Sample records for hadron structure functions

  1. Direct Observation of Quark-Hadron Duality in the Free Neutron {ital F}{sub 2} Structure Function

    DOE PAGES

    Niculescu, I.; Niculescu, G.; Melnitchouk, W.; ...

    2015-05-21

    Using the recently published data from the BONuS(Barely Off-shell Nucleon Structure) experiment at Jefferson Lab, which utilized a spectator tagging technique to extract the inclusive electron-free neutron scattering cross section, we obtain the first direct observation of quark-hadron duality in the neutron F-2 structure function. The data are used to reconstruct the lowest few (N = 2, 4, and 6) moments of F-2 in the three prominent nucleon resonance regions, as well as the moments integrated over the entire resonance region. Comparison with moments computed from global parametrizations of parton distribution functions suggest that quark-hadron duality holds locally for themore » neutron in the second and third resonance regions down to Q(2) approximate to 1 GeV2, with violations possibly up to 20% observed in the first resonance region.« less

  2. Unraveling hadron structure with generalized parton distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrei Belitsky; Anatoly Radyushkin

    2004-10-01

    The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling andmore » QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.« less

  3. Theoretical study of EAS hadronic structure

    NASA Technical Reports Server (NTRS)

    Popova, L.

    1985-01-01

    The structure of extensive air showers (EAS) is determined mainly by the energetic hadrons. They are strongly collimated in the core of the shower and essential difficulties are encountered for resolution of individual hadrons. The properties for resolution are different from the variety of hadron detectors used in EAS experiments. This is the main difficulty in obtaining a general agreement between actually registered data with different detectors. The most plausible source for disagreement is the uncertainty in determination of the energy of individual hadrons. This research demonstrates that a better agreement can be obtained with the average tendency of hadronic measurements if one assumes a larger coefficient of inelasticity and stronger energy increase of the total inelastic cross section in high energy pion interactions. EAS data above 10 to the 5th power GeV are revealing a faster development of hadronic cascades in the air then can be expected by extrapolating the parameters of hadron interactions obtained in accelerator measurements.

  4. Superconformal Algebraic Approach to Hadron Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Teramond, Guy F.; Brodsky, Stanley J.; Deur, Alexandre

    2017-03-01

    Fundamental aspects of nonperturbative QCD dynamics which are not obvious from its classical Lagrangian, such as the emergence of a mass scale and confinement, the existence of a zero mass bound state, the appearance of universal Regge trajectories and the breaking of chiral symmetry are incorporated from the onset in an effective theory based on superconformal quantum mechanics and its embedding in a higher dimensional gravitational theory. In addition, superconformal quantum mechanics gives remarkable connections between the light meson and nucleon spectra. This new approach to hadron physics is also suitable to describe nonperturbative QCD observables based on structure functions,more » such as GPDs, which are not amenable to a first-principle computation. The formalism is also successful in the description of form factors, the nonperturbative behavior of the strong coupling and diffractive processes. We also discuss in this article how the framework can be extended rather successfully to the heavy-light hadron sector.« less

  5. XVII International Conference on Hadron Spectroscopy and Structure

    NASA Astrophysics Data System (ADS)

    2017-09-01

    The Hadron 2017 Conference is the seventeenth of a series of biennial conferences started in 1985 at Maryland, USA. Its official name, XVII International Conference on Hadron Spectroscopy and Structure, includes for the first time the term structure to emphasize the importance that this issue has acquired in recent editions of the series. The aim of the conference is to provide an overview of the present status and progress in hadron structure and dynamics, as well as a preview of the forthcoming investigations. It will cover lectures on both experimental and theoretical aspects, including in particular the presentation of new results.

  6. Charge structure of the hadronic final state in deep-inelastic muon-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Bedełek, J.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Ftáčnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jachołkowska, A.; Janata, F.; Jancsó, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettinghale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Schneider, A.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1988-09-01

    The general charge properties of the hadronic final state produced in μ + p and μ + d interactions at 280 GeV are investigated. Quark charge retention and local charge compensation is observed. The ratio F {2/ n }/ F {2/ p } of the neutron to proton structure function is derived from the measurement of the average hadronic charge in μ d interactions.

  7. Exclusive processes and the fundamental structure of hadrons

    DOE PAGES

    Brodsky, Stanley J.

    2015-01-20

    I review the historical development of QCD predictions for exclusive hadronic processes, beginning with constituent counting rules and the quark interchange mechanism, phenomena which gave early validation for the quark structure of hadrons. The subsequent development of pQCD factorization theorems for hard exclusive amplitudes and the development of evolution equations for the hadron distribution amplitudes provided a rigorous framework for calculating hadronic form factors and hard scattering exclusive scattering processes at high momentum transfer. I also give a brief introduction to the field of "light-front holography" and the insights it brings to quark confinement, the behavior of the QCD couplingmore » in the nonperturbative domain, as well as hadron spectroscopy and the dynamics of exclusive processes.« less

  8. Exclusive processes and the fundamental structure of hadrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.

    I review the historical development of QCD predictions for exclusive hadronic processes, beginning with constituent counting rules and the quark interchange mechanism, phenomena which gave early validation for the quark structure of hadrons. The subsequent development of pQCD factorization theorems for hard exclusive amplitudes and the development of evolution equations for the hadron distribution amplitudes provided a rigorous framework for calculating hadronic form factors and hard scattering exclusive scattering processes at high momentum transfer. I also give a brief introduction to the field of "light-front holography" and the insights it brings to quark confinement, the behavior of the QCD couplingmore » in the nonperturbative domain, as well as hadron spectroscopy and the dynamics of exclusive processes.« less

  9. Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations.

    PubMed

    Ma, Yan-Qing; Qiu, Jian-Wei

    2018-01-12

    Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. We also show that the proposed functions for lattice QCD calculation of PDFs in the literature are special cases of these good LCSs.

  10. Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations

    DOE PAGES

    Ma, Yan-Qing; Qiu, Jian-Wei

    2018-01-10

    Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. In conclusion, we also show that the proposed functions for lattice QCDmore » calculation of PDFs in the literature are special cases of these good LCSs.« less

  11. Di-hadron production at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anefalos Pereira, Sergio; et. al.,

    Semi-inclusive deep inelastic scattering (SIDIS) has been used extensively in recent years as an important testing ground for QCD. Studies so far have concentrated on better determination of parton distribution functions, distinguishing between the quark and antiquark contributions, and understanding the fragmentation of quarks into hadrons. Hadron pair (di-hadron) SIDIS provides information on the nucleon structure and hadronization dynamics that complement single hadron SIDIS. Di-hadrons allow the study of low- and high-twist distribution functions and Dihadron Fragmentation Functions (DiFF). Together with the twist-2 PDFs ( f1, g1, h1), the Higher Twist (HT) e and hL functions are very interesting becausemore » they offer insights into the physics of the largely unexplored quark-gluon correlations, which provide access into the dynamics inside hadrons. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected data using the CEBAF 6 GeV longitudinally polarized electron beam on longitudinally polarized solid NH3 targets. Preliminary results on di-hadron beam-, target- and double-spin asymmetries will be presented.« less

  12. Di-hadron production at Jefferson Laboratory

    NASA Astrophysics Data System (ADS)

    Anefalos Pereira, Sergio; CLAS Collaboration

    2015-04-01

    Semi-inclusive deep inelastic scattering (SIDIS) has been used extensively in recent years as an important testing ground for QCD. Studies so far have concentrated on better determination of parton distribution functions, distinguishing between the quark and antiquark contributions, and understanding the fragmentation of quarks into hadrons. Pair of hadrons (di-hadron) SIDIS provides information on the nucleon structure and hadronization dynamics that complements single-hadron SIDIS. The study of di-hadrons allow us to study higher twist distribution functions and Dihadron Fragmentation Functions (DiFF). Together with the twist-2 PDFs (f 1, g 1, h 1), the Higher Twist (HT) e and hL functions are very interesting because they offer insights into the physics of the largely unexplored quark-gluon correlations which provide direct and unique insights into the dynamics inside hadrons. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected data using the CEBAF 6 GeV longitudinally polarized electron beam on longitudinally polarized solid NH3 targets. Preliminary results on beam-, target- and double-spin asymmetries will be presented.

  13. SU(3) group structure of strange flavor hadrons

    NASA Astrophysics Data System (ADS)

    Hong, Soon-Tae

    2015-01-01

    We provide the isoscalar factors of the SU(3) Clebsch-Gordan series 8⊗ 35 which are extensions of the previous works of de Swart, McNamee and Chilton and play practical roles in current ongoing strange flavor hadron physics research. To this end, we pedagogically study the SU(3) Lie algebra, its spin symmetries, and its eigenvalues for irreducible representations. We also evaluate the values of the Wigner D functions related to the isoscalar factors; these functions are immediately applicable to strange flavor hadron phenomenology. Exploiting these SU(3) group properties associated with the spin symmetries, we investigate the decuplet-to-octet transition magnetic moments and the baryon octet and decuplet magnetic moments in the flavor symmetric limit to construct the Coleman-Glashow-type sum rules.

  14. Using hadron-in-jet data in a global analysis of D* fragmentation functions

    NASA Astrophysics Data System (ADS)

    Anderle, Daniele P.; Kaufmann, Tom; Stratmann, Marco; Ringer, Felix; Vitev, Ivan

    2017-08-01

    We present a novel global QCD analysis of charged D*-meson fragmentation functions at next-to-leading order accuracy. This is achieved by making use of the available data for single-inclusive D*-meson production in electron-positron annihilation, hadron-hadron collisions, and, for the first time, in-jet fragmentation in proton-proton scattering. It is shown how to include all relevant processes efficiently and without approximations within the Mellin moment technique, specifically for the in-jet fragmentation cross section. The presented technical framework is generic and can be straightforwardly applied to future analyses of fragmentation functions for other hadron species, as soon as more in-jet fragmentation data become available. We choose to work within the zero mass variable flavor number scheme which is applicable for sufficiently high energies and transverse momenta. The obtained optimum set of parton-to-D* fragmentation functions is accompanied by Hessian uncertainty sets which allow one to propagate hadronization uncertainties to other processes of interest.

  15. Note on X(3872) production at hadron colliders and its molecular structure

    NASA Astrophysics Data System (ADS)

    Albaladejo, Miguel; Guo, Feng-Kun; Hanhart, Christoph; Meißner, Ulf-G.; Nieves, Juan; Nogga, Andreas; Yang, Zhi

    2017-12-01

    The production of the X(3872) as a hadronic molecule in hadron colliders is clarified. We show that the conclusion of Bignamini et al., Phys. Rev. Lett. 103 (2009) 162001, that the production of the X(3872) at high p T implies a non-molecular structure, does not hold. In particular, using the well understood properties of the deuteron wave function as an example, we identify the relevant scales in the production process. Supported by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC (11621131001), DFG (TRR110)), by NSFC (11647601), by the CAS Key Research Program of Frontier Sciences (QYZDB-SSW-SYS013), by the Thousand Talents Plan for Young Professionals, by the CAS President’s International Fellowship Initiative (PIFI) (2017VMA0025), and by Spanish Ministerio de Economía y Competitividad and European FEDER under contracts FIS2014-51948-C2-1-P and SEV-2014-0398. Part of the computations have been performed on JUQUEEN and JURECA of the JSC, Jülich, Germany

  16. Hadronic molecules

    NASA Astrophysics Data System (ADS)

    Guo, Feng-Kun; Hanhart, Christoph; Meißner, Ulf-G.; Wang, Qian; Zhao, Qiang; Zou, Bing-Song

    2018-01-01

    A large number of experimental discoveries especially in the heavy quarkonium sector that did not meet the expectations of the until then very successful quark model led to a renaissance of hadron spectroscopy. Among various explanations of the internal structure of these excitations, hadronic molecules, being analogs of light nuclei, play a unique role since for those predictions can be made with controlled uncertainty. Experimental evidence of various candidates of hadronic molecules and methods of identifying such structures are reviewed. Nonrelativistic effective field theories are the suitable framework for studying hadronic molecules and are discussed in both the continuum and finite volumes. Also pertinent lattice QCD results are presented. Further, the production mechanisms and decays of hadronic molecules are discussed and comments are given on the reliability of certain assertions often made in the literature.

  17. Quark Hadron Duality - Recent Jefferson Lab Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niculescu, Maria Ioana

    2016-08-01

    The duality between the partonic and hadronic descriptions of electron--nucleon scattering is a remarkable feature of nuclear interactions. When averaged over appropriate energy intervals the cross section at low energy which is dominated by nucleon resonances resembles the smooth behavior expected from perturbative QCD. Recent Jefferson Lab results indicate that quark-hadron duality is present in a variety of observables, not just the proton F2 structure function. An overview of recent results, especially local quark-hadron duality on the neutron, are presented here.

  18. Ultra-peripheral collisions and hadronic structure

    NASA Astrophysics Data System (ADS)

    Klein, Spencer R.

    2017-11-01

    Ultra-peripheral collisions are the energy frontier for photon-mediated interactions, reaching, at the Large Hadron Collider (LHC), γ - p center of mass energies five to ten times higher than at HERA and reaching γγ energies higher than at LEP. Photoproduction of heavy quarkonium and dijets in pp and pA collisions probes the gluon distribution in protons at Bjorken-x values down to 3 ×10-6, far smaller than can be otherwise studied. In AA collisions, these reactions probe the gluon distributions in heavy ions, down to x values of a few 10-5. Although more theoretical work is needed to nail down all of the uncertainties, inclusion of these data in current parton distribution function fits would greatly improve the accuracy of the gluon distributions at low Bjorken-x and low/moderate Q2. High-statistics ρ0 data probe the spatial distribution of the interaction sites; the site distribution is given by the Fourier transform of dσ / dt. After introducing UPCs, this review presents recent measurements of dilepton production and light-by-light scattering and recent data on proton and heavy nuclei structure, emphasizing results presented at Quark Matter 2017 (QM2017).

  19. Adler function and hadronic contribution to the muon g-2 in a nonlocal chiral quark model

    NASA Astrophysics Data System (ADS)

    Dorokhov, Alexander E.

    2004-11-01

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instantonlike quark-quark interaction. This function describes the transition between the high-energy asymptotically free region of almost massless current quarks to the low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from the hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, ahvp(1)μ, is estimated.

  20. A conservation law, entropy principle and quantization of fractal dimensions in hadron interactions

    NASA Astrophysics Data System (ADS)

    Zborovský, I.

    2018-04-01

    Fractal self-similarity of hadron interactions demonstrated by the z-scaling of inclusive spectra is studied. The scaling regularity reflects fractal structure of the colliding hadrons (or nuclei) and takes into account general features of fragmentation processes expressed by fractal dimensions. The self-similarity variable z is a function of the momentum fractions x1 and x2 of the colliding objects carried by the interacting hadron constituents and depends on the momentum fractions ya and yb of the scattered and recoil constituents carried by the inclusive particle and its recoil counterpart, respectively. Based on entropy principle, new properties of the z-scaling concept are found. They are conservation of fractal cumulativity in hadron interactions and quantization of fractal dimensions characterizing hadron structure and fragmentation processes at a constituent level.

  1. τ hadronic spectral function moments in a nonpower QCD perturbation theory

    NASA Astrophysics Data System (ADS)

    Abbas, Gauhar; Ananthanarayan, B.; Caprini, I.; Fischer, J.

    2016-04-01

    The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling and other QCD parameters from the hadronic decays of the τ lepton. We consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ;reference model;, including moments that are poorly described by the standard expansions.

  2. Transverse momentum of hadrons produced in ν and overlineν interactions on an isoscalar target in BEBC

    NASA Astrophysics Data System (ADS)

    Deden, H.; Fritze, P.; Grässler, H.; Hasert, F. J.; Morfin, J.; Schulte, R.; Böckmann, K.; Geich-Gimbel, C.; Kokott, T. P.; Nellen, B.; Pech, R.; Saarikko, H.; Bosetti, P. C.; Cundy, D. C.; Grant, A. L.; Hulth, P. O.; Pape, L.; Scott, W. G.; Skjeggestad, O.; Mermikides, M.; Simopoulou, E.; Vayaki, A.; Barnham, K. W. J.; Butterworth, I.; Chima, J. S.; Clayton, E. F.; Miller, D. B.; Mobayyen, M.; Penfold, C.; Powell, K. J.; Batley, J. R.; Giles, R.; Grossmann, P.; Lloyd, J. L.; Myatt, G.; Perkins, D. H.; Radojicic, D.; Renton, P.; Saitta, B.; Bloch, M.; Bolognese, T.; Tallini, B.; Velasco, J.; Vignaud, D.; Aachen-Bonn-CERN-Demokritos Athens-I. C. London-Oxford-Saclay Collaboration

    1981-04-01

    The average transverse momentum squared, < p⊥2>, of hadrons is studied as a function of W2 and of Q2 for ν and overlineν interactions on an isoscalar target. An increase of < p⊥2> with W2 is observed for the hadrons emitted forward in the hadronic c.m.s. The p⊥ dependence of the fragmentation function is found to factorise from the structure function at fixed W, but does not factorise at fixed Q2. Unlike the case of forward-going particles, the < p⊥2> of hadrons going backward in the c.m.s. shows no strong dependence on W2.

  3. Digital Hadron Calorimetry

    NASA Astrophysics Data System (ADS)

    Bilki, Burak

    2018-03-01

    The Particle Flow Algorithms attempt to measure each particle in a hadronic jet individually, using the detector providing the best energy/momentum resolution. Therefore, the spatial segmentation of the calorimeter plays a crucial role. In this context, the CALICE Collaboration developed the Digital Hadron Calorimeter. The Digital Hadron Calorimeter uses Resistive Plate Chambers as active media and has a 1-bit resolution (digital) readout of 1 × 1 cm2 pads. The calorimeter was tested with steel and tungsten absorber structures, as well as with no absorber structure, at the Fermilab and CERN test beam facilities over several years. In addition to conventional calorimetric measurements, the Digital Hadron Calorimeter offers detailed measurements of event shapes, rigorous tests of simulation models and various tools for improved performance due to its very high spatial granularity. Here we report on the results from the analysis of pion and positron events. Results of comparisons with the Monte Carlo simulations are also discussed. The analysis demonstrates the unique utilization of detailed event topologies.

  4. PREFACE: Focus section on Hadronic Physics Focus section on Hadronic Physics

    NASA Astrophysics Data System (ADS)

    Roberts, Craig; Swanson, Eric

    2007-07-01

    Hadronic physics is the study of strongly interacting matter and its underlying theory, Quantum Chromodynamics (QCD). The field had its beginnings after World War Two, when hadrons were discovered in ever increasing numbers. Today, it encompasses topics like the quark-gluon structure of hadrons at varying scales, the quark-gluon plasma and hadronic matter at extreme temperature and density; it also underpins nuclear physics and has significant impact on particle physics, astrophysics, and cosmology. Among the goals of hadronic physics are to determine the parameters of QCD, understand the origin and characteristics of confinement, understand the dynamics and consequences of dynamical chiral symmetry breaking, explore the role of quarks and gluons in nuclei and in matter under extreme conditions and understand the quark and gluon structure of hadrons. In general, the process is one of discerning the relevant degrees of freedom and relating these to the fundamental fields of QCD. The emphasis is on understanding QCD, rather than testing it. The papers gathered in this special focus section of Journal of Physics G: Nuclear and Particle Physics attempt to cover this broad range of subjects. Alkofer and Greensite examine the issue of quark and gluon confinement with the focus on models of the QCD vacuum, lattice gauge theory investigations, and the relationship to the AdS/CFT correspondence postulate. Arrington et al. review nucleon form factors and their role in determining quark orbital momentum, the strangeness content of the nucleon, meson cloud effects, and the transition from nonperturbative to perturbative QCD dynamics. The physics associated with hadronic matter at high temperature and density and at low Bjorken-x at the Relativistic Heavy Ion Collider (RHIC), the SPS at CERN, and at the future LHC is summarized by d'Enterria. The article of Lee and Smith examines experiment and theory associated with electromagnetic meson production from nucleons and

  5. Quark–hadron phase structure, thermodynamics, and magnetization of QCD matter

    NASA Astrophysics Data System (ADS)

    Nasser Tawfik, Abdel; Magied Diab, Abdel; Hussein, M. T.

    2018-05-01

    The SU(3) Polyakov linear-sigma model (PLSM) is systematically implemented to characterize the quark-hadron phase structure and to determine various thermodynamic quantities and the magnetization of quantum chromodynamic (QCD) matter. Using mean-field approximation, the dependence of the chiral order parameter on a finite magnetic field is also calculated. Under a wide range of temperatures and magnetic field strengths, various thermodynamic quantities including trace anomaly, speed of sound squared, entropy density, and specific heat are presented, and some magnetic properties are described as well. Where available these results are compared to recent lattice QCD calculations. The temperature dependence of these quantities confirms our previous finding that the transition temperature is reduced with the increase in the magnetic field strength, i.e. QCD matter is characterized by an inverse magnetic catalysis. Furthermore, the temperature dependence of the magnetization showing that QCD matter has paramagnetic properties slightly below and far above the pseudo-critical temperature is confirmed as well. The excellent agreement with recent lattice calculations proves that our QCD-like approach (PLSM) seems to possess the correct degrees of freedom in both the hadronic and partonic phases and describes well the dynamics deriving confined hadrons to deconfined quark-gluon plasma.

  6. Local Quark-Hadron Duality in Electron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wally Melnitchouk

    2007-09-10

    We present some recent developments in the study of quark-hadron duality in structure functions in the resonance region. To understand the workings of local duality we introduce the concept of truncated moments, which are used to describe the Q^2 dependence of specific resonance regions within a QCD framework.

  7. Chiral effective theory methods and their application to the structure of hadrons from lattice QCD

    NASA Astrophysics Data System (ADS)

    Shanahan, P. E.

    2016-12-01

    For many years chiral effective theory (ChEFT) has enabled and supported lattice QCD calculations of hadron observables by allowing systematic effects from unphysical lattice parameters to be controlled. In the modern era of precision lattice simulations approaching the physical point, ChEFT techniques remain valuable tools. In this review we discuss the modern uses of ChEFT applied to lattice studies of hadron structure in the context of recent determinations of important and topical quantities. We consider muon g-2, strangeness in the nucleon, the proton radius, nucleon polarizabilities, and sigma terms relevant to the prediction of dark-matter-hadron interaction cross-sections, among others.

  8. Rope Hadronization and Strange Particle Production

    NASA Astrophysics Data System (ADS)

    Bierlich, Christian

    2018-02-01

    Rope Hadronization is a model extending the Lund string hadronization model to describe environments with many overlapping strings, such as high multiplicity pp collisions or AA collisions. Including effects of Rope Hadronization drastically improves description of strange/non-strange hadron ratios as function of event multiplicity in all systems from e+e- to AA. Implementation of Rope Hadronization in the MC event generators Dipsy and PYTHIA8 is discussed, as well as future prospects for jet studies and studies of small systems.

  9. Color Confinement, Hadron Dynamics, and Hadron Spectroscopy from Light-Front Holography and Superconformal Algebra

    DOE PAGES

    Brodsky, Stanley J.

    2018-01-01

    Tmore » he QCD light-front Hamiltonian equation H L F Ψ = M 2 Ψ derived from quantization at fixed LF time τ = t     +     z / c provides a causal, frame-independent method for computing hadron spectroscopy as well as dynamical observables such as structure functions, transverse momentum distributions, and distribution amplitudes. he QCD Lagrangian with zero quark mass has no explicit mass scale. de Alfaro, Fubini, and Furlan (dAFF) have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the dAFF procedure to the QCD light-front Hamiltonian, it leads to a color-confining potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q q ¯ invariant mass squared. he same result, including spin terms, is obtained using light-front holography, the duality between light-front dynamics and A d S 5 , if one modifies the A d S 5 action by the dilaton e κ 2 z 2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions provide a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons and a universal Regge slope. he pion q q ¯ eigenstate has zero mass at m q = 0 . he superconformal relations also can be extended to heavy-light quark mesons and baryons. his approach also leads to insights into the physics underlying hadronization at the amplitude level. I will also discuss the remarkable features of the Poincaré invariant, causal vacuum defined by light-front quantization and its impact on the interpretation of the cosmological constant. AdS/QCD also predicts the analytic form of the nonperturbative running coupling α s ( Q 2 ) ∝ e - Q 2 / 4 κ 2 . he

  10. Color Confinement, Hadron Dynamics, and Hadron Spectroscopy from Light-Front Holography and Superconformal Algebra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.

    Tmore » he QCD light-front Hamiltonian equation H L F Ψ = M 2 Ψ derived from quantization at fixed LF time τ = t     +     z / c provides a causal, frame-independent method for computing hadron spectroscopy as well as dynamical observables such as structure functions, transverse momentum distributions, and distribution amplitudes. he QCD Lagrangian with zero quark mass has no explicit mass scale. de Alfaro, Fubini, and Furlan (dAFF) have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the dAFF procedure to the QCD light-front Hamiltonian, it leads to a color-confining potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q q ¯ invariant mass squared. he same result, including spin terms, is obtained using light-front holography, the duality between light-front dynamics and A d S 5 , if one modifies the A d S 5 action by the dilaton e κ 2 z 2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions provide a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons and a universal Regge slope. he pion q q ¯ eigenstate has zero mass at m q = 0 . he superconformal relations also can be extended to heavy-light quark mesons and baryons. his approach also leads to insights into the physics underlying hadronization at the amplitude level. I will also discuss the remarkable features of the Poincaré invariant, causal vacuum defined by light-front quantization and its impact on the interpretation of the cosmological constant. AdS/QCD also predicts the analytic form of the nonperturbative running coupling α s ( Q 2 ) ∝ e - Q 2 / 4 κ 2 . he

  11. Measurement of the electron structure function F2e at LEP energies

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Belous, K.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Gonçalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Slominski, W.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Szwed, J.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tomé, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Delphi Collaboration

    2014-10-01

    The hadronic part of the electron structure function F2e has been measured for the first time, using e+e- data collected by the DELPHI experiment at LEP, at centre-of-mass energies of √{ s} = 91.2- 209.5 GeV. The data analysis is simpler than that of the measurement of the photon structure function. The electron structure function F2e data are compared to predictions of phenomenological models based on the photon structure function. It is shown that the contribution of large target photon virtualities is significant. The data presented can serve as a cross-check of the photon structure function F2γ analyses and help in refining existing parameterisations.

  12. Electromagnetic and muonic structure of showers initiated by gamma-rays and by hadrons

    NASA Technical Reports Server (NTRS)

    Hillas, A. M.

    1985-01-01

    If photon cascades develop by the usual mechanisms, there should indeed be notable differences between the structure of showers due to photon and hadron primaries, as regards muon densities and lateral distributions of some detector signals. The muon content of showers from Cygnus X-3, observed at Kiel, cannot be understood in this way. One remedy is to postulate arbitrarily a strong hadronic interaction of photons in the TeV region. This would utterly change the nature of electromagnetic cascades, but surprisingly does not at first sight seem to be in conflict with air shower observations.

  13. Quark-hadron duality in lepton scattering off nucleons

    NASA Astrophysics Data System (ADS)

    Graczyk, Krzysztof M.

    2010-03-01

    Quark-hadron (QH) duality in lepton scattering off nucleons is studied with the resonance quark model. It is shown that in the case of neutrino scattering off an isoscalar target the duality is simultaneously observed for charged and neutral currents xF1νN, F2νN, and xF3νN weak structure functions. We demonstrate that the QH duality can be a useful property for modeling structure functions in the so-called resonance region. As an example it is shown that combining relativistic quark model predictions with duality arguments allows a construction of the inclusive resonance F2ep structure function.

  14. A new possible picture of the hadron structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokrovsky, Yury E.

    A new chiral-scale invariant version of the bag model (CSB) is developed and applied to calculations of masses and radii for single bag states. The mass formula of the CSB model contains no free parameters and connects masses and radii of the bags with fundamental QCD scales, namely with {lambda}{sub QCD}, , , and quark masses. For high angular momentum states the CSB model well describes hadron Regge trajectories and predicts thin flux tubes with R{sub tube}{approx_equal}0.25 fm close to the small tube radii introduced a posteriori in modern models. For low angular momentum states this model predicts smallmore » radii of the bags R{sub bag}{approx_equal}0.25 fm close to the radii associated with constituent quarks. Masses of the lowest angular momentum bags are obtained close to the data for well known hadron resonances ({pi}(1300), {omega}(1420), N(1440),{delta}(1600), etc.). These resonances are predicted to be almost single bag states. But ground states of SU(3) hadrons (N(940), {pi}(140), etc.) are treated as strongly bounded multi bag states--BagBag-mesons, and BagBagBag-baryons like in the old Fermi, Yang, and Sakata models. As well, this model predicts the low mass excitations of SU(3) hadrons newly observed for nucleons at the following masses 1004, 1044, and 1094 MeV.« less

  15. Excited Nucleons and Hadron Structure - Proceedings of the Nstar 2000 Conference

    NASA Astrophysics Data System (ADS)

    Burkert, V. D.; Elouadrhiri, L.; Kelly, J. J.; Minehart, R. C.

    in Kaon Production with Pions and Photons * Hyperon Electroproduction with CLAS * From Bjorken to Drell-Hearn-Gerasimov Sum Rules * GDH Measurements at Mainz * Double Polarization Measurements in Inclusive Inelastic e - p Scattering * Measurement of Inclusive Spin Asymmetries and Sum Rules on 3He and the Neutron * Polarization and Out-of-Plane Responses in Pion and ETA Electroproduction * Polarization Observables in π+ Electroproduction with CLAS * Pion Electroproduction on the Nucleon and the Generalized GDH Sum Rule * Virtual Compton Scattering in the Resonance Region * What We Know about the Theoretical Foundation of Duality in Electron Scattering * Hadron Structure in Lattice QCD: Exploring the Gluon Wave Functional * N* Spectrum in Lattice QCD * Baryon Spectrum in the Large Nc Limit * Deeply Virtual Photon and Meson Electroproduction * Why N*'s are Important * Participant List

  16. Determining the structure of Higgs couplings at the CERN LargeHadron Collider.

    PubMed

    Plehn, Tilman; Rainwater, David; Zeppenfeld, Dieter

    2002-02-04

    Higgs boson production via weak boson fusion at the CERN Large Hadron Collider has the capability to determine the dominant CP nature of a Higgs boson, via the tensor structure of its coupling to weak bosons. This information is contained in the azimuthal angle distribution of the two outgoing forward tagging jets. The technique is independent of both the Higgs boson mass and the observed decay channel.

  17. Spin, twist and hadron structure in deep inelastic processes

    NASA Astrophysics Data System (ADS)

    Jaffe, R. L.; Meyer, H.; Piller, G.

    These notes provide an introduction to polarization effects in deep inelastic processes in QCD. We emphasize recent work on transverse asymmetries, subdominant effects, and the role of polarization in fragmentation and in purely hadronic processes. After a review of kinematics and some basic tools of short distance analysis, we study the twist, helicity, chirality and transversity dependence of a variety of high energy processes sensitive to the quark and gluon substructure of hadrons.

  18. Hadron production in diffractive deep-inelastic scattering

    NASA Astrophysics Data System (ADS)

    H1 Collaboration; Adloff, C.; Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Bähr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Bassler, U.; Bate, P.; Beck, M.; Beglarian, A.; Behrend, H.-J.; Beier, C.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Borras, K.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brown, D. P.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Calvet, D.; Campbell, A. J.; Carli, T.; Chabert, E.; Charlet, M.; Clarke, D.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; de Roeck, A.; de Wolf, E. A.; Delcourt, B.; Diaconu, C.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Donovan, K. T.; Dowell, J. D.; Droutskoi, A.; Ebert, J.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Enzenberger, M.; Erdmann, M.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haustein, V.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herynek, I.; Hewitt, K.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; Isolarş Sever, Ç.; Itterbeck, H.; Jacquet, M.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kander, M.; Kant, D.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küpper, A.; Küster, H.; Kuhlen, M.; Kurča, T.; Laforge, B.; Lahmann, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehmann, M.; Lehner, F.; Lemaitre, V.; Levonian, S.; Lindstroem, M.; Lipinski, J.; List, B.; Lobo, G.; Lubimov, V.; Lüke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krüger, H.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Maxfield, S. J.; McMahon, S. J.; McMahon, T. R.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Mohr, R.; Mohrdieck, S.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nix, O.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Passaggio, S.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pöschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Reimer, P.; Reisert, B.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Scheins, J.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schultz-Coulon, H.-C.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Swart, M.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P. D.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; van Esch, P.; van Mechelen, P.; Vazdik, Y.; Villet, G.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wittmann, E.; Wobisch, M.; Wollatz, H.; Wünsch, E.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zurnedden, M.

    1998-05-01

    Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (xF) variable for charged particles, the squared transverse momentum of charged particles (pT*2), and the mean pT*2 as a function of xF. These distributions are compared with results in the γ*p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q2 by hard gluons.

  19. Towards tests of quark-hadron duality with functional analysis and spectral function data

    NASA Astrophysics Data System (ADS)

    Boito, Diogo; Caprini, Irinel

    2017-04-01

    The presence of terms that violate quark-hadron duality in the expansion of QCD Green's functions is a generally accepted fact. Recently, a new approach was proposed for the study of duality violations (DVs), which exploits the existence of a rigorous lower bound on the functional distance, measured in a certain norm, between a "true" correlator and its approximant calculated theoretically along a contour in the complex energy plane. In the present paper, we pursue the investigation of functional-analysis-based tests towards their application to real spectral function data. We derive a closed analytic expression for the minimal functional distance based on the general weighted L2 norm and discuss its relation with the distance measured in the L∞ norm. Using fake data sets obtained from a realistic toy model in which we allow for covariances inspired from the publicly available ALEPH spectral functions, we obtain, by Monte Carlo simulations, the statistical distribution of the strength parameter that measures the magnitude of the DV term added to the usual operator product expansion. The results show that, if the region with large errors near the end point of the spectrum in τ decays is excluded, the functional-analysis-based tests using either L2 or L∞ norms are able to detect, in a statistically significant way, the presence of DVs in realistic spectral function pseudodata.

  20. PREFACE: Focus section on Hadronic Physics

    NASA Astrophysics Data System (ADS)

    Roberts, Craig; Swanson, Eric

    2007-07-01

    Hadronic physics is the study of strongly interacting matter and its underlying theory, Quantum Chromodynamics (QCD). The field had its beginnings after World War Two, when hadrons were discovered in ever increasing numbers. Today, it encompasses topics like the quark-gluon structure of hadrons at varying scales, the quark-gluon plasma and hadronic matter at extreme temperature and density; it also underpins nuclear physics and has significant impact on particle physics, astrophysics, and cosmology. Among the goals of hadronic physics are to determine the parameters of QCD, understand the origin and characteristics of confinement, understand the dynamics and consequences of dynamical chiral symmetry breaking, explore the role of quarks and gluons in nuclei and in matter under extreme conditions and understand the quark and gluon structure of hadrons. In general, the process is one of discerning the relevant degrees of freedom and relating these to the fundamental fields of QCD. The emphasis is on understanding QCD, rather than testing it. The papers gathered in this special focus section of Journal of Physics G: Nuclear and Particle Physics attempt to cover this broad range of subjects. Alkofer and Greensite examine the issue of quark and gluon confinement with the focus on models of the QCD vacuum, lattice gauge theory investigations, and the relationship to the AdS/CFT correspondence postulate. Arrington et al. review nucleon form factors and their role in determining quark orbital momentum, the strangeness content of the nucleon, meson cloud effects, and the transition from nonperturbative to perturbative QCD dynamics. The physics associated with hadronic matter at high temperature and density and at low Bjorken-x at the Relativistic Heavy Ion Collider (RHIC), the SPS at CERN, and at the future LHC is summarized by d'Enterria. The article of Lee and Smith examines experiment and theory associated with electromagnetic meson production from nucleons and

  1. Systematic Uncertainties in High-Energy Hadronic Interaction Models

    NASA Astrophysics Data System (ADS)

    Zha, M.; Knapp, J.; Ostapchenko, S.

    2003-07-01

    Hadronic interaction models for cosmic ray energies are uncertain since our knowledge of hadronic interactions is extrap olated from accelerator experiments at much lower energies. At present most high-energy models are based on Grib ov-Regge theory of multi-Pomeron exchange, which provides a theoretical framework to evaluate cross-sections and particle production. While experimental data constrain some of the model parameters, others are not well determined and are therefore a source of systematic uncertainties. In this paper we evaluate the variation of results obtained with the QGSJET model, when modifying parameters relating to three ma jor sources of uncertainty: the form of the parton structure function, the role of diffractive interactions, and the string hadronisation. Results on inelastic cross sections, on secondary particle production and on the air shower development are discussed.

  2. The Emergence of Hadrons from QCD Color

    NASA Astrophysics Data System (ADS)

    Brooks, William; Color Dynamics in Cold Matter (CDCM) Collaboration

    2015-10-01

    The formation of hadrons from energetic quarks, the dynamical enforcement of QCD confinement, is not well understood at a fundamental level. In Deep Inelastic Scattering, modifications of the distributions of identified hadrons emerging from nuclei of different sizes reveal a rich variety of spatial and temporal characteristics of the hadronization process, including its dependence on spin, flavor, energy, and hadron mass and structure. The EIC will feature a wide range of kinematics, allowing a complete investigation of medium-induced gluon bremsstrahlung by the propagating quarks, leading to partonic energy loss. This fundamental process, which is also at the heart of jet quenching in heavy ion collisions, can be studied for light and heavy quarks at the EIC through observables quantifying hadron ``attenuation'' for a variety of hadron species. Transverse momentum broadening of hadrons, which is sensitive to the nuclear gluonic field, will also be accessible, and can be used to test our understanding from pQCD of how this quantity evolves with pathlength, as well as its connection to partonic energy loss. The evolution of the forming hadrons in the medium will shed new light on the dynamical origins of the forces between hadrons, and thus ultimately on the nuclear force. Supported by the Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) of Chile.

  3. New Insights into Color Confinement, Hadron Dynamics, Spectroscopy, and Jet Hadronization from Light-Front Holography and Superconformal Algebra

    NASA Astrophysics Data System (ADS)

    Brodsky, S. J.

    2017-07-01

    A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses - such as m ρ/ m p - can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q\\overline{q} invariant mass squared. The same result, including spin terms, is obtained using light-front holography - the duality between light-front dynamics and AdS5, the space of isometries of the conformal group if one modifies the action of AdS5 by the dilaton {e}^{κ^2}{z}^2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter {Λ}_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The

  4. New Insights into Color Confinement, Hadron Dynamics, Spectroscopy, and Jet Hadronization from Light-Front Holography and Superconformal Algebra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, S. J.

    A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses – such as mρ/mp – can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to themore » $$q\\bar{q}$$ invariant mass squared. The same result, including spin terms, is obtained using light-front holography – the duality between light-front dynamics and AdS 5, the space of isometries of the conformal group if one modifies the action of AdS 5 by the dilaton e $κ^2$ z$^2$ in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD

  5. New Insights into Color Confinement, Hadron Dynamics, Spectroscopy, and Jet Hadronization from Light-Front Holography and Superconformal Algebra

    DOE PAGES

    Brodsky, S. J.

    2017-07-11

    A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses – such as mρ/mp – can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to themore » $$q\\bar{q}$$ invariant mass squared. The same result, including spin terms, is obtained using light-front holography – the duality between light-front dynamics and AdS 5, the space of isometries of the conformal group if one modifies the action of AdS 5 by the dilaton e $κ^2$ z$^2$ in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD

  6. Hard Diffraction in Lepton--Hadron and Hadron--Hadron Collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.

    2002-09-01

    It is argued that the breakdown of factorization observed recently in the diffractive dijet production in deep inelastic lepton induced and hadron induced processes is naturally explained in the Good--Walker picture of diffraction dissociation. An explicit formula for the hadronic cross-section is given and successfully compared with the existing data.

  7. The gluon structure of hadrons and nuclei from lattice QCD

    NASA Astrophysics Data System (ADS)

    Shanahan, Phiala

    2018-03-01

    I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCD calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.

  8. Review on DTU-parton model for hadron-hadron and hadron-nucleus collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, C.B.

    1980-08-01

    The parton picture of color separation of dual string and its subsequent breakup is used to motivate the DTU-parton model for high energy small p/sub T/ multiparticle productions in hadron-hadron and hadron-nucleus collisions. A brief survey on phenomenological applications of the model: such as the inclusive spectra for various hh processes and central plateau heights predicted, hA inclusive spectra and the approximate anti v-universalities is presented.

  9. Multiplicities of Hadrons Within Jets at STAR

    NASA Astrophysics Data System (ADS)

    Wheeler, Suzanne; Drachenberg, Jim; STAR Collaboration

    2017-09-01

    Jet measurements have long been tools used to understand QCD phenomena. There is still much to be learned from the production of hadrons inside of jets. In particular, hadron yields within jets from proton-proton collisions have been proposed as a way to unearth more information on gluon fragmentation functions. In 2011, the STAR experiment at RHIC collected 23 pb-1 of data from proton-proton collisions at √{ s} = 500 GeV. The jets of most interest for gluon fragmentation functions are those with transverse momentum around 6-15 GeV/c. Large acceptance charged particle tracking and electromagnetic calorimetry make STAR an excellent jet detector. Time-of-flight and specific energy loss in the tracking system allow particle identification on the various types of hadrons within the jets, e.g., distinguishing pions from kaons and protons. An integral part of analyzing the data collected is understanding how the finite resolutions of the various detector subsystems influence the measured jet and hadron kinematics. For this reason, Monte Carlo simulations can be used to track the shifting of the hadron and jet kinematics between the generator level and the detector reconstruction level. The status of this analysis will be presented. We would like to acknowledge the Ronald E. McNair program for supporting this research.

  10. New method in muon-hadron absorption on Thx DUO2 nano material structure at 561 MHz quantum gyro-magnetic

    NASA Astrophysics Data System (ADS)

    Hardiyanto, M.; Ermawaty, I. R.

    2018-01-01

    We present an experimental of muan-hadron tunneling chain investigation with new methods of Thx DUO2 nano structure based on Josephson’s tunneling and Abrikosov-Balseiro-Russel (ABR) formulation with quantum quadrupole interacting with a strongly localized high gyro-magnetic optical field as encountered in high-resolution near-field optical microscopy for 1.2 nano meter lambda-function. The strong gradients of these localized gyro-magnetic fields suggest that higher-order multipolar interactions will affect the standard magnetic quadrupole transition rates in 1.8 x 103 currie/mm fuel energy in nuclear moderator pool and selection rules with quatum dot. For muan-hadron absorption in Josephson’s tunnelling quantum quadrupole in the strong confinement limit we calculated the inter band of gyro-magnetic quadrupole absorption rate and the associated selection rules. Founded that the magnetic quadrupole absorption rate is comparable with the absorption rate calculated in the gyro-magneticdipole approximation of ThxDUO2 nano material structure. This implies that near-field optical techniques can extend the range of spectroscopic measurements for 545 MHz at quantum gyro-magnetic field until 561 MHz deployment quantum field at B around 455-485 tesla beyond the standard dipole approximation. However, we also show that spatial resolution could be improved by the selective excitation of ABR formulation in quantum quadrupole transitions.

  11. Charmed hadron production in pp collision

    NASA Astrophysics Data System (ADS)

    Goswami, Umananda Dev

    2007-10-01

    We investigated the production of charmed hadrons ( D+, D-, D0, D, Λc+, Λ¯c-) in pp collisions as a function of √{s}, xF, p⊥2 and p⊥ in the framework of the QGSJET model. The study of charmed hadron production characteristics in pp collision is particularly important for cosmic ray physics in the context of atmospheric prompt lepton fluxes. Here our aim is to check the reliability of the QGSJET model to be used to study the production of charmed hadrons in cosmic ray hadronic interactions with air nuclei. Charmed hadroproduction cross sections or the charmed hadron average multiplicities in pp collisions are relatively very small. The maximum production of all charmed hadrons takes place with low values of xF, p⊥2, and p⊥ within a small range for all values of √{s} under study. Charmed hadroproduction cross sections as a function of xF and p⊥2 are compared with the LEBC-EHS and LEBC-MPS experiment data for D-meson production. The agreement is quite satisfactory for smaller values of p⊥2 (⩽2 (GeV/c) 2). There is an asymmetry in charmed hadroproduction in pp collision. For all xF, asymmetry is prominent in the low value of √{s}. There is a strong preference for producing Λc+ rather than Λ¯c-baryons, while that for producing D¯ rather than D-mesons for this range of √{s}. Asymmetry increases from zero to ±1 around xF = 0.3 for all values of √{s} and for all charmed hardron groups. The patterns of asymmetric production of different charmed hadrons with xF are approximately the same as that with √{s}. We compare our calculation with the data from Fermilab experiment E781 (SELEX) for Λc-baryon production. The agreement is quite good. The asymmetry of charmed hadroproduction with p⊥ does not follow any well defined pattern.

  12. Confinement and hadron-hadron interactions by general relativistic methods

    NASA Astrophysics Data System (ADS)

    Recami, Erasmo

    By postulating covariance of physical laws under global dilations, one can describe gravitational and strong interactions in a unified way. Namely, in terms of the new discrete dilational degree of freedom, our cosmos and hadrons can be regarded as finite, similar systems. And a discrete hierarchy of finite ``universes'' may be defined, which are governed by fields with strengths inversally proportional to their radii; in each universe an Equivalence Principle holds, so that the relevant field can be there geometrized. Scaled-down Einstein equations -with cosmological term- are assumed to hold inside hadrons (= strong micro-cosmoses); and they yield in a natural way classical confinement, as well as ``asymptotic freedom'', of the hadron constituents. In other words, the association of strong micro-universes of Friedmann type with hadrons (i.e., applying the methods of General Relativity to subnuclear particle physics) allows avoiding recourse to phenomenological models such as the Bag Model. Inside hadrons we have to deal with a tensorial field (= strong gravity), and hadron constituents are supposed to exchange spin-2 ``gluons''. Our approach allows us also to write down a tensorial, bi-scale field theory of hadron-hadron interactions, based on modified Einstein-type equations here proposed for strong interactions in our space. We obtain in particular: (i) the correct Yukawa behaviour of the strong scalar potential at the static limit and for r>~l fm; (ii) the value of hadron radii. As a byproduct, we derive a whole ``numerology'', connecting our gravitational cosmos with the strong micro-cosmoses (hadrons), such that it does imply no variation of G with the epoch. Finally, since a structute of the ``micro-universe'' type seems to be characteristic even of leptons, a hope for the future is including also weak interactions in our classical unification of the fundamental forces.

  13. Hadron molecules

    NASA Astrophysics Data System (ADS)

    Thomas, Gutsche; Tanja, Branz; Amand, Faessler; Ian, Woo Lee; Valery, E. Lyubovitskij

    2010-09-01

    We discuss a possible interpretation of the open charm mesons D*s0(2317), Ds1(2460) and the hidden charm mesons X(3872), Y(3940) and Y(4140) as hadron molecules. Using a phenomenological Lagrangian approach we review the strong and radiative decays of the D*s0(2317) and Ds1(2460) states. The X(3872) is assumed to consist dominantly of molecular hadronic components with an additional small admixture of a charmonium configuration. Determing the radiative (γJ/Ψ and γΨ(2s)) and strong (J/Ψ2π and J/Ψ3π) decay modes we show that the present experimental observation is consistent with the molecular structure assumption of the X(3872). Finally, we give evidence for molecular interpretations of the Y(3940) and Y(4140) related to the observed strong decay modes J/Ψ + ω or J/Ψ + varphi, respectively.

  14. Hadron scattering, resonances, and QCD

    NASA Astrophysics Data System (ADS)

    Briceño, R. A.

    2016-11-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  15. Classification and asymptotic scaling of the light-cone wave-function amplitudes of hadrons

    DOE PAGES

    Ji, Xiangdong; Ma, Jian-Ping; Yuan, Feng

    2004-01-29

    Here we classify the hadron light-cone wave-function amplitudes in terms of parton helicity, orbital angular momentum, and quark-flavor and color symmetries. We show in detail how this is done for the pion, ρ meson, nucleon, and delta resonance up to and including three partons. For the pion and nucleon, we also consider four-parton amplitudes. Using the scaling law derived previously, we show how these amplitudes scale in the limit that all parton transverse momenta become large.

  16. Quark-hadron duality and parity violating asymmetry of electroweak reactions in the {delta} region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, K.; Sato, T.; Lee, T.-S.H.

    2005-08-01

    A dynamical model [T. Sato and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996); 63, 055201 (2001); T. Sato, D. Uno, and T.-S. H. Lee, ibid. 67, 065201 (2003)] of electroweak pion production reactions in the {delta}(1232) region has been extended to include the neutral current contributions for examining the local quark-hadron duality in neutrino-induced reactions and for investigating how the axial N-{delta} form factor can be determined by the parity violating asymmetry of N(e{sup {yields}},e{sup '}) reactions. We first show that the recent data of (e,e{sup '}) structure functions F{sub 1} and F{sub 2}, which exhibit the quark-hadronmore » duality, are in good agreement with our predictions. For possible future experimental tests, we then predict that the structure functions F{sub 1},F{sub 2}, and F{sub 3} for ({nu},e) and ({nu},{nu}{sup '}) processes also show the similar quark-hadron duality. The spin-dependent structure functions g{sub 1} and g{sub 2} of (e,e{sup '}) have also been calculated from our model. It is found that the local quark-hadron duality is not seen in the calculated g{sub 1} and g{sub 2}, while our results for g{sub 1} and some polarization observables associated with the exclusive p(e{sup {yields}},e{sup '}{pi}) and p{sup {yields}}(e{sup {yields}},e{sup '}{pi}) reactions are in reasonably good agreement with the recent data. In the study of parity violating asymmetry A of N(e{sup {yields}},e{sup '}) reactions, the relative importance between the nonresonant mechanisms and the {delta} excitation is investigated by taking into account the unitarity condition. Predictions are made for using the data of A to test the axial N-{delta} form factors determined previously in the studies of N({nu}{sub {mu}},{mu}{sup -}{pi}) reactions. The predicted asymmetry A are also compared with the parton model predictions for future experimental investigations of quark-hadron duality.« less

  17. Effects of strong laser fields on hadronic helium atoms

    NASA Astrophysics Data System (ADS)

    Lee, Han-Chieh; Jiang, Tsin-Fu

    2015-12-01

    The metastable hadronic helium atoms in microseconds lifetime are available in laboratory, and two-photon spectroscopy was reported recently. This exotic helium atom has an electron in the ground state and a negative hadron rotating around the helium nucleus. We theoretically study the excitation on hadronic helium by femtosecond pulse and elucidate the influence of moleculelike structure and rotation behavior on the photoelectron spectra and high-order harmonic generation. Because of the moleculelike structure, the electronic ground state consists of several angular orbitals. These angular orbitals can enhance photoelectron spectra at high energies, and also influence the harmonic generation spectra considerably. In particular, the harmonic spectra can occur at even harmonic orders because of the transition between these angular orbitals and continuum states. On the other side, the rotation behavior of hadron can induce a frequency shift in the harmonic spectra. The magnitude of the frequency shift depends on the orbiting speed of the hadron, which is considerable because the rotation period is in a few femtoseconds, a time scale that is comparable to that of infrared laser and is feasible in current laser experiments.

  18. Soft functions for generic jet algorithms and observables at hadron colliders

    DOE PAGES

    Bertolini, Daniele; Kolodrubetz, Daniel; Neill, Duff Austin; ...

    2017-07-20

    Here, we introduce a method to compute one-loop soft functions for exclusive N - jet processes at hadron colliders, allowing for different definitions of the algorithm that determines the jet regions and of the measurements in those regions. In particular, we generalize the N -jettiness hemisphere decomposition of ref. [1] in a manner that separates the dependence on the jet boundary from the observables measured inside the jet and beam regions. Results are given for several factorizable jet definitions, including anti- kT , XCone, and other geometric partitionings. We calculate explicitly the soft functions for angularity measurements, including jet massmore » and jet broadening, in pp → L + 1 jet and explore the differences for various jet vetoes and algorithms. This includes a consistent treatment of rapidity divergences when applicable. We also compute analytic results for these soft functions in an expansion for a small jet radius R. We find that the small- R results, including corrections up to O(R 2), accurately capture the full behavior over a large range of R.« less

  19. Soft functions for generic jet algorithms and observables at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolini, Daniele; Kolodrubetz, Daniel; Neill, Duff Austin

    Here, we introduce a method to compute one-loop soft functions for exclusive N - jet processes at hadron colliders, allowing for different definitions of the algorithm that determines the jet regions and of the measurements in those regions. In particular, we generalize the N -jettiness hemisphere decomposition of ref. [1] in a manner that separates the dependence on the jet boundary from the observables measured inside the jet and beam regions. Results are given for several factorizable jet definitions, including anti- kT , XCone, and other geometric partitionings. We calculate explicitly the soft functions for angularity measurements, including jet massmore » and jet broadening, in pp → L + 1 jet and explore the differences for various jet vetoes and algorithms. This includes a consistent treatment of rapidity divergences when applicable. We also compute analytic results for these soft functions in an expansion for a small jet radius R. We find that the small- R results, including corrections up to O(R 2), accurately capture the full behavior over a large range of R.« less

  20. Coherent J /ψ photoproduction in hadronic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Zha, W.; Klein, S. R.; Ma, R.; Ruan, L.; Todoroki, T.; Tang, Z.; Xu, Z.; Yang, C.; Yang, Q.; Yang, S.

    2018-04-01

    Significant excesses of J /ψ yield at very low transverse momentum (pT<0.3 GeV/c ) were observed by the ALICE and STAR collaborations in peripheral hadronic A +A collisions. This is a sign of coherent photoproduction of J /ψ in violent hadronic interactions. Theoretically, the photoproduction of J /ψ in hadronic collisions raises questions about how spectator and nonspectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs to be included. This paper presents calculations of J /ψ production from coherent photon-nucleus (γ +A →J /ψ +A ) interactions in hadronic A +A collisions at BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J /ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle, and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. These predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.

  1. Searching for the rules that govern hadron construction

    DOE PAGES

    Shepherd, Matthew R.; Dudek, Jozef J.; Mitchell, Ryan E.

    2016-06-22

    Just as quantum electrodynamics describes how electrons are bound in atoms by the electromagnetic force, mediated by the exchange of photons, quantum chromodynamics (QCD) describes how quarks are bound inside hadrons by the strong force, mediated by the exchange of gluons. QCD seems to allow hadrons constructed from increasingly many quarks to exist, just as atoms with increasing numbers of electrons exist, yet such complex constructions seemed, until recently, not to be present in nature. In this paper, we describe advances in the spectroscopy of mesons that are refining our understanding of the rules for predicting hadron structure from QCD.

  2. Heavy and light hadron production and D-hadron correlation in relativistic heavy-ion collisions

    DOE PAGES

    Cao, Shanshan; Luo, Tan; He, Yayun; ...

    2017-09-25

    We establish a linear Boltzmann transport (LBT) model coupled to hydrodynamical background to study hard parton evolution in heavy-ion collisions. Both elastic and inelastic scatterings are included in our calculations; and heavy and light flavor partons are treated on the same footing. Within this LBT model, we provide good descriptions of heavy and light hadron suppression and anisotropic flow in heavy-ion collisions. Angular correlation functions between heavy and light flavor hadrons are studied for the first time and shown able to quantify not only the amount of heavy quark energy loss, but also how the parton energy is re-distributed inmore » parton showers.« less

  3. Heavy and light hadron production and D-hadron correlation in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Shanshan; Luo, Tan; He, Yayun

    We establish a linear Boltzmann transport (LBT) model coupled to hydrodynamical background to study hard parton evolution in heavy-ion collisions. Both elastic and inelastic scatterings are included in our calculations; and heavy and light flavor partons are treated on the same footing. Within this LBT model, we provide good descriptions of heavy and light hadron suppression and anisotropic flow in heavy-ion collisions. Angular correlation functions between heavy and light flavor hadrons are studied for the first time and shown able to quantify not only the amount of heavy quark energy loss, but also how the parton energy is re-distributed inmore » parton showers.« less

  4. Tau hadronic spectral function moments: perturbative expansion and αs extractions

    NASA Astrophysics Data System (ADS)

    Boito, D.

    2016-04-01

    In the extraction of αs from hadronic τ decays different moments of the spectral functions have been used. Furthermore, the two mainstream renormalization group improvement (RGI) frameworks, namely Fixed Order Perturbation Theory (FOPT) and Contour Improved Perturbation Theory (CIPT), lead to conflicting values of αs. In order to improve the strategy used in αs determinations, we have performed a systematic study of the perturbative behaviour of these spectral moments in the context of FOPT and CIPT. Higher order coefficients of the perturbative series, yet unknown, were modelled using available knowledge of the renormalon content of the QCD Adler function. We conclude that within these RGI frameworks some of the moments often employed in αs extractions should be avoided due to their poor perturbative behaviour. Finally, under reasonable assumptions about higher orders, we conclude that FOPT is the preferred method to perform the renormalization group improvement of the perturbative series.

  5. Light-front holography and superconformal quantum mechanics: A new approach to hadron structure and color confinement

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.; Deur, Alexandre; de Téramond, Guy F.; Dosch, Hans Günter

    2015-11-01

    A primary question in hadron physics is how the mass scale for hadrons consisting of light quarks, such as the proton, emerges from the QCD Lagrangian even in the limit of zero quark mass. If one requires the effective action which underlies the QCD Lagrangian to remain conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory, then a unique, color-confining potential with a mass parameter κ emerges. The actual value of the parameter κ is not set by the model - only ratios of hadron masses and other hadronic mass scales are predicted. The result is a nonperturbative, relativistic light-front quantum mechanical wave equation, the Light-Front Schrödinger Equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the identical slope in the radial quantum number n and orbital angular momentum L. The same light-front equations for mesons with spin J also can be derived from the holographic mapping to QCD (3+1) at fixed light-front time from the soft-wall model modification of AdS5 space with a specific dilaton profile. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. One can also extend the analysis to baryons using superconformal algebra - 2 × 2 supersymmetric representations of the conformal group. The resulting fermionic LF bound-state equations predict striking similarities between the meson and baryon spectra. In fact, the holographic QCD light-front Hamiltonians for the states on the meson and baryon trajectories are identical if one shifts the internal angular momenta of the meson (LM) and baryon (LB) by one unit: LM = LB + 1. We also show how the mass scale κ

  6. Hadron multiplicity variation with Q2 and scale breaking of the Hadron distributions in deep inelastic muon-proton scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hamacher, K.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Korzen, B.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Malecki, P.; Maire, M.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Schneider, A.; Sholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1985-12-01

    Measurements are presented of the variation with Q2 (scaling violation) of the hadron multiplicity in deep inelastic muon-proton scattering. An increase in the average multiplicity of both the charged hadrons and K0 mesons is observed with increasing Q2 or xBj for fixed centre-of-mass energy W. The study of the shape of the effective fragmentation function Dh (z, W, Q2) shows that the increase of the particle yield with Q2 takes place for low z particles. The variation of the hadron distributions with Q2 is also studied in the current fragmentation region where a decrease in multiplicity is observed. Such effects are expected from QCD.

