QCD Calculation of Hadronic Light-by-Light Scattering.
Green, Jeremy; Gryniuk, Oleksii; von Hippel, Georg; Meyer, Harvey B; Pascalutsa, Vladimir
2015-11-27
We perform a lattice QCD calculation of the hadronic light-by-light scattering amplitude in a broad kinematical range. At forward kinematics, the results are compared to a phenomenological analysis based on dispersive sum rules for light-by-light scattering. The size of the pion pole contribution is investigated for momenta of typical hadronic size. The presented numerical methods can be used to compute the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. Our calculations are carried out in two-flavor QCD with the pion mass in the range of 270-450 MeV and contain so far only the diagrams with fully connected quark lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatiblemore » with the momentum and other sum rules for the nuclear parton distribution functions.« less
Manufacturing Laboratory | Energy Systems Integration Facility | NREL
Manufacturing Laboratory Manufacturing Laboratory Researchers in the Energy Systems Integration Facility's Manufacturing Laboratory develop methods and technologies to scale up renewable energy technology manufacturing capabilities. Photo of researchers and equipment in the Manufacturing Laboratory. Capability Hubs
DOT National Transportation Integrated Search
2005-07-01
The primary purpose of Pedestrian and Bicycle Facilities in CaliforniaA : Technical Reference and Technology Transfer Synthesis for Caltrans Planners : and Engineers (Technical Reference) is to provide Caltrans staff : with a synthesis of in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robichaud, Robi
Robi Robichaud made this presentation as part of an Energy Technology session at the Energy Exchange event, which is sponsored by the U.S. Department of Energy. The presentation discusses a wind energy industry update, technology trends, financing options at federal facilities, and creative approaches for developing wind projects at federal facilities.
Validating Innovative Renewable Energy Technologies: ESTCP Demonstrations at Two DoD Facilities
2011-11-01
4. TITLE AND SUBTITLE Validating Innovative Renewable Energy Technologies: ESTCP Demonstrations at Two DoD Facilities 5a. CONTRACT NUMBER 5b...goals of 25% of energy consumed required to be from renewable energy by 2025, the DoD has set aggressive, yet achievable targets. With its array of land...holdings facilities, and environments, the potential for renewable energy generation on DoD lands is great. Reaching these goals will require
The Gigatracker: An ultra-fast and low-mass silicon pixel detector for the NA62 experiment
NASA Astrophysics Data System (ADS)
Fiorini, M.; Carassiti, V.; Ceccucci, A.; Cortina, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Mapelli, A.; Marchetto, F.; Martin, E.; Martoiu, S.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petrucci, F.; Riedler, P.; Aglieri Rinella, G.; Rivetti, A.; Tiuraniemi, S.
2011-02-01
The Gigatracker is a hybrid silicon pixel detector developed to track the highly intense NA62 hadron beam with a time resolution of 150 ps (rms). The beam spectrometer of the experiment is composed of three Gigatracker stations installed in vacuum in order to precisely measure momentum, time and direction of every traversing particle. Precise tracking demands a very low mass of the detector assembly ( <0.5% X0 per station) in order to limit multiple scattering and beam hadronic interactions. The high rate and especially the high timing precision requirements are very demanding: two R&D options are ongoing and the corresponding prototype read-out chips have been recently designed and produced in 0.13 μm CMOS technology. One solution makes use of a constant fraction discriminator and on-pixel analogue-based time-to-digital-converter (TDC); the other comprises a delay-locked loop based TDC placed at the end of each pixel column and a time-over-threshold discriminator with time-walk correction technique. The current status of the R&D program is overviewed and results from the prototype read-out chips test are presented.
Total cost comparison of 2 biopsy methods for nonpalpable breast lesions.
Bodai, B I; Boyd, B; Brown, L; Wadley, H; Zannis, V J; Holzman, M
2001-05-01
To identify, quantify, and compare total facility costs for 2 breast biopsy methods: vacuum-assisted biopsy (VAB) and needle-wire-localized open surgical biopsy (OSB). A time-and-motion study was done to identify unit resources used in both procedures. Costs were imputed from published literature to value resources. A comparison of the total (fixed and variable) costs of the 2 procedures was done. A convenience sample of 2 high-volume breast biopsy (both VAB and OSB) facilities was identified. A third facility (OSB only) and 8 other sites (VAB only) were used to capture variation. Staff interviews, patient medical records, and billing data were used to check observed data. One hundred and sixty-seven uncomplicated procedures (71 OSBs, 96 VABs) were observed. Available demographic and clinical data were analyzed to assess selection bias, and sensitivity analyses were done on the main assumptions. The total facility costs of the VAB procedure were lower than the costs of the OSB procedure. The overall cost advantage for using VAB ranges from $314 to $843 per procedure depending on the facility type. Variable cost comparison indicated little difference between the 2 procedures. The largest fixed cost difference was $763. Facilities must consider the cost of new technology, especially when the new technology is as effective as the present technology. The seemingly high cost of equipment might negatively influence a decision to adopt VAB, but when total facility costs were analyzed, the new technology was less costly.
Using hadron-in-jet data in a global analysis of D* fragmentation functions
NASA Astrophysics Data System (ADS)
Anderle, Daniele P.; Kaufmann, Tom; Stratmann, Marco; Ringer, Felix; Vitev, Ivan
2017-08-01
We present a novel global QCD analysis of charged D*-meson fragmentation functions at next-to-leading order accuracy. This is achieved by making use of the available data for single-inclusive D*-meson production in electron-positron annihilation, hadron-hadron collisions, and, for the first time, in-jet fragmentation in proton-proton scattering. It is shown how to include all relevant processes efficiently and without approximations within the Mellin moment technique, specifically for the in-jet fragmentation cross section. The presented technical framework is generic and can be straightforwardly applied to future analyses of fragmentation functions for other hadron species, as soon as more in-jet fragmentation data become available. We choose to work within the zero mass variable flavor number scheme which is applicable for sufficiently high energies and transverse momenta. The obtained optimum set of parton-to-D* fragmentation functions is accompanied by Hessian uncertainty sets which allow one to propagate hadronization uncertainties to other processes of interest.
Probing the hadronic phase with resonances of different lifetimes in Pb-Pb collisions with ALICE
NASA Astrophysics Data System (ADS)
Agrawal, Neelima
2018-02-01
The ALICE experiment has measured the production of a rich set of hadronic resonances, such as ρ(770)0, K*(892)0, ϕ(1020), ∑±(1385), Λ(1520) and Ξ*0 in pp, p-Pb and Pb-Pb collisions at various energies at the LHC. A comprehensive overview and the latest results are presented in this paper. Special focus is given to the role of hadronic resonances for the study of final-state effects in high-energy collisions. In particular, the measurement of resonance production in heavy-ion collisions has the capability to provide insight into the existence of a prolonged hadronic phase after hadronisation. The observation of the suppression of the production of Λ(1520) resonance in central Pb-Pb collisions at =2.76 TeV adds further support to the existence of such a dense hadronic phase, as already evidenced by the ratios K*(892)0/K and ρ(770)0/π.