  7. Advances in Light-Front QCD: Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.

    2017-05-01

    A remarkable feature of QCD is that the mass scale κ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ ^4 ζ ^2 for mesons, where ζ ^2 is the LF radial variable conjugate to the q \\bar{q} invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS_5, the space of isometries of the conformal group—if one modifies the action of AdS_5 by the dilaton e^{κ ^2 z^2} in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ _{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α _s(Q^2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q_0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q_0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the

  8. Advances in Light-Front QCD: Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.

    A remarkable feature of QCD is that the mass scalemore » $k$ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the $$q\\bar{q}$$ invariant mass. The same result, including spin terms, is obtained using light-front holography$-$the duality between the front form and AdS 5, the space of isometries of the conformal group$-$if one modifies the action of AdS 5 by the dilaton e $κ^2z^2$ in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κκ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s (Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q 0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with

  9. Advances in Light-Front QCD: Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra

    DOE PAGES

    Brodsky, Stanley J.

    2017-04-19

    A remarkable feature of QCD is that the mass scalemore » $k$ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the $$q\\bar{q}$$ invariant mass. The same result, including spin terms, is obtained using light-front holography$-$the duality between the front form and AdS 5, the space of isometries of the conformal group$-$if one modifies the action of AdS 5 by the dilaton e $κ^2z^2$ in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κκ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s (Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q 0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with

  10. Compositeness of hadron resonances in finite volume

    NASA Astrophysics Data System (ADS)

    Tsuchida, Yujiro; Hyodo, Tetsuo

    2018-05-01

    We develop a theoretical framework to quantify the structure of unstable hadron resonances. With the help of the corresponding system in a finite volume, we define the compositeness of resonance states which can be interpreted as a probability. This framework is used to study the structure of the scalar mesons f0(980 ) and a0(980 ) . In both mesons, the K ¯K component dominates about a half of the wave function. The method is also applied to the Λ (1405 ) resonance. We argue that a single energy level in finite volume represents the two eigenstates in infinite volume. The K ¯N component of Λ (1405 ) , including contributions from both eigenstates, is found to be 58%, and the rest is composed of the π Σ and other channels.

  11. Test of Hadronic Interaction Models with the KASCADE Hadron Calorimeter

    NASA Astrophysics Data System (ADS)

    Milke, J.; KASCADE Collaboration

    The interpretation of extensive air shower (EAS) measurements often requires the comparison with EAS simulations based on high-energy hadronic interaction models. These interaction models have to extrapolate into kinematical regions and energy ranges beyond the limit of present accelerators. Therefore, it is necessary to test whether these models are able to describe the EAS development in a consistent way. By measuring simultaneously the hadronic, electromagnetic, and muonic part of an EAS the experiment KASCADE offers best facilities for checking the models. For the EAS simulations the program CORSIKA with several hadronic event generators implemented is used. Different hadronic observables, e.g. hadron number, energy spectrum, lateral distribution, are investigated, as well as their correlations with the electromagnetic and muonic shower size. By comparing measurements and simulations the consistency of the description of the EAS development is checked. First results with the new interaction model NEXUS and the version II.5 of the model DPMJET, recently included in CORSIKA, are presented and compared with QGSJET simulations.

  12. Gluon and Wilson loop TMDs for hadrons of spin ≤ 1

    NASA Astrophysics Data System (ADS)

    Boer, Daniël; Cotogno, Sabrina; van Daal, Tom; Mulders, Piet J.; Signori, Andrea; Zhou, Ya-Jin

    2016-10-01

    In this paper we consider the parametrizations of gluon transverse momentum dependent (TMD) correlators in terms of TMD parton distribution functions (PDFs). These functions, referred to as TMDs, are defined as the Fourier transforms of hadronic matrix elements of nonlocal combinations of gluon fields. The nonlocality is bridged by gauge links, which have characteristic paths (future or past pointing), giving rise to a process dependence that breaks universality. For gluons, the specific correlator with one future and one past pointing gauge link is, in the limit of small x, related to a correlator of a single Wilson loop. We present the parametrization of Wilson loop correlators in terms of Wilson loop TMDs and discuss the relation between these functions and the small- x `dipole' gluon TMDs. This analysis shows which gluon TMDs are leading or suppressed in the small- x limit. We discuss hadronic targets that are unpolarized, vector polarized (relevant for spin-1 /2 and spin-1 hadrons), and tensor polarized (relevant for spin-1 hadrons). The latter are of interest for studies with a future Electron-Ion Collider with polarized deuterons.

  13. Contradictions about Fine Structures in Meson Spectra and Proposed High-Resolution Hadron Spectrometer Using ``Interactive'' Solid-State Hydrogen Target

    NASA Astrophysics Data System (ADS)

    Maglich, Bogdan C.

    2004-08-01

    High resolution has been discouraged in meson spectrometry for 4 decades by the Doctrine of Experiments Incompatible with Theory (DEIT). DEIT a priori rejects narrow hadron resonances on the paradigm that only broad hadron peaks, Γ⩾ 100 MeV, can exist — in spite of the accumulated evidence to the contrary. The facts are: Mesons 2 orders of magnitude narrower than `allowed' for hadrons, have been confirmed; a new one was announced at this conference. Narrow meson structures have been repeatedly reported at high momentum transfer, |t| >0.2, while they are absent at the low transfer, |t| ˜0.01, where 99% of the experiments are performed. Modification of meson mass and width as a function of the density of nuclear matter in which they are produced, have been recently reported. We postulate for meson spectra: (1) Intrinsic (`true') width, Γ, is different from the observable (`apparent') width, Γ': Γ< Γ' (2) Γ of all meson states are narrow and can be observed only at or near the maximum |t| reachable in the reaction, and (3) Γ of all meson resonances are subject to broadening as |t| decreases. Since both Γ' and the production σ are inversely proportional to |t|, most of the observed spectra are produced at the lowest |t| <0.01 and thus the peaks appear broad. We have conceptually designed a novel type hadron spectrometer with an order of magnitude better resolution (0.1 MeV). It would operate at 2 orders of magnitude higher |t| (0.3< |t| <1 (GeV/c)2, than most experiments to date (|t| <0.01). Mesons in the mass region 0.5

  14. Characterization of equipment for shaping and imaging hadron minibeams

    NASA Astrophysics Data System (ADS)

    Pugatch, V.; Brons, S.; Campbell, M.; Kovalchuk, O.; Llopart, X.; Martínez-Rovira, I.; Momot, Ie.; Okhrimenko, O.; Prezado, Y.; Sorokin, Yu.

    2017-11-01

    For the feasibility studies of spatially fractionated hadron therapy prototypes of the equipment for hadron minibeams shaping and monitoring have been designed, built and tested. The collimators design was based on Monte Carlo simulations (Gate v.6.2). Slit and matrix collimators were used for minibeams shaping. Gafchromic films, micropixel detectors Timepix in a hybrid as well as metal mode were tested for measuring hadrons intensity distribution in minibeams. An overall beam profile was measured by the metal microstrip detector. The performance of a mini-beams shaping and monitoring equipment was characterized exploring low energy protons at the KINR Tandem generator as well as high energy carbon and oxygen ion beams at HIT (Heidelberg). The results demonstrate reliable performance of the tested equipment for shaping and imaging hadron mini-beam structures.

  15. Coherent J / ψ photoproduction in hadronic heavy-ion collisions

    DOE PAGES

    Zha, W.; Klein, S. R.; Ma, R.; ...

    2018-04-19

    Significant excesses of J/ yield at very low transverse momentum (p T < 0:3 GeV/c) were observed by the ALICE and STAR collaborations in peripheral hadronic A+A collisions. This is a Sign of coherent photoproduction of J/ψ in violent hadronic interactions. Theoretically, the photoproduction of J= in hadronic collisions raises questions about how spectator and non-spectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs tomore » be included. This letter presents calculations of J/ψ production from coherent photon-nucleus (γ+A → J/ψ +A) interactions in hadronic A+A collisions at RHIC and LHC energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J/ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. Lastly, these predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.« less

  16. Coherent J / ψ photoproduction in hadronic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, W.; Klein, S. R.; Ma, R.

    Significant excesses of J/ yield at very low transverse momentum (p T < 0:3 GeV/c) were observed by the ALICE and STAR collaborations in peripheral hadronic A+A collisions. This is a Sign of coherent photoproduction of J/ψ in violent hadronic interactions. Theoretically, the photoproduction of J= in hadronic collisions raises questions about how spectator and non-spectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs tomore » be included. This letter presents calculations of J/ψ production from coherent photon-nucleus (γ+A → J/ψ +A) interactions in hadronic A+A collisions at RHIC and LHC energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J/ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. Lastly, these predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.« less

  17. Hyperasymptotics and quark-hadron duality violations in QCD

    NASA Astrophysics Data System (ADS)

    Boito, Diogo; Caprini, Irinel; Golterman, Maarten; Maltman, Kim; Peris, Santiago

    2018-03-01

    We investigate the origin of the quark-hadron duality-violating terms in the expansion of the QCD two-point vector correlation function at large energies in the complex q2 plane. Starting from the dispersive representation for the associated polarization, the analytic continuation of the operator product expansion from the Euclidean to the Minkowski region is performed by means of a generalized Borel-Laplace transform, borrowing techniques from hyperasymptotics. We establish a connection between singularities in the Borel plane and quark-hadron duality-violating contributions. Starting with the assumption that for QCD at Nc=∞ the spectrum approaches a Regge trajectory at large energy, we obtain an expression for quark-hadron duality violations at large, but finite Nc.

  18. Beyond-Standard-Model Tensor Interaction and Hadron Phenomenology.

    PubMed

    Courtoy, Aurore; Baeßler, Stefan; González-Alonso, Martín; Liuti, Simonetta

    2015-10-16

    We evaluate the impact of recent developments in hadron phenomenology on extracting possible fundamental tensor interactions beyond the standard model. We show that a novel class of observables, including the chiral-odd generalized parton distributions, and the transversity parton distribution function can contribute to the constraints on this quantity. Experimental extractions of the tensor hadronic matrix elements, if sufficiently precise, will provide a, so far, absent testing ground for lattice QCD calculations.

  19. Fast Dynamical Evolution of Hadron Resonance Gas via Hagedorn States

    NASA Astrophysics Data System (ADS)

    Beitel, M.; Gallmeister, K.; Greiner, C.

    2017-01-01

    Hagedorn states (HS) are a tool to model the hadronization process which occurs in the phase transition region between the quark gluon plasma (QGP) and the hadron resonance gas (HRG). These states are believed to appear near the Hagedorn temperature TH which in our understanding equals the critical temperature Tc . A covariantly formulated bootstrap equation is solved to generate the zoo of these particles characterized baryon number B, strangeness S and electric charge Q. These hadron-like resonances are characterized by being very massive and by not being limited to quantum numbers of known hadrons. All hadronic properties like masses, spectral functions etc. are taken from the hadronic transport model Ultra Relativistic Quantum Molecular Dynamics (UrQMD). Decay chains of single Hagedorn states provide a well description of experimentally observed multiplicity ratios of strange and multi-strange particles as the Ξ0- and the Ω--baryon. In addition, the final energy spectra of resulting hadrons show a thermal-like distribution with the characteristic Hagedorn temperature TH . Box calculations including these Hagedorn states are performed. Indeed, the time scales leading to equilibration of the system are drastically reduced down to 2. . . 5 fm/c.

  20. Constraints on the I = 1 hadronic τ decay and e+e- →hadrons data sets and implications for (g - 2) μ

    NASA Astrophysics Data System (ADS)

    Maltman, Kim

    2006-02-01

    Sum rule tests are performed on the spectral data for (i) flavor ud vector-current-induced hadronic τ decays and (ii) e+e- hadroproduction, in the region below s ∼ 3- 4 GeV2, where discrepancies exist between the isospin-breaking-corrected charged and neutral current I = 1 spectral functions. The τ data is found to be compatible with expectations based on high-scale αs (MZ) determinations, while the electroproduction data displays two problems. The results favor determinations of the leading order hadronic contribution to (g - 2) μ which incorporate hadronic τ decay data over those employing electroproduction data only, and hence a reduced discrepancy between experiment and the Standard Model prediction for (g - 2) μ.

  1. Hadron electric polarizability from lattice QCD

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei

    2017-09-01

    Electromagnetic polarizabilities are important parameters for hadron structure, describing the response of the charge and current distributions inside the hadron to an external electromagnetic field. For most hadrons these quantities are poorly constrained experimentally since they can only be measured indirectly. Lattice QCD can be used to compute these quantities directly in terms of quark and gluons degrees of freedom, using the background field method. We present results for the neutron electric polarizability for two different quark masses, light enough to connect to chiral perturbation theory. These are currently the lightest quark masses used in polarizability studies. For each pion mass we compute the polarizability at four different volumes and perform an infinite volume extrapolation. We also discuss the effect of turning on the coupling between the background field and the sea quarks. A.A. is supported in part by the National Science Foundation CAREER Grant PHY-1151648 and by U.S. DOE Grant No. DE-FG02-95ER40907.

  2. Hadron-rich cosmic-ray families detected by emulsion chamber.

    NASA Astrophysics Data System (ADS)

    Navia, C. E.; Augusto, C. R. K.; Pinto, F. A.; Shibuya, H.

    1995-11-01

    Observed hadrons in excess, larger-than-expected charged mesons (pions) in cosmic-ray families detected in emulsion chamber experiment at mountain altitude and produced in a cosmic-ray hadronic interaction not far from the PeV energy region are studied. The hypothesis that these extra hadrons could be a bundle of surviving nuclear fragments (nucleons) is verified through a simulation method using a hybrid code composed of a superposition model to describe the number of interacting nucleon-nucleon pairs in a nucleus-nucleus collision. Together with the UA5 algorithm to describe a nucleon-nucleon collision, atmospheric propagation structure is also considered. A comparison between simulation output with experimental data shows that the surviving-nuclear-fragments hypothesis is not enough to explain the non-pionic hadron excess, even if a heavy dominance composition in the primary flux is considered.

  3. Physics Program at COSY-Juelich with Polarized Hadronic Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kacharava, Andro

    2009-08-04

    Hadron physics aims at a fundamental understanding of all particles and their interactions that are subject to the strong force. Experiments using hadronic probes could contribute to shed light on open questions on the structure of hadrons and their interaction as well as the symmetries of nature. The COoler SYnchrotron COSY at the Forschungszentrum Juelich accelerates protons and deuterons with momenta up to 3.7 GeV/c. The availability of both an electron cooler as well as a stochastic beam cooling system allows for precision measurements, using polarized proton and deuteron beams in combination with polarized Hydrogen or Deuterium targets.This contribution summarizesmore » the ongoing physics program at the COSY facility using ANKE, WASA and TOF detector systems with polarized hadronic probes, highlighting recent results and outlining the new developments.« less

  4. Mellin-Barnes approach to hadronic vacuum polarization and gμ-2

    NASA Astrophysics Data System (ADS)

    Charles, Jérôme; de Rafael, Eduardo; Greynat, David

    2018-04-01

    It is shown that with a precise determination of a few derivatives of the hadronic vacuum polarization (HVP) self-energy function Π (Q2) at Q2=0 , from lattice QCD (LQCD) or from a dedicated low-energy experiment, one can obtain an evaluation of the lowest order HVP contribution to the anomalous magnetic moment of the muon aμHVP with an accuracy comparable to the one reached using the e+e- annihilation cross section into hadrons. The technique of Mellin-Barnes approximants (MBa) that we propose is illustrated in detail with the example of the two loop vacuum polarization function in QED. We then apply it to the first few moments of the hadronic spectral function obtained from experiment and show that the resulting MBa evaluations of aμHVP converge very quickly to the full experimental determination.

  5. Extra dimension searches at hadron colliders to next-to-leading order-QCD

    NASA Astrophysics Data System (ADS)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.

    2007-11-01

    The quantitative impact of NLO-QCD corrections for searches of large and warped extra dimensions at hadron colliders are investigated for the Drell-Yan process. The K-factor for various observables at hadron colliders are presented. Factorisation, renormalisation scale dependence and uncertainties due to various parton distribution functions are studied. Uncertainties arising from the error on experimental data are estimated using the MRST parton distribution functions.

  6. Hadronic and nuclear interactions in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is themore » analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics.« less

  7. Dissipative properties of hot and dense hadronic matter in an excluded-volume hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Kadam, Guru Prakash; Mishra, Hiranmaya

    2015-09-01

    We estimate dissipative properties, viz., shear and bulk viscosities of hadronic matter using relativistic Boltzmann equation in relaxation time approximation within the framework of excluded-volume hadron resonance gas (EHRG) model. We find that at zero baryon chemical potential the shear viscosity to entropy ratio (η /s ) decreases with temperature while at finite baryon chemical potential this ratio shows the same behavior as a function of temperature but reaches close to the Kovtun-Son-Starinets (KSS) bound. Further along the chemical freezeout curve, ratio η /s is almost constant apart from small initial monotonic rise. This observation may have some relevance to the experimental finding that the differential elliptic flow of charged hadrons does not change considerably at lower center-of-mass energy. We further find that bulk viscosity to entropy density (ζ /s ) decreases with temperature while this ratio has higher value at finite baryon chemical potential at higher temperature. Along the freezeout curve ζ /s decreases monotonically at lower center-of-mass energy and then saturates.

  8. Comparing Geant4 hadronic models for the WENDI-II rem meter response function.

    PubMed

    Vanaudenhove, T; Dubus, A; Pauly, N

    2013-01-01

    The WENDI-II rem meter is one of the most popular neutron dosemeters used to assess a useful quantity of radiation protection, namely the ambient dose equivalent. This is due to its high sensitivity and its energy response that approximately follows the conversion function between neutron fluence and ambient dose equivalent in the range of thermal to 5 GeV. The simulation of the WENDI-II response function with the Geant4 toolkit is then perfectly suited to compare low- and high-energy hadronic models provided by this Monte Carlo code. The results showed that the thermal treatment of hydrogen in polyethylene for neutron <4 eV has a great influence over the whole detector range. Above 19 MeV, both Bertini Cascade and Binary Cascade models show a good correlation with the results found in the literature, while low-energy parameterised models are not suitable for this application.

  9. Signatures of chiral symmetry restoration and its survival throughout the hadronic phase interactions

    NASA Astrophysics Data System (ADS)

    Bratkovskaya, E. L.; Moreau, P.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.

    2018-02-01

    The effect of the chiral symmetry restoration (CSR) on observables from heavy-ion collisions is studied in the energy range =3-20 GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear σ - ω model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations. For the pion-nucleon ∑-term we adopt ∑π ≈ 45 MeV which corresponds to a 'world average'. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at =3-20 GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. We identify particle abundances and rapidity spectra to be suitable probes in order to extract information about CSR, while transverse mass spectra are less sensitive ones. Our results provide a microscopic explanation for the "horn" structure in the excitation function of the K+/π+ ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to ≈ 7 GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium.

  10. Neutrino Emissivity in the Quark-Hadron Mixed Phase

    NASA Astrophysics Data System (ADS)

    Spinella, William; Weber, Fridolin; Orsaria, Milva; Contrera, Gustavo

    2018-05-01

    In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the cores of neutron stars. To this end we use relativistic mean-field equations of state to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures ($\\lesssim 10^9$ K) and quark fractions ($\\lesssim 30\\%$), and that contributions due to lattice vibrations are insignificant compared to static-lattice contributions. There are a number of open issues that need to be addressed in a future study on the neutrino emission rates caused by electron-quark blob bremsstrahlung. Chiefly among them are the role of collective oscillations of matter, electron band structures, and of gaps at the boundaries of the Brillouin zones on bremsstrahlung, as discussed in the summary section of this paper. We hope this paper will stimulate studies addressing these issues.

  11. Measurement of the diffractive structure function in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Hartmann, H.; Heinloth, H.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarębska, E.; Suszycki, L.; Zając, J.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Gutjahr, B.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Monteiro, T.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mattingly, M. C. K.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; de Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, J. I.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. Y. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; Del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; de Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Dubbs, T.; Heusch, C.; van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchula, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Schmidke, W. B.

    1995-12-01

    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in ep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of x ℙ, the momentum fraction lost by the proton, of β, the momentum fraction of the struck quark with respect to x ℙ, and of Q 2 in the range 6.3·10-4< x ℙ <10-2, 0.1<β<0.8 and 8< Q 2<100 GeV2. The dependence is consistent with the form x ℙ where a=1.30±0.08(stat) {-0.14/+0.08} (sys) in all bins of β and Q 2. In the measured Q 2 range, the diffractive structure function approximately scales with Q 2 at fixed β. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.

  12. Suppression of high-pT hadrons in Pb+Pb collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Fang; Hirano, Tetsufumi; Wang, Enke; Wang, Xin-Nian; Zhang, Hanzhong

    2011-09-01

    The nuclear modification factor RAA(pT) for large transverse momentum pion spectra in Pb+Pb collisions at s=2.76 TeV is predicted within the next-to-leading order perturbative QCD parton model. The effect of jet quenching is incorporated through medium-modified fragmentation functions within the higher-twist approach. The jet transport parameter that controls medium modification is proportional to the initial parton density, and the coefficient is fixed by data on the suppression of large-pT hadron spectra obtained at the BNL Relativistic Heavy Ion Collider. Data on charged hadron multiplicity dNch/dη=1584±80 in central Pb+Pb collisions from the ALICE experiment at the CERN Large Hadron Collider are used to constrain the initial parton density both for determining the jet transport parameter and the 3 + 1 dimensional (3 + 1D) ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of RPbPb(pT) for neutral pions.

  13. Finite size of hadrons and Bose-Einstein correlations

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Zalewski, K.

    2013-11-01

    It is observed that the finite size of hadrons produced in high energy collisions implies that their positions are correlated, since the probability to find two hadrons on top of each other is highly reduced. It is then shown that this effect can naturally explain the values of the correlation function below one, observed at LEP and LHC for pairs of identical pions. to emphasize the role of inter-hadron correlations in the explanation of the observed negative values of C(p1,p2)-1 and to point out that a natural source of such inter-hadron correlations can be provided by the finite sizes of the produced hadrons. Several comments are in order.(i) Our use of the Θ-function to parametrize the excluded volume correlations is clearly only a crude approximation. For a precise description of data almost certainly a more sophisticated parametrization of the effect will be needed. In particular, note that with our parametrization the correlation in space-time does not affect the single-particle and two-particle non-symmetrized momentum distributions. The same comment applies to our use of Gaussians.(ii) It has been recently found [6,7] that in pp collisions at LHC, the volume of the system (as determined from the fitted HBT parameters) depends weakly on the multiplicity of the particles produced in the collision. This suggests that large multiplicity in an event is due to a longer emission time. If true, this should be also reflected in the HBT measurements and it may be interesting to investigate this aspect of the problem in more detail.(iii) To investigate further the space and/or time correlations between the emitted particles more information is needed. It would be interesting to study the minima in the correlation functions separately for the “side”, “out” and “long” directions. Such studies may allow to determine the size of the “excluded volume” and compare it with other estimates [14,15]. We also feel that with the present accuracy and statistics of

  14. Hadronic density of states from string theory.

    PubMed

    Pando Zayas, Leopoldo A; Vaman, Diana

    2003-09-12

    We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.

  15. Hadron Physics at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Ulrich

    2011-10-24

    The new FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The hadron physics program centers around the the high-energy storage ring HESR for antiprotons and the PANDA experiment that is integrated in it. The physics program includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics, electromagnetic processes and charm in nuclei.

  16. Identified hadron production in pp collisions measured with ALICE.

    NASA Astrophysics Data System (ADS)

    Corrales Morales, Yasser; ALICE Collaboration

    2017-07-01

    The production of identified hadrons in proton-proton collisions is frequently studied as a reference for the investigation of the strongly-interacting medium created in heavy-ion collisions. In addition, at LHC energies measurements in pp and p-Pb collisions as a function of the event multiplicity have shown some features reminiscent of those related to collective effects in Pb-Pb collisions. Thanks to its excellent PID capabilities and p Τ coverage, the ALICE detector offers a unique opportunity for the measurement of p Τ spectra, integrated yields (dN/dy) and mean transverse momenta (

    ) of identified light-flavour hadrons at midrapidity over a wide p Τ range. In this contribution, results on π, K, p, {{{K}}}{{S}}0, Λ, Ξ, Ω and K*0 as a function of multiplicity in pp collisions at \\sqrt{s}=7 {TeV} are presented. The results are compared with those measured in p-Pb and Pb-Pb collisions. A similar evolution of the spectral shape, the p Τ-differential particle ratios and the integrated yield ratios with the charged particle multiplicity in both small and large systems is observed. The production rates of strange hadrons in pp collisions increase more than those of non-strange particles, showing an enhancement pattern with multiplicity which is remarkably similar to the one measured in p-Pb collisions. In addition, results on the production of light flavour hadrons in pp collisions at \\sqrt{s}=13 {TeV}, the highest centre-of-mass energy reached so far in the laboratory, are also presented and the behaviour observed as a function of \\sqrt{s} are discussed.

  17. Multiplicity moments at low and high energy in hadron--hadron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antich, P.; Calligarich, E.; Cecchet, G.

    1974-01-19

    A phenomenological investigation is made of the relation obtained by Weingarten for the multiplicity moments in hadron -hadron interactions. The predictions are compared with moments computed from the experimental data, over a wide energy range, of the reactions pp, pp, pi /sup approximately /p, and K/sup approximately /p. (LBS)

  18. Hadronic Resonance production in ALICE

    NASA Astrophysics Data System (ADS)

    Markert, Christina; ALICE Collaboration

    2017-07-01

    In heavy ion collisions a fireball of hot and dense matter is created. Short lived hadronic resonances are sensitive to the medium properties, in particular to the temperature, density and system size. Resonance yields and momentum distributions are used to gain insight into the hadronic phase, its expansion velocity and time duration. The multiplicity dependent hadronic resonance production in p-p, p-Pb and Pb-Pb collisions will be discussed within the context of the possible extended hadronic and partonic phase. The experimental results will be compared to EPOS+UrQMD model calculations to discuss the system size dependent interactions of the hadronic medium on various resonances. Small systems such as p-p and p-Pb collisions will be discussed with respect to resonance and strange particle measurements.

  19. Gamma-hadron families and scaling violation

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.; Wrotniak, J. A.

    1985-01-01

    For three different interaction models we have simulated gamma-hadron families, including the detector (Pamir emulsion chamber) response. Rates of gamma families, hadrons, and hadron-gamma ratios were compared with experiments.

  20. Topics in nuclear chromodynamics: Color transparency and hadronization in the nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, S.J.

    1988-03-01

    The nucleus plays two complimentary roles in quantum chromodynamics: (1) A nuclear target can be used as a control medium or background field to modify or probe quark and gluon subprocesses. Some novel examples are color transparency, the predicted transparency of the nucleus to hadrons participating in high momentum transfer exclusive reactions, and formation zone phenomena, the absence of hard, collinear, target-induced radiation by a quark or gluon interacting in a high momentum transfer inclusive reaction if its energy is large compared to a scale proportional to the length of the target. (Soft radiation and elastic initial state interactions inmore » the nucleus still occur.) Coalescence with co-moving spectators is discussed as a mechanism which can lead to increased open charm hadroproduction, but which also suppresses forward charmonium production (relative to lepton pairs) in heavy ion collisions. Also discussed are some novel features of nuclear diffractive amplitudes--high energy hadronic or electromagnetic reactions which leave the entire nucleus intact and give nonadditive contributions to the nuclear structure function at low /kappa cur//sub Bj/. (2) Conversely, the nucleus can be studied as a QCD structure. At short distances, nuclear wave functions and nuclear interactions necessarily involve hidden color, degrees of freedom orthogonal to the channels described by the usual nucleon or isobar degrees of freedom. At asymptotic momentum transfer, the deuteron form factor and distribution amplitude are rigorously calculable. One can also derive new types of testable scaling laws for exclusive nuclear amplitudes in terms of the reduced amplitude formalism.« less

  1. Hadron mass corrections in semi-inclusive deep-inelastic scattering

    DOE PAGES

    Guerrero Teran, Juan Vicente; Ethier, James J.; Accardi, Alberto; ...

    2015-09-24

    We found that the spin-dependent cross sections for semi-inclusive lepton-nucleon scattering are derived in the framework of collinear factorization, including the effects of masses of the target and produced hadron at finite Q 2. At leading order the cross sections factorize into products of parton distribution and fragmentation functions evaluated in terms of new, mass-dependent scaling variables. Furthermore, the size of the hadron mass corrections is estimated at kinematics relevant for current and future experiments, and the implications for the extraction of parton distributions from semi-inclusive measurements are discussed.

  2. Electron Generation of Leptons and Hadrons with Conjugate α-QUANTIZED Lifetimes and Masses

    NASA Astrophysics Data System (ADS)

    Mac Gregor, Malcolm H.

    In elementary particle theories the fine structure constant α = e2/ℏc serves as the coupling constant for lepton interactions (QED), but is assumed to play no role in hadron interactions (QCD). However, experiments have long indicated an α spacing in the lifetimes of the long-lived threshold-state hadrons, and they also suggest an α-related mass structure. Lifetimes and masses are conjugate quantum mechanical variables, so the α-dependence of these two variables is a mutual property. The relevance of α to hadron interactions is an experimental question, independent of theory. In the present paper we first make a detailed analysis of the experimental lifetime data. This analysis demonstrates that out of 156 particles with well-determined lifetimes τ, the 120 short excited-state lifetimes τ<10-21 sec have a continuum of values, but the 36 long threshold-state lifetimes τ>10-21 sec occur in α-spaced groups that cleanly sort out the s, c, b quark flavors. These 36 metastable lifetimes also exhibit a factor-of-3 c-to-b "flavor structure" and a pervasive factor-of-2 "hyperfine structure." We then invoke the conjugate relationship between lifetimes and masses to trace out an α-defined set of mass quanta that tie together leptons and hadrons. Mass generation occurs via an initial "α-leap" from an electron pair to a "platform state" M, and then subsequent excitations by a dominant quantum X. The low-mass "MX octet" of particles — μ, p, τ, π, η, η‧, K, ϕ — is reproduced to an average accuracy of 0.4%, with no adjustable parameters except a small binding energy for hadronic pairs. Without the inclusion of lepton masses, the spectrum of hadron masses is difficult to understand. These conjugate α-quantized results reinforce the reality of the spin 1/2 u, d, s, c, b quarks, and they also lead to the identification of a closely-related set of spinless mass quanta for the pseudoscalar mesons.

  3. Hard Diffraction in Hadron--Hadron Collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.

    2002-11-01

    Breakdown of factorization observed recently in the diffractive dijet production in deep inelastic lepton induced and hadron induced processes is explained using the Good-Walker picture of diffraction dissociation. Numerical estimates agree with the recent data.

  4. Tetraquark candidate Zc(3900) from coupled-channel scattering - how to extract hadronic interactions? -

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoichi

    2018-03-01

    We present recent progress of lattice QCD studies on hadronic interactions which play a crucial role to understand the properties of atomic nuclei and hadron resonances. There are two methods, the plateau method (or the direct method) and the HAL QCD method, to study the hadronic interactions. In the plateau method, the determination of a ground state energy from the temporal correlation functions of multi-hadron systems is a key to reliably extract the physical observables. It turns out that, due to the contamination of excited elastic scattering states nearby, one can easily be misled by a fake plateau into extracting the ground state energy. We introduce a consistency check (sanity check) which can rule out obviously false results obtained from a fake plateau, and find that none of the results obtained at the moment for two-baryon systems in the plateau method pass the test. On the other hand, the HAL QCD method is free from the fake-plateau problem. We investigate the systematic uncertainties of the HAL QCD method, which are found to be well controlled. On the basis of the HAL QCD method, the structure of the tetraquark candidate Zc(3900), which was experimentally reported in e+e- collisions, is studied by the s-wave two-meson coupled-channel scattering. The results show that the Zc(3900) is not a conventional resonance but a threshold cusp. A semi-phenomenological analysis with the coupled-channel interaction to the experimentally observed decay mode is also presented to confirm the conclusion.

  5. Hadronic Contribution to Muon g-2 with Systematic Error Correlations

    NASA Astrophysics Data System (ADS)

    Brown, D. H.; Worstell, W. A.

    1996-05-01

    We have performed a new evaluation of the hadronic contribution to a_μ=(g-2)/2 of the muon with explicit correlations of systematic errors among the experimental data on σ( e^+e^- → hadrons ). Our result for the lowest order hadronic vacuum polarization contribution is a_μ^hvp = 701.7(7.6)(13.4) × 10-10 where the total systematic error contributions from below and above √s = 1.4 GeV are (12.5) × 10-10 and (4.8) × 10-10 respectively. Therefore new measurements on σ( e^+e^- → hadrons ) below 1.4 GeV in Novosibirsk, Russia can significantly reduce the total error on a_μ^hvp. This contrasts with a previous evaluation which indicated that the dominant error is due to the energy region above 1.4 GeV. The latter analysis correlated systematic errors at each energy point separately but not across energy ranges as we have done. Combination with higher order hadronic contributions is required for a new measurement of a_μ at Brookhaven National Laboratory to be sensitive to electroweak and possibly supergravity and muon substructure effects. Our analysis may also be applied to calculations of hadronic contributions to the running of α(s) at √s= M_Z, the hyperfine structure of muonium, and the running of sin^2 θW in Møller scattering. The analysis of the new Novosibirsk data will also be given.

  6. The infrared behaviour of QCD Green's functions. Confinement, dynamical symmetry breaking, and hadrons as relativistic bound states

    NASA Astrophysics Data System (ADS)

    Alkofer, Reinhard; von Smekal, Lorenz

    2001-11-01

    Recent studies of QCD Green's functions and their applications in hadronic physics are reviewed. We discuss the definition of the generating functional in gauge theories, in particular, the rôle of redundant degrees of freedom, possibilities of a complete gauge fixing versus gauge fixing in presence of Gribov copies, BRS invariance and positivity. The apparent contradiction between positivity and colour antiscreening in combination with BRS invariance in QCD is considered. Evidence for the violation of positivity by quarks and transverse gluons in the covariant gauge is collected, and it is argued that this is one manifestation of confinement. We summarise the derivation of the Dyson-Schwinger equations (DSEs) of QED and QCD. For the latter, the implications of BRS invariance on the Green's functions are explored. The possible influence of instantons on DSEs is discussed in a two-dimensional model. In QED in (2+1) and (3+1) dimensions, the solutions for Green's functions provide tests of truncation schemes which can under certain circumstances be extended to the DSEs of QCD. We discuss some limitations of such extensions and assess the validity of assumptions for QCD as motivated from studies in QED. Truncation schemes for DSEs are discussed in axial and related gauges, as well as in the Landau gauge. Furthermore, we review the available results from a systematic non-perturbative expansion scheme established for Landau gauge QCD. Comparisons to related lattice results, where available, are presented. The applications of QCD Green's functions to hadron physics are summarised. Properties of ground state mesons are discussed on the basis of the ladder Bethe-Salpeter equation for quarks and antiquarks. The Goldstone nature of pseudoscalar mesons and a mechanism for diquark confinement beyond the ladder approximation are reviewed. We discuss some properties of ground state baryons based on their description as Bethe-Salpeter/Faddeev bound states of quark

  7. Hadronic vacuum polarization in QCD and its evaluation in Euclidean spacetime

    NASA Astrophysics Data System (ADS)

    de Rafael, Eduardo

    2017-07-01

    We discuss a new technique to evaluate integrals of QCD Green's functions in the Euclidean based on their Mellin-Barnes representation. We present as a first application the evaluation of the lowest order hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon 1/2 (gμ-2 )HVP≡aμHVP . It is shown that with a precise determination of the slope and curvature of the HVP function at the origin from lattice QCD (LQCD), one can already obtain a result for aμHVP which may serve as a test of the determinations based on experimental measurements of the e+e- annihilation cross section into hadrons.

  8. Multiplicity distributions of charged hadrons in vp and charged current interactions

    NASA Astrophysics Data System (ADS)

    Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; Morrison, D. R. O.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H. P.; Myatt, G.; Radojicic, D.; Burke, S.

    1992-03-01

    Using data on vp andbar vp charged current interactions from a bubble chamber experiment with BEBC at CERN, the multiplicity distributions of charged hadrons are investigated. The analysis is based on ˜20000 events with incident v and ˜10000 events with incidentbar v. The invariant mass W of the total hadronic system ranges from 3 GeV to ˜14 GeV. The experimental multiplicity distributions are fitted by the binomial function (for different intervals of W and in different intervals of the rapidity y), by the Levy function and the lognormal function. All three parametrizations give acceptable values for X 2. For fixed W, forward and backward multiplicities are found to be uncorrelated. The normalized moments of the charged multiplicity distributions are measured as a function of W. They show a violation of KNO scaling.

  9. QCD as a Theory of Hadrons

    NASA Astrophysics Data System (ADS)

    Narison, Stephan

    2004-05-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD

  10. QCD as a Theory of Hadrons

    NASA Astrophysics Data System (ADS)

    Narison, Stephan

    2007-07-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD

  11. Unstable Hadrons in Hot Hadron Gas in Laboratory and in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Inga; Rafelski, Johann

    2011-04-01

    We study kinetic master equations for reactions involving the formation and the natural decay of unstable particles in a thermal expanding hadronic gas in the laboratory and in the early Universe. We consider here for the first time the role of the decay channel of one (hadron resonance) into two daughter particles, and also by token of detailed balance the inverse process, fusion of two (thermal) particles into one. We obtain the thermal invariant reaction rate using as an input the free space (vacuum) decay time and show the medium quantum effects on π+π<->ρ reaction relaxation time. As another laboratory example we describe the K+K<->φ process in thermal expanding hadronic gas in heavy ions collisions. A particularly interesting application of our formalism is the 0̂<->γ+γ process in the early Universe. We also explore the fate of charged pions and the muon freeze-out in the Universe. Another interesting field of application of our formalism is the study of short lived hadronic resonances, which are in general not able to reach yield equilibrium. We study the evolution of hadron resonances in small drops of QGP and use the insight gained to generalize the dynamics to QED effects as well.

  12. Hadron Collider Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Incandela, J.R.

    2000-03-07

    Experiments are being prepared at the Fermilab Tevatron and the CERN Large Hadron Collider that promise to deliver extraordinary insights into the nature of spontaneous symmetry breaking, and the role of supersymmetry in the universe. This article reviews the goals, challenges, and designs of these experiments. The first hadron collider, the ISR at CERN, has to overcome two initial obstacles. The first was low luminosity, which steadily improved over time. The second was the broad angular spread of interesting events. In this regard Maurice Jacob noted (1): The answer is ... sophisticated detectors covering at least the whole central regionmore » (45{degree} {le} {theta} {le} 135{degree}) and full azimuth. This statement, while obvious today, reflects the major revelation of the ISR period that hadrons have partonic substructure. The result was an unexpectedly strong hadronic yield at large transverse momentum (p{sub T}). Partly because of this, the ISR missed the discovery of the J/{psi} and later missed the {Upsilon}. The ISR era was therefore somewhat less auspicious than it might have been. It did however make important contributions in areas such as jet production and charm excitation and it paved the way for the SPS collider, also at CERN.« less

  13. Hadron-nucleus interactions at high energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, C.B.; He, Z.; Tow, D.M.

    1982-06-01

    A simple space-time description of high-energy hadron-nucleus interactions is presented. The model is based on the DTU (dual topologial unitarization)-parton-model description of soft multiparticle production in hadron-hadron interactions. The essentially parameter-free model agrees well with the general features of high-energy data for hadron-nucleus interactions; in particular, this DTU-parton model has a natural explanation for an approximate nu-bar universality. The expansion to high-energy nucleus-nucleus interactions is presented. We also compare and contrast this model with several previously proposed models.

  14. Hadron-nucleus interactions at high energies

    NASA Astrophysics Data System (ADS)

    Chiu, Charles B.; He, Zuoxiu; Tow, Don M.

    1982-06-01

    A simple space-time description of high-energy hadron-nucleus interactions is presented. The model is based on the DTU (dual topological unitarization) -parton-model description of soft multiparticle production in hadron-hadron interactions. The essentially parameter-free model agrees well with the general features of high-energy data for hadron-nucleus interactions; in particular, this DTU-parton model has a natural explanation for an approximate ν¯ universality. The extension to high-energy nucleus-nucleus interactions is presented. We also compare and contrast this model with several previously proposed models.

  15. Engaging undergraduate students in hadron physics research and instrumentation

    NASA Astrophysics Data System (ADS)

    Horn, Tanja

    2017-09-01

    Nuclear physics research is fundamental to our understanding of the visible universe and at the same time intertwined with our daily life. Nuclear physics studies the origin and structure of the atomic nuclei in terms of their basic constituents, the quarks and gluons. Atoms and molecules would not exist without underlying quark-gluon interactions, which build nearly all the mass of the visible universe from an assembly of massless gluons and nearly-massless quarks. The study of hadron structure with electromagnetic probes through exclusive and semi-inclusive scattering experiments carried out at the 12 GeV Jefferson Laboratory plays an important role in this effort. In particular, planned precision measurements of pion and kaon form factors and longitudinal-transverse separated deep exclusive pion and kaon electroproduction cross sections to the highest momentum transfers achievable play an important role in understanding hadron structure and masses and provide essential constraints for 3D hadron imaging. While a growing fraction of nuclear physics research is carried out at large international laboratories, individual university research groups play critical roles in the success of that research. These include data analysis projects and the development of state-of-the-art instrumentation demanded by increasingly sophisticated experiments. These efforts are empowered by the creativity of university faculty, staff, postdocs, and provide students with unique hands-on experience. As an example, an aerogel Cherenkov detector enabling strangeness physics research in Hall C at Jefferson Lab was constructed at the Catholic University of America with the help of 16 undergraduate and high school students. The ''Conference Experience for Undergraduates'' (CEU) provides a venue for these students who have conducted research in nuclear physics. This presentation will present the experiences of one of the participants in the first years of the CEU, her current research program

  16. Light-front field theory in the description of hadrons

    NASA Astrophysics Data System (ADS)

    Ji, Chueng-Ryong

    2017-03-01

    We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  17. Quark-hadron duality constraints on $$\\gamma Z$$ box corrections to parity-violating elastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Nathan L.; Blunden, Peter G.; Melnitchouk, Wally

    2015-12-08

    We examine the interference \\gamma Z box corrections to parity-violating elastic electron--proton scattering in the light of the recent observation of quark-hadron duality in parity-violating deep-inelastic scattering from the deuteron, and the approximate isospin independence of duality in the electromagnetic nucleon structure functions down to Q 2 \\approx 1 GeV 2. Assuming that a similar behavior also holds for the \\gamma Z proton structure functions, we find that duality constrains the γ Z box correction to the proton's weak charge to be Re V γ Z V = (5.4 \\pm 0.4) \\times 10 -3 at the kinematics of the Qmore » weak experiment. Within the same model we also provide estimates of the γ Z corrections for future parity-violating experiments, such as MOLLER at Jefferson Lab and MESA at Mainz.« less

  18. Charmonium dissociation in collisions with ϕ mesons in hadronic matter

    NASA Astrophysics Data System (ADS)

    Ji, Shi-Tao; Xu, Xiao-Ming

    2017-02-01

    The ϕ-charmonium dissociation reactions in hadronic matter are studied. Unpolarised cross sections for , or , , , or , , or and are calculated in the Born approximation, in the quark-interchange mechanism and with a temperature-dependent quark potential. The potential leads to remarkable temperature dependence of the cross sections. With the cross sections and the ϕ distribution function we calculate the dissociation rates of the charmonia in interactions with the ϕ meson in hadronic matter. The dependence of the rates on temperature and charmonium momentum is relevant to the influence of ϕ mesons on charmonium suppression. Supported by National Natural Science Foundation of China (11175111)

  19. Neutrino-antineutrino pair production by hadronic bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Bacca, Sonia

    2016-09-01

    I will report on recent calculations of neutrino-antineutrino pair production from bremsstrahlung processes in hadronic collisions and consider temperature conditions relevant for core collapse supernovae. Earlier studies on bremsstrahlung from neutron-neutron collisions showed that the approximation used in typical supernova simulation to model this process differs by about a factor of 2 from predictions based on chiral effective field theory, where the chiral expansion of two-body forces is considered up to the next-to-next-to-next-to-leading order. When the density of neutrons is large enough this process may compete with other non-hadronic reactions in the production of neutrinos, in particular in the case of μ and τ neutrinos, which are not generated by charged-current reactions. A natural question to ask is then: what is the effect of neutrino pair production from collisions of neutrons with finite nuclei? To tackle this question, we recently have addressed the case of neutron- α collisions, given that in the P-wave channels the neutron- α scattering features a resonance near 1 MeV. We find that the resonance leads to an enhanced contribution in the neutron spin structure function at temperatures in the range of 0 . 1 - 4 MeV. For significant density fractions of α in this temperature range, this process is competitive with contributions from neutron-neutron scattering. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work was supported in parts by the Natural Sciences and Engineering Research Council (Grant Number SAPIN-2015-0003).

  20. A measurement of the proton structure function F2( x, Q2)

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Akhundov, A.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegge, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, V.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spiekermann, J.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1995-02-01

    A measurement of the proton structure function F2( x, Q2) is reported for momentum transfers squared Q2 between 4.5 GeV 2 and 1600 GeV 2 and for Bjorken x between 1.8 × 10 -14 and 0.13 using data collected by the HERA experiment H1 in 1993. It is observed that F2 increases significantly with decreasing x, confirming our previous measurement made with one tenth of the data available in this analysis. The Q2 dependence is approximately logarithmic over the full kinematic range covered. The subsample of deep inelastic events with a large pseudo-rapidity gap in the hadronic energy flow close to the proton remnant is used to measure the "diffractive" contribution to F2.

  1. Investigation of the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data

    NASA Astrophysics Data System (ADS)

    Giordano, M.; Meggiolaro, E.; Silva, P. V. R. G.

    2017-08-01

    In the present investigation we study the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data. The parametrization used for the hadron-hadron total cross sections at high energy is inspired by recent results obtained by Giordano and Meggiolaro [J. High Energy Phys. 03 (2014) 002, 10.1007/JHEP03(2014)002] using a nonperturbative approach in the framework of QCD, and it reads σtot˜B ln2s +C ln s ln ln s . We critically investigate if B and C can be obtained by means of best-fits to data for proton-proton and antiproton-proton scattering, including recent data obtained at the LHC, and also to data for other meson-baryon and baryon-baryon scattering processes. In particular, following the above-mentioned nonperturbative QCD approach, we also consider fits where the parameters B and C are set to B =κ Bth and C =κ Cth, where Bth and Cth are universal quantities related to the QCD stable spectrum, while κ (treated as an extra free parameter) is related to the asymptotic value of the ratio σel/σtot. Different possible scenarios are then considered and compared.

  2. PREFACE: 5th DAE-BRNS Workshop on Hadron Physics (Hadron 2011)

    NASA Astrophysics Data System (ADS)

    Jyoti Roy, Bidyut; Chatterjee, A.; Kailas, S.

    2012-07-01

    The 5th DAE-BRNS Workshop on Hadron Physics was held at the Bhabha Atomic Research Centre (BARC), Mumbai from 31 October to 4 November 2011. This workshop series, supported by the Board of Research in Nuclear Sciences, Department of Atomic Energy (BRNS, DAE), Govt. of India, began ten years ago with the first one being held at BARC, Mumbai in October 2002. The second one was held at Puri in 2005, organized jointly by Institute of Physics, Bhubneswar and Saha Institute of Nuclear Physics, Kolkata. The 3rd and 4th ones took place, respectively, at Shantineketan in 2006, organized by Visva Bharati University, and at Aligarh in 2008, organized by Aligarh Muslim University, Aligarh. The aim of the present workshop was to bring together the experts and young researchers in the field of hadron physics (both experiment and theory) and to have in-depth discussions on the current research activities in this field. The format of the workshop was: a series of review lectures by various experts from India and abroad, the presentation of advanced research results by researchers in the field, and a review of major experimental programs being planned and pursued in major laboratories in the field of hadron physics, with the aim of providing a platform for the young participants for interaction with their peers. The upcoming international FAIR facility at GSI is a unique future facility for studies of hadron physics in the charm sector and hyper nuclear physics. The Indian hadron physics community is involved in this mega science project and is working with the PANDA collaboration on the development of detectors, simulation and software tools for the hadron physics programme with antiprotons at FAIR. A one-day discussion session was held at this workshop to discuss India-PANDA activities, the current collaboration status and the work plan. This volume presents the workshop proceedings consisting of lectures and seminars which were delivered during the workshop. We are thankful to

  3. Hadron Physics with PANDA at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Ulrich

    2011-10-21

    The recently established FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The PANDA experiment, which is integrated in the HESR storage ring for antiprotons is at the center of the hadron physics program. It includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics and electromagnetic processes.

  4. A stochastic method for computing hadronic matrix elements

    DOE PAGES

    Alexandrou, Constantia; Constantinou, Martha; Dinter, Simon; ...

    2014-01-24

    In this study, we present a stochastic method for the calculation of baryon 3-point functions which is an alternative to the typically used sequential method offering more versatility. We analyze the scaling of the error of the stochastically evaluated 3-point function with the lattice volume and find a favorable signal to noise ratio suggesting that the stochastic method can be extended to large volumes providing an efficient approach to compute hadronic matrix elements and form factors.

  5. Measurement of the deuteron structure function F2 in the resonance region and evaluation of its moments

    NASA Astrophysics Data System (ADS)

    Osipenko, M.; Ricco, G.; Simula, S.; Battaglieri, M.; Ripani, M.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Cazes, A.; Chen, S.; Cole, P. L.; Coleman, A.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Cummings, J. P.; de Sanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gordon, C. I. O.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Li, Ji; Lima, A. C. S.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Nefedov, G.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Suleiman, R.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.

    2006-04-01

    Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasielastic peak up to the invariant mass of the final-state hadronic system W≃2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasielastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behavior of the higher twist contribution suggests a partial cancelation of different higher twists entering into the expansion with opposite signs. This cancelation, found also in the proton moments, is a manifestation of the “duality” phenomenon in the F2 structure function.

  6. Hadron masses in a gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Rujula, A.; Georgi, H.; Glashow, S.L.

    1975-07-01

    We explore the implications for hadron spectroscopy of the ''standard'' gauge model of weak, electromagnetic, and strong interactions. The model involves four types of fractionally charged quarks, each in three colors, coupling to massless gauge gluons. The quarks are confined within colorless hadrons by a long-range spin-independent force realizing infrared slavery. We use the asymptotic freedom of the model to argue that for the calculation of hadron masses, the short-range quark-quark interaction may be taken to be Coulomb- like. We rederive many successful quark-model mass relations for the low-lying hadrons. Because a specific interaction and symmetry-breaking mechanism are forced onmore » us by the underlying renormalizable gauge field theory, we also obtain new mass relations. They are well satisfied. We develop a qualitative understanding of many features of the hadron mass spectrum, such as the origin and sign of the $Sigma$-$lambda$ mass splitting. Interpreting the newly discovered narrow boson resonances as states of charmonium, we use the model to predict the masses of charmed mesons and baryons.« less

  7. Scattering and stopping of hadrons in nuclear matter

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    It was observed, in the 180 litre xenon bubble chamber, that when hadrons with kinetic energy higher than the pion production threshold fall on a layer of nuclear matter - on an atomic nucleus in other words - in many cases they can pass through it without causing particles production but they are deflected through some deflection angles; if the energy is lower than a few GeV and the nuclear matter layer is thick enough, the hadrons can be stopped in it. The amount of the deflection at a given incident hadron energy varies with the way the hadron strikes the atomic nucleus; the probability of the occurrence of stopping depends on the incident hadron identity and energy, and on the way the hadron passed through the nucleus, as well.

  8. Hadronic interactions in the MINOS detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kordosky, Michael Alan

    2004-08-01

    MINOS, the Main Injector Neutrino Oscillation Search, will study neutrino flavor transformations using a Near detector at the Fermi National Accelerator Laboratory and a Far detector located in the Soudan Underground Laboratory in northern Minnesota. The MINOS collaboration also constructed the CalDet (calibration detector), a smaller version of the Near and Far detectors, to determine the topological and signal response to hadrons, electrons and muons. The detector was exposed to test-beams in the CERN Proton Synchrotron East Hall during 2001-2003, where it collected events at momentum settings between 200 MeV/c and 10 GeV/c. In this dissertation we present results ofmore » the CalDet experiment, focusing on the topological and signal response to hadrons. We briefly describe the MINOS experiment and its iron-scintillator tracking-sampling calorimters as a motivation for the CalDet experiment. We discuss the operation of the CalDet in the beamlines as well as the trigger and particle identification systems used to isolate the hadron sample. The method used to calibrate the MINOS detector is described and validated with test-beam data. The test-beams were simulated to model the muon flux, energy loss upstream of the detector and the kaon background. We describe the procedure used to discriminate between pions and muons on the basis of the event topology. The hadron samples were used to benchmark the existing GEANT3 based hadronic shower codes and determine the detector response and resolution for pions and protons. We conclude with comments on the response to single hadrons and to neutrino induced hadronic showers.« less

  9. Measurement of the bottom hadron lifetime at the Z 0 resonancce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujino, Donald Hideo

    1992-06-01

    We have measured the bottom hadron lifetime from bmore » $$\\bar{b}$$ events produced at the Z 0 resonance. Using the precision vertex detectors of the Mark II detector at the Stanford Linear Collider, we developed an impact parameter tag to identify bottom hadrons. The vertex tracking system resolved impact parameters to 30 μm for high momentum tracks, and 70 μm for tracks with a momentum of 1 GeV. We selected B hadrons with an efficiency of 40% and a sample purity of 80%, by requiring there be at least two tracks in a single jet that significantly miss the Z 0 decay vertex. From a total of 208 hadronic Z 0 events collected by the Mark II detector in 1990, we tagged 53 jets, of which 22 came from 11 double-tagged events. The jets opposite the tagged ones, referred as the ``untagged`` sample, are rich in B hadrons and unbiased in B decay times. The variable Σδ is the sum of impact parameters from tracks in the jet, and contains vital information on the B decay time. We measured the B lifetime from a one-parameter likelihood fit to the untagged Σδ distribution, obtaining τ b = 1.53 $$+0.55\\atop{-0.45}$$ ± 0.16 ps which agrees with the current world average. The first error is statistical and the second is systematic. The systematic error was dominated by uncertainties in the track resolution function. As a check, we also obtained consistent results using the Σδ distribution from the tagged jets and from the entire hadronic sample without any bottom enrichment.« less

  10. Statistical hadronization and microcanonical ensemble

    DOE PAGES

    Becattini, F.; Ferroni, L.

    2004-01-01

    We present a Monte Carlo calculation of the microcanonical ensemble of the of the ideal hadron-resonance gas including all known states up to a mass of 1. 8 GeV, taking into account quantum statistics. The computing method is a development of a previous one based on a Metropolis Monte Carlo algorithm, with a the grand-canonical limit of the multi-species multiplicity distribution as proposal matrix. The microcanonical average multiplicities of the various hadron species are found to converge to the canonical ones for moderately low values of the total energy. This algorithm opens the way for event generators based for themore » statistical hadronization model.« less

  11. Quark-hadron duality in spin structure functions g1p and g1d

    NASA Astrophysics Data System (ADS)

    Bosted, P. E.; Dharmawardane, K. V.; Dodge, G. E.; Forest, T. A.; Kuhn, S. E.; Prok, Y.; Adams, G.; Amarian, M.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Cazes, A.; Chen, S.; Cole, P. L.; Collins, P.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Masi, R. De; Devita, R.; Sanctis, E. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Djalali, C.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feuerbach, R. J.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gonenc, A.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Keith, C.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, Ji; Lima, A. C. S.; Livingston, K.; Lu, H.; Lukashin, K.; MacCormick, M.; Manak, J. J.; Markov, N.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Moteabbed, M.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Shvedunov, N. V.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Suleiman, R.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z.

    2007-03-01

    New measurements of the spin structure functions of the proton and deuteron g1p(x,Q2) and g1d(x,Q2) in the nucleon resonance region are compared with extrapolations of target-mass-corrected next-to-leading-order (NLO) QCD fits to higher energy data. Averaged over the entire resonance region (W<2 GeV), the data and QCD fits are in good agreement in both magnitude and Q2 dependence for Q2>1.7 GeV2/c2. This “global” duality appears to result from cancellations among the prominent “local” resonance regions: in particular strong σ3/2 contributions in the Δ(1232) region appear to be compensated by strong σ1/2 contributions in the resonance region centered on 1.5 GeV. These results are encouraging for the extension of NLO QCD fits to lower W and Q2 than have been used previously.

  12. Hadron Spectra in p+p Collisions at Rhic and Lhc Energies

    NASA Astrophysics Data System (ADS)

    Khandai, P. K.; Sett, P.; Shukla, P.; Singh, V.

    2013-06-01

    We present the systematic analysis of transverse momentum (pT) spectra of identified hadrons in p+p collisions at Relativistic Heavy Ion Collider (√ {s} = 62.4 and 200 GeV) and at Large Hadron Collider (LHC) energies (√ {s} = 0.9, 2.76 and 7.0 TeV) using phenomenological fit functions. We review various forms of Hagedorn and Tsallis distributions and show their equivalence. We use Tsallis distribution which successfully describes the spectra in p+p collisions using two parameters, Tsallis temperature T which governs the soft bulk spectra and power n which determines the initial production in partonic collisions. We obtain these parameters for pions, kaons and protons as a function of center-of-mass energy (√ {s}). It is found that the parameter T has a weak but decreasing trend with increasing √ {s}. The parameter n decreases with increasing √ {s} which shows that production of hadrons at higher energies are increasingly dominated by point like qq scatterings. Another important observation is with increasing √ {s}, the separation between the powers for protons and pions narrows down hinting that the baryons and mesons are governed by same production process as one moves to the highest LHC energy.

  13. Interacting hadron resonance gas model in the K -matrix formalism

    NASA Astrophysics Data System (ADS)

    Dash, Ashutosh; Samanta, Subhasis; Mohanty, Bedangadas

    2018-05-01

    An extension of hadron resonance gas (HRG) model is constructed to include interactions using relativistic virial expansion of partition function. The noninteracting part of the expansion contains all the stable baryons and mesons and the interacting part contains all the higher mass resonances which decay into two stable hadrons. The virial coefficients are related to the phase shifts which are calculated using K -matrix formalism in the present work. We have calculated various thermodynamics quantities like pressure, energy density, and entropy density of the system. A comparison of thermodynamic quantities with noninteracting HRG model, calculated using the same number of hadrons, shows that the results of the above formalism are larger. A good agreement between equation of state calculated in K -matrix formalism and lattice QCD simulations is observed. Specifically, the lattice QCD calculated interaction measure is well described in our formalism. We have also calculated second-order fluctuations and correlations of conserved charges in K -matrix formalism. We observe a good agreement of second-order fluctuations and baryon-strangeness correlation with lattice data below the crossover temperature.

  14. Mean transverse momenta correlations in hadron-hadron collisions in MC toy model with repulsing strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altsybeev, Igor

    2016-01-22

    In the present work, Monte-Carlo toy model with repulsing quark-gluon strings in hadron-hadron collisions is described. String repulsion creates transverse boosts for the string decay products, giving modifications of observables. As an example, long-range correlations between mean transverse momenta of particles in two observation windows are studied in MC toy simulation of the heavy-ion collisions.

  15. Hadron mass spectrum from lattice QCD.

    PubMed

    Majumder, Abhijit; Müller, Berndt

    2010-12-17

    Finite temperature lattice simulations of quantum chromodynamics (QCD) are sensitive to the hadronic mass spectrum for temperatures below the "critical" temperature T(c) ≈ 160 MeV. We show that a recent precision determination of the QCD trace anomaly shows evidence for the existence of a large number of hadron states beyond those known from experiment. The lattice results are well represented by an exponentially growing mass spectrum up to a temperature T=155 MeV. Using simple parametrizations of the hadron mass spectrum we show how one may estimate the total spectral weight in these yet undermined states.

  16. On extracting hadron multiplicities and unpolarized nucleon structure ratios from SIDIS data at the HERMES experiment

    NASA Astrophysics Data System (ADS)

    Linden-Levy, Loren Alexander

    2008-10-01

    We present an analysis using the world's largest data set of semi-inclusive deep inelastic scattering (SIDIS) in the kinematic range 0.1 < x < 0.6 at an average Q2 of 2.5 GeV2. This data was collected at the HERMES experiment located in the east hall of the HERA accelerator between the years 2000 and 2006. The hadron multiplicity from these scattering events is extracted for identified charged pions, kaons and protons from two different gaseous targets (H & D). For the hydrogen (deuterium) target 12.5 (16.68) million events were recorded. Using these hadron multiplicities an attempt is made to extract unpolarized information about the parton momentum distribution functions (PDFs) inside the nucleon via the flavor tagging technique within the quark-parton model. In particular, one can exploit certain factorization assumptions and fragmentation symmetries to extract the valence quark ratio dv/ uv and the light sea asymmetry d -- u/(u -- d) from the measured pion multiplicities on hydrogen and deuterium targets. The excellent particle identification available in the HERMES spectrometer coupled with the overwhelming statistics that are available from the high density end-of-fill running (especially in 2002 and 2004) make the HERMES data invaluable for reinforcing the E866/NuSea Drell-Yan result on d/ u at a different and from an entirely different physical process. These PDF extractions are also an important test of many typical assumptions made in SIDIS analyses and must be taken into consideration in light of the future facilities that propose to use this technique.

  17. Hadron Physics with Antiprotons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Ulrich

    2005-10-26

    The new FAIR facility which comes into operation at GSI in the upcoming years has a dedicated program of utilizing antiprotons for hadron physics. In particular, the planned PANDA experiment belongs to the group of core experiments at the new FAIR facility in Darmstadt/Germany. PANDA will be a universal detector to study the strong interaction by utilizing the annihilation process of antiprotons with protons and nuclear matter. The current paper gives an introduction into the hadron physics with antiprotons and part of the planned physics program with PANDA.

  18. High-energy photon-hadron scattering in holographic QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishio, Ryoichi; Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwano-ha 5-1-5, 277-8583; Watari, Taizan

    2011-10-01

    This article provides an in-depth look at hadron high-energy scattering by using gravity dual descriptions of strongly coupled gauge theories. Just like deeply inelastic scattering (DIS) and deeply virtual Compton scattering (DVCS) serve as clean experimental probes into nonperturbative internal structure of hadrons, elastic scattering amplitude of a hadron and a (virtual) photon in gravity dual can be exploited as a theoretical probe. Since the scattering amplitude at sufficiently high energy (small Bjorken x) is dominated by parton contributions (=Pomeron contributions) even in strong coupling regime, there is a chance to learn a lesson for generalized parton distribution (GPD) bymore » using gravity dual models. We begin with refining derivation of the Brower-Polchinski-Strassler-Tan (BPST) Pomeron kernel in gravity dual, paying particular attention to the role played by the complex spin variable j. The BPST Pomeron on warped spacetime consists of a Kaluza-Klein tower of 4D Pomerons with nonlinear trajectories, and we clarify the relation between Pomeron couplings and the Pomeron form factor. We emphasize that the saddle-point value j* of the scattering amplitude in the complex j-plane representation is a very important concept in understanding qualitative behavior of the scattering amplitude. The total Pomeron contribution to the scattering is decomposed into the saddle-point contribution and at most a finite number of pole contributions, and when the pole contributions are absent (which we call saddle-point phase), kinematical variable (q,x,t)-dependence of ln(1/q) evolution and ln(1/x) evolution parameters {gamma}{sub eff} and {lambda}{sub eff} in DIS and t-slope parameter B of DVCS in HERA experiment are all reproduced qualitatively in gravity dual. All of these observations shed a new light on modeling of GPD. Straightforward application of those results to other hadron high-energy scattering is also discussed.« less

  19. Confinement and diffusion time-scales of CR hadrons in AGN-inflated bubbles

    NASA Astrophysics Data System (ADS)

    Prokhorov, D. A.; Churazov, E. M.

    2017-09-01

    While rich clusters are powerful sources of X-rays, γ-ray emission from these large cosmic structures has not been detected yet. X-ray radiative energy losses in the central regions of relaxed galaxy clusters are so strong that one needs to consider special sources of energy, likely active galactic nucleus (AGN) feedback, to suppress catastrophic cooling of the gas. We consider a model of AGN feedback that postulates that the AGN supplies the energy to the gas by inflating bubbles of relativistic plasma, whose energy content is dominated by cosmic-ray (CR) hadrons. If most of these hadrons can quickly escape the bubbles, then collisions of CRs with thermal protons in the intracluster medium (ICM) should lead to strong γ-ray emission, unless fast diffusion of CRs removes them from the cluster. Therefore, the lack of detections with modern γ-ray telescopes sets limits on the confinement time of CR hadrons in bubbles and CR diffusive propagation in the ICM.

  20. Signals of doubly-charged Higgsinos at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, Durmus A.; Deutsches Elektronen--Synchrotron, DESY, D-22603 Hamburg; Frank, Mariana

    2008-08-01

    Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly-charged Higgsinos. In this work we study productions and decays of doubly-charged Higgsinos present in left-right supersymmetric models, and show that they invariably lead to novel collider signals not found in the minimal supersymmetric model or in any of its extensions motivated by the {mu} problem or even in extra dimensional theories. We investigate their distinctive signatures at the Large Hadron Collider in both pair- and single-production modes, and show that they are powerful tools in determining the underlying model viamore » the measurements at the Large Hadron Collider experiments.« less

  1. Ultra-Fast Hadronic Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, Dmitri; Lukić, Strahinja; Mokhov, Nikolai

    2017-12-18

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locationsmore » w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less

  2. Sum rules for quasifree scattering of hadrons

    NASA Astrophysics Data System (ADS)

    Peterson, R. J.

    2018-02-01

    The areas d σ /d Ω of fitted quasifree scattering peaks from bound nucleons for continuum hadron-nucleus spectra measuring d2σ /d Ω d ω are converted to sum rules akin to the Coulomb sums familiar from continuum electron scattering spectra from nuclear charge. Hadronic spectra with or without charge exchange of the beam are considered. These sums are compared to the simple expectations of a nonrelativistic Fermi gas, including a Pauli blocking factor. For scattering without charge exchange, the hadronic sums are below this expectation, as also observed with Coulomb sums. For charge exchange spectra, the sums are near or above the simple expectation, with larger uncertainties. The strong role of hadron-nucleon in-medium total cross sections is noted from use of the Glauber model.

  3. On the hadron mass decomposition

    NASA Astrophysics Data System (ADS)

    Lorcé, Cédric

    2018-02-01

    We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force.

  4. Single-spin observables and orbital structures in hadronic distributions

    NASA Astrophysics Data System (ADS)

    Sivers, Dennis

    2006-11-01

    Single-spin observables in scattering processes (either analyzing powers or polarizations) are highly constrained by rotational invariance and finite symmetries. For example, it is possible to demonstrate that all single-spin observables are odd under the finite transformation O=PAτ where P is parity and Aτ is a finite symmetry that can be designated “artificial time reversal”. The operators P, O and Aτ all have eigenvalues ±1 so that all single-spin observables can be classified into two distinct categories: (1) P-odd and Aτ-even, (2) P-even and Aτ-odd. Within the light-quark sector of the standard model, P-odd observables are generated from pointlike electroweak processes while Aτ-odd observables (neglecting quark mass parameters) come from dynamic spin-orbit correlations within hadrons or within larger composite systems, such as nuclei. The effects of Aτ-odd dynamics can be inserted into transverse-momentum dependent constituent distribution functions and, in this paper, we construct the contribution from an orbital quark to the Aτ-odd quark parton distribution ΔNGq/p↑front(x,kTN;μ2). Using this distribution, we examine the crucial role of initial- and final-state interactions in the observation of the scattering asymmetries in different hard-scattering processes. This construction provides a geometrical and dynamical interpretation of the Collins conjugation relation between single-spin asymmetries in semi-inclusive deep inelastic scattering and the asymmetries in Drell-Yan production. Finally, our construction allows us to display a significant difference between the calculation of a spin asymmetry generated by a hard-scattering mechanism involving color-singlet exchange (such as a photon) and a calculation of an asymmetry with a hard-scattering exchange involving gluons. This leads to an appreciation of the process-dependence inherent in measurements of single-spin observables.

  5. Averages of $b$-hadron, $c$-hadron, and $$\\tau$$-lepton properties as of summer 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amhis, Y.; et al.

    2014-12-23

    This article reports world averages of measurements ofmore » $b$-hadron, $c$-hadron, and $$\\tau$$-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through summer 2014. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, $CP$ violation parameters, parameters of semileptonic decays and CKM matrix elements.« less

  6. Lorentz-covariant coordinate-space representation of the leading hadronic contribution to the anomalous magnetic moment of the muon

    NASA Astrophysics Data System (ADS)

    Meyer, Harvey B.

    2017-09-01

    We present a Lorentz-covariant, Euclidean coordinate-space expression for the hadronic vacuum polarisation, the Adler function and the leading hadronic contribution to the anomalous magnetic moment of the muon. The representation offers a high degree of flexibility for an implementation in lattice QCD. We expect it to be particularly helpful for the quark-line disconnected contributions.

  7. Di-hadron correlations with identified leading hadrons in 200 GeV Au + Au and d + Au collisions at STAR

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, T.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, W.; Li, Z. M.; Li, Y.; Li, C.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Ma, R.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, F.; Wang, H.; Wang, G.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Wu; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, H.; Xu, Z.; Xu, Q. H.; Xu, Y. F.; Xu, N.; Yang, S.; Yang, Y.; Yang, Q.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Y.; Zhang, Z.; Zhang, J. B.; Zhang, J.; Zhang, X. P.; Zhang, S.; Zhang, J.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.

    2015-12-01

    The STAR Collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au + Au and minimum-bias d + Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au + Au data with respect to the d + Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the ridge region, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.

  8. Measurement of the bottom hadron lifetime at the Z sup 0 resonancce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujino, D.H.

    1992-06-01

    We have measured the bottom hadron lifetime from b{bar b} events produced at the Z{sup 0} resonance. Using the precision vertex detectors of the Mark II detector at the Stanford Linear Collider, we developed an impact parameter tag to identify bottom hadrons. The vertex tracking system resolved impact parameters to 30 {mu}m for high momentum tracks, and 70 {mu}m for tracks with a momentum of 1 GeV. We selected B hadrons with an efficiency of 40% and a sample purity of 80%, by requiring there be at least two tracks in a single jet that significantly miss the Z{sup 0}more » decay vertex. From a total of 208 hadronic Z{sup 0} events collected by the Mark II detector in 1990, we tagged 53 jets, of which 22 came from 11 double-tagged events. The jets opposite the tagged ones, referred as the untagged'' sample, are rich in B hadrons and unbiased in B decay times. The variable {Sigma}{delta} is the sum of impact parameters from tracks in the jet, and contains vital information on the B decay time. We measured the B lifetime from a one-parameter likelihood fit to the untagged {Sigma}{delta} distribution, obtaining {tau}{sub b} = 1.53{sub {minus}0.45}{sup +0.55}{plus minus}0.16 ps which agrees with the current world average. The first error is statistical and the second is systematic. The systematic error was dominated by uncertainties in the track resolution function. As a check, we also obtained consistent results using the {Sigma}{delta} distribution from the tagged jets and from the entire hadronic sample without any bottom enrichment.« less

  9. Energy-range relations for hadrons in nuclear matter

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.

  10. Universal effective hadron dynamics from superconformal algebra

    DOE PAGES

    Brodsky, Stanley J.; de Teramond, Guy F.; Dosch, Hans Gunter; ...

    2016-05-25

    An effective supersymmetric QCD light-front Hamiltonian for hadrons composed of light quarks, which includes a spin–spin interaction between the hadronic constituents, is constructed by embedding superconformal quantum mechanics into AdS space. A specific breaking of conformal symmetry inside the graded algebra determines a unique effective quark-confining potential for light hadrons, as well as remarkable connections between the meson and baryon spectra. The results are consistent with the empirical features of the light-quark hadron spectra, including a universal mass scale for the slopes of the meson and baryon Regge trajectories and a zero-mass pion in the limit of massless quarks. Ourmore » analysis is consistently applied to the excitation spectra of the π , ρ , K , K* and Φ meson families as well as to the N , Δ, Λ, Σ, Σ* , Ξ and Ξ* in the baryon sector. Here, we also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. The mass of light hadrons is expressed in a universal and frame-independent decomposition in the semiclassical approximation described here.« less

  11. Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016

    DOE PAGES

    Amhis, Y.; Banerjee, Sw.; Ben-Haim, E.; ...

    2017-12-21

    Here, this article reports world averages of measurements of b-hadron, c-hadron, and τ-lepton properties obtained by the Heavy Flavor Averaging Group using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters,more » $$C\\!P$$  violation parameters, parameters of semileptonic decays, and Cabbibo–Kobayashi–Maskawa matrix elements.« less

  12. Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amhis, Y.; Banerjee, Sw.; Ben-Haim, E.

    Here, this article reports world averages of measurements of b-hadron, c-hadron, and τ-lepton properties obtained by the Heavy Flavor Averaging Group using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters,more » $$C\\!P$$  violation parameters, parameters of semileptonic decays, and Cabbibo–Kobayashi–Maskawa matrix elements.« less

  13. Total Hadron Cross Section, New Particles, and Muon Electron Events in e{sup +}e{sup -} Annihilation at SPEAR

    DOE R&D Accomplishments Database

    Richter, B.

    1976-01-01

    The review of total hadron electroproduction cross sections, the new states, and the muon--electron events includes large amount of information on hadron structure, nine states with width ranging from 10's of keV to many MeV, the principal decay modes and quantum numbers of some of the states, and limits on charm particle production. 13 references. (JFP)

  14. Signatures for Black Hole Production from Hadronic Observables at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Humanic, Thomas J.; Koch, Benjamin; Stöcker, Horst

    The concept of Large Extra Dimensions (LED) provides a way of solving the Hierarchy Problem which concerns the weakness of gravity compared with the strong and electro-weak forces. A consequence of LED is that miniature Black Holes (mini-BHs) may be produced at the Large Hadron Collider in p + p collisions. The present work uses the CHARYBDIS mini-BH generator code to simulate the hadronic signal which might be expected in a mid-rapidity particle tracking detector from the decay of these exotic objects if indeed they are produced. An estimate is also given for Pb+Pb collisions.

  15. Peculiarities of biological action of hadrons of space radiation.

    PubMed

    Akoev, I G; Yurov, S S

    1975-01-01

    Biological investigations in space enable one to make a significant contribution on high-energy hadrons to biological effects under the influence of factors of space flights. Physical and molecular principles of the action of high-energy hadrons are analysed. Genetic and somatic hadron effects produced by the secondary radiation from 70 GeV protons have been studied experimentally. The high biological effectiveness of hadrons, great variability in biological effects, and specifically of their action, are associated with strong interactions of high-energy hadrons. These are the probability of nuclear interaction with any atom nucleus, generation of a great number of secondary particles (among them, probably, highly effective multicharged and heavy nuclei, antiprotons, pi(-)-mesons), and the spatial distribution of secondary particles as a narrow cone with extremely high density of particles in its first part. The secondary radiation generated by high- and superhigh-energy hadrons upon their interaction with the spaceship is likely to be the greatest hazard of radiation to the crew during space flights.

  16. Di-hadron correlations with identified leading hadrons in 200 GeV Au + Au and d + Au collisions at STAR

    DOE PAGES

    Adamczyk, L.

    2015-10-23

    The STAR Collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au + Au and minimum-bias d + Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au + Au data with respect to the d + Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the ridge region, is found to be significantly higher formore » leading non-pions than pions. As a result, the consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.« less

  17. Hadron-quark crossover and hot neutron stars at birth

    NASA Astrophysics Data System (ADS)

    Masuda, Kota; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki

    2016-02-01

    We construct a new isentropic equation of state (EOS) at finite temperature, "CRover," on the basis of the hadron-quark crossover at high density. By using the new EOS, we study the structure of hot neutron stars at birth with typical lepton fraction (Y_l=0.3-0.4) and typical entropy per baryon (hat {S}=1{-}2). Due to the gradual appearance of quark degrees of freedom at high density, the temperature T and the baryon density ρ at the center of hot neutron stars with hadron-quark crossover are found to be smaller than those without the crossover by a factor of two or more. Typical energy release due to the contraction of a hot neutron star to a cold neutron star with mass M=1.4 M_{⊙} is shown to be about 0.04 M_{⊙}, with a spin-up rate of about 14%.

  18. Hadronic energy resolution of a highly granular scintillator-steel hadron calorimeter using software compensation techniques

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Goto, T.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Dauncey, P. D.; Magnan, A.-M.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Balagura, V.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Kiesling, C.; Pfau, S.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2012-09-01

    The energy resolution of a highly granular 1 m3 analogue scintillator-steel hadronic calorimeter is studied using charged pions with energies from 10 GeV to 80 GeV at the CERN SPS. The energy resolution for single hadrons is determined to be approximately 58%/√E/GeV. This resolution is improved to approximately 45%/√E/GeV with software compensation techniques. These techniques take advantage of the event-by-event information about the substructure of hadronic showers which is provided by the imaging capabilities of the calorimeter. The energy reconstruction is improved either with corrections based on the local energy density or by applying a single correction factor to the event energy sum derived from a global measure of the shower energy density. The application of the compensation algorithms to geant4 simulations yield resolution improvements comparable to those observed for real data.

  19. Ultra-Fast Hadronic Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, Dmitri; Lukić, Strahinja; Mokhov, Nikolai

    2018-08-01

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper the time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations with respectmore » to the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 2 ns providing opportunity for ultra-fast calorimetry. Simulation results for an “ideal” calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less

  20. Ultra-fast hadronic calorimetry

    DOE PAGES

    Denisov, Dmitri; Lukic, Strahinja; Mokhov, Nikolai; ...

    2018-05-08

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper the time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations with respectmore » to the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 2 ns providing opportunity for ultra-fast calorimetry. As a result, simulation results for an “ideal” calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less

  1. Averages of B-Hadron, C-Hadron, and tau-lepton properties as of early 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amhis, Y.; et al.

    2012-07-01

    This article reports world averages of measurements of b-hadron, c-hadron, and tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through the end of 2011. In some cases results available in the early part of 2012 are included. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CP violation parameters, parameters of semileptonic decays and CKM matrix elements.

  2. Observation of exclusive electron-positron production in hadron-hadron collisions.

    PubMed

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Caron, B; Carosi, R; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; Daronco, S; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; Cecco, S De; Deisher, A; Lentdecker, G De; Dell'orso, M; Paoli, F Delli; Demortier, L; Deng, J; Deninno, M; Pedis, D De; Derwent, P F; Giovanni, G P Di; Dionisi, C; Ruzza, B Di; Dittmann, J R; Dituro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pinfold, J; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-03-16

    We present the first observation of exclusive e(+)e(-) production in hadron-hadron collisions, using pp[over] collision data at (square root) s = 1.96 TeV taken by the run II Collider Detector at Fermilab, and corresponding to an integrated luminosity of 532 pb(-1). We require the absence of any particle signatures in the detector except for an electron and a positron candidate, each with transverse energy E(T) > 5 GeV and pseudorapidity |eta| < 2. With these criteria, 16 events are observed compared to a background expectation of 1.9+/-0.3 events. These events are consistent in cross section and properties with the QED process pp[over] --> p + e(+)e(-) + p[over] through two-photon exchange. The measured cross section is 1.6(-0.3)(+0.5)(stat) +/- 0.3(syst) pb. This agrees with the theoretical prediction of 1.71+/-0.01 pb.

  3. Study of the dependence of direct soft photon production on the jet characteristics in hadronic Z 0 decays

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; DELPHI Collaboration

    2010-06-01

    An analysis of the direct soft photon production rate as a function of the parent jet characteristics is presented, based on hadronic events collected by the DELPHI experiment at LEP1. The dependences of the photon rates on the jet kinematic characteristics (momentum, mass, etc.) and on the jet charged, neutral and total hadron multiplicities are reported. Up to a scale factor of about four, which characterizes the overall value of the soft photon excess, a similarity of the observed soft photon behavior to that of the inner hadronic bremsstrahlung predictions is found for the momentum, mass, and jet charged multiplicity dependences. However for the dependence of the soft photon rate on the jet neutral and total hadron multiplicities a prominent difference is found for the observed soft photon signal as compared to the expected bremsstrahlung from final state hadrons. The observed linear increase of the soft photon production rate with the jet total hadron multiplicity and its strong dependence on the jet neutral multiplicity suggest that the rate is proportional to the number of quark pairs produced in the fragmentation process, with the neutral pairs being more effectively radiating than the charged ones.

  4. Hadronic contribution to the muon g-2: A Dyson-Schwinger perspective

    NASA Astrophysics Data System (ADS)

    Goecke, T.; Fischer, C. S.; Williams, R.

    2012-04-01

    We summarize our results for hadronic contributions to the anomalous magnetic moment of the muon (aμ), the one from hadronic vacuum-polarization (HVP) and the light-by-light scattering contribution (LBL), obtained from the Dyson-Schwinger equations (DSEs) of QCD. In the case of HVP we find good agreement with model independent determinations from dispersion relations for aμHV P as well as for the Adler function with deviations well below the ten percent level. From this we conclude that the DSE approach should be capable of describing aμLBL with similar accuracy. We also present results for LBL using a resonance expansion of the quark-anti-quark T-matrix. Our preliminary value is aμLBL=(217±91)×10-11.

  5. Testing the Concept of Quark-Hadron Duality with the ALEPH τ Decay Data

    NASA Astrophysics Data System (ADS)

    Magradze, B. A.

    2010-12-01

    We propose a modified procedure for extracting the numerical value for the strong coupling constant α s from the τ lepton hadronic decay rate into non-strange particles in the vector channel. We employ the concept of the quark-hadron duality specifically, introducing a boundary energy squared s p > 0, the onset of the perturbative QCD continuum in Minkowski space (Bertlmann et al. in Nucl Phys B 250:61, 1985; de Rafael in An introduction to sum rules in QCD. In: Lectures at the Les Houches Summer School. arXiv: 9802448 [hep-ph], 1997; Peris et al. in JHEP 9805:011, 1998). To approximate the hadronic spectral function in the region s > s p, we use analytic perturbation theory (APT) up to the fifth order. A new feature of our procedure is that it enables us to extract from the data simultaneously the QCD scale parameter {Λ_{overlineMS}} and the boundary energy squared s p. We carefully determine the experimental errors on these parameters which come from the errors on the invariant mass squared distribution. For the {overlineMS} scheme coupling constant, we obtain {α_s(m2_{tau})=0.3204± 0.0159_{exp.}}. We show that our numerical analysis is much more stable against higher-order corrections than the standard one. Additionally, we recalculate the “experimental” Adler function in the infrared region using final ALEPH results. The uncertainty on this function is also determined.

  6. Muon–hadron detector of the carpet-2 array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzhappuev, D. D.; Kudzhaev, A. U., E-mail: kudjaev@mail.ru; Klimenko, N. F.

    The 1-GeV muon–hadron detector of the Carpet-2 multipurpose shower array at the Baksan Neutrino Observatory, Institute for Nuclear Research, Russian Academy of Sciences (INR, Moscow, Russia) is able to record simultaneously muons and hadrons. The procedure developed for this device makes it possible to separate the muon and hadron components to a high degree of precision. The spatial and energy features of the muon and hadron extensive-air-shower components are presented. Experimental data from the Carpet-2 array are contrasted against data from the EAS-TOP and KASCADE arrays and against the results of the calculations based on the CORSIKA (GHEISHA + QGSJET01)more » code package and performed for primary protons and iron nuclei.« less

  7. Jet-induced medium excitation in γ-hadron correlation at RHIC

    DOE PAGES

    Chen, Wei; Cao, Shanshan; Luo, Tan; ...

    2017-09-25

    Both jet transport and jet-induced medium excitation are investigated simultaneously within the coupled Linear Boltzmann Transport and hydro (CoLBT-hydro) model. In this coupled approach, energy-momentum deposition from propagating jet shower partons in the elastic and radiation processes is taken as a source term in hydrodynamics and the hydro background for LBT simulation is updated for next time step. We use CoLBT-hydro model to simulate γ-jet events of Au+Au collisions at RHIC. Hadron spectra from both the hadronization of jet shower partons and jet-induced medium excitation are calculated and compared to experimental data. Parton energy loss of jet shower partons leadsmore » to the suppression of hadron yields at large z T = p h T/p γ T while medium excitations leads to enhancement of hadron yields at small z T. Meanwhile, a significant broadening of low p T hadron yields and the depletion of soft hadrons in the γ direction are observed in the calculation of γ-hadron angular correlation.« less

  8. Jet-induced medium excitation in γ-hadron correlation at RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei; Cao, Shanshan; Luo, Tan

    Both jet transport and jet-induced medium excitation are investigated simultaneously within the coupled Linear Boltzmann Transport and hydro (CoLBT-hydro) model. In this coupled approach, energy-momentum deposition from propagating jet shower partons in the elastic and radiation processes is taken as a source term in hydrodynamics and the hydro background for LBT simulation is updated for next time step. We use CoLBT-hydro model to simulate γ-jet events of Au+Au collisions at RHIC. Hadron spectra from both the hadronization of jet shower partons and jet-induced medium excitation are calculated and compared to experimental data. Parton energy loss of jet shower partons leadsmore » to the suppression of hadron yields at large z T = p h T/p γ T while medium excitations leads to enhancement of hadron yields at small z T. Meanwhile, a significant broadening of low p T hadron yields and the depletion of soft hadrons in the γ direction are observed in the calculation of γ-hadron angular correlation.« less

  9. A facility for investigation of multiple hadrons at cosmic-ray energies

    NASA Technical Reports Server (NTRS)

    Valtonen, E.; Torsti, J. J.; Arvela, H.; Lumme, M.; Nieminen, M.; Peltonen, J.; Vainikka, E.

    1985-01-01

    An experimental arrangement for studying multiple hadrons produced in high-energy hadron-nucleus interactions is under construction at the university of Turku. The method of investigation is based on the detection of hadrons arriving simultaneously at sea level over an area of a few square meters. The apparatus consists of a hadron spectrometer with position-sensitive detectors in connection with a small air shower array. The position resolution using streamer tube detectors will be about 10 mm. Energy spectra of hadrons or groups of simultaneous hadrons produced at primary energies below 10 to the 16th power eV can be measured in the energy range 1 to 2000 GeV.

  10. Suppression of back-to-back hadron pairs at forward rapidity in d+Au collisions at √s(NN)=200 GeV.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Angerami, A; Aoki, K; Apadula, N; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa del Valle, Z; Connors, M; Csanád, M; Csörgo, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E J; Kim, Y-J; Kinney, E; Kiss, Á; Kistenev, E; Kochenda, L; Komkov, B; Konno, M; Koster, J; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rukoyatkin, P; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhou, S; Zolin, L

    2011-10-21

    Back-to-back hadron pair yields in d+Au and p+p collisions at √s(NN)=200 GeV were measured with the PHENIX detector at the Relativistic Heavy Ion Collider. Rapidity separated hadron pairs were detected with the trigger hadron at pseudorapidity |η|<0.35 and the associated hadron at forward rapidity (deuteron direction, 3.0<η<3.8). Pairs were also detected with both hadrons measured at forward rapidity; in this case, the yield of back-to-back hadron pairs in d+Au collisions with small impact parameters is observed to be suppressed by a factor of 10 relative to p+p collisions. The kinematics of these pairs is expected to probe partons in the Au nucleus with a low fraction x of the nucleon momenta, where the gluon densities rise sharply. The observed suppression as a function of nuclear thickness, p(T), and η points to cold nuclear matter effects arising at high parton densities. © 2011 American Physical Society

  11. Leading-order calculation of hadronic contributions to the Muon g-2 using the Dyson-Schwinger approach

    NASA Astrophysics Data System (ADS)

    Goecke, Tobias; Fischer, Christian S.; Williams, Richard

    2011-10-01

    We present a calculation of the hadronic vacuum polarisation (HVP) tensor within the framework of Dyson-Schwinger equations. To this end we use a well-established phenomenological model for the quark-gluon interaction with parameters fixed to reproduce hadronic observables. From the HVP tensor we compute both the Adler function and the HVP contribution to the anomalous magnetic moment of the muon, aμ. We find aμHVP = 6760 ×10-11 which deviates about two percent from the value extracted from experiment. Additionally, we make comparison with a recent lattice determination of aμHVP and find good agreement within our approach. We also discuss the implications of our result for a corresponding calculation of the hadronic light-by-light scattering contribution to aμ.

  12. Status and Prospects for Hadron Production Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeter, Raphaeel

    2010-03-30

    The latest results from the HARP, MIPP and NA61 Hadron Production Experiments are reviewed and their implications for neutrinos physics experiments are discussed. We emphasize three neutrino sources: accelerator-based neutrino beams, advanced neutrino sources and atmospheric neutrinos. Finally, prospects from additional forthcoming hadron production measurements are presented.

  13. Hadron-collider limits on new electroweak interactions from the heterotic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Aguila, F.; Moreno, J.M.; Quiros, M.

    1990-01-01

    We evaluate the {ital Z}{prime}{r arrow}{ital l}{sup +}l{sup {minus}} cross section at present and future hadron colliders, for the minimal (E{sub 6}) extended electroweak models inspired by superstrings (including renormalization effects on new gauge couplings and new mixing angles). Popular models are discussed for comparison. Analytical expressions for the bounds on the mass of a new gauge boson, {ital M}{sub {ital Z}{prime}}, as a function of the bound on the ratio {ital R}{equivalent to}{sigma}({ital Z}{prime}){ital B}(Z{prime}{r arrow}l{sup +}{ital l}{sup {minus}})/{sigma}({ital Z}){ital B} ({ital Z}{r arrow}{ital l}{sup +}{ital l}{sup {minus}}), are given for the CERN S{ital p {bar p}}S, Fermilab Teva-more » tron, Serpukhov UNK, CERN Large Hadron Collider, and Superconducting Super Collider for the different models. In particular, the {ital M}{sub {ital Z}{prime}} bounds from the present {ital R} limit at CERN, as well as from the eventually available {ital R} limits at Fermilab and at the future hadron colliders (after three months of running at the expected luminosity), are given explicitly.« less

  14. Hadronic expansion dynamics in central Pb+Pb collisions at 158 GeV per nucleon

    DOE PAGES

    Appelshäuser, H.

    1998-03-24

    Two-particle correlation functions of negative hadrons over wide phase space, and transverse mass spectra of negative hadrons and deuterons near mid-rapidity have been measured in central Pb+Pb collisions at 158 GeV per nucleon by the NA49 experiment at the CERN SPS. A novel Coulomb correction procedure for the negative two-particle correlations is employed making use of the measured oppositely charged particle correlation. Within an expanding source scenario these results are used to extract the dynamic characteristics of the hadronic source, resolving the ambiguities between the temperature and transverse expansion velocity of the source, that are unavoidable when single and twomore » particle spectra are analysed separately. Lastly, the source shape, the total duration of the source expansion, the duration of particle emission, the freeze-out temperature and the longitudinal and transverse expansion velocities are deduced.« less

  15. Multi-functional composite structures

    DOEpatents

    Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.

    2004-10-19

    Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.

  16. Multi-functional composite structures

    DOEpatents

    Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.

    2010-04-27

    Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.

  17. The 3D Entangled Structure of the Proton: Transverse Degrees of Freedom in QCD, Momenta, Spins and More

    NASA Astrophysics Data System (ADS)

    Mulders, P. J.

    2018-03-01

    Light-front quantized quark and gluon states (partons) play a dominant role in high energy scattering processes. Initial state hadrons are mixed ensembles of partons, while produced pure partonic states appear as mixed ensembles of hadrons. The transition from collinear hard physics to the 3D structure including partonic transverse momenta is related to confinement which links color and spatial degrees of freedom. We outline ideas on emergent symmetries in the Standard Model and their connection to the 3D structure of hadrons. Wilson loops, including those with light-like Wilson lines such as used in the studies of transverse momentum dependent distribution functions may play a crucial role here, establishing a direct link between transverse spatial degrees of freedom and gluonic degrees of freedom.

  18. Towards a Unified Quark-Hadron-Matter Equation of State for Applications in Astrophysics and Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Bastian, Niels-Uwe; Blaschke, David; Fischer, Tobias; Röpke, Gerd

    2018-05-01

    We outline an approach to a unified equation of state for quark-hadron matter on the basis of a $\\Phi-$derivable approach to the generalized Beth-Uhlenbeck equation of state for a cluster decomposition of thermodynamic quantities like the density. To this end we summarize the cluster virial expansion for nuclear matter and demonstrate the equivalence of the Green's function approach and the $\\Phi-$derivable formulation. For an example, the formation and dissociation of deuterons in nuclear matter is discussed. We formulate the cluster $\\Phi-$derivable approach to quark-hadron matter which allows to take into account the specifics of chiral symmetry restoration and deconfinement in triggering the Mott-dissociation of hadrons. This approach unifies the description of a strongly coupled quark-gluon plasma with that of a medium-modified hadron resonance gas description which are contained as limiting cases. The developed formalism shall replace the common two-phase approach to the description of the deconfinement and chiral phase transition that requires a phase transition construction between separately developed equations of state for hadronic and quark matter phases. Applications to the phenomenology of heavy-ion collisions and astrophysics are outlined.

  19. Measurement of multiplicities of charged hadrons, pions and kaons in DIS at COMPASS

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Nikolai

    2018-04-01

    Precise measurements of multiplicities of charged hadrons, pions and kaons in deep inelastic scattering were performed. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6LiD target. The results were obtained in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. A leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions into pions. The results for the sum of the z-integrated multiplicities for pions and for kaons, differ from earlier results from the HERMES experiment. The results from the sum of the z-integrated K+ and K- multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit.

  20. Decay width of hadronic molecule structure for quarks

    NASA Astrophysics Data System (ADS)

    Chen, Xiaozhao; Lü, Xiaofu

    2018-06-01

    Based on the general form of the Bethe-Salpeter wave functions for the bound states consisting of two vector fields, we obtain the general formulas for the decay widths of molecular states composed of two heavy vector mesons with arbitrary spin and parity into a heavy meson plus a light meson. In this approach, our attention is still focused on the internal structure of heavy vector mesons in the molecular state. According to the molecule state model of exotic meson, we give the generalized Bethe-Salpeter wave function of molecular state as a four-quark state. Then the observed Y (3940 ) state is considered as a molecular state consisting of two heavy vector mesons D*0D¯*0 and the strong Y (3940 )→J /ψ ω decay width is calculated. The numerical result is consistent with the experimental values.

  1. Perfomance of a compensating lead-scintillator hadronic calorimeter

    NASA Astrophysics Data System (ADS)

    Bernardi, E.; Drews, G.; Garcia, M. A.; Klanner, R.; Kötz, U.; Levman, G.; Lomperski, M.; Lüke, D.; Ros, E.; Selonke, F.; Tiecke, H.; Tsirou, M.; Vogel, W.

    1987-12-01

    We have built a sandwich calorimeter consisting of 10 mm thick lead plates and 2.5 mm thick scintillator sheets. The thickness ratio between lead and scintillator was optimized to achieve a good energy resolution for hadrons. We have exposed this calorimeter to electrons, hadrons and muons in the energy range between 3 and 75 GeV, obtaining an average energy resolution of {23%}/{E} for electrons and {44%}/{E} for hadrons. For energies above 10 GeV and after leakage corrections, the ratio of electron response to hardron response is 1.05.

  2. The decay width of stringy hadrons

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Jacob; Weissman, Dorin

    2018-02-01

    In this paper we further develop a string model of hadrons by computing their strong decay widths and comparing them to experiment. The main decay mechanism is that of a string splitting into two strings. The corresponding total decay width behaves as Γ = π/2 ATL where T and L are the tension and length of the string and A is a dimensionless universal constant. We show that this result holds for a bosonic string not only in the critical dimension. The partial width of a given decay mode is given by Γi / Γ =Φi exp ⁡ (- 2 πCmsep2 / T) where Φi is a phase space factor, msep is the mass of the "quark" and "antiquark" created at the splitting point, and C is a dimensionless coefficient close to unity. Based on the spectra of hadrons we observe that their (modified) Regge trajectories are characterized by a negative intercept. This implies a repulsive Casimir force that gives the string a "zero point length". We fit the theoretical decay width to experimental data for mesons on the trajectories of ρ, ω, π, η, K*, ϕ, D, and Ds*, and of the baryons N, Δ, Λ, and Σ. We examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons A = 0.095 ± 0.015 is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. We discuss the relation with string fragmentation and jet formation. We extract the quark-diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia is proposed and is shown to reproduce the decay width of ϒ states. The dependence of the width on spin and flavor symmetry is discussed. We further apply this model to the decays of glueballs and exotic hadrons.

  3. An estimate of the bulk viscosity of the hadronic medium

    NASA Astrophysics Data System (ADS)

    Sarwar, Golam; Chatterjee, Sandeep; Alam, Jane

    2017-05-01

    The bulk viscosity (ζ) of the hadronic medium has been estimated within the ambit of the Hadron Resonance Gas (HRG) model including the Hagedorn density of states. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the ζ of the hadronic matter up to a relaxation time. We study the influence of the hadronic spectrum on ζ and find its correlation with the conformal symmetry breaking measure, ε -3P. We estimate ζ along the contours with constant, S/{N}B (total entropy/net baryon number) in the T-μ plane (temperature-baryonic chemical potential) for S/{N}B=30,45 and 300. We also assess the value of ζ on the chemical freeze-out curve for various centers of mass energy (\\sqrt{{s}{NN}}) and find that the bulk viscosity to entropy density ratio, \\zeta /s is larger in the energy range of the beam energy scan program of RHIC, low energy SPS run, AGS, NICA and FAIR, than LHC energies.

  4. KMR kt-factorization procedure for the description of the LHCb forward hadron-hadron Z0 production at √{ s} = 13TeV

    NASA Astrophysics Data System (ADS)

    Modarres, M.; Masouminia, M. R.; Aminzadeh Nik, R.; Hosseinkhani, H.; Olanj, N.

    2017-09-01

    Quite recently, two sets of new experimental data from the LHCb and the CMS Collaborations have been published, concerning the production of the Z0 vector boson in hadron-hadron collisions with the center-of-mass energy ECM =√{ s} = 13TeV. On the other hand, in our recent work, we have conducted a set of semi-NLO calculations for the production of the electro-weak gauge vector bosons, utilizing the unintegrated parton distribution functions (UPDF) in the frameworks of Kimber-Martin-Ryskin (KMR) or Martin-Ryskin-Watt (MRW) and the kt-factorization formalism, concluding that the results of the KMR scheme are arguably better in describing the existing experimental data, coming from D0, CDF, CMS and ATLAS Collaborations. In the present work, we intend to follow the same semi-NLO formalism and calculate the rate of the production of the Z0 vector boson, utilizing the UPDF of KMR within the dynamics of the recent data. It will be shown that our results are in good agreement with the new measurements of the LHCb and the CMS Collaborations.

  5. Imaging hadron calorimetry for future Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Repond, José

    2013-12-01

    To fully exploit the physics potential of a future Lepton Collider requires detectors with unprecedented jet energy and dijet-mass resolution. To meet these challenges, detectors optimized for the application of Particle Flow Algorithms (PFAs) are being designed and developed. The application of PFAs, in turn, requires calorimeters with very fine segmentation of the readout, so-called imaging calorimeters. This talk reviews progress in imaging hadron calorimetry as it is being developed for implementation in a detector at a future Lepton Collider. Recent results from the large prototypes built by the CALICE Collaboration, such as the Scintillator Analog Hadron Calorimeter (AHCAL) and the Digital Hadron Calorimeters (DHCAL and SDHCAL) are being presented. In addition, various R&D efforts beyond the present prototypes are being discussed.

  6. Chiral symmetry breaking and the spin content of hadrons

    NASA Astrophysics Data System (ADS)

    Glozman, L. Ya.; Lang, C. B.; Limmer, M.

    2012-04-01

    From the parton distributions in the infinite momentum frame, one finds that only about 30% of the nucleon spin is carried by spins of the valence quarks, which gave rise to the term “spin crisis”. Similar results hold for the lowest mesons, as it follows from the lattice simulations. We define the spin content of a meson in the rest frame and use a complete and orthogonal q¯q chiral basis and a unitary transformation from the chiral basis to the 2LJ basis. Then, given a mixture of different allowed chiral representations in the meson wave function at a given resolution scale, one can obtain its spin content at this scale. To obtain the mixture of the chiral representations in the meson, we measure in dynamical lattice simulations a ratio of couplings of interpolators with different chiral structure. For the ρ meson, we obtain practically the 3S1 state with no trace of the spin crisis. Then a natural question arises: which definition does reflect the spin content of a hadron?

  7. Polyakov loop and the hadron resonance gas model.

    PubMed

    Megías, E; Arriola, E Ruiz; Salcedo, L L

    2012-10-12

    The Polyakov loop has been used repeatedly as an order parameter in the deconfinement phase transition in QCD. We argue that, in the confined phase, its expectation value can be represented in terms of hadronic states, similarly to the hadron resonance gas model for the pressure. Specifically, L(T)≈1/2[∑(α)g(α)e(-Δ(α)/T), where g(α) are the degeneracies and Δ(α) are the masses of hadrons with exactly one heavy quark (the mass of the heavy quark itself being subtracted). We show that this approximate sum rule gives a fair description of available lattice data with N(f)=2+1 for temperatures in the range 150 MeVhadrons are present in the QCD spectrum while other sets do not require such states.

  8. Proton enhancement at large pT at the CERN large hadron collider without structure in associated-particle distribution.

    PubMed

    Hwa, Rudolph C; Yang, C B

    2006-07-28

    The production of pions and protons in the pT range between 10 and 20 GeV/c for Pb+Pb collisions at CERN LHC is studied in the recombination model. It is shown that the dominant mechanism for hadronization is the recombination of shower partons from neighboring jets when the jet density is high. Protons are more copiously produced than pions in that pT range because the coalescing partons can have lower momentum fractions, but no thermal partons are involved. The proton-to-pion ratio can be as high as 20. When such high pT hadrons are used as trigger particles, there will not be any associated particles that are not in the background.

  9. A precision measurement of the spin structure functions g

    NASA Astrophysics Data System (ADS)

    Toole, Terrence S.

    In Experiment E155 at the Stanford Linear Accelerator Center, the spin dependent structure function g1(x, Q 2) was measured for both the proton and deuteron. This was accomplished by scattering 48.3 GeV highly polarized electrons (0.813 +/- 0.020) off polarized 15NH3 (proton) and 6LiD (deuteron) targets. Data were collected in March and April of 1997 using three fixed angle, momentum analyzing spectrometers centered at 2.75°, 5.5°, and 10.5°. This enabled a kinematic coverage of 0.01 < x < 0.9 and 1 GeV2 < Q2 < 40 GeV2. At an average Q2 of 5 GeV2, the integrals in the measured region were ∑0.0140.9 g1 (x)dx = 0.119 +/- 0.002(stat.) +/- 0.009(syst.) for the proton and 0.043 +/- 0.003(stat.) +/- 0.003(syst.) for the deuteron. Using a perturbative QCD analysis which included a global data set, the results were found to be consistent with the Bjorken Sum Rule. Asymmetry measurements also were made using photoproduced hadrons. Data were collected concurrently with the g1 data. For the proton, the asymmetries were small and non-zero. The deuteron measurements were consistent with zero.

  10. Composite nature of hadrons and Bose-Einstein correlations

    NASA Astrophysics Data System (ADS)

    Bialas, A.

    2016-07-01

    I am reporting results of two papers, written together with W.Florkowski and K.Zalewski [1, 2], discussing the consequences of the observation [3] that, due to their composite nature and thus finite size, hadrons observed in the HBT measurements must be correlated in space-time. Using the blast-wave model [4] adjusted [1] to ALICE data on the measured HBT radii in pp collisions at 7 TeV [5], the full Bose-Einstein correlation functions in three direction (out, side, long) are evaluated. The results are presented together with some additional comments.

  11. Study of ordered hadron chains with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Mateos, D.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McNamara, P. C.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, Dms; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2017-11-01

    The analysis of the momentum difference between charged hadrons in high-energy proton-proton collisions is performed in order to study coherent particle production. The observed correlation pattern agrees with a model of a helical QCD string fragmenting into a chain of ground-state hadrons. A threshold momentum difference in the production of adjacent pairs of charged hadrons is observed, in agreement with model predictions. The presence of low-mass hadron chains also explains the emergence of charge-combination-dependent two-particle correlations commonly attributed to Bose-Einstein interference. The data sample consists of 190 μ b-1 of minimum-bias events collected with proton-proton collisions at a center-of-mass energy √{s }=7 TeV in the early low-luminosity data taking with the ATLAS detector at the LHC.

  12. Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra and other Advances in Light-Front QCD

    DOE PAGES

    Brodsky, Stanley J.

    2018-03-06

    Here, light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining qq¯ potential κ 4ζ 2, where ζ 2 is the light-frontmore » radial variable related in momentum space to the qq¯ invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS 5, the space of isometries of the conformal group—if one modifies the action of AdS 5 by the dilaton e κ2 z2 in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ MS¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.« less

  13. Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra and other Advances in Light-Front QCD

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.

    2018-05-01

    Light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining q \\bar{q} potential κ ^4 ζ ^2, where ζ ^2 is the light-front radial variable related in momentum space to the q \\bar{q} invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS_5, the space of isometries of the conformal group—if one modifies the action of AdS_5 by the dilaton e^{κ ^2 z^2} in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α _s(Q^2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q_0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.

  14. Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra and other Advances in Light-Front QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.

    Here, light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining qq¯ potential κ 4ζ 2, where ζ 2 is the light-frontmore » radial variable related in momentum space to the qq¯ invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS 5, the space of isometries of the conformal group—if one modifies the action of AdS 5 by the dilaton e κ2 z2 in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ MS¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.« less

  15. Central exclusive production of hadrons in CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrow, M. G.; Lontkovskyi, D.; Makarenko, I.

    2012-01-01

    At the Fermilab Tevatron withmore » $$\\sqrt{s}$$ = 900 and 1960 GeV, we have studied exclusive double pomeron exchange in the Collider Detector at Fermilab, CDF. With $$\\sim$$300,000 events we present the mass spectrum of two hadrons, $h^+h^-$, assumed to be pions, with $$|\\eta(\\pi)| <$$ 1.3 and two rapidity gaps $$\\Delta \\eta > 4.6$$. The mass spectrum shows resonance structures, including $$f_0(980),f_2(1270),$$ and$$ f_0(1370)$$. The cross section ratio 1960 GeV/900 GeV and the mean $$p_T(pair)$$ show mass-dependent structures, even above $M$ = 2 GeV where there are no established $$\\pi^+\\pi^-$$ resonances. The data extend above $M$ = 5 GeV. We place an upper limit on exclusive $$\\chi_{c0} \\rightarrow \\pi^+\\pi^-$$ and $K^+K^-$.« less

  16. Hadron polarizability data analysis: GoAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegen, H., E-mail: hkstegen@mta.ca; Hornidge, D.; Collicott, C.

    The A2 Collaboration at the Institute for Nuclear Physics in Mainz, Germany, is working towards determining the polarizabilities of hadrons from nonperturbative quantum chromodynamics through Compton scattering experiments at low energies. The asymmetry observables are directly related to the scalar and spin polarizabilities of the hadrons. Online analysis software, which will give real-time feedback on asymmetries, efficiencies, energies, and angle distributions, has been developed. The new software is a big improvement over the existing online code and will greatly develop the quality of the acquired data.

  17. Hadron polarizability data analysis: GoAT

    NASA Astrophysics Data System (ADS)

    Stegen, H.; Collicott, C.; Hornidge, D.; Martel, P.; Ott, P.

    2015-12-01

    The A2 Collaboration at the Institute for Nuclear Physics in Mainz, Germany, is working towards determining the polarizabilities of hadrons from nonperturbative quantum chromodynamics through Compton scattering experiments at low energies. The asymmetry observables are directly related to the scalar and spin polarizabilities of the hadrons. Online analysis software, which will give real-time feedback on asymmetries, efficiencies, energies, and angle distributions, has been developed. The new software is a big improvement over the existing online code and will greatly develop the quality of the acquired data.

  18. Top quark studies at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinervo, P.K.

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  19. Collins azimuthal asymmetries of hadron production inside jets

    DOE PAGES

    Kang, Zhong -Bo; Prokudin, Alexei; Ringer, Felix; ...

    2017-10-18

    Here, we investigate the Collins azimuthal asymmetry of hadrons produced inside jets in transversely polarized proton-proton collisions. Recently, the quark transversity distributions and the Collins fragmentation functions have been extracted within global analyses from data of the processes semi-inclusive deep inelastic scattering and electron-positron annihilation. We calculate the Collins azimuthal asymmetry for charged pions inside jets using these extractions for RHIC kinematics at center-of-mass energies of 200 and 500 GeV. We compare our results with recent data from the STAR Collaboration at RHIC and find good agreement, which confirms the universality of the Collins fragmentation functions. In addition, we furthermore » explore the impact of transverse momentum dependent evolution effects.« less

  20. Collins azimuthal asymmetries of hadron production inside jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong -Bo; Prokudin, Alexei; Ringer, Felix

    Here, we investigate the Collins azimuthal asymmetry of hadrons produced inside jets in transversely polarized proton-proton collisions. Recently, the quark transversity distributions and the Collins fragmentation functions have been extracted within global analyses from data of the processes semi-inclusive deep inelastic scattering and electron-positron annihilation. We calculate the Collins azimuthal asymmetry for charged pions inside jets using these extractions for RHIC kinematics at center-of-mass energies of 200 and 500 GeV. We compare our results with recent data from the STAR Collaboration at RHIC and find good agreement, which confirms the universality of the Collins fragmentation functions. In addition, we furthermore » explore the impact of transverse momentum dependent evolution effects.« less

  1. A conceptual solution for a beam halo collimation system for the Future Circular hadron-hadron Collider (FCC-hh)

    NASA Astrophysics Data System (ADS)

    Fiascaris, M.; Bruce, R.; Redaelli, S.

    2018-06-01

    We present the first conceptual solution for a collimation system for the hadron-hadron option of the Future Circular Collider (FCC-hh). The collimation layout is based on the scaling of the present Large Hadron Collider collimation system to the FCC-hh energy and it includes betatron and momentum cleaning, as well as dump protection collimators and collimators in the experimental insertions for protection of the final focus triplet magnets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at injection and collision energy taking into account mechanical and optics imperfections. The performance of the system is then assessed through the analysis of normalized halo distributions and complete loss maps for an ideal lattice. The performance limitations are discussed and a solution to improve the system performance with the addition of dispersion suppression collimators around the betatron cleaning insertion is presented.

  2. The 3D structure of QCD and the roots of the Standard Model

    NASA Astrophysics Data System (ADS)

    Mulders, P. J.

    2016-03-01

    For many phenomenological applications involving hadrons in high energy processes the hadronic structure can be taken care of by parton distribution functions (PDFs), in which only the collinear momenta of quarks and gluons are important. In principle the transverse structure, however, provides interesting new phenomenology. Taking into account transverse momenta of partons one works with transverse momentum dependent PDFs (TMDs), These allow all spin-spin correlations and also spin-orbit correlations that have a time reversal odd character and lead to new observables. In many theoretical developments the link to the collinear treatment is used. In this talk I will speculate on a novel view of the 3-dimensional (3D) structure of QCD, which fits in a broader study looking at the roots of the Standard Model of particle physics.

  3. Jet-hadron correlations relative to the event plane at the LHC with ALICE

    NASA Astrophysics Data System (ADS)

    Mazer, Joel; Alice Collaboration

    2017-11-01

    In ultra relativistic heavy-ion collisions at the Large Hadron Collider (LHC), conditions are met to produce a hot, dense and strongly interacting medium known as the Quark Gluon Plasma (QGP). Quarks and gluons from incoming nuclei collide to produce partons at high momenta early in the collisions. By fragmenting into collimated sprays of hadrons, these partons form 'jets'. The outgoing partons scatter and interact with the medium, leading to a manifestation of medium modifications of jets in the final state, known as jet quenching. Within the framework of perturbative QCD, jet production is well understood in pp collisions. We use jets measured in pp interactions as a baseline reference for comparing to heavy-ion collision systems to detect and study jet quenching. The jet quenching mechanism can be studied through the angular correlations of jets with charged hadrons and is examined in transverse momentum (pT) bins of the jets, pT bins of the associated hadrons, and as a function of collision centrality. A robust and precise background subtraction method is used in this analysis to remove the complex, flow dominated, heavy-ion background. The analysis of angular correlations for different orientations of the jet relative to the event plane allows for the study of the path-length dependence of medium modifications to jets. The event plane dependence of azimuthal angular correlations of charged hadrons with respect to the axis of an R = 0.2 reconstructed full (charged + neutral) jet in Pb-Pb collisions at √{sNN} = 2.76 TeV in ALICE is presented. Results are compared for three angular bins of the jet relative to the event plane in mid-peripheral events. The yields relative to the event plane are presented and then quantified through yield ratio calculations. The results show no significant path-length dependence on the medium modifications.

  4. Study of ordered hadron chains with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-11-29

    The analysis of the momentum difference between charged hadrons in high-energy proton-proton collisions is performed in order to study coherent particle production. The observed correlation pattern agrees with a model of a helical QCD string fragmenting into a chain of ground-state hadrons. A threshold momentum difference in the production of adjacent pairs of charged hadrons is observed, in agreement with model predictions. The presence of low-mass hadron chains also explains the emergence of charge-combination-dependent two-particle correlations commonly attributed to Bose-Einstein interference. Here, the data sample consists of 190 μb –1 of minimum-bias events collected with proton-proton collisions at a center-of-massmore » energy √s=7 TeV in the early low-luminosity data taking with the ATLAS detector at the LHC.« less

  5. Low P sub T hadron-nucleus interactions

    NASA Technical Reports Server (NTRS)

    Holynski, R.; Wozniak, K.

    1985-01-01

    The possibility of describing hadron-nucleus (hA) interactions is discussed in terms of a number of independent collisions of the projectile inside the target nucleus. This multiple rescattering may occur on a particle or quark parton level. To investigate the characteristics of hA interactions as a function of antineutrinos advantage is taken of the correlation between the average number antineutrinos of collisions of the projectile inside the nucleus and the number Ng of fast protons ejected from the struck nucleus. The relation antineutrinos vs Ng obtained in antineutrinos was used. For a given target nucleus this allows the selection of interactions occurring at different impact parameters.

  6. Moment analysis of hadronic vacuum polarization. Proposal for a lattice QCD evaluation of gμ - 2

    NASA Astrophysics Data System (ADS)

    de Rafael, Eduardo

    2014-09-01

    I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon aμHVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how aμHVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.

  7. ENLIGHT: European network for Light ion hadron therapy.

    PubMed

    Dosanjh, Manjit; Amaldi, Ugo; Mayer, Ramona; Poetter, Richard

    2018-04-03

    The European Network for Light Ion Hadron Therapy (ENLIGHT) was established in 2002 following various European particle therapy network initiatives during the 1980s and 1990s (e.g. EORTC task group, EULIMA/PIMMS accelerator design). ENLIGHT started its work on major topics related to hadron therapy (HT), such as patient selection, clinical trials, technology, radiobiology, imaging and health economics. It was initiated through CERN and ESTRO and dealt with various disciplines such as (medical) physics and engineering, radiation biology and radiation oncology. ENLIGHT was funded until 2005 through the EC FP5 programme. A regular annual meeting structure was started in 2002 and continues until today bringing together the various disciplines and projects and institutions in the field of HT at different European places for regular exchange of information on best practices and research and development. Starting in 2006 ENLIGHT coordination was continued through CERN in collaboration with ESTRO and other partners involved in HT. Major projects within the EC FP7 programme (2008-2014) were launched for R&D and transnational access (ULICE, ENVISION) and education and training networks (Marie Curie ITNs: PARTNER, ENTERVISION). These projects were instrumental for the strengthening of the field of hadron therapy. With the start of 4 European carbon ion and proton centres and the upcoming numerous European proton therapy centres, the future scope of ENLIGHT will focus on strengthening current and developing European particle therapy research, multidisciplinary education and training and general R&D in technology and biology with annual meetings and a continuously strong CERN support. Collaboration with the European Particle Therapy Network (EPTN) and other similar networks will be pursued. Copyright © 2018 CERN. Published by Elsevier B.V. All rights reserved.

  8. Hadronic Octaves: Symphony in Treble Clef

    NASA Astrophysics Data System (ADS)

    Ne'eman, Yuval

    2002-06-01

    Pythagoreanism, as derived from the physics of music, an artificial quantized system, involved simple ratios between integers and was conjectured by the Pythagoreans to extend to the whole of physics (the Music of the Spheres). It hit the jackpot in 1895 with Balmer's formula and has dominated XXth Century physics, with its Quantum Foundations. I review the history of Hadron Spectroscopy and my personal role in 1958-1964, i.e. (1) my 1960 discovery of SU(3) symmetry with an octet assignment for the j = 1/2 baryons (independently reached somewhat later by M. Gell-Mann), and (2) in 1961 (with H. Goldberg) my mathematical construction of a structural model which was then developed into the physical quark model by Gell-Mann and Zweig.