Hadronization Studies via π 0 Electroproduction off D, C, Fe, and Pb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineeva, Taisiya
2013-12-01
Propagation of partons and formation of hadrons is a topic of interest to multiple communities. New data available from Drell-Yan measurements at FermiLab, heavy ion collisions in RHIC and LHC, SIDIS measurements from HERMES at DESY and Jefferson Lab, all bring different types of information on short distance processes. DIS data obtained in the well understood nuclear medium provide direct information on hadron formation, essential to lay the groundwork for testing theoretical tools. A series of semi-inclusive DIS measurements were performed on D, C, Fe, Pb nuclei. The data were collected during the EG2 run period using the CLAS at Jefferson Lab. A double-target system consisting of liquid deuterium and one of the solid targets was exposed to a 5.014 GeV electron beam. The goal of the experiment is to extract hadronic multiplicity ratios (Rmore » $$h\\atop{A}$$) off nuclei of varying size. These are believed to have sensitivity to the parton fragmentation as well as in-medium hadronization.« less
Polyakov loop and the hadron resonance gas model.
Megías, E; Arriola, E Ruiz; Salcedo, L L
2012-10-12
The Polyakov loop has been used repeatedly as an order parameter in the deconfinement phase transition in QCD. We argue that, in the confined phase, its expectation value can be represented in terms of hadronic states, similarly to the hadron resonance gas model for the pressure. Specifically, L(T)≈1/2[∑(α)g(α)e(-Δ(α)/T), where g(α) are the degeneracies and Δ(α) are the masses of hadrons with exactly one heavy quark (the mass of the heavy quark itself being subtracted). We show that this approximate sum rule gives a fair description of available lattice data with N(f)=2+1 for temperatures in the range 150 MeV
Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model
Zhang, Haocheng; Diltz, Chris; Bottcher, Markus
2016-09-23
We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent ofmore » the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.« less
NASA Astrophysics Data System (ADS)
Chen, Xiao-Fang; Hirano, Tetsufumi; Wang, Enke; Wang, Xin-Nian; Zhang, Hanzhong
2011-09-01
The nuclear modification factor RAA(pT) for large transverse momentum pion spectra in Pb+Pb collisions at s=2.76 TeV is predicted within the next-to-leading order perturbative QCD parton model. The effect of jet quenching is incorporated through medium-modified fragmentation functions within the higher-twist approach. The jet transport parameter that controls medium modification is proportional to the initial parton density, and the coefficient is fixed by data on the suppression of large-pT hadron spectra obtained at the BNL Relativistic Heavy Ion Collider. Data on charged hadron multiplicity dNch/dη=1584±80 in central Pb+Pb collisions from the ALICE experiment at the CERN Large Hadron Collider are used to constrain the initial parton density both for determining the jet transport parameter and the 3 + 1 dimensional (3 + 1D) ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of RPbPb(pT) for neutral pions.
Review on DTU-parton model for hh and hA collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, C.B.
1981-02-01
Recently several groups have considered small-p/sub T/ models, which combine features from both the parton model and the DTU model. We shall refer to them loosely as the DTU-parton model. In this talk, we take a definite point of view to motivate this model, and based on this framework we briefly survey its phenomenological applications to hadron-hadron and hadron-nucleus collisions.
Rare b-hadron decays as probe of new physics
NASA Astrophysics Data System (ADS)
Lanfranchi, Gaia
2018-05-01
The unexpected absence of unambiguous signals of New Physics (NP) at the TeV scale at the Large Hadron Collider (LHC) puts today flavor physics at the forefront. In particular, rare decays of b-hadrons represent a unique probe to challenge the Standard Model (SM) paradigm and test models of NP at a scale much higher than that accessible by direct searches. This article reviews the status of the field.
Extra dimension searches at hadron colliders to next-to-leading order-QCD
NASA Astrophysics Data System (ADS)
Kumar, M. C.; Mathews, Prakash; Ravindran, V.
2007-11-01
The quantitative impact of NLO-QCD corrections for searches of large and warped extra dimensions at hadron colliders are investigated for the Drell-Yan process. The K-factor for various observables at hadron colliders are presented. Factorisation, renormalisation scale dependence and uncertainties due to various parton distribution functions are studied. Uncertainties arising from the error on experimental data are estimated using the MRST parton distribution functions.
DOE R&D Accomplishments Database
Richter, B.
1976-01-01
The review of total hadron electroproduction cross sections, the new states, and the muon--electron events includes large amount of information on hadron structure, nine states with width ranging from 10's of keV to many MeV, the principal decay modes and quantum numbers of some of the states, and limits on charm particle production. 13 references. (JFP)
NASA Astrophysics Data System (ADS)
Wolin, Scott; Phenix Collaboration
2011-10-01
The gluon polarization, ΔG =∫01 g(x) dx , is constrained in the region 0 . 05 < x < 0 . 2 from measurements of double spin asymmetries, ALL, for inclusive hadron and jet production at mid-rapidity at RHIC. Theoretical analysis of experimental results shows that ∫0. 05 0 . 2 Δg(x) dx = 0 .013-0 . 120 + 0 . 106 . This is not large enough to account for the missing proton spin. However, Δg(x) is unconstrained at low-x, and a measurement sensitive to this region will provide important input for future global analyses. The measurement of ALL for inclusive hadrons and di-hadrons with the Muon Piston Calorimeter (MPC) 3 . 1 < η < 3 . 9 provides this sensitivity down to x 10-3 and will lead to the first constraints of Δg(x) at x < 0 . 05 . The di-hadron measurement is especially interesting as it is sensitive to the sign of ΔG and best constrains the parton kinematics giving the most precise access to xgluon. The inclusive measurement provides a looser constraint on the event kinematics but has a higher yield. We will present the status of these measurements for the 2009 dataset at √{ s} = 500 GeV and √{ s} = 200 GeV.
Multiplicities of Hadrons Within Jets at STAR
NASA Astrophysics Data System (ADS)
Wheeler, Suzanne; Drachenberg, Jim; STAR Collaboration
2017-09-01
Jet measurements have long been tools used to understand QCD phenomena. There is still much to be learned from the production of hadrons inside of jets. In particular, hadron yields within jets from proton-proton collisions have been proposed as a way to unearth more information on gluon fragmentation functions. In 2011, the STAR experiment at RHIC collected 23 pb-1 of data from proton-proton collisions at √{ s} = 500 GeV. The jets of most interest for gluon fragmentation functions are those with transverse momentum around 6-15 GeV/c. Large acceptance charged particle tracking and electromagnetic calorimetry make STAR an excellent jet detector. Time-of-flight and specific energy loss in the tracking system allow particle identification on the various types of hadrons within the jets, e.g., distinguishing pions from kaons and protons. An integral part of analyzing the data collected is understanding how the finite resolutions of the various detector subsystems influence the measured jet and hadron kinematics. For this reason, Monte Carlo simulations can be used to track the shifting of the hadron and jet kinematics between the generator level and the detector reconstruction level. The status of this analysis will be presented. We would like to acknowledge the Ronald E. McNair program for supporting this research.