  9. Additional strange hadrons from QCD thermodynamics and strangeness freezeout in heavy ion collisions.

    PubMed

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2014-08-15

    We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. We show that the thermodynamic presence of these additional states gets imprinted in the yields of the ground-state strange hadrons leading to a systematic 5-8 MeV decrease of the chemical freeze-out temperatures of ground-state strange baryons.

  10. Calibration of the CMS hadron calorimeter in Run 2

    NASA Astrophysics Data System (ADS)

    Chadeeva, M.; Lychkovskaya, N.

    2018-03-01

    Various calibration techniques for the CMS Hadron calorimeter in Run 2 and the results of calibration using 2016 collision data are presented. The radiation damage corrections, intercalibration of different channels using the phi-symmetry technique for barrel, endcap and forward calorimeter regions are described, as well as the intercalibration with muons of the outer hadron calorimeter. The achieved intercalibration precision is within 3%. The in situ energy scale calibration is performed in the barrel and endcap regions using isolated charged hadrons and in the forward calorimeter using the Zarrow ee process. The impact of pileup and the developed technique of correction for pileup is also discussed. The achieved uncertainty of the response to hadrons is 3.4% in the barrel and 2.6% in the endcap region (at the pseudorapidity range |η|<2) and is dominated by the systematic uncertainty due to pileup contributions.

  11. Flavor-dependent eigenvolume interactions in a hadron resonance gas

    NASA Astrophysics Data System (ADS)

    Alba, P.; Vovchenko, V.; Gorenstein, M. I.; Stoecker, H.

    2018-06-01

    Eigenvolume effects in the hadron resonance gas (HRG) model are studied for experimental hadronic yields in nucleus-nucleus collisions. If particle eigenvolumes are different for different hadron species, the excluded volume HRG (EV-HRG) improves fits to multiplicity data. In particular, using different mass-volume relations for strange and non-strange hadrons we observe a remarkable improvement in the quality of the fits. This effect appears to be rather insensitive to other details in the schemes employed in the EV-HRG. We show that the parameters found from fitting the data of the ALICE Collaboration in central Pb+Pb collisions at the collision energy √{sNN } = 2.76 TeV entail the same improvement for all centralities at the same collision energy, and for the RHIC and SPS data at lower collision energies. Our findings are put in the context of recent fits of lattice QCD results.

  12. Santilli’s hadronic mechanics of formation of deuteron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhondge, Sudhakar S.

    2015-03-10

    In the present communication a brief review of the structure of deuteron proposed by Professor Santilli [1, 2] and its physical properties have been presented. Although Deuteron is a simple molecule, quantum mechanics has been unable to explain its different properties like the spin, magnetic moment, binding energy, stability, charge radius, dipole moment, etc. However, the Hadronic Mechanics developed by Santilli and applied by him [1, 2] to deuteron has succeeded in explaining the above properties to the scientific satisfaction. Santilli proposed Deuteron as a three body system which could take care of all the insufficiencies of quantum mechanics.

  13. Functional materials discovery using energy-structure-function maps

    NASA Astrophysics Data System (ADS)

    Pulido, Angeles; Chen, Linjiang; Kaczorowski, Tomasz; Holden, Daniel; Little, Marc A.; Chong, Samantha Y.; Slater, Benjamin J.; McMahon, David P.; Bonillo, Baltasar; Stackhouse, Chloe J.; Stephenson, Andrew; Kane, Christopher M.; Clowes, Rob; Hasell, Tom; Cooper, Andrew I.; Day, Graeme M.

    2017-03-01

    Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal-organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy-structure-function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy-structure-function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.

  14. Functional materials discovery using energy-structure-function maps.

    PubMed

    Pulido, Angeles; Chen, Linjiang; Kaczorowski, Tomasz; Holden, Daniel; Little, Marc A; Chong, Samantha Y; Slater, Benjamin J; McMahon, David P; Bonillo, Baltasar; Stackhouse, Chloe J; Stephenson, Andrew; Kane, Christopher M; Clowes, Rob; Hasell, Tom; Cooper, Andrew I; Day, Graeme M

    2017-03-30

    Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal-organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy-structure-function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy-structure-function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.

  15. PREFACE: 4th International Hadron Physics Conference (TROIA'14)

    NASA Astrophysics Data System (ADS)

    Dağ, Hüseyin; Erkol, Güray; Küçükarslan, Ayşe; Özpineci, Altuğ

    2014-11-01

    The 4th International Conference on Hadron Physics, TROIA'14, was held at Canakkale, Turkey on 1-5 July 2014. Ozyegin University, Middle East Technical University, Canakkale Onsekiz Mart University, Turkish Atomic Energy Authority and HadronPhysics2 Consortium sponsored the conference. It aimed at bringing together the experts and the young scientists working on experimental and theoretical hadron physics. About 50 participants from 10 countries attended the conference. The topics covered included: . Chiral Perturbation Theory . QCD Sum Rules . Effective Field Theory . Exotic Hadrons . Hadron Properties from Lattice QCD . Experimental Results and Future Perspectives . Hadronic Distribution Amplitudes The conference presentations were organized such that the morning sessions contained invited talks and afternoon sessions were devoted to contributed talks. The speakers of the invited talks were: C. Alexandrou, A. Gal, L. Tolos, J.R. Pelaez and M. Schindler. We had also guest speakers D. A. Demir and T. Senger. The conference venue was a resort hotel around Canakkale. As a social program, a guided full-day excursion to the excavation site of the ancient Troia town and Assos was organized. We believe that this conference provided a medium for young scientists and experts in the field to effectively communicate and share ideas. We would like to express our sincere thanks to supporting agencies and to all participants for their contributions and stimulating discussions. We are also grateful to the Scientific Secretary, Bora Işıldak, and all other members of the Organizing Committee for their patience and efforts. 30.10.2014 The Editors

  16. Excitations of single-beauty hadrons

    NASA Astrophysics Data System (ADS)

    Burch, Tommy; Hagen, Christian; Lang, Christian B.; Limmer, Markus; Schäfer, Andreas

    2009-01-01

    In this work we study the predominantly orbital and radial excitations of hadrons containing a single heavy quark. We present meson and baryon mass splittings and ratios of meson decay constants (e.g., fBs/fB and fBs'/fBs) resulting from quenched and dynamical two-flavor configurations. Light quarks are simulated using the chirally improved lattice Dirac operator at valence masses as light as Mπ≈350MeV. The heavy quark is approximated by a static propagator, appropriate for the b quark on our lattices (1/ã1-2GeV). We also include some preliminary calculations of the O(1/mQ) kinetic corrections to the states, showing, in the process, a viable way of applying the variational method to three-point functions involving excited states. We compare our results with recent experimental findings.

  17. Test of a chromomagnetic model for hadron mass differences

    NASA Astrophysics Data System (ADS)

    Lichtenberg, D. B.; Roncaglia, R.

    1993-05-01

    An oversimplified model consisting of the QCD color-magnetic interaction has been used previously by Silvestre-Brac and others to compare the masses of exotic and normal hadrons. We show that the model can give qualitatively wrong answers when applied to systems of normal hadrons.

  18. Review of high energy hadron-nucleus data

    NASA Astrophysics Data System (ADS)

    Lissauer, D.

    1987-01-01

    In this review we will summarize new data on hardron-nucleus interactions. The possibility that quark-gluon plasma may be created in heavy ion collisions has led to renewed interest in hadron-nucleus collisions. In particular one hopes that understanding the energy loss of hadrons in h-A collissions will allow us to estimate the optimum energy in AA collisions in order to achieve maximum baryon and/or maximum energy density. This will allow us to choose the optimal experimental environment in the search for quark-gluon plasma. This review will thus omit many interesting results from hadron-nucleus collisions, such as the A dependence of lepton pair production, EMC effect and others. We will focus our attention on the following: (i) Estimating the rate of energy loss of the incident hadron as it propagates through the target. (ii) Determining where the enmergy is deposited in central hadron-nucleus collisions. It is clear that there is no direct or unique method of extrapolating our knowledge of h-A collisions to predict what will happen in AA-collisions. The knowledge and understanding of pp and pA collisions is, however, a useful and necessary guide to what one can expect in AA collisions. In this review we will concentrate on three experimental approaches to the study of h-A collisions. In Section 1 we will discuss the present status of pA → p + X inclusive measurements. In Section 2 measurements from visual detectors, in this case results from the 30″ hybrid spectrometer, which allows investigations of global event properties will be presented. In Section 3 data using 2π calorimeters, where one can trigger and measure transverse energy and energy flow over a given rapidity region, will be discussed. The conclusions will be given in Section 4.

  19. The gluon condensation at high energy hadron collisions

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Lan, Jiangshan

    2017-03-01

    We report that the saturation/CGC model of gluon distribution is unstable under action of the chaotic solution in a nonlinear QCD evolution equation, and it evolves to the distribution with a sharp peak at the critical momentum. We find that this gluon condensation is caused by a new kind of shadowing-antishadowing effects, and it leads to a series of unexpected effects in high energy hadron collisions including astrophysical events. For example, the extremely intense fluctuations in the transverse-momentum and rapidity distributions of the gluon jets present the gluon-jet bursts; a sudden increase of the proton-proton cross sections may fill the GZK suppression; the blocking QCD evolution will restrict the maximum available energy of the hadron-hadron colliders.

  20. Single spin asymmetries of inclusive hadrons produced in electron scattering from a transversely polarized 3 He target

    DOE PAGES

    Allada, K.; Zhao, Y. X.; Aniol, K.; ...

    2014-04-07

    We report the first measurement of target single-spin asymmetries (A N) in the inclusive hadron production reaction, e + 3He↑→h+X, using a transversely polarized 3 He target. This experiment was conducted at Jefferson Lab in Hall A using a 5.9-GeV electron beam. Three types of hadrons (π ±, K ± and proton) were detected in the transverse hadron momentum range 0.54 < p T < 0.74 GeV/c. The range of x F for pions was -0.29 < x F< -0.23 and for kaons -0.25 < x F<-0.18. The observed asymmetry strongly depends on the type of hadron. A positive asymmetrymore » is observed for π + and K +. A negative asymmetry is observed for π–. The magnitudes of the asymmetries follow |A π –|<|A π +|<|A K +|. The K – and proton asymmetries are consistent with zero within the experimental uncertainties. The π + and π – asymmetries measured for the 3He target and extracted for neutrons are opposite in sign with a small increase observed as a function of p T.« less

  1. Structure function monitor

    DOEpatents

    McGraw, John T [Placitas, NM; Zimmer, Peter C [Albuquerque, NM; Ackermann, Mark R [Albuquerque, NM

    2012-01-24

    Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.

  2. A New Era of Symmetries in the Hadronic Interaction

    NASA Astrophysics Data System (ADS)

    Crawford, Christopher

    2016-09-01

    The search for a weak component of the nuclear force began in 1957, shortly after the proposal of parity violation. While it has been observed in compound nuclei with large nuclear enhancements, a systematic characterization of the hadronic weak interaction is still forthcoming almost sixty years later. New experimental facilities and technology have rejuvenated efforts to map out this ``complexity frontier'' within the Standard Model, and we will soon have precision data from multiple few-body experiments. In parallel, modern effective field theories have provided a systematic model independent description of the hadronic interaction with estimates of higher-order effects. The characterization of discrete symmetries in hadronic systems has recently become important for the design and analysis of other precision symmetries measurements, for example, electron PV scattering and time-reversal violation experiments. These new developments in experiment, theory, and application have ushered in a new era in hadronic parity violation. We acknowledge support from DOE-NP under Contract DE-SC0008107.

  3. Design and Construction of a Vertex Chamber and Measurement of the Average Beta-Hadron Lifetime

    NASA Astrophysics Data System (ADS)

    Nelson, Harry Norman

    Four parameters describe the mixing of the three quark generations in the Standard Model of the weak charged current interaction. These four parameters are experimental inputs to the model. A measurement of the mean lifetime of hadrons containing b-quarks, or B-Hadrons, constrains the magnitudes of two of these parameters. Measurement of the B-Hadron lifetime requires a device that can measure the locations of the stable particles that result from B-Hadron decay. This device must function reliably in an inaccessible location, and survive high radiation levels. We describe the design and construction of such a device, a gaseous drift chamber. Tubes of 6.9 mm diameter, having aluminized mylar walls of 100 μm thickness are utilized in this Vertex Chamber. It achieves a spatial resolution of 45 mum, and a resolution in extrapolation to the B-Hadron decay location of 87 mum. Its inner layer is 4.6 cm from e^+e ^- colliding beams. The Vertex Chamber is situated within the MAC detector at PEP. We have analyzed both the 94 pb ^{-1} of integrated luminosity accumulated at sqrt{s} = 29 GeV with the Vertex Chamber in place as well as the 210 pb^{-1} accumulated previously. We require a lepton with large momentum transverse to the event thrust axis to obtain a sample of events enriched in B-Hadron decays. The distribution of signed impact parameters of all tracks in these events is used to measure the B-Hadron flight distance, and hence lifetime. The trimmed mean signed impact parameters are 130 +/- 19 μm for data accumulated with the Vertex Chamber, and 162 +/- 25 μm for previous data. Together these indicate an average B-Hadron lifetime of tau_{b} = (1.37_sp{-0.19}{+0.22} stat. +/- 0.11 sys.) times (1 +/- 0.15 sys.) psec. We separate additive and multiplicative systematic errors because the second does not degrade the statistical significance of the difference of the result from 0. If b-c dominates b-quark decay the corresponding weak mixing matrix element mid V_ {cb

  4. Design and performance studies of a hadronic calorimeter for a FCC-hh experiment

    NASA Astrophysics Data System (ADS)

    Faltova, J.

    2018-03-01

    The hadron-hadron Future Circular Collider (FCC-hh) project studies the physics reach of a proton-proton machine with a centre-of-mass-energy of 100 TeV and five times greater peak luminosities than at the High-Luminosity LHC (HL-LHC). The high-energy regime of the FCC-hh opens new opportunities for the discovery of physics beyond the standard model. At 100 TeV a large fraction of the W, Z, H bosons and top quarks are produced with a significant boost. It implies an efficient reconstruction of very high energetic objects decaying hadronically. The reconstruction of those boosted objects sets the calorimeter performance requirements in terms of energy resolution, containment of highly energetic hadron showers, and high transverse granularity. We present the current baseline technologies for the calorimeter system in the barrel region of the FCC-hh reference detector: a liquid argon electromagnetic and a scintillator-steel hadronic calorimeters. The focus of this paper is on the hadronic calorimeter and the performance studies for hadrons. The reconstruction of single particles and the achieved energy resolution for the combined system of the electromagnetic and hadronic calorimeters are discussed.

  5. Novel method for detecting the hadronic component of extensive air showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromushkin, D. M., E-mail: DMGromushkin@mephi.ru; Volchenko, V. I.; Petrukhin, A. A.

    2015-05-15

    A novel method for studying the hadronic component of extensive air showers (EAS) is proposed. The method is based on recording thermal neutrons accompanying EAS with en-detectors that are sensitive to two EAS components: an electromagnetic (e) component and a hadron component in the form of neutrons (n). In contrast to hadron calorimeters used in some arrays, the proposed method makes it possible to record the hadronic component over the whole area of the array. The efficiency of a prototype array that consists of 32 en-detectors was tested for a long time, and some parameters of the neutron EAS componentmore » were determined.« less

  6. Temperature anomalies of shock and isentropic waves of quark-hadron phase transition

    NASA Astrophysics Data System (ADS)

    Konyukhov, A. V.; Iosilevskiy, I. L.; Levashov, P. R.; Likhachev, A. P.

    2018-01-01

    In this work, we consider a phenomenological equation of state, which combinesstatistical description for hadron gas and a bag-model-based approach for the quark-gluon plasma. The equation of state is based on the excluded volume method in its thermodynamically consistent variant from Satarov et al [2009 Phys. At. Nucl. 72 1390]. The characteristic shape of the Taub adiabats and isentropes in the phase diagram is affected by the anomalous pressure-temperature dependence along the curve of phase equilibrium. The adiabats have kink points at the boundary of the two-phase region, inside which the temperature decreases with compression. Thermodynamic properties of matter observed in the quark-hadron phase transition region lead to hydrodynamic anomalies (in particular, to the appearance of composite compression and rarefaction waves). On the basis of relativistic hydrodynamics equations we investigate and discuss the structure and anomalous temperature behavior in these waves.

  7. Multiplicities of secondary hadrons produced in vp and overlinevp charged current interactions

    NASA Astrophysics Data System (ADS)

    Grässler, H.; Lanske, D.; Schulte, R.; Jones, G. T.; Middleton, R. P.; O'Neale, S. W.; Böckmann, K.; Gebel, W.; Geich-Gimbel, C.; Nellen, B.; Grant, A.; Klein, H.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Chima, J. S.; Mobayyen, M. M.; Talebzadeh, M.; Villalobos-Baillie, O.; Aderholz, M.; Deck, L.; Schmitz, N.; Settles, R.; Wernhard, K. L.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicić, D.; Saitta, B.; Wells, J.; Aachen-Birmingham-Bonn-CERN-Imperial College-München (MPI)-Oxford Collaboration

    1983-08-01

    In an experiment with the hydrogen bubble chamber BEBC at CERN multiplicities of hadrons produced in νp and overlinevp interactions have been investigated. Results are presented on the multiplicities of charged hadrons and neutral pions, forward and backward multiplicities of charged hadrons and correlations between forward and backward multiplicities. Comparisons are made with hadronic reactions and e +e - annihilation. In the framework of the quark-parton model the data imply similar charged multiplicities for the fragments of a u- and a d-quark, and a larger multiplicities for the fragments of a uu- than for a ud-diquark. The correlation data suggest independent fragmentation of the quark and diquark for hadronic masses above ˜ 7 GeV and local charge compensation within an event.

  8. Constraining Δ G at Low-x with Double Longitudinal Spin Asymmetries for Forward Hadron and Di-Hadron Pairs in PHENIX

    NASA Astrophysics Data System (ADS)

    Wolin, Scott; Phenix Collaboration

    2011-10-01

    The gluon polarization, ΔG =∫01 g(x) dx , is constrained in the region 0 . 05 < x < 0 . 2 from measurements of double spin asymmetries, ALL, for inclusive hadron and jet production at mid-rapidity at RHIC. Theoretical analysis of experimental results shows that ∫0. 05 0 . 2 Δg(x) dx = 0 .013-0 . 120 + 0 . 106 . This is not large enough to account for the missing proton spin. However, Δg(x) is unconstrained at low-x, and a measurement sensitive to this region will provide important input for future global analyses. The measurement of ALL for inclusive hadrons and di-hadrons with the Muon Piston Calorimeter (MPC) 3 . 1 < η < 3 . 9 provides this sensitivity down to x 10-3 and will lead to the first constraints of Δg(x) at x < 0 . 05 . The di-hadron measurement is especially interesting as it is sensitive to the sign of ΔG and best constrains the parton kinematics giving the most precise access to xgluon. The inclusive measurement provides a looser constraint on the event kinematics but has a higher yield. We will present the status of these measurements for the 2009 dataset at √{ s} = 500 GeV and √{ s} = 200 GeV.

  9. Accessing the nucleon transverse structure in inclusive deep inelastic scattering

    DOE PAGES

    Accardi, Alberto; Bacchetta, Alessandro

    2017-09-06

    Here, we revisit the standard analysis of inclusive Deep Inelastic Scattering off nucleons taking into account the fact that on-shell quarks cannot be present in the final state, but they rather decay into hadrons - a process that can be described in terms of suitable "jet" correlators. As a consequence, a spin-flip term associated with the invariant mass of the produced hadrons is generated non perturbatively and couples to the target's transversity distribution function. In inclusive cross sections, this provides an hitherto neglected and large contribution to the twist-3 part of the g 2 structure function, that can explain themore » discrepancy between recent calculations and fits of this quantity. It also provides an extension of the Burkhardt-Cottingham sum rule, putting constraints on the small-x behavior of the transversity function, as well as an extension of the Efremov-Teryaev-Leader sum rule, suggesting a novel way to measure the tensor charge of the proton.« less

  10. The decay width of the Z_c(3900) as an axialvector tetraquark state in solid quark-hadron duality

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang; Zhang, Jun-Xia

    2018-01-01

    In this article, we tentatively assign the Z_c^± (3900) to be the diquark-antidiquark type axialvector tetraquark state, study the hadronic coupling constants G_{Z_cJ/ψ π }, G_{Z_cη _cρ }, G_{Z_cD \\bar{D}^{*}} with the QCD sum rules in details. We take into account both the connected and disconnected Feynman diagrams in carrying out the operator product expansion, as the connected Feynman diagrams alone cannot do the work. Special attentions are paid to matching the hadron side of the correlation functions with the QCD side of the correlation functions to obtain solid duality, the routine can be applied to study other hadronic couplings directly. We study the two-body strong decays Z_c^+(3900)→ J/ψ π ^+, η _cρ ^+, D^+ \\bar{D}^{*0}, \\bar{D}^0 D^{*+} and obtain the total width of the Z_c^± (3900). The numerical results support assigning the Z_c^± (3900) to be the diquark-antidiquark type axialvector tetraquark state, and assigning the Z_c^± (3885) to be the meson-meson type axialvector molecular state.

  11. Study of transverse momenta of charged hadrons produced in ν p andbar vp charged current interactions

    NASA Astrophysics Data System (ADS)

    Jones, G. T.; Kennedy, B. W.; Middleton, R. P.; O'Neale, S. W.; Cooper, A. M.; Grant, A.; Klein, H.; Mittendorfer, J.; Morrison, D. R. O.; Parker, A.; Schmid, P.; Wachsmuth, H.; Hamisi, F.; Mobayyen, M. M.; Villalobos-Baillie, O.; Aderholz, M.; Deck, L.; Schmitz, N.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicic, D.; Retter, M.

    1984-06-01

    Data from a neutrino and antineutrino hydrogen experiment with BEBC are used to investigate transverse properties of the produced charged hadrons. Measurements are presented on average transverse momenta of charged pions as functions of Feynman- x and the hadronic mass, on the transverse momentum flow within an event and on jet-related quantities. The main features of the data are well described by the LUND model. The data favour a version of the model in which soft gluon effects are included and the primordial transverse momentum of the quarks in the proton is small. Effects from 1st order QCD (hard gluon emission) are negligible.

  12. Influence of hadron and atmospheric models on computation of cosmic ray ionization in the atmosphere-Extension to heavy nuclei

    NASA Astrophysics Data System (ADS)

    Mishev, A. L.; Velinov, P. I. Y.

    2014-12-01

    In the last few years an essential progress in development of physical models for cosmic ray induced ionization in the atmosphere is achieved. The majority of these models are full target, i.e. based on Monte Carlo simulation of an electromagnetic-muon-nucleon cascade in the atmosphere. Basically, the contribution of proton nuclei is highlighted, i.e. the contribution of primary cosmic ray α-particles and heavy nuclei to the atmospheric ionization is neglected or scaled to protons. The development of cosmic ray induced atmospheric cascade is sensitive to the energy and mass of the primary cosmic ray particle. The largest uncertainties in Monte Carlo simulations of a cascade in the Earth atmosphere are due to assumed hadron interaction models, the so-called hadron generators. In the work presented here we compare the ionization yield functions Y for primary cosmic ray nuclei, such as α-particles, Oxygen and Iron nuclei, assuming different hadron interaction models. The computations are fulfilled with the CORSIKA 6.9 code using GHEISHA 2002, FLUKA 2011, UrQMD hadron generators for energy below 80 GeV/nucleon and QGSJET II for energy above 80 GeV/nucleon. The observed difference between hadron generators is widely discussed. The influence of different atmospheric parametrizations, namely US standard atmosphere, US standard atmosphere winter and summer profiles on ion production rate is studied. Assuming realistic primary cosmic ray mass composition, the ion production rate is obtained at several rigidity cut-offs - from 1 GV (high latitudes) to 15 GV (equatorial latitudes) using various hadron generators. The computations are compared with experimental data. A conclusion concerning the consistency of the hadron generators is stated.

  13. Single particle momentum and angular distributions in hadron-hadron collisions at ultrahigh energies

    NASA Technical Reports Server (NTRS)

    Chou, T. T.; Chen, N. Y.

    1985-01-01

    The forward-backward charged multiplicity distribution (P n sub F, n sub B) of events in the 540 GeV antiproton-proton collider has been extensively studied by the UA5 Collaboration. It was pointed out that the distribution with respect to n = n sub F + n sub B satisfies approximate KNO scaling and that with respect to Z = n sub F - n sub B is binomial. The geometrical model of hadron-hadron collision interprets the large multiplicity fluctuation as due to the widely different nature of collisions at different impact parameters b. For a single impact parameter b, the collision in the geometrical model should exhibit stochastic behavior. This separation of the stochastic and nonstochastic (KNO) aspects of multiparticle production processes gives conceptually a lucid and attractive picture of such collisions, leading to the concept of partition temperature T sub p and the single particle momentum spectrum to be discussed in detail.

  14. Lepton jets and low-mass sterile neutrinos at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dube, Sourabh; Gadkari, Divya; Thalapillil, Arun M.

    2017-09-01

    Sterile neutrinos, if they exist, are potential harbingers for physics beyond the Standard Model. They have the capacity to shed light on our flavor sector, grand unification frameworks, dark matter sector and origins of baryon antibaryon asymmetry. There have been a few seminal studies that have broached the subject of sterile neutrinos with low, electroweak-scale masses (i.e. ΛQCD≪mNR≪mW± ) and investigated their reach at hadron colliders using lepton jets. These preliminary studies nevertheless assume background-free scenarios after certain selection criteria which are overly optimistic and untenable in realistic situations. These lead to incorrect projections. The unique signal topology and challenging hadronic environment also make this mass-scale regime ripe for a careful investigation. With the above motivations, we attempt to perform the first systematic study of low, electroweak-scale, right-handed neutrinos at hadron colliders, in this unique signal topology. There are currently no active searches at hadron colliders for sterile neutrino states in this mass range, and we frame the study in the context of the 13 TeV high-luminosity Large Hadron Collider and the proposed FCC-hh/SppC 100 TeV p p -collider.

  15. Supersymmetry across the light and heavy-light hadronic spectrum. II.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dosch, Hans Gunter; de Téramond, Guy F.; Brodsky, Stanley J.

    We extend our analysis of the implications of hadronic supersymmetry for heavy-light hadrons in light-front holographic QCD. Although conformal symmetry is strongly broken by the heavy quark mass, supersymmetry and the holographic embedding of semiclassical light-front dynamics derived from five-dimensional anti-de Sitter space nevertheless determine the form of the confining potential in the light-front Hamiltonian to be harmonic. The resulting light-front bound-state equations lead to a heavy-light Regge-like spectrum for both mesons and baryons. The confinement hadron mass scale and their Regge slopes depend, however, on the mass of the heavy quark in the meson or baryon as expected frommore » heavy quark effective theory. Furthermore, this procedure reproduces the observed spectra of heavy-light hadrons with good precision and makes predictions for yet unobserved states.« less

  16. Supersymmetry across the light and heavy-light hadronic spectrum. II.

    DOE PAGES

    Dosch, Hans Gunter; de Téramond, Guy F.; Brodsky, Stanley J.

    2017-02-15

    We extend our analysis of the implications of hadronic supersymmetry for heavy-light hadrons in light-front holographic QCD. Although conformal symmetry is strongly broken by the heavy quark mass, supersymmetry and the holographic embedding of semiclassical light-front dynamics derived from five-dimensional anti-de Sitter space nevertheless determine the form of the confining potential in the light-front Hamiltonian to be harmonic. The resulting light-front bound-state equations lead to a heavy-light Regge-like spectrum for both mesons and baryons. The confinement hadron mass scale and their Regge slopes depend, however, on the mass of the heavy quark in the meson or baryon as expected frommore » heavy quark effective theory. Furthermore, this procedure reproduces the observed spectra of heavy-light hadrons with good precision and makes predictions for yet unobserved states.« less

  17. Modern hadron spectroscopy: a bridge between nuclear and particle physics.

    NASA Astrophysics Data System (ADS)

    Szczepaniak, A. P.

    2018-05-01

    In this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.

  18. Modern hadron spectroscopy: a bridge between nuclear and particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczepaniak, Adam P.

    Here, in this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.

  19. Modern hadron spectroscopy: a bridge between nuclear and particle physics

    DOE PAGES

    Szczepaniak, Adam P.

    2018-05-01

    Here, in this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.

  20. Lattice QCD Calculation of Hadronic Light-by-Light Scattering.

    PubMed

    Green, Jeremy; Gryniuk, Oleksii; von Hippel, Georg; Meyer, Harvey B; Pascalutsa, Vladimir

    2015-11-27

    We perform a lattice QCD calculation of the hadronic light-by-light scattering amplitude in a broad kinematical range. At forward kinematics, the results are compared to a phenomenological analysis based on dispersive sum rules for light-by-light scattering. The size of the pion pole contribution is investigated for momenta of typical hadronic size. The presented numerical methods can be used to compute the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. Our calculations are carried out in two-flavor QCD with the pion mass in the range of 270-450 MeV and contain so far only the diagrams with fully connected quark lines.

  1. Open issues in hadronic interactions for air showers

    NASA Astrophysics Data System (ADS)

    Pierog, Tanguy

    2017-06-01

    In detailed air shower simulations, the uncertainty in the prediction of shower observables for different primary particles and energies is currently dominated by differences between hadronic interaction models. With the results of the first run of the LHC, the difference between post-LHC model predictions has been reduced to the same level as experimental uncertainties of cosmic ray experiments. At the same time new types of air shower observables, like the muon production depth, have been measured, adding new constraints on hadronic models. Currently no model is able to consistently reproduce all mass composition measurements possible within the Pierre Auger Observatory for instance. Comparing the different models, and with LHC and cosmic ray data, we will show that the remaining open issues in hadronic interactions in air shower development are now in the pion-air interactions and in nuclear effects.

  2. Single electron yields from semileptonic charm and bottom hadron decays in Au + Au collisions at s N N = 200 GeV

    DOE PAGES

    Adare, A.; Aidala, C.; Ajitanand, N. N.; ...

    2016-03-07

    We measured open heavy flavor production in minimum bias Au + Au collisions at √s( NN) = 200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons, using the PHENIX Collaboration at the Relativistic Heavy Ion Collider. In the past, heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function ofmore » transverse momentum are measured in Au + Au collisions. Here, we compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p + p collisions at √s( NN) = 200 GeV and find the fractions to be similar within the large uncertainties on both measurements for p (T) > 4 GeV/c. We use the bottom electron fractions in Au + Au and p + p along with the previously measured heavy flavor electron R (AA) to calculate the R (AA) for electrons from charm and bottom hadron decays separately. Finally, we find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3 < p (T) < 4 GeV/c.« less

  3. Issues and opportunities in exotic hadrons

    DOE PAGES

    Briceno, Raul A.; Cohen, Thomas D.; Coito, S.; ...

    2016-04-01

    The last few years have been witness to a proliferation of new results concerning heavy exotic hadrons. Experimentally, many new signals have been discovered that could be pointing towards the existence of tetraquarks, pentaquarks, and other exotic configurations of quarks and gluons. Theoretically, advances in lattice field theory techniques place us at the cusp of understanding complex coupled-channel phenomena, modelling grows more sophisticated, and effective field theories are being applied to an ever greater range of situations. Consequently, it is thus an opportune time to evaluate the status of the field. In the following, a series of high priority experimentalmore » and theoretical issues concerning heavy exotic hadrons is presented.« less

  4. PREFACE: 3rd International Conference on Hadron Physics (TROIA'11)

    NASA Astrophysics Data System (ADS)

    Erkol, Güray; Küçükarslan, Ayşe; Özpineci, Altuğ

    2012-03-01

    The 3rd International Conference on Hadron Physics, TROIA'11 was held at Canakkale, Turkey on 22-25 August 2011. Ozyegin University, Middle East Technical University, Canakkale Onsekiz Mart University and HadronPhysics2 Consortium sponsored the conference. Its aim was to bring together the experts and young scientists working on experimental and theoretical hadron physics. About 60 participants from 12 countries attended the conference. The topics covered included: Chiral Perturbation Theory QCD Sum Rules Effective Field Theory Exotic Hadrons Hadron Properties from Lattice QCD Experimental Results and Future Perspectives Hadronic Distribution Amplitudes The conference presentations were organized such that the morning sessions contained invited talks and the afternoon sessions were devoted to contributed talks and poster presentations. The speakers of the invited talks were: D Melikhov, M Nielsen, M Oka, E Oset, S Scherer, T T Takahashi and R Wanke. The conference venue was a resort hotel near Canakkale. As a social program, a guided full-day excursion to the excavation site of the ancient town of Troia and Assos was organized. We believe that this conference provided a medium for young scientists and experts in the field to effectively communicate and share ideas. We would like to express our sincere thanks to all participants for their contributions and stimulating discussions. We are also grateful to the Scientific Secretary, Kadir Utku Can, and all other members of the Organizing Committee for their patience and efforts. 13 February 2012 The Editors Güray Erkol Ayşe Küçükarslan Altuğ Özpineci Conference photograph

  5. Consistent simulation of nonresonant diphoton production in hadron collisions including associated jet production up to two jets

    NASA Astrophysics Data System (ADS)

    Odaka, Shigeru; Kurihara, Yoshimasa

    2016-12-01

    An event generator for diphoton (γ γ ) production in hadron collisions that includes associated jet production up to two jets has been developed using a subtraction method based on the limited leading-log subtraction. The parton shower (PS) simulation to restore the subtracted divergent components involves both quantum electrodynamic (QED) and quantum chromodynamic radiation, and QED radiation at very small Q2 is simulated by referring to a fragmentation function (FF). The PS/FF simulation has the ability to enforce the radiation of a given number of energetic photons. The generated events can be fed to PYTHIA to obtain particle (hadron) level event information, which enables us to perform realistic simulations of photon isolation and hadron-jet reconstruction. The simulated events, in which the loop-mediated g g →γ γ process is involved, reasonably reproduce the diphoton kinematics measured at the LHC. Using the developed simulation, we found that the two-jet processes significantly contribute to diphoton production. A large two-jet contribution can be considered as a common feature in electroweak-boson production in hadron collisions although the reason is yet to be understood. Discussion concerning the treatment of the underlying events in photon isolation is necessary for future higher precision measurements.

  6. Functional Insights from Structural Genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forouhar,F.; Kuzin, A.; Seetharaman, J.

    2007-01-01

    Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNAmore » methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF{_}0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP{_}1951), and a 12-stranded {beta}-barrel with a novel fold (V. parahaemolyticus VPA1032).« less

  7. Determination of the proton spin structure functions for 0.05

    NASA Astrophysics Data System (ADS)

    Fersch, R. G.; Guler, N.; Bosted, P.; Deur, A.; Griffioen, K.; Keith, C.; Kuhn, S. E.; Minehart, R.; Prok, Y.; Adhikari, K. P.; Adhikari, S.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Ball, J.; Balossino, I.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Thanh Cao, Frank; Carman, D. S.; Careccia, S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Garçon, M.; Gavalian, G.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Joo, K.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Lagerquist, V. G.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pierce, J.; Pisano, S.; Pogorelko, O.; Price, J. W.; Protopopescu, D.; Raue, B. A.; Ripani, M.; Riser, D.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zhang, J.; CLAS Collaboration

    2017-12-01

    We present the results of our final analysis of the full data set of g1p(Q2) , the spin structure function of the proton, collected using CLAS at Jefferson Laboratory in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2, and 5.7 GeV were scattered from proton targets (NH153 dynamically polarized along the beam direction) and detected with CLAS. From the measured double spin asymmetries, we extracted virtual photon asymmetries A1p and A2p and spin structure functions g1p and g2p over a wide kinematic range (0.05 GeV2hadron duality, and provide more precise values of higher twist matrix elements in the framework of the operator product expansion.

  8. From hadrons to quarks in neutron stars: a review.

    PubMed

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; Powell, Philip D; Song, Yifan; Takatsuka, Tatsuyuki

    2018-05-01

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors. We review here the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu-Jona-Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density. We review construction of unified equations of state that interpolate between the reasonably well

  9. From hadrons to quarks in neutron stars: a review

    NASA Astrophysics Data System (ADS)

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; Powell, Philip D.; Song, Yifan; Takatsuka, Tatsuyuki

    2018-05-01

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors. We review here the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu–Jona–Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density. We review construction of unified equations of state that interpolate between the reasonably well

  10. From structure to function, via dynamics

    NASA Astrophysics Data System (ADS)

    Stetter, O.; Soriano, J.; Geisel, T.; Battaglia, D.

    2013-01-01

    Neurons in the brain are wired into a synaptic network that spans multiple scales, from local circuits within cortical columns to fiber tracts interconnecting distant areas. However, brain function require the dynamic control of inter-circuit interactions on time-scales faster than synaptic changes. In particular, strength and direction of causal influences between neural populations (described by the so-called directed functional connectivity) must be reconfigurable even when the underlying structural connectivity is fixed. Such directed functional influences can be quantified resorting to causal analysis of time-series based on tools like Granger Causality or Transfer Entropy. The ability to quickly reorganize inter-areal interactions is a chief requirement for performance in a changing natural environment. But how can manifold functional networks stem "on demand" from an essentially fixed structure? We explore the hypothesis that the self-organization of neuronal synchronous activity underlies the control of brain functional connectivity. Based on simulated and real recordings of critical neuronal cultures in vitro, as well as on mean-field and spiking network models of interacting brain areas, we have found that "function follows dynamics", rather than structure. Different dynamic states of a same structural network, characterized by different synchronization properties, are indeed associated to different functional digraphs (functional multiplicity). We also highlight the crucial role of dynamics in establishing a structure-to-function link, by showing that whenever different structural topologies lead to similar dynamical states, than the associated functional connectivities are also very similar (structural degeneracy).

  11. Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David Wilkins

    2012-03-20

    This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of {radical}s = 7 TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLASmore » physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include the jet mass and sub-jet multiplicity as well as those concerned with multi-body hadronic decays and color flow within jets. Finally, the first boosted hadronic object observed at the LHC - the decay of the top quark to a single jet - is presented.« less

  12. Relativistic Few-Body Hadronic Physics Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyzou, Wayne

    2016-06-20

    The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computationsmore » push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In addition to computing bound

  13. Energy Weighted Angular Correlations Between Hadrons Produced in Electron-Positron Annihilation.

    NASA Astrophysics Data System (ADS)

    Strharsky, Roger Joseph

    Electron-positron annihilation at large center of mass energy produces many hadronic particles. Experimentalists then measure the energies of these particles in calorimeters. This study investigated correlations between the angular locations of one or two such calorimeters and the angular orientation of the electron beam in the laboratory frame of reference. The calculation of these correlations includes weighting by the fraction of the total center of mass energy which the calorimeter measures. Starting with the assumption that the reaction proceeeds through the intermediate production of a single quark/anti-quark pair, a simple statistical model was developed to provide a phenomenological description of the distribution of final state hadrons. The model distributions were then used to calculate the one- and two-calorimeter correlation functions. Results of these calculations were compared with available data and several predictions were made for those quantities which had not yet been measured. Failure of the model to reproduce all of the data was discussed in terms of quantum chromodynamics, a fundamental theory which includes quark interactions.

  14. Analysis Tools for Next-Generation Hadron Spectroscopy Experiments

    NASA Astrophysics Data System (ADS)

    Battaglieri, M.; Briscoe, B. J.; Celentano, A.; Chung, S.-U.; D'Angelo, A.; De Vita, R.; Döring, M.; Dudek, J.; Eidelman, S.; Fegan, S.; Ferretti, J.; Filippi, A.; Fox, G.; Galata, G.; García-Tecocoatzi, H.; Glazier, D. I.; Grube, B.; Hanhart, C.; Hoferichter, M.; Hughes, S. M.; Ireland, D. G.; Ketzer, B.; Klein, F. J.; Kubis, B.; Liu, B.; Masjuan, P.; Mathieu, V.; McKinnon, B.; Mitchel, R.; Nerling, F.; Paul, S.; Peláez, J. R.; Rademacker, J.; Rizzo, A.; Salgado, C.; Santopinto, E.; Sarantsev, A. V.; Sato, T.; Schlüter, T.; [Silva]da Silva, M. L. L.; Stankovic, I.; Strakovsky, I.; Szczepaniak, A.; Vassallo, A.; Walford, N. K.; Watts, D. P.; Zana, L.

    The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. The workshops focus on the development of amplitude analysis tools for meson and baryon spectroscopy, and complement other programs in hadron spectroscopy organized in the recent past including the INT-JLab Workshop on Hadron Spectroscopy in Seattle in 2009, the International Workshop on Amplitude Analysis in Hadron Spectroscopy at the ECT*-Trento in 2011, the School on Amplitude Analysis in Modern Physics in Bad Honnef in 2011, the Jefferson Lab Advanced Study Institute Summer School in 2012, and the School on Concepts of Modern Amplitude Analysis Techniques in Flecken-Zechlin near Berlin in September 2013. The aim of this document is to summarize the discussions that took place at the ATHOS 2012 and ATHOS 2013 meetings. We do not attempt a comprehensive review of the field of amplitude analysis, but offer a collection of thoughts that we hope may lay the ground for such a document.

  15. Analysis Tools for Next-Generation Hadron Spectroscopy Experiments

    DOE PAGES

    Battaglieri, Marco; Briscoe, William; Celentano, Andrea; ...

    2015-01-01

    The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. The workshops focus on the development of amplitude analysis tools for meson and baryon spectroscopy, and complement other programs in hadron spectroscopy organized in the recent past including the INT-JLab Workshop on Hadron Spectroscopymore » in Seattle in 2009, the International Workshop on Amplitude Analysis in Hadron Spectroscopy at the ECT*-Trento in 2011, the School on Amplitude Analysis in Modern Physics in Bad Honnef in 2011, the Jefferson Lab Advanced Study Institute Summer School in 2012, and the School on Concepts of Modern Amplitude Analysis Techniques in Flecken-Zechlin near Berlin in September 2013. The aim of this document is to summarize the discussions that took place at the ATHOS 2012 and ATHOS 2013 meetings. We do not attempt a comprehensive review of the field of amplitude analysis, but offer a collection of thoughts that we hope may lay the ground for such a document.« less

  16. Single electron yields from semileptonic charm and bottom hadron decays in Au +Au collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; Hayashi, S.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Ogilvie, C. A.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Voas, B.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration

    2016-03-01

    The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in minimum bias Au +Au collisions at √{sN N}=200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au +Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p +p collisions at √{sN N}=200 GeV and find the fractions to be similar within the large uncertainties on both measurements for pT>4 GeV/c . We use the bottom electron fractions in Au +Au and p +p along with the previously measured heavy flavor electron RA A to calculate the RA A for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3

  17. Hadronic vacuum polarization in true muonium

    NASA Astrophysics Data System (ADS)

    Lamm, Henry

    2017-01-01

    In order to reduce the theoretical uncertainty in the prediction, the leading-order hadronic vacuum polarization contribution to the hyperfine splitting of true muonium is reevaluated in two ways. A more complex pionic form factor and better estimates of the perturbative QCD contributions are used to study the model dependence of the previous calculation. The second, more accurate method directly integrates the Drell ratio R (s ) to obtain C1 ,HVP=-0.04874 (9 ) . This corresponds to an energy shift in the hyperfine splitting (HFS) of Δ EHFS,HVP μ=-8202 (16 ) MHz and represents a factor-of-50 reduction in the theoretical uncertainty from hadronic sources. We also compute the contribution in positronium, which is too small at present to detect.

  18. Hadron diffractive production at ultrahigh energies and shadow effects

    NASA Astrophysics Data System (ADS)

    Anisovich, V. V.; Matveev, M. A.; Nikonov, V. A.

    2016-10-01

    Shadow effects at collisions of hadrons with light nuclei at high energies were subject of scientific interest of V.N. Gribov, first, we mean his study of the hadron-deuteron scattering, see Sov. Phys. JETP 29, 483 (1969) [Zh. Eksp. Teor. Fiz. 56, 892 (1969)] and discovery of the reinforcement of shadowing due to inelastic diffractive rescatterings. It turns out that the similar effect exists on hadron level though at ultrahigh energies. Diffractive production is considered in the ultrahigh energy region where pomeron exchange amplitudes are transformed into black disk ones due to rescattering corrections. The corresponding corrections in hadron reactions h1 + h3 → h1 + h2 + h3 with small momenta transferred (q1→12 ˜ m2/ln2s, q3→32 ˜ m2/ln2s) are calculated in terms of the K-matrix technique modified for ultrahigh energies. Small values of the momenta transferred are crucial for introducing equations for amplitudes. The three-body equation for hadron diffractive production reaction h1 + h3 → h1 + h2 + h3 is written and solved precisely in the eikonal approach. In the black disk regime final state scattering processes do not change the shapes of amplitudes principally but dump amplitudes by a factor ˜ 1 4; initial state rescatterings result in additional factor ˜ 1 2. In the resonant disk regime initial and final state scatterings damp strongly the production amplitude that corresponds to σinel/σtot → 0 at s →∞ in this mode.

  19. Hadron Diffractive Production at Ultrahigh Energies and Shadow Effects

    NASA Astrophysics Data System (ADS)

    Anisovich, V. V.; Matveev, M. A.; Nikonov, V. A.

    Shadow effects at collisions of hadrons with light nuclei at high energies were subject of scientific interest of V.N. Gribov, first, we mean his study of the hadron-deuteron scattering, see Sov. Phys. JETP 29, 483 (1969) [Zh. Eksp. Teor. Fiz. 56, 892 (1969)] and discovery of the reinforcement of shadowing due to inelastic diffractive rescatterings. It turns out that the similar effect exists on hadron level though at ultrahigh energies... Diffractive production is considered in the ultrahigh energy region where pomeron exchange amplitudes are transformed into black disk ones due to rescattering corrections. The corresponding corrections in hadron reactions h1 + h3 → h1 + h2 + h3 with small momenta transferred (q^2_{1 to 1} m^2/ ln^2 s, q^2_{3 to 3} m^2/ ln^2 s) are calculated in terms of the K-matrix technique modified for ultrahigh energies. Small values of the momenta transferred are crucial for introducing equations for amplitudes. The three-body equation for hadron diffractive production reaction h1 + h3 → h1 + h2 + h3 is written and solved precisely in the eikonal approach. In the black disk regime final state scattering processes do not change the shapes of amplitudes principally but dump amplitudes by a factor 1/4 initial state rescatterings result in additional factor 1/2. In the resonant disk regime initial and final state scatterings damp strongly the production amplitude that corresponds to σ_{inel}/σ_{tot} to 0 at √{s}to ∞ in this mode.

  20. Entropy production during hadronization of a quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Biró, Tamás S.; Schram, Zsolt; Jenkovszky, László

    2018-02-01

    We revisit some physical pictures for the hadronization of quark-gluon plasma, concentrating on the problem of entropy production during processes where the number of degrees of freedom is seemingly reduced due to color confinement. Based on observations on Regge trajectories we propose not having an infinite tower of hadronic resonances. We discuss possible entropy production mechanisms far from equilibrium in terms of stochastic dynamics.

  1. Indications of conical emission of charged hadrons at the BNL relativistic heavy ion collider.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bruna, E; Bueltmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; De Silva, C; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; de Souza, R Derradi; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Dutta Mazumdar, M R; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jin, F; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kopytine, M; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krueger, K; Krus, M; Kuhn, C; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; Lapointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Levine, M J; Li, C; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mall, O I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Molnar, L; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Raniwala, R; Raniwala, S; Ray, R L; Reed, R; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Rykov, V; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty, D; Tokarev, M; Trainor, T A; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van Leeuwen, M; Vander Molen, A M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasiliev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, H; Zhang, S; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X

    2009-02-06

    Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at sqrt[s_{NN}]=200 GeV by the STAR experiment. Dijet structures are observed in pp, d+Au and peripheral Au+Au collisions. An additional structure is observed in central Au+Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be theta=1.37+/-0.02(stat)-0.07+0.06(syst), independent of p_{ perpendicular}.

  2. Improving Identification of Dijet Resonances at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Izaguirre, Eder; Shuve, Brian; Yavin, Itay

    2015-01-01

    The experimental detection of resonances has played a vital role in the development of subatomic physics. The overwhelming multijet backgrounds at the Large Hadron Collider (LHC) necessitate the invention of new techniques to identify resonances decaying into a pair of partons. In this Letter we introduce an observable that achieves a significant improvement in several key measurements at the LHC: the Higgs boson decay to a pair of b quarks; W±/Z0 vector-boson hadronic decay; and extensions of the standard model (SM) with a new hadronic resonance. Measuring the Higgs decay to b quarks is a central test of the fermion mass generation mechanism in the SM, whereas the W±/Z0 production rates are important observables of the electroweak sector. Our technique is effective in large parts of phase space where the resonance is mildly boosted and is particularly well suited for experimental searches dominated by systematic uncertainties, which is true of many analyses in the high-luminosity running of the LHC.

  3. Improving identification of dijet resonances at hadron colliders.

    PubMed

    Izaguirre, Eder; Shuve, Brian; Yavin, Itay

    2015-01-30

    The experimental detection of resonances has played a vital role in the development of subatomic physics. The overwhelming multijet backgrounds at the Large Hadron Collider (LHC) necessitate the invention of new techniques to identify resonances decaying into a pair of partons. In this Letter we introduce an observable that achieves a significant improvement in several key measurements at the LHC: the Higgs boson decay to a pair of b quarks; W±/Z0 vector-boson hadronic decay; and extensions of the standard model (SM) with a new hadronic resonance. Measuring the Higgs decay to b quarks is a central test of the fermion mass generation mechanism in the SM, whereas the W±/Z0 production rates are important observables of the electroweak sector. Our technique is effective in large parts of phase space where the resonance is mildly boosted and is particularly well suited for experimental searches dominated by systematic uncertainties, which is true of many analyses in the high-luminosity running of the LHC.

  4. Finite size of hadrons and Bose-Einstein correlations in pp collisions at 7 TeV

    NASA Astrophysics Data System (ADS)

    Bialas, Andrzej; Florkowski, Wojciech; Zalewski, Kacper

    2015-09-01

    Space-time correlations between produced particles, induced by the composite nature of hadrons, imply specific changes in the properties of the correlation functions for identical particles. The expected magnitude of these effects is evaluated using the recently published blast-wave model analysis of the data for pp collisions at √{ s} = 7 TeV.

  5. Hadron intensity and energy spectrum at 4380 m above level

    NASA Technical Reports Server (NTRS)

    Cananov, S. D.; Chadranyan, E. K.; Khizanishvili, L. A.; Ladaria, N. K.; Roinishvili, N. N.

    1985-01-01

    The flux value of hadrons with E (sup gamma) h or = 5 TeV, where E (sup gamma) h or = is the energy transferred into electromagnetic component is presented. It is shown that the energy spectrum slope beta of hadrons with E h or = 20 TeV is equal to 1.9.

  6. Rare b-hadron decays as probe of new physics

    NASA Astrophysics Data System (ADS)

    Lanfranchi, Gaia

    2018-05-01

    The unexpected absence of unambiguous signals of New Physics (NP) at the TeV scale at the Large Hadron Collider (LHC) puts today flavor physics at the forefront. In particular, rare decays of b-hadrons represent a unique probe to challenge the Standard Model (SM) paradigm and test models of NP at a scale much higher than that accessible by direct searches. This article reviews the status of the field.

  7. Kinetic freeze-out conditions for the production of resonances, hadronic molecules, and light nuclei

    NASA Astrophysics Data System (ADS)

    Cho, Sungtae; Song, Taesoo; Lee, Su Houng

    2018-02-01

    We investigate the freeze-out conditions of a particle in an expanding system of interacting particles in order to understand the productions of resonances, hadronic molecules, and light nuclei in heavy-ion collisions. Applying the kinetic freeze-out condition with explicit hydrodynamic calculations for the expanding hadronic phase to the daughter particles of K* mesons, we find that the larger suppression of the yield ratio of K*/K at the Large Hadron Collider (LHC) than at the Relativisitic Heavy Ion Collider (RHIC) compared to the expectations from the statistical hadronization model based on chemical freeze-out parameters reflects the lower kinetic freeze-out temperature at LHC than at RHIC. Furthermore, we point out that for the light nuclei or hadronic molecules that are bound, the freeze-out condition should be applied to the respective particle in the hadronic matter. It is then shown through the rate equation that when the nucleon and pion numbers are kept constant at the chemical freeze-out value during the hadronic phase, the deuteron number quickly approaches an asymptotic value that is close to the statistical model prediction at the chemical freeze-out point. We argue that the reduction seen in K* numbers is a typical result for a particle that has a large natural decay width decaying into daughter particles, while that for deuteron is typical for a stable hadronic bound state.

  8. Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD

    DOE PAGES

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin; ...

    2016-11-21

    Here, we analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the “energy peak” as an observable to determine the top quarkmass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or newmore » physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ±(1.2(exp) + 0.6(th)) GeV. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass.« less

  9. Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin

    Here, we analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the “energy peak” as an observable to determine the top quarkmass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or newmore » physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ±(1.2(exp) + 0.6(th)) GeV. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass.« less

  10. Flavorful leptoquarks at hadron colliders

    NASA Astrophysics Data System (ADS)

    Hiller, Gudrun; Loose, Dennis; Nišandžić, Ivan

    2018-04-01

    B -physics data and flavor symmetries suggest that leptoquarks can have masses as low as a few O (TeV ) , predominantly decay to third generation quarks, and highlight p p →b μ μ signatures from single production and p p →b b μ μ from pair production. Abandoning flavor symmetries could allow for inverted quark hierarchies and cause sizable p p →j μ μ and j j μ μ cross sections, induced by second generation couplings. Final states with leptons other than muons including lepton flavor violation (LFV) ones can also arise. The corresponding couplings can also be probed by precision studies of the B →(Xs,K*,ϕ )e e distribution and LFV searches in B -decays. We demonstrate sensitivity in single leptoquark production for the large hadron collider (LHC) and extrapolate to the high luminosity LHC. Exploration of the bulk of the parameter space requires a hadron collider beyond the reach of the LHC, with b -identification capabilities.

  11. Spin degeneracy of Hadronic molecules in the heavy quark region

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yasuhiro

    2018-03-01

    Hadronic molecules have been considered to appear close to the hadron-hadron threshold. For the heavy mesons, \\bar D and B, the one pion exchange potential is enhanced by the mass degeneracy of heavy pseudoscalar and vector mesons, caused by the heavy quark spin symmetry. In this study, we investigate new hadronic molecules formed by the heavy meson {P≤ft( * \\right)} = {\\bar D≤ft( * \\right)},{B≤ft( * \\right)} and a nucleon N, being P (*) N. As the interaction between P (*) and N, the pion and vector meson (ρ and ω) exchanges are considered. By solving the coupled-channel Schrödinger equations for P N and P*N, we obtain the bound and resonant states in the charm and bottom sectors, and in the in nite heavy quark mass limit. In the molecular states, the PN - P*N mixing effect is important, where the tensor force of the one pion exchange potential generates the strong attraction. In the heavy quark limit, we obtain the degeneracy of the states for J P = 1/2- and 3/2-.

  12. High energy hadrons in air shower cores at mountain altitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Staa, R.; Aschenbach, B.; Boehm, E.

    1974-01-01

    At the Pic du Midi (730 g cm/sup -2/) in France an air shower array has been operated to study high-energy hadrons in air shower cores. The array consists of 13 scintillation counters of 0.25 mi each and a 14 mi high energy hadron detector. 2050 showers please delete the above abstract no 21733====

  13. Unruh thermal hadronization and the cosmological constant

    NASA Astrophysics Data System (ADS)

    Frassino, Antonia M.; Bleicher, Marcus; Mann, Robert B.

    2018-05-01

    We use black holes with a negative cosmological constant to investigate aspects of the freeze-out temperature for hadron production in high energy heavy-ion collisions. The two black hole solutions present in the anti-de Sitter geometry have different mass and are compared to the data showing that the small black hole solution is in good agreement. This is a new feature in the literature since the small black hole in general relativity has different thermodynamic behavior from that of the large black hole solution. We find that the inclusion of the cosmological constant (which can be interpreted as the plasma pressure) leads to a lowering of the temperature of the freeze-out curve as a function of the baryochemical potential, improving the description previously suggested by Castorina, Kharzeev, and Satz.

  14. Hadronic charmless B decays at the SLD

    NASA Astrophysics Data System (ADS)

    Reinertsen, Per Lasse

    Rare decays of beauty particles were studied in several two-body exclusive hadronic charmless modes using the 19.4 pb -1 Z-pole data collected with the SLD detector at SLAC from 1993 to 1998. These decays are mediated by both tree level b-->u and one-loop penguin b-->s,d transitions. Upper limits for the branching ratios are set for the investigated modes Bs, B0-->P+P- , B+-->VP+ and Bs, B0-->VV , where the pseudoscalar particle P+ is either p+ or K+ and the vector particle V is either r0,K*0 or f . Using an event selection algorithm consisting of a set of hard cuts combined with a set of discriminator functions, the efficiencies range between 24%, and 37% with near zero background.

  15. Energy reconstruction of hadrons in highly granular combined ECAL and HCAL systems

    NASA Astrophysics Data System (ADS)

    Israeli, Y.

    2018-05-01

    This paper discusses the hadronic energy reconstruction of two combined electromagnetic and hadronic calorimeter systems using physics prototypes of the CALICE collaboration: the silicon-tungsten electromagnetic calorimeter (Si-W ECAL) and the scintillator-SiPM based analog hadron calorimeter (AHCAL); and the scintillator-tungsten electromagnetic calorimeter (ScECAL) and the AHCAL. These systems were operated in hadron beams at CERN and FNAL, permitting the study of the performance in combined ECAL and HCAL systems. Two techniques for the energy reconstruction are used, a standard reconstruction based on calibrated sub-detector energy sums, and one based on a software compensation algorithm making use of the local energy density information provided by the high granularity of the detectors. The software compensation-based algorithm improves the hadronic energy resolution by up to 30% compared to the standard reconstruction. The combined system data show comparable energy resolutions to the one achieved for data with showers starting only in the AHCAL and therefore demonstrate the success of the inter-calibration of the different sub-systems, despite of their different geometries and different readout technologies.

  16. Hadron Mass Effects: Kaons at HERMES vs. COMPASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero Teran, Juan V.; Accardi, Alberto

    Experimental data for integrated kaon multiplicities taken at HERMES and COMPASS measurements look incompatible with each other. In this talk, we investigate the effects of hadron masses calculated at leading-order and leading twist at the kinematics of these two experiments. We present evidence that Hadron Mass Corrections can fully reconcile the data for the K+/K- multiplicity ratio, and can also sizeably reduce the apparent large discrepancy in the case of K++K- data. Residual differences in the shape of the latter one remains to be understood.

  17. Vector-like quarks coupling discrimination at the LHC and future hadron colliders

    NASA Astrophysics Data System (ADS)

    Barducci, D.; Panizzi, L.

    2017-12-01

    The existence of new coloured states with spin one-half, i.e. extra-quarks, is a striking prediction of various classes of new physics models. Should one of these states be discovered during the 13 TeV runs of the LHC or at future high energy hadron colliders, understanding its properties will be crucial in order to shed light on the underlying model structure. Depending on the extra-quarks quantum number under SU(2) L , their coupling to Standard Model quarks and bosons have either a dominant left- or right-handed chiral component. By exploiting the polarisation properties of the top quarks arising from the decay of pair-produced extra quarks, we show how it is possible to discriminate among the two hypothesis in the whole discovery range currently accessible at the LHC, thus effectively narrowing down the possible interpretations of a discovered state in terms of new physics scenarios. Moreover, we estimate the discovery and discrimination power of future prototype hadron colliders with centre of mass energies of 33 and 100 TeV.

  18. Charm Penguin in B± → K±K+K-: Partonic and hadronic loops

    NASA Astrophysics Data System (ADS)

    Bediaga, I.; Frederico, T.; Magalhães, P. C.

    2018-05-01

    Charm penguin diagrams are known to be the main contribution to charmless B decay process with strangeness variation equal to minus one, which is the case of B± →K±K+K- decay. The large phase space available in this and other B three-body decays allows non trivial final state interactions with all sort of rescattering processes and also access high momentum transfers in the central region of the Dalitz plane. In this work we investigate the charm Penguin contribution to B± →K±K+K-, described by a hadronic triangle loop in nonperturbative regions of the phase space, and by a partonic loop at the quasi perturbative region. These nonresonant amplitudes should have a particular structure in the Dalitz plane and their contributions to the final decay amplitude can be confirmed by a data amplitude analysis in this channel. In particular, the hadronic amplitude has a changing sign in the phase at D D bar threshold which can result in a change of sign for the CP asymmetry.

  19. Structure-function clustering in multiplex brain networks

    NASA Astrophysics Data System (ADS)

    Crofts, J. J.; Forrester, M.; O'Dea, R. D.

    2016-10-01

    A key question in neuroscience is to understand how a rich functional repertoire of brain activity arises within relatively static networks of structurally connected neural populations: elucidating the subtle interactions between evoked “functional connectivity” and the underlying “structural connectivity” has the potential to address this. These structural-functional networks (and neural networks more generally) are more naturally described using a multilayer or multiplex network approach, in favour of standard single-layer network analyses that are more typically applied to such systems. In this letter, we address such issues by exploring important structure-function relations in the Macaque cortical network by modelling it as a duplex network that comprises an anatomical layer, describing the known (macro-scale) network topology of the Macaque monkey, and a functional layer derived from simulated neural activity. We investigate and characterize correlations between structural and functional layers, as system parameters controlling simulated neural activity are varied, by employing recently described multiplex network measures. Moreover, we propose a novel measure of multiplex structure-function clustering which allows us to investigate the emergence of functional connections that are distinct from the underlying cortical structure, and to highlight the dependence of multiplex structure on the neural dynamical regime.

  20. The transverse momentum distribution of hadrons within jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong -Bo; Liu, Xiaohui; Ringer, Felix

    We study the transverse momentum distribution of hadrons within jets, where the transverse momentum is defined with respect to the standard jet axis. We consider the case where the jet substructure measurement is performed for an inclusive jet sample pp → jet + X. We demonstrate that this observable provides new opportunities to study transverse momentum dependent fragmentation functions (TMDFFs) which are currently poorly constrained from data, especially for gluons. The factorization of the cross section is obtained within Soft Collinear Effective Theory (SCET), and we show that the relevant TMDFFs are the same as for the more traditional processesmore » semi-inclusive deep inelastic scattering (SIDIS) and electron-positron annihilation. Different than in SIDIS, the observable for the in-jet fragmentation does not depend on TMD parton distribution functions which allows for a cleaner and more direct probe of TMDFFs. We present numerical results and compare to available data from the LHC.« less

  1. The transverse momentum distribution of hadrons within jets

    DOE PAGES

    Kang, Zhong -Bo; Liu, Xiaohui; Ringer, Felix; ...

    2017-11-13

    We study the transverse momentum distribution of hadrons within jets, where the transverse momentum is defined with respect to the standard jet axis. We consider the case where the jet substructure measurement is performed for an inclusive jet sample pp → jet + X. We demonstrate that this observable provides new opportunities to study transverse momentum dependent fragmentation functions (TMDFFs) which are currently poorly constrained from data, especially for gluons. The factorization of the cross section is obtained within Soft Collinear Effective Theory (SCET), and we show that the relevant TMDFFs are the same as for the more traditional processesmore » semi-inclusive deep inelastic scattering (SIDIS) and electron-positron annihilation. Different than in SIDIS, the observable for the in-jet fragmentation does not depend on TMD parton distribution functions which allows for a cleaner and more direct probe of TMDFFs. We present numerical results and compare to available data from the LHC.« less

  2. Automated prediction of protein function and detection of functional sites from structure.

    PubMed

    Pazos, Florencio; Sternberg, Michael J E

    2004-10-12

    Current structural genomics projects are yielding structures for proteins whose functions are unknown. Accordingly, there is a pressing requirement for computational methods for function prediction. Here we present PHUNCTIONER, an automatic method for structure-based function prediction using automatically extracted functional sites (residues associated to functions). The method relates proteins with the same function through structural alignments and extracts 3D profiles of conserved residues. Functional features to train the method are extracted from the Gene Ontology (GO) database. The method extracts these features from the entire GO hierarchy and hence is applicable across the whole range of function specificity. 3D profiles associated with 121 GO annotations were extracted. We tested the power of the method both for the prediction of function and for the extraction of functional sites. The success of function prediction by our method was compared with the standard homology-based method. In the zone of low sequence similarity (approximately 15%), our method assigns the correct GO annotation in 90% of the protein structures considered, approximately 20% higher than inheritance of function from the closest homologue.

  3. The origin of thermal component in the transverse momentum spectra in high energy hadronic processes

    DOE PAGES

    Bylinkin, Alexander A.; Kharzeev, Dmitri E.; Rostovtsev, Andrei A.

    2014-12-15

    The transverse momentum spectra of hadrons produced in high energy collisions can be decomposed into two components: the exponential ("thermal") and the power ("hard") ones. Recently, the H1 Collaboration has discovered that the relative strength of these two components in Deep Inelastic Scattering (DIS) depends drastically upon the global structure of the event - namely, the exponential component is absent in the diffractive events characterized by a rapidity gap. We discuss the possible origin of this effect and speculate that it is linked to confinement. Specifically, we argue that the thermal component is due to the effective event horizon introducedmore » by the confining string, in analogy to the Hawking-Unruh effect. In diffractive events, the t-channel exchange is color-singlet and there is no fragmenting string - so the thermal component is absent. The slope of the soft component of the hadron spectrum in this picture is determined by the saturation momentum that drives the deceleration in the color field, and thus the Hawking-Unruh temperature. We analyze the data on non-diffractive pp collisions and find that the slope of the thermal component of the hadron spectrum is indeed proportional to the saturation momentum.« less

  4. Effects of jet-induced medium excitation in γ-hadron correlation in A+A collisions

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Cao, Shanshan; Luo, Tan; Pang, Long-Gang; Wang, Xin-Nian

    2018-02-01

    Coupled Linear Boltzmann Transport and hydrodynamics (CoLBT-hydro) is developed for co-current and event-by-event simulations of jet transport and jet-induced medium excitation (j.i.m.e.) in high-energy heavy-ion collisions. This is made possible by a GPU parallelized (3 + 1)D hydrodynamics that has a source term from the energy-momentum deposition by propagating jet shower partons and provides real time update of the bulk medium evolution for subsequent jet transport. Hadron spectra in γ-jet events of A+A collisions at RHIC and LHC are calculated for the first time that include hadrons from both the modified jet and j.i.m.e. CoLBT-hydro describes well experimental data at RHIC on the suppression of leading hadrons due to parton energy loss. It also predicts the enhancement of soft hadrons from j.i.m.e. The onset of soft hadron enhancement occurs at a constant transverse momentum due to the thermal nature of soft hadrons from j.i.m.e. which also have a significantly broadened azimuthal distribution relative to the jet direction. Soft hadrons in the γ direction are, on the other hand, depleted due to a diffusion wake behind the jet.

  5. Effects of jet-induced medium excitation in γ-hadron correlation in A+A collisions

    DOE PAGES

    Chen, Wei; Cao, Shanshan; Luo, Tan; ...

    2017-12-07

    Coupled Linear Boltzmann Transport and hydrodynamics (CoLBT-hydro) is developed for co-current and event-by-event simulations of jet transport and jet-induced medium excitation (j.i.m.e.) in high-energy heavy-ion collisions. This is made possible by a GPU parallelized (3+1)D hydrodynamics that has a source term from the energy-momentum deposition by propagating jet shower partons and provides real time update of the bulk medium evolution for subsequent jet transport. Hadron spectra in γ-jet events of A+A collisions at RHIC and LHC are calculated for the first time that include hadrons from both the modified jet and j.i.m.e. CoLBT-hydro describes well experimental data at RHIC onmore » the suppression of leading hadrons due to parton energy loss. It also predicts the enhancement of soft hadrons from j.i.m.e. The onset of soft hadron enhancement occurs at a constant transverse momentum due to the thermal nature of soft hadrons from j.i.m.e. which also have a significantly broadened azimuthal distribution relative to the jet direction. Soft hadrons in the γ direction are, on the other hand, depleted due to a diffusion wake behind the jet.« less

  6. Effects of jet-induced medium excitation in γ-hadron correlation in A+A collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei; Cao, Shanshan; Luo, Tan

    Coupled Linear Boltzmann Transport and hydrodynamics (CoLBT-hydro) is developed for co-current and event-by-event simulations of jet transport and jet-induced medium excitation (j.i.m.e.) in high-energy heavy-ion collisions. This is made possible by a GPU parallelized (3+1)D hydrodynamics that has a source term from the energy-momentum deposition by propagating jet shower partons and provides real time update of the bulk medium evolution for subsequent jet transport. Hadron spectra in γ-jet events of A+A collisions at RHIC and LHC are calculated for the first time that include hadrons from both the modified jet and j.i.m.e. CoLBT-hydro describes well experimental data at RHIC onmore » the suppression of leading hadrons due to parton energy loss. It also predicts the enhancement of soft hadrons from j.i.m.e. The onset of soft hadron enhancement occurs at a constant transverse momentum due to the thermal nature of soft hadrons from j.i.m.e. which also have a significantly broadened azimuthal distribution relative to the jet direction. Soft hadrons in the γ direction are, on the other hand, depleted due to a diffusion wake behind the jet.« less

  7. Geant4 hadronic physics for space radiation environment.

    PubMed

    Ivantchenko, Anton V; Ivanchenko, Vladimir N; Molina, Jose-Manuel Quesada; Incerti, Sebastien L

    2012-01-01

    To test and to develop Geant4 (Geometry And Tracking version 4) Monte Carlo hadronic models with focus on applications in a space radiation environment. The Monte Carlo simulations have been performed using the Geant4 toolkit. Binary (BIC), its extension for incident light ions (BIC-ion) and Bertini (BERT) cascades were used as main Monte Carlo generators. For comparisons purposes, some other models were tested too. The hadronic testing suite has been used as a primary tool for model development and validation against experimental data. The Geant4 pre-compound (PRECO) and de-excitation (DEE) models were revised and improved. Proton, neutron, pion, and ion nuclear interactions were simulated with the recent version of Geant4 9.4 and were compared with experimental data from thin and thick target experiments. The Geant4 toolkit offers a large set of models allowing effective simulation of interactions of particles with matter. We have tested different Monte Carlo generators with our hadronic testing suite and accordingly we can propose an optimal configuration of Geant4 models for the simulation of the space radiation environment.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.

    Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatiblemore » with the momentum and other sum rules for the nuclear parton distribution functions.« less

  9. Determination of the proton spin structure functions for 0.05 < Q 2 < 5 GeV 2 using CLAS

    DOE PAGES

    Fersch, R. G.; Guler, N.; Bosted, P.; ...

    2017-12-27

    In this work, we present the results of our final analysis of the full data set of gmore » $$p\\atop{1}$$ (Q 2), the spin structure function of the proton, collected using CLAS at Jefferson Laboratory in 2000–2001. Polarized electrons with energies of 1.6, 2.5, 4.2, and 5.7 GeV were scattered from proton targets ( 15NH 3 dynamically polarized along the beam direction) and detected with CLAS. From the measured double spin asymmetries, we extracted virtual photon asymmetries A$$p\\atop{1}$$ and A$$p\\atop{2}$$ and spin structure functions g$$p\\atop{1}$$ and g$$p\\atop{2}$$ over a wide kinematic range (0.05 GeV 2 < Q 2 < 5 GeV 2 and 1.08 GeV < W < 3 GeV) and calculated moments of g$$p\\atop{1}$$. We compare our final results with various theoretical models and expectations, as well as with parametrizations of the world data. Lastly, our data, with their precision and dense kinematic coverage, are able to constrain fits of polarized parton distributions, test pQCD predictions for quark polarizations at large x, offer a better understanding of quark-hadron duality, and provide more precise values of higher twist matrix elements in the framework of the operator product expansion.« less

  10. Determinations of Vus using inclusive hadronic τ decay data

    NASA Astrophysics Data System (ADS)

    Maltman, Kim; Hudspith, Renwick James; Lewis, Randy; Izubuchi, Taku; Ohki, Hiroshi; Zanotti, James M.

    2016-08-01

    Two methods for determining |Vus| employing inclusive hadronic τ decay data are discussed. The first is the conventional flavor-breaking sum rule determination whose usual implementation produces results ˜ 3σ low compared to three-family unitary expectations. The second is a novel approach combining experimental strange hadronic τ distributions with lattice light-strange current-current two-point function data. Preliminary explorations of the latter show the method promises |Vus| determinations competitive with those from Kℓ3 and Γ[Kμ2]/Γ[πμ2]. For the former, systematic issues in the conventional implementation are investigated. Unphysical dependences of |Vus| on the choice of sum rule weight, w, and upper limit, s0, of the weighted experimental spectral integrals are observed, the source of these problems identified and a new implementation which overcomes these problems developed. Lattice results are shown to provide a tool for quantitatively assessing truncation uncertainties for the slowly converging D = 2 OPE series. The results for |Vus| from this new implementation are shown to be free of unphysical w- and s0-dependences, and ˜ 0.0020 higher than those produced by the conventional implementation. With preliminary new Kπ branching fraction results as input, we find |Vus| in excellent agreement with that obtained from Kℓ3, and compatible within errors with expectations from three-family unitarity.

  11. Radial scaling in inclusive jet production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Taylor, Frank E.

    2018-03-01

    Inclusive jet production in p-p and p ¯ -p collisions shows many of the same kinematic systematics as observed in single-particle inclusive production at much lower energies. In an earlier study (1974) a phenomenology, called radial scaling, was developed for the single-particle inclusive cross sections that attempted to capture the essential underlying physics of pointlike parton scattering and the fragmentation of partons into hadrons suppressed by the kinematic boundary. The phenomenology was successful in emphasizing the underlying systematics of the inclusive particle productions. Here we demonstrate that inclusive jet production at the Large Hadron Collider (LHC) in high-energy p-p collisions and at the Tevatron in p ¯ -p inelastic scattering shows similar behavior. The ATLAS inclusive jet production plotted as a function of this scaling variable is studied for √s of 2.76, 7 and 13 TeV and is compared to p ¯ -p inclusive jet production at 1.96 TeV measured at the CDF and D0 at the Tevatron and p-Pb inclusive jet production at the LHC ATLAS at √sNN=5.02 TeV . Inclusive single-particle production at Fermi National Accelerator Laboratory fixed target and Intersecting Storage Rings energies are compared to inclusive J /ψ production at the LHC measured in ATLAS, CMS and LHCb. Striking common features of the data are discussed.

  12. Masses of constituent quarks confined in open bottom hadrons

    NASA Astrophysics Data System (ADS)

    Borka Jovanović, V.; Borka, D.; Jovanović, P.; Milošević, J.; Ignjatović, S. R.

    2014-12-01

    We apply color-spin and flavor-spin quark-quark interactions to the meson and baryon constituent quarks, and calculate constituent quark masses, as well as the coupling constants of these interactions. The main goal of this paper was to determine constituent quark masses from light and open bottom hadron masses, using the fitting method we have developed and clustering of hadron groups. We use color-spin Fermi-Breit (FB) and flavor-spin Glozman-Riska (GR) hyperfine interaction (HFI) to determine constituent quark masses (especially b quark mass). Another aim was to discern between the FB and GR HFI because our previous findings had indicated that both interactions were satisfactory. Our improved fitting procedure of constituent quark masses showed that on average color-spin (FB) HFI yields better fits. The method also shows the way how the constituent quark masses and the strength of the interaction constants appear in different hadron environments.

  13. Geant4 hadronic physics validation with ATLAS Tile Calorimeter test-beam data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexa, C.; Constantinescu, S.; Dita, S.

    We present comparison studies between Geant4 shower packages and ATLAS Tile Calorimeter test-beam data collected at CERN in H8 beam line at the SPS. Emphasis is put on hadronic physics lists and data concerning differences between Tilecal response to pions and protons of same energy. The ratio between the pure hadronic fraction of pion and the pure hadronic fraction of proton F{sub h}{sup {pi}}/F{sub h}{sup p} was estimated with Tilecal test-beam data and compared with Geant4 simulations.

  14. Studies of the nucleon structure in back-to-back SIDIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut

    2016-03-01

    The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong interactions, which was a major focus in last decades. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first studies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides access to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue tomore » study the complex nucleon structure. Large acceptance of the Electron Ion Collider, allowing detection of two hadrons, produced back-to-back in the current and target fragmentation regions, combined with clear separation of two regions, would provide a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions.« less

  15. Optimizing integrated luminosity of future hadron colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank

    2015-10-01

    The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).

  16. Constraining the hadronic spectrum through QCD thermodynamics on the lattice

    NASA Astrophysics Data System (ADS)

    Alba, Paolo; Bellwied, Rene; Borsányi, Szabolcs; Fodor, Zoltan; Günther, Jana; Katz, Sandor D.; Mantovani Sarti, Valentina; Noronha-Hostler, Jacquelyn; Parotto, Paolo; Pasztor, Attila; Vazquez, Israel Portillo; Ratti, Claudia

    2017-08-01

    Fluctuations of conserved charges allow us to study the chemical composition of hadronic matter. A comparison between lattice simulations and the hadron resonance gas (HRG) model suggested the existence of missing strange resonances. To clarify this issue we calculate the partial pressures of mesons and baryons with different strangeness quantum numbers using lattice simulations in the confined phase of QCD. In order to make this calculation feasible, we perform simulations at imaginary strangeness chemical potentials. We systematically study the effect of different hadronic spectra on thermodynamic observables in the HRG model and compare to lattice QCD results. We show that, for each hadronic sector, the well-established states are not enough in order to have agreement with the lattice results. Additional states, either listed in the Particle Data Group booklet (PDG) but not well established, or predicted by the quark model (QM), are necessary in order to reproduce the lattice data. For mesons, it appears that the PDG and the quark model do not list enough strange mesons, or that, in this sector, interactions beyond those included in the HRG model are needed to reproduce the lattice QCD results.

  17. Study of hadron bundles observed in Chacaltaya two-story emulsion chamber

    NASA Technical Reports Server (NTRS)

    Aoki, H.

    1985-01-01

    The existence of hadron-rich families associated with few gamma-ray emission named Centauro and Mini-Centauro phemonena was reported. It was investigated whether these are produced by the special type of interaction different from the ordinary pion multiple production or not. The experimental results are compared with simulation calculation based on ordinary multiple pion production model. Both hadron multiplicity distribution, obtained from the present observation and the simulation calculation, show almost the same distribution which means that hadron bundles of such smaller multiplicities are considered to originate from successive interactions of surviving nucleon with the nature of multiple production during passage through the atmosphere.

  18. Structured events in Pamir carbon X-ray chambers

    NASA Technical Reports Server (NTRS)

    Leptukh, G. G.

    1985-01-01

    Experimental and theoretical investigations of structured events or narrow groups of hadrons in the Pamir carbon chambers are presented. These events are formed by the usual fluctuations of in-chamber development of nuclear electromagnetic cascade (NEC) initiated by a single hadron from the atmosphere.

  19. New method to measure the attenuation of hadrons in extensive air showers

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hildebrand, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2009-07-01

    Extensive air showers are generated through interactions of high-energy cosmic rays impinging the Earth’s atmosphere. A new method is described to infer the attenuation of hadrons in air showers. The numbers of electrons and muons, registered with the scintillator array of the KASCADE experiment, are used to estimate the energy of the shower inducing primary particle. A large hadron calorimeter is used to measure the hadronic energy reaching observation level. The ratio of energy reaching ground level to the energy of the primary particle is used to derive an attenuation length of hadrons in air showers. In the energy range from 106 to 3×107GeV the attenuation length obtained increases from 170 to 210g/cm2. The experimental results are compared to predictions of simulations based on contemporary high-energy interaction models.

  20. DRoplet and hAdron generator for nuclear collisions: An update

    NASA Astrophysics Data System (ADS)

    Tomášik, Boris

    2016-10-01

    The Monte Carlo generator DRAGON simulates hadron production in ultrarelativistic nuclear collisions. The underlying theoretical description is provided by the blast-wave model. DRAGON includes second-order angular anisotropy in transverse shape and the amplitude of the transverse expansion velocity. It also allows to simulate hadron production from a fragmented fireball, e.g. as resulting from spinodal decomposition happening at the first-order phase transition.

  1. Measurement of q ˆ in Relativistic Heavy Ion Collisions using di-hadron correlations

    DOE PAGES

    Tannenbaum, M. J.

    2017-06-06

    The propagation of partons from hard scattering through the Quark Gluon Plasma produced in A+A collisions at RHIC and the LHC is represented in theoretical analyses by the transport coefficientmore » $$\\hat{q}$$ and predicted to cause both energy loss of the outgoing partons, observed as suppression of particles or jets with large transverse momentum p T, and broadening of the azimuthal correlations of the outgoing di-jets or di-hadrons from the outgoing parton-pair, which has not been observed. The widths of azimuthal correlations of di-hadrons with the same trigger particle p Tt and associated p Ta transverse momenta in p+p and Au+Au are so-far statistically indistinguishable as shown in recent as well as older di-hadron measurements and also with jet-hadron and hadron-jet measurements. The azimuthal width of the di-hadron correlations in p+p collisions, beyond the fragmentation transverse momentum, j T, is dominated by k T, the so-called intrinsic transverse momentum of a parton in a nucleon, which can be measured. The broadening should produce a larger k T in A+A than in p+p collisions. The present work introduces the observation that the k T measured in p+p collisions for di-hadrons with p Tt and p Ta must be reduced to compensate for the energy loss of both the trigger and away parent partons when comparing to the k T measured with the same di-hadron p Tt and p Ta in Au+Au collisions. This idea is applied to a recent STAR di-hadron measurement, with result <$$\\hat{q}$$L>=2.1±0.6 GeV 2. This is more precise but in agreement with a theoretical calculation of <$$\\hat{q}$$L>=14$$+42\\atop{-14}$$ GeV 2 using the same data. Assuming a length ≈7 fm for central Au+Au collisions the present result gives $$\\hat{q}$$≈0.30±0.09 GeV 2/fm, in fair agreement with the JET collaboration result from single hadron suppression of $$\\hat{q}$$≈1.2±0.3 GeV 2/fm at an initial time τ 0=0.6 fm/c in Au+Au collisions at √sNN=200 GeV.« less

  2. Measurement of q ˆ in Relativistic Heavy Ion Collisions using di-hadron correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, M. J.

    The propagation of partons from hard scattering through the Quark Gluon Plasma produced in A+A collisions at RHIC and the LHC is represented in theoretical analyses by the transport coefficientmore » $$\\hat{q}$$ and predicted to cause both energy loss of the outgoing partons, observed as suppression of particles or jets with large transverse momentum p T, and broadening of the azimuthal correlations of the outgoing di-jets or di-hadrons from the outgoing parton-pair, which has not been observed. The widths of azimuthal correlations of di-hadrons with the same trigger particle p Tt and associated p Ta transverse momenta in p+p and Au+Au are so-far statistically indistinguishable as shown in recent as well as older di-hadron measurements and also with jet-hadron and hadron-jet measurements. The azimuthal width of the di-hadron correlations in p+p collisions, beyond the fragmentation transverse momentum, j T, is dominated by k T, the so-called intrinsic transverse momentum of a parton in a nucleon, which can be measured. The broadening should produce a larger k T in A+A than in p+p collisions. The present work introduces the observation that the k T measured in p+p collisions for di-hadrons with p Tt and p Ta must be reduced to compensate for the energy loss of both the trigger and away parent partons when comparing to the k T measured with the same di-hadron p Tt and p Ta in Au+Au collisions. This idea is applied to a recent STAR di-hadron measurement, with result <$$\\hat{q}$$L>=2.1±0.6 GeV 2. This is more precise but in agreement with a theoretical calculation of <$$\\hat{q}$$L>=14$$+42\\atop{-14}$$ GeV 2 using the same data. Assuming a length ≈7 fm for central Au+Au collisions the present result gives $$\\hat{q}$$≈0.30±0.09 GeV 2/fm, in fair agreement with the JET collaboration result from single hadron suppression of $$\\hat{q}$$≈1.2±0.3 GeV 2/fm at an initial time τ 0=0.6 fm/c in Au+Au collisions at √sNN=200 GeV.« less

  3. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    NASA Astrophysics Data System (ADS)

    Matsumura, H.; Matsuda, N.; Kasugai, Y.; Toyoda, A.; Yashima, H.; Sekimoto, S.; Iwase, H.; Oishi, K.; Sakamoto, Y.; Nakashima, H.; Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K.

    2014-06-01

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.

  4. Proton structure functions at small x

    DOE PAGES

    Hentschinski, Martin

    2015-11-03

    Proton structure functions are measured in electron-proton collision through inelastic scattering of virtual photons with virtuality Q on protons; x denotes the momentum fraction carried by the struck parton. Proton structure functions are currently described with excellent accuracy in terms of scale dependent parton distribution functions, defined in terms of collinear factorization and DGLAP evolution in Q. With decreasing x however, parton densities increase and are ultimately expected to saturate. In this regime DGLAP evolution will finally break down and non-linear evolution equations w.r.t x are expected to take over. In the first part of the talk we present recentmore » result on an implementation of physical DGLAP evolution. Unlike the conventional description in terms of parton distribution functions, the former describes directly the Q dependence of the measured structure functions. It is therefore physical insensitive to factorization scheme and scale ambiguities. It therefore provides a more stringent test of DGLAP evolution and eases the manifestation of (non-linear) small x effects. It however requires a precise measurement of both structure functions F 2 and F L, which will be only possible at future facilities, such as an Electron Ion Collider. In the second part we present a recent analysis of the small x region of the combined HERA data on the structure function F 2. We demonstrate that (linear) next-to-leading order BFKL evolution describes the effective Pomeron intercept, determined from the combined HERA data, once a resummation of collinear enhanced terms is included and the renormalization scale is fixed using the BLM optimal scale setting procedure. We also provide a detailed description of the Q and x dependence of the full structure functions F 2 in the small x region, as measured at HERA. As a result, predictions for the structure function F L are found to be in agreement with the existing HERA data.« less

  5. Status of hadron therapy in Europe and the role of ENLIGHT

    NASA Astrophysics Data System (ADS)

    Dosanjh, Manjit; Hoffmann, Hans Falk; Magrin, Giulio

    2007-02-01

    Cancer is a major social problem, and it is the main cause of death between the ages 45-65 years. In the treatment of cancer, radio therapy (RT) plays an essential role. RT with hadrons (protons and light ions), due to their unique physical and radiobiological properties, offers several advantages over photons. In particular, they penetrate the patient with minimal diffusion, they deposit maximum energy at the end of their range, and they can be shaped as narrow focused and scanned pencil beams of variable penetration depth. Hadron beams allow highly conformal treatment (where the beam conforms to the shape of the tumour) of deep-seated tumours with great accuracy, while delivering minimal doses to surrounding tissues. Hadron therapy, thus, has great prospects for being used in early stages of tumour disease not amenable to surgery. It is likely that, besides its more impressive effect on radio-resistant tumours, post-treatment morbidity will be lower in patients treated with hadrons due to the lower dose and toxicity to normal tissues. Visionary physicist and founder of Fermilab, Robert Wilson first proposed the use of hadrons for cancer treatment in 1946. This idea was first put into practise at the Lawrence Berkeley Laboratory (LBL) where 30 patients were treated with protons between 1954 and 1957. Since then the total number of patients treated with hadrons in the world now exceeds 50,000, of which 5000 new patients were treated last year. Several dedicated hospital-based centres with significant capacity for treating patients are now taking the place of the first R&D facilities hosted by the Physics Research Laboratories (e.g. LBL, GSI). Europe is playing a key role in the advancement of light ion therapy facilities with five financed centres using actively scanned carbon ions (of which two are already under construction in Heidelberg and Pavia) and several proton therapy centres which will become operational soon. In the US, three proton therapy centres are

  6. ENLIGHT and other EU-funded projects in hadron therapy.

    PubMed

    Dosanjh, M; Jones, B; Mayer, R; Meyer, R

    2010-10-01

    Following impressive results from early phase trials in Japan and Germany, there is a current expansion in European hadron therapy. This article summarises present European Union-funded projects for research and co-ordination of hadron therapy across Europe. Our primary focus will be on the research questions associated with carbon ion treatment of cancer, but these considerations are also applicable to treatments using proton beams and other light ions. The challenges inherent in this new form of radiotherapy require maximum interdisciplinary co-ordination. On the basis of its successful track record in particle and accelerator physics, the internationally funded CERN laboratories (otherwise known as the European Organisation for Nuclear Research) have been instrumental in promoting collaborations for research purposes in this area of radiation oncology. There will soon be increased opportunities for referral of patients across Europe for hadron therapy. Oncologists should be aware of these developments, which confer enhanced prospects for better cancer cure rates as well as improved quality of life in many cancer patients.

  7. Physics and Analysis at a Hadron Collider - An Introduction (1/3)

    ScienceCinema

    None

    2018-05-11

    This is the first lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This first lecture provides a brief introduction to hadron collider physics and collider detector experiments as well as offers some analysis guidelines. The lectures are aimed at graduate students.

  8. Linear and quadratic static response functions and structure functions in Yukawa liquids.

    PubMed

    Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I

    2014-08-01

    We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.

  9. Structure and functions of fungal cell surfaces

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  10. Hadron interactions and exotic hadrons from lattice QCD

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoichi

    2014-09-01

    One of the interesting subjects in hadron physics is to look for the multiquark configurations. One of candidates is the H-dibaryon (udsuds), and the possibility of the bound H-dibaryon has been recently studied from lattice QCD. We also extend the HAL QCD method to define potentials on the lattice between baryons to meson-meson systems including charm quarks to search for the bound tetraquark Tcc (ud c c) and Tcs (ud c s). In the presentation, after reviewing the HAL QCD method, we report the results on the H-dibaryon, the tetraquark Tcc (ud c c) and Tcs (ud c s), where we have employed the relativistic heavy quark action to treat the charm quark dynamics with pion masses, mπ = 410, 570, 700 MeV.

  11. Charmed Hadron Spectrum and Interactions

    NASA Astrophysics Data System (ADS)

    Liu, Liuming

    discretization errors are also suppressed by SU(3) symmetry). Combining this splitting with our determination of MXcc leads to our prediction of the spin-1/2 Occ mass, MWcc = 3763 +/- 19 +/- 26+13-79 MeV. We calculate the scattering lengths of the charmed mesons with the light pseudoscalar mesons. The calculation is performed for four different light quark masses and extrapolated to the physical point using chiral perturbation formulas to next-to-next-to-leading order. The low energy constants are determined and used to make predictions. We find relatively strong attractive interaction in DK channels, which is closely related to the structure of DsJ(2317) state. The scattering of charmonium with light hadrons is also studied. Particularly, we find very weak attractive interaction between J/Psi and nucleon, in this channel the dominate interaction is attractive gluonic van der Walls and it could lead to molecular-like bound states.

  12. A gist of comprehensive review of hadronic chemistry and its applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangde, Vijay M.

    20{sup th} century theories of Quantum Mechanics and Quantum Chemistry are exactly valid only when considered to represent the atomic structures. While considering the more general aspects of atomic combinations these theories fail to explain all the related experimental data from first unadulterated axiomatic principles. According to Quantum Chemistry two valence electrons should repel each other and as such there is no mathematical representation of a strong attractive forces between such valence electrons. In view of these and other insufficiencies of Quantum Chemistry, an Italian-American Scientist Professor Ruggero Maria Santilli during his more than five decades of dedicated and sustainedmore » research has denounced the fact that quantum chemistry is mostly based on mere nomenclatures. Professor R M Santilli first formulated the iso-, geno- and hyper- mathematics [1, 2, 3, 4] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic Mechanics in general and chemistry in particular based on Santilli’s mathematics[3, 4, 5] for the first time has removed the very fundamental limitations of quantum chemistry [2, 6, 7, 8]. In the present discussion, a comprehensive review of Hadronic Chemistry is presented that imparts the completeness to the Quantum Chemistry via an addition of effects at distances of the order of 1 fm (only) which are assumed to be Non-linear, Non-local, Non-potential, Non-hamiltonian and thus Non-unitary, stepwise successes of Hadronic Chemistry and its application in development of a new chemical species called Magnecules.« less

  13. Hadronic vacuum polarization and e+e- → μ+μ- cross section: Reanalysis with new precise data for σh with 4π final states included

    NASA Astrophysics Data System (ADS)

    Sauli, Vladimir

    2018-05-01

    The interference effect between leptonic radiative corrections and hadronic polarization functions is calculated via optical theorem for μ-pair production in vicinity of narrow resonances. Within seven most dominant exclusive channels of the production cross section σh(e+e- → hadrons) one achieves high acuracy which is necessary for the comparison with experiments. The result is compared with KLOE and KLOE2 experiments for μ-μ+ and μ-μ+γ productions at φ and ω/ρ meson energy.

  14. The proteome: structure, function and evolution

    PubMed Central

    Fleming, Keiran; Kelley, Lawrence A; Islam, Suhail A; MacCallum, Robert M; Muller, Arne; Pazos, Florencio; Sternberg, Michael J.E

    2006-01-01

    This paper reports two studies to model the inter-relationships between protein sequence, structure and function. First, an automated pipeline to provide a structural annotation of proteomes in the major genomes is described. The results are stored in a database at Imperial College, London (3D-GENOMICS) that can be accessed at www.sbg.bio.ic.ac.uk. Analysis of the assignments to structural superfamilies provides evolutionary insights. 3D-GENOMICS is being integrated with related proteome annotation data at University College London and the European Bioinformatics Institute in a project known as e-protein (http://www.e-protein.org/). The second topic is motivated by the developments in structural genomics projects in which the structure of a protein is determined prior to knowledge of its function. We have developed a new approach PHUNCTIONER that uses the gene ontology (GO) classification to supervise the extraction of the sequence signal responsible for protein function from a structure-based sequence alignment. Using GO we can obtain profiles for a range of specificities described in the ontology. In the region of low sequence similarity (around 15%), our method is more accurate than assignment from the closest structural homologue. The method is also able to identify the specific residues associated with the function of the protein family. PMID:16524832

  15. Hadronic vs. electromagnetic pulse shape discrimination in CsI(Tl) for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Longo, S.; Roney, J. M.

    2018-03-01

    Pulse shape discrimination using CsI(Tl) scintillators to perform neutral hadron particle identification is explored with emphasis towards application at high energy electron-positron collider experiments. Through the analysis of the pulse shape differences between scintillation pulses from photon and hadronic energy deposits using neutron and proton data collected at TRIUMF, it is shown that the pulse shape variations observed for hadrons can be modelled using a third scintillation component for CsI(Tl), in addition to the standard fast and slow components. Techniques for computing the hadronic pulse amplitudes and shape variations are developed and it is shown that the intensity of the additional scintillation component can be computed from the ionization energy loss of the interacting particles. These pulse modelling and simulation methods are integrated with GEANT4 simulation libraries and the predicted pulse shape for CsI(Tl) crystals in a 5 × 5 array of 5 × 5 × 30 cm3 crystals is studied for hadronic showers from 0.5 and 1 GeV/c KL0 and neutron particles. Using a crystal level and cluster level approach for photon vs. hadron cluster separation we demonstrate proof-of-concept for neutral hadron detection using CsI(Tl) pulse shape discrimination in high energy electron-positron collider experiments.

  16. The structure and function of fungal cells

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    The structure and function of fungal cell walls were studied with particular emphasis on dermatophytes. Extraction, isolation, analysis, and observation of the cell wall structure and function were performed. The structure is described microscopically and chemically.

  17. Neutron-skin effect in direct-photon and charged-hadron production in Pb+Pb collisions at the LHC.

    PubMed

    Helenius, Ilkka; Paukkunen, Hannu; Eskola, Kari J

    2017-01-01

    A well-established observation in nuclear physics is that in neutron-rich spherical nuclei the distribution of neutrons extends farther than the distribution of protons. In this work, we scrutinize the influence of this so called neutron-skin effect on the centrality dependence of high-[Formula: see text] direct-photon and charged-hadron production. We find that due to the estimated spatial dependence of the nuclear parton distribution functions, it will be demanding to unambiguously expose the neutron-skin effect with direct photons. However, when taking a ratio between the cross sections for negatively and positively charged high-[Formula: see text] hadrons, even centrality-dependent nuclear-PDF effects cancel, making this observable a better handle on the neutron skin. Up to 10% effects can be expected for the most peripheral collisions in the measurable region.

  18. Neutron-skin effect in direct-photon and charged-hadron production in Pb+Pb collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Helenius, Ilkka; Paukkunen, Hannu; Eskola, Kari J.

    2017-03-01

    A well-established observation in nuclear physics is that in neutron-rich spherical nuclei the distribution of neutrons extends farther than the distribution of protons. In this work, we scrutinize the influence of this so called neutron-skin effect on the centrality dependence of high-p_T direct-photon and charged-hadron production. We find that due to the estimated spatial dependence of the nuclear parton distribution functions, it will be demanding to unambiguously expose the neutron-skin effect with direct photons. However, when taking a ratio between the cross sections for negatively and positively charged high-p_T hadrons, even centrality-dependent nuclear-PDF effects cancel, making this observable a better handle on the neutron skin. Up to 10% effects can be expected for the most peripheral collisions in the measurable region.

  19. Suppression of high pT hadrons in Pb + Pb collisions at \\sqrt{s} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Zhang, Hanzhong; Chen, Xiao-Fang; Hirano, Tetsufumi; Wang, Enke; Wang, Xin-Nian

    2011-12-01

    The nuclear modification factor RAA(pT) for large pT hadrons in central Pb + Pb collisions at \\sqrt{s}=2.76 TeV/n is calculated within the next-to-leading order perturbative QCD parton model with medium-modified fragmentation functions and agree well with the new data. The jet transport parameter that controls medium modification is assumed to be proportional to the initial parton density and the coefficient is fixed by the RHIC data. The charged hadron multiplicity dNch/dη = 1584 ± 80 in central Pb + Pb collisions from the ALICE experiment at the LHC is used to determine both the jet transport parameter and the initial condition for (3+1)D ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of RAA(pT).

  20. A measurement of the hadronic branching ratio of the W boson to charm and strange quarks using strange hadrons in the final stage

    NASA Astrophysics Data System (ADS)

    Dallison, Stephen

    A measurement has been made of the partial branching ratio, Rcs, of the W boson into a pair of jets originating from charmed (c) and strange (s) quarks. This was achieved by identifying final state hadrons among the decay products. Events generated using Monte Carlo simulations were used to construct multiplicity distributions for events where the W decays to cs quarks and events where the W decays to non-cs quarks. This was done by counting individually the numbers of K+/-, Ks0 and A candidates in each type of decay. These distributions were used as reference histograms and compared to multiplicity distributions for all hadronic events obtained using OPAL data taken from 1998 to 2000. The information derived from these distributions was used to extract a value of Values of Rcs were measured separately for charged kaons (K+/-), and neutral hadrons (Ks0 + Lambda). The charged kaon analysis was performed twice, once using an artificial neural network and again using a standard cut-based method. The values for the charged kaon and neutral hadron analyses were combined and weighted according to their overall errors. The final value for Rcs was found to be 0.499 +/- 0.060, Where the error represents a combination of the statistical and systematic uncertainties. The measured value of Rcs was used to determine a value for the CKM matrix element |Vcs|. This value was found to be |Vcs| = 0.999 +/- 0.060.

  1. Probing leptophilic dark sectors with hadronic processes

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2017-08-01

    We study vector portal dark matter models where the mediator couples only to leptons. In spite of the lack of tree-level couplings to colored states, radiative effects generate interactions with quark fields that could give rise to a signal in current and future experiments. We identify such experimental signatures: scattering of nuclei in dark matter direct detection; resonant production of lepton-antilepton pairs at the Large Hadron Collider; and hadronic final states in dark matter indirect searches. Furthermore, radiative effects also generate an irreducible mass mixing between the vector mediator and the Z boson, severely bounded by ElectroWeak Precision Tests. We use current experimental results to put bounds on this class of models, accounting for both radiatively induced and tree-level processes. Remarkably, the former often overwhelm the latter.

  2. Determinations of Vus using inclusive hadronic τ decay data

    DOE PAGES

    Maltman, Kim; Hudspith, Renwick James; Lewis, Randy; ...

    2016-08-30

    Two methods for determining |V us| employing inclusive hadronic ττ decay data are discussed. The first is the conventional flavor-breaking sum rule determination whose usual implementation produces results ~3σ low compared to three-family unitary expectations. The second is a novel approach combining experimental strange hadronic ττ distributions with lattice light-strange current–current two-point function data. In preliminary explorations of the latter show the method promises |V us| determinations are competitive with those from K ℓ3 and Γ[π μ2]/Γ[π μ2]. For the former, systematic issues in the conventional implementation are investigated. Unphysical dependences of |V us| on the choice of sum rulemore » weight, w, and upper limit, s 0, of the weighted experimental spectral integrals are observed, the source of these problems identified and a new implementation which overcomes these problems developed. The lattice results are shown to provide a tool for quantitatively assessing truncation uncertainties for the slowly converging D=2 OPE series. Our results for |V us| from this new implementation are shown to be free of unphysical w- and s0-dependences, and ~0.0020 higher than those produced by the conventional implementation. With preliminary new Kπ branching fraction results as input, we find |V us| in excellent agreement with that obtained from K ℓ3, and compatible within errors with expectations from three-family unitarity.« less

  3. Extracting muon momentum scale corrections for hadron collider experiments

    NASA Astrophysics Data System (ADS)

    Bodek, A.; van Dyne, A.; Han, J. Y.; Sakumoto, W.; Strelnikov, A.

    2012-10-01

    We present a simple method for the extraction of corrections for bias in the measurement of the momentum of muons in hadron collider experiments. Such bias can originate from a variety of sources such as detector misalignment, software reconstruction bias, and uncertainties in the magnetic field. The two step method uses the mean <1/p^{μ}T rangle for muons from Z→ μμ decays to determine the momentum scale corrections in bins of charge, η and ϕ. In the second step, the corrections are tuned by using the average invariant mass < MZ_{μμ }rangle of Z→ μμ events in the same bins of charge η and ϕ. The forward-backward asymmetry of Z/ γ ∗→ μμ pairs as a function of μ + μ - mass, and the ϕ distribution of Z bosons in the Collins-Soper frame are used to ascertain that the corrections remove the bias in the momentum measurements for positive versus negatively charged muons. By taking the sum and difference of the momentum scale corrections for positive and negative muons, we isolate additive corrections to 1/p^{μ}T that may originate from misalignments and multiplicative corrections that may originate from mis-modeling of the magnetic field (∫ Bṡ d L). This method has recently been used in the CDF experiment at Fermilab and in the CMS experiment at the Large Hadron Collider at CERN.

  4. Lower limit on dark matter production at the CERN Large Hadron Collider.

    PubMed

    Feng, Jonathan L; Su, Shufang; Takayama, Fumihiro

    2006-04-21

    We evaluate the prospects for finding evidence of dark matter production at the CERN Large Hadron Collider. We consider weakly interacting massive particles (WIMPs) and superWIMPs and characterize their properties through model-independent parametrizations. The observed relic density then implies lower bounds on dark matter production rates as functions of a few parameters. For WIMPs, the resulting signal is indistinguishable from background. For superWIMPs, however, this analysis implies significant production of metastable charged particles. For natural parameters, these rates may far exceed Drell-Yan cross sections and yield spectacular signals.

  5. Measurement of the Top Quark Mass in the All Hadronic Channel at the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lungu, Gheorghe

    2007-01-01

    This study presents a measurement of the top quark mass in the all hadronic channel of the top quark pair production mechanism, using 1 fb -1 of pmore » $$\\bar{p}$$ collisions at √s =1.96 TeV collected at the Collider Detector at Fermilab (CDF). Few novel techniques have been used in this measurement. A template technique was used to simultaneously determine the mass of the top quark and the energy scale of the jets. Two sets of distributions have been parameterized as a function of the top quark mass and jet energy scale. One set of distributions is built from the event-by-event reconstructed top masses, determined using the Standard Model matrix element for the t$$\\bar{t}$$ all hadronic process. This set is sensitive to changes in the value of the top quark mass. The other set of distributions is sensitive to changes in the scale of jet energies and is built from the invariant mass of pairs of light flavor jets, providing an in situ calibration of the jet energy scale. The energy scale of the measured jets in the final state is expressed in units of its uncertainty, sigmac. The measured mass of the top quark is 171.1±3.7(stat.unc.)±2.1(syst.unc.) GeV/ c 2 and to the date represents the most precise mass measurement in the all hadronic channel and third best overall.« less

  6. Hadronic model for the non-thermal radiation from the binary system AR Scorpii

    NASA Astrophysics Data System (ADS)

    Bednarek, W.

    2018-05-01

    AR Scorpii is a close binary system containing a rotation powered white dwarf and a low-mass M type companion star. This system shows non-thermal emission extending up to the X-ray energy range. We consider hybrid (lepto-hadronic) and pure hadronic models for the high energy non-thermal processes in this binary system. Relativistic electrons and hadrons are assumed to be accelerated in a strongly magnetised, turbulent region formed in collision of a rotating white dwarf magnetosphere and a magnetosphere/dense atmosphere of the M-dwarf star. We propose that the non-thermal X-ray emission is produced either by the primary electrons or the secondary e± pairs from decay of charged pions created in collisions of hadrons with the companion star atmosphere. We show that the accompanying γ-ray emission from decay of neutral pions, which are produced by these same protons, is expected to be on the detectability level of the present and/or the future satellite and Cherenkov telescopes. The γ-ray observations of the binary system AR Sco should allow us to constrain the efficiency of hadron and electron acceleration and also the details of the radiation processes.

  7. Investigation of charged-hadron production in proton–nucleus interactions at the energy of 50 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordanovskii, A. Yu.; Volkov, A. A.; Elumahov, D. K.

    2016-07-15

    Cross sections for the production of high-transverse-momentum charged hadrons in proton–nucleus interactions at the incident-proton energy of 50 GeV were measured with the aid of the FODS double-arm spectrometer. Single hadrons (charged pions and protons) emitted at a c.m. angle of about 90° and high-effective-mass pairs of hadrons flying apart at a c.m. angle of 180° were detected simultaneously. Results on the production of single hadrons are presented.

  8. Update on J /ψ regeneration in a hadron gas

    NASA Astrophysics Data System (ADS)

    Abreu, L. M.; Khemchandani, K. P.; Torres, A. Martínez; Navarra, F. S.; Nielsen, M.

    2018-04-01

    In heavy-ion collisions, after the quark-gluon plasma there is a hadronic gas phase. Using effective Lagrangians, we study the interactions of charmed mesons which lead to J /ψ production and absorption in this gas. We update and extend previous calculations introducing strange meson interactions and also including the interactions mediated by the recently measured exotic charmonium resonances Z (3900 ) and Z (4025 ) . These resonances open new reaction channels for the J /ψ , which could potentially lead to changes in its multiplicity. We compute the J /ψ production cross section in processes such as D(s) (*)+D¯(*)→J /ψ +(π ,ρ ,K ,K*) and also the J /ψ absorption cross section in the corresponding inverse processes. Using the obtained cross sections as input to solve the appropriate rate equation, we conclude that the interactions in the hadron gas phase lead to a 20-24% reduction of the J /ψ abundance. Within the uncertainties of the calculation, this reduction is the same at the Relativistic Heavy Ion Collider and the large Hadron Collider.

  9. Deciphering the MSSM Higgs mass at future hadron colliders

    DOE PAGES

    Agrawal, Prateek; Fan, JiJi; Reece, Matthew; ...

    2017-06-06

    Here, future hadron colliders will have a remarkable capacity to discover massive new particles, but their capabilities for precision measurements of couplings that can reveal underlying mechanisms have received less study. In this work we study the capability of future hadron colliders to shed light on a precise, focused question: is the higgs mass of 125 GeV explained by the MSSM? If supersymmetry is realized near the TeV scale, a future hadron collider could produce huge numbers of gluinos and electroweakinos. We explore whether precision measurements of their properties could allow inference of the scalar masses and tan β withmore » sufficient accuracy to test whether physics beyond the MSSM is needed to explain the higgs mass. We also discuss dark matter direct detection and precision higgs physics as complementary probes of tan β. For concreteness, we focus on the mini-split regime of MSSM parameter space at a 100 TeV pp collider, with scalar masses ranging from 10s to about 1000 TeV.« less

  10. ENLIGHT and other EU-funded projects in hadron therapy

    PubMed Central

    Dosanjh, M; Jones, B; Meyer, R

    2010-01-01

    Following impressive results from early phase trials in Japan and Germany, there is a current expansion in European hadron therapy. This article summarises present European Union-funded projects for research and co-ordination of hadron therapy across Europe. Our primary focus will be on the research questions associated with carbon ion treatment of cancer, but these considerations are also applicable to treatments using proton beams and other light ions. The challenges inherent in this new form of radiotherapy require maximum interdisciplinary co-ordination. On the basis of its successful track record in particle and accelerator physics, the internationally funded CERN laboratories (otherwise known as the European Organisation for Nuclear Research) have been instrumental in promoting collaborations for research purposes in this area of radiation oncology. There will soon be increased opportunities for referral of patients across Europe for hadron therapy. Oncologists should be aware of these developments, which confer enhanced prospects for better cancer cure rates as well as improved quality of life in many cancer patients. PMID:20846982

  11. Counting states and the Hadron Resonance Gas: Does X(3872) count?

    NASA Astrophysics Data System (ADS)

    Ortega, Pablo G.; Entem, David R.; Fernández, Francisco; Ruiz Arriola, Enrique

    2018-06-01

    We analyze how the renowned X(3872), a weakly bound state right below the DDbar* threshold, should effectively be included in a hadronic representation of the QCD partition function. This can be decided by analyzing the DDbar* scattering phase-shifts in the JPC =1++ channel and their contribution to the level density in the continuum from which the abundance in a hot medium can be determined. We show that in a purely molecular picture the bound state contribution cancels the continuum providing a vanishing occupation number density at finite temperature and the X (3872) does not count below the Quark-Gluon Plasma crossover happening at T ∼ 150 MeV. In contrast, within a coupled-channels approach, for a non vanishing c c bar content the cancellation does not occur due to the onset of the X (3940) which effectively counts as an elementary particle for temperatures above T ≳ 250 MeV. Thus, a direct inclusion of the X (3872) in the Hadron Resonance Gas is not justified. We also estimate the role of this cancellation in X(3872) production in heavy-ion collision experiments in terms of the corresponding pT distribution due to a finite energy resolution.

  12. Two-photon production of leptons at hadron colliders in semielastic and elastic cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manko, A. Yu., E-mail: andrej.j.manko@gmail.com; Shulyakovsky, R. G., E-mail: shul@ifanbel.bas-net.by, E-mail: shulyakovsky@iaph.bas-net.by

    The mechanism of two-photon dilepton production is studied in the equivalent-photon (Weizsäcker–Williams) approximation. This approximation is shown to describe well experimental data from hadron accelerators. The respective total and differential cross sections were obtained for the LHC and for the Tevatron collider at various energies of colliding hadrons. The differential cross sections were studied versus the dilepton invariant mass, transverse momentum, and emission angle in the reference frame comoving with the center of mass of colliding hadrons. The cases of semielastic and inelastic collisions were examined.

  13. Network-Level Structure-Function Relationships in Human Neocortex

    PubMed Central

    Mišić, Bratislav; Betzel, Richard F.; de Reus, Marcel A.; van den Heuvel, Martijn P.; Berman, Marc G.; McIntosh, Anthony R.; Sporns, Olaf

    2016-01-01

    The dynamics of spontaneous fluctuations in neural activity are shaped by underlying patterns of anatomical connectivity. While numerous studies have demonstrated edge-wise correspondence between structural and functional connections, much less is known about how large-scale coherent functional network patterns emerge from the topology of structural networks. In the present study, we deploy a multivariate statistical technique, partial least squares, to investigate the association between spatially extended structural networks and functional networks. We find multiple statistically robust patterns, reflecting reliable combinations of structural and functional subnetworks that are optimally associated with one another. Importantly, these patterns generally do not show a one-to-one correspondence between structural and functional edges, but are instead distributed and heterogeneous, with many functional relationships arising from nonoverlapping sets of anatomical connections. We also find that structural connections between high-degree hubs are disproportionately represented, suggesting that these connections are particularly important in establishing coherent functional networks. Altogether, these results demonstrate that the network organization of the cerebral cortex supports the emergence of diverse functional network configurations that often diverge from the underlying anatomical substrate. PMID:27102654

  14. Lepton effects on the protoneutron stars with the hadron-quark mixed phase in the Nambu-Jona-Lasinio model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasutake, Nobutoshi; Kashiwa, Kouji

    2009-02-15

    We study the structures of hybrid stars with leptons at finite temperature under beta equilibrium. For the quark phase, we use the three flavor Nambu-Jona-Lasinio (NJL) model. For the hadron phase, we adopt the nuclear equation of state (EOS) by Shen et al.. This EOS is in the framework of the relativistic mean field theory including the tree body effects. For the hadron-quark phase transition, we impose the bulk Gibbs construction or the Maxwell construction to take into account uncertainties by finite-size effects. We find that the pure quark phase does not appear in stable star cores in all cases.more » With the phase transition, the maximum masses increase {approx}10% for high lepton fraction. On the contrary, without the transition, they decrease {approx}10%. We also find that, in the NJL model, the lepton fraction is more important for structures of unstable stars than the temperature. This result is important for many astrophysical phenomena such as the core collapse of massive stars.« less

  15. Functional nanometer-scale structures

    NASA Astrophysics Data System (ADS)

    Chan, Tsz On Mario

    Nanometer-scale structures have properties that are fundamentally different from their bulk counterparts. Much research effort has been devoted in the past decades to explore new fabrication techniques, model the physical properties of these structures, and construct functional devices. The ability to manipulate and control the structure of matter at the nanoscale has made many new classes of materials available for the study of fundamental physical processes and potential applications. The interplay between fabrication techniques and physical understanding of the nanostructures and processes has revolutionized the physical and material sciences, providing far superior properties in materials for novel applications that benefit society. This thesis consists of two major aspects of my graduate research in nano-scale materials. In the first part (Chapters 3--6), a comprehensive study on the nanostructures based on electrospinning and thermal treatment is presented. Electrospinning is a well-established method for producing high-aspect-ratio fibrous structures, with fiber diameter ranging from 1 nm--1 microm. A polymeric solution is typically used as a precursor in electrospinning. In our study, the functionality of the nanostructure relies on both the nanostructure and material constituents. Metallic ions containing precursors were added to the polymeric precursor following a sol-gel process to prepare the solution suitable for electrospinning. A typical electrospinning process produces as-spun fibers containing both polymer and metallic salt precursors. Subsequent thermal treatments of the as-spun fibers were carried out in various conditions to produce desired structures. In most cases, polymer in the solution and the as-spun fibers acted as a backbone for the structure formation during the subsequent heat treatment, and were thermally removed in the final stage. Polymers were also designed to react with the metallic ion precursors during heat treatment in some

  16. Structure-function relationships during segregated and integrated network states of human brain functional connectivity.

    PubMed

    Fukushima, Makoto; Betzel, Richard F; He, Ye; van den Heuvel, Martijn P; Zuo, Xi-Nian; Sporns, Olaf

    2018-04-01

    Structural white matter connections are thought to facilitate integration of neural information across functionally segregated systems. Recent studies have demonstrated that changes in the balance between segregation and integration in brain networks can be tracked by time-resolved functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data and that fluctuations between segregated and integrated network states are related to human behavior. However, how these network states relate to structural connectivity is largely unknown. To obtain a better understanding of structural substrates for these network states, we investigated how the relationship between structural connectivity, derived from diffusion tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations between segregated and integrated states in the human brain. We found that the similarity of edge weights between structural and functional connectivity was greater in the integrated state, especially at edges connecting the default mode and the dorsal attention networks. We also demonstrated that the similarity of network partitions, evaluated between structural and functional connectivity, increased and the density of direct structural connections within modules in functional networks was elevated during the integrated state. These results suggest that, when functional connectivity exhibited an integrated network topology, structural connectivity and functional connectivity were more closely linked to each other and direct structural connections mediated a larger proportion of neural communication within functional modules. Our findings point out the possibility of significant contributions of structural connections to integrative neural processes underlying human behavior.

  17. Bremsstrahlung from colour charges as a source of soft particle production in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Jezabek, M.

    2004-06-01

    It is proposed that soft particle production in hadronic collisions is dominated by multiple gluon exchanges between partons from the colliding hadrons, followed by radiation of hadronic clusters from the coloured partons distributed uniformly in rapidity. This explains naturally two dominant features of the data: (a) the linear increase of rapidity spectra in the regions of limiting fragmentation and, (b) the proportionality between the increasing width of the limiting fragmentation region and the height of the central plateau.

  18. Nonperturbative-transverse-momentum effects and evolution in dihadron and direct photon-hadron angular correlations in p + p collisions at s = 510 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Aidala, C.; Ajitanand, N. N.