PREFACE: 3rd International Conference on Hadron Physics (TROIA'11)
NASA Astrophysics Data System (ADS)
Erkol, Güray; Küçükarslan, Ayşe; Özpineci, Altuğ
2012-03-01
The 3rd International Conference on Hadron Physics, TROIA'11 was held at Canakkale, Turkey on 22-25 August 2011. Ozyegin University, Middle East Technical University, Canakkale Onsekiz Mart University and HadronPhysics2 Consortium sponsored the conference. Its aim was to bring together the experts and young scientists working on experimental and theoretical hadron physics. About 60 participants from 12 countries attended the conference. The topics covered included: Chiral Perturbation Theory QCD Sum Rules Effective Field Theory Exotic Hadrons Hadron Properties from Lattice QCD Experimental Results and Future Perspectives Hadronic Distribution Amplitudes The conference presentations were organized such that the morning sessions contained invited talks and the afternoon sessions were devoted to contributed talks and poster presentations. The speakers of the invited talks were: D Melikhov, M Nielsen, M Oka, E Oset, S Scherer, T T Takahashi and R Wanke. The conference venue was a resort hotel near Canakkale. As a social program, a guided full-day excursion to the excavation site of the ancient town of Troia and Assos was organized. We believe that this conference provided a medium for young scientists and experts in the field to effectively communicate and share ideas. We would like to express our sincere thanks to all participants for their contributions and stimulating discussions. We are also grateful to the Scientific Secretary, Kadir Utku Can, and all other members of the Organizing Committee for their patience and efforts. 13 February 2012 The Editors Güray Erkol Ayşe Küçükarslan Altuğ Özpineci Conference photograph
Science and Technology Facilities
ERIC Educational Resources Information Center
Moonen, Jean-Marie; Buono, Nicolas; Handfield, Suzanne
2004-01-01
These four articles relate to science and technology infrastructure for secondary and tertiary institutions. The first article presents a view on approaches to teaching science in school and illustrates ideal science facilities for secondary education. The second piece reports on work underway to improve the Science Complex at the "Universite…
Charmed hadron production in pp collision
NASA Astrophysics Data System (ADS)
Goswami, Umananda Dev
2007-10-01
We investigated the production of charmed hadrons ( D+, D-, D0, D, Λc+, Λ¯c-) in pp collisions as a function of √{s}, xF, p⊥2 and p⊥ in the framework of the QGSJET model. The study of charmed hadron production characteristics in pp collision is particularly important for cosmic ray physics in the context of atmospheric prompt lepton fluxes. Here our aim is to check the reliability of the QGSJET model to be used to study the production of charmed hadrons in cosmic ray hadronic interactions with air nuclei. Charmed hadroproduction cross sections or the charmed hadron average multiplicities in pp collisions are relatively very small. The maximum production of all charmed hadrons takes place with low values of xF, p⊥2, and p⊥ within a small range for all values of √{s} under study. Charmed hadroproduction cross sections as a function of xF and p⊥2 are compared with the LEBC-EHS and LEBC-MPS experiment data for D-meson production. The agreement is quite satisfactory for smaller values of p⊥2 (⩽2 (GeV/c) 2). There is an asymmetry in charmed hadroproduction in pp collision. For all xF, asymmetry is prominent in the low value of √{s}. There is a strong preference for producing Λc+ rather than Λ¯c-baryons, while that for producing D¯ rather than D-mesons for this range of √{s}. Asymmetry increases from zero to ±1 around xF = 0.3 for all values of √{s} and for all charmed hardron groups. The patterns of asymmetric production of different charmed hadrons with xF are approximately the same as that with √{s}. We compare our calculation with the data from Fermilab experiment E781 (SELEX) for Λc-baryon production. The agreement is quite good. The asymmetry of charmed hadroproduction with p⊥ does not follow any well defined pattern.
NASA Astrophysics Data System (ADS)
Crede, Volker
2013-03-01
The spectrum of excited baryons serves as an excellent probe of quantum chromodynamics (QCD). In particular, highly-excited baryon resonances are sensitive to the details of quark confinement which is only poorly understood within QCD. Facilities worldwide such as Jefferson Lab, ELSA, and MAMI, which study the systematics of hadron spectra in photo- and electroproduction experiments, have accumulated a large amount of data in recent years including unpolarized cross section and polarization data for a large variety of meson-production reactions. These are important steps toward complete experiments that will allow us to unambiguously determine the scattering amplitude in the underlying reactions and to identify the broad and overlapping baryon resonance contributions. Several new nucleon resonances have been proposed and changes to the baryon listing in the 2012 Review of Particle Physics reflect the progress in the field.
Spectra, composition, and interactions of nuclei with magnet interaction chambers
NASA Astrophysics Data System (ADS)
Parnell, T. A.; Burnett, T. H.; Cherry, M. C.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jurak, A.; Lord, J. J.; Miyamura, O.; Niwa, K.; Oda, H.; Ogata, T.; Roberts, F. E.; Shibata, T.; Strausz, S. C.; Tabuki, T.; Taira, T.; Takahashi, Y.; Tominaga, T.; Watts, J. W.; Wefel, J. P.; Wilczynska, B.; Wilczynski, H.; Wilkes, R. J.; Wolter, W.; Wosiek, T.; Yamamoto, A.; Yokomi, H.; Yuda, T.
1990-03-01
Emulsion chambers will be flown in the Astromag Facility to measure the cosmic ray composition and spectra to 10 exp 15 eV total energy and to definitively study the characteristics of nucleus-nucleus interactions above 10 exp 12 eV/n. Two configurations of emulsion chambers will be flown in the SCIN/MAGIC experiment. One chamber has an emulsion target and a calorimeter similar to those recently flown on balloons for composition and spectra measurements. The other has an identical calorimeter and a low-density target section optimized for performing rigidity measurements on charged particles produced in interactions. The transverse momenta of charged and neutral mesons, direct hadronic pairs from resonance decays and interference effects, and possible charge clustering in high-density states of matter will be studied.
BigData and computing challenges in high energy and nuclear physics
NASA Astrophysics Data System (ADS)
Klimentov, A.; Grigorieva, M.; Kiryanov, A.; Zarochentsev, A.
2017-06-01
In this contribution we discuss the various aspects of the computing resource needs experiments in High Energy and Nuclear Physics, in particular at the Large Hadron Collider. This will evolve in the future when moving from LHC to HL-LHC in ten years from now, when the already exascale levels of data we are processing could increase by a further order of magnitude. The distributed computing environment has been a great success and the inclusion of new super-computing facilities, cloud computing and volunteering computing for the future is a big challenge, which we are successfully mastering with a considerable contribution from many super-computing centres around the world, academic and commercial cloud providers. We also discuss R&D computing projects started recently in National Research Center ``Kurchatov Institute''
Scintillating glasses for total absorption dual readout calorimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonvicini, V.; Driutti, A.; Cauz, D.
2012-01-01
Scintillating glasses are a potentially cheaper alternative to crystal - based calorimetry with common problems related to light collection, detection and processing. As such, their use and development are part of more extensive R&D aimed at investigating the potential of total absorption, combined with the readout (DR) technique, for hadron calorimetry. A recent series of measurements, using cosmic and particle beams from the Fermilab test beam facility and scintillating glass with the characteristics required for application of the DR technique, serve to illustrate the problems addressed and the progress achieved by this R&D. Alternative solutions for light collection (conventional andmore » silicon photomultipliers) and signal processing are compared, the separate contributions of scintillation and Cherenkov processes to the signal are evaluated and results are compared to simulation.« less
NASA Astrophysics Data System (ADS)
Buthelezi, Zinhle; Cleymans, Jean; Dietel, Tom; Förtsch, Siegfried; Horowitz, W. A.; Steinberg, Peter; Weigert, Heribert
2014-12-01
From November 4th-8th 2013, South Africa hosted the "6th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions (Hard Probes 2013)" in the beautiful Cape Winelands at the Stellenbosch Institute for Advanced Studies. This is the preëminent conference series for scientists from around the world to disseminate, discuss, and collaborate on their research on the Hard Probes of heavy ion collisions. The goal is a quantitative understanding of the nontrivial, emergent, many-body dynamics of hot and dense non-Abelian Quantum Chromodynamics (QCD), the quark-gluon plasma (QGP). This matter permeated the universe a microsecond after the Big Bang and is produced at facilities such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) in New York and at the Large Hadron Collider (LHC) at CERN in Geneva.