    Dihadron and isolated direct photon-hadron angular correlations are measured in p+p collisions at √s=510 GeV. Correlations of charged hadrons of 0.7T<10 GeV/c with π 0 mesons of 4T<15 GeV/c or isolated direct photons of 7T direct photon or π 0. Nonperturbative evolution effects are extracted from Gaussian fits to the away-side inclusive-charged-hadron yields for different trigger-particle transverse momenta (pmore » $$trig\\atop{T}$$). The Gaussian widths and root mean square of p out are reported as a function of the interaction hard scale p$$trig\\atop{T}$$ to investigate possible transverse-momentum-dependent evolution differences between the π 0-h ± and direct photon-h ± correlations and factorization breaking effects. The widths are found to decrease with p$$trig\\atop{T}$$, which indicates that the Collins-Soper-Sterman soft factor is not driving the evolution with the hard scale in nearly back-to-back dihadron and direct photon-hadron production in p+p collisions. This behavior is in contrast to Drell-Yan and semi-inclusive deep-inelastic scattering measurements.« less

  19. Nonperturbative-transverse-momentum effects and evolution in dihadron and direct photon-hadron angular correlations in p + p collisions at s = 510 GeV

    DOE PAGES

    Adare, A.; Aidala, C.; Ajitanand, N. N.; ...

    2017-04-04

    Dihadron and isolated direct photon-hadron angular correlations are measured in p+p collisions at √s=510 GeV. Correlations of charged hadrons of 0.7T<10 GeV/c with π 0 mesons of 4T<15 GeV/c or isolated direct photons of 7T direct photon or π 0. Nonperturbative evolution effects are extracted from Gaussian fits to the away-side inclusive-charged-hadron yields for different trigger-particle transverse momenta (pmore » $$trig\\atop{T}$$). The Gaussian widths and root mean square of p out are reported as a function of the interaction hard scale p$$trig\\atop{T}$$ to investigate possible transverse-momentum-dependent evolution differences between the π 0-h ± and direct photon-h ± correlations and factorization breaking effects. The widths are found to decrease with p$$trig\\atop{T}$$, which indicates that the Collins-Soper-Sterman soft factor is not driving the evolution with the hard scale in nearly back-to-back dihadron and direct photon-hadron production in p+p collisions. This behavior is in contrast to Drell-Yan and semi-inclusive deep-inelastic scattering measurements.« less

  20. Selected Topics on Hadronic B Decays From BaBar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, K.; /SLAC

    Recent measurements of branching fractions and decay-rate asymmetries in charmless hadronic B decays at the BaBar experiment are presented. The selected topics include Dalitz plot analyses of B {yields} K{sup +} {pi}{sup -}{pi} and signal searches in B {yields} PP and PV, where isoscalar mesons are involved, and in B {yields} b{sub 1}P, P and V denote a pseudoscalar and vector meson, respectively. Several measurements in charmless hadronic B decays have indicated possible deviations from the theoretical predictions within the Standard Model. The measurements presented would contribute to searching for and resolving such puzzles.

  1. Coherent lepton pair production in hadronic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Zha, W.; Ruan, L.; Tang, Z.; Xu, Z.; Yang, S.

    2018-06-01

    Recently, significant enhancements of e+e- pair production at very low transverse momentum (pT < 0.15 GeV/c) were observed by the STAR collaboration in peripheral hadronic A+A collisions. This excesses can not be described by the QGP thermal radiation and ρ in-medium broadening calculations. This is a sign of coherent photon-photon interactions, which were conventionally studied only in ultra-peripheral collisions. In this article, we present calculations of lepton pair (e+e- and μ+μ-) production from coherent photon-photon interactions in hadronic A+A collisions at RHIC and LHC energies within the STAR and ALICE acceptance.

  2. Probing leptophilic dark sectors with hadronic processes

    DOE PAGES

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2017-05-29

    We study vector portal dark matter models where the mediator couples only to leptons. In spite of the lack of tree-level couplings to colored states, radiative effects generate interactions with quark fields that could give rise to a signal in current and future experiments. We identify such experimental signatures: scattering of nuclei in dark matter direct detection; resonant production of lepton–antilepton pairs at the Large Hadron Collider; and hadronic final states in dark matter indirect searches. Furthermore, radiative effects also generate an irreducible mass mixing between the vector mediator and the Z boson, severely bounded by ElectroWeak Precision Tests. Wemore » use current experimental results to put bounds on this class of models, accounting for both radiatively induced and tree-level processes. Remarkably, the former often overwhelm the latter.« less

  3. First Renormalized Parton Distribution Functions from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Lin, Huey-Wen; LP3 Collaboration

    2017-09-01

    We present the first lattice-QCD results on the nonperturbatively renormalized parton distribution functions (PDFs). Using X.D. Ji's large-momentum effective theory (LaMET) framework, lattice-QCD hadron structure calculations are able to overcome the longstanding problem of determining the Bjorken- x dependence of PDFs. This has led to numerous additional theoretical works and exciting progress. In this talk, we will address a recent development that implements a step missing from prior lattice-QCD calculations: renormalization, its effects on the nucleon matrix elements, and the resultant changes to the calculated distributions.

  4. Centrality and pseudorapidity dependence of charged hadron production at intermediate p{sub T} in Au+Au collisions at {radical}s{sub NN} = 130 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.; Aggarwal, M.M.; Ahammed, Z.

    2004-04-15

    We present STAR measurements of charged hadron production as a function of centrality in Au + Au collisions at {radical}s{sub NN} = 130 GeV. The measurements cover a phase space region of 0.2 < p{sub T} < 6.0 GeV/c in transverse momentum and -1 < {eta} < 1 in pseudorapidity. Inclusive transverse momentum distributions of charged hadrons in the pseudorapidity region 0.5 < |{eta}| < 1 are reported and compared to our previously published results for |{eta}| < 0.5. No significant difference is seen for inclusive p{sub T} distributions of charged hadrons in these two pseudorapidity bins. We measured dN/d{eta}more » distributions and truncated mean p{sub T} in a region of p{sub T} > p{sub T}{sup cut}, and studied the results in the framework of participant and binary scaling. No clear evidence is observed for participant scaling of charged hadron yield in the measured p{sub T} region. The relative importance of hard scattering process is investigated through binary scaling fraction of particle production.« less

  5. Centrality and pseudorapidity dependence of charged hadron production at intermediate p{sub t} in Au+Au collisions at {radical}s{sub NN} = 130 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.; Aggarwal, M.M.; Ahammed, Z.

    2004-04-15

    We present STAR measurements of charged hadron production as a function of centrality in Au + Au collisions at {radical}s{sub NN} = 130 GeV. The measurements cover a phase space region of 0.2 < p{sub T} < 6.0 GeV/c in transverse momentum and 11 < {eta} < 1 in pseudorapidity. Inclusive transverse momentum distributions of charged hadrons in the pseudorapidity region 0.5 < |{eta}| < 1 are reported and compared to our previously published results for |{eta}| < 0.5. No significant difference is seen for inclusive p{sub T} distributions of charged hadrons in these two pseudorapidity bins. We measured dN/d{eta}more » distributions and truncated mean p{sub T} in a region of p{sub T} > P{sub T}{sup cut}, and studied the results in the framework of participant and binary scaling. No clear evidence is observed for participant scaling of charged hadron yield in the measured pT region. The relative importance of hard scattering process is investigated through binary scaling fraction of particle production.« less

  6. Simulation studies of reconstruction of hadron shower direction in INO ICAL detector

    NASA Astrophysics Data System (ADS)

    Devi, M. M.; Dighe, A.; Indumathi, D.; Lakshmi, S. M.

    2018-03-01

    The proposed Iron Calorimeter (ICAL) at India-based Neutrino Observatory (INO) will be a 50 kt magnetised iron detector for the detection of atmospheric neutrinos. The atmospheric neutrinos interact via both charged current (CC) and neutral current (NC) interactions with the target iron to produce the detectable final state particles. While CC νμ (bar nuμ) leave a muon track and a hadron shower in the detector, the NC will leave only a hadron shower apart from the secondary invisible neutrino. A GEANT4 based simulation studies to reconstruct hadron showers in CC and NC, using two techniques namely the Orientation Matrix Method (OMM) and the Raw Hit Method (RHM) are presented here. While OMM requires information about the interaction vertex obtained from muon track reconstruction, RHM requires only the shower hit positions and timings and no vertex information and hence can be used for NC events as well. Hadrons from neutrino events generated with NUANCE neutrino generator are analysed. For hadrons in the energy range 0.5-15 GeV produced in CC νμ and bar nuμ interactions, a Δθ'h resolution of around 19o-9o (around 20.5o-12o) is obtained in the |cosθ'h|=[0.8, 1] bin with OMM (RHM). For NC events in the same true energy and direction bins, Δθ'h resolution varies from around 20.5o-13o, from RHM only. OMM (RHM) gives a resolution of about 55o-20o (38o-14o) for the angle between the muon and the hadron shower, βμ h', in the [E'had;cos θ'h] range [0.5-15 GeV; [0.8,1.0

  7. Going beyond the second virial coefficient in the hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Bugaev, K. A.; Sagun, V. V.; Ivanytskyi, A. I.; Yakimenko, I. P.; Nikonov, E. G.; Taranenko, A. V.; Zinovjev, G. M.

    2018-02-01

    We develop a novel formulation of the hadron resonance gas model which, besides a hard-core repulsion, explicitly accounts for the surface tension induced by the interaction between the particles. Such an equation of state allows us to go beyond the Van der Waals approximation for any number of different hard-core radii. A comparison with the Carnahan-Starling equation of state shows that the new model is valid for packing fractions 0.2-0.22, while the usual Van der Waals model is inapplicable at packing fractions above 0.1-0.11. Moreover, it is shown that the equation of state with induced surface tension is softer than the one of hard spheres and remains causal at higher particle densities. The great advantage of our model is that there are only two equations to be solved and neither their number nor their form depend on the values of the hard-core radii used for different hadronic resonances. Such an advantage leads to a significant mathematical simplification compared to other versions of truly multi-component hadron resonance gas models. Using this equation of state we obtain a high-quality fit of the ALICE hadron multiplicities measured at the center-of-mass energy 2.76 TeV per nucleon and we find that the dependence of χ2 / ndf on the temperature has a single global minimum in the traditional hadron resonance gas model with the multi-component hard-core repulsion. Also we find two local minima of χ2 / ndf in the model in which the proper volume of each hadron is proportional to its mass. However, it is shown that in the latter model a second local minimum located at higher temperatures always appears far above the limit of its applicability.

  8. Hadron electric polarizability from lattice QCD

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei; Lujan, Michael; Freeman, Walter; Lee, Frank

    2015-04-01

    Electric polarizability measures the ability of the electric field to deform a particle. Experimentally, electric and magnetic polarizabilities can be measured in Compton scattering experiments. To compute these quantities theoretically we need to understand the internal structure of the scatterer and the dynamics of its constituents. For hadrons - bound stated of quarks and gluons - this is a very difficult problem. Lattice QCD can be used to compute the polarizabilities directly in terms of quark and gluons degrees of freedom. In this talk we focus on the neutron. We present results for the electric polarizability for two different quark masses, light enough to connect to chiral perturbation theory. These are currently the lightest quark masses used in lattice QCD polarizability studies. For each pion mass we compute the polarizability at four different volumes and perform an infinite volume extrapolation. For one ensemble, we also discuss the effect of turning on the coupling between the background field and the sea quarks. We compare our results to chiral perturbation theory expectations.

  9. Analog VS Digital Hadron Calorimetry at a Future Electron-Positron Linear Collider

    NASA Astrophysics Data System (ADS)

    Magill, Stephen R.

    2005-02-01

    Precision jet measurements at a future e+e- linear collider may only be possible using so-called Particle Flow Algorithms (PFAs). While there are many possible implementations of P-flow techniques, they all have in common separation of induced calorimeter showers from charged and neutral hadrons (as well as photons) within a jet. Shower reconstruction in the calorimeter becomes more important than energy measurement of hadrons. The calorimeter cells must be highly granular both transverse to the particle trajectory and in longitudinal segmentation. It is probable that as the cell size decreases, it will be harder to get an energy measure from each cell (analog calorimetry). Using only the hit information (digital calorimetry) may be the best way to measure the neutral hadron energy contribution to jets. In this paper, comparisons of analog and digital methods of measuring the contributions of neutral hadrons to jets are made in simulation and in the context of a particular PFA, indicating that the digital method is at least equal to the analog case in jet energy resolution.

  10. Hadronization Studies via π 0 Electroproduction off D, C, Fe, and Pb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineeva, Taisiya

    2013-12-01

    Propagation of partons and formation of hadrons is a topic of interest to multiple communities. New data available from Drell-Yan measurements at FermiLab, heavy ion collisions in RHIC and LHC, SIDIS measurements from HERMES at DESY and Jefferson Lab, all bring different types of information on short distance processes. DIS data obtained in the well understood nuclear medium provide direct information on hadron formation, essential to lay the groundwork for testing theoretical tools. A series of semi-inclusive DIS measurements were performed on D, C, Fe, Pb nuclei. The data were collected during the EG2 run period using the CLAS at Jefferson Lab. A double-target system consisting of liquid deuterium and one of the solid targets was exposed to a 5.014 GeV electron beam. The goal of the experiment is to extract hadronic multiplicity ratios (Rmore » $$h\\atop{A}$$) off nuclei of varying size. These are believed to have sensitivity to the parton fragmentation as well as in-medium hadronization.« less

  11. Pseudorapidity dependence of charged hadron transverse momentum spectra in d+Au collisions at √(sNN )=200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.

    2004-12-01

    We have measured the transverse momentum distributions of charged hadrons in d+Au collisions at √(sNN )=200 GeV in the range of 0.5< pT <4.0 GeV/c . The total range of pseudorapidity, η , is 0.2<η<1.4 , where positive η is in the deuteron direction. The data has been divided into three regions of pseudorapidity, covering 0.2<η<0.6 , 0.6<η<1.0 , and 1.0<η<1.4 , and has been compared to charged hadron spectra from p+ p¯ collisions at the same energy. There is a significant change in the spectral shape as a function of pseudorapidity. As η increases we see a decrease in the nuclear modification factor RdAu .

  12. Space-time development of electromagnetic and hadronic showers and perspectives for novel calorimetric techniques

    DOE PAGES

    Benaglia, Andrea; Auffray, Etiennette; Lecoq, Paul; ...

    2016-04-20

    The performance of hadronic calorimeters will be a key parameter at the next generation of High Energy Physics accelerators. A detector combining fine granularity with excellent timing information would prove beneficial for the reconstruction of both jets and electromagnetic particles with high energy resolution. In this work, the space and time structure of high energy showers is studied by means of a Geant4-based simulation toolkit. In particular, the relevant time scales of the different physics phenomena contributing to the energy loss are investigated. A correlation between the fluctuations of the energy deposition of high energy hadrons and the time developmentmore » of the showers is observed, which allows for an event-by-event correction to be computed to improve the energy resolution of the calorimeter. Lastly, these studies are intended to set the basic requirements for the development of a new-concept, total absorption time-imaging calorimeter, which seems now within reach thanks to major technological advancements in the production of fast scintillating materials and compact photodetectors.« less

  13. Scheme Variations of the QCD Coupling and Hadronic τ Decays

    NASA Astrophysics Data System (ADS)

    Boito, Diogo; Jamin, Matthias; Miravitllas, Ramon

    2016-10-01

    The quantum chromodynamics (QCD) coupling αs is not a physical observable of the theory, since it depends on conventions related to the renormalization procedure. We introduce a definition of the QCD coupling, denoted by α^s, whose running is explicitly renormalization scheme invariant. The scheme dependence of the new coupling α^s is parametrized by a single parameter C , related to transformations of the QCD scale Λ . It is demonstrated that appropriate choices of C can lead to substantial improvements in the perturbative prediction of physical observables. As phenomenological applications, we study e+e- scattering and decays of the τ lepton into hadrons, both being governed by the QCD Adler function.

  14. Contribution of a kaon component in the viscosity and conductivity of a hadronic medium

    NASA Astrophysics Data System (ADS)

    Rahaman, Mahfuzur; Ghosh, Snigdha; Ghosh, Sabyasachi; Sarkar, Sourav; Alam, Jan-e.

    2018-03-01

    With the help of effective Lagrangian densities of strange hadrons, we calculated the kaon relaxation time from several loop and scattering diagrams at tree level, which basically represent contributions from 1 ↔2 and 2 ↔2 types of collisions. Using the total relaxation time of a kaon, the shear viscosity and electrical conductivity of this kaon component have been estimated. The high temperature, close to transition temperature, where the kaon relaxation time is lower than the lifetime of Relativistic Heavy Ion Collider or Large Hadron Collider matter may be the only relevant domain for this component to contribute in hadronic dissipation. Our results suggest that the kaon can play an important role in the enhancement of shear viscosity and electrical conductivity of hadronic matter near the transition temperature.

  15. Promising diphoton signals of the little radion at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoudiasl, H.; McElmurry, T; Soni, A.

    2010-12-28

    In little Randall-Sundrum models, the bulk couplings of the radion to massless gauge fields can yield a greatly enhanced diphoton signal at hadron colliders. We examine the implications of the Tevatron data for the little radion and also show that the 7 TeV run at the Large Hadron Collider will have an impressive reach in this channel. The diphoton signal is crucial in the search for a light radion, or the dual dilaton, and can potentially probe the ultraviolet scale of the theory.

  16. Structure Functions of Bound Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian Kuhn

    2005-04-01

    We describe an experiment measuring electron scattering on a neutron bound in deuterium with coincident detection of a fast, backward-going spectator proton. Our data map out the relative importance of the pure PWIA spectator mechanism and final state interactions in various kinematic regions, and give a first glimpse of the modification of the structure function of a bound neutron as a function of its off-shell mass. We also discuss a new experimental program to study the structure of a free neutron by extending the same technique to much lower spectator momenta.

  17. A search for jet handedness in hadronic Z{sup 0} decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Yoji

    1995-03-01

    Transport of polarization through hadronization process is one of the fundamental interest in Quantum Chromodynamics which is a theory of strong interactions. In the low energy region where the hadronization occurs, QCD calculations are difficult, therefore at present the transport can be investigated experimentally. In this study the authors have searched for signatures of polarization of quarks and antiquarks in hadronic jets from Z{sup 0} {yields} q{bar q} decays. The polarization of quarks and antiquark produced by Z{sup 0} decays are predicted by the Standard Model of elementary particle physics. The authors defined several quantities depending on {open_quotes}jet handedness{close_quotes} methodsmore » and studied the correlation between the predicted polarization and the quantities. The signal was estimated by analyzing power which represents degree of the polarization transport through the hadronization process. The Z{sup 0} decays were measured by SLC Large Detector and the polarized electron beam provided by SLAC Linear Collider was useful for this study. The data from the 1993 run showed no signature of the transport of quark and antiquark polarization. Upper limits on magnitude of the analyzing power were set in the range 0.05-0.15 depending on the methods.« less

  18. Slope and curvature of the hadronic vacuum polarization at vanishing virtuality from lattice QCD

    NASA Astrophysics Data System (ADS)

    Borsanyi, Sz.; Fodor, Z.; Kawanai, T.; Krieg, S.; Lellouch, L.; Malak, R.; Miura, K.; Szabo, K. K.; Torrero, C.; Toth, B. C.

    2017-10-01

    We compute the slope and curvature, at vanishing four-momentum transfer squared, of the leading order hadronic vacuum polarization function, using lattice quantum chromodynamics. Calculations are performed with 2 +1 +1 flavors of staggered fermions directly at the physical values of the quark masses and in volumes of linear extent larger than 6 fm. The continuum limit is carried out using six different lattice spacings. All connected and disconnected contributions are calculated, up to and including those of the charm.

  19. The notochord: structure and functions.

    PubMed

    Corallo, Diana; Trapani, Valeria; Bonaldo, Paolo

    2015-08-01

    The notochord is an embryonic midline structure common to all members of the phylum Chordata, providing both mechanical and signaling cues to the developing embryo. In vertebrates, the notochord arises from the dorsal organizer and it is critical for proper vertebrate development. This evolutionary conserved structure located at the developing midline defines the primitive axis of embryos and represents the structural element essential for locomotion. Besides its primary structural function, the notochord is also a source of developmental signals that patterns surrounding tissues. Among the signals secreted by the notochord, Hedgehog proteins play key roles during embryogenesis. The Hedgehog signaling pathway is a central regulator of embryonic development, controlling the patterning and proliferation of a wide variety of organs. In this review, we summarize the current knowledge on notochord structure and functions, with a particular emphasis on the key developmental events that take place in vertebrates. Moreover, we discuss some genetic studies highlighting the phenotypic consequences of impaired notochord development, which enabled to understand the molecular basis of different human congenital defects and diseases.

  20. Network structure shapes spontaneous functional connectivity dynamics.

    PubMed

    Shen, Kelly; Hutchison, R Matthew; Bezgin, Gleb; Everling, Stefan; McIntosh, Anthony R

    2015-04-08

    The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture. Copyright © 2015 the authors 0270-6474/15/355579-10$15.00/0.

  1. Coherent lepton pair production in hadronic heavy ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, W.; Ruan, L.; Tang, Z.

    Recently, significant enhancements of e +e - pair production at very low transverse momentum (p T < 0.15 GeV/c) were observed by the STAR collaboration in peripheral hadronic A+A collisions. This excesses can not be described by the QGP thermal radiation and Rho in-medium broadening calculations. This is a sign of coherent photon-photon interactions, which were conventionally studied only in ultra-peripheral collisions. Here in this article, we present calculations of lepton pair (e +e - and μ +μ -) production from coherent photon-photon interactions in hadronic A+A collisions at RHIC and LHC energies within the STAR and ALICE acceptance.

  2. Coherent lepton pair production in hadronic heavy ion collisions

    DOE PAGES

    Zha, W.; Ruan, L.; Tang, Z.; ...

    2018-04-06

    Recently, significant enhancements of e +e - pair production at very low transverse momentum (p T < 0.15 GeV/c) were observed by the STAR collaboration in peripheral hadronic A+A collisions. This excesses can not be described by the QGP thermal radiation and Rho in-medium broadening calculations. This is a sign of coherent photon-photon interactions, which were conventionally studied only in ultra-peripheral collisions. Here in this article, we present calculations of lepton pair (e +e - and μ +μ -) production from coherent photon-photon interactions in hadronic A+A collisions at RHIC and LHC energies within the STAR and ALICE acceptance.

  3. Statistical hadronization with exclusive channels in e +e - annihilation

    DOE PAGES

    Ferroni, L.; Becattini, F.

    2012-01-01

    We present a systematic analysis of exclusive hadronic channels in e +e - collisions at centre-of-mass energies between 2.1 and 2.6 GeV within the statistical hadronization model. Because of the low multiplicities involved, calculations have been carried out in the full microcanonical ensemble, including conservation of energy-momentum, angular momentum, parity, isospin, and all relevant charges. We show that the data is in an overall good agreement with the model for an energy density of about 0.5 GeV/fm 3 and an extra strangeness suppression parameter γ S 0:7, essentially the same values found with fits to inclusive multiplicities at higher energy.

  4. Protein Structure and Function Prediction Using I-TASSER

    PubMed Central

    Yang, Jianyi; Zhang, Yang

    2016-01-01

    I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets. PMID:26678386

  5. Measurement of the hadronic final state in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Andreev, V.; Andrieu, B.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, G. A.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Berthon, U.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; Devel, M.; De Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Feng, Y.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flauger, W.; Fleischer, M.; Flower, P. S.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Gensch, U.; Genzel, H.; Gerhards, R.; Gillespie, D.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Haries, J.; Hartz, P.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Hedgecock, R.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Jabiol, M. A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jöhnsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurça, T.; Kurzhöfer, J.; Kuznik, B.; Lander, R.; London, M. P. J.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levin, D.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Morton, J. M.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newton, D.; Nguyen, H. K.; Niebergall, F.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prosi, R.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Ribarics, P.; Riech, V.; Riedlberger, J.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Ryseck, E.; Sacton, J.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schröder, V.; Schulz, M.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Seman, M.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stephens, K.; Stier, J.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Thompson, G.; Thompson, R. J.; Tichomirov, I.; Trenkel, C.; Truöl, P.; Tchernyshov, V.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Ząçek, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.; H1 Collaboration

    1993-01-01

    We report on the first experimental study of the hadronic final state in deep inelastic electron-proton scattering with the H1 detector at HERA. Energy flow and transverse momentum characteristics are measured and presented both in the laboratory and in the hadronic center of mass frames. Comparison is made with QCD models distinguished by their different treatment of parton emission.

  6. A test of the hadronic interaction model EPOS with air shower data

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Luczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2009-03-01

    Predictions of the hadronic interaction model EPOS 1.61 as implemented in the air shower simulation program CORSIKA are compared to observations with the KASCADE experiment. The investigations reveal that the predictions of EPOS are not compatible with KASCADE measurements. The discrepancies seen are most likely due to use of a set of inelastic hadronic cross sections that are too high.

  7. Test of the hadronic interaction model EPOS with KASCADE air shower data

    NASA Astrophysics Data System (ADS)

    Hörandel, J. R.; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; KASCADE-Grande Collaboration

    2009-12-01

    Predictions of the hadronic interaction model EPOS 1.61 as implemented in the air shower simulation program CORSIKA are compared to observations with the KASCADE experiment. The investigations reveal that the predictions of EPOS are not compatible with KASCADE measurements. The discrepancies seen are most likely due to use of a set of inelastic hadronic cross sections that are too high.

  8. Consistent simulation of direct-photon production in hadron collisions including associated two-jet production

    NASA Astrophysics Data System (ADS)

    Odaka, Shigeru; Kurihara, Yoshimasa

    2016-05-01

    We have developed an event generator for direct-photon production in hadron collisions, including associated 2-jet production in the framework of the GR@PPA event generator. The event generator consistently combines γ + 2-jet production processes with the lowest-order γ + jet and photon-radiation (fragmentation) processes from quantum chromodynamics (QCD) 2-jet production using a subtraction method. The generated events can be fed to general-purpose event generators to facilitate the addition of hadronization and decay simulations. Using the obtained event information, we can simulate photon isolation and hadron-jet reconstruction at the particle (hadron) level. The simulation reasonably reproduces measurement data obtained at the large hadron collider (LHC) concerning not only the inclusive photon spectrum, but also the correlation between the photon and jet. The simulation implies that the contribution of the γ + 2-jet is very large, especially in low photon-pT ( ≲ 50 GeV) regions. Discrepancies observed at low pT, although marginal, may indicate the necessity for the consideration of further higher-order processes. Unambiguous particle-level definition of the photon-isolation condition for the signal events is desired to be given explicitly in future measurements.

  9. Uriniferous tubule: structural and functional organization.

    PubMed

    Christensen, Erik Ilsø; Wagner, Carsten A; Kaissling, Brigitte

    2012-04-01

    The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology. © 2012 American Physiological Society. Compr Physiol 2:933-996, 2012.

  10. Heavy Hadron Spectroscopy at CDF

    NASA Astrophysics Data System (ADS)

    Fernández Ramos, Juan Pablo

    2010-12-01

    We present recent CDF results on the properties of hadrons containing heavy quarks. These include measurements of charm and Σb-Σb∗- baryon's masses, lifetimes and masses of Ωb-, Ξb- and Bc- and a measurement of exclusive B+, B0 and Λb lifetimes as well as lifetime ratios (charge conjugate modes are implied throughout the text). We also summarize new measurements of exotic particles X(3872) and Y(4140).

  11. PDB-UF: database of predicted enzymatic functions for unannotated protein structures from structural genomics.

    PubMed

    von Grotthuss, Marcin; Plewczynski, Dariusz; Ginalski, Krzysztof; Rychlewski, Leszek; Shakhnovich, Eugene I

    2006-02-06

    The number of protein structures from structural genomics centers dramatically increases in the Protein Data Bank (PDB). Many of these structures are functionally unannotated because they have no sequence similarity to proteins of known function. However, it is possible to successfully infer function using only structural similarity. Here we present the PDB-UF database, a web-accessible collection of predictions of enzymatic properties using structure-function relationship. The assignments were conducted for three-dimensional protein structures of unknown function that come from structural genomics initiatives. We show that 4 hypothetical proteins (with PDB accession codes: 1VH0, 1NS5, 1O6D, and 1TO0), for which standard BLAST tools such as PSI-BLAST or RPS-BLAST failed to assign any function, are probably methyltransferase enzymes. We suggest that the structure-based prediction of an EC number should be conducted having the different similarity score cutoff for different protein folds. Moreover, performing the annotation using two different algorithms can reduce the rate of false positive assignments. We believe, that the presented web-based repository will help to decrease the number of protein structures that have functions marked as "unknown" in the PDB file. http://paradox.harvard.edu/PDB-UF and http://bioinfo.pl/PDB-UF.

  12. Strangeness at high temperatures: from hadrons to quarks.

    PubMed

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2013-08-23

    Appropriate combinations of up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number and electric charge fluctuations, obtained from lattice QCD calculations, have been used to probe the strangeness carrying degrees of freedom at high temperatures. For temperatures up to the chiral crossover, separate contributions of strange mesons and baryons can be well described by an uncorrelated gas of hadrons. Such a description breaks down in the chiral crossover region, suggesting that the deconfinement of strangeness takes place at the chiral crossover. On the other hand, the strangeness carrying degrees of freedom inside the quark gluon plasma can be described by a weakly interacting gas of quarks only for temperatures larger than twice the chiral crossover temperature. In the intermediate temperature window, these observables show considerably richer structures, indicative of the strongly interacting nature of the quark gluon plasma.

  13. Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition

    NASA Astrophysics Data System (ADS)

    Gupta, Uma Shankar; Mohapatra, Ranjita K.; Srivastava, Ajit M.; Tiwari, Vivek K.

    2010-10-01

    We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using the Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken’s hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.

  14. Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Uma Shankar; Tiwari, Vivek K.; Mohapatra, Ranjita K.

    2010-10-01

    We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using themore » Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken's hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.« less

  15. Four RNA families with functional transient structures.

    PubMed

    Zhu, Jing Yun A; Meyer, Irmtraud M

    2015-01-01

    Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5' flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5' UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All

  16. Observation of new charmless decays of bottom hadrons.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-07-17

    We search for new charmless decays of neutral b hadrons to pairs of charged hadrons, using 1 fb(-1) of data collected by the CDF II detector at the Fermilab Tevatron. We report the first observation of the Bs0-->K-pi+ decay and measure B(Bs0-->K-pi+)=(5.0+/-0.7(stat)+/-0.8(syst))x10(-6). We also report the first observation of charmless b-baryon decays, and measure B(Lambdab0-->ppi-)=(3.5+/-0.6(stat)+/-0.9(syst))x10(-6) and B(Lambdab0-->pK-)=(5.6+/-0.8(stat)+/-1.5(syst))x10(-6). No evidence is found for other modes, and we set the limit B(Bs0-->pi+pi;-)<1.2x10(-6) at 90% C.L.

  17. Towards fully automated structure-based function prediction in structural genomics: a case study.

    PubMed

    Watson, James D; Sanderson, Steve; Ezersky, Alexandra; Savchenko, Alexei; Edwards, Aled; Orengo, Christine; Joachimiak, Andrzej; Laskowski, Roman A; Thornton, Janet M

    2007-04-13

    As the global Structural Genomics projects have picked up pace, the number of structures annotated in the Protein Data Bank as hypothetical protein or unknown function has grown significantly. A major challenge now involves the development of computational methods to assign functions to these proteins accurately and automatically. As part of the Midwest Center for Structural Genomics (MCSG) we have developed a fully automated functional analysis server, ProFunc, which performs a battery of analyses on a submitted structure. The analyses combine a number of sequence-based and structure-based methods to identify functional clues. After the first stage of the Protein Structure Initiative (PSI), we review the success of the pipeline and the importance of structure-based function prediction. As a dataset, we have chosen all structures solved by the MCSG during the 5 years of the first PSI. Our analysis suggests that two of the structure-based methods are particularly successful and provide examples of local similarity that is difficult to identify using current sequence-based methods. No one method is successful in all cases, so, through the use of a number of complementary sequence and structural approaches, the ProFunc server increases the chances that at least one method will find a significant hit that can help elucidate function. Manual assessment of the results is a time-consuming process and subject to individual interpretation and human error. We present a method based on the Gene Ontology (GO) schema using GO-slims that can allow the automated assessment of hits with a success rate approaching that of expert manual assessment.

  18. Using the structure-function linkage database to characterize functional domains in enzymes.

    PubMed

    Brown, Shoshana; Babbitt, Patricia

    2014-12-12

    The Structure-Function Linkage Database (SFLD; http://sfld.rbvi.ucsf.edu/) is a Web-accessible database designed to link enzyme sequence, structure, and functional information. This unit describes the protocols by which a user may query the database to predict the function of uncharacterized enzymes and to correct misannotated functional assignments. The information in this unit is especially useful in helping a user discriminate functional capabilities of a sequence that is only distantly related to characterized sequences in publicly available databases. Copyright © 2014 John Wiley & Sons, Inc.

  19. Measurements of hadron mean free path for the particle-producing collisions in nuclear matter

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    It is not obvious a priority that the cross-section for a process in hadron collisions with free nucleons is the same as that for the process in hadron collisions with nucleons inside a target nucleus. The question arises: what is the cross-section for a process in a hadron collision with nucleon on inside the atomic nucleus. The answer to it must be found in experiments. The mean free path for particle-producing collisions of pions in nuclear matter is determined experimentally using pion-xenon nucleus collisions at 3.5 GeV/c momentum. Relation between the mean free path in question lambda sub in nucleons fm squared and the cross-section in units of fm squared/nucleon for collisions of the hadron with free nucleon is: lambda sub i = k/cross section sub i, where k = 3.00 plus or minus 0.26.

  20. Evolution of human brain functions: the functional structure of human consciousness.

    PubMed

    Cloninger, C Robert

    2009-11-01

    The functional structure of self-aware consciousness in human beings is described based on the evolution of human brain functions. Prior work on heritable temperament and character traits is extended to account for the quantum-like and holographic properties (i.e. parts elicit wholes) of self-aware consciousness. Cladistic analysis is used to identify the succession of ancestors leading to human beings. The functional capacities that emerge along this lineage of ancestors are described. The ecological context in which each cladogenesis occurred is described to illustrate the shifting balance of evolution as a complex adaptive system. Comparative neuroanatomy is reviewed to identify the brain structures and networks that emerged coincident with the emergent brain functions. Individual differences in human temperament traits were well developed in the common ancestor shared by reptiles and humans. Neocortical development in mammals proceeded in five major transitions: from early reptiles to early mammals, early primates, simians, early Homo, and modern Homo sapiens. These transitions provide the foundation for human self-awareness related to sexuality, materiality, emotionality, intellectuality, and spirituality, respectively. The functional structure of human self-aware consciousness is concerned with the regulation of five planes of being: sexuality, materiality, emotionality, intellectuality, and spirituality. Each plane elaborates neocortical functions organized around one of the five special senses. The interactions among these five planes gives rise to a 5 x 5 matrix of subplanes, which are functions that coarsely describe the focus of neocortical regulation. Each of these 25 neocortical functions regulates each of five basic motives or drives that can be measured as temperaments or basic emotions related to fear, anger, disgust, surprise, and happiness/sadness. The resulting 5 x 5 x 5 matrix of human characteristics provides a general and testable model of the

  1. Test of high-energy hadronic interaction models with high-altitude cosmic-ray data

    NASA Astrophysics Data System (ADS)

    Haungs, A.; Kempa, J.

    2003-09-01

    Emulsion experiments placed at high mountain altitudes register hadrons and high-energy γ-rays with an energy threshold in the TeV region. These secondary shower particles are produced in the forward direction of interactions of mainly primary protons and alpha-particles in the Earth's atmosphere. Single γ's and hadrons are mainly produced by the interactions of the primary cosmic-ray nuclei of primary energy below 1015eV. Therefore the measurements are sensitive to the physics of high-energy hadronic interaction models, e.g., as implemented in the Monte Carlo air shower simulation program CORSIKA. By use of detailed simulations invoking various different models for the hadronic interactions we compare the predictions for the single-particle spectra with data of the Pamir experiment. For higher primary energies characteristics of so-called gamma-ray families are used for the comparisons. Including detailed simulations for the Pamir detector we found that the data are incompatible with the HDPM and SIBYLL 1.6 models, but are in agreement with QGSJET, NEXUS, and VENUS.

  2. Identified hadron spectra from PHOBOS

    NASA Astrophysics Data System (ADS)

    Veres, Gábor I.; the PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wysłouch, B.; Zhang, J.

    2004-08-01

    Transverse momentum spectra of pions, kaons and protons, as well as antiparticle to particle ratios near mid-rapidity from d+Au collisions at \\sqrt{sNN} = 200 GeV have been measured by the PHOBOS experiment at RHIC. The transverse momentum range of particle identification was extended to beyond 3 GeV/c using the TOF detector and a new trigger system. The pseudorapidity dependence of the nuclear modification factor for charged hadrons in d+Au collisions is presented.

  3. Semi-inclusive production of two back-to-back hadron pairs in e+e- annihilation revisited

    NASA Astrophysics Data System (ADS)

    Matevosyan, Hrayr H.; Bacchetta, Alessandro; Boer, Daniël; Courtoy, Aurore; Kotzinian, Aram; Radici, Marco; Thomas, Anthony W.

    2018-04-01

    The cross section for back-to-back hadron pair production in e+e- annihilation provides access to the dihadron fragmentation functions (DiFF) needed to extract nucleon parton distribution functions from the semi-inclusive deep inelastic scattering (SIDIS) experiments with two detected final state hadrons. Particular attention is given to the so-called interference DiFF (IFF), which makes it possible to extract the transversity parton distribution of the nucleon in the collinear framework. However, previously unnoticed discrepancies were recently highlighted between the definitions of the IFFs appearing in the collinear kinematics when reconstructed from DiFFs entering the unintegrated fully differential cross sections of SIDIS and e+e- annihilation processes. In this work, to clarify this problem we re-derive the fully differential cross section for e+e- annihilation at the leading-twist approximation. We find a mistake in the definition of the kinematics in the original expression that systematically affects a subset of terms and that leads to two significant consequences. First, the discrepancy between the IFF definitions in the cross sections for SIDIS and e+e- annihilation is resolved. Second, the previously derived azimuthal asymmetry for accessing the helicity dependent DiFF G1⊥ in e+e- annihilation vanishes, which explains the nonobservation of this asymmetry in the recent experimental searches by the BELLE collaboration. We discuss the recently proposed alternative option to extract G1⊥.

  4. Hadronic Leading Order Contribution to the Muon g-2

    NASA Astrophysics Data System (ADS)

    Nomura, Daisuke

    2018-05-01

    We calculate the Standard Model (SM) prediction for the muon anomalous magnetic moment. By using the latest experimental data for e+e- → hadrons as input to dispersive integrals, we obtain the values of the leading order (LO) and the next-to-leading-order (NLO) hadronic vacuum polarisation contributions as ahad, LO VPμ = (693:27 ± 2:46) × 10-10 and ahad, NLO VP μ = (_9.82 ± 0:04) × 1010-10, respectively. When combined with other contributions to the SM prediction, we obtain aμ(SM) = (11659182:05 ± 3.56) × 10-10; which is deviated from the experimental value by Δaμ(exp) _ aμ(SM) = (27.05 ± 7.26) × 10-10. This means that there is a 3.7 σ discrepancy between the experimental value and the SM prediction. We also discuss another closely related quantity, the running QED coupling at the Z-pole, α(M2 Z). By using the same e+e- → hadrons data as input, our result for the 5-flavour quark contribution to the running QED coupling at the Z pole is Δ(5)had(M2 Z) = (276.11 ± 1.11) × 10-4, from which we obtain Δ(M2 Z) = 128.946 ± 0.015.

  5. Functional classification of protein structures by local structure matching in graph representation.

    PubMed

    Mills, Caitlyn L; Garg, Rohan; Lee, Joslynn S; Tian, Liang; Suciu, Alexandru; Cooperman, Gene; Beuning, Penny J; Ondrechen, Mary Jo

    2018-03-31

    As a result of high-throughput protein structure initiatives, over 14,400 protein structures have been solved by structural genomics (SG) centers and participating research groups. While the totality of SG data represents a tremendous contribution to genomics and structural biology, reliable functional information for these proteins is generally lacking. Better functional predictions for SG proteins will add substantial value to the structural information already obtained. Our method described herein, Graph Representation of Active Sites for Prediction of Function (GRASP-Func), predicts quickly and accurately the biochemical function of proteins by representing residues at the predicted local active site as graphs rather than in Cartesian coordinates. We compare the GRASP-Func method to our previously reported method, structurally aligned local sites of activity (SALSA), using the ribulose phosphate binding barrel (RPBB), 6-hairpin glycosidase (6-HG), and Concanavalin A-like Lectins/Glucanase (CAL/G) superfamilies as test cases. In each of the superfamilies, SALSA and the much faster method GRASP-Func yield similar correct classification of previously characterized proteins, providing a validated benchmark for the new method. In addition, we analyzed SG proteins using our SALSA and GRASP-Func methods to predict function. Forty-one SG proteins in the RPBB superfamily, nine SG proteins in the 6-HG superfamily, and one SG protein in the CAL/G superfamily were successfully classified into one of the functional families in their respective superfamily by both methods. This improved, faster, validated computational method can yield more reliable predictions of function that can be used for a wide variety of applications by the community. © 2018 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  6. Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Bilki, B.; Repond, J.; Xia, L.; Eigen, G.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Lima, J. G. R.; Salcido, R.; Zutshi, V.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Dannheim, D.; Folger, G.; Ivantchenko, V.; Klempt, W.; Lucaci-Timoce, A.-I.; Ribon, A.; Schlatter, D.; Sicking, E.; Uzhinskiy, V.; Giraud, J.; Grondin, D.; Hostachy, J.-Y.; Morin, L.; Brianne, E.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Tran, H. L.; Buhmann, P.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Norbeck, E.; Northacker, D.; Onel, Y.; van Doren, B.; Wilson, G. W.; Wing, M.; Combaret, C.; Caponetto, L.; Eté, R.; Grenier, G.; Han, R.; Ianigro, J. C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Corriveau, F.; Bobchenko, B.; Chistov, R.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mironov, D.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Dulucq, F.; Fleury, J.; Frisson, T.; Martin-Chassard, G.; Pöschl, R.; Raux, L.; Richard, F.; Rouëné, J.; Seguin-Moreau, N.; de la Taille, Ch.; Anduze, M.; Boudry, V.; Brient, J.-C.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Matthieu, A.; Mora de Freitas, P.; Musat, G.; Ruan, M.; Videau, H.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Weber, S.

    2015-04-01

    Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using GEANT4 version 9.6 are compared.

  7. Measurements of Absolute Hadronic Branching Fractions of the Λ_{c}^{+} Baryon.

    PubMed

    Ablikim, M; Achasov, M N; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Baldini Ferroli, R; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Eren, E E; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, Y; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kuehn, W; Kupsc, A; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X M; Li, X N; Li, X Q; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Mitchell, R E; Mo, X H; Mo, Y J; Morales Morales, C; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Santoro, V; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2016-02-05

    We report the first measurement of absolute hadronic branching fractions of Λ_{c}^{+} baryon at the Λ_{c}^{+}Λ[over ¯]_{c}^{-} production threshold, in the 30 years since the Λ_{c}^{+} discovery. In total, 12 Cabibbo-favored Λ_{c}^{+} hadronic decay modes are analyzed with a double-tag technique, based on a sample of 567  pb^{-1} of e^{+}e^{-} collisions at sqrt[s]=4.599  GeV recorded with the BESIII detector. A global least-squares fitter is utilized to improve the measured precision. Among the measurements for twelve Λ_{c}^{+} decay modes, the branching fraction for Λ_{c}^{+}→pK^{-}π^{+} is determined to be (5.84±0.27±0.23)%, where the first uncertainty is statistical and the second is systematic. In addition, the measurements of the branching fractions of the other 11 Cabibbo-favored hadronic decay modes are significantly improved.

  8. Hadron production experiments

    NASA Astrophysics Data System (ADS)

    Popov, Boris A.

    2013-02-01

    The HARP and NA61/SHINE hadroproduction experiments as well as their implications for neutrino physics are discussed. HARP measurements have already been used for predictions of neutrino beams in K2K and MiniBooNE/SciBooNE experiments and are also being used to improve the atmospheric neutrino flux predictions and to help in the optimization of neutrino factory and super-beam designs. First measurements released recently by the NA61/SHINE experiment are of significant importance for a precise prediction of the J-PARC neutrino beam used for the T2K experiment. Both HARP and NA61/SHINE experiments provide also a large amount of input for validation and tuning of hadron production models in Monte-Carlo generators.

  9. Higgs Boson Searches at Hadron Colliders (1/4)

    ScienceCinema

    Jakobs, Karl

    2018-05-21

    In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

  10. Functional Generalized Structured Component Analysis.

    PubMed

    Suk, Hye Won; Hwang, Heungsun

    2016-12-01

    An extension of Generalized Structured Component Analysis (GSCA), called Functional GSCA, is proposed to analyze functional data that are considered to arise from an underlying smooth curve varying over time or other continua. GSCA has been geared for the analysis of multivariate data. Accordingly, it cannot deal with functional data that often involve different measurement occasions across participants and a large number of measurement occasions that exceed the number of participants. Functional GSCA addresses these issues by integrating GSCA with spline basis function expansions that represent infinite-dimensional curves onto a finite-dimensional space. For parameter estimation, functional GSCA minimizes a penalized least squares criterion by using an alternating penalized least squares estimation algorithm. The usefulness of functional GSCA is illustrated with gait data.

  11. Collagens--structure, function, and biosynthesis.

    PubMed

    Gelse, K; Pöschl, E; Aigner, T

    2003-11-28

    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue.

  12. Caveolae structure and function

    PubMed Central

    Thomas, Candice M; Smart, Eric J

    2008-01-01

    Abstract Studies on the structure and function of caveolae have revealed how this versatile subcellular organelle can influence numerous signalling pathways. This brief review will discuss a few of the key features of caveolae as it relates to signalling and disease processes. PMID:18315571

  13. Four RNA families with functional transient structures

    PubMed Central

    Zhu, Jing Yun A; Meyer, Irmtraud M

    2015-01-01

    Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5′ flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5′ UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM

  14. The structural science of functional materials.

    PubMed

    Catlow, C Richard A

    2018-01-01

    The growing complexity of functional materials and the major challenges this poses to structural science are discussed. The diversity of structural materials science and the contributions that computation is making to the field are highlighted.

  15. Identified hadron spectra from PHOBOS

    NASA Astrophysics Data System (ADS)

    Veres, Gábor I.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wyslouch, B.; Zhang, J.

    2004-08-01

    Transverse momentum spectra of pions, kaons and protons, as well as antiparticle to particle ratios near mid-rapidity from d+Au collisions at \\sqrt{s_{{\\rm NN}}} = 200\\,{\\rm GeV} have been measured by the PHOBOS experiment at RHIC. The transverse momentum range of particle identification was extended to beyond 3 GeV/c using the TOF detector and a new trigger system. The pseudorapidity dependence of the nuclear modification factor for charged hadrons in d+Au collisions is presented.

  16. Fragmentation uncertainties in hadronic observables for top-quark mass measurements

    NASA Astrophysics Data System (ADS)

    Corcella, Gennaro; Franceschini, Roberto; Kim, Doojin

    2018-04-01

    We study the Monte Carlo uncertainties due to modeling of hadronization and showering in the extraction of the top-quark mass from observables that use exclusive hadronic final states in top decays, such as t →anything + J / ψ or t →anything + (B →charged tracks), where B is a B-hadron. To this end, we investigate the sensitivity of the top-quark mass, determined by means of a few observables already proposed in the literature as well as some new proposals, to the relevant parameters of event generators, such as HERWIG 6 and PYTHIA 8. We find that constraining those parameters at O (1%- 10%) is required to avoid a Monte Carlo uncertainty on mt greater than 500 MeV. For the sake of achieving the needed accuracy on such parameters, we examine the sensitivity of the top-quark mass measured from spectral features, such as peaks, endpoints and distributions of EB, mBℓ, and some mT2-like variables. We find that restricting oneself to regions sufficiently close to the endpoints enables one to substantially decrease the dependence on the Monte Carlo parameters, but at the price of inflating significantly the statistical uncertainties. To ameliorate this situation we study how well the data on top-quark production and decay at the LHC can be utilized to constrain the showering and hadronization variables. We find that a global exploration of several calibration observables, sensitive to the Monte Carlo parameters but very mildly to mt, can offer useful constraints on the parameters, as long as such quantities are measured with a 1% precision.

  17. Polarization and Resummation in Slepton Production at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Klasen, M.

    2006-10-01

    In R-parity conserving supersymmetric (SUSY) models, sleptons are produced in pairs at hadron colliders through neutral and charged electroweak currents. We demonstrate that the polarization of the initial hadron beams allows for a direct extraction of the slepton mixing angle and thus for a determination of the underlying SUSY-breaking mechanism. We also perform a first precision calculation of the transverse-momentum ( q T) spectrum of the slepton pairs by resumming soft multiple-gluon emission at next-to-leading logarithmic order. The results show a relevant contribution of resummation both in the small and intermediate q T-regions, which strongly influences the extraction of the missing transverse-momentum signal and the subsequent slepton mass-determination, and little dependence on unphysical scales and non-perturbative contributions.

  18. [The structural functional analysis of functioning of day-hospitals of the Russian Federation].

    PubMed

    2012-01-01

    The article deals with the results of structural functional analysis of functioning of day-hospitals in the Russian Federation. The dynamic analysis is presented concerning day-hospitals' network, capacity; financial support, beds stock structure, treated patients structure, volumes of diagnostic tests and curative procedures. The need in developing of population medical care in conditions of day-hospitals is demonstrated.

  19. EFFECTIVE HYPERFINE-STRUCTURE FUNCTIONS OF AMMONIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustovičová, L.; Soldán, P.; Špirko, V., E-mail: spirko@marge.uochb.cas.cz

    The hyperfine structure of the rotation-inversion ( v {sub 2} = 0{sup +}, 0{sup −}, 1{sup +}, 1{sup −}) states of the {sup 14}NH{sub 3} and {sup 15}NH{sub 3} ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen’s effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction.more » In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.« less

  20. PREFACE: The first meeting of the APS Topical Group on Hadronic Physics

    NASA Astrophysics Data System (ADS)

    Barnes, Ted; Godfrey, Steve; Petrov, Alexey A.; Swanson, Eric

    2005-01-01

    The first meeting of the APS Topical Group on Hadronic Physics (`GHP') took place on 24-26 October 2004, at Fermilab. Two factors contributed to the decision to hold this meeting. First, the Topical Group on Hadronic Physics had recently been established, and there was general agreement that a conference devoted to the physics of hadrons was an important group activity. Second, many exciting new experimental results on hadron spectroscopy had been announced recently, and there was intense interest in these new developments. The meeting was very well attended, with over 120 scientists participating; this was triple our original estimate of the likely audience for this meeting. The plenary sessions covered a broad range of topics, as we considered it important to promote communication between the communities pursuing research in different areas of hadron physics. The topics discussed included new results from RHIC on the QGP, the status of experiments on the flavour-exotic pentaquark and other new baryons, the new open-charm Ds and hidden-charm X states, conventional light quark resonances, glueballs and hybrids, and new facilities. Finally, a `town meeting' was held to discuss funding prospects for hadronic physics and related issues, which included a panel discussion with representatives from DOE, NSF and JLab. These plenary sessions were supplemented by 14 parallel sessions, giving a total of approximately 80 presentations. To make the conference more accessible to younger researchers, as well as to simiplify administration, there was no conference fee for this meeting. This was possible as a result of the generous financial support of our hosts at Fermilab, for which we are very appreciative. We are also grateful to Larry Cardman for arranging Jlab assistance in producing and distributing the conference poster, to Gerald Ragghianti for designing the poster and proceedings cover, and to Lali Chatterjee and the Institute of Physics for arranging publication of the

  1. Structural Determinants of Arrestin Functions

    PubMed Central

    Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2015-01-01

    Arrestins are a small protein family with only four members in mammals. Arrestins demonstrate an amazing versatility, interacting with hundreds of different G protein-coupled receptor (GPCR) subtypes, numerous nonreceptor signaling proteins, and components of the internalization machinery, as well as cytoskeletal elements, including regular microtubules and centrosomes. Here, we focus on the structural determinants that mediate various arrestin functions. The receptor-binding elements in arrestins were mapped fairly comprehensively, which set the stage for the construction of mutants targeting particular GPCRs. The elements engaged by other binding partners are only now being elucidated and in most cases we have more questions than answers. Interestingly, even very limited and imprecise identification of structural requirements for the interaction with very few other proteins has enabled the development of signaling-biased arrestin mutants. More comprehensive understanding of the structural underpinning of different arrestin functions will pave the way for the construction of arrestins that can link the receptor we want to the signaling pathway of our choosing. PMID:23764050

  2. Construction of a technological semi-digital hadronic calorimeter using GRPC

    NASA Astrophysics Data System (ADS)

    Laktineh, I.

    2011-04-01

    A high-granularity semi-digital Hadronic calorimeter using GRPC as sensitive medium is one of the two HCAL options considered by the ILD collaboration to be proposed for the detector of the future International Linear Collider project. A prototype of 1m3 has been conceived within the CALICE collaboration in order to validate this option. The prototype intends to be as close as possible to the one proposed in the ILD Letter Of Intent. Few units made of 1m2 GRPC fully equipped with semi-digital readout electronics and new gas distribution design were produced and successfully tested. In 2010 we intend to produce 40 similar units to be inserted in a self-supporting mechanical structure. The prototype will then be exposed to TestBeams at CERN for final validation.

  3. Quantification of soil structure based on Minkowski functions

    NASA Astrophysics Data System (ADS)

    Vogel, H.-J.; Weller, U.; Schlüter, S.

    2010-10-01

    The structure of soils and other geologic media is a complex three-dimensional object. Most of the physical material properties including mechanical and hydraulic characteristics are immediately linked to the structure given by the pore space and its spatial distribution. It is an old dream and still a formidable challenge to relate structural features of porous media to their functional properties. Using tomographic techniques, soil structure can be directly observed at a range of spatial scales. In this paper we present a scale-invariant concept to quantify complex structures based on a limited set of meaningful morphological functions. They are based on d+1 Minkowski functionals as defined for d-dimensional bodies. These basic quantities are determined as a function of pore size or aggregate size obtained by filter procedures using mathematical morphology. The resulting Minkowski functions provide valuable information on the size of pores and aggregates, the pore surface area and the pore topology having the potential to be linked to physical properties. The theoretical background and the related algorithms are presented and the approach is demonstrated for the pore structure of an arable soil and the pore structure of a sand both obtained by X-ray micro-tomography. We also analyze the fundamental problem of limited resolution which is critical for any attempt to quantify structural features at any scale using samples of different size recorded at different resolutions. The results demonstrate that objects smaller than 5 voxels are critical for quantitative analysis.

  4. Higgs boson production at hadron colliders at N3LO in QCD

    NASA Astrophysics Data System (ADS)

    Mistlberger, Bernhard

    2018-05-01

    We present the Higgs boson production cross section at Hadron colliders in the gluon fusion production mode through N3LO in perturbative QCD. Specifically, we work in an effective theory where the top quark is assumed to be infinitely heavy and all other quarks are considered to be massless. Our result is the first exact formula for a partonic hadron collider cross section at N3LO in perturbative QCD. Furthermore, our result is an analytic computation of a hadron collider cross section involving elliptic integrals. We derive numerical predictions for the Higgs boson cross section at the LHC. Previously this result was approximated by an expansion of the cross section around the production threshold of the Higgs boson and we compare our findings. Finally, we study the impact of our new result on the state of the art prediction for the Higgs boson cross section at the LHC.

  5. Forward hadron calorimeter at MPD/NICA

    NASA Astrophysics Data System (ADS)

    Golubeva, M.; Guber, F.; Ivashkin, A.; Izvestnyy, A.; Kurepin, A.; Morozov, S.; Parfenov, P.; Petukhov, O.; Taranenko, A.; Selyuzhenkov, I.; Svintsov, I.

    2017-01-01

    Forward hadron calorimeter (FHCAL) at MPD/NICA experimental setup is described. The main purpose of the FHCAL is to provide an experimental measurement of a heavy-ion collision centrality (impact parameter) and orientation of its reaction plane. Precise event-by-event estimate of these basic observables is crucial for many physics phenomena studies to be performed by the MPD experiment. The simulation results of FHCAL performance are presented.

  6. Mutations of Electrons as Constituents of Hadrons

    NASA Astrophysics Data System (ADS)

    Driscoll, R. B.

    1997-04-01

    Conjecture (C) 1: Coulomb-charged constituents of electron (e) are attracted to its barycentre by lepto-strong force F=K/r^2+f; f is stably perturbative for r < the "radius" of e. An exterior magnetic field (MF) with gradient (G) secularly perturbs the eccentricities but not the energies of the constituents' orbits, changing the spin (s) and magnetic moment (μ) of e. (C) 2: F coheres two or more e's dynamically with r approximately equal to the "radius" of e. The resulting MF and G at each e oscillate. Stable values of s and μ result for each e which differs from the atomic values. Binding energies change the masses of the e's. A hadron results. (C) 3: An e similarly may bind to a proton to form a Rutherford- Santilli neutron. The proton is negligibly mutated.(References: H. Dehmelt, Science 247, 539 (1990); T.E. Phipps, Jr., Heretical Verities (Classic Non-fiction Library, Urbana, 1986); R.M. Santilli, Hadronic Mechanics (Ukrainian Academy of Sciences, Kiev, 1995 and 1996), 3 volumes.)

  7. Strange hadron production at low transverse momenta

    NASA Astrophysics Data System (ADS)

    Veres, Gábor I.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wyslouch, B.; Zhang, J.

    2004-01-01

    Some of the latest results of the PHOBOS experiment from the \\sqrt{s_{NN}}= 200\\ GeV Au+Au data are discussed. Those relevant to strangeness production are emphasized. These observations relate to the nature of the matter created when heavy ions collide at the highest achieved energy. The invariant yields of strange and non-strange charged hadrons at very low transverse momentum have been measured, and used to differentiate between different dynamical scenarios. In the intermediate transverse momentum range, the measured ratios of strange and anti-strange kaons approach one, while the antibaryon to baryon ratio is still significantly less, independent of collision centrality and transverse momentum. At high transverse momenta, we find that central and peripheral Au+Au collisions produce similar numbers of charged hadrons per participant nucleon pair, rather than per binary nucleon-nucleon collision. Finally, we describe the upgrades of PHOBOS completed for the 2003 d+Au and p+p run, which extend the transverse momentum range over which particle identification is possible and, at the same time, implement a trigger system selective for high-pT particles.

  8. Performance of the Prototype Readout System for the CMS Endcap Hadron Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Chaverin, Nate; Dittmann, Jay; Hatakeyama, Kenichi; Pastika, Nathaniel; CMS Collaboration

    2016-03-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will upgrade the photodetectors and readout systems of the endcap hadron calorimeter during the technical stop scheduled for late 2016 and early 2017. A major milestone for this project was a highly successful testbeam run at CERN in August 2015. The testbeam run served as a full integration test of the electronics, allowing a study of the response of the preproduction electronics to the true detector light profile, as well as a test of the light yield of various new plastic scintillator materials. We present implications for the performance of the hadron calorimeter front-end electronics based on testbeam data, and we report on the production status of various components of the system in preparation for the upgrade.

  9. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    DOE PAGES

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent ofmore » the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.« less

  10. COST-ENLIGHT strategic workshop on hadron (particle) therapy, CERN, Geneva, 3-4 May 2007.

    PubMed

    Taylor, R E

    2008-03-01

    This meeting was convened by COST (Co-operation in the Field of Scientific and Technical Research) and ENLIGHT (European Network for Research in Light-Ion Hadron Therapy) to review the current status of hadron therapy in Europe. The aims were to increase awareness of hadron therapy within the scientific community, to produce a document outlining the present and future prospects for this treatment modality and to bring together hadron therapy scientists and clinicians. Proton therapy offers the potential for therapeutic gain from dose distribution advantages when compared with photon therapy. Carbon ion therapy, by nature of its higher linear energy transfer (LET) and relative biological effectiveness (RBE), may further improve local control. A further potential benefit of carbon ion therapy is the ability to deliver hypofractionated radiotherapy. A further aim of this meeting was to commence preparation of a programme of work packages with a view to submitting an application for European Union funding within the FP7 programme. This comprises a series of seven work packages, which will be a focus for European collaboration.

  11. On a useful functional representation of control system structure

    NASA Technical Reports Server (NTRS)

    Malchow, Harvey L.

    1988-01-01

    An alternative structure for control systems is proposed. The structure is represented by a three-element block diagram and three functional definitions. It is argued that the three functional elements form a canonical set. The set includes the functions description, estimation and control. General overlay of the structure on parallel state and nested-state control systems is discussed. Breakdown of two real nested-state control systems into the proposed functional format is displayed. Application of the process to the mapping of complex control systems R and D efforts is explained with the Mars Rover Sample and Return mission as an example. A previous application of this basic functional structure to Space Station performance requirements organization is discussed.

  12. Structural and functional deficits in human amblyopia.

    PubMed

    Lv, Bin; He, Huiguang; Li, Xingfeng; Zhang, Zhiqiang; Huang, Wei; Li, Meng; Lu, Guangming

    2008-05-23

    Many neuroimaging tools have been used to assess the site of the cortical deficits in human amblyopia. In this paper, we aimed at detecting the structural and functional deficits in humans with amblyopia, with the aid of anatomic magnetic resonance imaging (aMRI) and functional MRI (fMRI). We designed the visual stimulus to investigate the functional deficits, and delineated the V1/V2 areas by retinotopic mapping. Then we performed the brain parcellation to calculate the volume of the subcortical structure on each individual, and reconstructed the cortical surfaces to measure the cortical thickness. At last, the statistical comparison was carried out to find the structural abnormities and their relationship to the functional deficits. Compared with the normal controls, it is found that the hemisphere difference existed on the unilateral amblyopia subjects, and the functional deficit might come along with the changes in the cortical volume, especially in the occipital lobe. The examined results may provide insight to the study of the neural substrates of amblyopia.

  13. Parton distribution functions from reduced Ioffe-time distributions

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Hui; Chen, Jiunn-Wei; Monahan, Christopher

    2018-04-01

    We show that the correct way to extract parton distribution functions from the reduced Ioffe-time distribution, a ratio of the Ioffe-time distribution for a moving hadron and a hadron at rest, is through a factorization formula. This factorization exists because, at small distances, forming the ratio does not change the infrared behavior of the numerator, which is factorizable. We illustrate the effect of such a factorization by applying it to results in the literature.

  14. MC generator HARDPING: Nuclear effects in hard interactions of leptons and hadrons with nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdnikov, Ya. A.; Ivanov, A. E.; Kim, V. T.

    2016-01-22

    Hadron and lepton production in hard interaction of high-energy particles with nuclei are considered in context of developing of Monte Carlo generator HARDPING (Hard Probe Interaction Generator). Such effects as energy losses and multiple re-scattering initial and produced hadrons and their constituents are taken into account. These effects are implemented in current version of generator HARDPING. Data of experiments HERMES on hadron production in lepton-nuclei collisions and E866 on muon pair production in proton-nuclei collisions were described with current version of generator HARDPING. Predictions from recent version HARPING 3.0 for lepton pairs production at proton beam energy I20 GeV aremore » presented.« less

  15. Black Holes and the Large Hadron Collider

    ERIC Educational Resources Information Center

    Roy, Arunava

    2011-01-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…

  16. Using infinite-volume, continuum QED and lattice QCD for the hadronic light-by-light contribution to the muon anomalous magnetic moment

    NASA Astrophysics Data System (ADS)

    Blum, Thomas; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph

    2017-08-01

    In our previous work, Blum et al. [Phys. Rev. Lett. 118, 022005 (2017), 10.1103/PhysRevLett.118.022005], the connected and leading disconnected hadronic light-by-light contributions to the muon anomalous magnetic moment (g -2 ) have been computed using lattice QCD ensembles corresponding to physical pion mass generated by the RBC/UKQCD Collaboration. However, the calculation is expected to suffer from a significant finite-volume error that scales like 1 /L2 where L is the spatial size of the lattice. In this paper, we demonstrate that this problem is cured by treating the muon and photons in infinite-volume, continuum QED, resulting in a weighting function that is precomputed and saved with affordable cost and sufficient accuracy. We present numerical results for the case when the quark loop is replaced by a muon loop, finding the expected exponential approach to the infinite volume limit and consistency with the known analytic result. We have implemented an improved weighting function which reduces both discretization and finite-volume effects arising from the hadronic part of the amplitude.

  17. Using infinite-volume, continuum QED and lattice QCD for the hadronic light-by-light contribution to the muon anomalous magnetic moment

    DOE PAGES

    Blum, Thomas; Christ, Norman; Hayakawa, Masashi; ...

    2017-08-22

    In our previous work, the connected and leading disconnected hadronic light-by-light contributions to the muon anomalous magnetic moment (g — 2) have been computed using lattice QCD ensembles corresponding to physical pion mass generated by the RBC/UKQCD Collaboration. However, the calculation is expected to suffer from a significant finite-volume error that scales like 1/L 2 where L is the spatial size of the lattice. In this paper, we demonstrate that this problem is cured by treating the muon and photons in infinite-volume, continuum QED, resulting in a weighting function that is precomputed and saved with affordable cost and sufficient accuracy.more » We present numerical results for the case when the quark loop is replaced by a muon loop, finding the expected exponential approach to the infinite volume limit and consistency with the known analytic result. Here, we have implemented an improved weighting function which reduces both discretization and finite-volume effects arising from the hadronic part of the amplitude.« less

  18. Using infinite-volume, continuum QED and lattice QCD for the hadronic light-by-light contribution to the muon anomalous magnetic moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, Thomas; Christ, Norman; Hayakawa, Masashi

    In our previous work, the connected and leading disconnected hadronic light-by-light contributions to the muon anomalous magnetic moment (g — 2) have been computed using lattice QCD ensembles corresponding to physical pion mass generated by the RBC/UKQCD Collaboration. However, the calculation is expected to suffer from a significant finite-volume error that scales like 1/L 2 where L is the spatial size of the lattice. In this paper, we demonstrate that this problem is cured by treating the muon and photons in infinite-volume, continuum QED, resulting in a weighting function that is precomputed and saved with affordable cost and sufficient accuracy.more » We present numerical results for the case when the quark loop is replaced by a muon loop, finding the expected exponential approach to the infinite volume limit and consistency with the known analytic result. Here, we have implemented an improved weighting function which reduces both discretization and finite-volume effects arising from the hadronic part of the amplitude.« less

  19. Predictions for Sivers single spin asymmetries in one- and two-hadron electroproduction at CLAS12 and EIC

    DOE PAGES

    Matevosyan, Hrayr H.; Kotzinian, Aram; Aschenauer, Elke -Caroline; ...

    2015-09-23

    The study of the Sivers effect, describing correlations between the transverse polarization of the nucleon and its constituent (unpolarized) parton's transverse momentum, has been the topic of a great deal of experimental, phenomenological and theoretical effort in recent years. Semi-Inclusive Deep Inelastic Scattering measurements of the corresponding single spin asymmetries (SSA) at the upcoming CLAS12 experiment at JLab and the proposed Electron-Ion Collider will help to pinpoint the flavor structure and the momentum dependence of the Sivers parton distribution function describing this effect. Here we describe a modified version of themore » $$\\tt{PYTHIA}$$ Monte Carlo event generator that includes the Sivers effect. Then we use it to estimate the size of these SSAs, in the kinematics of these experiments, for both one and two hadron final states of pions and kaons. For this purpose we utilize the existing Sivers parton distribution function (PDF) parametrization extracted from HERMES and COMPASS experiments. Furthermore, we also show that the the leading order approximation commonly used in such extractions provides significantly underestimated values of Sivers PDFs, as the omitted parton showers and non-DIS processes play an important role in these SSAs at lower light-cone momentum fraction, for example in the COMPASS kinematics.« less

  20. Generalized fluid impulse functions for oscillating marine structures

    NASA Astrophysics Data System (ADS)

    Janardhanan, K.; Price, W. G.; Wu, Y.

    1992-03-01

    A selection of generalized impulse response functions is presented for a variety of rigid and flexible marine structures (i.e. mono-hull, SWATH, floating drydock and twin dock, fixed flexible pile). These functions are determined from calculated and experimental frequency-dependent hydrodynamic data, and the characteristics of these data depend on the type of structure considered. This information is reflected in the shape and duration of the generalized impulse response functions which are pre-requisites for a generalized integro-differential mathematical model describing the dynamic behaviour of the structures to seaway excitation.

  1. Weak decays of heavy hadrons into dynamically generated resonances

    DOE PAGES

    Oset, Eulogio; Liang, Wei -Hong; Bayar, Melahat; ...

    2016-01-28

    In this study, we present a review of recent works on weak decay of heavy mesons and baryons with two mesons, or a meson and a baryon, interacting strongly in the final state. The aim is to learn about the interaction of hadrons and how some particular resonances are produced in the reactions. It is shown that these reactions have peculiar features and act as filters for some quantum numbers which allow to identify easily some resonances and learn about their nature. The combination of basic elements of the weak interaction with the framework of the chiral unitary approach allowmore » for an interpretation of results of many reactions and add a novel information to different aspects of the hadron interaction and the properties of dynamically generated resonances.« less

  2. The response of a bonner sphere spectrometer to charged hadrons.

    PubMed

    Agosteo, S; Dimovasili, E; Fassò, A; Silari, M

    2004-01-01

    Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n,xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semi-thick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors were found to have a significant response to the charged hadron component accompanying the neutrons emitted from the target. Conventional polyethylene moderators show a similar behaviour but less pronounced. These secondary hadrons interact with the moderator and generate neutrons, which are in turn detected by the counter. To investigate this effect and determine a correction factor to be applied to the unfolding procedure, a series of Monte Carlo simulations were performed with the FLUKA code. These simulations aimed at determining the response of the BSS to charged hadrons under the specific experimental situation. Following these results, a complete response matrix of the extended BSS to charged pions and protons was calculated with FLUKA. An experimental verification was carried out with a 120 GeV per c hadron beam at the CERF facility at CERN.

  3. Probing the hadronic phase with resonances of different lifetimes in Pb-Pb collisions with ALICE

    NASA Astrophysics Data System (ADS)

    Agrawal, Neelima

    2018-02-01

    The ALICE experiment has measured the production of a rich set of hadronic resonances, such as ρ(770)0, K*(892)0, ϕ(1020), ∑±(1385), Λ(1520) and Ξ*0 in pp, p-Pb and Pb-Pb collisions at various energies at the LHC. A comprehensive overview and the latest results are presented in this paper. Special focus is given to the role of hadronic resonances for the study of final-state effects in high-energy collisions. In particular, the measurement of resonance production in heavy-ion collisions has the capability to provide insight into the existence of a prolonged hadronic phase after hadronisation. The observation of the suppression of the production of Λ(1520) resonance in central Pb-Pb collisions at =2.76 TeV adds further support to the existence of such a dense hadronic phase, as already evidenced by the ratios K*(892)0/K and ρ(770)0/π.

  4. Branon search in hadronic colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cembranos, J.A.R.; Departamento de Fisica Teorica, Universidad Complutense de Madrid, 28040 Madrid; Dobado, A.

    2004-11-01

    In the context of the brane-world scenarios with compactified extra dimensions, we study the production of brane fluctuations (branons) in hadron colliders (pp, pp, and e{sup {+-}}p) in terms of the brane tension parameter f, the branon mass M, and the number of branons N. From the absence of monojet events at HERA and Tevatron (run I), we set bounds on these parameters and we also study how such bounds could be improved at Tevatron (run II) and the future LHC. The single-photon channel is also analyzed for the two last colliders.

  5. Hadronic production of Bs(*) at the Tevatron and LHC

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Wei; Fang, Zhen-Yun; Chang, Chao-Hsi; Wu, Xing-Gang; Zhong, Tao; Yu, Yao

    2009-06-01

    We study the hadronic production of Bs and Bs* mesons within the fixed-flavor-number scheme, in which the dominant gluon-gluon fusion mechanism is dealt with by using the complete αs4 approach. Main theoretical uncertainties for Bs and Bs* production at the Tevatron and LHC are presented. It is found that when ms increases by steps of 0.1 GeV, the integrated cross section of Bs(*) decreases by 80%-100%. When mb increases by steps of 0.1 GeV, it changes by ˜10%, while the uncertainties caused by the parton distribution function and the factorization scale vary within the region of (1)/(5) to (1)/(3). Considering a possible kinematic cut on the transverse momentum and the rapidity cut for the detectors at the Tevatron and LHC, we also make estimations on the Bs and Bs* production with various kinematic cuts.

  6. Multiplicities of charged hadrons in 280 GeV/c muon-proton scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Becks, K. H.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Callebaut, D.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Grafström, P.; Grard, F.; Hass, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Kesteman, J.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Manz, A.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sholz, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; De La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wahlen, H.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; European Muon Collaboration

    Properties of the hadron multiplicity distributions in 280 GeV/ c μ +p interactions have been investigated. The c.m. energy dependence in the range from 4 to 20 GeV of the total charged multiplicities are presented. No variation faster than logarithmic is seen in the energy range of this experiment. Comparison with νp and overlineνp data at lower energy has been made and shows good agreement between μ +p and overlineνp total charged multiplicities. It has been found that the average forward multiplicity (charged hadrons with xF > 0) exceeds the average backward multiplicity (charged hadrons with xF < 0) in the whole energy range and presents a different energy variation. The average forward multiplicity has been compared to e +e - data and shows a similar dependence on energy. Little correlation was observed between the forward and backward multiplicities indicating that the current and target regions fragment almost independently.

  7. Commissioning of the CMS Hadron Forward Calorimeters Phase I Upgrade

    NASA Astrophysics Data System (ADS)

    Bilki, B.; Onel, Y.

    2018-03-01

    The final phase of the CMS Hadron Forward Calorimeters Phase I Upgrade was performed during the Extended Year End Technical Stop of 2016-2017. In the framework of the upgrade, the PMT boxes were reworked to implement two channel readout in order to exploit the benefits of the multi-anode PMTs in background tagging and signal recovery. The front-end electronics were also upgraded to QIE10-based electronics which implement larger dynamic range and a 6-bit TDC. Following this major upgrade, the Hadron Forward Calorimeters were commissioned for operation readiness in 2017. Here we describe the details and the components of the upgrade, and discuss the operational experience and results obtained during the upgrade and commissioning.

  8. The upgrade of the CMS hadron calorimeter with silicon photomultipliers

    DOE PAGES

    Strobbe, N.

    2017-01-26

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. Here, this paper discusses the motivation for the upgrade and provides a description 17 of the new system, including the SiPMs with associated controlmore » electronics and the front-end readout cards.« less

  9. Examining the Crossover from the Hadronic to Partonic Phase in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Mingmei; Yu Meiling; Liu Lianshou

    2008-03-07

    A mechanism, consistent with color confinement, for the transition between perturbative and physical vacua during the gradual crossover from the hadronic to partonic phase is proposed. The essence of this mechanism is the appearance and growing up of a kind of grape-shape perturbative vacuum inside the physical one. A percolation model based on simple dynamics for parton delocalization is constructed to exhibit this mechanism. The crossover from hadronic matter to sQGP (strongly coupled quark-gluon plasma) as well as the transition from sQGP to weakly coupled quark-gluon plasma with increasing temperature is successfully described by using this model.

  10. Hadron resonance gas with repulsive interactions and fluctuations of conserved charges

    DOE PAGES

    Huovinen, Pasi; Petreczky, Peter

    2017-12-11

    We discuss the role of repulsive baryon-baryon interactions in a hadron gas using relativistic virial expansion and repulsive mean field approaches. The fluctuations of the baryon number as well as strangeness-baryon correlations are calculated in the hadron resonance gas with repulsive interactions and compared with the recent lattice QCD results. In particular, we calculate the difference between the second and fourth order fluctuations and correlations of baryon number and strangeness, that have been proposed as probes of deconfinement. We show that for not too high temperatures these differences could be understood in terms of repulsive interactions.

  11. Estimate of the hadronic vacuum polarization disconnected contribution to the anomalous magnetic moment of the muon from lattice QCD

    NASA Astrophysics Data System (ADS)

    Chakraborty, Bipasha; Davies, C. T. H.; Koponen, J.; Lepage, G. P.; Peardon, M. J.; Ryan, S. M.

    2016-04-01

    The quark-line disconnected diagram is a potentially important ingredient in lattice QCD calculations of the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon. It is also a notoriously difficult one to evaluate. Here, for the first time, we give an estimate of this contribution based on lattice QCD results that have a statistically significant signal, albeit at one value of the lattice spacing and an unphysically heavy value of the u /d quark mass. We use HPQCD's method of determining the anomalous magnetic moment by reconstructing the Adler function from time moments of the current-current correlator at zero spatial momentum. Our results lead to a total (including u , d and s quarks) quark-line disconnected contribution to aμ of -0.15 % of the u /d hadronic vacuum polarization contribution with an uncertainty which is 1% of that contribution.

  12. A search for higher twist effects in the hadronic distributions in deep inelastic muon proton scattering

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Korzen, B.; Landgraf, U.; Leenen, M.; Maire, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Schneider, A.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.

    1986-03-01

    The hadronic distributions in Q 2, y, z, p T and ϕ in deep inelastic muon proton scattering have been studied to search for higher twist effects in the hadronic final state. The expected effects are not observed.

  13. Strange hadron (neutral kaon(short), lambda baryon and Xi baryon) production in deuteron+gold collisions at center of mass energy = 200 GeV at RHIC

    NASA Astrophysics Data System (ADS)

    Jiang, Hai

    The study of identified particles from deuteron(d)+gold(Au) collisions provide a crucial reference to investigate nuclear effects observed in Au+Au collisions where a thermalized partonic state - Quark Gluon Plasma (QGP) - is thought to have been created. The measurements of transverse mass (mT) and momentum (pT) spectra at mid-rapidity (| y| < 1) for the identified strange hadrons: K0S , Λ + Λ and xi- + xi+ from d+Au collisions are presented. The measured pT covers 0.4 < p T < 6.0 GeV/c for K0S and Λ + Λ and 0.6 < pT < 5.0 GeV/c for xi- + xi+. These particles were reconstructed from the topological characteristics of their weak decays in the STAR Time Projection Chamber (TPC). The mT spectra of these particles are well described by a double exponential function which can be understood by two component models: soft (thermal) hadron production at low mT and hard hadron production at high mT. The integrated yields (dN/dy) and mean pT (< pT >) of these particles are calculated from the fit functions for different centralities. The dN/dy normalized to the number of participants (Npart) increase with Npart. The Λ(Λ ) dN/dy values at the mid-rapidity and forward rapidity regions agree with the EPOS model calculations. The measured Λ/ K0S ratios show the greatest baryon enhancement at pT ˜ 2 GeV/c in d+Au collisions. The strangeness enhancement going from d+Au to Au+Au collisions grows with the number of strange quark in a hadron. The magnitude of the enhancement is in the same order as the SPS measurement. The nuclear modification factors RCP normalized to binary collisions indicate that the Cronin effect in d+Au collisions has a distinct particle type dependence. The RCP ratios show a distinct baryon versus meson dependence: the RCP for xi- + xi+ follows that for Λ + Λ while the R CP for the φ is close to that for the K0S . The mechanism based on initial hadron or parton multiple scattering is not sufficient to explain this particle type dependence

  14. Changes in gastrointestinal tract function and structure in functional dyspepsia.

    PubMed

    Vanheel, Hanne; Farré, Ricard

    2013-03-01

    Functional dyspepsia is an extremely common disorder of gastrointestinal function. The disorder is thought to be heterogeneous, with different pathophysiological mechanisms underlying varied symptom patterns. A diversity of changes in gastrointestinal tract function and structure has been described in functional dyspepsia. These involve alterations in the stomach, such as impaired accommodation, delayed gastric emptying and hypersensitivity, and alterations in the duodenum, such as increased sensitivity to duodenal acid and/or lipids and low-grade inflammation. In this Review, we summarize all these abnormalities in an attempt to provide an integrated overview of the pathophysiological mechanisms in functional dyspepsia.

  15. Structural determinants of arrestin functions.

    PubMed

    Gurevich, Vsevolod V; Gurevich, Eugenia V

    2013-01-01

    Arrestins are a small protein family with only four members in mammals. Arrestins demonstrate an amazing versatility, interacting with hundreds of different G protein-coupled receptor (GPCR) subtypes, numerous nonreceptor signaling proteins, and components of the internalization machinery, as well as cytoskeletal elements, including regular microtubules and centrosomes. Here, we focus on the structural determinants that mediate various arrestin functions. The receptor-binding elements in arrestins were mapped fairly comprehensively, which set the stage for the construction of mutants targeting particular GPCRs. The elements engaged by other binding partners are only now being elucidated and in most cases we have more questions than answers. Interestingly, even very limited and imprecise identification of structural requirements for the interaction with very few other proteins has enabled the development of signaling-biased arrestin mutants. More comprehensive understanding of the structural underpinning of different arrestin functions will pave the way for the construction of arrestins that can link the receptor we want to the signaling pathway of our choosing. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Hadronic Interaction Models and the Air Shower Simulation Program CORSIKA

    NASA Astrophysics Data System (ADS)

    Heck, D.; KASCADE Collaboration

    The Monte Carlo program CORSIKA simulates the 4-dimensional evolution of extensive air showers in the atmosphere initiated by photons, hadrons or nuclei. It contains links to the hadronic interaction models DPMJET, HDPM, NEXUS, QGSJET, SIBYLL, and VENUS. These codes are employed to treat the hadronic interactions at energies above 80 GeV. Since their first implementation in 1996 the models DPMJET and SIBYLL have been revised to versions II.5 and 2.1, respectively. Also the treatment of diffractive interactions by QGSJET has been slightly modified. The models DPMJET, QGSJET and SIBYLL are able to simulate collisions even at the highest energies reaching up to 1020 eV, which are at the focus of present research. The recently added NEXUS 2 program uses a unified approach combining Gribov-Regge theory and perturbative QCD. This model is based on the universality hypothesis of the behavior of highenergy interactions and presently works up to 1017 eV. A comparison of simulations performed with different models gives an indication on the systematic uncertainties of simulated air shower properties, which arise from the extrapolations to energies, kinematic ranges, or projectile-target combinations not covered by man-made colliders. Results obtained with the most actual programs are presented.

  17. First measurement of the deep-inelastic structure of proton diffraction

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolva, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1995-02-01

    A measurement is presented, using data taken with the H1 detector at HERA, of the contribution of diffractive interactions to deep-inelastic electron-proton ( ep) scattering in the kinematic range 8.5 < Q2 < 50GeV 2, 2.4 × 10 -4 < Bjorken- x < 0.0133, and 3.7 × 10 -4 < χp < 0.043. The diffractive contribution to the proton structure function F2( x, Q2) is evaluated as a function of the appropriate deep-inelastic scattering variables χp, Q2, β (= {χ}/{χ p}) using a class of deep-inelastic ep scattering events with no hadronic energy flow in an interval of pseudo-rapidity adjacent to the proton beam direction. the dependence of this contribution on χp is measured to be χp- n with n = 1.19 ± 0.06 (stat.) ± 0.07 (syst.) independent of β and Q2, which is consistent with both a diffractive interpretation and a factorisable ep diffractive cross section. A first measurement of the deep-inelastic structure of the pomeron in the form of the Q2 and β dependences of a factorised structure function is presented. For all measured β, this structure function is observed to be consistent with scale invariance.

  18. Characterization of technical surfaces by structure function analysis

    NASA Astrophysics Data System (ADS)

    Kalms, Michael; Kreis, Thomas; Bergmann, Ralf B.

    2018-03-01

    The structure function is a tool for characterizing technical surfaces that exhibits a number of advantages over Fourierbased analysis methods. So it is optimally suited for analyzing the height distributions of surfaces measured by full-field non-contacting methods. The structure function is thus a useful method to extract global or local criteria like e. g. periodicities, waviness, lay, or roughness to analyze and evaluate technical surfaces. After the definition of line- and area-structure function and offering effective procedures for their calculation this paper presents examples using simulated and measured data of technical surfaces including aircraft parts.

  19. Measurement of the nucleon structure function F 2 in the nuclear medium and evaluation of its moments

    DOE PAGES

    Osipenko, M.

    2010-06-01

    We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W ≈ 2.4 GeV with four-momentum transfers Q 2 ranging from 0.2 to 5 GeV 2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q 2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By usingmore » these, as well as other world data, we evaluated the F 2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q 2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F 2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n < 7, suggesting partial parton deconfinement in nuclear matter. Lastly, we speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.« less

  20. Search for charmless hadronic decays of B mesons with the SLAC SLD detector

    NASA Astrophysics Data System (ADS)

    Abe, Kenji; Abe, Koya; Abe, T.; Adam, I.; Akagi, T.; Akimoto, H.; Allen, N. J.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Bardon, O.; Barklow, T. L.; Bashindzhagyan, G. L.; Bauer, J. M.; Bellodi, G.; Benvenuti, A. C.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Byrne, R. M.; Calcaterra, A.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Chou, A.; Church, E.; Cohn, H. O.; Coller, J. A.; Convery, M. R.; Cook, V.; Cowan, R. F.; Coyne, D. G.; Crawford, G.; Damerell, C. J.; Danielson, M. N.; Daoudi, M.; de Groot, N.; dell'orso, R.; Dervan, P. J.; de Sangro, R.; Dima, M.; Dong, D. N.; Doser, M.; Dubois, R.; Eisenstein, B. I.; Erofeeva, I.; Eschenburg, V.; Etzion, E.; Fahey, S.; Falciai, D.; Fan, C.; Fernandez, J. P.; Fero, M. J.; Flood, K.; Frey, R.; Gifford, J.; Gillman, T.; Gladding, G.; Gonzalez, S.; Goodman, E. R.; Hart, E. L.; Harton, J. L.; Hasuko, K.; Hedges, S. J.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Huynh, X.; Hwang, H.; Iwasaki, M.; Jackson, D. J.; Jacques, P.; Jaros, J. A.; Jiang, Z. Y.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kamyshkov, Y.; Kang, H. J.; Karliner, I.; Kawahara, H.; Kim, Y. D.; King, M. E.; King, R.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Langston, M.; Lath, A.; Leith, D. W.; Lia, V.; Lin, C.; Liu, M. X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mahjouri, M.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Masuda, H.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Menegatti, G.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Moore, T. B.; Morii, M.; Muller, D.; Murzin, V.; Nagamine, T.; Narita, S.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Oishi, N.; Onoprienko, D.; Osborne, L. S.; Panvini, R. S.; Park, C. H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Reidy, J.; Reinertsen, P. L.; Rensing, P. E.; Rochester, L. S.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schalk, T.; Schindler, R. H.; Schumm, B. A.; Schwiening, J.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Sherden, D. J.; Shmakov, K. D.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Smy, M. B.; Snyder, J. A.; Staengle, H.; Stahl, A.; Stamer, P.; Steiner, H.; Steiner, R.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Thom, J.; Torrence, E.; Toumbas, N. K.; Usher, T.; Vannini, C.; Va'vra, J.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, D. L.; Wagner, S. R.; Waite, A. P.; Walston, S.; Watts, S. J.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, B.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Wittlin, J. L.; Woods, M.; Word, G. B.; Wright, T. R.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yashima, J.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zhou, J.

    2000-10-01

    Based on a sample of approximately 500 000 hadronic Z0 decays accumulated between 1993 and 1998, the SLD experiment has set limits on 24 fully charged two-body and quasi-two-body exclusive charmless hadronic decays of B+, B0, and B0s mesons. The precise tracking capabilities of the SLD detector provided for the efficient reduction of combinatoric backgrounds, yielding the most precise available limits for ten of these modes.

  1. The Future of Hadrons: The Nexus of Subatomic Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigg, Chris

    2011-09-01

    The author offers brief observations on matters discussed at the XIV International Conference on Hadron Spectroscopy and explore prospects for hadron physics. Quantum chromodynamics (QCD) has been validated as a new law of nature. It is internally consistent up to very high energies, and so could be a complete theory of the strong interactions. Whether QCD is the final answer for the strong interactions is a subject for continuing experimental tests, which are being extended in experimentation at the Large Hadron Collider. Beyond the comparison of perturbative calculations with experiment, it remains critically important to test the confinement hypothesis bymore » searching for free quarks, or for signatures of unconfined color. Sensitive negative searches for quarks continue to be interesting, and the definitive observation of free quarks would be revolutionary. Breakdowns of factorization would compromise the utility of perturbative QCD. Other discoveries that would require small or large revisions to QCD include the observation of new kinds of colored matter beyond quarks and gluons, the discovery that quarks are composite, or evidence that SU(3){sub c} gauge symmetry is the vestige of a larger, spontaneously broken, color symmetry. While probing our underlying theory for weakness or new openings, we have plenty to do to apply QCD to myriad experimental settings, to learn its implications for matter under unusual conditions, and to become more adept at calculating its consequences. New experimental tools provide the means for progress on a very broad front.« less

  2. The Large Hadron Collider, a personal recollection

    NASA Astrophysics Data System (ADS)

    Evans, Lyndon

    2014-03-01

    The construction of the Large Hadron Collider (LHC) has been a massive endeavor spanning almost 30 years from conception to commissioning. Building the machine with the highest possible energy (7 TeV) in the existing LEP tunnel of 27 km circumference and with a tunnel diameter of only 3.8 m has required considerable innovation. The first was the development of an idea first proposed by Bob Palmer at Brookhaven National Laboratory in 1978, where the two rings are integrated into a single magnetic structure. This compact 2-in-1 structure was essential for the LHC due to both the limited space available in the existing Large Electron-Positron collider tunnel and the cost. The second innovation was the bold move to use superfluid helium cooling on a massive scale, which was imposed by the need to achieve a high (8.3 T) magnetic field using an affordable Nb-Ti superconductor. In this article, no attempt is made to give a comprehensive review of the machine design. This can be found in the LHC Design Report [1], which gives a detailed description of the machine as it was built and comprehensive references. A more popular description of the LHC and its detectors can be found in [2]. Instead, this is a more personal account of the project from approval to commissioning, describing some of the main technologies and some of the trials and tribulations encountered in bringing this truly remarkable machine alive.

  3. Slepton Pair Production at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Fuks, B.

    2007-04-01

    In R-parity conserving supersymmetric models, sleptons are produced in pairs at hadron colliders. We show that measurements of the longitudinal single-spin asymmetry at possible polarization upgrades of existing colliders allow for a direct extraction of the slepton mixing angle. A calculation of the transverse-momentum spectrum shows the importance of resummed contributions at next-to-leading logarithmic accuracy in the small and intermediate transverse-momentum regions and little dependence on unphysical scales and non-perturbative contributions.

  4. Visualizing and Clustering Protein Similarity Networks: Sequences, Structures, and Functions.

    PubMed

    Mai, Te-Lun; Hu, Geng-Ming; Chen, Chi-Ming

    2016-07-01

    Research in the recent decade has demonstrated the usefulness of protein network knowledge in furthering the study of molecular evolution of proteins, understanding the robustness of cells to perturbation, and annotating new protein functions. In this study, we aimed to provide a general clustering approach to visualize the sequence-structure-function relationship of protein networks, and investigate possible causes for inconsistency in the protein classifications based on sequences, structures, and functions. Such visualization of protein networks could facilitate our understanding of the overall relationship among proteins and help researchers comprehend various protein databases. As a demonstration, we clustered 1437 enzymes by their sequences and structures using the minimum span clustering (MSC) method. The general structure of this protein network was delineated at two clustering resolutions, and the second level MSC clustering was found to be highly similar to existing enzyme classifications. The clustering of these enzymes based on sequence, structure, and function information is consistent with each other. For proteases, the Jaccard's similarity coefficient is 0.86 between sequence and function classifications, 0.82 between sequence and structure classifications, and 0.78 between structure and function classifications. From our clustering results, we discussed possible examples of divergent evolution and convergent evolution of enzymes. Our clustering approach provides a panoramic view of the sequence-structure-function network of proteins, helps visualize the relation between related proteins intuitively, and is useful in predicting the structure and function of newly determined protein sequences.

  5. Connectivity and functional profiling of abnormal brain structures in pedophilia

    PubMed Central

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  6. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. © 2015 Wiley Periodicals, Inc.

  7. The ATLAS Experiment at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    ATLAS Collaboration; Aad, G.; Abat, E.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B. A.; Abolins, M.; Abramowicz, H.; Acerbi, E.; Acharya, B. S.; Achenbach, R.; Ackers, M.; Adams, D. L.; Adamyan, F.; Addy, T. N.; Aderholz, M.; Adorisio, C.; Adragna, P.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Aielli, G.; Åkesson, P. F.; Åkesson, T. P. A.; Akimov, A. V.; Alam, S. M.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alimonti, G.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Aloisio, A.; Alonso, J.; Alves, R.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amaral, S. P.; Ambrosini, G.; Ambrosio, G.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amram, N.; Anastopoulos, C.; Anderson, B.; Anderson, K. J.; Anderssen, E. C.; Andreazza, A.; Andrei, V.; Andricek, L.; Andrieux, M.-L.; Anduaga, X. S.; Anghinolfi, F.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Apsimon, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arguin, J.-F.; Arik, E.; Arik, M.; Arms, K. E.; Armstrong, S. R.; Arnaud, M.; Arnault, C.; Artamonov, A.; Asai, S.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Athar, B.; Atkinson, T.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aulchenko, V. M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, A.; Ay, C.; Azuelos, G.; Baccaglioni, G.; Bacci, C.; Bachacou, H.; Bachas, K.; Bachy, G.; Badescu, E.; Bagnaia, P.; Bailey, D. C.; Baines, J. T.; Baker, O. K.; Ballester, F.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barberio, E. L.; Barberis, D.; Barbier, G.; Barclay, P.; Bardin, D. Y.; Bargassa, P.; Barillari, T.; Barisonzi, M.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barone, M.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barriuso Poy, A.; Barros, N.; Bartheld, V.; Bartko, H.; Bartoldus, R.; Basiladze, S.; Bastos, J.; Batchelor, L. E.; Bates, R. L.; Batley, J. R.; Batraneanu, S.; Battistin, M.; Battistoni, G.; Batusov, V.; Bauer, F.; Bauss, B.; Baynham, D. E.; Bazalova, M.; Bazan, A.; Beauchemin, P. H.; Beaugiraud, B.; Beccherle, R. B.; Beck, G. A.; Beck, H. P.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Behar Harpaz, S.; Belanger, G. A. N.; Belanger-Champagne, C.; Belhorma, B.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellachia, F.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Beltramello, O.; Belymam, A.; Ben Ami, S.; Ben Moshe, M.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benes, J.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas, E.; Berger, N.; Berghaus, F.; Berglund, S.; Bergsma, F.; Beringer, J.; Bernabéu, J.; Bernardet, K.; Berriaud, C.; Berry, T.; Bertelsen, H.; Bertin, A.; Bertinelli, F.; Bertolucci, S.; Besson, N.; Beteille, A.; Bethke, S.; Bialas, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieri, M.; Biglietti, M.; Bilokon, H.; Binder, M.; Binet, S.; Bingefors, N.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bischofberger, M.; Bitadze, A.; Bizzell, J. P.; Black, K. M.; Blair, R. E.; Blaising, J. J.; Blanch, O.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G. J.; Bocci, A.; Bocian, D.; Bock, R.; Boehm, M.; Boek, J.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bonino, R.; Bonis, J.; Bonivento, W.; Bonneau, P.; Boonekamp, M.; Boorman, G.; Boosten, M.; Booth, C. N.; Booth, P. S. L.; Booth, P.; Booth, J. R. A.; Borer, K.; Borisov, A.; Borjanovic, I.; Bos, K.; Boscherini, D.; Bosi, F.; Bosman, M.; Bosteels, M.; Botchev, B.; Boterenbrood, H.; Botterill, D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boutemeur, M.; Bouzakis, K.; Boyd, G. R.; Boyd, J.; Boyer, B. H.; Boyko, I. R.; Bozhko, N. I.; Braccini, S.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, O.; Bratzler, U.; Braun, H. M.; Bravo, S.; Brawn, I. P.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Breugnon, P.; Bright-Thomas, P. G.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Broklova, Z.; Bromberg, C.; Brooijmans, G.; Brouwer, G.; Broz, J.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buchanan, N. J.; Buchholz, P.; Budagov, I. A.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E. J.; Bujor, F.; Buran, T.; Burckhart, H.; Burckhart-Chromek, D.; Burdin, S.; Burns, R.; Busato, E.; Buskop, J. J. F.; Buszello, K. P.; Butin, F.; Butler, J. M.; Buttar, C. M.; Butterworth, J.; Butterworth, J. M.; Byatt, T.; Cabrera Urbán, S.; Cabruja Casas, E.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calderón Terol, D.; Callahan, J.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camard, A.; Camarena, F.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campabadal Segura, F.; Campana, S.; Canale, V.; Cantero, J.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Caprio, M.; Caracinha, D.; Caramarcu, C.; Carcagno, Y.; Cardarelli, R.; Cardeira, C.; Cardiel Sas, L.; Cardini, A.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carr, F. S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castelo, J.; Castillo Gimenez, V.; Castro, N.; Castrovillari, F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerna, C.; Cernoch, C.; Cerqueira, A. S.; Cerri, A.; Cerutti, F.; Cervetto, M.; Cetin, S. A.; Cevenini, F.; Chalifour, M.; Chamizo llatas, M.; Chan, A.; Chapman, J. W.; Charlton, D. G.; Charron, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, L.; Chen, T.; Chen, X.; Cheng, S.; Cheng, T. L.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chesneanu, D.; Cheu, E.; Chevalier, L.; Chevalley, J. L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Chilingarov, A.; Chiodini, G.; Chouridou, S.; Chren, D.; Christiansen, T.; Christidi, I. A.; Christov, A.; Chu, M. L.; Chudoba, J.; Chuguev, A. G.; Ciapetti, G.; Cicalini, E.; Ciftci, A. K.; Cindro, V.; Ciobotaru, M. D.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Civera, J. V.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B. C.; Clément, C.; Clements, D.; Clifft, R. W.; Cobal, M.; Coccaro, A.; Cochran, J.; Coco, R.; Coe, P.; Coelli, S.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins-Tooth, C.; Collot, J.; Coluccia, R.; Comune, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F. A.; Cook, J.; Cooke, M.; Cooper-Smith, N. J.; Cornelissen, T.; Corradi, M.; Correard, S.; Corso-Radu, A.; Coss, J.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Coura Torres, R.; Courneyea, L.; Couyoumtzelis, C.; Cowan, G.; Cox, B. E.; Cox, J.; Cragg, D. A.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Cuenca Almenar, C.; Cuneo, S.; Cunha, A.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; Da Silva, R.; Dabrowski, W.; Dael, A.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Dalmau, J.; Daly, C. H.; Dam, M.; Damazio, D.; Dameri, M.; Danielsen, K. M.; Danielsson, H. O.; Dankers, R.; Dannheim, D.; Darbo, G.; Dargent, P.; Daum, C.; Dauvergne, J. P.; David, M.; Davidek, T.; Davidson, N.; Davidson, R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; de Boer, R.; DeCastro, S.; DeGroot, N.; de Jong, P.; de La Broise, X.; DeLa Cruz-Burelo, E.; DeLa Taille, C.; DeLotto, B.; DeOliveira Branco, M.; DePedis, D.; de Saintignon, P.; DeSalvo, A.; DeSanctis, U.; DeSanto, A.; DeVivie DeRegie, J. B.; DeZorzi, G.; Dean, S.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degele, R.; Dehchar, M.; Deile, M.; DelPapa, C.; DelPeso, J.; DelPrete, T.; Delagnes, E.; Delebecque, P.; Dell'Acqua, A.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca Silberberg, C.; Demers, S.; Demichev, M.; Demierre, P.; Demirköz, B.; Deng, W.; Denisov, S. P.; Dennis, C.; Densham, C. J.; Dentan, M.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K. K.; Dewhurst, A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Simone, A.; Diaz Gomez, M. M.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietsche, W.; Diglio, S.; Dima, M.; Dindar, K.; Dinkespiler, B.; Dionisi, C.; Dipanjan, R.; Dita, P.; Dita, S.; Dittus, F.; Dixon, S. D.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Domingo, E.; Donega, M.; Dopke, J.; Dorfan, D. E.; Dorholt, O.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doyle, A. T.; Drake, G.; Drakoulakos, D.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J. G.; Dubbert, J.; Dubbs, T.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dührssen, M.; Dür, H.; Duerdoth, I. P.; Duffin, S.; Duflot, L.; Dufour, M.-A.; Dumont Dayot, N.; Duran Yildiz, H.; Durand, D.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Díez Cornell, S.; Düren, M.; Ebenstein, W. L.; Eckert, S.; Eckweiler, S.; Eerola, P.; Efthymiopoulos, I.; Egede, U.; Egorov, K.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; Eklund, L. M.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engström, M.; Ennes, P.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eremin, V.; Eriksson, D.; Ermoline, I.; Ernwein, J.; Errede, D.; Errede, S.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Esteves, F.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Evdokimov, V. N.; Evtoukhovitch, P.; Eyring, A.; Fabbri, L.; Fabjan, C. W.; Fabre, C.; Faccioli, P.; Facius, K.; Fadeyev, V.; Fakhrutdinov, R. M.; Falciano, S.; Falleau, I.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farrell, J.; Farthouat, P.; Fasching, D.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fawzi, F.; Fayard, L.; Fayette, F.; Febbraro, R.; Fedin, O. L.; Fedorko, I.; Feld, L.; Feldman, G.; Feligioni, L.; Feng, C.; Feng, E. J.; Fent, J.; Fenyuk, A. B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferro, F.; Fiascaris, M.; Fichet, S.; Fiedler, F.; Filimonov, V.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Finocchiaro, G.; Fiorini, L.; Firan, A.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flaminio, V.; Flammer, J.; Flechl, M.; Fleck, I.; Flegel, W.; Fleischmann, P.; Fleischmann, S.; Fleta Corral, C. M.; Fleuret, F.; Flick, T.; Flix, J.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T. M.; Fopma, J.; Forbush, D. A.; Formica, A.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fox, H.; Francavilla, P.; Francis, D.; Franz, S.; Fraser, J. T.; Fraternali, M.; Fratianni, S.; Freestone, J.; French, R. S.; Fritsch, K.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fulachier, J.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gan, K. K.; Gannaway, F. C.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garciá, C.; Garcia-Sciveres, M.; Garcìa Navarro, J. E.; Garde, V.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V. G.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gayde, J.-C.; Gazis, E. N.; Gazo, E.; Gee, C. N. P.; Geich-Gimbel, C.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M. A.; George, S.; Gerlach, P.; Gernizky, Y.; Geweniger, C.; Ghazlane, H.; Ghete, V. M.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, M. D.; Gibson, S. M.; Gieraltowski, G. F.; Gil Botella, I.; Gilbert, L. M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Girard, C. G.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Gnanvo, K. G.; Godlewski, J.; Göpfert, T.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Goldschmidt, N.; Golling, T.; Gollub, N. P.; Golonka, P. J.; Golovnia, S. N.; Gomes, A.; Gomes, J.; Gonçalo, R.; Gongadze, A.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; González Millán, V.; Gonzalez Silva, M. L.; Gonzalez-Pineiro, B.; González-Sevilla, S.; Goodrick, M. J.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordeev, A.; Gordon, H.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Gorski, B. T.; Goryachev, S. V.; Goryachev, V. N.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Goujdami, D.; Goulette, M.; Gousakov, I.; Gouveia, J.; Gowdy, S.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassmann, H.; Gratchev, V.; Gray, H. M.; Graziani, E.; Green, B.; Greenall, A.; Greenfield, D.; Greenwood, D.; Gregor, I. M.; Grewal, A.; Griesmayer, E.; Grigalashvili, N.; Grigson, C.; Grillo, A. A.; Grimaldi, F.; Grimm, K.; Gris, P. L. Y.; Grishkevich, Y.; Groenstege, H.; Groer, L. S.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Grothe, M. E. M.; Grudzinski, J.; Gruse, C.; Gruwe, M.; Grybel, K.; Grybos, P.; Gschwendtner, E. M.; Guarino, V. J.; Guicheney, C. J.; Guilhem, G.; Guillemin, T.; Gunther, J.; Guo, B.; Gupta, A.; Gurriana, L.; Gushchin, V. N.; Gutierrez, P.; Guy, L.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Haboubi, G.; Hackenburg, R.; Hadash, E.; Hadavand, H. K.; Haeberli, C.; Härtel, R.; Haggerty, R.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakimi, M.; Hakobyan, H.; Hakobyan, H.; Haller, J.; Hallewell, G. D.; Hallgren, B.; Hamacher, K.; Hamilton, A.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Hanke, P.; Hansen, C. J.; Hansen, F. H.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hanson, G.; Hansson, P.; Hara, K.; Harder, S.; Harel, A.; Harenberg, T.; Harper, R.; Hart, J. C.; Hart, R. G. G.; Hartjes, F.; Hartman, N.; Haruyama, T.; Harvey, A.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Hatley, R. W.; Haubold, T. G.; Hauff, D.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Hauviller, C.; Havranek, M.; Hawes, B. M.; Hawkings, R. J.; Hawkins, D.; Hayler, T.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; He, Y. P.; Head, S. J.; Hedberg, V.; Heelan, L.; Heinemann, F. E. W.; Heldmann, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Hendriks, P. J.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Henß, T.; Herten, G.; Hertenberger, R.; Hervas, L.; Hess, M.; Hessey, N. P.; Hicheur, A.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.; Hill, J. C.; Hill, N.; Hillier, S. J.; Hinchliffe, I.; Hindson, D.; Hinkelbein, C.; Hodges, T. A.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, A. E.; Hoffmann, D.; Hoffmann, H. F.; Holder, M.; Hollins, T. I.; Hollyman, G.; Holmes, A.; Holmgren, S. O.; Holt, R.; Holtom, E.; Holy, T.; Homer, R. J.; Homma, Y.; Homola, P.; Honerbach, W.; Honma, A.; Hooton, I.; Horazdovsky, T.; Horn, C.; Horvat, S.; Hostachy, J.-Y.; Hott, T.; Hou, S.; Houlden, M. A.; Hoummada, A.; Hover, J.; Howell, D. F.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, B. T.; Hughes, E.; Hughes, G.; Hughes-Jones, R. E.; Hulsbergen, W.; Hurst, P.; Hurwitz, M.; Huse, T.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Iglesias Escudero, M. C.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Ilyushenka, Y.; Imbault, D.; Imbert, P.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Inoue, K.; Ioannou, P.; Iodice, M.; Ionescu, G.; Ishii, K.; Ishino, M.; Ishizawa, Y.; Ishmukhametov, R.; Issever, C.; Ito, H.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J.; Jackson, J. N.; Jaekel, M.; Jagielski, S.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakubek, J.; Jansen, E.; Jansweijer, P. P. M.; Jared, R. C.; Jarlskog, G.; Jarp, S.; Jarron, P.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jézéquel, S.; Jiang, Y.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, M.; Jones, R.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jones, A.; Jonsson, O.; Joo, K. K.; Joos, D.; Joos, M.; Joram, C.; Jorgensen, S.; Joseph, J.; Jovanovic, P.; Junnarkar, S. S.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagawa, S.; Kaiser, S.; Kajomovitz, E.; Kakurin, S.; Kalinovskaya, L. V.; Kama, S.; Kambara, H.; Kanaya, N.; Kandasamy, A.; Kandasamy, S.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Karr, K.; Karst, P.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katunin, S.; Kawagoe, K.; Kawai, M.; Kawamoto, T.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazarov, A.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Ketterer, C.; Khakzad, M.; Khalilzade, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khomutnikov, V. P.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kieft, G.; Kierstead, J. A.; Kilvington, G.; Kim, H.; Kim, H.; Kim, S. H.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kisielewski, B.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Kleinknecht, K.; Klier, A.; Klimentov, A.; Kline, C. R.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. K.; Kneringer, E.; Knezo, E.; Knobloch, J.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kodys, P.; König, A. C.; König, S.; Köpke, L.; Koetsveld, F.; Koffas, T.; Koffeman, E.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Kollefrath, M.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kondo, Y.; Kondratyeva, N. V.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korotkov, V. A.; Korsmo, H.; Kortner, O.; Kostrikov, M. E.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotchetkov, D.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kovalenko, S.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V.; Kramberger, G.; Kramer, A.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Krepouri, A.; Krieger, P.; Krivkova, P.; Krobath, G.; Kroha, H.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruger, K.; Krumshteyn, Z. V.; Kubik, P.; Kubischta, W.; Kubota, T.; Kudin, L. G.; Kudlaty, J.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kundu, N.; Kupco, A.; Kupper, M.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuzhir, P.; Kuznetsova, E. K.; Kvasnicka, O.; Kwee, R.; La Marra, D.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J. A.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, E.; Lambacher, M.; Lambert, F.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Langstaff, R. R.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapin, V. V.; Laplace, S.; Laporte, J. F.; Lara, V.; Lari, T.; Larionov, A. V.; Lasseur, C.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Lazarev, A. B.; LeBihan, A.-C.; LeDortz, O.; LeManer, C.; LeVine, M.; Leahu, L.; Leahu, M.; Lebel, C.; Lechowski, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Lefevre, R. P.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Leitner, R.; Lelas, D.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lepidis, J.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Letheren, M.; Fook Cheong, A. Leung; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Leyton, M.; Li, J.; Li, W.; Liabline, M.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Liebig, W.; Lifshitz, R.; Liko, D.; Lim, H.; Limper, M.; Lin, S. C.; Lindahl, A.; Linde, F.; Lindquist, L.; Lindsay, S. W.; Linhart, V.; Lintern, A. J.; Liolios, A.; Lipniacka, A.; Liss, T. M.; Lissauer, A.; List, J.; Litke, A. M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Llosá Llácer, G.; Lloyd, S. L.; Lobkowicz, F.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lokwitz, S.; Long, M. C.; Lopes, L.; Lopez Mateos, D.; Losty, M. J.; Lou, X.; Loureiro, K. F.; Lovas, L.; Love, J.; Lowe, A.; Lozano Fantoba, M.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H. J.; Lucas, S.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lüke, D.; Luijckx, G.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundquist, J.; Lupi, A.; Lupu, N.; Lutz, G.; Lynn, D.; Lynn, J.; Lys, J.; Lysan, V.; Lytken, E.; López-Amengual, J. M.; Ma, H.; Ma, L. L.; Maaß en, M.; Maccarrone, G.; Mace, G. G. R.; Macina, D.; Mackeprang, R.; Macpherson, A.; MacQueen, D.; Macwaters, C.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maidantchik, C.; Maio, A.; Mair, G. M.; Mair, K.; Makida, Y.; Makowiecki, D.; Malecki, P.; Maleev, V. P.; Malek, F.; Malon, D.; Maltezos, S.; Malychev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Manara, A.; Manca, G.; Mandelli, L.; Mandić, I.; Mandl, M.; Maneira, J.; Maneira, M.; Mangeard, P. S.; Mangin-Brinet, M.; Manjavidze, I. D.; Mann, W. A.; Manolopoulos, S.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchesotti, M.; Marcisovsky, M.; Marin, A.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Garcia, S. Marti i.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph; Martinez, G.; Martínez Lacambra, C.; Martinez Outschoorn, V.; Martini, A.; Martins, J.; Maruyama, T.; Marzano, F.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mathes, M.; Matheson, J.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Maugain, J. M.; Maxfield, S. J.; May, E. N.; Mayer, J. K.; Mayri, C.; Mazini, R.; Mazzanti, M.; Mazzanti, P.; Mazzoni, E.; Mazzucato, F.; McKee, S. P.; McCarthy, R. L.; McCormick, C.; McCubbin, N. A.; McDonald, J.; McFarlane, K. W.; McGarvie, S.; McGlone, H.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McMahon, T. J.; McPherson, R. A.; Mechtel, M.; Meder-Marouelli, D.; Medinnis, M.; Meera-Lebbai, R.; Meessen, C.; Mehdiyev, R.; Mehta, A.; Meier, K.; Meinhard, H.; Meinhardt, J.; Meirosu, C.; Meisel, F.; Melamed-Katz, A.; Mellado Garcia, B. R.; Mendes Jorge, P.; Mendez, P.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Merola, L.; Meroni, C.; Merritt, F. S.; Messmer, I.; Metcalfe, J.; Meuser, S.; Meyer, J.-P.; Meyer, T. C.; Meyer, W. T.; Mialkovski, V.; Michelotto, M.; Micu, L.; Middleton, R.; Miele, P.; Migliaccio, A.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikestikova, M.; Mikulec, B.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Miller, W.; Milosavljevic, M.; Milstead, D. A.; Mima, S.; Minaenko, A. A.; Minano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitra, A.; Mitrofanov, G. Y.; Mitsou, V. A.; Miyagawa, P. S.; Miyazaki, Y.; Mjörnmark, J. U.; Mkrtchyan, S.; Mladenov, D.; Moa, T.; Moch, M.; Mochizuki, A.; Mockett, P.; Modesto, P.; Moed, S.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles Valls, R. M.; Molina-Perez, J.; Moll, A.; Moloney, G.; Mommsen, R.; Moneta, L.; Monnier, E.; Montarou, G.; Montesano, S.; Monticelli, F.; Moore, R. W.; Moore, T. B.; Moorhead, G. F.; Moraes, A.; Morel, J.; Moreno, A.; Moreno, D.; Morettini, P.; Morgan, D.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, E. J.; Morris, J.; Morrissey, M. C.; Moser, H. G.; Mosidze, M.; Moszczynski, A.; Mouraviev, S. V.; Mouthuy, T.; Moye, T. H.; Moyse, E. J. W.; Mueller, J.; Müller, M.; Muijs, A.; Muller, T. R.; Munar, A.; Munday, D. J.; Murakami, K.; Murillo Garcia, R.; Murray, W. J.; Myagkov, A. G.; Myska, M.; Nagai, K.; Nagai, Y.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Naito, D.; Nakamura, K.; Nakamura, Y.; Nakano, I.; Nanava, G.; Napier, A.; Nassiakou, M.; Nasteva, I.; Nation, N. R.; Naumann, T.; Nauyock, F.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Neganov, A.; Negri, A.; Negroni, S.; Nelson, C.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neukermans, L.; Nevski, P.; Newcomer, F. M.; Nichols, A.; Nicholson, C.; Nicholson, R.; Nickerson, R. B.; Nicolaidou, R.; Nicoletti, G.; Nicquevert, B.; Niculescu, M.; Nielsen, J.; Niinikoski, T.; Niinimaki, M. J.; Nikitin, N.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, B. S.; Nilsson, P.; Nisati, A.; Nisius, R.; Nodulman, L. J.; Nomachi, M.; Nomoto, H.; Noppe, J.-M.; Nordberg, M.; Norniella Francisco, O.; Norton, P. R.; Novakova, J.; Nowak, M.; Nozaki, M.; Nunes, R.; Nunes Hanninger, G.; Nunnemann, T.; Nyman, T.; O'Connor, P.; O'Neale, S. W.; O'Neil, D. C.; O'Neill, M.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermaier, M.; Oberson, P.; Ochi, A.; Ockenfels, W.; Odaka, S.; Odenthal, I.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohshima, T.; Ohshita, H.; Okawa, H.; Olcese, M.; Olchevski, A. G.; Oliver, C.; Oliver, J.; Olivo Gomez, M.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onea, A.; Onofre, A.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I. O.; Orr, R. S.; Orsini, F.; Osborne, L. S.; Osculati, B.; Osuna, C.; Otec, R.; Othegraven, R.; Ottewell, B.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Øye, O. K.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pailler, P. M.; Pajchel, K.; Palestini, S.; Palla, J.; Pallin, D.; Palmer, M. J.; Pan, Y. B.; Panikashvili, N.; Panin, V. N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadopoulos, I.; Papadopoulou, T.; Park, I.; Park, W.; Parker, M. A.; Parker, S.; Parkman, C.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Passmore, M. S.; Pastore, F.; Pastore, Fr; Pataraia, S.; Pate, D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pauna, E.; Peak, L. S.; Peeters, S. J. M.; Peez, M.; Pei, E.; Peleganchuk, S. V.; Pellegrini, G.; Pengo, R.; Pequenao, J.; Perantoni, M.; Perazzo, A.; Pereira, A.; Perepelkin, E.; Perera, V. J. O.; Perez Codina, E.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrin, E.; Perrino, R.; Perrodo, P.; Perrot, G.; Perus, P.; Peshekhonov, V. D.; Petereit, E.; Petersen, J.; Petersen, T. C.; Petit, P. J. F.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petti, R.; Pezzetti, M.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pier, S.; Pilcher, J. E.; Pilkington, A. D.; Pimenta Dos Santos, M. A.; Pina, J.; Pinfold, J. L.; Ping, J.; Pinhão, J.; Pinto, B.; Pirotte, O.; Placakyte, R.; Placci, A.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Podkladkin, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polak, I.; Polesello, G.; Policicchio, A.; Polini, A.; Polychronakos, V.; Pomarede, D. M.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popescu, R.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Postranecky, M.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Pousada, A.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Prast, J.; Prat, S.; Prata, M.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Primor, D.; Prokofiev, K.; Prosso, E.; Proudfoot, J.; Przysiezniak, H.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylaev, A. N.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Rabbers, J. J.; Radeka, V.; Rafi, J. M.; Ragusa, F.; Rahimi, A. M.; Rahm, D.; Raine, C.; Raith, B.; Rajagopalan, S.; Rajek, S.; Rammer, H.; Ramstedt, M.; Rangod, S.; Ratoff, P. N.; Raufer, T.; Rauscher, F.; Rauter, E.; Raymond, M.; Reads, A. L.; Rebuzzi, D.; Redlinger, G. R.; Reeves, K.; Rehak, M.; Reichold, A.; Reinherz-Aronis, E.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.; Renaudin-Crepe, S. R. C.; Renkel, P.; Rensch, B.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Rewiersma, P.; Rey, J.; Rey-Campagnolle, M.; Rezaie, E.; Reznicek, P.; Richards, R. A.; Richer, J.-P.; Richter, R. H.; Richter, R.; Richter-Was, E.; Ridel, M.; Riegler, W.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rios, R. R.; Riu Dachs, I.; Rivline, M.; Rivoltella, G.; Rizatdinova, F.; Robertson, S. H.; Robichaud-Veronneau, A.; Robins, S.; Robinson, D.; Robson, A.; Rochford, J. H.; Roda, C.; Rodier, S.; Roe, S.; Røhne, O.; Rohrbach, F.; Roldán, J.; Rolli, S.; Romance, J. B.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, F.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruber, R.; Ruckert, B.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruggiero, G.; Ruiz, H.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkine, G.; da Costa, J. Sá; Saavedra, A. F.; Saboumazrag, S.; F-W Sadrozinski, H.; Sadykov, R.; Sakamoto, H.; Sala, P.; Salamon, A.; Saleem, M.; Salihagic, D.; Salt, J.; Saltó Bauza, O.; Salvachúa Ferrando, B. M.; Salvatore, D.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sánchez Sánchez, C. A.; Sanchis Lozano, M. A.; Sanchis Peris, E.; Sandaker, H.; Sander, H. G.; Sandhoff, M.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansone, S.; Sansoni, A.; Santamarina Rios, C.; Santander, J.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Sapinski, M.; Saraiva, J. G.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, D.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Savoy-Navarro, A.; Savva, P.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrissa, E.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schaller, M.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schick, H.; Schieck, J.; Schieferdecker, P.; Schioppa, M.; Schlager, G.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmitt, C.; Schmitt, K.; Schmitz, M.; Schmücker, H.; Schoerner, T.; Scholte, R. C.; Schott, M.; Schouten, D.; Schram, M.; Schricker, A.; Schroff, D.; Schuh, S.; Schuijlenburg, H. W.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schune, Ph; Schwartzman, A.; Schweiger, D.; Schwemling, Ph; Schwick, C.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Secker, H.; Sedykh, E.; Seguin-Moreau, N.; Segura, E.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Selldén, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sexton, K. A.; Sfyrla, A.; Shah, T. P.; Shan, L.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shears, T. G.; Sherwood, P.; Shibata, A.; Shield, P.; Shilov, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shoa, M.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siebel, M.; Siegrist, J.; Sijacki, D.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S.; Sjölin, J.; Skubic, P.; Skvorodnev, N.; Slattery, P.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Small, A.; Smirnov, S. Yu; Smirnov, Y.; Smirnova, L.; Smirnova, O.; Smith, N. A.; Smith, B. C.; Smith, D. S.; Smith, J.; Smith, K. M.; Smith, B.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Soares, S.; Sobie, R.; Sodomka, J.; Söderberg, M.; Soffer, A.; Solans, C. A.; Solar, M.; Sole, D.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solov'yanov, O. V.; Soloviev, I.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sorbi, M.; Soret Medel, J.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Soukup, J.; Spagnolo, S.; Spano, F.; Speckmayer, P.; Spegel, M.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spogli, L.; Spousta, M.; Sprachmann, G.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Staley, R. J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Staroba, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavrianakou, M.; Stavropoulos, G.; Stefanidis, E.; Steffens, J. L.; Stekl, I.; Stelzer, H. J.; Stenzel, H.; Stewart, G.; Stewart, T. D.; Stiller, W.; Stockmanns, T.; Stodulski, M.; Stonjek, S.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandlie, A.; Strauss, M.; Strickland, V.; Striegel, D.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Su, D.; Subramania, S.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suk, M.; Sulin, V. V.; Sultanov, S.; Sun, Z.; Sundal, B.; Sushkov, S.; Susinno, G.; Sutcliffe, P.; Sutton, M. R.; Sviridov, Yu M.; Sykora, I.; Szczygiel, R. R.; Szeless, B.; Szymocha, T.; Sánchez, J.; Ta, D.; Taboada Gameiro, S.; Tadel, M.; Tafirout, R.; Taga, A.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, K.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tappern, G. P.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tarrant, J.; Tartarelli, G.; Tas, P.; Tasevsky, M.; Tayalati, Y.; Taylor, F. E.; Taylor, G.; Taylor, G. N.; Taylor, R. P.; Tcherniatine, V.; Tegenfeldt, F.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Ter-Antonyan, R.; Terada, S.; Terron, J.; Terwort, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thion, J.; Thioye, M.; Thomas, A.; Thomas, J. P.; Thomas, T. L.; Thomas, E.; Thompson, R. J.; Thompson, A. S.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timm, S.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Titov, M.; Tobias, J.; Tocut, V. M.; Toczek, B.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres Pais, J. G.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Towndrow, E. F.; Trefzger, T.; Treichel, M.; Treis, J.; Tremblet, L.; Tribanek, W.; Tricoli, A.; Trigger, I. M.; Trilling, G.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trka, Z.; Trocmé, B.; Troncon, C.; C-L Tseng, J.; Tsiafis, I.; Tsiareshka, P. V.; Tsipolitis, G.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Turala, M.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzamarioudaki, E.; Tzanakos, G.; Ueda, I.; Uhrmacher, M.; Ukegawa, F.; Ullán Comes, M.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urkovsky, E.; Usai, G.; Usov, Y.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valero, A.; Valkar, S.; Valls Ferrer, J. A.; Van der Bij, H.; van der Graaf, H.; van der Kraaij, E.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Van Berg, R.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vannucci, F.; Varanda, M.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vassilieva, L.; Vataga, E.; Vaz, L.; Vazeille, F.; Vedrine, P.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, S.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vertogardov, L.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Vigeolas, E.; Villa, M.; Villani, E. G.; Villate, J.; Villella, I.; Vilucchi, E.; Vincent, P.; Vincke, H.; Vincter, M. G.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vivarelli, I.; Vives, R.; Vives Vaques, F.; Vlachos, S.; Vogt, H.; Vokac, P.; Vollmer, C. F.; Volpi, M.; Volpini, G.; von Boehn-Buchholz, R.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorozhtsov, A. S.; Vorozhtsov, S. B.; Vos, M.; Voss, K. C.; Voss, R.; Vossebeld, J. H.; Vovenko, A. S.; Vranjes, N.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuaridel, B.; Vudragovic, M.; Vuillemin, V.; Vuillermet, R.; Wänanen, A.; Wahlen, H.; Walbersloh, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wallny, R. S.; Walsh, S.; Wang, C.; Wang, J. C.; Wappler, F.; Warburton, A.; Ward, C. P.; Warner, G. P.; Warren, M.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watts, G.; Waugh, A. T.; Waugh, B. M.; Weaverdyck, C.; Webel, M.; Weber, G.; Weber, J.; Weber, M.; Weber, P.; Weidberg, A. R.; Weilhammer, P. M.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wellisch, H. P.; Wells, P. S.; Wemans, A.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werneke, P.; Werner, P.; Werthenbach, U.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiesmann, M.; Wiesmann, M.; Wijnen, T.; Wildauer, A.; Wilhelm, I.; Wilkens, H. G.; Williams, H. H.; Willis, W.; Willocq, S.; Wilmut, I.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winton, L.; Witzeling, W.; Wlodek, T.; Woehrling, E.; Wolter, M. W.; Wolters, H.; Wosiek, B.; Wotschack, J.; Woudstra, M. J.; Wright, C.; Wu, S. L.; Wu, X.; Wuestenfeld, J.; Wunstorf, R.; Xella-Hansen, S.; Xiang, A.; Xie, S.; Xie, Y.; Xu, G.; Xu, N.; Yamamoto, A.; Yamamoto, S.; Yamaoka, H.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, J. C.; Yang, S.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yarradoddi, K.; Yasu, Y.; Ye, J.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, H.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajac, J.; Zajacova, Z.; Zalite, A. Yu; Zalite, Yo K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zendler, C.; Zenin, A. V.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zhang, H.; Zhang, J.; Zheng, W.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, X.; Zhao, Z.; Zhelezko, A.; Zhemchugov, A.; Zheng, S.; Zhichao, L.; Zhou, B.; Zhou, N.; Zhou, S.; Zhou, Y.; Zhu, C. G.; Zhu, H. Z.; Zhuang, X. A.; Zhuravlov, V.; Zilka, B.; Zimin, N. I.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zoeller, M. M.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zychacek, V.