Benchmark studies of induced radioactivity produced in LHC materials, Part II: Remanent dose rates.
Brugger, M; Khater, H; Mayer, S; Prinz, A; Roesler, S; Ulrici, L; Vincke, H
2005-01-01
A new method to estimate remanent dose rates, to be used with the Monte Carlo code FLUKA, was benchmarked against measurements from an experiment that was performed at the CERN-EU high-energy reference field facility. An extensive collection of samples of different materials were placed downstream of, and laterally to, a copper target, intercepting a positively charged mixed hadron beam with a momentum of 120 GeV c(-1). Emphasis was put on the reduction of uncertainties by taking measures such as careful monitoring of the irradiation parameters, using different instruments to measure dose rates, adopting detailed elemental analyses of the irradiated materials and making detailed simulations of the irradiation experiment. The measured and calculated dose rates are in good agreement.
Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staiger, Merle Daniel; M. C. Swenson
2005-01-01
This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less
RAND Workshop on Antiproton Science and Technology, Annotated Executive Summary. (October 6-9, 1987)
1988-10-01
parity violation to condensed matter . A number of near-term important applications are possible using the source and portable storage devices...from charge parity violation studies to condensed matter studies. -vi - The CERN/LEAR facility will continue to only scratch the surface of important...technology programs. These technology programs include possible small tools to study extreme states of matter ;, a propulsion test facility for
NASA Technical Reports Server (NTRS)
Hebert, Phillip W., Sr.
2008-01-01
May 2007, NASA's Constellation Program selected John C Stennis Space Center (SSC) near Waveland Mississippi as the site to construct an altitude test facility for the developmental and qualification testing of the Ares1 upper stage (US) engine. Test requirements born out of the Ares1 US propulsion system design necessitate exceptional Data Acquisition System (DAS) design solutions that support facility and propellant systems conditioning, test operations control and test data analysis. This paper reviews the new A3 Altitude Test Facility's DAS design requirements for real-time deterministic digital data, DAS technology enhancements, system trades, technology validation activities, and the current status of this system's new architecture. Also to be discussed will be current network technologies to improve data transfer.
Cost (non)-recovery by platform technology facilities in the Bio21 Cluster.
Gibbs, Gerard; Clark, Stella; Quinn, Julieanne; Gleeson, Mary Joy
2010-04-01
Platform technologies (PT) are techniques or tools that enable a range of scientific investigations and are critical to today's advanced technology research environment. Once installed, they require specialized staff for their operations, who in turn, provide expertise to researchers in designing appropriate experiments. Through this pipeline, research outputs are raised to the benefit of the researcher and the host institution. Platform facilities provide access to instrumentation and expertise for a wide range of users beyond the host institution, including other academic and industry users. To maximize the return on these substantial public investments, this wider access needs to be supported. The question of support and the mechanisms through which this occurs need to be established based on a greater understanding of how PT facilities operate. This investigation was aimed at understanding if and how platform facilities across the Bio21 Cluster meet operating costs. Our investigation found: 74% of platforms surveyed do not recover 100% of direct operating costs and are heavily subsidized by their home institution, which has a vested interest in maintaining the technology platform; platform managers play a major role in establishing the costs and pricing of the facility, normally in a collaborative process with a management committee or institutional accountant; and most facilities have a three-tier pricing structure recognizing internal academic, external academic, and commercial clients.
Cost (Non)-Recovery by Platform Technology Facilities in the Bio21 Cluster
Gibbs, Gerard; Clark, Stella; Quinn, JulieAnne; Gleeson, Mary Joy
2010-01-01
Platform technologies (PT) are techniques or tools that enable a range of scientific investigations and are critical to today's advanced technology research environment. Once installed, they require specialized staff for their operations, who in turn, provide expertise to researchers in designing appropriate experiments. Through this pipeline, research outputs are raised to the benefit of the researcher and the host institution.1 Platform facilities provide access to instrumentation and expertise for a wide range of users beyond the host institution, including other academic and industry users. To maximize the return on these substantial public investments, this wider access needs to be supported. The question of support and the mechanisms through which this occurs need to be established based on a greater understanding of how PT facilities operate. This investigation was aimed at understanding if and how platform facilities across the Bio21 Cluster meet operating costs. Our investigation found: 74% of platforms surveyed do not recover 100% of direct operating costs and are heavily subsidized by their home institution, which has a vested interest in maintaining the technology platform; platform managers play a major role in establishing the costs and pricing of the facility, normally in a collaborative process with a management committee or institutional accountant; and most facilities have a three-tier pricing structure recognizing internal academic, external academic, and commercial clients. PMID:20357980
Efficient data management tools for the heterogeneous big data warehouse
NASA Astrophysics Data System (ADS)
Alekseev, A. A.; Osipova, V. V.; Ivanov, M. A.; Klimentov, A.; Grigorieva, N. V.; Nalamwar, H. S.
2016-09-01
The traditional RDBMS has been consistent for the normalized data structures. RDBMS served well for decades, but the technology is not optimal for data processing and analysis in data intensive fields like social networks, oil-gas industry, experiments at the Large Hadron Collider, etc. Several challenges have been raised recently on the scalability of data warehouse like workload against the transactional schema, in particular for the analysis of archived data or the aggregation of data for summary and accounting purposes. The paper evaluates new database technologies like HBase, Cassandra, and MongoDB commonly referred as NoSQL databases for handling messy, varied and large amount of data. The evaluation depends upon the performance, throughput and scalability of the above technologies for several scientific and industrial use-cases. This paper outlines the technologies and architectures needed for processing Big Data, as well as the description of the back-end application that implements data migration from RDBMS to NoSQL data warehouse, NoSQL database organization and how it could be useful for further data analytics.
Cyber Mutual Assistance Workshop Report
2018-02-01
Information Technology, Nuclear Reactors, Materials/Waste, Defense Industrial Base, Critical Manufacturing, Food/ Agriculture Government Facilities and...Manufacturing, Food/ Agriculture Government Facilities and Chemical, Commercial Facilities [DHS 2017c]. Distributed Energy Resources (DER) are
Application countermeasures of non-incineration technologies for medical waste treatment in China.