    2008-08-01

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  8. Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic 2H(e ,e'ps )X scattering with CLAS

    NASA Astrophysics Data System (ADS)

    Tkachenko, S.; Baillie, N.; Kuhn, S. E.; Zhang, J.; Arrington, J.; Bosted, P.; Bültmann, S.; Christy, M. E.; Fenker, H.; Griffioen, K. A.; Kalantarians, N.; Keppel, C. E.; Melnitchouk, W.; Tvaskis, V.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fleming, J. A.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jo, H. S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; King, P. M.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuleshov, S. V.; Lenisa, P.; Lewis, S.; Livingston, K.; Lu, H.; MacCormick, M.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stepanyan, S. S.; Strauch, S.; Tang, W.; Ungaro, M.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zana, L.; Zonta, I.; CLAS Collaboration

    2014-04-01

    spectator proton momentum and angle is investigated, and tests of the spectator mechanism for different kinematics are performed. Conclusions: Our data set on the structure function ratio F2n/F2d can be used to study neutron resonance excitations, test quark-hadron duality in the neutron, develop more precise parametrizations of structure functions, and investigate binding effects (including possible mechanisms for the nuclear EMC effect) and provide a first glimpse of the asymptotic behavior of d /u at x →1 .

  9. Testing the QCD string at large Nc from the thermodynamics of the hadronic phase

    NASA Astrophysics Data System (ADS)

    Cohen, Thomas D.

    2007-02-01

    It is generally believed that in the limit of a large number of colors (Nc) the description of confinement via flux tubes becomes valid and QCD can be modeled accurately via a hadronic string theory—at least for highly excited states. QCD at large Nc also has a well-defined deconfinement transition at a temperature Tc. In this talk it is shown how the thermodyanmics of the metastable hadronic phase of QCD (above Tc) at large NC can be related directly to properties of the effective QCD string. The key points in the derivation is the weakly interacting nature of hadrons at large Nc and the existence of a Hagedorn temperature TH for the effective string theory. From this it can be seen at large Nc and near TH, the energy density and pressure of the hadronic phase scale as E ˜ (TH - T)-(D⊥-6)/2 (for D⊥ < 6) and P ˜ (TH - T)-(D⊥-4)/2 (for D⊥ < 4) where D⊥ is the effective number of transverse dimensions of the string theory. This behavior for D⊥ < 6 is qualitatively different from typical models in statistical mechanics and if observed on the lattice would provide a direct test of the stringy nature of large Nc QCD. However since it can be seen that TH > Tc this behavior is of relevance only to the metastable phase. The prospect of using this result to extract D⊥ via lattice simulations of the metastable hadronic phase at moderately large Nc is discussed.

  10. Extending CATH: increasing coverage of the protein structure universe and linking structure with function

    PubMed Central

    Cuff, Alison L.; Sillitoe, Ian; Lewis, Tony; Clegg, Andrew B.; Rentzsch, Robert; Furnham, Nicholas; Pellegrini-Calace, Marialuisa; Jones, David; Thornton, Janet; Orengo, Christine A.

    2011-01-01

    CATH version 3.3 (class, architecture, topology, homology) contains 128 688 domains, 2386 homologous superfamilies and 1233 fold groups, and reflects a major focus on classifying structural genomics (SG) structures and transmembrane proteins, both of which are likely to add structural novelty to the database and therefore increase the coverage of protein fold space within CATH. For CATH version 3.4 we have significantly improved the presentation of sequence information and associated functional information for CATH superfamilies. The CATH superfamily pages now reflect both the functional and structural diversity within the superfamily and include structural alignments of close and distant relatives within the superfamily, annotated with functional information and details of conserved residues. A significantly more efficient search function for CATH has been established by implementing the search server Solr (http://lucene.apache.org/solr/). The CATH v3.4 webpages have been built using the Catalyst web framework. PMID:21097779

  11. Structure and function of echinoderm telomerase RNA

    PubMed Central

    Podlevsky, Joshua D.; Li, Yang; Chen, Julian J.-L.

    2016-01-01

    Telomerase is a ribonucleoprotein (RNP) enzyme that requires an integral telomerase RNA (TR) subunit, in addition to the catalytic telomerase reverse transcriptase (TERT), for enzymatic function. The secondary structures of TRs from the three major groups of species, ciliates, fungi, and vertebrates, have been studied extensively and demonstrate dramatic diversity. Herein, we report the first comprehensive secondary structure of TR from echinoderms—marine invertebrates closely related to vertebrates—determined by phylogenetic comparative analysis of 16 TR sequences from three separate echinoderm classes. Similar to vertebrate TR, echinoderm TR contains the highly conserved template/pseudoknot and H/ACA domains. However, echinoderm TR lacks the ancestral CR4/5 structural domain found throughout vertebrate and fungal TRs. Instead, echinoderm TR contains a distinct simple helical region, termed eCR4/5, that is functionally equivalent to the CR4/5 domain. The urchin and brittle star eCR4/5 domains bind specifically to their respective TERT proteins and stimulate telomerase activity. Distinct from vertebrate telomerase, the echinoderm TR template/pseudoknot domain with the TERT protein is sufficient to reconstitute significant telomerase activity. This gain-of-function of the echinoderm template/pseudoknot domain for conferring telomerase activity presumably facilitated the rapid structural evolution of the eCR4/5 domain throughout the echinoderm lineage. Additionally, echinoderm TR utilizes the template-adjacent P1.1 helix as a physical template boundary element to prevent nontelomeric DNA synthesis, a mechanism used by ciliate and fungal TRs. Thus, the chimeric and eccentric structural features of echinoderm TR provide unparalleled insights into the rapid evolution of telomerase RNP structure and function. PMID:26598712

  12. On the production of hidden-flavored hadronic states at high energy

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2018-04-01

    I discuss the production mechanism of hidden-flavored hadrons at high energy. Using e+e‑ collisions and light-meson pair production in high energy exclusive processes, I demonstrate that hidden quark pairs do not necessarily participate in short-distance hard scattering. Implications are then explored in a few examples. Finally, I discuss the production mechanism of X(3872) in hadron collisions, where some misunderstandings have arisen in the literature. Supported by the Thousand Talents Plan for Young Professionals, National Natural Science Foundation of China (11575110, 11655002, 11735010, 11747611), Natural Science Foundation of Shanghai (15DZ2272100) and Scientific Research Foundation for Re- turned Overseas Chinese Scholars, Ministry of Education

  13. Hadron spectrum of quenched QCD on a 32{sup 3} {times} 64 lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seyong; Sinclair, D.K.

    1992-10-01

    Preliminary results from a hadron spectrum calculation of quenched Quantumchromodynamics on a 32{sup 3} {times} 64 lattice at {beta} = 6.5 are reported. The hadron spectrum calculation is done with staggered quarks of masses, m{sub q}a = 0.001, 0.005 and 0.0025. We use two different sources in order to be able to extract the {Delta} mass in addition to the usual local light hadron masses. The numerical simulation is executed on the Intel Touchstone Delta computer. The peak speed of the Delta for a 16 {times} 32 mesh configuration is 41 Gflops for 32 bit precision. The sustained speed formore » our updating code is 9.5 Gflops. A multihit metropolis algorithm combined with an over-relaxation method is used in the updating and the conjugate gradient method is employed for Dirac matrix inversion. Configurations are stored every 1000 sweeps.« less

  14. Hadron spectrum of quenched QCD on a 32[sup 3] [times] 64 lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seyong; Sinclair, D.K.

    1992-10-01

    Preliminary results from a hadron spectrum calculation of quenched Quantumchromodynamics on a 32[sup 3] [times] 64 lattice at [beta] = 6.5 are reported. The hadron spectrum calculation is done with staggered quarks of masses, m[sub q]a = 0.001, 0.005 and 0.0025. We use two different sources in order to be able to extract the [Delta] mass in addition to the usual local light hadron masses. The numerical simulation is executed on the Intel Touchstone Delta computer. The peak speed of the Delta for a 16 [times] 32 mesh configuration is 41 Gflops for 32 bit precision. The sustained speed formore » our updating code is 9.5 Gflops. A multihit metropolis algorithm combined with an over-relaxation method is used in the updating and the conjugate gradient method is employed for Dirac matrix inversion. Configurations are stored every 1000 sweeps.« less

  15. Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders

    NASA Astrophysics Data System (ADS)

    Lebrun, Philippe; Tavian, Laurent

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.

  16. Test of interaction models up to 40 PeV by studying hadronic cores of EAS

    NASA Astrophysics Data System (ADS)

    KASCADE Collaboration; Apel, W. D.; Badea, A. F.; Bekk, K.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Gils, H. J.; Glasstetter, R.; Haungs, A.; Heck, D.; Hörandel, J. R.; Kampert, K.-H.; Klages, H. O.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Oehlschläger, J.; Ostapchenko, S.; Petcu, M.; Pierog, T.; Rebel, H.; Risse, A.; Risse, M.; Roth, M.; Schatz, G.; Schieler, H.; Ulrich, H.; van Buren, J.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2007-12-01

    The interpretation of extensive air shower measurements often requires a comparison with shower simulations in the atmosphere. These calculations rely on hadronic interaction models which have to extrapolate into kinematical and energy regions not explored by present-day collider experiments. The KASCADE experiment with its large hadron calorimeter and the detector array for the electromagnetic and muonic components provides experimental data to check such interaction models. For the simulations the program CORSIKA is used, which has several hadronic event generators embedded. For high-energy interactions (E_{\\rm{lab}}\\gtrsim100 \\ {\\rm{GeV}}) the models DPMJET, \\{\\sc NEX{\\sc US}} , QGSJET and SIBYLL have been used. Low-energy interactions have been treated by GHEISHA and FLUKA. Different hadronic observables are investigated as well as their correlations with the electromagnetic and muonic shower components up to primary energies of about 40 PeV. Although the predictions of the more recent models are to a large extent compatible with the measured data within the range given by proton and iron primary particles, there are still significant differences between the individual models.

  17. Atomic Number Dependence of Hadron Production at Large Transverse Momentum in 300 GeV Proton--Nucleus Collisions

    DOE R&D Accomplishments Database

    Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.

    1974-07-15

    In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.

  18. Higher moments of multiplicity fluctuations in a hadron-resonance gas with exact conservation laws

    NASA Astrophysics Data System (ADS)

    Fu, Jing-Hua

    2017-09-01

    Higher moments of multiplicity fluctuations of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the canonical ensemble. Exact conservation of three charges, baryon number, electric charge, and strangeness is enforced in the large volume limit. Moments up to the fourth order of various particles are calculated at CERN Super Proton Synchrotron, BNL Relativistic Heavy Ion Collider (RHIC), and CERN Large Hadron Collider energies. The asymptotic fluctuations within a simplified model with only one conserved charge in the canonical ensemble are discussed where simple analytical expressions for moments of multiplicity distributions can be obtained. Moments products of net-proton, net-kaon, and net-charge distributions in Au + Au collisions at RHIC energies are calculated. The pseudorapidity coverage dependence of net-charge fluctuation is discussed.

  19. The conservation and function of RNA secondary structure in plants

    PubMed Central

    Vandivier, Lee E.; Anderson, Stephen J.; Foley, Shawn W.; Gregory, Brian D.

    2016-01-01

    RNA transcripts fold into secondary structures via intricate patterns of base pairing. These secondary structures impart catalytic, ligand binding, and scaffolding functions to a wide array of RNAs, forming a critical node of biological regulation. Among their many functions, RNA structural elements modulate epigenetic marks, alter mRNA stability and translation, regulate alternative splicing, transduce signals, and scaffold large macromolecular complexes. Thus, the study of RNA secondary structure is critical to understanding the function and regulation of RNA transcripts. Here, we review the origins, form, and function of RNA secondary structure, focusing on plants. We then provide an overview of methods for probing secondary structure, from physical methods such as X-ray crystallography and nuclear magnetic resonance imaging (NMR) to chemical and nuclease probing methods. Marriage with high-throughput sequencing has enabled these latter methods to scale across whole transcriptomes, yielding tremendous new insights into the form and function of RNA secondary structure. PMID:26865341

  20. Scaling properties of fractional momentum loss of high-pT hadrons in nucleus-nucleus collisions at √{sN N} from 62.4 GeV to 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Al-Ta'Ani, H.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Castera, P.; Chang, B. S.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Danley, T. W.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Deaton, M. B.; Deblasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, G. W.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Mašek, L.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nishimura, S.; Norman, B. E.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Onuki, Y.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, J. S.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Sakata, H.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Semenov, V.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skutnik, S.; Slunečka, M.; Snowball, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, T. L.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zimamyi, J.; Zolin, L.; Zou, L.; Phenix Collaboration

    2016-02-01

    Measurements of the fractional momentum loss (Sloss≡δ pT/pT ) of high-transverse-momentum-identified hadrons in heavy-ion collisions are presented. Using π0 in Au +Au and Cu +Cu collisions at √{sNN}=62.4 and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb +Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of Sloss as a function of a number of variables: the number of participants, Npart, the number of quark participants, Nqp, the charged-particle density, d Nch/d η , and the Bjorken energy density times the equilibration time, ɛBjτ0 . We find that the pT, where Sloss has its maximum, varies both with centrality and collision energy. Above the maximum, Sloss tends to follow a power-law function with all four scaling variables. The data at √{sNN}=200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of Sloss with d Nch/d η and ɛBjτ0 , lending insight into the physics of parton energy loss.

  1. The Hadron Blind Ring Imaging Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Blatnik, Marie; Zajac, Stephanie; Hemmick, Tom

    2013-10-01

    Heavy Ion Collisions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab have hinted at the existence of a new form of matter at high gluon density, the Color Glass Condensate. High energy electron scattering off of nuclei, focusing on the low-x components of the nuclear wave function, will definitively measure this state of matter. However, when a nucleus contributes a low x parton, the reaction products are highly focused in the electron-going direction and have large momentum in the lab system. High-momentum particle identification is particularly challenging. A particle is identifiable by its mass, but tracking algorithms only yield a particle's momentum based on its track's curvature. The particle's velocity is needed to identify the particle. A ring-imaging Cerenkov detector is being developed for the forward angle particle identification from the technological advancements of PHENIX's Hadron-Blind Detector (HBD), which uses Gas Electron Multipliers (GEMs) and pixelated pad planes to detect Cerenkov photons. The new HBD will focus the Cerenkov photons into a ring to determine the parent particle's velocity. Results from the pad plane simulations, construction tests, and test beam run will be presented.

  2. Structure-Function Network Mapping and Its Assessment via Persistent Homology

    PubMed Central

    2017-01-01

    Understanding the relationship between brain structure and function is a fundamental problem in network neuroscience. This work deals with the general method of structure-function mapping at the whole-brain level. We formulate the problem as a topological mapping of structure-function connectivity via matrix function, and find a stable solution by exploiting a regularization procedure to cope with large matrices. We introduce a novel measure of network similarity based on persistent homology for assessing the quality of the network mapping, which enables a detailed comparison of network topological changes across all possible thresholds, rather than just at a single, arbitrary threshold that may not be optimal. We demonstrate that our approach can uncover the direct and indirect structural paths for predicting functional connectivity, and our network similarity measure outperforms other currently available methods. We systematically validate our approach with (1) a comparison of regularized vs. non-regularized procedures, (2) a null model of the degree-preserving random rewired structural matrix, (3) different network types (binary vs. weighted matrices), and (4) different brain parcellation schemes (low vs. high resolutions). Finally, we evaluate the scalability of our method with relatively large matrices (2514x2514) of structural and functional connectivity obtained from 12 healthy human subjects measured non-invasively while at rest. Our results reveal a nonlinear structure-function relationship, suggesting that the resting-state functional connectivity depends on direct structural connections, as well as relatively parsimonious indirect connections via polysynaptic pathways. PMID:28046127

  3. A combined analysis of the hadronic and leptonic decays of the Z 0

    NASA Astrophysics Data System (ADS)

    Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Dumas, D.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gandois, B.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grosse-Wiesmann, P.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Ihssen, H.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Köpke, L.; Kowalewski, R.; Kreutzmann, H.; Von Krogh, J.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Lasota, M. M. B.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lee, A. M.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Lupu, N.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Muller, A.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; Von der Schmitt, H.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; Van den Plas, D.; Vandalen, G. J.; Virtue, C. J.; Wagner, A.; Wahl, C.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Yoshida, T.; Zeuner, W.; Zorn, G. T.; Zylberajch, S.; OPAL Collaboration

    1990-04-01

    We report on a measurement of the mass of the Z 0 boson, its total width, and its partial decay widths into hadrons and leptons. On the basis of 25 801 hadronic decays and 1999 decays into electrons, muons or taus, selected over eleven energy points between 88.28 GeV and 95.04 GeV, we obtain from a combined fit to hadrons and leptons a mass of Mz=91.154±0.021 (exp)±0.030 (LEP) GeV, and a total width of Γz=2.536±0.045 GeV. The errors on Mz have been separated into the experimental error and the uncertainty due to the LEP beam energy. The measured leptonic partial widths are Γee=81.2±2.6 MeV, Γμμ=82.6± 5.8 MeV, and Γττ=85.7±7.1 MeV, consistent with lepton universality. From a fit assuming lepton universality we obtain Γℓ + ℓ - = 81.9±2.0 MeV. The hadronic partial width is Γhad=1838±46 MeV. From the measured total and partial widths a model independent value for the invisible width is calculated to be Γinv=453±44 MeV. The errors quoted include both the statistical and the systematic uncertainties.

  4. The data acquisition and reduction challenge at the Large Hadron Collider.

    PubMed

    Cittolin, Sergio

    2012-02-28

    The Large Hadron Collider detectors are technological marvels-which resemble, in functionality, three-dimensional digital cameras with 100 Mpixels-capable of observing proton-proton (pp) collisions at the crossing rate of 40 MHz. Data handling limitations at the recording end imply the selection of only one pp event out of each 10(5). The readout and processing of this huge amount of information, along with the selection of the best approximately 200 events every second, is carried out by a trigger and data acquisition system, supplemented by a sophisticated control and monitor system. This paper presents an overview of the challenges that the development of these systems has presented over the past 15 years. It concludes with a short historical perspective, some lessons learnt and a few thoughts on the future.

  5. Structural frequency functions for an impulsive, distributed forcing function

    NASA Technical Reports Server (NTRS)

    Bateman, Vesta I.

    1987-01-01

    The response of a penetrator structure to a spatially distributed mechanical impulse with a magnitude approaching field test force levels (1-2 Mlb) were measured. The frequency response function calculated from the response to this unique forcing function is compared to frequency response functions calculated from response to point forces of about 2000 pounds. The results show that the strain gages installed on the penetrator case respond similiarly to a point, axial force and to a spatially distributed, axial force. This result suggests that the distributed axial force generated in a penetration event may be reconstructed as a point axial force when the penetrator behaves in linear manner.

  6. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability

    NASA Astrophysics Data System (ADS)

    Steenberg, James W. N.; Millward, Andrew A.; Nowak, David J.; Robinson, Pamela J.; Ellis, Alexis

    2017-03-01

    The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to assess and analyze the spatial and temporal changes, and potential vulnerability, of the urban forest resource in Toronto, Canada. This research was conducted using a spatially-explicit, indicator-based assessment of vulnerability and i-Tree Forecast modeling of temporal changes in forest structure and function. Nine scenarios were simulated for 45 years and model output was analyzed at the ecosystem and municipal scale. Substantial mismatches in ecological processes between spatial scales were found, which can translate into unanticipated loss of function and social inequities if not accounted for in planning and management. At the municipal scale, the effects of Asian longhorned beetle and ice storm disturbance were far less influential on structure and function than changes in management actions. The strategic goals of removing invasive species and increasing tree planting resulted in a decline in carbon storage and leaf biomass. Introducing vulnerability parameters in the modeling increased the spatial heterogeneity in structure and function while expanding the disparities of resident access to ecosystem services. There was often a variable and uncertain relationship between vulnerability and ecosystem structure and function. Vulnerability assessment and analysis can provide strategic planning initiatives with valuable insight into the processes of structural and functional change resulting from management intervention.

  7. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability.

    PubMed

    Steenberg, James W N; Millward, Andrew A; Nowak, David J; Robinson, Pamela J; Ellis, Alexis

    2017-03-01

    The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to assess and analyze the spatial and temporal changes, and potential vulnerability, of the urban forest resource in Toronto, Canada. This research was conducted using a spatially-explicit, indicator-based assessment of vulnerability and i-Tree Forecast modeling of temporal changes in forest structure and function. Nine scenarios were simulated for 45 years and model output was analyzed at the ecosystem and municipal scale. Substantial mismatches in ecological processes between spatial scales were found, which can translate into unanticipated loss of function and social inequities if not accounted for in planning and management. At the municipal scale, the effects of Asian longhorned beetle and ice storm disturbance were far less influential on structure and function than changes in management actions. The strategic goals of removing invasive species and increasing tree planting resulted in a decline in carbon storage and leaf biomass. Introducing vulnerability parameters in the modeling increased the spatial heterogeneity in structure and function while expanding the disparities of resident access to ecosystem services. There was often a variable and uncertain relationship between vulnerability and ecosystem structure and function. Vulnerability assessment and analysis can provide strategic planning initiatives with valuable insight into the processes of structural and functional change resulting from management intervention.

  8. Animal Structures and Functions, Science (Experimental): 5314.13.

    ERIC Educational Resources Information Center

    Silver, Barbara A.

    This unit of instruction was designed to introduce the student to the relationship between structure and function in the animal kingdom, with emphasis given to: (1) the evolution of physiological systems in the major animal phyla, (2) the complementarity of structure and function, and (3) the concept of homeostasis. The booklet lists the relevant…

  9. Diffractive Higgs boson production at the Fermilab Tevatron and the CERN Large Hadron Collider.

    PubMed

    Enberg, R; Ingelman, G; Kissavos, A; Tîmneanu, N

    2002-08-19

    Improved possibilities to find the Higgs boson in diffractive events, having less hadronic activity, depend on whether the cross section is large enough. Based on the soft color interaction models that successfully describe diffractive hard scattering at DESY HERA and the Fermilab Tevatron, we find that only a few diffractive Higgs events may be produced at the Tevatron, but we predict a substantial rate at the CERN Large Hadron Collider.

  10. Brain Structure-function Couplings (FY11)

    DTIC Science & Technology

    2012-01-01

    influence time-evolving models of global brain function and dynamic changes in cognitive performance. Both structural and functional connections change on...Artifact Resistant Measure to Detect Cognitive EEG Activity During Locomotion. Journal of NeuroEngineering and Rehabilitation, submitted. 10...Specifically, identifying the communication between brain regions that occurs during tasks may provide information regarding the cognitive processes involved in

  11. Ontogenetic functional diversity: size structure of a keystone predator drives functioning of a complex ecosystem.

    PubMed

    Rudolf, Volker H W; Rasmussen, Nick L

    2013-05-01

    A central challenge in community ecology is to understand the connection between biodiversity and the functioning of ecosystems. While traditional approaches have largely focused on species-level diversity, increasing evidence indicates that there exists substantial ecological diversity among individuals within species. By far, the largest source of this intraspecific diversity stems from variation among individuals in ontogenetic stage and size. Although such ontogenetic shifts are ubiquitous in natural communities, whether and how they scale up to influence the structure and functioning of complex ecosystems is largely unknown. Here we take an experimental approach to examine the consequences of ontogenetic niche shifts for the structure of communities and ecosystem processes. In particular we experimentally manipulated the stage structure in a keystone predator, larvae of the dragonfly Anax junius, in complex experimental pond communities to test whether changes in the population stage or size structure of a keystone species scale up to alter community structure and ecosystem processes, and how functional differences scale with relative differences in size among stages. We found that the functional role of A. junius was stage-specific. Altering what stages were present in a pond led to concurrent changes in community structure, primary producer biomass (periphyton and phytoplankton), and ultimately altered ecosystem processes (respiration and net primary productivity), indicating a strong, but stage-specific, trophic cascade. Interestingly, the stage-specific effects did not simply scale with size or biomass of the predator, but instead indicated clear ontogenetic niche shifts in ecological interactions. Thus, functional differences among stages within a keystone species scaled up to alter the functioning of entire ecosystems. Therefore, our results indicate that the classical approach of assuming an average functional role of a species can be misleading because

  12. Integrated analysis of particle interactions at hadron colliders Report of research activities in 2010-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadolsky, Pavel M.

    2015-08-31

    The report summarizes research activities of the project ”Integrated analysis of particle interactions” at Southern Methodist University, funded by 2010 DOE Early Career Research Award DE-SC0003870. The goal of the project is to provide state-of-the-art predictions in quantum chromodynamics in order to achieve objectives of the LHC program for studies of electroweak symmetry breaking and new physics searches. We published 19 journal papers focusing on in-depth studies of proton structure and integration of advanced calculations from different areas of particle phenomenology: multi-loop calculations, accurate long-distance hadronic functions, and precise numerical programs. Methods for factorization of QCD cross sections were advancedmore » in order to develop new generations of CTEQ parton distribution functions (PDFs), CT10 and CT14. These distributions provide the core theoretical input for multi-loop perturbative calculations by LHC experimental collaborations. A novel ”PDF meta-analysis” technique was invented to streamline applications of PDFs in numerous LHC simulations and to combine PDFs from various groups using multivariate stochastic sampling of PDF parameters. The meta-analysis will help to bring the LHC perturbative calculations to the new level of accuracy, while reducing computational efforts. The work on parton distributions was complemented by development of advanced perturbative techniques to predict observables dependent on several momentum scales, including production of massive quarks and transverse momentum resummation at the next-to-next-to-leading order in QCD.« less

  13. Measurement of the nuclear multiplicity ratio for Ks0 hadronization at CLAS

    NASA Astrophysics Data System (ADS)

    Daniel, A.; Hicks, K.; Brooks, W. K.; Hakobyan, H.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amarian, M.; Anghinolfi, M.; Avakian, H.; Baghdasaryan, H.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bookwalter, C.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Casey, L.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Egiyan, H.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hanretty, C.; Heddle, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S. S.; Jo, H. S.; Joo, K.; Kalantarians, N.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Mayer, M.; McAndrew, J.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vineyard, M. F.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zana, L.; Zachariou, N.; Zhao, B.; Zhao, Z. W.

    2011-11-01

    The influence of cold nuclear matter on lepto-production of hadrons in semi-inclusive deep inelastic scattering is measured using the CLAS detector in Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the Ks0 multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a function of the fractional virtual photon energy z transferred to the Ks0 and the transverse momentum squared pT2 of the Ks0. We find that the multiplicity ratios for Ks0 are reduced in the nuclear medium at high z and low pT2, with a trend for the Ks0 transverse momentum to be broadened in the nucleus for large pT2.

  14. Nonperturbative-transverse-momentum effects and evolution in dihadron and direct photon-hadron angular correlations in p +p collisions at √{s } =510 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Boer, M.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butler, C.; Butsyk, S.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Dixit, D.; Do, J. H.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fukuda, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Ji, Z.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapukchyan, D.; Kapustinsky, J.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, H.-J.; Kim, M. H.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kudo, S.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Leung, Y. H.; Lewis, B.; Lewis, N. A.; Li, X.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Loggins, V.-R.; Lovasz, K.; Lynch, D.; Maguire, C. F.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manion, A.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mihalik, D. E.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagai, K.; Nagamiya, S.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Richford, D.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Runchey, J.; Ryu, M. S.; Safonov, A. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Smith, K. L.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takahara, A.; Takeda, A.; Taketani, A.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vargyas, M.; Vazquez-Carson, S.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vukman, N.; Vznuzdaev, E.; Wang, X. R.; Wang, Z.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Wong, C. P.; Woody, C. L.; Wysocki, M.; Xia, B.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zhou, S.; Zou, L.; Phenix Collaboration

    2017-04-01

    Dihadron and isolated direct photon-hadron angular correlations are measured in p +p collisions at √{s }=510 GeV . Correlations of charged hadrons of 0.7 hadron yields for different trigger-particle transverse momenta (pTtrig ). The Gaussian widths and root mean square of pout are reported as a function of the interaction hard scale pTtrig to investigate possible transverse-momentum-dependent evolution differences between the π0-h± and direct photon-h± correlations and factorization breaking effects. The widths are found to decrease with pTtrig , which indicates that the Collins-Soper-Sterman soft factor is not driving the evolution with the hard scale in nearly back-to-back dihadron and direct photon-hadron production in p +p collisions. This behavior is in contrast to Drell-Yan and semi-inclusive deep-inelastic scattering measurements.

  15. New two-loop contributions to hadronic EDMs in the MSSM

    NASA Astrophysics Data System (ADS)

    Hisano, Junji; Nagai, Minoru; Paradisi, Paride

    2006-11-01

    Flavor-changing terms with CP-violating phases in the quark sector may contribute to the hadronic electric dipole moments (EDMs). However, within the Standard Model (SM), the source of CP violation comes from the unique CKM phase, and it turns out that the EDMs are strongly suppressed. This implies that the EDMs are very sensitive to non-minimal flavor violation structures of theories beyond the SM. In this Letter, we discuss the quark EDMs and CEDMs (chromoelectric dipole moments) in the MSSM with general flavor-changing terms in the squark mass matrices. In particular, the charged-Higgs mediated contributions to the down-quark EDM and CEDM are evaluated at two-loop level. We point out that these two-loop contributions may dominate over the one-loop induced gluino or higgsino contributions even when the squark and gluino masses are around few TeV and tanβ is moderate.

  16. Design, construction and commissioning of the Digital Hadron Calorimeter—DHCAL

    NASA Astrophysics Data System (ADS)

    Adams, C.; Bambaugh, A.; Bilki, B.; Butler, J.; Corriveau, F.; Cundiff, T.; Drake, G.; Francis, K.; Furst, B.; Guarino, V.; Haberichter, B.; Hazen, E.; Hoff, J.; Holm, S.; Kreps, A.; DeLurgio, P.; Matijas, Z.; Dal Monte, L.; Mucia, N.; Norbeck, E.; Northacker, D.; Onel, Y.; Pollack, B.; Repond, J.; Schlereth, J.; Skrzecz, F.; Smith, J. R.; Trojand, D.; Underwood, D.; Velasco, M.; Walendziak, J.; Wood, K.; Wu, S.; Xia, L.; Zhang, Q.; Zhao, A.

    2016-07-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 × 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of this prototype calorimeter.

  17. Charged hadron transverse momentum distributions in Au+Au collisions at √ SNN = 200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; van Nieuwenhuizen, Gerrit; PHOBOS Collaboration

    2003-04-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at √ SNN = 200 GeV. The evolution of the spectra for transverse momenta p T from 0.25 to 5 GeV/C is studied as a function of collision centrality. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. When comparing peripheral to central Au+Au collisions, we find that the yields at the highest p T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  18. New results on low energy exclusive hadronic final states from BABAR

    NASA Astrophysics Data System (ADS)

    Gary, J. William

    2018-01-01

    The 3.6 standard deviation discrepancy between the standard model (SM) prediction for the muon anomalous magnetic moment gμ - 2 and the corresponding experimental measurement is one of the most persistent and intriguing potential signals in particle physics for physics beyond the SM. The largest uncertainty in the SM prediction for gμ - 2 arises from the uncertainty in the measured low energy inclusive e+e- → hadrons cross section. New results from the BABAR experiment at SLAC for the e+e- → π+ π- π0 π0 and e+e- → KK ππ cross sections are presented that significantly reduce this uncertainty. New BABAR results for other low energy exclusive hadronic processes are also discussed.

  19. Determining transport coefficients for a microscopic simulation of a hadron gas

    NASA Astrophysics Data System (ADS)

    Pratt, Scott; Baez, Alexander; Kim, Jane

    2017-02-01

    Quark-gluon plasmas produced in relativistic heavy-ion collisions quickly expand and cool, entering a phase consisting of multiple interacting hadronic resonances just below the QCD deconfinement temperature, T ˜155 MeV. Numerical microscopic simulations have emerged as the principal method for modeling the behavior of the hadronic stage of heavy-ion collisions, but the transport properties that characterize these simulations are not well understood. Methods are presented here for extracting the shear viscosity and two transport parameters that emerge in Israel-Stewart hydrodynamics. The analysis is based on studying how the stress-energy tensor responds to velocity gradients. Results are consistent with Kubo relations if viscous relaxation times are twice the collision time.

  20. Charged hadron transverse momentum distributions in Au+Au collisions at S=200 GeV

    NASA Astrophysics Data System (ADS)

    Roland, Christof; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The evolution of the spectra for transverse momenta p_T from 0.25 to 5GeV/c is studied as a function of collision centrality over a range from 65 to 344 participating nucleons. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at the highest p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  1. What We Know About the Brain Structure-Function Relationship.

    PubMed

    Batista-García-Ramó, Karla; Fernández-Verdecia, Caridad Ivette

    2018-04-18

    How the human brain works is still a question, as is its implication with brain architecture: the non-trivial structure–function relationship. The main hypothesis is that the anatomic architecture conditions, but does not determine, the neural network dynamic. The functional connectivity cannot be explained only considering the anatomical substrate. This involves complex and controversial aspects of the neuroscience field and that the methods and methodologies to obtain structural and functional connectivity are not always rigorously applied. The goal of the present article is to discuss about the progress made to elucidate the structure–function relationship of the Central Nervous System, particularly at the brain level, based on results from human and animal studies. The current novel systems and neuroimaging techniques with high resolutive physio-structural capacity have brought about the development of an integral framework of different structural and morphometric tools such as image processing, computational modeling and graph theory. Different laboratories have contributed with in vivo, in vitro and computational/mathematical models to study the intrinsic neural activity patterns based on anatomical connections. We conclude that multi-modal techniques of neuroimaging are required such as an improvement on methodologies for obtaining structural and functional connectivity. Even though simulations of the intrinsic neural activity based on anatomical connectivity can reproduce much of the observed patterns of empirical functional connectivity, future models should be multifactorial to elucidate multi-scale relationships and to infer disorder mechanisms.

  2. Domain wall network as QCD vacuum: confinement, chiral symmetry, hadronization

    NASA Astrophysics Data System (ADS)

    Nedelko, Sergei N.; Voronin, Vladimir V.

    2017-03-01

    An approach to QCD vacuum as a medium describable in terms of statistical ensemble of almost everywhere homogeneous Abelian (anti-)self-dual gluon fields is reviewed. These fields play the role of the confining medium for color charged fields as well as underline the mechanism of realization of chiral SUL(Nf) × SUR(Nf) and UA(1) symmetries. Hadronization formalism based on this ensemble leads to manifestly defined quantum effective meson action. Strong, electromagnetic and weak interactions of mesons are represented in the action in terms of nonlocal n-point interaction vertices given by the quark-gluon loops averaged over the background ensemble. Systematic results for the mass spectrum and decay constants of radially excited light, heavy-light mesons and heavy quarkonia are presented. Relationship of this approach to the results of functional renormalization group and Dyson-Schwinger equations, and the picture of harmonic confinement is briefly outlined.

  3. The physics of heavy quark distributions in hadrons: Collider tests

    NASA Astrophysics Data System (ADS)

    Brodsky, S. J.; Bednyakov, V. A.; Lykasov, G. I.; Smiesko, J.; Tokar, S.

    2017-03-01

    We present a review of the current understanding of the heavy quark distributions in the nucleon and their impact on collider physics. The origin of strange, charm and bottom quark pairs at high light-front (LF) momentum fractions in hadron wavefunction-the "intrinsic" quarks, is reviewed. The determination of heavy-quark parton distribution functions (PDFs) is particularly significant for the analysis of hard processes at LHC energies. We show that a careful study of the inclusive production of open charm and the production of γ / Z / W particles, accompanied by the heavy jets at large transverse momenta can give essential information on the intrinsic heavy quark (IQ) distributions. We also focus on the theoretical predictions concerning other observables which are very sensitive to the intrinsic charm contribution to PDFs including Higgs production at high xF and novel fixed target measurements which can be tested at the LHC.

  4. Measurement of the total hadronic cross section in e+e- annihilation below 10.56GeV

    NASA Astrophysics Data System (ADS)

    Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Klein, T.; Kubota, Y.; Lang, B. W.; Poling, R.; Scott, A. W.; Smith, A.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Dytman, S. A.; Love, W.; Savinov, V.; Aquines, O.; Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Butt, J.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, K.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Berkelman, K.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Pivarski, J.; Riley, D.; Ryd, A.; Sadoff, A. J.; Schwarthoff, H.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Potlia, V.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.

    2007-10-01

    Using the CLEO III detector, we measure absolute cross sections for e+e-→hadrons at seven center-of-mass energies between 6.964 and 10.538 GeV. The values of R, the ratio of hadronic and muon pair production cross sections, are determined within 2% total root-mean-square uncertainty.

  5. The Paris-Sud yeast structural genomics pilot-project: from structure to function.

    PubMed

    Quevillon-Cheruel, Sophie; Liger, Dominique; Leulliot, Nicolas; Graille, Marc; Poupon, Anne; Li de La Sierra-Gallay, Inès; Zhou, Cong-Zhao; Collinet, Bruno; Janin, Joël; Van Tilbeurgh, Herman

    2004-01-01

    We present here the outlines and results from our yeast structural genomics (YSG) pilot-project. A lab-scale platform for the systematic production and structure determination is presented. In order to validate this approach, 250 non-membrane proteins of unknown structure were targeted. Strategies and final statistics are evaluated. We finally discuss the opportunity of structural genomics programs to contribute to functional biochemical annotation.

  6. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio; Previtali, Valentina; Valishev, Alexander

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. Themore » expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.« less

  7. Scaling properties of fractional momentum loss of high- p T hadrons in nucleus-nucleus collisions at s N N from 62.4 GeV to 2.76 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Afanasiev, S.; Aidala, C.

    2016-02-22

    We present measurements of the fractional momentum loss (S loss = delta pT / pT) of high-transverse-momentum-identified hadrons in heavy-ion collisions. Using pi 0 in Au + Au and Cu + Cu collisions at √s NN = 62.4 and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb + Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of S loss as a function of a number of variables: the number of participants, N part, the number of quark participants, N qp,more » the charged-particle density, dN ch/d η, and the Bjorken energy density times the equilibration time, epsilon Bjτ 0. We also find that the p T, where S loss has its maximum, varies both with centrality and collision energy. Above the maximum, S loss tends to follow a power-law function with all four scaling variables. Finally, the data at √s NN = 200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of S loss with dN ch/d η and ε Bjτ 0, lending insight into the physics of parton energy loss.« less

  8. How Bright is the Proton? A Precise Determination of the Photon Parton Distribution Function.

    PubMed

    Manohar, Aneesh; Nason, Paolo; Salam, Gavin P; Zanderighi, Giulia

    2016-12-09

    It has become apparent in recent years that it is important, notably for a range of physics studies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the proton. We show how the photon parton distribution function (PDF) can be determined in a model-independent manner, using electron-proton (ep) scattering data, in effect viewing the ep→e+X process as an electron scattering off the photon field of the proton. To this end, we consider an imaginary, beyond the Standard Model process with a flavor changing photon-lepton vertex. We write its cross section in two ways: one in terms of proton structure functions, the other in terms of a photon distribution. Requiring their equivalence yields the photon distribution as an integral over proton structure functions. As a result of the good precision of ep data, we constrain the photon PDF at the level of 1%-2% over a wide range of momentum fractions.

  9. Multi-functional metal-dielectric photonic structures

    NASA Astrophysics Data System (ADS)

    Smith, Kyle J.

    In RF circuits and integrated photonics, it is important to effectively control an electromagnetic signal. This includes protecting of the network from high power and/or undesired signal flow, which is achieved with device functionalities such as isolation, circulation, switching, and limiting. In an attempt to develop light-weight, small-footprint, better protection devices, new designs have been sought utilizing materials that have been otherwise avoided due to some primary downside. For example, ferromagnetic metals like Iron and Cobalt, despite being powerful magnets, have been completely shunned for uses in nonreciprocal devices due to their overwhelming electric losses and high reflectivity. How could we utilize lossy materials in electromagnetic applications? In this thesis research, we design and fabricate metal-dielectric photonic structures in which metal can be highly transmissive, while the desired response (e.g., magneto-photonic response) is strongly enhanced. Moreover, the metal-dielectric structures can be designed to exhibit a sharp transition from the induced transmission to broadband opacity for oblique incidence and/or due to a tiny alteration of the photonic structure (e.g., because of nonlinearity). Thus, the photonic structures can be tailored to produce collimation and power-limiting effects. In the case of ferromagnetic metals, the metal-dielectric structure can be realized as an omnidirectional isolator passing radiation in a single direction and for a single frequency. The effectiveness of such structures will be verified in microwave measurements. Additionally, metal-dielectric structures including a nonlinear component will be shown to function as a reflective power limiter, thus providing a far superior alternative to absorptive, and often sacrificial, limiters.

  10. Structure and Function of Your Skin

    MedlinePlus

    ... Archive JAOCD Information for Authors Information for Reviewers Human & Animal Rights Job Postings Sections of the ... Structure & Function of Your Skin Share | What It Looks Like . . . Skin is a ...

  11. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  12. Molecular structures and functional relationships in clostridial neurotoxins.

    PubMed

    Swaminathan, Subramanyam

    2011-12-01

    The seven serotypes of Clostridium botulinum neurotoxins (A-G) are the deadliest poison known to humans. They share significant sequence homology and hence possess similar structure-function relationships. Botulinum neurotoxins (BoNT) act via a four-step mechanism, viz., binding and internalization to neuronal cells, translocation of the catalytic domain into the cytosol and finally cleavage of one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) causing blockage of neurotransmitter release leading to flaccid paralysis. Crystal structures of three holotoxins, BoNT/A, B and E, are available to date. Although the individual domains are remarkably similar, their domain organization is different. These structures have helped in correlating the structural and functional domains. This has led to the determination of structures of individual domains and combinations of them. Crystal structures of catalytic domains of all serotypes and several binding domains are now available. The catalytic domains are zinc endopeptidases and share significant sequence and structural homology. The active site architecture and the catalytic mechanism are similar although the binding mode of individual substrates may be different, dictating substrate specificity and peptide cleavage selectivity. Crystal structures of catalytic domains with substrate peptides provide clues to specificity and selectivity unique to BoNTs. Crystal structures of the receptor domain in complex with ganglioside or the protein receptor have provided information about the binding of botulinum neurotoxin to the neuronal cell. An overview of the structure-function relationship correlating the 3D structures with biochemical and biophysical data and how they can be used for structure-based drug discovery is presented here. Journal compilation © 2011 FEBS. No claim to original US government works.

  13. Luminosity function and jet structure of Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    Pescalli, A.; Ghirlanda, G.; Salafia, O. S.; Ghisellini, G.; Nappo, F.; Salvaterra, R.

    2015-02-01

    The structure of gamma-ray burst (GRB) jets impacts on their prompt and afterglow emission properties. The jet of GRBs could be uniform, with constant energy per unit solid angle within the jet aperture, or it could be structured, namely with energy and velocity that depend on the angular distance from the axis of the jet. We try to get some insight about the still unknown structure of GRBs by studying their luminosity function. We show that low (1046-48 erg s-1) and high (i.e. with L ≥ 1050 erg s-1) luminosity GRBs can be described by a unique luminosity function, which is also consistent with current lower limits in the intermediate luminosity range (1048-50 erg s-1). We derive analytical expressions for the luminosity function of GRBs in uniform and structured jet models and compare them with the data. Uniform jets can reproduce the entire luminosity function with reasonable values of the free parameters. A structured jet can also fit adequately the current data, provided that the energy within the jet is relatively strongly structured, i.e. E ∝ θ-k with k ≥ 4. The classical E ∝ θ-2 structured jet model is excluded by the current data.

  14. Quantification of Soil Pore Structure Based on Minkowski-Functions

    NASA Astrophysics Data System (ADS)

    Vogel, H.; Weller, U.; Schlüter, S.

    2009-05-01

    The porous structure in soils and other geologic media is typically a complex 3-dimensional object. Most of the physical material properties including mechanical and hydraulic characteristics are immediately linked to this structure which can be directly observed using non-invasive techniques as e.g. X-ray tomography. It is an old dream and still a formidable challenge to related structural features of porous media to their physical properties. In this contribution we present a scale-invariant concept to quantify pore structure based on a limited set of meaningful morphological functions. They are based on d+1 Minkowski functionals as defined for d-dimensional bodies. These basic quantities are determined as a function of pore size obtained by filter procedures using mathematical morphology. The resulting Minkowski functions provide valuable information on pore size, pore surface area and pore topology having the potential to be linked to physical properties. The theoretical background and the related algorithms are presented and the approach is demonstrated for the structure of an arable topsoil obtained by X-ray micro tomography. We also discuss the fundamental problem of limited resolution which is critical for any attempt to quantify structural features at any scale.

  15. Hadron production measurements for neutrino physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panman, Jaap

    2008-02-21

    One of the limiting factors for the precision of neutrino oscillation experiments is the uncertainty in the composition and spectrum of the neutrino flux. Recently, dedicated hadron production experiments have been taking data and are being planned to supply measurements which can significantly reduce these uncertainties. The HARP experiment has presented results on the measurements of the double-differential production cross-section of charged pions in proton interactions with beryllium, carbon, aluminium, copper, tin, tantalum and lead targets. These results are relevant for a detailed understanding of neutrino flux in accelerator neutrino experiments K2K (p-Al data) and MiniBooNE/SciBooNE (p-Be data), for amore » better prediction of atmospheric neutrino fluxes (p-C, {pi}{sup +}-C and {pi}{sup -}-C data) as well as for a systematic improvement of hadron production models. The E910 experiment at BNL has recently published their p-Be data. NA49 has measured pion production spectra in p-C interactions and a new experiment, NA61, is starting to take data using essentially the same detector. NA61 plans to measure production spectra for the T2K experiment and for the calculation of extended air showers. MIPP has taken data with a copy of the NuMI target and is progressing in the analysis of these data. An upgrade of the readout of this experiment can greatly increase its potential.« less

  16. Structured Illumination Microscopy for the Investigation of Synaptic Structure and Function.

    PubMed

    Hong, Soyon; Wilton, Daniel K; Stevens, Beth; Richardson, Douglas S

    2017-01-01

    The neuronal synapse is a primary building block of the nervous system to which alterations in structure or function can result in numerous pathologies. Studying its formation and elimination is the key to understanding how brains are wired during development, maintained throughout adulthood plasticity, and disrupted during disease. However, due to its diffraction-limited size, investigations of the synaptic junction at the structural level have primarily relied on labor-intensive electron microscopy or ultra-thin section array tomography. Recent advances in the field of super-resolution light microscopy now allow researchers to image synapses and associated molecules with high-spatial resolution, while taking advantage of the key characteristics of light microscopy, such as easy sample preparation and the ability to detect multiple targets with molecular specificity. One such super-resolution technique, Structured Illumination Microscopy (SIM), has emerged as an attractive method to examine synapse structure and function. SIM requires little change in standard light microscopy sample preparation steps, but results in a twofold improvement in both lateral and axial resolutions compared to widefield microscopy. The following protocol outlines a method for imaging synaptic structures at resolutions capable of resolving the intricacies of these neuronal connections.

  17. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    PubMed

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  18. Large Hadron Collider commissioning and first operation.

    PubMed

    Myers, S

    2012-02-28

    A history of the commissioning and the very successful early operation of the Large Hadron Collider (LHC) is described. The accident that interrupted the first commissioning, its repair and the enhanced protection system put in place are fully described. The LHC beam commissioning and operational performance are reviewed for the period from 2010 to mid-2011. Preliminary plans for operation and future upgrades for the LHC are given for the short and medium term.

  19. Functional Annotation of Ion Channel Structures by Molecular Simulation.

    PubMed

    Trick, Jemma L; Chelvaniththilan, Sivapalan; Klesse, Gianni; Aryal, Prafulla; Wallace, E Jayne; Tucker, Stephen J; Sansom, Mark S P

    2016-12-06

    Ion channels play key roles in cell membranes, and recent advances are yielding an increasing number of structures. However, their functional relevance is often unclear and better tools are required for their functional annotation. In sub-nanometer pores such as ion channels, hydrophobic gating has been shown to promote dewetting to produce a functionally closed (i.e., non-conductive) state. Using the serotonin receptor (5-HT 3 R) structure as an example, we demonstrate the use of molecular dynamics to aid the functional annotation of channel structures via simulation of the behavior of water within the pore. Three increasingly complex simulation analyses are described: water equilibrium densities; single-ion free-energy profiles; and computational electrophysiology. All three approaches correctly predict the 5-HT 3 R crystal structure to represent a functionally closed (i.e., non-conductive) state. We also illustrate the application of water equilibrium density simulations to annotate different conformational states of a glycine receptor. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Strange hadron production in pp, pPb, and PbPb collisions at LHC energies

    NASA Astrophysics Data System (ADS)

    Ni, Hong

    2018-02-01

    Identified particle spectra provide an important tool for understanding the particle production mechanism and the dynamical evolution of the medium created in relativistic heavy ion collisions. Studies involving strange and multi-strange hadrons, such as K0S, Λ, and Ξ-, carry additional information since there is no net strangeness content in the initial colliding system. Strangeness enhancement in AA collisions with respect to pp and pA collisions has long been considered as one of the signatures for quark-gluon plasma (QGP) formation. Recent observations of collective effects in high-multiplicity pp and pA collisions raise the question of whether QGP can also be formed in the smaller systems. Systematic studies of strange particle abundance, particle ratios, and nuclear modification factors can shed light on this issue. The CMS experiment has excellent strange-particle reconstruction capabilities over a broad kinematic range, and dedicated high-multiplicity triggers in pp and pPb collisions. The spectra of K0S, Λ, and Ξ- hadrons have been measured in various multiplicity and rapidity regions as a function of pT in pp, pPb, and PbPb collisions for several collision energies. The spectral shapes and particle ratios are compared in the different collision systems for events that have the same multiplicity and interpreted in the context of hydrodynamics models.