Chen, Yang; Ding, Qiong; Yang, Xiaoling; Peng, Zhengyou; Xu, Diandou; Feng, Qinzhong
2013-12-01
By the end of 2012, there were 272 modern, high-standard, centralized medical waste disposal facilities operating in various cities in China. Among these facilities nearly 50% are non-incineration treatment facilities, including the technologies of high temperature steam, chemical disinfection and microwave. Each of the non-incineration technologies has its advantages and disadvantages, and any single technology cannot offer a panacea because of the complexity of medical waste disposal. Although non-incineration treatment of medical waste can avoid the release of polychlorinated dibenzo-p-dioxins/dibenzofurans, it is still necessary to decide how to best meet the local waste management needs while minimizing the impact on the environment and public health. There is still a long way to go to establish the sustainable application and management mode of non-incineration technologies. Based on the analysis of typical non-incineration process, pollutant release, and the current tendency for technology application and development at home and abroad, this article recommends the application countermeasures of non-incineration technologies as the best available techniques and best environmental practices in China.
The American Combustion Pyretron Thermal Destruction System at the U.S. EPA's Combustion Research Facility. Under the auspices of the Superfund Innovative Technology Evaluation, or SITE, program, a critical assessment was made of the American Combustion Pyretron™ oxygen enha...
Commercial applications of telemedicine
NASA Technical Reports Server (NTRS)
Natiello, Thomas A.
1991-01-01
Telemedicine Systems Corporation was established in 1976 and is a private commercial supplier of telemedicine systems. These systems are various combinations of communications and diagnostic technology, designed to allow the delivery of health care services to remote facilities. The technology and the health care services are paid for by the remote facilities, such as prisons.
Work with Us | Advanced Manufacturing Research | NREL
advanced manufacturing R&D project through analysis and our world-class facilities. Contact Us Headshot of a man Matthew Ringer Laboratory Program Manager, Advanced Manufacturing Email | 303-275-4469 facilities for your advanced manufacturing R&D projects. License Our Technologies See our technologies
ERIC Educational Resources Information Center
Blodgett, Teresa; Repman, Judi
1995-01-01
Addresses the necessity of incorporating new computer technologies into school library resource centers and notes some administrative challenges. An extensive checklist is provided for assessing equipment and furniture needs, physical facilities, and rewiring needs. A glossary of 20 terms and 11 additional resources is included. (AEF)
Distance Education: A Program and Facility Study.
ERIC Educational Resources Information Center
Holt, Malcolm; And Others
This publication provides both a review of the different technology modes that may be used for distance education and a set of guidelines for planning and developing conceptual designs for educational facilities capable of supporting technologically enhanced educational delivery systems in a variety of settings. The Distance Learning in Small…
New NREL Research Facility Slashes Energy Use by 66 Percent
Thermal Test Facility, which serves as a showcase of energy-saving features and the home of NREL's cutting technologies now being developed at the Thermal Test Facility will help us reach this goal." The facility energy-efficient building design, NREL's Thermal Test Facility houses sophisticated equipment for
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Qin; Kuang Yuping; CCAST
2007-03-01
Hadronic transitions of the {chi}{sub cj} states have not been studied yet. We calculate the rate of the hadronic transition {chi}{sub c1}{yields}{eta}{sub c}{pi}{pi} in the framework of QCD multipole expansion. We show that this process can be studied experimentally at the upgraded Beijing Spectrometer BES III and the Cornell CLEO-c.
Beyond-Standard-Model Tensor Interaction and Hadron Phenomenology.
Courtoy, Aurore; Baeßler, Stefan; González-Alonso, Martín; Liuti, Simonetta
2015-10-16
We evaluate the impact of recent developments in hadron phenomenology on extracting possible fundamental tensor interactions beyond the standard model. We show that a novel class of observables, including the chiral-odd generalized parton distributions, and the transversity parton distribution function can contribute to the constraints on this quantity. Experimental extractions of the tensor hadronic matrix elements, if sufficiently precise, will provide a, so far, absent testing ground for lattice QCD calculations.
Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter
NASA Astrophysics Data System (ADS)
Bilki, B.; Repond, J.; Xia, L.; Eigen, G.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Lima, J. G. R.; Salcido, R.; Zutshi, V.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Dannheim, D.; Folger, G.; Ivantchenko, V.; Klempt, W.; Lucaci-Timoce, A.-I.; Ribon, A.; Schlatter, D.; Sicking, E.; Uzhinskiy, V.; Giraud, J.; Grondin, D.; Hostachy, J.-Y.; Morin, L.; Brianne, E.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Tran, H. L.; Buhmann, P.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Norbeck, E.; Northacker, D.; Onel, Y.; van Doren, B.; Wilson, G. W.; Wing, M.; Combaret, C.; Caponetto, L.; Eté, R.; Grenier, G.; Han, R.; Ianigro, J. C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Corriveau, F.; Bobchenko, B.; Chistov, R.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mironov, D.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Dulucq, F.; Fleury, J.; Frisson, T.; Martin-Chassard, G.; Pöschl, R.; Raux, L.; Richard, F.; Rouëné, J.; Seguin-Moreau, N.; de la Taille, Ch.; Anduze, M.; Boudry, V.; Brient, J.-C.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Matthieu, A.; Mora de Freitas, P.; Musat, G.; Ruan, M.; Videau, H.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Weber, S.
2015-04-01
Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using GEANT4 version 9.6 are compared.
Spin, twist and hadron structure in deep inelastic processes
NASA Astrophysics Data System (ADS)
Jaffe, R. L.; Meyer, H.; Piller, G.
These notes provide an introduction to polarization effects in deep inelastic processes in QCD. We emphasize recent work on transverse asymmetries, subdominant effects, and the role of polarization in fragmentation and in purely hadronic processes. After a review of kinematics and some basic tools of short distance analysis, we study the twist, helicity, chirality and transversity dependence of a variety of high energy processes sensitive to the quark and gluon substructure of hadrons.
Power corrections to TMD factorization for Z-boson production
Balitsky, I.; Tarasov, A.
2018-05-24
A typical factorization formula for production of a particle with a small transverse momentum in hadron-hadron collisions is given by a convolution of two TMD parton densities with cross section of production of the final particle by the two partons. For practical applications at a given transverse momentum, though, one should estimate at what momenta the power corrections to the TMD factorization formula become essential. In this work, we calculate the first power corrections to TMD factorization formula for Z-boson production and Drell-Yan process in high-energy hadron-hadron collisions. At the leading order in N c power corrections are expressed inmore » terms of leading power TMDs by QCD equations of motion.« less
Imaging hadron calorimetry for future Lepton Colliders
NASA Astrophysics Data System (ADS)
Repond, José
2013-12-01
To fully exploit the physics potential of a future Lepton Collider requires detectors with unprecedented jet energy and dijet-mass resolution. To meet these challenges, detectors optimized for the application of Particle Flow Algorithms (PFAs) are being designed and developed. The application of PFAs, in turn, requires calorimeters with very fine segmentation of the readout, so-called imaging calorimeters. This talk reviews progress in imaging hadron calorimetry as it is being developed for implementation in a detector at a future Lepton Collider. Recent results from the large prototypes built by the CALICE Collaboration, such as the Scintillator Analog Hadron Calorimeter (AHCAL) and the Digital Hadron Calorimeters (DHCAL and SDHCAL) are being presented. In addition, various R&D efforts beyond the present prototypes are being discussed.
(Anti-)strangeness in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Moreau, P.; Cassing, W.; Palmese, A.; Bratkovskaya, E. L.
2016-08-01
We study the production of hadrons in nucleus-nucleus collisions within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD before. The essential impact of CSR is found in the Schwinger mechanism (for string decay) which fixes the ratio of strange to light quark production in the hadronic medium. Our studies suggest a microscopic explanation for the maximum in the K + /π + and (Ʌ + Σ0)/π - ratios at about 30 A GeV which only shows up if in addition to CSR a deconfinement transition to partonic degrees-of-freedom is incorporated in the reaction dynamics.
Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, X; Draper, J E; Drees, K A; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Ganti, M S; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Rykov, V; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, H Y; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N
2003-10-24
We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at sqrt[s(NN)]=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for 5
Power corrections to TMD factorization for Z-boson production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balitsky, I.; Tarasov, A.
A typical factorization formula for production of a particle with a small transverse momentum in hadron-hadron collisions is given by a convolution of two TMD parton densities with cross section of production of the final particle by the two partons. For practical applications at a given transverse momentum, though, one should estimate at what momenta the power corrections to the TMD factorization formula become essential. In this work, we calculate the first power corrections to TMD factorization formula for Z-boson production and Drell-Yan process in high-energy hadron-hadron collisions. At the leading order in N c power corrections are expressed inmore » terms of leading power TMDs by QCD equations of motion.« less
The gluon condensation at high energy hadron collisions
NASA Astrophysics Data System (ADS)
Zhu, Wei; Lan, Jiangshan
2017-03-01
We report that the saturation/CGC model of gluon distribution is unstable under action of the chaotic solution in a nonlinear QCD evolution equation, and it evolves to the distribution with a sharp peak at the critical momentum. We find that this gluon condensation is caused by a new kind of shadowing-antishadowing effects, and it leads to a series of unexpected effects in high energy hadron collisions including astrophysical events. For example, the extremely intense fluctuations in the transverse-momentum and rapidity distributions of the gluon jets present the gluon-jet bursts; a sudden increase of the proton-proton cross sections may fill the GZK suppression; the blocking QCD evolution will restrict the maximum available energy of the hadron-hadron colliders.
NASA Technical Reports Server (NTRS)
Danilova, T. V.; Dubovy, A. G.; Erlykin, A. D.; Nesterova, N. M.; Chubenko, A. P.
1985-01-01
The lateral distributions of extensive air showers (EAS) hadrons obtained at Tien-Shan array are compared with the simulations. The simulation data have been treated in the same way as experimental data, including the recording method. The comparison shows that the experimental hadron lateral distributions are wider than simulated ones. On the base of this result the conclusion is drawn that the fraction of processes with large p (perpendicular) increases in hadron-air interactions at energies 5 x 10 to the 14 to 10 to the 16 eV compared with accelerator data in p-p interactions at lower energies.
MC generator HARDPING: Nuclear effects in hard interactions of leptons and hadrons with nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berdnikov, Ya. A.; Ivanov, A. E.; Kim, V. T.
2016-01-22
Hadron and lepton production in hard interaction of high-energy particles with nuclei are considered in context of developing of Monte Carlo generator HARDPING (Hard Probe Interaction Generator). Such effects as energy losses and multiple re-scattering initial and produced hadrons and their constituents are taken into account. These effects are implemented in current version of generator HARDPING. Data of experiments HERMES on hadron production in lepton-nuclei collisions and E866 on muon pair production in proton-nuclei collisions were described with current version of generator HARDPING. Predictions from recent version HARPING 3.0 for lepton pairs production at proton beam energy I20 GeV aremore » presented.« less
Emerging CAE technologies and their role in Future Ambient Intelligence Environments
NASA Astrophysics Data System (ADS)
Noor, Ahmed K.
2011-03-01
Dramatic improvements are on the horizon in Computer Aided Engineering (CAE) and various simulation technologies. The improvements are due, in part, to the developments in a number of leading-edge technologies and their synergistic combinations/convergence. The technologies include ubiquitous, cloud, and petascale computing; ultra high-bandwidth networks, pervasive wireless communication; knowledge based engineering; networked immersive virtual environments and virtual worlds; novel human-computer interfaces; and powerful game engines and facilities. This paper describes the frontiers and emerging simulation technologies, and their role in the future virtual product creation and learning/training environments. The environments will be ambient intelligence environments, incorporating a synergistic combination of novel agent-supported visual simulations (with cognitive learning and understanding abilities); immersive 3D virtual world facilities; development chain management systems and facilities (incorporating a synergistic combination of intelligent engineering and management tools); nontraditional methods; intelligent, multimodal and human-like interfaces; and mobile wireless devices. The Virtual product creation environment will significantly enhance the productivity and will stimulate creativity and innovation in future global virtual collaborative enterprises. The facilities in the learning/training environment will provide timely, engaging, personalized/collaborative and tailored visual learning.
Perspective on the Origin of Hadron Masses
NASA Astrophysics Data System (ADS)
Roberts, Craig D.
2017-01-01
The energy-momentum tensor in chiral QCD, T_{μ ν }, exhibits an anomaly, viz. \\varTheta _0 := T_{μ μ } ne 0. Measured in the proton, this anomaly yields m_p^2, where m_p is the proton's mass; but, at the same time, when computed in the pion, the answer is m_π ^2=0. Any attempt to understand the origin and nature of mass, and identify observable expressions thereof, must explain and unify these two apparently contradictory results, which are fundamental to the nature of our Universe. Given the importance of Poincaré-invariance in modern physics, the utility of a frame-dependent approach to this problem seems limited. That is especially true of any approach tied to a rest-frame decomposition of T_{μ ν } because a massless particle does not possess a rest-frame. On the other hand, the dynamical chiral symmetry breaking paradigm, connected with a Poincaré-covariant treatment of the continuum bound-state problem, provides a straightforward, simultaneous explanation of both these identities, and also a diverse array of predictions, testable at existing and proposed facilities. From this perspective, < π | \\varTheta _0 |π rangle =0 owing to exact, symmetry-driven cancellations which occur between one-body dressing effects and two-body-irreducible binding interactions in any well-defined computation of the forward scattering amplitude that defines this expectation value in the pseudoscalar meson. The cancellation is incomplete in any other hadronic bound state, with a remainder whose scale is set by the size of one-body dressing effects.
Vincke, Helmut; Forkel-Wirth, Doris; Perrin, Daniel; Theis, Chris
2005-01-01
CERN's radiation protection group operates a network of simple and robust ionisation chambers that are installed inside CERN's accelerator tunnels. These ionisation chambers are used for the remote reading of ambient dose rate equivalents inside the machines during beam-off periods. This Radiation Protection Monitor for dose rates due to Induced Radioactivity ('PMI', trade name: PTW, Type 34031) is a non-confined air ionisation plastic chamber which is operated under atmospheric pressure. Besides its current field of operation it is planned to extend the use of this detector in the Large Hadron Collider to measure radiation under beam operation conditions to obtain an indication of the machine performance. Until now, studies of the PMI detector have been limited to the response to photons. In order to evaluate its response to other radiation components, this chamber type was tested at CERF, the high-energy reference field facility at CERN. Six PMI detectors were installed around a copper target being irradiated by a mixed hadron beam with a momentum of 120 GeV c(-1). Each of the chosen detector positions was defined by a different radiation field, varying in type and energy of the incident particles. For all positions, detailed measurements and FLUKA simulations of the detector response were performed. This paper presents the promising comparison between the measurements and simulations and analyses the influence of the different particle types on the resulting detector response.
Physics with charmonium - Highlights of BESIII and PANDA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messchendorp, Johan
2014-11-11
The physics of the strong interaction is undoubtedly one of the most challenging areas of modern science. Quantum ChromoDynamics (QCD) is reproducing successfully the physics phenomena at distances much shorter than the size of the nucleon, where perturbation theory can be used yielding results of high precision and predictive power. At larger distance scales, however, perturbative methods cannot be applied anymore, although spectacular phenomena, such as the generation of hadron masses and quark confinement, occur. Studies using charmed quarks and gluon-rich matter have the potential to connect the perturbative and the non-perturbative QCD region. The annihilation of matter with antimattermore » in the mass regime of charmonium is an ideal environment to discover new states or transitions that could reveal the secrets of the strong interaction. Hadronic and electromagnetic transitions between charmonium states and their decays have been measured with a world-record in precision with the BESIII spectrometer at the electron-positron collider at IHEP Beijing, China. Moreover, unconventional narrow charmonium-rich states have been discovered recently in an energy regime above the open-charm threshold, thereby, possibly initiating a new era in charmonium spectroscopy. The near future experiment, PANDA, at the research facility FAIR in Germany, Darmstadt, will exploit the annihilation of cooled anti-protons with protons to perform charmonium spectroscopy with an incredible precision. I will present the most promising results that have been recently obtained with BESIII together with the future perspectives of PANDA in the field of charmonium spectroscopy.« less
Cryogenic studies for the proposed CERN large hadron electron collider (LHEC)
NASA Astrophysics Data System (ADS)
Haug, F.; LHeC Study Team, The
2012-06-01
The LHeC (Large Hadron electron Collider) is a proposed future colliding beam facility for lepton-nucleon scattering particle physics at CERN. A new 60 GeV electron accelerator will be added to the existing 27 km circumference 7 TeV LHC for collisions of electrons with protons and heavy ions. Two basic design options are being pursued. The first is a circular accelerator housed in the existing LHC tunnel which is referred to as the "Ring-Ring" version. Low field normal conducting magnets guide the particle beam while superconducting (SC) RF cavities cooled to 2 K are installed at two opposite locations at the LHC tunnel to accelerate the beams. For this version in addition a 10 GeV re-circulating SC injector will be installed. In total four refrigerators with cooling capacities between 1.2 kW and 3 kW @ 4.5 K are needed. The second option, referred to as the "Linac-Ring" version consists of a race-track re-circulating energyrecovery type machine with two 1 km long straight acceleration sections. The 944 high field 2 K SC cavities dissipate 30 kW at CW operation. Eight 10 kW @ 4.5 K refrigerators are proposed. The particle detector contains a combined SC solenoid and dipole forming the cold mass and an independent liquid argon calorimeter. Cooling is done with two individual small sized cryoplants; a 4.5 K helium, and a 87 K liquid nitrogen plant.
Measurement of the Parity-Violating Asymmetry in Deep Inelastic Scattering at JLab 6 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Diancheng
2013-12-01
The parity-violating asymmetry in deep inelastic scattering (PVDIS) offers us a useful tool to study the weak neutral couplings and the hadronic structure of the nucleon, and provides high precision tests on the Standard Model. During the 6 GeV PVDIS experiment at the Thomas Jefferson National Accelerator Facility, the parity-violating asymmetries A{sub PV} of a polarized electron beam scattering off an unpolarized deuteron target in the deep inelastic scattering region were precisely measured at two Q 2 values of 1.1 and 1.9 (GeV/c) 2. The asymmetry at Q 2=1.9 (GeV/c) 2 can be used to extract the weak coupling combinationmore » 2C 2u - C 2d, assuming the higher twist effect is small. The extracted result from this measurement is in good agreement with the Standard Model prediction, and improves the precision by a factor of five over previous data. In addition, combining the asymmetries at both Q 2 values provides us extra knowledge on the higher twist effects. The parity violation asymmetries in the resonance region were also measured during this experiment. These results are the first A PV data in the resonance region beyond the Δ (1232). They provide evidence that the quark hadron duality works for A PV at the (10-15)% level, and set constraints on nucleon resonance models that are commonly used for background calculations to other parity-violating electron scattering measurements.« less
Theis, C; Forkel-Wirth, D; Perrin, D; Roesler, S; Vincke, H
2005-01-01
Monitoring of the radiation environment is one of the key tasks in operating a high-energy accelerator such as the Large Hadron Collider (LHC). The radiation fields consist of neutrons, charged hadrons as well as photons and electrons with energy spectra extending from those of thermal neutrons up to several hundreds of GeV. The requirements for measuring the dose equivalent in such a field are different from standard uses and it is thus necessary to investigate the response of monitoring devices thoroughly before the implementation of a monitoring system can be conducted. For the LHC, it is currently foreseen to install argon- and hydrogen-filled high-pressure ionisation chambers as radiation monitors of mixed fields. So far their response to these fields was poorly understood and, therefore, further investigation was necessary to prove that they can serve their function well enough. In this study, ionisation chambers of type IG5 (Centronic Ltd) were characterised by simulating their response functions by means of detailed FLUKA calculations as well as by calibration measurements for photons and neutrons at fixed energies. The latter results were used to obtain a better understanding and validation of the FLUKA simulations. Tests were also conducted at the CERF facility at CERN in order to compare the results with simulations of the response in a mixed radiation field. It is demonstrated that these detectors can be characterised sufficiently enough to serve their function as radiation monitors for the LHC.
Physics with charmonium - Highlights of BESIII and PANDA
NASA Astrophysics Data System (ADS)
Messchendorp, Johan
2014-11-01
The physics of the strong interaction is undoubtedly one of the most challenging areas of modern science. Quantum ChromoDynamics (QCD) is reproducing successfully the physics phenomena at distances much shorter than the size of the nucleon, where perturbation theory can be used yielding results of high precision and predictive power. At larger distance scales, however, perturbative methods cannot be applied anymore, although spectacular phenomena, such as the generation of hadron masses and quark confinement, occur. Studies using charmed quarks and gluon-rich matter have the potential to connect the perturbative and the non-perturbative QCD region. The annihilation of matter with antimatter in the mass regime of charmonium is an ideal environment to discover new states or transitions that could reveal the secrets of the strong interaction. Hadronic and electromagnetic transitions between charmonium states and their decays have been measured with a world-record in precision with the BESIII spectrometer at the electron-positron collider at IHEP Beijing, China. Moreover, unconventional narrow charmonium-rich states have been discovered recently in an energy regime above the open-charm threshold, thereby, possibly initiating a new era in charmonium spectroscopy. The near future experiment, PANDA, at the research facility FAIR in Germany, Darmstadt, will exploit the annihilation of cooled anti-protons with protons to perform charmonium spectroscopy with an incredible precision. I will present the most promising results that have been recently obtained with BESIII together with the future perspectives of PANDA in the field of charmonium spectroscopy.
MonALISA, an agent-based monitoring and control system for the LHC experiments
NASA Astrophysics Data System (ADS)
Balcas, J.; Kcira, D.; Mughal, A.; Newman, H.; Spiropulu, M.; Vlimant, J. R.
2017-10-01
MonALISA, which stands for Monitoring Agents using a Large Integrated Services Architecture, has been developed over the last fifteen years by California Insitute of Technology (Caltech) and its partners with the support of the software and computing program of the CMS and ALICE experiments at the Large Hadron Collider (LHC). The framework is based on Dynamic Distributed Service Architecture and is able to provide complete system monitoring, performance metrics of applications, Jobs or services, system control and global optimization services for complex systems. A short overview and status of MonALISA is given in this paper.
Proton-Proton and Proton-Antiproton Colliders
NASA Astrophysics Data System (ADS)
Scandale, Walter
In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.
Proton-Proton and Proton-Antiproton Colliders
NASA Astrophysics Data System (ADS)
Scandale, Walter
2014-04-01
In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.
Proton-Proton and Proton-Antiproton Colliders
NASA Astrophysics Data System (ADS)
Scandale, Walter
2015-02-01
In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.
National Cryo-Electron Microscopy Facility
Information about the National Cryo-EM Facility at NCI, created to provide researchers access to the latest cryo-EM technology for high resolution imaging. Includes timeline for installation and how to access the facility.
Department of Energy Technology Readiness Assessments - Process Guide and Training Plan
2008-09-12
Hanford Waste Treatment and Immobilization Plant ( WTP ) Analytical Laboratory, Low Activity Waste (LAW) Facility and Balance of Facilities (3 TRAs... WTP High-Level Waste (HLW) Facility – WTP Pre-Treatment (PT) Facility – Hanford River Protection Project Low Activity Waste Treatment Alternatives
Functional safety for the Advanced Technology Solar Telescope
NASA Astrophysics Data System (ADS)
Bulau, Scott; Williams, Timothy R.
2012-09-01
Since inception, the Advanced Technology Solar Telescope (ATST) has planned to implement a facility-wide functional safety system to protect personnel from harm and prevent damage to the facility or environment. The ATST will deploy an integrated safety-related control system (SRCS) to achieve functional safety throughout the facility rather than relying on individual facility subsystems to provide safety functions on an ad hoc basis. The Global Interlock System (GIS) is an independent, distributed, facility-wide, safety-related control system, comprised of commercial off-the-shelf (COTS) programmable controllers that monitor, evaluate, and control hazardous energy and conditions throughout the facility that arise during operation and maintenance. The GIS has been designed to utilize recent advances in technology for functional safety plus revised national and international standards that allow for a distributed architecture using programmable controllers over a local area network instead of traditional hard-wired safety functions, while providing an equivalent or even greater level of safety. Programmable controllers provide an ideal platform for controlling the often complex interrelationships between subsystems in a modern astronomical facility, such as the ATST. A large, complex hard-wired relay control system is no longer needed. This type of system also offers greater flexibility during development and integration in addition to providing for expanded capability into the future. The GIS features fault detection, self-diagnostics, and redundant communications that will lead to decreased maintenance time and increased availability of the facility.
Trending Technologies for Indoor FM: Looking for "Geo" in Information
NASA Astrophysics Data System (ADS)
Gunduz, M.; Isikdag, U.; Basaraner, M.
2016-10-01
Today technological developments in the Architecture Engineering and Construction (AEC) industry provides opportunities to build huge and complex buildings and facilities. In order to operate these facilities and to meet the requirements of the occupants and also to manage energy, waste and to keep all facility services operational, several Facility Management (FM) solutions were developed. This paper starts by presenting a state of art review of research related to Indoor Facility Management Systems. Later, a textual analysis focused to identify the research trends in this field is presented in the paper. The result of the literature review and textual analysis indicates that current research in Indoor FM Systems is underestimating the role of Geoinformation, Geoinformation models and systems.
Development of micromegas muon chambers for the ATLAS upgrade
NASA Astrophysics Data System (ADS)
Wotschack, J.
2012-02-01
Large-area particle detectors based on the bulk-micromegas technology are an attractive choice for the upgrade of LHC detectors and/or detectors for the ILC or other experiments. In the context of the R&D for the ATLAS Muon System upgrade, we have built detectors of order 1 m2. In order to overcome the spark problem in micromegas a novel protection scheme using resistive strips above the readout electrode has been developed. This technology has undergone extensive tests with hadron beams at the CERN-SPS, X-rays in the lab, as well as in a neutron beam. In addition, four 10 × 10 cm2 micromegas chambers have been installed in the ATLAS cavern and are taking data under LHC conditions. We will discuss the underlying design of the chambers and present results on the performance of these chambers.
Design and Construction of a Vertex Chamber and Measurement of the Average Beta-Hadron Lifetime
NASA Astrophysics Data System (ADS)
Nelson, Harry Norman
Four parameters describe the mixing of the three quark generations in the Standard Model of the weak charged current interaction. These four parameters are experimental inputs to the model. A measurement of the mean lifetime of hadrons containing b-quarks, or B-Hadrons, constrains the magnitudes of two of these parameters. Measurement of the B-Hadron lifetime requires a device that can measure the locations of the stable particles that result from B-Hadron decay. This device must function reliably in an inaccessible location, and survive high radiation levels. We describe the design and construction of such a device, a gaseous drift chamber. Tubes of 6.9 mm diameter, having aluminized mylar walls of 100 μm thickness are utilized in this Vertex Chamber. It achieves a spatial resolution of 45 mum, and a resolution in extrapolation to the B-Hadron decay location of 87 mum. Its inner layer is 4.6 cm from e^+e ^- colliding beams. The Vertex Chamber is situated within the MAC detector at PEP. We have analyzed both the 94 pb ^{-1} of integrated luminosity accumulated at sqrt{s} = 29 GeV with the Vertex Chamber in place as well as the 210 pb^{-1} accumulated previously. We require a lepton with large momentum transverse to the event thrust axis to obtain a sample of events enriched in B-Hadron decays. The distribution of signed impact parameters of all tracks in these events is used to measure the B-Hadron flight distance, and hence lifetime. The trimmed mean signed impact parameters are 130 +/- 19 μm for data accumulated with the Vertex Chamber, and 162 +/- 25 μm for previous data. Together these indicate an average B-Hadron lifetime of tau_{b} = (1.37_sp{-0.19}{+0.22} stat. +/- 0.11 sys.) times (1 +/- 0.15 sys.) psec. We separate additive and multiplicative systematic errors because the second does not degrade the statistical significance of the difference of the result from 0. If b-c dominates b-quark decay the corresponding weak mixing matrix element mid V_ {cb}mid = 0.047 +/- 0.006 +/- 0.005, where the first error is from this experiment, and the second theoretical uncertainty. If b-u dominates, midV _{ub}mid = 0.033 +/- 0.004 +/- 0.12.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, S. J.
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses – such as mρ/mp – can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to themore » $$q\\bar{q}$$ invariant mass squared. The same result, including spin terms, is obtained using light-front holography – the duality between light-front dynamics and AdS 5, the space of isometries of the conformal group if one modifies the action of AdS 5 by the dilaton e $κ^2$ z$^2$ in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. Lastly, the matching of the high and low momentum transfer regimes also determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics.« less
Brodsky, S. J.
2017-07-11
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses – such as mρ/mp – can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to themore » $$q\\bar{q}$$ invariant mass squared. The same result, including spin terms, is obtained using light-front holography – the duality between light-front dynamics and AdS 5, the space of isometries of the conformal group if one modifies the action of AdS 5 by the dilaton e $κ^2$ z$^2$ in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. Lastly, the matching of the high and low momentum transfer regimes also determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics.« less